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‭Abstract‬

‭Today’s‬‭single-cell‬‭RNA‬‭(scRNA)‬‭datasets‬‭remain‬‭siloed,‬‭due‬‭to‬‭significant‬‭challenges‬‭associated‬
‭with‬ ‭their‬ ‭integration‬ ‭at‬ ‭scale.‬ ‭Moreover,‬ ‭most‬ ‭scRNA‬ ‭analysis‬ ‭tools‬ ‭that‬ ‭operate‬ ‭at‬ ‭scale‬ ‭leverage‬
‭supervised‬ ‭techniques‬ ‭that‬ ‭are‬ ‭insufficient‬ ‭for‬ ‭cell-type‬ ‭identification‬ ‭and‬ ‭discovery.‬ ‭Here,‬ ‭we‬
‭demonstrate‬‭that‬‭the‬‭alignment‬‭of‬‭scRNA‬‭data‬‭using‬‭unsupervised‬‭models‬‭is‬‭accurate‬‭at‬‭an‬‭organism-wide‬
‭scale‬ ‭and‬ ‭between‬ ‭species.‬ ‭To‬ ‭do‬ ‭this,‬ ‭we‬ ‭show‬ ‭adversarial‬ ‭training‬ ‭of‬‭a‬‭deep-learning‬‭model‬‭we‬‭term‬
‭batch-adversarial‬ ‭single-cell‬ ‭variational‬ ‭inference‬ ‭(BA-scVI)‬ ‭can‬ ‭be‬ ‭employed‬ ‭to‬ ‭align‬ ‭standardized‬
‭benchmark‬ ‭datasets‬ ‭comprising‬ ‭dozens‬ ‭of‬ ‭scRNA‬ ‭studies‬ ‭spanning‬ ‭tissues‬ ‭in‬ ‭humans‬ ‭and‬‭mice.‬‭In‬‭the‬
‭aligned‬ ‭space,‬ ‭we‬ ‭analyze‬ ‭cell‬ ‭types‬ ‭that‬ ‭span‬ ‭tissues‬ ‭in‬ ‭both‬ ‭species‬ ‭and‬ ‭find‬ ‭prevalent‬ ‭complement‬
‭expressing‬‭macrophages‬‭and‬‭fibroblasts.‬‭We‬‭provide‬‭access‬‭to‬‭the‬‭tools‬‭presented‬‭via‬‭an‬‭online‬‭interface‬

‭for atlas exploration and reference-based drag-and-drop alignment of new data.‬
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‭Introduction‬
‭Single-cell‬ ‭RNA‬ ‭sequencing‬ ‭(scRNA)‬ ‭is‬ ‭able‬ ‭to‬ ‭dissect‬ ‭tissue‬ ‭and‬ ‭experimental‬ ‭models‬ ‭with‬

‭unprecedented‬‭precision‬‭and‬‭is‬‭underpinning‬‭a‬‭wave‬‭of‬‭new‬‭biological‬‭discovery.‬‭Today,‬‭scRNA‬‭analysis‬

‭focuses‬‭on‬‭individual‬‭datasets‬‭or‬‭a‬‭handful‬‭of‬‭datasets‬‭with‬‭similar‬‭etiology.‬‭Yet,‬‭to‬‭build‬‭a‬‭comprehensive‬

‭organism-wide‬‭understanding‬‭of‬‭gene‬‭expression‬‭profiles‬‭underlying‬‭cell‬‭types‬‭and‬‭stages‬‭we‬‭will‬‭need‬‭to‬

‭examine‬‭integrated‬‭transcriptional‬‭atlases‬‭that‬‭combine‬‭studies‬‭and‬‭patient‬‭populations‬‭at‬‭scale‬‭(Regev‬‭et‬

‭al.‬ ‭2017).‬ ‭The‬ ‭ever-growing‬ ‭number‬ ‭of‬ ‭published‬ ‭scRNA‬ ‭studies‬ ‭creates‬ ‭an‬ ‭opportunity‬ ‭for‬ ‭the‬

‭development‬ ‭of‬ ‭a‬ ‭large‬ ‭aligned‬ ‭scRNA‬ ‭atlas‬ ‭(Gavish‬ ‭et‬ ‭al.‬ ‭2023),‬ ‭that‬ ‭would‬ ‭enable‬ ‭standardized‬

‭reference‬ ‭based‬ ‭analysis,‬ ‭and‬ ‭seamless‬ ‭cross-dataset‬ ‭comparison‬‭(Lotfollahi‬‭et‬‭al.‬‭2024).‬ ‭However,‬‭the‬

‭challenge‬‭of‬‭combining‬‭data‬‭from‬‭multiple‬‭disparate‬‭scRNA‬‭studies‬‭remains‬‭(Butler‬‭et‬‭al.‬‭2018;‬‭Gavish‬‭et‬

‭al. 2023; Lotfollahi et al. 2024; Lähnemann et al. 2020).‬

‭While‬‭studies‬‭have‬‭looked‬‭at‬‭the‬‭alignment‬‭of‬‭batches‬‭within‬‭individual‬‭datasets‬‭or‬‭a‬‭collection‬‭of‬

‭integration‬ ‭tasks,‬ ‭none‬ ‭have‬ ‭focused‬ ‭on‬ ‭how‬‭well‬‭models‬‭align‬‭studies‬‭at‬‭scale,‬‭especially‬‭across‬‭tissue‬

‭types,‬ ‭instruments,‬ ‭and‬ ‭species‬ ‭as‬ ‭would‬ ‭be‬ ‭required‬ ‭for‬ ‭generation‬ ‭of‬ ‭a‬ ‭reference‬ ‭atlas‬ ‭(Huang‬ ‭et‬ ‭al.‬

‭2021;‬‭Xie‬‭et‬‭al.‬‭2021;‬‭Abdelaal‬‭et‬‭al.‬‭2019;‬‭Diaz-Mejia‬‭et‬‭al.‬‭2019;‬‭Christensen‬‭et‬‭al.‬‭2023;‬‭Butler‬‭et‬‭al.‬

‭2018;‬‭Song‬‭et‬‭al.‬‭2023).‬‭Moreover,‬‭those‬‭studies‬‭that‬‭have‬‭used‬‭models‬‭across‬‭tissue‬‭types‬‭or‬‭studies‬‭have‬

‭used‬‭supervised‬‭models‬‭trained‬‭on‬‭cell-type‬‭labels,‬‭such‬‭as‬‭scBERT,‬‭Celltypist,‬‭and‬‭SCimilarity‬‭(Yang‬‭et‬

‭al.‬‭2022;‬‭Domínguez‬‭Conde‬‭et‬‭al.‬‭2021).‬‭Yet,‬‭unsupervised‬‭alignment‬‭is‬‭superior‬‭for‬‭cell-type‬‭discovery‬

‭(Vasighizaker,‬ ‭Danda,‬ ‭and‬ ‭Rueda‬ ‭2022)‬ ‭and‬ ‭will‬ ‭be‬ ‭needed‬ ‭for‬ ‭unbiased‬ ‭cross-species‬ ‭comparative‬

‭analysis.‬ ‭Thus,‬ ‭a‬ ‭significant‬ ‭demand‬ ‭exists‬ ‭for‬ ‭a‬ ‭reference‬ ‭atlas‬ ‭and‬ ‭reference‬ ‭analysis‬ ‭based‬ ‭on‬

‭unsupervised‬‭alignment‬‭(Lotfollahi‬‭et‬‭al.‬‭2024).‬‭In‬‭this‬‭study,‬‭we‬‭leverage‬‭the‬‭analysis‬‭of‬‭a‬‭large‬‭human‬

‭scRNA‬‭benchmark‬‭dataset‬‭to‬‭test‬‭the‬‭ability‬‭of‬‭methods‬‭to‬‭align‬‭scRNA‬‭data‬‭between‬‭studies‬‭and‬‭tissue‬

‭types‬‭first‬‭and‬‭then‬‭between‬‭species‬‭using‬‭a‬‭mouse‬‭atlas.‬‭In‬‭showing‬‭that‬‭top‬‭models‬‭can‬‭accurately‬‭align‬

‭the‬ ‭atlases‬ ‭with‬ ‭minimal‬ ‭loss‬ ‭to‬ ‭cell-type‬ ‭granularity,‬ ‭we‬ ‭demonstrate‬ ‭that‬ ‭reference-based‬ ‭analysis‬ ‭is‬

‭possible‬‭with‬‭a‬‭single‬‭unsupervised‬‭model‬‭and‬‭that‬‭cell‬‭types‬‭can‬‭be‬‭compared‬‭across‬‭tissues‬‭and‬‭between‬

‭species,‬‭paving‬‭the‬‭way‬‭to‬‭phylogenetic‬‭cell-type‬‭analyses.‬‭Finally,‬‭we‬‭provide‬‭this‬‭model,‬‭an‬‭online‬‭tool‬

‭for‬ ‭exploring‬ ‭the‬ ‭results,‬ ‭and‬ ‭a‬ ‭tool‬ ‭for‬ ‭drag-and-drop‬ ‭alignment‬ ‭of‬ ‭new‬ ‭data‬ ‭to‬ ‭give‬ ‭the‬ ‭broader‬

‭community access to the work we present here.‬

‭Results‬
‭Construction and state-of-the art alignment of the scREF scRNA benchmark dataset‬

‭In‬‭scRNA‬‭studies,‬‭unsupervised‬‭models‬‭transform‬‭a‬‭high-dimensional‬‭gene-expression‬‭space‬‭into‬

‭a‬‭low-dimensional‬‭cell-type‬‭space.‬‭We‬‭sought‬‭an‬‭optimum‬‭model‬‭for‬‭performing‬‭this‬‭task‬‭while‬‭aligning‬
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‭scRNA‬ ‭datasets‬ ‭across‬ ‭publications.‬ ‭To‬ ‭test‬ ‭alignment‬ ‭performance,‬ ‭we‬ ‭thus‬ ‭developed‬ ‭the‬ ‭scREF‬

‭benchmark,‬ ‭a‬‭collection‬‭of‬‭46‬‭human‬‭scRNA‬‭studies,‬‭spanning‬‭2,359‬‭samples‬‭and‬‭36‬‭tissues,‬‭where‬‭for‬

‭each‬ ‭dataset,‬ ‭quality‬ ‭checks‬ ‭have‬ ‭been‬ ‭performed‬ ‭and‬ ‭metadata‬ ‭standardized‬ ‭(Figure‬ ‭1a;‬ ‭Methods).‬ ‭In‬

‭scREF,‬ ‭we‬ ‭include‬ ‭organ-specific‬ ‭and‬ ‭human-wide‬ ‭datasets,‬ ‭e.g.,‬ ‭the‬ ‭Tabula‬ ‭Sapiens‬ ‭(Tabula‬ ‭Sapiens‬

‭Consortium*‬‭et‬‭al.‬‭2022)‬‭and‬‭the‬‭Human‬‭Cell‬‭Landscape‬‭(Han‬‭et‬‭al.‬‭2020).‬‭Importantly,‬‭scREF‬‭includes‬

‭data‬ ‭from‬ ‭droplet-based‬ ‭(10X‬ ‭5’,‬ ‭10X‬ ‭3’,‬ ‭10X‬ ‭multiome,‬ ‭and‬ ‭Dropseq)‬ ‭and‬ ‭plate/bead‬ ‭based‬‭methods‬

‭(Microwell-seq,‬ ‭Seq-Well‬ ‭and‬ ‭SMARTScribe)‬ ‭to‬ ‭test‬ ‭cross-technology‬ ‭alignment.‬ ‭Author-provided‬

‭cell-type‬‭labels‬‭for‬‭45‬‭studies‬‭were‬‭acquired‬‭and‬‭standardized,‬‭while‬‭for‬‭three‬‭cases,‬‭we‬‭generated‬‭labels‬

‭reproducing‬ ‭the‬ ‭original‬ ‭author's‬ ‭pipeline‬ ‭(Table‬ ‭S1;‬ ‭Methods);‬ ‭overall,‬ ‭this‬ ‭resulted‬ ‭in‬ ‭60‬ ‭unique‬

‭cell-type‬ ‭labels.‬ ‭Tissue-type‬ ‭labels‬ ‭were‬ ‭standardized‬ ‭for‬ ‭plotting‬ ‭and‬ ‭analysis‬ ‭(Table‬ ‭S1).‬‭For‬‭training‬

‭and‬ ‭testing,‬ ‭we‬ ‭balanced‬ ‭dataset‬ ‭representation‬ ‭by‬ ‭stratifying‬ ‭cell‬ ‭types‬ ‭from‬ ‭each‬ ‭tissue‬ ‭type‬ ‭in‬ ‭each‬

‭dataset (Table S1; Methods), leading to the final 1.21 million cell evaluation benchmark.‬

‭We‬‭aimed‬‭to‬‭identify‬‭models‬‭that‬‭most‬‭effectively‬‭remove‬‭technical‬‭batch‬‭effects‬‭while‬‭aligning‬

‭cell‬ ‭types.‬ ‭We‬ ‭thus‬ ‭sought‬ ‭a‬ ‭metric‬ ‭to‬ ‭compare‬ ‭model‬ ‭performance‬ ‭for‬ ‭this‬ ‭task.‬ ‭We‬ ‭developed‬ ‭two‬

‭metrics‬ ‭that‬ ‭we‬ ‭term‬ ‭K-‬ ‭and‬ ‭Radius-based‬ ‭Neighbors‬ ‭Intersection‬ ‭scores‬ ‭(KNI‬ ‭and‬ ‭RbNI;‬ ‭Methods;‬

‭Supplementary)‬ ‭that‬ ‭combine‬ ‭the‬ ‭kBET‬ ‭score‬ ‭for‬ ‭batch-effect‬ ‭detection‬ ‭(Büttner‬ ‭et‬ ‭al.‬ ‭2019)‬ ‭with‬

‭cross-dataset‬ ‭cell-type‬ ‭prediction‬ ‭accuracy‬ ‭of‬ ‭author‬ ‭labels,‬ ‭a‬ ‭gold-standard‬ ‭metric‬ ‭for‬ ‭preservation‬ ‭of‬

‭biological‬‭signal‬‭(Domínguez‬‭Conde‬‭et‬‭al.‬‭2021).‬‭In‬‭developing‬‭the‬‭KNI‬‭and‬‭RbNI‬‭scores,‬‭we‬‭evaluated‬

‭these‬‭and‬‭other‬‭benchmark‬‭metrics‬‭on‬‭simulated‬‭data,‬‭real‬‭data‬‭with‬‭synthetic‬‭batch‬‭effects‬‭or‬‭noise,‬‭and‬

‭in‬ ‭a‬ ‭real-world‬ ‭setting‬ ‭on‬ ‭a‬ ‭small‬ ‭scRNA‬ ‭benchmark‬ ‭that‬ ‭we‬ ‭also‬ ‭used‬ ‭for‬ ‭model‬ ‭optimization/‬

‭development‬ ‭(Supplementary;‬‭Table‬‭S2).‬‭Across‬‭these‬‭analyses,‬‭we‬‭find‬‭that‬‭the‬‭KNI‬‭and‬‭RbNI‬‭metrics‬

‭capture the quality of cell-type space in a single value, providing a simple, robust performance readout.‬

‭Following‬‭initial‬‭optimization,‬‭we‬‭tested‬‭the‬‭ability‬‭of‬‭published,‬‭scalable‬‭scRNA‬‭analysis‬‭models‬

‭to‬ ‭align‬ ‭the‬ ‭scREF‬ ‭atlas.‬ ‭Here‬ ‭we‬ ‭found‬ ‭that‬ ‭an‬ ‭optimized‬ ‭variant‬ ‭of‬ ‭single-cell‬ ‭Variational‬ ‭Inference‬

‭(scVI)(Lopez‬‭et‬‭al.‬‭2018)‬‭outperformed‬‭Harmony‬‭(Korsunsky‬‭et‬‭al.‬‭2019),‬‭PCA‬‭on‬‭highly‬‭variable‬‭genes,‬

‭geneFormer‬‭fine-tuned‬‭for‬‭batch‬‭effect‬‭correction‬‭with‬‭scVI‬‭(Theodoris‬‭et‬‭al.‬‭2023)‬‭and‬‭scGPT‬‭fine‬‭tuned‬

‭for‬ ‭batch‬ ‭effect‬ ‭correction‬‭as‬‭per‬‭the‬‭author‬‭protocol‬ ‭(Cui‬‭et‬‭al.‬‭2024)‬‭(Figure‬‭1c;‬‭(Lopez‬‭et‬‭al.‬‭2018)).‬

‭Qualitatively,‬ ‭UMAP‬ ‭projections‬ ‭showed‬ ‭that‬ ‭scVI‬ ‭produces‬ ‭a‬ ‭reasonably‬ ‭high‬ ‭degree‬ ‭of‬ ‭alignment‬

‭accuracy‬ ‭(Figure‬ ‭S8).‬ ‭Significantly,‬ ‭organism-wide‬ ‭studies‬ ‭from‬ ‭markedly‬ ‭different‬ ‭technologies‬

‭Microwell-seq‬‭(Han‬‭et‬‭al.‬‭2020),‬‭and‬‭10X‬‭(Tabula‬‭Sapiens‬‭Consortium*‬‭et‬‭al.‬‭2022)‬‭overlap‬‭extensively‬

‭with‬ ‭each‬ ‭other‬ ‭and‬ ‭have‬ ‭KNI/RbNI‬ ‭scores‬ ‭at‬ ‭or‬ ‭above‬ ‭average‬ ‭(Table‬ ‭S3),‬ ‭indicating‬ ‭alignment‬

‭independent‬‭of‬‭technology.‬‭We‬‭thus‬‭find‬‭that‬‭an‬‭optimized‬‭scVI‬‭model‬‭can‬‭be‬‭used‬‭to‬‭perform‬‭effective‬

‭large-scale‬ ‭alignment.‬ ‭However,‬ ‭we‬ ‭noted‬ ‭that‬ ‭the‬ ‭direct‬ ‭penalization‬ ‭of‬ ‭batch‬ ‭effects‬ ‭performed‬ ‭in‬

‭Harmony can improve batch effect correction (Supplemental).‬
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‭Adversarial‬ ‭learning‬ ‭has‬‭emerged‬‭as‬‭a‬‭powerful‬‭approach‬‭to‬‭identifying‬‭and‬‭removing‬‭technical‬

‭artifacts‬‭in‬‭generative‬‭machine-learning‬‭outputs‬‭(Goodfellow‬‭et‬‭al.‬‭2020).‬‭We‬‭developed‬‭batch‬‭adversarial‬

‭scVI‬ ‭(BA-scVI)‬ ‭as‬ ‭a‬ ‭variant‬ ‭of‬ ‭scVI,‬ ‭leveraging‬ ‭an‬ ‭adversarial‬ ‭training‬ ‭approach‬ ‭to‬‭remove‬‭technical‬

‭artifacts‬‭(i.e.,‬‭batch‬‭effects)‬‭in‬‭scRNA‬‭data‬‭at‬‭train‬‭time,‬‭similar‬‭to‬‭that‬‭used‬‭for‬‭the‬‭cell-search‬‭algorithm‬

‭in‬ ‭cellBLAST‬ ‭(Cao‬ ‭et‬ ‭al.‬ ‭2020;‬ ‭Shaham‬ ‭2018).‬ ‭In‬‭BA-scVI,‬‭a‬‭discriminator‬‭learns‬‭to‬‭predict‬‭the‬‭batch‬

‭identifier‬ ‭from‬ ‭the‬ ‭encoder‬ ‭output‬ ‭and‬ ‭decoder‬ ‭input‬ ‭in‬ ‭the‬ ‭first‬‭update‬‭step‬‭(Figure‬‭1b).‬‭In‬‭the‬‭second‬

‭update‬‭step,‬‭a‬‭modified‬‭scVI‬‭architecture‬‭seeks‬‭to‬‭minimize‬‭reconstruction‬‭loss‬‭and‬‭KL-divergence‬‭while‬

‭maximizing‬ ‭discriminator‬ ‭loss,‬ ‭where‬ ‭discriminator‬ ‭loss‬‭represents‬‭the‬‭discriminator’s‬‭ability‬‭to‬‭predict‬

‭the‬ ‭batch‬ ‭identifier‬ ‭(Figure‬ ‭1b;‬ ‭Methods).‬ ‭By‬ ‭maximizing‬ ‭this‬ ‭discriminator‬ ‭loss‬ ‭while‬ ‭minimizing‬

‭reconstruction‬ ‭loss,‬ ‭the‬ ‭model‬ ‭directly‬ ‭penalizes‬ ‭batch‬ ‭effects‬ ‭while‬ ‭rewarding‬ ‭preserving‬ ‭cell-type‬

‭information‬ ‭in‬ ‭the‬ ‭latent‬ ‭space.‬ ‭In‬ ‭line‬ ‭with‬ ‭this,‬ ‭an‬ ‭optimized‬ ‭BA-scVI‬ ‭model‬ ‭outperforms‬ ‭scVI‬ ‭on‬

‭scREF‬ ‭(Figure‬ ‭1c).‬ ‭This‬ ‭leads‬ ‭to‬ ‭effective‬ ‭cross‬ ‭study‬ ‭alignment,‬ ‭clearly‬ ‭resolved‬ ‭cell-type‬ ‭clusters‬ ‭in‬

‭qualitative UMAP projections of the embedding space  (Figure 1d, e).‬

‭Figure‬‭1.‬‭Alignment‬‭of‬‭a‬‭human‬‭scRNA‬‭reference‬‭atlas:‬‭a)‬‭Summary‬‭statistics‬‭of‬‭the‬‭scREF‬‭dataset,‬‭broken‬‭down‬
‭by‬ ‭tissue‬‭type‬‭and‬‭instrument;‬‭b)‬‭Architecture‬‭of‬‭the‬‭optimized‬‭scVI‬‭and‬‭BA-scVI‬‭models;‬‭c)‬ ‭KNI‬‭and‬‭RbNI‬‭scores‬
‭were‬‭determined‬‭for‬‭the‬‭aligned‬‭scREF‬‭dataset,‬‭based‬‭on‬‭standardized‬‭author‬‭cell‬‭type‬‭labels‬‭for‬‭the‬‭alignment‬‭tools.‬
‭Data‬‭points‬‭correspond‬‭to‬‭the‬‭average‬‭score‬‭achieved‬‭by‬‭the‬‭model‬‭on‬‭a‬‭study.‬‭The‬‭average‬‭score‬‭obtained‬‭on‬‭the‬
‭entire‬‭benchmark‬‭plotted‬‭as‬‭a‬‭line;‬‭d)‬‭A‬‭UMAP‬‭projection‬‭of‬‭the‬‭aligned‬‭stratified‬‭scREF‬‭atlas‬‭(n=1.27m),‬‭coloured‬‭by‬
‭‘ground-truth’‬ ‭standardized‬ ‭author‬ ‭cell-type‬ ‭label.‬ ‭The‬ ‭legend‬‭is‬‭omitted‬‭for‬‭brevity‬‭(coloring‬‭is‬‭the‬‭same‬‭as‬‭Figure‬
‭3d), boxes show major cell-type groupings; e) same projection as (d), coloured by study name the legend is omitted.‬
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‭Alignment of the scREF benchmark dataset maintains cell-type granularity‬

‭A‬‭major‬‭concern‬‭in‬‭the‬‭atlas-building‬‭community‬‭is‬‭that‬‭aligning‬‭datasets‬‭reduces‬‭the‬‭granularity‬

‭of‬‭cell-type‬‭detection.‬‭To‬‭qualitatively‬‭assess‬‭how‬‭well‬‭cell-type‬‭labelings‬‭are‬‭preserved‬‭at‬‭the‬‭organ‬‭level‬

‭in‬‭the‬‭aligned‬‭cell-type‬‭space,‬‭we‬‭fit‬‭UMAP‬‭to‬‭the‬‭three‬‭best-represented‬‭tissues:‬‭breast‬‭(4‬‭studies),‬‭brain‬

‭(4‬ ‭studies),‬ ‭and‬ ‭blood‬ ‭(7‬ ‭studies).‬ ‭Supporting‬ ‭effective‬ ‭alignment‬ ‭with‬ ‭BA-scVI,‬ ‭we‬ ‭found‬ ‭effective‬

‭distinction‬ ‭of‬ ‭standardized‬ ‭cell‬ ‭types‬ ‭indicating‬ ‭preserved‬ ‭granularity‬ ‭(Figure‬‭2a),‬‭alongside‬‭significant‬

‭overlap‬ ‭between‬ ‭studies‬ ‭(Figure‬ ‭2b).‬ ‭BA-scVI‬ ‭could‬ ‭also‬ ‭resolve‬ ‭‘original‬ ‭author’‬ ‭labels‬ ‭in‬ ‭UMAP‬

‭projections‬‭of‬‭an‬‭example‬‭study‬‭for‬‭each‬‭tissue‬‭type,‬‭qualitatively‬‭supporting‬‭the‬‭preservation‬‭of‬‭cell-type‬

‭resolution (Figure 2c) in the aligned space.‬

‭Figure‬ ‭2.‬ ‭BA-scVI‬ ‭scREF‬ ‭maintains‬ ‭cell-type‬‭granularity‬‭on‬‭alignment:‬‭a)‬‭10-dimensional‬‭scRNA‬‭embeddings‬
‭from‬ ‭BA-scVI‬ ‭corresponding‬ ‭to‬ ‭Breast‬ ‭(n=0.4m‬ ‭cells),‬ ‭Brain‬ ‭(n=4.8m‬‭cells),‬‭and‬‭Blood‬‭(n=1.6m‬‭cells)‬‭tissue-types‬
‭were‬ ‭projected‬ ‭into‬ ‭a‬ ‭2-dimensional‬‭space‬‭with‬‭UMAP.‬‭Cells‬‭are‬‭coloured‬‭by‬‭the‬‭standardized‬‭ground-truth‬‭labels,‬
‭highlighting‬ ‭the‬ ‭consistency‬ ‭with‬ ‭which‬ ‭BA-scVI‬ ‭is‬ ‭able‬‭to‬‭align‬‭similar‬‭cell‬‭types.‬‭The‬‭cell-type‬‭and‬‭study‬‭legends‬
‭here‬‭and‬‭in‬‭(b/c)‬‭are‬‭omitted‬‭for‬‭brevity;‬‭major‬‭groupings‬‭are‬‭in‬‭boxes;‬‭b)‬‭The‬‭same‬‭UMAP‬‭projections‬‭coloured‬‭by‬
‭study‬‭name;‬‭c)‬‭The‬‭same‬‭UMAP‬‭projections‬‭coloured‬‭by‬‭original‬‭author‬‭labels‬‭for‬‭example‬‭studies;‬‭Breast‬‭(n=0.3m‬
‭cells),‬ ‭Brain‬ ‭(n=0.8m‬ ‭cells),‬ ‭Blood‬ ‭(n=1m‬ ‭cells);‬ ‭d)‬ ‭scREF‬ ‭UMAP‬ ‭projections‬‭coloured‬‭by‬‭expression‬‭of‬‭CRYBA2,‬
‭CLEC4C,‬ ‭and‬ ‭MPZ;‬ ‭selective‬ ‭markers‬ ‭of‬ ‭colorectal‬ ‭endocrine,‬ ‭plasmacytoid‬ ‭dendritic,‬ ‭and‬ ‭Schwann‬ ‭cells‬
‭respectively.‬
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‭Quantitatively,‬ ‭using‬ ‭a‬ ‭KNN‬ ‭accuracy‬ ‭test‬ ‭with‬ ‭2-fold‬ ‭cross-validation,‬ ‭for‬ ‭example,‬ ‭studies‬

‭(Methods),‬ ‭we‬ ‭found‬ ‭that‬ ‭relative‬ ‭cell-type‬ ‭embedding‬ ‭localizations‬ ‭of‬ ‭the‬ ‭original‬ ‭author‬ ‭labels‬ ‭are‬

‭conserved‬ ‭since‬ ‭the‬ ‭model‬ ‭can‬ ‭obtain‬ ‭high‬ ‭cell-type‬ ‭labeling‬ ‭accuracies‬ ‭on‬ ‭held-out‬ ‭data.‬‭Specifically,‬

‭KNN‬‭accuracies‬‭of;‬‭(1)‬‭83%‬‭were‬‭obtained‬‭on‬‭a‬‭large‬‭breast‬‭dataset‬‭(Reed‬‭et‬‭al.‬‭2023);‬‭increasing‬‭to‬‭96%‬

‭on‬ ‭‘numerical’‬ ‭subtype‬ ‭merging‬ ‭(e.g.‬ ‭cell‬ ‭subtypes‬ ‭‘LP1’‬ ‭to‬ ‭‘LP5’‬ ‭become‬ ‭‘LP’);‬ ‭2)‬ ‭99‬ ‭%‬‭for‬‭a‬‭brain‬

‭study‬ ‭Gabitto‬ ‭et‬ ‭al.‬ ‭(Gabitto‬ ‭et‬ ‭al.‬ ‭2023);‬ ‭and‬ ‭3)‬ ‭83%‬ ‭for‬ ‭the‬ ‭Kock‬ ‭et‬ ‭al.‬ ‭blood‬ ‭dataset‬ ‭where‬ ‭T-cell‬

‭subtype‬‭label‬‭overlap‬‭is‬‭notably‬‭seen‬‭in‬‭projections‬‭in‬‭the‬‭original‬‭study‬‭(Kock‬‭et‬‭al.‬‭2024).‬‭Overall‬‭this‬

‭analysis‬ ‭further‬ ‭supports‬ ‭preservation‬ ‭of‬ ‭cell-type‬ ‭granularity.‬ ‭Furthermore,‬ ‭we‬ ‭also‬ ‭find‬ ‭that‬ ‭rare‬ ‭cell‬

‭types‬‭can‬‭be‬‭distinguished‬‭in‬‭BA-scVI‬‭alignments.‬‭Specifically,‬‭colorectal,‬‭endocrine‬‭cells,‬‭plasmacytoid‬

‭dendritic‬ ‭cells,‬ ‭and‬ ‭Schwann‬ ‭cells‬ ‭are‬ ‭marked‬ ‭by‬ ‭CRYBA2,‬ ‭CLEC4C,‬ ‭and‬ ‭MPZ,‬ ‭respectively‬

‭(Supplemental).‬‭In‬‭the‬‭aligned‬‭atlas,‬‭selective‬‭groupings‬‭of‬‭these‬‭genes‬‭can‬‭be‬‭seen,‬‭indicating‬‭these‬‭rare‬

‭cell-type‬‭groupings‬‭are‬‭captured‬‭effectively‬‭(Figure‬‭2d).‬‭Finally,‬‭we‬‭see‬‭that‬‭BA-scVI‬‭performs‬‭well‬‭at‬‭the‬

‭identification‬‭of‬‭cell‬‭subtypes‬‭in‬‭a‬‭discovery‬‭setting‬‭(Supplemental).‬‭Overall,‬‭these‬‭results‬‭provide‬‭strong‬

‭evidence‬‭that‬‭cell-type‬‭granularity‬‭is‬‭preserved‬‭following‬‭alignment‬‭with‬‭BA-scVI,‬‭supporting‬‭its‬‭power‬

‭as a model for unsupervised reference-based scRNA analysis.‬

‭Cross-species alignment of scRNA reference atlases can improve accuracy in data-poor species‬

‭Next,‬ ‭we‬ ‭tested‬ ‭whether‬ ‭we‬ ‭could‬ ‭use‬ ‭BA-scVI‬ ‭to‬ ‭align‬ ‭atlases‬ ‭between‬ ‭species.‬ ‭For‬ ‭this,‬ ‭we‬

‭constructed‬ ‭scREF-mu,‬ ‭comprising‬ ‭18‬ ‭mouse‬ ‭scRNA‬ ‭studies,‬ ‭1,290‬ ‭samples,‬ ‭34‬ ‭tissues,‬ ‭and‬ ‭over‬ ‭3‬

‭million‬ ‭cells,‬ ‭with‬ ‭author‬ ‭cell-type‬ ‭labels‬‭covering‬‭11‬‭studies‬‭(Table‬‭S1).‬‭As‬‭in‬‭scREF,‬‭each‬‭tissue‬‭type‬

‭included‬‭was‬‭required‬‭to‬‭appear‬‭in‬‭at‬‭least‬‭two‬‭datasets.‬‭However,‬‭we‬‭noted‬‭that‬‭in‬‭contrast‬‭to‬‭the‬‭scREF‬

‭human‬ ‭dataset,‬ ‭different‬ ‭mouse‬ ‭brain-tissue‬ ‭regions‬ ‭were‬ ‭often‬ ‭only‬ ‭represented‬ ‭abundantly‬ ‭in‬ ‭one‬

‭dataset,‬ ‭e.g.,‬ ‭the‬ ‭hippocampus‬ ‭(Yao‬ ‭et‬ ‭al.‬ ‭2021),‬ ‭and‬ ‭cerebellum‬ ‭(Kozareva‬ ‭et‬ ‭al.‬ ‭2021).‬ ‭We‬ ‭trained‬

‭BA-scVI‬ ‭on‬ ‭scREF-mu‬ ‭alone‬ ‭and‬ ‭jointly‬ ‭with‬ ‭the‬ ‭scREF‬ ‭human‬ ‭dataset.‬ ‭KNI‬ ‭and‬ ‭RbNI‬ ‭scores‬ ‭were‬

‭calculated‬‭for‬‭scREF-mu‬‭alone,‬‭jointly‬‭trained‬‭using‬‭mouse‬‭cell-type‬‭labels,‬‭and‬‭jointly‬‭trained‬‭using‬‭both‬

‭human‬ ‭and‬ ‭mouse‬ ‭labels.‬ ‭Here,‬ ‭we‬ ‭found‬ ‭that‬ ‭joint‬ ‭training‬ ‭with‬‭the‬‭inclusion‬‭of‬‭cell-type‬‭labels‬‭from‬

‭both‬ ‭species‬ ‭resulted‬ ‭in‬ ‭the‬ ‭highest‬ ‭KNI‬ ‭and‬ ‭RbNI‬ ‭scores‬ ‭(Figure‬ ‭3a;‬ ‭Table‬ ‭S4),‬ ‭indicating‬ ‭value‬ ‭in‬

‭cross-species‬ ‭alignment.‬ ‭Notably,‬ ‭the‬ ‭KNI‬ ‭and‬ ‭RbNI‬ ‭scores‬ ‭on‬ ‭the‬ ‭human‬ ‭scRNA‬ ‭datasets‬ ‭did‬ ‭not‬

‭decrease‬‭(Figure‬‭3b),‬‭and‬‭qualitative‬‭assessment‬‭of‬‭UMAP‬‭projections‬‭of‬‭the‬‭aligned‬‭atlas‬‭also‬‭supports‬

‭successful‬ ‭alignment‬ ‭(Figure‬ ‭3c,‬ ‭d).‬ ‭Cerebellar‬ ‭granule‬ ‭cells‬ ‭only‬ ‭appear‬ ‭once‬ ‭in‬ ‭both‬ ‭the‬ ‭mouse‬ ‭and‬

‭human‬‭atlases‬‭and‬‭are‬‭thus‬‭excluded‬‭in‬‭the‬‭benchmarks.‬‭Yet,‬‭we‬‭find‬‭we‬‭can‬‭accurately‬‭label‬‭these‬‭cells‬

‭leveraging‬ ‭cross-species‬ ‭alignment‬ ‭(Supplemental;‬ ‭Figure‬ ‭S11).‬ ‭Overall,‬ ‭we‬ ‭show‬ ‭that‬ ‭cross-species‬

‭alignment‬ ‭of‬ ‭organism-wide‬ ‭scRNA‬ ‭atlases‬ ‭is‬ ‭possible‬ ‭and‬ ‭may‬ ‭improve‬ ‭the‬ ‭labeling‬ ‭of‬ ‭cell‬ ‭types‬ ‭in‬

‭data-poor species.‬
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‭Figure‬ ‭3.‬ ‭Cross-species‬ ‭alignment‬ ‭of‬ ‭mouse‬ ‭and‬‭human‬‭scRNA‬‭atlases:‬‭a)‬‭Analysis‬‭of‬‭KNI‬‭and‬‭RbNI‬‭scores‬
‭obtained‬ ‭by‬ ‭BA-scVI‬ ‭on‬ ‭alignment‬ ‭of‬ ‭the‬ ‭mouse‬ ‭scRNA‬ ‭atlas‬ ‭scREF-mu‬ ‭only‬ ‭(Mouse‬ ‭Only),‬ ‭jointly‬ ‭trained‬ ‭with‬
‭assessment‬‭of‬‭alignment‬‭accuracy‬‭using‬‭mouse‬‭labels‬‭only‬‭(JT‬‭Mouse‬‭Labels),‬‭and‬‭jointly‬‭trained‬‭leveraging‬‭labels‬
‭from‬ ‭both‬ ‭mouse‬ ‭and‬ ‭humans‬ ‭for‬ ‭accuracy‬ ‭assessment‬ ‭(JT‬ ‭Both‬ ‭Labels);‬ ‭b)‬ ‭KNI‬‭and‬‭RbNI‬‭scores‬‭from‬‭BA-scVI‬
‭alignment‬ ‭of‬ ‭the‬ ‭human‬ ‭scRNA‬ ‭atlas‬ ‭scREF‬ ‭only‬ ‭(Human‬ ‭Only)‬ ‭and‬ ‭jointly‬ ‭trained‬‭with‬‭assessment‬‭of‬‭alignment‬
‭accuracy‬ ‭using‬ ‭human‬ ‭labels‬ ‭only‬ ‭(JT‬ ‭Human‬ ‭Labels),‬ ‭and‬ ‭jointly‬ ‭trained‬ ‭leveraging‬‭labels‬‭from‬‭both‬‭mouse‬‭and‬
‭humans‬ ‭for‬ ‭accuracy‬ ‭assessment‬ ‭(JT‬ ‭Both‬ ‭Labels);‬ ‭c)‬ ‭UMAP‬ ‭projections‬ ‭of‬ ‭the‬ ‭jointly‬ ‭aligned‬ ‭atlas,‬ ‭coloured‬‭by‬
‭organism‬ ‭with‬ ‭Mouse‬ ‭(Orange;‬ ‭n=528k),‬ ‭humans‬ ‭(Blue;‬ ‭n=1.27m);‬ ‭d)‬ ‭UMAP‬ ‭projection‬‭of‬‭the‬‭jointly‬‭aligned‬‭atlas‬
‭coloured by cell-type, with major groupings highlighted by boxes.‬

‭Cross-species alignments enables us to analyze cell-type conservation across tissues and species‬

‭Following‬ ‭organism-wide‬ ‭alignment,‬ ‭we‬ ‭looked‬ ‭to‬ ‭understand‬‭how‬‭cell‬‭types‬‭group‬‭together‬‭in‬

‭the‬‭aligned‬‭atlas‬‭using‬‭an‬‭unbiased‬‭approach.‬‭We‬‭tested‬‭both‬‭K-means‬‭clustering‬‭and‬‭Label‬‭Propagation‬

‭(LP)‬ ‭approaches‬ ‭ability‬ ‭to‬ ‭identify‬ ‭cell-type‬ ‭groupings‬ ‭on‬ ‭the‬ ‭aligned‬ ‭scREF‬ ‭and‬ ‭scREF-mu‬ ‭datasets‬

‭(~14m‬‭cells)‬‭as‬‭unbiased‬‭methods‬‭that‬‭could‬‭scale‬‭millions‬‭of‬‭cells‬‭(Methods).‬‭We‬‭found‬‭that‬‭LP‬‭results‬

‭aligned‬ ‭well‬ ‭with‬‭the‬‭original‬‭author‬‭as‬‭well‬‭as‬‭standardized‬‭labels,‬‭compared‬‭to‬‭K-means,‬‭as‬‭measured‬

‭by‬‭the‬‭Adjusted‬‭Rand‬‭Index‬‭(ARI),‬‭both‬‭on‬‭this‬‭dataset‬‭and‬‭the‬‭individual‬‭scREF‬‭and‬‭scREF-mu‬‭datasets‬

‭(Figure‬ ‭4a;‬ ‭Figure‬‭S12).‬‭Notably,‬‭we‬‭found‬‭the‬‭ARI‬‭between‬‭LP‬‭groupings‬‭and‬‭standardized‬‭labels‬‭was‬

‭similar‬ ‭to‬ ‭that‬ ‭between‬ ‭standardized‬ ‭labels‬ ‭and‬ ‭author‬ ‭labels,‬ ‭giving‬ ‭us‬ ‭confidence‬ ‭this‬ ‭method‬ ‭of‬

‭clustering‬‭generates‬‭meaningful‬‭groupings.‬‭Overall,‬‭LP‬‭identified‬‭792‬‭unique‬‭clusters‬‭in‬‭the‬‭cross-aligned‬

‭atlas‬‭where‬‭more‬‭than‬‭50‬‭cells‬‭were‬‭present‬‭in‬‭at‬‭least‬‭two‬‭datasets.‬‭Approximately‬‭half‬‭of‬‭these‬‭clusters‬

‭were‬‭CNS‬‭cell‬‭types‬‭(Figure‬‭4b),‬‭which‬‭is‬‭in‬‭line‬‭with‬‭the‬‭enormous‬‭cell-type‬‭diversity‬‭seen‬‭in‬‭the‬‭brain‬

‭(Zhang‬‭et‬‭al.‬‭2023).‬‭The‬‭other‬‭half‬‭corresponded‬‭to‬‭the‬‭remaining‬‭tissue‬‭types,‬‭in‬‭line‬‭with‬‭prior‬‭estimates‬

‭that‬ ‭hundreds‬ ‭of‬ ‭cell‬ ‭types‬ ‭exist‬ ‭in‬ ‭the‬ ‭body‬ ‭(Hatton‬ ‭et‬‭al.‬‭2023).‬‭Similar‬‭results‬‭were‬‭obtained‬‭for‬‭the‬

‭individual atlases (Supplemental).‬
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‭Where‬ ‭most‬‭studies‬‭have‬‭focused‬‭on‬‭organ-specific‬‭cell-type‬‭ID,‬‭here‬‭we‬‭sought‬‭to‬‭characterize‬

‭cell-type‬ ‭groupings‬ ‭that‬ ‭span‬ ‭tissue‬ ‭types‬ ‭and‬ ‭are‬ ‭highly‬‭conserved‬‭between‬‭organisms.‬‭We‬‭reason‬‭this‬

‭may‬ ‭indicate‬ ‭evolutionary‬ ‭constraint.‬ ‭Clusters‬ ‭were‬ ‭filtered‬ ‭for‬ ‭those‬ ‭containing‬ ‭cells‬‭from‬‭10‬‭or‬‭more‬

‭tissues‬ ‭in‬ ‭both‬ ‭the‬ ‭mouse‬ ‭and‬ ‭human‬ ‭datasets;‬ ‭potential‬ ‭artifactual‬ ‭groupings‬ ‭were‬ ‭also‬ ‭removed‬

‭(Methods).‬‭After‬‭this,‬‭32‬‭conserved‬‭cross-tissue‬‭clusters‬‭remained,‬‭covering‬‭a‬‭diverse‬‭range‬‭of‬‭cell‬‭types,‬

‭as‬ ‭marked‬ ‭by‬ ‭the‬ ‭modal‬ ‭standardized‬ ‭cell-type‬ ‭label‬ ‭(Figure‬ ‭4c).‬ ‭We‬ ‭then‬ ‭leveraged‬ ‭differential‬

‭gene-expression‬‭analysis‬‭to‬‭understand‬‭if‬‭these‬‭cell‬‭types‬‭are‬‭all‬‭well-defined‬‭or‬‭if‬‭new‬‭groupings‬‭emerge‬

‭from‬‭this‬‭cross-tissue‬‭analysis‬‭(Methods).‬‭While‬‭most‬‭cell‬‭types‬‭were‬‭well‬‭defined,‬‭we‬‭noted‬‭macrophage‬

‭groupings‬ ‭that‬ ‭show‬ ‭highly‬ ‭selective‬ ‭C1Q‬ ‭expression‬ ‭and‬‭fibroblast‬‭clusters‬‭that‬‭are‬‭enriched‬‭for‬‭C1R,‬

‭C1S,‬ ‭and‬ ‭CFD,‬ ‭and‬ ‭SERPING1‬ ‭(complement‬ ‭inhibitor)‬ ‭expression‬ ‭in‬ ‭the‬ ‭cross-aligned‬ ‭and‬ ‭individual‬

‭atlases‬‭(Table‬‭S5).‬‭Pathway‬‭analysis‬‭(Ge,‬‭Jung,‬‭and‬‭Yao‬‭2020)‬‭of‬‭the‬‭top‬‭25‬‭most-selective‬‭genes‬‭to‬‭each‬

‭cell‬ ‭type‬ ‭in‬ ‭the‬ ‭cross-species‬ ‭returns‬ ‭“Complement‬ ‭and‬ ‭coagulation‬ ‭cascade”‬ ‭as‬ ‭the‬ ‭most‬ ‭enriched‬

‭pathway in this gene set (Figure 4d), indicating this enrichment is not just qualitative.‬

‭While‬‭it‬‭is‬‭known‬‭that‬‭peripheral‬‭macrophages‬‭and‬‭dendritic‬‭cells‬‭express‬‭C1Q‬‭(Castellano‬‭et‬‭al.‬

‭2010;‬ ‭Müller,‬ ‭Hanauske-Abel,‬ ‭and‬ ‭Loos‬ ‭1978),‬ ‭these‬ ‭genes‬ ‭are‬ ‭not‬‭typically‬‭used‬‭as‬‭myeloid‬‭cell-type‬

‭markers.‬ ‭Moreover,‬ ‭while‬ ‭studies‬ ‭have‬ ‭shown‬ ‭that‬ ‭synovial‬ ‭fibroblasts‬ ‭can‬ ‭synthesize‬ ‭complement‬

‭proteins‬ ‭in‬ ‭vitro‬ ‭(Katz‬ ‭and‬ ‭Strunk‬‭1988),‬‭widespread‬‭fibroblast‬‭expression‬‭of‬‭complement‬‭has‬‭not‬‭been‬

‭reported,‬ ‭although‬ ‭C7‬ ‭is‬ ‭noted‬ ‭as‬ ‭a‬ ‭fibroblast‬ ‭markers‬ ‭(Buechler‬ ‭et‬ ‭al.‬ ‭2021;‬ ‭Dominguez‬ ‭et‬ ‭al.‬ ‭2020).‬

‭Supporting‬ ‭the‬ ‭results‬ ‭obtained‬ ‭from‬‭label‬‭propagation,‬‭we‬‭found‬‭in‬‭UMAP‬‭projections‬‭of‬‭myeloid‬‭cell‬

‭types,‬ ‭C1Q‬ ‭expression‬ ‭marks‬ ‭a‬ ‭distinct‬ ‭region‬ ‭(Figure‬ ‭4d.‬ ‭Similarly,‬ ‭a‬ ‭C1R,‬ ‭C1S,‬ ‭and‬ ‭CFD‬ ‭signature‬

‭marks‬ ‭an‬ ‭axis‬ ‭of‬ ‭variation‬ ‭in‬‭fibroblast‬‭cell‬‭types‬‭(Figure‬‭4e).‬‭Expression‬‭of‬‭the‬‭core‬‭complement‬‭gene‬

‭family‬‭in‬‭the‬‭unaligned‬‭scREF‬‭and‬‭scREF-mu‬‭atlas‬‭further‬‭supports‬‭our‬‭findings‬‭and‬‭also‬‭hints‬‭at‬‭broader‬

‭complement‬‭regulation‬‭by‬‭fibroblasts‬‭and‬‭macrophages.‬‭Specifically,‬‭in‬‭the‬‭scREEF‬‭and‬‭scREF-mu‬‭atlas,‬

‭we‬‭see‬‭three‬‭expression‬‭patterns‬‭emerge‬‭across‬‭standardized‬‭cell‬‭types‬‭and‬‭tissues‬‭(Figure‬‭4f-i).‬‭Namely,‬

‭1)‬ ‭Myeloid‬ ‭selective‬ ‭expression‬ ‭of‬ ‭C1Q‬‭genes‬‭and‬‭C2;‬‭2)‬‭Fibroblast‬‭selective‬‭expression‬‭of‬‭C1R,‬‭C1S,‬

‭C3,‬ ‭CFH,‬ ‭CFD,‬ ‭and‬ ‭C7‬ ‭with‬ ‭trace‬ ‭endothelial‬ ‭and‬ ‭PVL/SMC‬ ‭readouts;‬ ‭and‬ ‭3)‬ ‭Liver‬ ‭/‬ ‭Hepatocyte‬

‭selective‬‭expression‬‭of‬‭C5,‬‭C6,‬‭C8‬‭components,‬‭C9‬‭and‬‭CFB;‬‭with‬‭outlier‬‭expression‬‭of‬‭C4A,‬‭C4B,‬‭CFI‬

‭and‬ ‭CFP.‬ ‭Importantly,‬ ‭these‬ ‭results‬ ‭are‬ ‭also‬ ‭seen‬ ‭in‬ ‭the‬ ‭individually‬ ‭aligned‬ ‭mouse‬ ‭and‬ ‭human‬ ‭atlases‬

‭(Supplemental;‬ ‭Figure‬ ‭S13,‬ ‭14).‬ ‭Overall,‬ ‭this‬ ‭analysis‬ ‭thus‬ ‭finds‬ ‭peripheral‬ ‭complement‬ ‭mRNA‬

‭expression‬‭in‬‭broadly‬‭abundant,‬‭evolutionarily‬‭conserved‬‭fibroblasts‬‭and‬‭macrophages‬‭and‬‭highlights‬‭the‬

‭value of the cross-species alignment we perform here in uncovering these expression patterns.‬
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‭Figure‬‭4.‬‭Analysis‬‭of‬‭conserved‬‭cell-types‬‭in‬‭the‬‭body:‬‭a)‬‭Comparison‬‭of‬‭label‬‭propagation‬‭and‬‭K-means‬‭clusters‬
‭with‬‭author‬‭or‬‭standardized‬‭cell-type‬‭labels,‬‭measured‬‭by‬‭the‬‭Adjusted‬‭Rand‬‭Index‬‭for‬‭the‬‭jointly‬‭aligned‬‭mouse‬‭and‬
‭human‬ ‭atlas;‬ ‭b)‬ ‭Proportion‬ ‭of‬ ‭unique‬ ‭cell-type‬ ‭groups,‬ ‭with‬ ‭more‬ ‭than‬ ‭20‬ ‭cells‬ ‭present‬ ‭in‬ ‭two‬ ‭datasets,‬ ‭by‬
‭standardized‬‭label‬‭in‬‭the‬‭jointly‬‭aligned‬‭atlas;‬‭c)‬‭Same‬‭as‬‭(b)‬‭but‬‭filtered‬‭for‬‭cell-types‬‭with‬‭over‬‭20‬‭cells‬‭present‬‭in‬‭2‬
‭datasets,‬‭in‬‭more‬‭than‬‭10‬‭tissues‬‭in‬‭mice‬‭and‬‭humans;‬‭d)‬‭Pathway‬‭enrichment‬‭for‬‭the‬‭top‬‭20‬‭differentially‬‭expressed‬
‭genes‬ ‭in‬ ‭the‬ ‭conserved‬ ‭cell-types;‬ ‭e)‬ ‭UMAP‬ ‭projection‬ ‭of‬ ‭Myeloid‬‭lineages,‬‭coloured‬‭by‬‭mean‬‭C1QA,‬‭C1QB,‬‭and‬
‭C1QC‬ ‭read‬ ‭count‬ ‭(left),‬ ‭or‬ ‭standardized‬ ‭cell-type‬ ‭label‬‭(right),‬‭n=695,141‬‭cells;‬‭f)‬‭UMAP‬‭projection‬‭of‬‭Fibroblastic,‬
‭Endothelial,‬ ‭and‬ ‭PVL‬ ‭/‬ ‭Smooth‬ ‭muscle‬ ‭cell‬ ‭types,‬ ‭colored‬ ‭by‬ ‭mean‬‭C1R,‬‭C1S,‬‭read‬‭counts‬‭(left),‬‭or‬‭standardized‬
‭cell-type‬‭label‬‭(right);‬‭g)‬‭Hierarchical‬‭clustering‬‭of‬‭complement‬‭expression‬‭patterns‬‭h-j)‬‭Heatmaps‬‭of‬‭log‬‭read-counts‬
‭of‬‭representative‬‭expression‬‭profiles‬‭for‬‭the‬‭three‬‭observed‬‭patterns;‬‭g)‬‭C9‬‭=‬‭Liver;‬‭h)‬‭C1QA‬‭=‬‭Myeloid-types;‬‭i)‬‭C1R‬
‭= Fibroblasts); k) Cartoon of proposed cell-type contributors to complement signaling.‬

‭BA-scVI trained on scREF realizes drag-and-drop scRNA analysis‬

‭Unlike‬ ‭scVI,‬ ‭BA-ScVI‬ ‭only‬ ‭uses‬ ‭batch‬ ‭labels‬ ‭in‬ ‭training.‬ ‭This‬ ‭allows‬ ‭new‬ ‭samples‬ ‭to‬ ‭be‬

‭embedded‬‭de‬‭novo,‬‭as‬‭long‬‭as‬‭the‬‭contributing‬‭tissue‬‭is‬‭currently‬‭represented‬‭in‬‭the‬‭atlas.‬‭We‬‭demonstrate‬

‭this‬ ‭at‬ ‭scale‬ ‭by‬ ‭using‬ ‭BA-scVI‬ ‭trained‬ ‭on‬‭scREF‬‭without‬‭the‬‭Tabula‬‭Sapiens‬‭atlas‬‭to‬‭accurately‬‭predict‬

‭cell-type‬ ‭labels‬ ‭in‬ ‭the‬ ‭Tabula‬ ‭Sapiens‬ ‭atlas‬ ‭without‬ ‭further‬ ‭fine-tuning‬ ‭or‬ ‭training‬ ‭(Tabula‬ ‭Sapiens‬

‭Consortium*‬ ‭et‬‭al.‬‭2022)(Supplemental,‬‭Figure‬‭S15).‬‭We‬‭also‬‭found‬‭that‬‭this‬‭approach‬‭can‬‭map‬‭in‬‭vitro‬
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‭cell‬ ‭types‬ ‭to‬ ‭tissue‬ ‭scRNA‬ ‭data,‬ ‭which‬ ‭is‬ ‭valuable‬ ‭for‬ ‭in‬ ‭vitro‬ ‭model‬ ‭relevance‬ ‭optimization‬

‭(Supplemental).‬ ‭To‬ ‭give‬ ‭broad‬ ‭access‬ ‭to‬ ‭this‬ ‭capability,‬ ‭we‬ ‭provide‬ ‭an‬ ‭online‬ ‭tool‬ ‭for‬ ‭drag-and-drop‬

‭embedding‬ ‭and‬ ‭labeling‬ ‭of‬ ‭new‬ ‭human‬ ‭scRNA‬ ‭data‬ ‭against‬ ‭scREF.‬ ‭This‬ ‭tool‬ ‭is‬ ‭available‬ ‭as‬ ‭a‬

‭user-friendly‬‭web‬‭app‬‭that‬‭also‬‭facilitates‬‭analysis‬‭and‬‭visualization‬‭at‬‭https://scref.phenomic.ai/.‬‭An‬‭API‬

‭alongside R and Python functions is also given in the data availability section below.‬

‭Discussion‬
‭Most‬‭scRNA‬‭data‬‭alignment‬‭benchmarking‬‭studies‬‭have‬‭used‬‭a‬‭handful‬‭of‬‭datasets‬‭to‬‭evaluate‬‭the‬

‭performance‬ ‭of‬ ‭machine-learning‬ ‭methods‬ ‭for‬ ‭this‬ ‭task‬ ‭(Pasquini‬ ‭et‬ ‭al.‬ ‭2021;‬ ‭Abdelaal‬ ‭et‬ ‭al.‬ ‭2019;‬

‭Diaz-Mejia‬‭et‬‭al.‬‭2019).‬‭However,‬‭the‬‭development‬‭of‬‭reference-based‬‭atlases‬‭will‬‭require‬‭the‬‭alignment‬

‭of‬‭hundreds‬‭to‬‭thousands‬‭of‬‭samples‬‭and‬‭millions‬‭of‬‭cells‬‭to‬‭one‬‭another.‬‭In‬‭this‬‭study,‬‭we‬‭present‬‭scREF‬

‭as‬‭a‬‭large-scale‬‭benchmark‬‭dataset‬‭and‬‭the‬‭K-‬‭and‬‭Radius-based‬‭Neighbors‬‭Intersection‬‭scores‬‭(KNI‬‭and‬

‭RbNI)‬ ‭as‬ ‭metrics‬ ‭of‬ ‭model‬ ‭performance‬ ‭assessment‬ ‭on‬ ‭this‬ ‭benchmark‬ ‭that‬ ‭consider‬ ‭accuracy‬ ‭and‬

‭alignment‬ ‭quality.‬ ‭Leveraging‬ ‭this‬ ‭benchmark,‬ ‭we‬ ‭find‬ ‭that‬ ‭the‬ ‭scVI‬ ‭architecture‬ ‭outperforms‬ ‭other‬

‭methods‬ ‭in‬ ‭cross-dataset‬ ‭alignment.‬ ‭We‬ ‭enhance‬ ‭scVI’s‬ ‭performance‬‭by‬‭optimizing‬‭its‬‭architecture‬‭and‬

‭show‬ ‭how‬ ‭adversarial‬ ‭learning‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭boost‬ ‭performance‬ ‭further‬ ‭(BA-scVI).‬ ‭Optimizing‬

‭architectures,‬‭loss‬‭functions,‬‭and‬‭parameters‬‭against‬‭metrics‬‭is‬‭common-place‬‭in‬‭machine-learning‬‭model‬

‭development,‬‭for‬‭example‬‭(Kraus,‬‭Ba,‬‭and‬‭Frey‬‭2016).‬‭With‬‭the‬‭release‬‭of‬‭the‬‭data‬‭and‬‭tests‬‭we‬‭develop‬

‭here,‬‭we‬‭hope‬‭to‬‭increase‬‭adoption‬‭of‬‭these‬‭benchmark‬‭strategies‬‭in‬‭scRNA‬‭model‬‭development‬‭and‬‭spur‬

‭development of yet better approaches.‬

‭It‬ ‭has‬ ‭been‬ ‭hypothesized‬ ‭that‬ ‭large‬ ‭cross-species‬ ‭atlases‬ ‭could‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭alignment‬

‭quality‬‭(Lotfollahi‬‭et‬‭al.‬‭2024).‬‭Supporting‬‭this,‬‭we‬‭find‬‭that‬‭aligning‬‭the‬‭large‬‭mouse‬‭scREF-mu‬‭atlas‬‭to‬

‭the‬ ‭human‬ ‭scREF‬‭atlas‬‭improves‬‭accuracy‬‭on‬‭the‬‭mouse‬‭benchmark‬‭without‬‭reducing‬‭the‬‭quality‬‭of‬‭the‬

‭human‬ ‭alignment‬ ‭or‬ ‭cell-type‬ ‭labeling.‬ ‭In‬ ‭an‬ ‭unbiased‬ ‭cell-type‬ ‭analysis‬ ‭of‬ ‭the‬ ‭aligned‬ ‭atlases,‬ ‭we‬

‭identified‬‭complement-expressing‬‭macrophage‬‭and‬‭fibroblastic‬‭cell‬‭types‬‭that‬‭are‬‭prevalent‬‭across‬‭tissue‬

‭types‬ ‭in‬ ‭both‬ ‭species.‬ ‭Peripheral‬ ‭complement‬ ‭expression‬ ‭has‬ ‭been‬ ‭described‬ ‭for‬ ‭macrophages‬ ‭(Müller,‬

‭Hanauske-Abel,‬ ‭and‬ ‭Loos‬ ‭1978).‬ ‭However,‬ ‭the‬ ‭same‬ ‭cannot‬ ‭be‬ ‭said‬ ‭for‬ ‭fibroblasts,‬ ‭and‬ ‭overall,‬

‭complement‬ ‭expression‬ ‭has‬ ‭received‬ ‭limited‬ ‭attention‬ ‭(Bordron‬ ‭et‬ ‭al.‬ ‭2020).‬ ‭We‬ ‭speculate‬ ‭that‬

‭liver-expressed‬ ‭complement‬ ‭factors‬ ‭combine‬ ‭with‬ ‭those‬ ‭produced‬ ‭by‬ ‭macrophages‬ ‭in‬ ‭peripheral‬ ‭tissue‬

‭and‬‭those‬‭of‬‭fibroblasts‬‭to‬‭modulate‬‭complement‬‭activity‬‭in‬‭humans‬‭and‬‭mice,‬‭pointing‬‭towards‬‭a‬‭broader‬

‭underappreciated‬ ‭role‬ ‭in‬ ‭immunity‬ ‭(Figure‬ ‭4k).‬ ‭In‬‭highlighting‬‭this‬‭result,‬‭we‬‭also‬‭hope‬‭to‬‭demonstrate‬

‭the‬‭value‬‭of‬‭cross-species‬‭alignment‬‭and‬‭analysis‬‭for‬‭understanding‬‭cell-type‬‭evolution‬‭and‬‭conservation.‬

‭We‬ ‭anticipate‬‭that‬‭such‬‭alignments‬‭at‬‭scale‬‭could‬‭be‬‭used‬‭to‬‭identify‬‭evolutionary‬‭relationships‬‭between‬

‭cell types, thus tracing the emergence of the lineages we see today.‬
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‭Methods‬
‭Collection‬‭and‬‭standardization‬‭of‬‭human‬‭scRNA‬‭data:‬‭Raw‬‭scRNA‬‭UMI‬‭count‬‭matrices‬‭were‬

‭obtained‬‭from‬‭public‬‭repositories‬‭(Table‬‭S1).‬‭Quality‬‭control‬‭followed‬‭the‬‭original‬‭author‬‭filters.‬

‭Cells‬ ‭labeled‬ ‭by‬ ‭the‬ ‭authors‬ ‭as;‬ ‭(i)‬ ‭Unknown;‬ ‭(ii)‬‭Undetermined;‬‭or‬‭(iii)‬‭Mixed‬‭were‬‭excluded‬

‭from‬‭benchmark‬‭analysis.‬‭Gene‬‭identifiers‬‭were‬‭standardized‬‭across‬‭studies‬‭based‬‭on‬‭(i)‬‭Human‬

‭Protein‬‭Atlas‬‭(HPA)‬‭versions‬‭13‬‭to‬‭20;‬‭and‬‭(ii)‬‭ENSEMBL‬‭GRCh38‬‭versions‬‭78‬‭to‬‭103.‬‭Priority‬

‭was‬ ‭given‬ ‭to‬ ‭HPA‬ ‭identifiers.‬ ‭Genes‬ ‭common‬ ‭to‬ ‭30‬ ‭datasets‬ ‭or‬ ‭more‬ ‭were‬ ‭used‬ ‭for‬ ‭training‬

‭(Tables‬ ‭S1).‬ ‭In‬ ‭cases‬ ‭where‬ ‭the‬ ‭authors‬ ‭provided‬ ‭only‬ ‭general‬ ‭T-cell‬ ‭annotations,‬ ‭we‬ ‭used‬

‭Azimuth’s‬‭Human‬‭PBMC‬‭signatures‬‭(Hao‬‭et‬‭al.‬‭2021)‬ ‭to‬‭assign‬‭those‬‭cells‬‭into‬‭CD8+,‬ ‭CD4+‬‭or‬

‭gamma-delta T-cells.‬

‭Collection‬ ‭and‬ ‭standardization‬ ‭of‬ ‭mouse‬ ‭scRNA‬ ‭data:‬ ‭Similar‬‭to‬‭human‬‭datasets,‬‭mouse‬‭data‬

‭was‬‭obtained‬‭from‬‭public‬‭repositories‬‭(Table‬‭S1)‬‭and‬‭quality‬‭control‬‭followed‬‭the‬‭original‬‭author‬

‭filters‬ ‭and‬ ‭cells‬ ‭labeled‬ ‭as‬ ‭unknown,‬ ‭undetermined‬ ‭or‬ ‭mixed‬ ‭were‬ ‭excluded‬ ‭from‬ ‭analysis.‬‭To‬

‭align‬ ‭mouse‬ ‭and‬ ‭human‬ ‭datasets,‬ ‭gene‬ ‭names‬‭were‬‭uppercased‬‭and‬‭mouse-vs-human‬‭orthologs‬

‭were‬ ‭mapped‬ ‭using‬ ‭ENSEMBL‬ ‭v110.‬ ‭Azimuth’s‬ ‭Human‬ ‭PBMC‬ ‭signatures‬ ‭were‬ ‭used‬ ‭to‬

‭sub-classify general T-cells into CD8+,  CD4+ or gamma-delta T-cells.‬

‭scRNA‬ ‭data‬ ‭normalization:‬ ‭For‬ ‭scVI,‬ ‭PCAscmap,‬ ‭Harmony,‬‭and‬‭BA-scVI,‬‭the‬‭count‬‭matrices‬

‭were‬ ‭normalized‬ ‭on‬ ‭a‬ ‭per-cell‬ ‭basis‬ ‭using‬ ‭Scanpy‬ ‭v1.7.2‬ ‭(Wolf,‬ ‭Angerer,‬ ‭and‬ ‭Theis‬‭2018)‬‭,‬‭by‬

‭dividing‬‭each‬‭cell‬‭by‬‭its‬‭total‬‭count‬‭over‬‭all‬‭genes.‬‭The‬‭normalized‬‭count‬‭was‬‭then‬‭multiplied‬‭by‬

‭a‬‭scale‬‭factor‬‭of‬‭10,000,‬‭after‬‭which‬‭a‬‭log(X+1)‬‭transformation‬‭was‬‭applied.‬‭For‬‭RPCA,‬‭Seurat’s‬

‭SCTransform normalization was used with default parameters‬‭(Hao et al. 2021)‬‭.‬

‭Calculation‬‭of‬‭K-Neighbors‬‭Intersection‬‭(KNI)‬‭score:‬‭To‬‭calculate‬‭the‬‭KNI‬‭we‬‭consider‬‭the‬‭set‬

‭of‬ ‭cells‬ ‭in‬ ‭a‬ ‭low-dimensional‬ ‭cell-type‬ ‭feature‬ ‭space‬ ‭where‬ ‭each‬ ‭cell‬ ‭is‬‭𝐶‬ = {‭𝑐‬
‭1‬
, ‭ ‬‭𝑐‬

‭2‬
... ‭𝑐‬

‭𝑛‬
} ‭𝑐‬

‭𝑖‬

‭defined‬‭by‬‭its‬‭coordinates‬ ‭,‬‭batch‬‭identifier‬ ‭,‬‭and‬‭cell-type‬‭identifier‬ ‭.‬‭The‬‭distance‬‭function‬‭𝑥‬
‭𝑖‬

‭𝑏‬
‭𝑖‬

‭𝑡‬
‭𝑖‬

‭between‬‭two‬‭cells‬‭is‬‭the‬‭Euclidean‬‭distance‬‭between‬‭their‬‭embedded‬‭coordinates.‬‭For‬‭the‬‭KNI,‬‭𝐷‬

‭we thus identify the‬ ‭-nearest neighbors for each cell‬ ‭as per a K-nearest neighbors search:‬‭𝑘‬ ‭𝑐‬
‭𝑘‬

‭𝐾‬ = {‭𝑐‬
‭𝑖‬
: ‭𝐷‬ ‭𝑐‬

‭𝑘‬
, ‭𝑐‬

‭𝑖‬( )‭ ‬‭ ‬‭≤‬‭ ‬‭𝐷‬ ‭𝑐‬
‭𝑘‬
, ‭ ‬‭𝑐‬

‭𝑗‬( )‭ ‬‭ ‬‭ ‬‭𝑓𝑜𝑟‬‭ ‬‭𝑎𝑙𝑙‬‭ ‬‭ ‬‭𝑗‬‭≠‬‭𝑘‬‭ ‬‭ ‬‭ ‬‭𝑎𝑛𝑑‬‭ ‬‭ ‬‭ ‬ ‭𝐾‬| | = ‭𝑘‬}‭ ‬
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‭For‬‭each‬‭cell‬ ‭,‬‭we‬‭then‬‭identify‬‭a‬‭subset‬ ‭of‬ ‭in‬‭which‬‭cells‬‭have‬‭different‬‭batch‬‭identifiers,‬‭𝑐‬
‭𝑘‬

‭𝐵‬ ‭𝐾‬

‭defined as:‬

‭𝐵‬ = ‭𝑐‬
‭𝑖‬
‭∈‬‭𝐾‬: ‭𝑏‬

‭𝑘‬
≠ ‭ ‬‭𝑏‬

‭𝑖‬{ }
‭We‬‭then‬‭use‬‭a‬‭function‬‭L‬‭to‬‭assign‬‭‘predicted’‬‭cell-type‬‭labels‬‭to‬‭each‬‭datapoint.‬‭Each‬‭cell‬ ‭is‬‭𝑐‬

‭𝑘‬

‭labeled‬ ‭as‬ ‭either‬ ‭(1)‬ ‭an‬‭outlier‬‭if‬‭the‬‭number‬‭of‬‭elements‬‭in‬ ‭is‬‭below‬‭a‬‭threshold‬‭number‬ ‭(‬‭𝐵‬ τ‭ ‬
‭,‬ ‭i.e.,‬ ‭too‬ ‭many‬ ‭nearest‬ ‭neighbors‬ ‭belong‬ ‭to‬ ‭the‬ ‭same‬ ‭batch,‬‭or‬‭(2)‬‭the‬‭most‬‭common‬τ‭ ‬ < ‭ ‬‭𝑘‬)

‭label from cells in‬ ‭:‬‭𝐵‬

‭The‬‭KNI‬‭score‬‭is‬‭then‬‭calculated‬‭as‬‭the‬‭total‬‭number‬‭of‬‭predicted‬‭labels‬‭that‬‭match‬‭author‬‭given‬
‭labels:‬

‭An analysis of KNI parameters is given in the supplemental. For comparisons performed in this‬

‭paper, k=50 neighbors was used, with a cut-off‬ ‭of 40. For the model comparisons performed‬τ

‭here quantile normalization was used (25%, 75%) to scale the embedding spaces prior to‬

‭determination of the KNI. For optimization studies, the scikit-learn KNN algorithm was used‬

‭(Pedregosa et al. 2012)‬‭, while for scREF we use the‬‭FAISS GPU implementation of KNN search‬

‭(Johnson, Douze, and Jégou 2021)‬‭.‬

‭Calculation‬ ‭of‬ ‭Radius-based‬ ‭Neighbors‬ ‭Intersection‬ ‭(RbNI)‬ ‭score:‬ ‭Calculation‬ ‭of‬ ‭the‬ ‭RbNN‬

‭proceeds‬‭as‬‭per‬‭the‬‭KNI,‬‭except‬‭that:‬‭(1)‬‭The‬‭set‬‭of‬‭neighboring‬‭cells‬‭is‬‭defined‬‭by‬‭a‬‭radius‬‭r‬‭,‬‭as‬

‭per Radius-based Nearest Neighbors:‬

‭𝐾‬ = {‭𝑐‬
‭𝑖‬
: ‭ ‬‭𝐷‬ ‭𝑐‬

‭𝑘‬
, ‭𝑐‬

‭𝑖‬( )‭≤‬‭𝑟‬‭ ‬‭𝑓𝑜𝑟‬‭ ‬‭𝑎𝑙𝑙‬‭ ‬‭𝑖‬‭≠‬‭𝑘‬}‭ ‬

‭;‬‭(2)‬‭a‬‭threshold‬‭percent‬‭of‬‭‘self’‬‭data‬‭points‬ ‭*‬‭is‬‭used;‬‭and‬‭(3)‬‭cells‬‭with‬‭no‬‭neighbors‬‭within‬‭τ‬

‭the radius‬ ‭are also given an outlier label:‬‭𝑟‬
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‭An analysis of RbNI parameters is given in the supplemental. For comparisons performed in this‬

‭paper, a radius‬‭r‬‭=1.0 was used alongside a cut-off % of‬ ‭*=80%, alongside the same quantile‬τ

‭normalization as performed for the KNI. For the smaller scMARK benchmark we use for‬

‭optimization (Suplemental), the scikit-learn Radius-based nearest neighbors algorithm was used‬

‭(Pedregosa et al. 2012)‬‭while for scREF we use the‬‭FAISS GPU implementation of Radius based‬

‭search‬‭(Johnson, Douze, and Jégou 2021)‬‭.‬

‭Cell-type space alignment parameters:‬‭Methods were‬‭implemented as follows:‬

‭-‬ ‭PCA‬‭:‬ ‭Highly‬ ‭variable‬ ‭genes‬ ‭were‬ ‭selected‬ ‭as‬ ‭relevant‬ ‭features‬ ‭on‬ ‭the‬ ‭basis‬ ‭of‬ ‭higher‬

‭dispersion‬ ‭than‬ ‭genes‬ ‭with‬‭similar‬‭mean‬‭expression‬‭(Satija‬‭et‬‭al.‬‭2015)‬‭,‬‭as‬‭implemented‬

‭in‬ ‭scanpy‬ ‭v1.7.2‬ ‭(Wolf,‬ ‭Angerer,‬ ‭and‬ ‭Theis‬ ‭2018)‬‭.‬ ‭PCA‬ ‭was‬ ‭run‬ ‭on‬ ‭the‬ ‭scaled,‬

‭normalized expression of those highly variable genes,‬

‭-‬ ‭RPCA:‬‭The‬‭RPCA‬‭method‬‭was‬‭implemented‬‭in‬‭R‬‭using‬‭Seurat‬‭(v4.0.3)‬‭(Hao‬‭et‬‭al.‬‭2021)‬

‭with‬‭the‬‭top-10‬‭larger‬‭samples‬‭used‬‭as‬‭references‬‭for‬‭anchor‬‭detection‬‭and‬‭the‬‭following‬

‭parameters‬‭(dims=10,‬‭npcs=10,‬‭k.filter=150,‬‭k.weight=100).‬‭The‬‭output‬‭of‬‭the‬‭functions‬

‭RunPCA‬‭(npcs=10)‬‭and‬‭RunUMAP‬‭(n.components=10),‬‭with‬‭assay=“SCT”‬‭were‬‭used‬‭as‬

‭inputs for KNI or RbNI calculations.‬

‭-‬ ‭Harmony:‬‭The‬‭PCs‬‭identified‬‭from‬‭highly‬‭variable‬‭genes‬‭with‬‭PCA‬‭as‬‭described‬ ‭above‬

‭were‬ ‭passed‬ ‭to‬ ‭a‬ ‭python‬ ‭implementation‬ ‭of‬ ‭Harmony,‬ ‭harmony-pytorch‬ ‭v.0.1.7,‬ ‭using‬

‭default parameters (https://doi.org/10.1038/s41592-019-0619-0).‬

‭-‬ ‭scVI‬ ‭2L‬ ‭Sample:‬ ‭We‬ ‭reimplemented‬ ‭the‬ ‭scVI‬ ‭variational‬ ‭auto-encoder‬ ‭described‬ ‭by‬

‭(Lopez‬ ‭et‬ ‭al.‬ ‭2018)‬‭.‬ ‭We‬ ‭used‬ ‭sample‬ ‭level‬ ‭batch-correction‬ ‭with‬ ‭the‬ ‭following‬

‭hyper-parameters:‬‭(1)‬‭2-layer‬‭encoder‬‭and‬‭decoders;‬‭(2)‬‭512‬‭hidden‬‭nodes‬‭for‬‭each‬‭linear‬

‭layer;‬ ‭(3)‬ ‭Dropout‬ ‭regularization‬ ‭with‬ ‭0.1‬ ‭probability‬ ‭of‬ ‭an‬ ‭element‬ ‭to‬ ‭be‬ ‭zeroed;‬ ‭(4)‬

‭Batch‬ ‭normalization‬ ‭in‬ ‭between‬ ‭two‬ ‭hidden‬ ‭layers;‬ ‭and‬ ‭(5)‬ ‭The‬ ‭ReLU‬ ‭activation‬

‭function.‬ ‭The‬ ‭latent‬ ‭space‬ ‭dimension‬ ‭was‬ ‭set‬ ‭to‬ ‭10‬ ‭and‬ ‭modeled‬ ‭using‬ ‭a‬ ‭Normal‬

‭distribution.‬ ‭A‬ ‭Zero-Inflated‬ ‭Negative‬ ‭Binomial‬ ‭(ZINB)‬‭distribution‬‭was‬‭used‬‭to‬‭model‬

‭gene‬ ‭counts‬ ‭as‬ ‭per‬ ‭(Lopez‬ ‭et‬ ‭al.‬ ‭2018)‬‭.‬ ‭The‬ ‭Adam‬ ‭optimizer‬ ‭was‬ ‭used‬ ‭for‬ ‭training‬‭the‬

‭VAE‬ ‭with‬ ‭learning‬ ‭rate‬ ‭=‬ ‭1E-4;‬ ‭weight‬‭decay‬‭=‬ ‭1E-5;‬‭and‬‭eps‬‭=‬‭0.01‬‭(Kingma‬‭and‬‭Ba‬

‭2014)‬‭.‬‭Early‬‭stopping‬‭was‬‭used‬‭with‬‭patience‬‭=‬‭15‬‭epochs.‬‭The‬‭model‬‭was‬‭trained‬‭with‬‭a‬

‭batch-size‬ ‭64‬ ‭and‬ ‭for‬ ‭a‬ ‭maximum‬ ‭of‬ ‭100‬ ‭epochs.‬ ‭All‬ ‭the‬ ‭implementation‬ ‭was‬ ‭done‬ ‭in‬
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‭Python‬ ‭using‬ ‭Pytorch‬ ‭(1.7.0)‬ ‭library.‬ ‭One-hot‬ ‭Batch‬ ‭ID‬ ‭vectors‬ ‭corresponded‬ ‭to‬ ‭the‬

‭unique Sample ID, 386 batches/samples were defined over the 10 studies.‬

‭-‬ ‭scVI‬ ‭4L‬ ‭Sample:‬ ‭An‬ ‭optimized‬ ‭scVI‬ ‭model‬ ‭was‬ ‭identified‬ ‭(Table‬ ‭S3)‬ ‭based‬ ‭on‬

‭parameter‬ ‭and‬ ‭architecture‬ ‭optimisations.‬ ‭This‬ ‭model‬ ‭was‬ ‭implemented‬ ‭as‬ ‭above,‬ ‭but‬

‭leveraged‬ ‭4‬ ‭layers‬ ‭in‬ ‭the‬ ‭encoder‬ ‭and‬ ‭decoder‬ ‭(4L),‬ ‭and‬ ‭patience‬ ‭=‬ ‭5‬‭(lp)‬‭for‬‭the‬‭early‬

‭stopping criteria.‬

‭-‬ ‭scVI*‬‭(ScVI‬‭4L-NoL-NoB‬‭Both)‬‭:‬‭An‬‭optimized‬‭scVI‬‭model,‬‭that‬‭did‬‭not‬‭require‬‭batch‬

‭ID‬ ‭in‬ ‭the‬ ‭encoder,‬ ‭was‬ ‭identified‬ ‭(Table‬ ‭S3)‬ ‭based‬ ‭on‬ ‭parameter‬ ‭and‬ ‭architecture‬

‭optimisations‬ ‭outlined‬ ‭in‬ ‭the‬ ‭Supplementary‬ ‭for‬ ‭us‬ ‭on‬ ‭held-out‬ ‭data.‬ ‭This‬ ‭model‬ ‭was‬

‭implemented‬ ‭as‬ ‭above,‬ ‭however;‬ ‭(1)‬ ‭Explicit‬ ‭handling‬ ‭of‬ ‭library‬ ‭size‬ ‭was‬ ‭removed‬

‭(Lopez‬ ‭et‬ ‭al.‬ ‭2018)‬‭,‬ ‭(NoL);‬ ‭(2)‬ ‭The‬ ‭batch‬ ‭ID‬ ‭vector‬ ‭was‬ ‭not‬ ‭injected‬ ‭into‬ ‭the‬ ‭encoder‬

‭layer,‬ ‭(NoB);‬ ‭(3)‬ ‭A‬ ‭two-hot‬ ‭batch‬ ‭ID‬ ‭vector‬ ‭was‬ ‭used‬‭that‬‭encoded‬‭‘Both’‬‭Sample‬‭ID‬

‭(386 long), and study ID (11 long); and (4) learning rate = 5E-5 was used.‬

‭-‬ ‭scGPT:‬ ‭For‬ ‭both‬ ‭zero-shot‬ ‭and‬ ‭fine-tuned‬ ‭embeddings,‬ ‭where‬ ‭applicable‬ ‭we‬ ‭used‬ ‭the‬

‭authors’‬ ‭tutorials‬ ‭(accessed‬ ‭March‬ ‭25th),‬ ‭2024‬ ‭for‬‭embedding.‬‭as‬‭well‬‭as‬‭preprocessing‬

‭pipelines as described in the paper.‬

‭https://github.com/bowang-lab/scGPT/blob/main/tutorials/zero-shot/Tutorial_ZeroShot_I‬

‭ntegration.ipynb‬

‭https://github.com/bowang-lab/scGPT/blob/main/tutorials/Tutorial_Integration.ipynb‬

‭Models were retrieved from:‬

‭https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y‬ ‭(Cui‬

‭et al. 2024)‬

‭The‬ ‭512-dimensional‬ ‭embeddings‬ ‭obtained‬ ‭from‬ ‭the‬ ‭fine-tuned‬ ‭scGPT‬ ‭models‬ ‭were‬

‭reduced‬ ‭to‬ ‭10‬ ‭dimensions‬ ‭using‬ ‭a‬ ‭two‬‭layer‬‭autoencoder‬‭trained‬‭using‬‭cosine‬‭similarity‬

‭loss. This step enabled direct comparison with the 10-dimensional BAscVI embeddings.‬

‭-‬ ‭geneFormer:‬ ‭We‬ ‭used‬ ‭the‬ ‭authors’‬ ‭provided‬ ‭zero-shot‬ ‭pipeline‬ ‭accessed‬ ‭March‬ ‭27th,‬

‭2024) for preprocessing, tokenization, and embedding.‬
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‭https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/tokenizing_scRNAse‬

‭q_data.ipynb‬

‭https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/extract_and_plot_cell‬

‭_embeddings.ipynb‬

‭We‬ ‭extracted‬ ‭embeddings‬ ‭using‬ ‭the‬ ‭provided‬ ‭weights‬ ‭(Theodoris‬‭et‬‭al.‬‭2023)‬‭,‬‭retrieved‬

‭from:‬

‭https://huggingface.co/ctheodoris/Geneformer/tree/main/geneformer-12L-30M‬

‭For‬ ‭both‬ ‭the‬ ‭geneFormer‬ ‭and‬ ‭scGPT‬ ‭embedding‬‭procedures‬‭dataloaders‬‭leveraging‬‭the‬‭TileDB‬

‭database‬‭were‬‭used‬‭(TileDB,‬‭2024),‬‭while‬‭for‬‭VAE‬‭models‬‭(scVI,‬‭BA-scVI)‬‭data-loaders‬‭loaded‬

‭data‬ ‭in‬ ‭directly‬‭from‬‭H5AD‬‭files.‬‭All‬‭data-loaders‬‭and‬‭model‬‭training‬‭procedures‬‭leveraged‬‭the‬

‭PyTorch lightning library.‬

‭BA-scVI‬ ‭architecture:‬ ‭Batch-Adversarial‬ ‭scVI‬ ‭(BA-scVI)‬ ‭leverages‬‭the‬‭same‬‭core‬‭architecture‬

‭as‬ ‭scVI,‬ ‭but‬ ‭makes‬ ‭use‬ ‭of‬ ‭an‬ ‭adversarial‬ ‭framework‬ ‭for‬ ‭removing‬ ‭batch‬ ‭effects.‬ ‭The‬ ‭key‬

‭difference‬ ‭is‬ ‭where‬ ‭scVI‬ ‭injects‬ ‭one-hot‬ ‭batch‬ ‭ID‬ ‭vectors‬ ‭into‬ ‭the‬‭encoder‬‭and‬‭decoder‬‭layers,‬

‭BA-ScVI takes an adversarial learning approach to learning and removing batch-effects.‬

‭-‬ ‭Here‬‭discriminators‬‭seek‬‭to‬‭predict‬‭the‬‭batch-ID‬ ‭using‬‭the‬‭encoder‬‭outputs‬‭and‬‭decoder‬‭𝑏‬
‭𝑖‬

‭inputs.‬‭Namely,‬‭the‬‭discriminator‬ ‭seeks‬‭to‬‭minimize‬‭loss‬ ‭with‬‭respect‬‭to‬‭batch-ID‬‭on‬‭𝐷‬ ‭𝐿‬

‭the‬‭encoder‬‭outputs‬ ‭and‬‭decoder‬‭outputs‬ ‭.‬‭The‬‭encoder‬‭and‬‭decoder‬‭weights‬‭are‬‭𝑊‬
‭𝐸‬

‭𝑊‬
‭𝐷‬

‭frozen in this step. We use cross entropy loss such that,‬

‭-‬ ‭The‬‭inference‬‭network‬‭then‬‭seeks‬‭to:‬‭(1)‬‭Maximize‬‭the‬‭probability‬‭of‬‭the‬‭posterior,‬‭which‬

‭in‬‭this‬‭case‬‭we‬‭use‬‭a‬‭Zero-Inflated‬‭Negative‬‭Binomial‬‭(ZINB)‬‭distribution‬‭as‬‭per‬‭(‬‭(Lopez‬

‭et‬ ‭al.‬ ‭2018)‬‭;‬ ‭(2)‬ ‭Minimize‬ ‭KL-divergence‬ ‭of‬ ‭the‬ ‭embedding‬ ‭distribution‬ ‭and‬ ‭library‬‭𝑧‬

‭encoder‬ ‭(Kingma and Welling 2013)‬‭; and (3) Maximize‬‭discriminator loss, i.e.,‬‭𝑙‬
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‭The‬ ‭discriminator‬ ‭and‬‭inference‬‭networks‬‭are‬‭then‬‭trained‬‭in‬‭sequential‬‭steps‬‭with‬‭the‬‭first‬‭step‬

‭used‬ ‭to‬ ‭update‬ ‭weights‬ ‭on‬ ‭the‬ ‭discriminator‬ ‭networks‬ ‭and‬ ‭the‬ ‭second‬ ‭step‬ ‭weights‬ ‭on‬ ‭the‬

‭inference‬ ‭network.‬ ‭An‬ ‭optimal‬‭regimen‬‭for‬‭training‬‭was‬‭identified‬‭(Table‬‭S3)‬‭that‬‭leveraged‬‭an‬

‭Adam‬ ‭optimizer‬ ‭(Kingma‬ ‭and‬ ‭Ba‬ ‭2014)‬‭,‬ ‭with‬ ‭learning‬ ‭rate‬ ‭=‬‭5E-5‬‭for‬‭the‬‭inference‬‭network,‬

‭1E-2‬‭for‬‭the‬‭discriminator‬‭network;‬‭weight‬‭decay‬‭=‬ ‭1E-5;‬‭and‬‭eps‬‭=‬‭0.01,‬‭with‬‭a‬‭batch-size‬‭64‬

‭and‬‭for‬‭a‬‭maximum‬‭of‬‭100‬‭epochs;‬ ‭was‬‭used‬‭for‬‭the‬‭model‬‭described‬‭in‬‭the‬‭main‬‭text.‬β‭ ‬ = ‭ ‬‭10‬

‭Other‬ ‭values‬ ‭of‬ ‭beta‬ ‭were‬ ‭tested,‬ ‭but‬ ‭performed‬ ‭similarly‬ ‭or‬ ‭worse‬ ‭than‬ ‭the‬ ‭top‬ ‭performing‬

‭model‬‭that‬‭emerged‬‭from‬‭initial‬‭optimization‬‭studies‬‭(Table‬‭S3).‬‭In‬‭this‬‭optimal‬‭training‬‭regime‬‭a‬

‭two-hot‬‭batch‬‭ID‬ ‭vector‬‭was‬‭also‬‭used‬‭that‬‭encoded‬‭‘Both’‬‭Sample‬‭ID‬‭(386‬‭long),‬‭and‬‭study‬‭ID‬

‭(11 long) was also used.‬

‭Model‬ ‭training‬ ‭on‬ ‭scREF,‬ ‭scREF-mu‬ ‭and‬ ‭the‬ ‭joint‬ ‭scREF/scREF-mu‬ ‭atlas:‬ ‭Models‬ ‭were‬

‭trained‬‭on‬‭scREF,‬‭the‬‭scREF/scREF-mu‬‭atlas‬‭using‬‭a‬‭regime‬‭optimized‬‭on‬‭a‬‭smaller‬‭benchmark‬

‭scMARK‬ ‭that‬ ‭we‬ ‭discuss‬ ‭in‬ ‭the‬ ‭supplemental,‬ ‭with‬ ‭the‬ ‭exception‬ ‭of‬ ‭our‬ ‭handling‬ ‭of‬ ‭a‬

‭standardized‬ ‭gene‬ ‭set‬ ‭for‬ ‭training.‬ ‭For‬ ‭scMARK‬ ‭genes‬ ‭common‬ ‭to‬ ‭all‬ ‭datasets‬‭were‬‭used.‬‭For‬

‭scREF‬‭and‬‭the‬‭joint‬‭atlas‬‭we‬‭took‬‭a‬‭list‬‭of‬‭genes‬‭common‬‭across‬‭30‬‭datasets‬‭or‬‭more.‬‭To‬‭handle‬

‭missing‬‭genes‬‭for‬‭a‬‭specific‬‭dataset,‬‭we‬‭then‬‭applied‬‭a‬‭mask‬‭to‬‭the‬‭reconstruction‬‭loss‬‭function‬‭at‬

‭train‬‭time,‬‭such‬‭that‬‭only‬‭genes‬‭present‬‭in‬‭the‬‭dataset‬‭affected‬‭the‬‭overall‬‭loss.‬‭This‬‭mask‬‭was‬‭not‬

‭applied‬‭to‬‭either‬‭the‬‭encoder‬‭or‬‭decoder,‬‭and‬‭thus‬‭will‬‭not‬‭affect‬‭prediction‬‭results.‬ ‭For‬‭the‬‭joint‬

‭atlas,‬ ‭we‬ ‭used‬ ‭ENSEMBL‬ ‭v110‬ ‭(Martin‬ ‭et‬ ‭al.‬ ‭2023)‬ ‭.‬ ‭On‬ ‭scREF-mu,‬ ‭mouse‬ ‭genes‬ ‭identifiers‬

‭common to all datasets were used (Table S1).‬

‭Comparison‬ ‭of‬ ‭label‬ ‭propagation‬ ‭and‬ ‭K-means‬ ‭methods‬ ‭for‬ ‭cell-type‬ ‭ID:‬ ‭Label‬ ‭propagation‬

‭was‬‭implemented‬‭as‬‭described‬‭in‬‭(Raghavan,‬‭Albert,‬‭and‬‭Kumara‬‭2007)‬‭.‬‭KNN‬‭graphs‬‭for‬‭Label‬

‭propagation‬ ‭were‬ ‭generated‬ ‭using‬‭the‬‭FAISS‬‭library‬‭(Johnson,‬‭Douze,‬‭and‬‭Jégou‬‭2021)‬‭,‬‭setting‬

‭the‬ ‭number‬ ‭of‬ ‭neighbors‬ ‭to‬‭k=50.‬‭Label‬‭propagation‬‭was‬‭run‬‭until‬‭complete‬‭convergence,‬‭with‬

‭the‬ ‭subsequent‬ ‭number‬ ‭of‬‭clusters‬‭identified‬‭by‬‭label‬‭propagation‬‭used‬‭to‬‭define‬‭the‬‭number‬‭of‬

‭clusters‬ ‭k‬ ‭for‬ ‭k-mean‬ ‭clustering.‬ ‭The‬ ‭sci-kit‬ ‭Learn‬ ‭K-means‬ ‭clustering‬ ‭function‬ ‭was‬ ‭used‬ ‭for‬

‭clustering‬ ‭(Pedregosa‬‭et‬‭al.‬‭2012)‬‭,‬‭with‬‭150‬‭iterations‬‭set‬‭as‬‭the‬‭maximum‬‭number‬‭of‬‭iterations.‬

‭The Adjusted Rand Index was calculated using the function provided in SciPy version 1.13.0.‬
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‭Differential‬ ‭Gene‬ ‭Expression:‬‭To‬‭identify‬‭enriched‬‭genes‬‭in‬‭the‬‭unbiased‬‭cell-type‬‭clusters‬‭we‬

‭calculated‬ ‭differentially‬ ‭expressed‬ ‭genes‬ ‭between‬ ‭the‬ ‭cell-type‬ ‭cluster‬ ‭and‬ ‭the‬ ‭distribution‬ ‭of‬

‭genes‬ ‭across‬ ‭all‬ ‭cell-types‬ ‭including‬ ‭that‬ ‭cluster,‬ ‭given‬ ‭that‬ ‭the‬ ‭size‬ ‭of‬ ‭the‬ ‭dataset‬ ‭was‬ ‭many‬

‭times‬‭larger‬‭than‬‭the‬‭largest‬‭cell-type‬‭grouping.‬‭This‬‭ensured‬‭that‬‭results‬‭would‬‭not‬‭be‬‭distorted‬

‭by‬ ‭including‬ ‭the‬ ‭group‬ ‭in‬ ‭question‬ ‭in‬ ‭the‬ ‭reference‬‭cluster,‬‭and‬‭the‬‭number‬‭of‬‭calculations‬‭run‬

‭was‬ ‭dramatically‬ ‭reduced.‬ ‭To‬‭enable‬‭us‬‭to‬‭store‬‭a‬‭full‬‭Scanpy‬‭annotated‬‭data‬‭object‬‭in‬‭memory‬

‭(Wolf,‬‭Angerer,‬‭and‬‭Theis‬‭2018)‬‭for‬‭DGE‬‭calculations‬‭(64GB‬‭RAM),‬‭we‬‭took‬‭a‬‭sample‬‭of‬‭2,000‬

‭cells‬ ‭within‬ ‭a‬ ‭cell-type‬ ‭cluster,‬ ‭or‬ ‭all‬ ‭cells‬ ‭in‬‭the‬‭cluster‬‭(whichever‬‭value‬‭is‬‭smaller).‬‭Samples‬

‭were‬‭taken‬‭from‬‭a‬‭TileDB‬‭array‬‭(TileDB,‬‭2024))‬‭of‬‭the‬‭full‬‭scREF‬‭object‬‭that‬‭we‬‭make‬‭available.‬

‭Raw‬ ‭read-counts‬ ‭were‬ ‭standardized‬ ‭as‬ ‭described‬ ‭in‬ ‭(Stuart‬ ‭et‬ ‭al.‬ ‭2019)‬‭,‬ ‭and‬ ‭we‬ ‭filtered‬ ‭genes‬

‭with‬ ‭very‬ ‭low‬ ‭expression‬ ‭(total‬ ‭standardized‬ ‭read-count‬ ‭<20‬ ‭across‬ ‭all‬ ‭cell-types).‬ ‭To‬ ‭then‬

‭calculate‬‭differentially‬‭expressed‬‭genes,‬‭we‬‭calculated‬‭Welch's‬‭T-test‬‭score‬‭between‬‭the‬‭cell-type‬

‭grouping‬‭distribution‬‭and‬‭the‬‭distribution‬‭across‬‭the‬‭full‬‭cell‬‭sample.‬‭We‬‭multiplied‬‭the‬‭reference‬

‭standard‬ ‭deviation‬ ‭for‬ ‭each‬ ‭gene‬ ‭by‬ ‭a‬ ‭factor‬ ‭of‬ ‭10‬ ‭to‬ ‭enhance‬ ‭the‬ ‭ranking‬ ‭of‬ ‭genes‬ ‭that‬‭show‬

‭large‬‭effect‬‭size‬‭differences‬‭between‬‭the‬‭cluster‬‭and‬‭reference‬‭groups.‬‭The‬‭top‬‭25‬‭genes‬‭for‬‭each‬

‭cell-type‬ ‭cluster‬ ‭were‬ ‭assessed‬ ‭visually‬ ‭and‬ ‭passed‬ ‭into‬ ‭ShinyGO‬ ‭0.8‬ ‭for‬ ‭pathway‬ ‭enrichment‬

‭analysis‬‭(Ge,‬‭Jung,‬‭and‬‭Yao‬‭2020)‬‭.‬‭We‬‭provide‬‭the‬‭top‬‭250‬‭genes‬‭by‬‭DGE‬‭in‬‭Table‬‭S5‬‭for‬‭each‬

‭cluster,‬ ‭alongside‬ ‭the‬ ‭cluster‬ ‭ID,‬ ‭and‬ ‭cell-type‬ ‭composition‬ ‭of‬ ‭the‬‭cluster‬‭and‬‭sample‬‭based‬‭on‬

‭standardized‬ ‭and‬ ‭author‬ ‭cell-type‬‭labels‬‭and‬‭tissue‬‭types‬‭represented‬‭in‬‭the‬‭cluster.‬ ‭A‬‭round‬‭of‬

‭hierarchical‬ ‭clustering‬ ‭on‬ ‭cluster‬ ‭gene‬ ‭expression‬ ‭means‬ ‭was‬ ‭also‬‭performed‬‭using‬‭scikit-learn‬

‭on the cluster medians to provide an easy to explore ordering of the clusters in the Tables.‬

‭We‬‭also‬‭provide‬‭the‬‭top‬‭250‬‭genes‬‭by‬‭DGE‬‭for‬‭a‬‭more‬‭complete‬‭set‬‭of‬‭591‬‭human‬‭filtered‬

‭for‬ ‭at‬ ‭least‬‭30‬‭cells‬‭present‬‭in‬‭at‬‭least‬‭2‬‭studies,‬‭368‬‭mouse‬‭clusters‬‭filtered‬‭for‬‭at‬‭least‬‭20‬‭cells‬

‭present‬‭in‬‭at‬‭least‬‭2‬‭studies,‬‭for‬‭the‬‭benefit‬‭of‬‭the‬‭reader‬‭in‬‭Supplemental‬‭Table‬‭S5.‬‭Here‬‭samples‬

‭of‬ ‭250‬ ‭cells‬ ‭were‬ ‭taken‬ ‭for‬ ‭each‬ ‭human‬ ‭cell-type‬ ‭grouping‬ ‭and‬ ‭300‬ ‭for‬ ‭mise.‬ ‭We‬ ‭note‬ ‭visual‬

‭inspection‬‭suggested‬‭no‬‭clear‬‭differences‬‭in‬‭top‬‭differentially‬‭expressed‬‭genes‬‭occur‬‭between‬‭250‬

‭cell‬‭and‬‭2,000‬‭cell‬‭samples‬‭indicating‬‭these‬‭are‬‭sufficient‬‭sample‬‭sizes‬‭for‬‭ID‬‭of‬‭top‬‭differentially‬

‭expressed‬ ‭genes.‬ ‭Again‬ ‭cluster‬ ‭composition‬ ‭metrics‬ ‭are‬ ‭provided‬ ‭and‬ ‭ordering‬ ‭is‬ ‭as‬ ‭per‬

‭hierarchical clustering of cluster gene expression medians.‬

‭Heatmaps‬ ‭of‬ ‭Complement‬ ‭Pathway‬ ‭expression:‬ ‭Raw‬ ‭read-counts‬ ‭were‬ ‭standardized‬ ‭as‬

‭described‬ ‭in‬ ‭(Stuart‬ ‭et‬‭al.‬‭2019)‬‭.‬‭Heatmaps‬‭of‬‭complement‬‭pathway‬‭expression‬‭were‬‭calculated‬
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‭by‬ ‭then‬ ‭taking‬ ‭the‬ ‭mean‬ ‭across‬ ‭all‬ ‭cells‬ ‭of‬ ‭a‬ ‭specific‬ ‭author‬ ‭standardized‬ ‭cell-type‬ ‭and‬

‭tissue-type.‬

‭Filtering‬‭of‬‭artifactual‬‭clusters‬‭of‬‭conserved‬‭cell-types:‬‭Alongside‬‭filtering‬‭of‬‭clusters‬‭identified‬

‭by‬ ‭LP‬ ‭for‬ ‭those‬ ‭present‬ ‭in‬ ‭at‬ ‭least‬ ‭10‬‭tissue-types,‬‭we‬‭also‬‭removed‬‭those‬‭groupings‬‭that‬‭were‬

‭highly‬ ‭enriched‬ ‭for‬ ‭mitochondrial‬ ‭or‬ ‭ribosomal‬ ‭genes‬‭as‬‭determined‬‭by‬‭differential‬‭expression.‬

‭Specifically, those‬

‭UMAP‬‭projections:‬‭All‬‭UMAP‬‭projections‬‭were‬‭produced‬‭using‬‭the‬‭UMAP‬‭library‬‭version‬‭0.5.6‬

‭with‬ ‭default‬ ‭setting‬ ‭unless‬ ‭otherwise‬ ‭specified‬ ‭(McInnes,‬ ‭Healy,‬ ‭and‬ ‭Melville‬ ‭2018)‬‭.‬ ‭For‬ ‭the‬

‭online‬‭tool‬‭we‬‭provide,‬‭UMAP‬‭is‬‭calculated‬‭using‬‭the‬‭parametric‬‭version‬‭of‬‭UMAP‬‭described‬‭in‬

‭Sainburg et al.‬‭(Sainburg, McInnes, and Gentner 2021)‬‭.‬
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