

¹ Adversarial learning enables unbiased organism-wide ² cross-species alignment of single-cell RNA data at scale

³

⁴ Authors

⁵

⁶ Juan Javier Díaz-Mejía¹, Elias Williams¹, Brendan Innes¹, Octavian Focsa¹, Dylan Mendonca¹,
⁷ Sweenha Singh¹, Allison Nixon¹, Ronen Schuster^{1,2}, Matthew B. Buechler³, Boris Hinz^{2,4}, and
⁸ Sam Cooper¹

⁹

¹⁰

¹¹ Affiliations

¹²

- ¹³ 1. Phenomic AI Inc., MaRS Centre, West Tower, 661 University Ave Suite 1300, Toronto, ON M5G 0B7
- ¹⁴ 2. Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- ¹⁵ 3. Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- ¹⁶ 4. Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St.
¹⁷ Michael's Hospital, Toronto, Ontario M5B 1T8, Canada

¹⁸

¹⁹

²⁰ Abstract

²¹

²² Today's single-cell RNA (scRNA) datasets remain siloed, due to significant challenges associated
²³ with their integration at scale. Moreover, most scRNA analysis tools that operate at scale leverage
²⁴ supervised techniques that are insufficient for cell-type identification and discovery. Here, we
²⁵ demonstrate that the alignment of scRNA data using unsupervised models is accurate at an organism-wide
²⁶ scale and between species. To do this, we show adversarial training of a deep-learning model we term
²⁷ batch-adversarial single-cell variational inference (BA-scVI) can be employed to align standardized
²⁸ benchmark datasets comprising dozens of scRNA studies spanning tissues in humans and mice. In the
²⁹ aligned space, we analyze cell types that span tissues in both species and find prevalent complement
³⁰ expressing macrophages and fibroblasts. We provide access to the tools presented via an online interface
³¹ for atlas exploration and reference-based drag-and-drop alignment of new data.

32 Introduction

33 Single-cell RNA sequencing (scRNA) is able to dissect tissue and experimental models with
34 unprecedented precision and is underpinning a wave of new biological discovery. Today, scRNA analysis
35 focuses on individual datasets or a handful of datasets with similar etiology. Yet, to build a comprehensive
36 organism-wide understanding of gene expression profiles underlying cell types and stages we will need to
37 examine integrated transcriptional atlases that combine studies and patient populations at scale (Regev et
38 al. 2017). The ever-growing number of published scRNA studies creates an opportunity for the
39 development of a large aligned scRNA atlas (Gavish et al. 2023), that would enable standardized
40 reference based analysis, and seamless cross-dataset comparison (Lotfollahi et al. 2024). However, the
41 challenge of combining data from multiple disparate scRNA studies remains (Butler et al. 2018; Gavish et
42 al. 2023; Lotfollahi et al. 2024; Lähnemann et al. 2020).

43 While studies have looked at the alignment of batches within individual datasets or a collection of
44 integration tasks, none have focused on how well models align studies at scale, especially across tissue
45 types, instruments, and species as would be required for generation of a reference atlas (Huang et al.
46 2021; Xie et al. 2021; Abdelaal et al. 2019; Diaz-Mejia et al. 2019; Christensen et al. 2023; Butler et al.
47 2018; Song et al. 2023). Moreover, those studies that have used models across tissue types or studies have
48 used supervised models trained on cell-type labels, such as scBERT, Celltypist, and SCimilarity (Yang et
49 al. 2022; Domínguez Conde et al. 2021). Yet, unsupervised alignment is superior for cell-type discovery
50 (Vasighizaker, Danda, and Rueda 2022) and will be needed for unbiased cross-species comparative
51 analysis. Thus, a significant demand exists for a reference atlas and reference analysis based on
52 unsupervised alignment (Lotfollahi et al. 2024). In this study, we leverage the analysis of a large human
53 scRNA benchmark dataset to test the ability of methods to align scRNA data between studies and tissue
54 types first and then between species using a mouse atlas. In showing that top models can accurately align
55 the atlases with minimal loss to cell-type granularity, we demonstrate that reference-based analysis is
56 possible with a single unsupervised model and that cell types can be compared across tissues and between
57 species, paving the way to phylogenetic cell-type analyses. Finally, we provide this model, an online tool
58 for exploring the results, and a tool for drag-and-drop alignment of new data to give the broader
59 community access to the work we present here.

60 Results

61 Construction and state-of-the art alignment of the scREF scRNA benchmark dataset

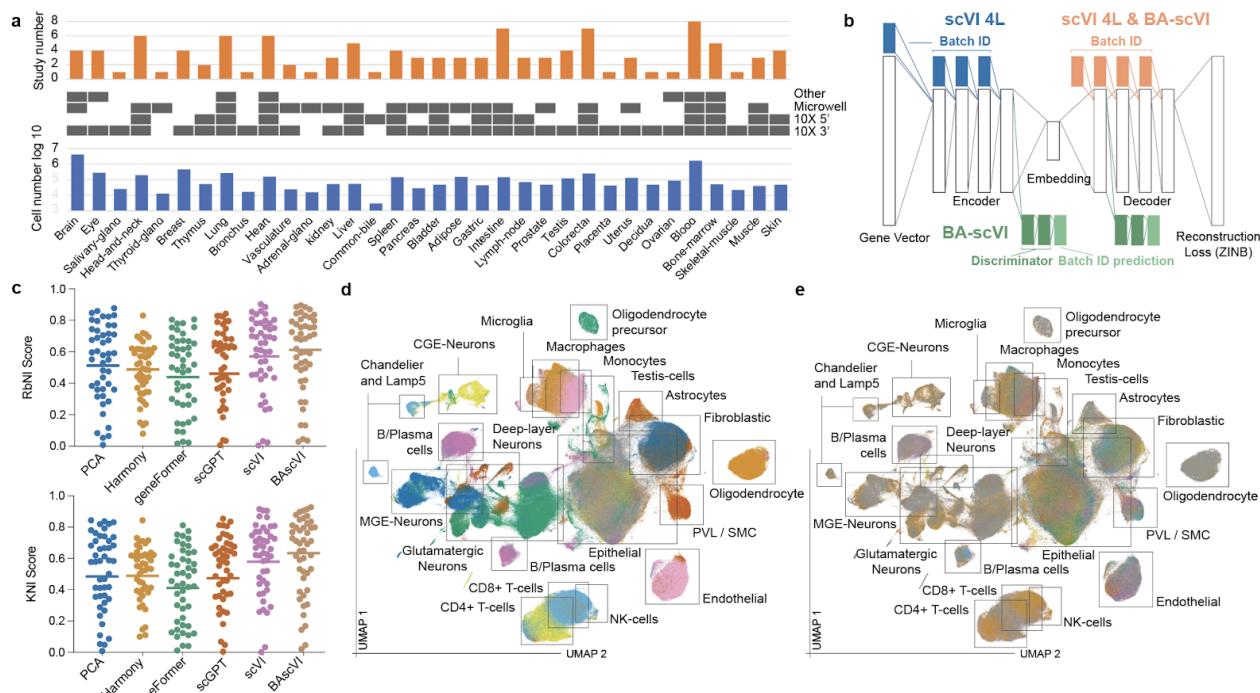
62 In scRNA studies, unsupervised models transform a high-dimensional gene-expression space into
63 a low-dimensional cell-type space. We sought an optimum model for performing this task while aligning

64 scRNA datasets across publications. To test alignment performance, we thus developed the scREF
65 benchmark, a collection of 46 human scRNA studies, spanning 2,359 samples and 36 tissues, where for
66 each dataset, quality checks have been performed and metadata standardized (Figure 1a; Methods). In
67 scREF, we include organ-specific and human-wide datasets, e.g., the Tabula Sapiens (Tabula Sapiens
68 Consortium* et al. 2022) and the Human Cell Landscape (Han et al. 2020). Importantly, scREF includes
69 data from droplet-based (10X 5', 10X 3', 10X multiome, and Dropseq) and plate/bead based methods
70 (Microwell-seq, Seq-Well and SMARTScribe) to test cross-technology alignment. Author-provided
71 cell-type labels for 45 studies were acquired and standardized, while for three cases, we generated labels
72 reproducing the original author's pipeline (Table S1; Methods); overall, this resulted in 60 unique
73 cell-type labels. Tissue-type labels were standardized for plotting and analysis (Table S1). For training
74 and testing, we balanced dataset representation by stratifying cell types from each tissue type in each
75 dataset (Table S1; Methods), leading to the final 1.21 million cell evaluation benchmark.

76 We aimed to identify models that most effectively remove technical batch effects while aligning
77 cell types. We thus sought a metric to compare model performance for this task. We developed two
78 metrics that we term K- and Radius-based Neighbors Intersection scores (KNI and RbNI; Methods;
79 Supplementary) that combine the kBET score for batch-effect detection (Büttner et al. 2019) with
80 cross-dataset cell-type prediction accuracy of author labels, a gold-standard metric for preservation of
81 biological signal (Domínguez Conde et al. 2021). In developing the KNI and RbNI scores, we evaluated
82 these and other benchmark metrics on simulated data, real data with synthetic batch effects or noise, and
83 in a real-world setting on a small scRNA benchmark that we also used for model optimization/
84 development (Supplementary; Table S2). Across these analyses, we find that the KNI and RbNI metrics
85 capture the quality of cell-type space in a single value, providing a simple, robust performance readout.

86 Following initial optimization, we tested the ability of published, scalable scRNA analysis models
87 to align the scREF atlas. Here we found that an optimized variant of single-cell Variational Inference
88 (scVI)(Lopez et al. 2018) outperformed Harmony (Korsunsky et al. 2019), PCA on highly variable genes,
89 geneFormer fine-tuned for batch effect correction with scVI (Theodoris et al. 2023) and scGPT fine tuned
90 for batch effect correction as per the author protocol (Cui et al. 2024) (Figure 1c; (Lopez et al. 2018)).
91 Qualitatively, UMAP projections showed that scVI produces a reasonably high degree of alignment
92 accuracy (Figure S8). Significantly, organism-wide studies from markedly different technologies
93 Microwell-seq (Han et al. 2020), and 10X (Tabula Sapiens Consortium* et al. 2022) overlap extensively
94 with each other and have KNI/RbNI scores at or above average (Table S3), indicating alignment
95 independent of technology. We thus find that an optimized scVI model can be used to perform effective
96 large-scale alignment. However, we noted that the direct penalization of batch effects performed in
97 Harmony can improve batch effect correction (Supplemental).

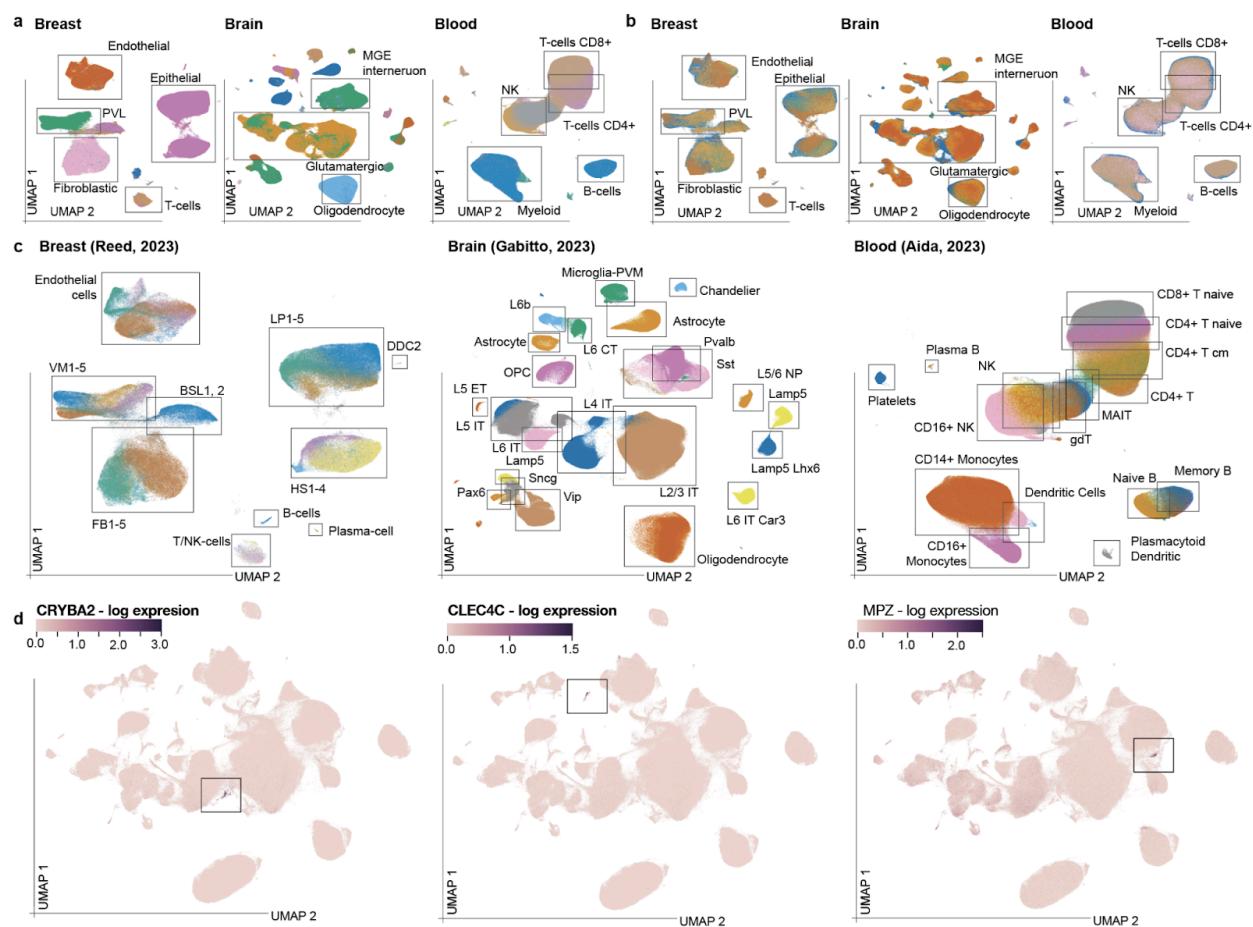
98 Adversarial learning has emerged as a powerful approach to identifying and removing technical
99 artifacts in generative machine-learning outputs (Goodfellow et al. 2020). We developed batch adversarial
100 scVI (BA-scVI) as a variant of scVI, leveraging an adversarial training approach to remove technical
101 artifacts (i.e., batch effects) in scRNA data at train time, similar to that used for the cell-search algorithm
102 in cellBLAST (Cao et al. 2020; Shaham 2018). In BA-scVI, a discriminator learns to predict the batch
103 identifier from the encoder output and decoder input in the first update step (Figure 1b). In the second
104 update step, a modified scVI architecture seeks to minimize reconstruction loss and KL-divergence while
105 maximizing discriminator loss, where discriminator loss represents the discriminator's ability to predict
106 the batch identifier (Figure 1b; Methods). By maximizing this discriminator loss while minimizing
107 reconstruction loss, the model directly penalizes batch effects while rewarding preserving cell-type
108 information in the latent space. In line with this, an optimized BA-scVI model outperforms scVI on
109 scREF (Figure 1c). This leads to effective cross study alignment, clearly resolved cell-type clusters in
110 qualitative UMAP projections of the embedding space (Figure 1d, e).



111
112 **Figure 1. Alignment of a human scRNA reference atlas:** a) Summary statistics of the scREF dataset, broken down
113 by tissue type and instrument; b) Architecture of the optimized scVI and BA-scVI models; c) KNI and RbNI scores
114 were determined for the aligned scREF dataset, based on standardized author cell type labels for the alignment tools.
115 Data points correspond to the average score achieved by the model on a study. The average score obtained on the
116 entire benchmark plotted as a line; d) A UMAP projection of the aligned stratified scREF atlas (n=1.27m), coloured by
117 'ground-truth' standardized author cell-type label. The legend is omitted for brevity (coloring is the same as Figure
118 3d), boxes show major cell-type groupings; e) same projection as (d), coloured by study name the legend is omitted.

119 Alignment of the scREF benchmark dataset maintains cell-type granularity

120 A major concern in the atlas-building community is that aligning datasets reduces the granularity
121 of cell-type detection. To qualitatively assess how well cell-type labelings are preserved at the organ level
122 in the aligned cell-type space, we fit UMAP to the three best-represented tissues: breast (4 studies), brain
123 (4 studies), and blood (7 studies). Supporting effective alignment with BA-scVI, we found effective
124 distinction of standardized cell types indicating preserved granularity (Figure 2a), alongside significant
125 overlap between studies (Figure 2b). BA-scVI could also resolve ‘original author’ labels in UMAP
126 projections of an example study for each tissue type, qualitatively supporting the preservation of cell-type
127 resolution (Figure 2c) in the aligned space.

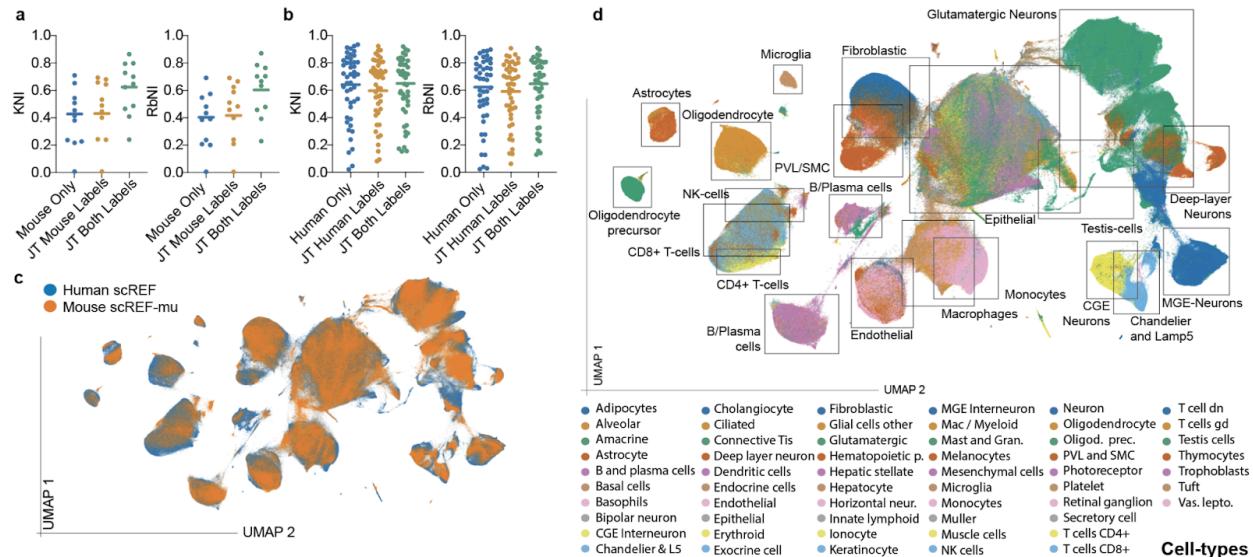


128
129 **Figure 2. BA-scVI scREF maintains cell-type granularity on alignment:** a) 10-dimensional scRNA embeddings
130 from BA-scVI corresponding to Breast (n=0.4m cells), Brain (n=4.8m cells), and Blood (n=1.6m cells) tissue-types
131 were projected into a 2-dimensional space with UMAP. Cells are coloured by the standardized ground-truth labels,
132 highlighting the consistency with which BA-scVI is able to align similar cell types. The cell-type and study legends
133 here and in (b/c) are omitted for brevity; major groupings are in boxes; b) The same UMAP projections coloured by
134 study name; c) The same UMAP projections coloured by original author labels for example studies; Breast (n=0.3m
135 cells), Brain (n=0.8m cells), Blood (n=1m cells); d) scREF UMAP projections coloured by expression of CRYBA2,
136 CLEC4C, and MPZ; selective markers of colorectal endocrine, plasmacytoid dendritic, and Schwann cells
137 respectively.

138 Quantitatively, using a KNN accuracy test with 2-fold cross-validation, for example, studies
139 (Methods), we found that relative cell-type embedding localizations of the original author labels are
140 conserved since the model can obtain high cell-type labeling accuracies on held-out data. Specifically,
141 KNN accuracies of; (1) 83% were obtained on a large breast dataset (Reed et al. 2023); increasing to 96%
142 on ‘numerical’ subtype merging (e.g. cell subtypes ‘LP1’ to ‘LP5’ become ‘LP’); 2) 99 % for a brain
143 study Gabitto et al. (Gabitto et al. 2023); and 3) 83% for the Kock et al. blood dataset where T-cell
144 subtype label overlap is notably seen in projections in the original study (Kock et al. 2024). Overall this
145 analysis further supports preservation of cell-type granularity. Furthermore, we also find that rare cell
146 types can be distinguished in BA-scVI alignments. Specifically, colorectal, endocrine cells, plasmacytoid
147 dendritic cells, and Schwann cells are marked by CRYBA2, CLEC4C, and MPZ, respectively
148 (Supplemental). In the aligned atlas, selective groupings of these genes can be seen, indicating these rare
149 cell-type groupings are captured effectively (Figure 2d). Finally, we see that BA-scVI performs well at the
150 identification of cell subtypes in a discovery setting (Supplemental). Overall, these results provide strong
151 evidence that cell-type granularity is preserved following alignment with BA-scVI, supporting its power
152 as a model for unsupervised reference-based scRNA analysis.

153 Cross-species alignment of scRNA reference atlases can improve accuracy in data-poor species

154 Next, we tested whether we could use BA-scVI to align atlases between species. For this, we
155 constructed scREF-mu, comprising 18 mouse scRNA studies, 1,290 samples, 34 tissues, and over 3
156 million cells, with author cell-type labels covering 11 studies (Table S1). As in scREF, each tissue type
157 included was required to appear in at least two datasets. However, we noted that in contrast to the scREF
158 human dataset, different mouse brain-tissue regions were often only represented abundantly in one
159 dataset, e.g., the hippocampus (Yao et al. 2021), and cerebellum (Kozareva et al. 2021). We trained
160 BA-scVI on scREF-mu alone and jointly with the scREF human dataset. KNI and RbNI scores were
161 calculated for scREF-mu alone, jointly trained using mouse cell-type labels, and jointly trained using both
162 human and mouse labels. Here, we found that joint training with the inclusion of cell-type labels from
163 both species resulted in the highest KNI and RbNI scores (Figure 3a; Table S4), indicating value in
164 cross-species alignment. Notably, the KNI and RbNI scores on the human scRNA datasets did not
165 decrease (Figure 3b), and qualitative assessment of UMAP projections of the aligned atlas also supports
166 successful alignment (Figure 3c, d). Cerebellar granule cells only appear once in both the mouse and
167 human atlases and are thus excluded in the benchmarks. Yet, we find we can accurately label these cells
168 leveraging cross-species alignment (Supplemental; Figure S11). Overall, we show that cross-species
169 alignment of organism-wide scRNA atlases is possible and may improve the labeling of cell types in
170 data-poor species.



171

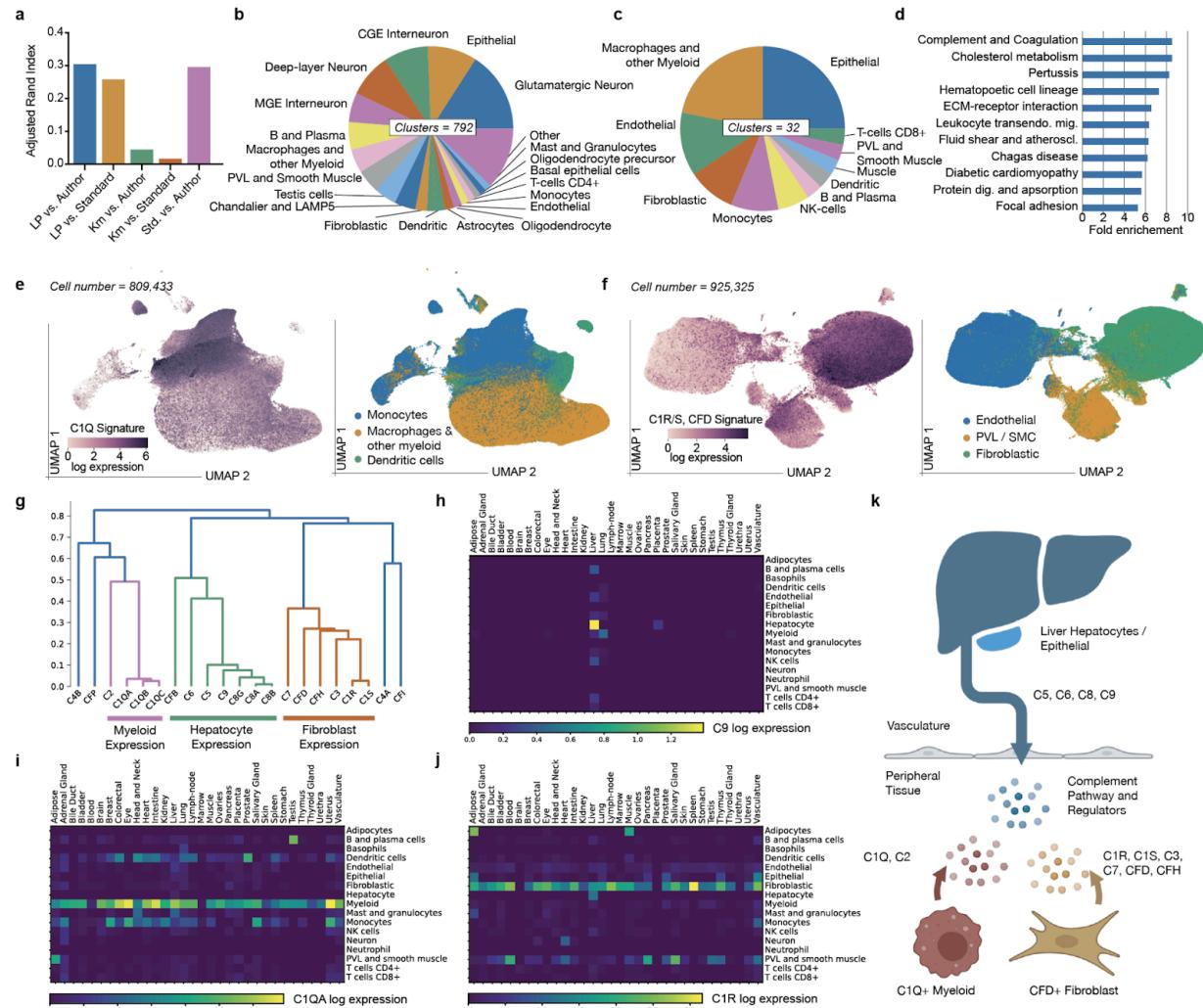
172 **Figure 3. Cross-species alignment of mouse and human scRNA atlases:** a) Analysis of KNI and RbNI scores
 173 obtained by BA-scVI on alignment of the mouse scRNA atlas scREF-mu only (Mouse Only), jointly trained with
 174 assessment of alignment accuracy using mouse labels only (JT Mouse Labels), and jointly trained leveraging labels
 175 from both mouse and humans for accuracy assessment (JT Both Labels); b) KNI and RbNI scores from BA-scVI
 176 alignment of the human scRNA atlas scREF only (Human Only) and jointly trained with assessment of alignment
 177 accuracy using human labels only (JT Human Labels), and jointly trained leveraging labels from both mouse and
 178 humans for accuracy assessment (JT Both Labels); c) UMAP projections of the jointly aligned atlas, coloured by
 179 organism with Mouse (Orange; n=528k), humans (Blue; n=1.27m); d) UMAP projection of the jointly aligned atlas
 180 coloured by cell-type, with major groupings highlighted by boxes.

181 **Cross-species alignments enables us to analyze cell-type conservation across tissues and species**

182 Following organism-wide alignment, we looked to understand how cell types group together in
 183 the aligned atlas using an unbiased approach. We tested both K-means clustering and Label Propagation
 184 (LP) approaches ability to identify cell-type groupings on the aligned scREF and scREF-mu datasets
 185 (~14m cells) as unbiased methods that could scale millions of cells (Methods). We found that LP results
 186 aligned well with the original author as well as standardized labels, compared to K-means, as measured
 187 by the Adjusted Rand Index (ARI), both on this dataset and the individual scREF and scREF-mu datasets
 188 (Figure 4a; Figure S12). Notably, we found the ARI between LP groupings and standardized labels was
 189 similar to that between standardized labels and author labels, giving us confidence this method of
 190 clustering generates meaningful groupings. Overall, LP identified 792 unique clusters in the cross-aligned
 191 atlas where more than 50 cells were present in at least two datasets. Approximately half of these clusters
 192 were CNS cell types (Figure 4b), which is in line with the enormous cell-type diversity seen in the brain
 193 (Zhang et al. 2023). The other half corresponded to the remaining tissue types, in line with prior estimates
 194 that hundreds of cell types exist in the body (Hatton et al. 2023). Similar results were obtained for the
 195 individual atlases (Supplemental).

196 Where most studies have focused on organ-specific cell-type ID, here we sought to characterize
197 cell-type groupings that span tissue types and are highly conserved between organisms. We reason this
198 may indicate evolutionary constraint. Clusters were filtered for those containing cells from 10 or more
199 tissues in both the mouse and human datasets; potential artifactual groupings were also removed
200 (Methods). After this, 32 conserved cross-tissue clusters remained, covering a diverse range of cell types,
201 as marked by the modal standardized cell-type label (Figure 4c). We then leveraged differential
202 gene-expression analysis to understand if these cell types are all well-defined or if new groupings emerge
203 from this cross-tissue analysis (Methods). While most cell types were well defined, we noted macrophage
204 groupings that show highly selective C1Q expression and fibroblast clusters that are enriched for C1R,
205 C1S, and CFD, and SERPING1 (complement inhibitor) expression in the cross-aligned and individual
206 atlases (Table S5). Pathway analysis (Ge, Jung, and Yao 2020) of the top 25 most-selective genes to each
207 cell type in the cross-species returns “Complement and coagulation cascade” as the most enriched
208 pathway in this gene set (Figure 4d), indicating this enrichment is not just qualitative.

209 While it is known that peripheral macrophages and dendritic cells express C1Q (Castellano et al.
210 2010; Müller, Hanauske-Abel, and Loos 1978), these genes are not typically used as myeloid cell-type
211 markers. Moreover, while studies have shown that synovial fibroblasts can synthesize complement
212 proteins in vitro (Katz and Strunk 1988), widespread fibroblast expression of complement has not been
213 reported, although C7 is noted as a fibroblast markers (Buechler et al. 2021; Dominguez et al. 2020).
214 Supporting the results obtained from label propagation, we found in UMAP projections of myeloid cell
215 types, C1Q expression marks a distinct region (Figure 4d). Similarly, a C1R, C1S, and CFD signature
216 marks an axis of variation in fibroblast cell types (Figure 4e). Expression of the core complement gene
217 family in the unaligned scREF and scREF-mu atlas further supports our findings and also hints at broader
218 complement regulation by fibroblasts and macrophages. Specifically, in the scREF and scREF-mu atlas,
219 we see three expression patterns emerge across standardized cell types and tissues (Figure 4f-i). Namely,
220 1) Myeloid selective expression of C1Q genes and C2; 2) Fibroblast selective expression of C1R, C1S,
221 C3, CFH, CFD, and C7 with trace endothelial and PVL/SMC readouts; and 3) Liver / Hepatocyte
222 selective expression of C5, C6, C8 components, C9 and CFB; with outlier expression of C4A, C4B, CFI
223 and CFP. Importantly, these results are also seen in the individually aligned mouse and human atlases
224 (Supplemental; Figure S13, 14). Overall, this analysis thus finds peripheral complement mRNA
225 expression in broadly abundant, evolutionarily conserved fibroblasts and macrophages and highlights the
226 value of the cross-species alignment we perform here in uncovering these expression patterns.



227

228 Figure 4. Analysis of conserved cell-types in the body: a) Comparison of label propagation and K-means clusters 229 with author or standardized cell-type labels, measured by the Adjusted Rand Index for the jointly aligned mouse and 230 human atlas; b) Proportion of unique cell-type groups, with more than 20 cells present in two datasets, by 231 standardized label in the jointly aligned atlas; c) Same as (b) but filtered for cell-types with over 20 cells present in 2 232 datasets, in more than 10 tissues in mice and humans; d) Pathway enrichment for the top 20 differentially expressed 233 genes in the conserved cell-types; e) UMAP projection of Myeloid lineages, coloured by mean C1QA, C1QB, and 234 C1QC read count (left), or standardized cell-type label (right), n=695,141 cells; f) UMAP projection of Fibroblastic, 235 Endothelial, and PVL / Smooth muscle cell types, colored by mean C1R, C1S, read counts (left), or standardized 236 cell-type label (right); g) Hierarchical clustering of complement expression patterns h-j) Heatmaps of log read-counts 237 of representative expression profiles for the three observed patterns; g) C9 = Liver; h) C1QA = Myeloid-types; i) C1R 238 = Fibroblasts); k) Cartoon of proposed cell-type contributors to complement signaling.

239 BA-scVI trained on scREF realizes drag-and-drop scRNA analysis

240 Unlike scVI, BA-ScVI only uses batch labels in training. This allows new samples to be 241 embedded de novo, as long as the contributing tissue is currently represented in the atlas. We demonstrate 242 this at scale by using BA-scVI trained on scREF without the Tabula Sapiens atlas to accurately predict 243 cell-type labels in the Tabula Sapiens atlas without further fine-tuning or training (Tabula Sapiens 244 Consortium* et al. 2022)(Supplemental, Figure S15). We also found that this approach can map in vitro

245 cell types to tissue scRNA data, which is valuable for in vitro model relevance optimization
246 (Supplemental). To give broad access to this capability, we provide an online tool for drag-and-drop
247 embedding and labeling of new human scRNA data against scREF. This tool is available as a
248 user-friendly web app that also facilitates analysis and visualization at <https://scref.phenomic.ai/>. An API
249 alongside R and Python functions is also given in the data availability section below.

250 Discussion

251 Most scRNA data alignment benchmarking studies have used a handful of datasets to evaluate the
252 performance of machine-learning methods for this task (Pasquini et al. 2021; Abdelaal et al. 2019;
253 Diaz-Mejia et al. 2019). However, the development of reference-based atlases will require the alignment
254 of hundreds to thousands of samples and millions of cells to one another. In this study, we present scREF
255 as a large-scale benchmark dataset and the K- and Radius-based Neighbors Intersection scores (KNI and
256 RbNI) as metrics of model performance assessment on this benchmark that consider accuracy and
257 alignment quality. Leveraging this benchmark, we find that the scVI architecture outperforms other
258 methods in cross-dataset alignment. We enhance scVI’s performance by optimizing its architecture and
259 show how adversarial learning can be used to boost performance further (BA-scVI). Optimizing
260 architectures, loss functions, and parameters against metrics is common-place in machine-learning model
261 development, for example (Kraus, Ba, and Frey 2016). With the release of the data and tests we develop
262 here, we hope to increase adoption of these benchmark strategies in scRNA model development and spur
263 development of yet better approaches.

264 It has been hypothesized that large cross-species atlases could be used to improve alignment
265 quality (Lotfollahi et al. 2024). Supporting this, we find that aligning the large mouse scREF-mu atlas to
266 the human scREF atlas improves accuracy on the mouse benchmark without reducing the quality of the
267 human alignment or cell-type labeling. In an unbiased cell-type analysis of the aligned atlases, we
268 identified complement-expressing macrophage and fibroblastic cell types that are prevalent across tissue
269 types in both species. Peripheral complement expression has been described for macrophages (Müller,
270 Hanauske-Abel, and Loos 1978). However, the same cannot be said for fibroblasts, and overall,
271 complement expression has received limited attention (Bordron et al. 2020). We speculate that
272 liver-expressed complement factors combine with those produced by macrophages in peripheral tissue
273 and those of fibroblasts to modulate complement activity in humans and mice, pointing towards a broader
274 underappreciated role in immunity (Figure 4k). In highlighting this result, we also hope to demonstrate
275 the value of cross-species alignment and analysis for understanding cell-type evolution and conservation.
276 We anticipate that such alignments at scale could be used to identify evolutionary relationships between
277 cell types, thus tracing the emergence of the lineages we see today.

278 Methods

279 **Collection and standardization of human scRNA data:** Raw scRNA UMI count matrices were
280 obtained from public repositories (Table S1). Quality control followed the original author filters.
281 Cells labeled by the authors as; (i) Unknown; (ii) Undetermined; or (iii) Mixed were excluded
282 from benchmark analysis. Gene identifiers were standardized across studies based on (i) Human
283 Protein Atlas (HPA) versions 13 to 20; and (ii) ENSEMBL GRCh38 versions 78 to 103. Priority
284 was given to HPA identifiers. Genes common to 30 datasets or more were used for training
285 (Tables S1). In cases where the authors provided only general T-cell annotations, we used
286 Azimuth's Human PBMC signatures (Hao et al. 2021) to assign those cells into CD8+, CD4+ or
287 gamma-delta T-cells.

288 **Collection and standardization of mouse scRNA data:** Similar to human datasets, mouse data
289 was obtained from public repositories (Table S1) and quality control followed the original author
290 filters and cells labeled as unknown, undetermined or mixed were excluded from analysis. To
291 align mouse and human datasets, gene names were uppercased and mouse-vs-human orthologs
292 were mapped using ENSEMBL v110. Azimuth's Human PBMC signatures were used to
293 sub-classify general T-cells into CD8+, CD4+ or gamma-delta T-cells.

294 **scRNA data normalization:** For scVI, PCAscmap, Harmony, and BA-scVI, the count matrices
295 were normalized on a per-cell basis using Scanpy v1.7.2 (Wolf, Angerer, and Theis 2018), by
296 dividing each cell by its total count over all genes. The normalized count was then multiplied by
297 a scale factor of 10,000, after which a log(X+1) transformation was applied. For RPCA, Seurat's
298 SCTransform normalization was used with default parameters (Hao et al. 2021).

299 **Calculation of K-Neighbors Intersection (KNI) score:** To calculate the KNI we consider the set
300 $C = \{c_1, c_2 \dots c_n\}$ of cells in a low-dimensional cell-type feature space where each cell c_i is
301 defined by its coordinates x_i , batch identifier b_i , and cell-type identifier t_i . The distance function
302 D between two cells is the Euclidean distance between their embedded coordinates. For the KNI,
303 we thus identify the k -nearest neighbors for each cell c_k as per a K-nearest neighbors search:

304
$$K = \{c_i : D(c_k, c_i) \leq D(c_k, c_j) \text{ for all } j \neq k \text{ and } |K| = k\}$$

305 For each cell c_k , we then identify a subset B of K in which cells have different batch identifiers,

306 defined as:

307

$$B = \{c_i \in K : b_k \neq b_i\}$$

308 We then use a function L to assign ‘predicted’ cell-type labels to each datapoint. Each cell c_k is
309 labeled as either (1) an outlier if the number of elements in B is below a threshold number τ (
310 $\tau < k$), i.e., too many nearest neighbors belong to the same batch, or (2) the most common
311 label from cells in B :

$$L(c_k) = \begin{cases} \text{null} & |B| < \tau \\ \text{mode}(t_i : c_i \in B) & |B| > \tau \end{cases}$$

312

313 The KNI score is then calculated as the total number of predicted labels that match author given
314 labels:

$$\text{Score} = \frac{\text{Correct}}{\text{Correct} + \text{Incorrect}}, \quad \begin{array}{ll} \text{Correct} \rightarrow L(c_k) = t_k \\ \text{Incorrect} \rightarrow L(c_k) \neq t_k \end{array}$$

315

316 An analysis of KNI parameters is given in the supplemental. For comparisons performed in this
317 paper, $k=50$ neighbors was used, with a cut-off τ of 40. For the model comparisons performed
318 here quantile normalization was used (25%, 75%) to scale the embedding spaces prior to
319 determination of the KNI. For optimization studies, the scikit-learn KNN algorithm was used
320 (Pedregosa et al. 2012), while for scREF we use the FAISS GPU implementation of KNN search
321 (Johnson, Douze, and Jégou 2021).

322 **Calculation of Radius-based Neighbors Intersection (RbNI) score:** Calculation of the RbNN
323 proceeds as per the KNI, except that: (1) The set of neighboring cells is defined by a radius r , as
324 per Radius-based Nearest Neighbors:

325

$$K = \{c_i : D(c_k, c_i) \leq r \text{ for all } i \neq k\}$$

326 ; (2) a threshold percent of ‘self’ data points τ^* is used; and (3) cells with no neighbors within
327 the radius r are also given an outlier label:

328

$$L(c_k) = \begin{cases} \text{null} & |K| = 0 \\ \text{null} & |B| < \tau^* |K| \\ \text{mode}(t_i : c_i \in B) & |B| > \tau^* |K| \end{cases}$$

329 An analysis of RbNI parameters is given in the supplemental. For comparisons performed in this
330 paper, a radius $r=1.0$ was used alongside a cut-off % of $\tau^*=80\%$, alongside the same quantile
331 normalization as performed for the KNI. For the smaller scMARK benchmark we use for
332 optimization (Supplemental), the scikit-learn Radius-based nearest neighbors algorithm was used
333 (Pedregosa et al. 2012) while for scREF we use the FAISS GPU implementation of Radius based
334 search (Johnson, Douze, and Jégou 2021).

335 **Cell-type space alignment parameters:** Methods were implemented as follows:

- 336 - **PCA:** Highly variable genes were selected as relevant features on the basis of higher
337 dispersion than genes with similar mean expression (Satija et al. 2015), as implemented
338 in *scanpy* v1.7.2 (Wolf, Angerer, and Theis 2018). PCA was run on the scaled,
339 normalized expression of those highly variable genes,
- 340 - **RPCA:** The RPCA method was implemented in R using Seurat (v4.0.3) (Hao et al. 2021)
341 with the top-10 larger samples used as references for anchor detection and the following
342 parameters (dims=10, npcs=10, k.filter=150, k.weight=100). The output of the functions
343 RunPCA (npcs=10) and RunUMAP (n.components=10), with assay="SCT" were used as
344 inputs for KNI or RbNI calculations.
- 345 - **Harmony:** The PCs identified from highly variable genes with PCA as described above
346 were passed to a python implementation of Harmony, *harmony-pytorch* v.0.1.7, using
347 default parameters (<https://doi.org/10.1038/s41592-019-0619-0>).
- 348 - **scVI 2L Sample:** We reimplemented the scVI variational auto-encoder described by
349 (Lopez et al. 2018). We used sample level batch-correction with the following
350 hyper-parameters: (1) 2-layer encoder and decoders; (2) 512 hidden nodes for each linear
351 layer; (3) Dropout regularization with 0.1 probability of an element to be zeroed; (4)
352 Batch normalization in between two hidden layers; and (5) The ReLU activation
353 function. The latent space dimension was set to 10 and modeled using a Normal
354 distribution. A Zero-Inflated Negative Binomial (ZINB) distribution was used to model
355 gene counts as per (Lopez et al. 2018). The Adam optimizer was used for training the
356 VAE with learning rate = 1E-4; weight decay = 1E-5; and eps = 0.01 (Kingma and Ba
357 2014). Early stopping was used with patience = 15 epochs. The model was trained with a
358 batch-size 64 and for a maximum of 100 epochs. All the implementation was done in

359 Python using Pytorch (1.7.0) library. One-hot Batch ID vectors corresponded to the
360 unique Sample ID, 386 batches/samples were defined over the 10 studies.

- 361 - **scVI 4L Sample:** An optimized scVI model was identified (Table S3) based on
362 parameter and architecture optimisations. This model was implemented as above, but
363 leveraged 4 layers in the encoder and decoder (4L), and patience = 5 (lp) for the early
364 stopping criteria.
- 365 - **scVI* (ScVI 4L-NoL-NoB Both) :** An optimized scVI model, *that did not require batch*
366 *ID in the encoder*, was identified (Table S3) based on parameter and architecture
367 optimisations outlined in the Supplementary for us on held-out data. This model was
368 implemented as above, however; (1) Explicit handling of library size was removed
369 (Lopez et al. 2018), (NoL); (2) *The batch ID vector was not injected into the encoder*
370 *layer*; (NoB); (3) A two-hot batch ID vector was used that encoded ‘Both’ Sample ID
371 (386 long), and study ID (11 long); and (4) learning rate = 5E-5 was used.
- 372 - **scGPT:** For both zero-shot and fine-tuned embeddings, where applicable we used the
373 authors’ tutorials (accessed March 25th, 2024 for embedding, as well as preprocessing
374 pipelines as described in the paper.

375 https://github.com/bowang-lab/scGPT/blob/main/tutorials/zero-shot/Tutorial_ZeroShot_I_nintegration.ipynb

377 https://github.com/bowang-lab/scGPT/blob/main/tutorials/Tutorial_Integration.ipynb

378 Models were retrieved from:

379 https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y (Cui
380 et al. 2024)

381 The 512-dimensional embeddings obtained from the fine-tuned scGPT models were
382 reduced to 10 dimensions using a two layer autoencoder trained using cosine similarity
383 loss. This step enabled direct comparison with the 10-dimensional BAscVI embeddings.

- 384 - **geneFormer:** We used the authors’ provided zero-shot pipeline accessed March 27th,
385 2024) for preprocessing, tokenization, and embedding.

386 https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/tokenizing_scRNaseq_data.ipynb

388 https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb

390 We extracted embeddings using the provided weights (Theodoris et al. 2023), retrieved
391 from:

392 <https://huggingface.co/ctheodoris/Geneformer/tree/main/geneformer-12L-30M>

393

394 For both the geneFormer and scGPT embedding procedures dataloaders leveraging the TileDB
395 database were used (TileDB, 2024), while for VAE models (scVI, BA-scVI) data-loaders loaded
396 data in directly from H5AD files. All data-loaders and model training procedures leveraged the
397 PyTorch lightning library.

398 **BA-scVI architecture:** Batch-Adversarial scVI (BA-scVI) leverages the same core architecture
399 as scVI, but makes use of an adversarial framework for removing batch effects. The key
400 difference is where scVI injects one-hot batch ID vectors into the encoder and decoder layers,
401 BA-ScVI takes an adversarial learning approach to learning and removing batch-effects.

402 - Here discriminators seek to predict the batch-ID b_i using the encoder outputs and decoder
403 inputs. Namely, the discriminator D seeks to minimize loss L with respect to batch-ID on
404 the encoder outputs W_E and decoder outputs W_D . The encoder and decoder weights are
405 frozen in this step. We use cross entropy loss such that,

$$L_{disc.} = \sum_i b_i \log(p_i) + \sum_i b_i \log(q_i), \quad p_i = D(W_E), \quad q_i = D(W_D)$$

406

407 - The inference network then seeks to: (1) Maximize the probability of the posterior, which
408 in this case we use a Zero-Inflated Negative Binomial (ZINB) distribution as per ((Lopez
409 et al. 2018); (2) Minimize KL-divergence of the embedding distribution z and library
410 encoder l (Kingma and Welling 2013); and (3) Maximize discriminator loss, i.e.,

411

$$L_{BAscVI} = -\mathbb{E}_{q(z, l|x)} \log p(x|z, l) + D_{KL}(z) + D_{KL}(z) - \beta L_{disc}.$$

412 The discriminator and inference networks are then trained in sequential steps with the first step
413 used to update weights on the discriminator networks and the second step weights on the
414 inference network. An optimal regimen for training was identified (Table S3) that leveraged an
415 Adam optimizer (Kingma and Ba 2014), with learning rate = 5E-5 for the inference network,
416 1E-2 for the discriminator network; weight decay = 1E-5; and eps = 0.01, with a batch-size 64
417 and for a maximum of 100 epochs; $\beta = 10$ was used for the model described in the main text.
418 Other values of beta were tested, but performed similarly or worse than the top performing
419 model that emerged from initial optimization studies (Table S3). In this optimal training regime a
420 two-hot batch ID vector was also used that encoded ‘Both’ Sample ID (386 long), and study ID
421 (11 long) was also used.

422 **Model training on scREF, scREF-mu and the joint scREF/scREF-mu atlas:** Models were
423 trained on scREF, the scREF/scREF-mu atlas using a regime optimized on a smaller benchmark
424 scMARK that we discuss in the supplemental, with the exception of our handling of a
425 standardized gene set for training. For scMARK genes common to all datasets were used. For
426 scREF and the joint atlas we took a list of genes common across 30 datasets or more. To handle
427 missing genes for a specific dataset, we then applied a mask to the reconstruction loss function at
428 train time, such that only genes present in the dataset affected the overall loss. This mask was not
429 applied to either the encoder or decoder, and thus will not affect prediction results. For the joint
430 atlas, we used ENSEMBL v110 (Martin et al. 2023) . On scREF-mu, mouse genes identifiers
431 common to all datasets were used (Table S1).

432 **Comparison of label propagation and K-means methods for cell-type ID:** Label propagation
433 was implemented as described in (Raghavan, Albert, and Kumara 2007). KNN graphs for Label
434 propagation were generated using the FAISS library (Johnson, Douze, and Jégou 2021), setting
435 the number of neighbors to k=50. Label propagation was run until complete convergence, with
436 the subsequent number of clusters identified by label propagation used to define the number of
437 clusters k for k-mean clustering. The sci-kit Learn K-means clustering function was used for
438 clustering (Pedregosa et al. 2012), with 150 iterations set as the maximum number of iterations.
439 The Adjusted Rand Index was calculated using the function provided in SciPy version 1.13.0.

440 Differential Gene Expression: To identify enriched genes in the unbiased cell-type clusters we
441 calculated differentially expressed genes between the cell-type cluster and the distribution of
442 genes across all cell-types including that cluster, given that the size of the dataset was many
443 times larger than the largest cell-type grouping. This ensured that results would not be distorted
444 by including the group in question in the reference cluster, and the number of calculations run
445 was dramatically reduced. To enable us to store a full Scanpy annotated data object in memory
446 (Wolf, Angerer, and Theis 2018) for DGE calculations (64GB RAM), we took a sample of 2,000
447 cells within a cell-type cluster, or all cells in the cluster (whichever value is smaller). Samples
448 were taken from a TileDB array (TileDB, 2024) of the full scREF object that we make available.
449 Raw read-counts were standardized as described in (Stuart et al. 2019), and we filtered genes
450 with very low expression (total standardized read-count <20 across all cell-types). To then
451 calculate differentially expressed genes, we calculated Welch's T-test score between the cell-type
452 grouping distribution and the distribution across the full cell sample. We multiplied the reference
453 standard deviation for each gene by a factor of 10 to enhance the ranking of genes that show
454 large effect size differences between the cluster and reference groups. The top 25 genes for each
455 cell-type cluster were assessed visually and passed into ShinyGO 0.8 for pathway enrichment
456 analysis (Ge, Jung, and Yao 2020). We provide the top 250 genes by DGE in Table S5 for each
457 cluster, alongside the cluster ID, and cell-type composition of the cluster and sample based on
458 standardized and author cell-type labels and tissue types represented in the cluster. A round of
459 hierarchical clustering on cluster gene expression means was also performed using scikit-learn
460 on the cluster medians to provide an easy to explore ordering of the clusters in the Tables.

461 We also provide the top 250 genes by DGE for a more complete set of 591 human filtered
462 for at least 30 cells present in at least 2 studies, 368 mouse clusters filtered for at least 20 cells
463 present in at least 2 studies, for the benefit of the reader in Supplemental Table S5. Here samples
464 of 250 cells were taken for each human cell-type grouping and 300 for mice. We note visual
465 inspection suggested no clear differences in top differentially expressed genes occur between 250
466 cell and 2,000 cell samples indicating these are sufficient sample sizes for ID of top differentially
467 expressed genes. Again cluster composition metrics are provided and ordering is as per
468 hierarchical clustering of cluster gene expression medians.

469 Heatmaps of Complement Pathway expression: Raw read-counts were standardized as
470 described in (Stuart et al. 2019). Heatmaps of complement pathway expression were calculated

471 by then taking the mean across all cells of a specific author standardized cell-type and
472 tissue-type.

473 **Filtering of artifactual clusters of conserved cell-types:** Alongside filtering of clusters identified
474 by LP for those present in at least 10 tissue-types, we also removed those groupings that were
475 highly enriched for mitochondrial or ribosomal genes as determined by differential expression.
476 Specifically, those

477 **UMAP projections:** All UMAP projections were produced using the UMAP library version 0.5.6
478 with default setting unless otherwise specified (McInnes, Healy, and Melville 2018). For the
479 online tool we provide, UMAP is calculated using the parametric version of UMAP described in
480 Sainburg et al. (Sainburg, McInnes, and Gentner 2021).

481 **Conflict of Interest**

482 S. Singh, O. Focsa, D. Mendonca, A. Nixon, R. Schuster, J. J. Diaz Mejia and B. Hinz are all
483 equity holders of Phenomic AI Inc.. S. Singh, O. Focsa, D. Mendonca, A. Nixon, and J. J. Diaz
484 Mejia are/were employees or contractors with Phenomic AI Inc.. B. Hinz and M Buechler are
485 advisors to Phenomic AI Inc. S.C. is a founder, shareholder, and board-member of Phenomic AI
486 Inc. Phenomic AI Inc. is a biotech developing new therapeutics targeting the tumor stroma.

487 **Contributions**

488 S. Singh and O. Focsa implemented and ran initial testing of scVI and built the pipeline for
489 model testing and optimization. D. Mendonca contributed to the ML pipeline testing, built the
490 web-interface for visualization of alignment results, and helped with the manuscript. M.
491 Buechler helped in writing the manuscript and guiding the direction of the paper. A. Nixon, R.
492 Schuster, B. Hinz generated the in vitro scRNA data used for alignment. E. Williams ran the
493 embedding pipeline for scGPT and Geneformer. B. Innes benchmarked the Harmony and PCA
494 models. J. J. Diaz Mejia collected, curated, and standardized the scMARK, scREF, and
495 scREF-mu datasets, and contributed to writing the manuscript. S. Cooper conceived the work,
496 ran the model and metric optimization studies for the scVI and BA-scVI models, analyzed the
497 aligned atlases, and wrote the manuscript. We would like to acknowledge Sean Grullon for help
498 conceiving the project and Sarah Hackett for help curating scREF metadata. We are grateful for
499 the UHN STARR facility for helping generate the *in vitro* scRNA sequencing data. We would

500 like to thank Christoph Licht, Mike Briskin, Christopher Harvey, Jimmy Ba and Girish Aakalu
501 for critical comments, revisions, and help on the manuscript. Finally, we would like to
502 acknowledge the rest of the team at Phenomic for feedback on the project generally.

503 Data and Code Availability

504 The smaller scMARK benchmark we provide is publicly available at:

505 <https://zenodo.org/record/7795653>,

506 The larger scREF and scREF-mu dataset available as TileDB objects at <https://cloud.tiledb.com/>
507 under the “public/phenomic” repository - we can provide links to the files in ‘.mtx’ format on
508 request.

509 Functions used to access our scRNA embedding capability programmatically, alongside code and
510 configuration files used to train all models and neural networks, links to weight for trained
511 models, and code used to generate key figures is all available at:

512 <https://github.com/samocooper/bascvi>

513 UMAP projections, dotplots of the alignments, DGE, and drag-and drop scRNA alignment
514 capabilities can all be interactively explored at:

515 <https://scref.phenomic.ai/>

516 Supplementary Data

517 Supplemental: Development Of the KNI and RbNI metrics for cell-type alignment evaluation

518 Table S1: List of studies used in the scMARK and scREF datasets, cell-type mappings for
519 standardization, genes used for training, barcodes used in final score calculation

520 Table S2: Agreement of RbNI and KNI scores with other scores across experiments

521 Table S3: Optimization of models against smaller scMARK benchmark dataset

522 Table S4: Evaluation of model performance on the scREF dataset using KNI / RbNI scores

523 Table S5: Evaluation of model performance on the scREF-mu dataset using KNI / RbNI scores

524 Table S6: Analysis of label propagation groupings by differential expression on scREF and
525 scERF-mu

526 References

527 Abdelaal, Tamim, Lieke Michielsen, Davy Cats, Dylan Hoogduin, Hailiang Mei, Marcel J. T. Reinders,
528 and Ahmed Mahfouz. 2019. “A Comparison of Automatic Cell Identification Methods for
529 Single-Cell RNA Sequencing Data.” *Genome Biology* 20 (1): 194.

530 Buechler, Matthew B., Rachana N. Pradhan, Akshay T. Krishnamurty, Christian Cox, Aslihan Karabacak
531 Calviello, Amber W. Wang, Yeqing Angela Yang, et al. 2021. “Cross-Tissue Organization of the
532 Fibroblast Lineage.” *Nature* 593 (7860): 575–79.

533 Butler, Andrew, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. 2018. “Integrating
534 Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species.” *Nature
535 Biotechnology* 36 (5): 411–20.

536 Büttner, Maren, Zhichao Miao, F. Alexander Wolf, Sarah A. Teichmann, and Fabian J. Theis. 2019. “A
537 Test Metric for Assessing Single-Cell RNA-Seq Batch Correction.” *Nature Methods* 16 (1): 43–49.

538 Cao, Zhi-Jie, Lin Wei, Shen Lu, De-Chang Yang, and Ge Gao. 2020. “Searching Large-Scale scRNA-Seq
539 Databases via Unbiased Cell Embedding with Cell BLAST.” *Nature Communications* 11 (1): 3458.

540 Castellano, Giuseppe, Leendert A. Trouw, Nicoletta Fiore, Mohamed R. Daha, F. Paolo Schena, and Cees
541 van Kooten. 2010. “Infiltrating Dendritic Cells Contribute to Local Synthesis of C1q in Murine and
542 Human Lupus Nephritis.” *Molecular Immunology* 47 (11-12): 2129–37.

543 Christensen, Erik, Ping Luo, Andrei Turinsky, Mia Husić, Alaina Mahalanabis, Alaine Naidas, Juan Javier
544 Diaz-Mejia, et al. 2023. “Evaluation of Single-Cell RNASeq Labelling Algorithms Using Cancer
545 Datasets.” *Briefings in Bioinformatics* 24 (1). <https://doi.org/10.1093/bib/bbac561>.

546 Cui, Haotian, Chloe Wang, Hassan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang. 2024.
547 “scGPT: Toward Building a Foundation Model for Single-Cell Multi-Omics Using Generative AI.”
548 *Nature Methods*, February. <https://doi.org/10.1038/s41592-024-02201-0>.

549 Diaz-Mejia, J. Javier, J. Javier Diaz-Mejia, Elaine C. Meng, Alexander R. Pico, Sonya A. MacParland,
550 Troy Ketela, Trevor J. Pugh, Gary D. Bader, and John H. Morris. 2019. “Evaluation of Methods to
551 Assign Cell Type Labels to Cell Clusters from Single-Cell RNA-Sequencing Data.” *F1000Research*.
552 <https://doi.org/10.12688/f1000research.18490.1>.

553 Dominguez, Claudia X., Sören Müller, Shilpa Keerthivasan, Hartmut Koeppen, Jeffrey Hung, Sarah
554 Gierke, Beatrice Breart, et al. 2020. “Single-Cell RNA Sequencing Reveals Stromal Evolution into
555 LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy.” *Cancer
556 Discovery* 10 (2): 232–53.

557 Domínguez Conde, C., C. Xu, L. B. Jarvis, T. Gomes, S. K. Howlett, D. B. Rainbow, O. Suchanek, et al.
558 2021. “Cross-Tissue Immune Cell Analysis Reveals Tissue-Specific Adaptations and Clonal
559 Architecture in Humans.” *bioRxiv*. <https://doi.org/10.1101/2021.04.28.441762>.

560 Gabitto, Mariano I., Kyle J. Travaglini, Victoria M. Rachleff, Eitan S. Kaplan, Brian Long, Jeanelle Ariza,
561 Yi Ding, et al. 2023. “Integrated Multimodal Cell Atlas of Alzheimer’s Disease.” *Research Square*,
562 May. <https://doi.org/10.21203/rs.3.rs-2921860/v1>.

563 Gavish, Avishai, Michael Tyler, Alissa C. Greenwald, Rouven Hoefflin, Dor Simkin, Roi
564 Tschernichovsky, Noam Galili Darnell, et al. 2023. “Hallmarks of Transcriptional Intratumour
565 Heterogeneity across a Thousand Tumours.” *Nature* 618 (7965): 598–606.

566 Ge, Steven Xijin, Dongmin Jung, and Runan Yao. 2020. “ShinyGO: A Graphical Gene-Set Enrichment
567 Tool for Animals and Plants.” *Bioinformatics* 36 (8): 2628–29.

568 Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
569 Courville, and Yoshua Bengio. 2020. “Generative Adversarial Networks.” *Communications of the
570 ACM* 63 (11): 139–44.

571 Han, Xiaoping, Ziming Zhou, Lijiang Fei, Huiyu Sun, Renying Wang, Yao Chen, Haide Chen, et al. 2020.
572 “Construction of a Human Cell Landscape at Single-Cell Level.” *Nature* 581 (7808): 303–9.

573 Hao, Yuhan, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck 3rd, Shiwei Zheng, Andrew
574 Butler, Maddie J. Lee, et al. 2021. “Integrated Analysis of Multimodal Single-Cell Data.” *Cell* 184

575 (13): 3573–87.e29.

576 Hatton, Ian A., Eric D. Galbraith, Nono S. C. Merleau, Teemu P. Miettinen, Benjamin McDonald Smith,
577 and Jeffery A. Shander. 2023. “The Human Cell Count and Size Distribution.” *Proceedings of the
578 National Academy of Sciences of the United States of America* 120 (39): e2303077120.

579 Huang, Qianhui, Yu Liu, Yuheng Du, and Lana X. Garmire. 2021. “Evaluation of Cell Type Annotation R
580 Packages on Single-Cell RNA-Seq Data.” *Genomics, Proteomics & Bioinformatics* 19 (2): 267–81.

581 Johnson, Jeff, Matthijs Douze, and Hervé Jégou. 2021. “Billion-Scale Similarity Search with GPUs.”
582 *IEEE Transactions on Big Data* 7 (3): 535–47.

583 Katz, Y., and R. C. Strunk. 1988. “Synovial Fibroblast-like Cells Synthesize Seven Proteins of the
584 Complement System.” *Arthritis and Rheumatism* 31 (11): 1365–70.

585 Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.” *arXiv
586 [cs.LG]*. arXiv. <http://arxiv.org/abs/1412.6980>.

587 Kingma, Diederik P., and Max Welling. 2013. “Auto-Encoding Variational Bayes.” *arXiv [stat.ML]*.
588 arXiv. <http://arxiv.org/abs/1312.6114v11>.

589 Kock, Kian Hong, Tan Le Min, Kyung Yeon Han, Yoshinari Ando, Damita Jevapatarakul, Ankita
590 Chatterjee, Quy Xiao Xuan Lin, et al. 2024. “Single-Cell Analysis of Human Diversity in Circulating
591 Immune Cells.” *bioRxiv*. <https://doi.org/10.1101/2024.06.30.601119>.

592 Korsunsky, Ilya, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko,
593 Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. 2019. “Fast, Sensitive and Accurate
594 Integration of Single-Cell Data with Harmony.” *Nature Methods* 16 (12): 1289–96.

595 Kozareva, Velina, Caroline Martin, Tomas Osorno, Stephanie Rudolph, Chong Guo, Charles Vandenburg,
596 Naeem Nadaf, Aviv Regev, Wade G. Regehr, and Evan Macosko. 2021. “A Transcriptomic Atlas of
597 Mouse Cerebellar Cortex Comprehensively Defines Cell Types.” *Nature* 598 (7879): 214–19.

598 Kraus, Oren Z., Jimmy Lei Ba, and Brendan J. Frey. 2016. “Classifying and Segmenting Microscopy
599 Images with Deep Multiple Instance Learning.” *Bioinformatics* 32 (12): i52–59.

600 Lähnemann, David, Johannes Köster, Ewa Szczurek, Davis J. McCarthy, Stephanie C. Hicks, Mark D.
601 Robinson, Catalina A. Vallejos, et al. 2020. “Eleven Grand Challenges in Single-Cell Data Science.”
602 *Genome Biology* 21 (1): 31.

603 Lopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. 2018. “Deep
604 Generative Modeling for Single-Cell Transcriptomics.” *Nature Methods* 15 (12): 1053–58.

605 Lotfollahi, Mohammad, Yuhan Hao, Fabian J. Theis, and Rahul Satija. 2024. “The Future of Rapid and
606 Automated Single-Cell Data Analysis Using Reference Mapping.” *Cell* 187 (10): 2343–58.

607 Martin, Fergal J., M. Ridwan Amode, Alisha Aneja, Olanrewaju Austine-Orimoloye, Andrey G. Azov, If
608 Barnes, Arne Becker, et al. 2023. “Ensembl 2023.” *Nucleic Acids Research* 51 (D1): D933–41.

609 McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform Manifold Approximation and
610 Projection for Dimension Reduction.” *arXiv [stat.ML]*. arXiv. <http://arxiv.org/abs/1802.03426>.

611 Müller, W., H. Hanuske-Abel, and M. Loos. 1978. “Biosynthesis of the First Component of Complement
612 by Human and Guinea Pig Peritoneal Macrophages: Evidence for an Independent Production of the
613 C1 Subunits.” *Journal of Immunology* 121 (4): 1578–84.

614 Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
615 Grisel, Mathieu Blondel, et al. 2012. “Scikit-Learn: Machine Learning in Python.” *arXiv [cs.LG]*.
616 arXiv. <https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https%3A%2F%2Fscikit-learn.org%2Fstable%2F>.

617 Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. 2007. “Near Linear Time Algorithm to
618 Detect Community Structures in Large-Scale Networks.” *Physical Review. E, Statistical, Nonlinear,
619 and Soft Matter Physics* 76 (3 Pt 2): 036106.

620 Reed, Austin D., Sara Pensa, Adi Steif, Jack Stenning, Daniel J. Kunz, Peng He, Alecia-Jane Twigger, et
621 al. 2023. “A Human Breast Cell Atlas Mapping the Homeostatic Cellular Shifts in the Adult Breast.”
622 *bioRxiv*. <https://doi.org/10.1101/2023.04.21.537845>.

623 Regev, Aviv, Sarah A. Teichmann, Eric S. Lander, Ido Amit, Christophe Benoist, Ewan Birney, Bernd
624 Bodenmiller, et al. 2017. “The Human Cell Atlas.” *eLife* 6 (December).
625 <https://doi.org/10.7554/eLife.27041>.

626 Sainburg, Tim, Leland McInnes, and Timothy Q. Gentner. 2021. “Parametric UMAP Embeddings for
627 Representation and Semisupervised Learning.” *Neural Computation* 33 (11): 2881–2907.

628 Satija, Rahul, Jeffrey A. Farrell, David Gennert, Alexander F. Schier, and Aviv Regev. 2015. “Spatial
629 Reconstruction of Single-Cell Gene Expression Data.” *Nature Biotechnology* 33 (5): 495–502.

630 Shaham, Uri. 2018. “Batch Effect Removal via Batch-Free Encoding.” *bioRxiv*.
631 <https://doi.org/10.1101/380816>.

632 Song, Yuyao, Zhichao Miao, Alvis Brazma, and Irene Papathodorou. 2023. “Benchmarking Strategies
633 for Cross-Species Integration of Single-Cell RNA Sequencing Data.” *Nature Communications* 14
634 (1): 6495.

635 Stuart, Tim, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexis, William M.
636 Mauck 3rd, Yuhao Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. 2019. “Comprehensive
637 Integration of Single-Cell Data.” *Cell* 177 (7): 1888–1902.e21.

638 Tabula Sapiens Consortium*, Robert C. Jones, Jim Karkanias, Mark A. Krasnow, Angela Oliveira Pisco,
639 Stephen R. Quake, Julia Salzman, et al. 2022. “The Tabula Sapiens: A Multiple-Organ, Single-Cell
640 Transcriptomic Atlas of Humans.” *Science* 376 (6594): eabl4896.

641 Theodoris, Christina V., Ling Xiao, Anant Chopra, Mark D. Chaffin, Zeina R. Al Sayed, Matthew C. Hill,
642 Helene Mantineo, et al. 2023. “Transfer Learning Enables Predictions in Network Biology.” *Nature*
643 618 (7965): 616–24.

644 TileDB, Inc. “tiledb: Modern Database Engine for Complex Data Based on Multi-Dimensional Arrays”
645 Py package version 0.31.1, 2024

646 Vasighizaker, Akram, Saiteja Danda, and Luis Rueda. 2022. “Discovering Cell Types Using Manifold
647 Learning and Enhanced Visualization of Single-Cell RNA-Seq Data.” *Scientific Reports* 12 (1): 120.

648 Wolf, F. Alexander, Philipp Angerer, and Fabian J. Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene
649 Expression Data Analysis.” *Genome Biology* 19 (1): 15.

650 Xie, Bingbing, Qin Jiang, Antonio Mora, and Xuri Li. 2021. “Automatic Cell Type Identification
651 Methods for Single-Cell RNA Sequencing.” *Computational and Structural Biotechnology Journal*
652 19 (October):5874–87.

653 Yang, Fan, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and Jianhua
654 Yao. 2022. “scBERT as a Large-Scale Pretrained Deep Language Model for Cell Type Annotation of
655 Single-Cell RNA-Seq Data.” *Nature Machine Intelligence* 4 (10): 852–66.

656 Yao, Zizhen, Cindy T. J. van Velthoven, Thuc Nghi Nguyen, Jeff Goldy, Adriana E. Sedeno-Cortes,
657 Fahimeh Baftizadeh, Darren Bertagnolli, et al. 2021. “A Taxonomy of Transcriptomic Cell Types
658 across the Isocortex and Hippocampal Formation.” *Cell* 184 (12): 3222–41.e26.

659 Zhang, Meng, Xingjie Pan, Won Jung, Aaron R. Halpern, Stephen W. Eichhorn, Zhiyun Lei, Limor
660 Cohen, et al. 2023. “Molecularly Defined and Spatially Resolved Cell Atlas of the Whole Mouse
661 Brain.” *Nature* 624 (7991): 343–54.

662