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20 Abstract
21
22 Today’s single-cell RNA (scRNA) datasets remain siloed, due to significant challenges associated

23 with their integration at scale. Moreover, most scCRNA analysis tools that operate at scale leverage
24 supervised techniques that are insufficient for cell-type identification and discovery. Here, we
25 demonstrate that the alignment of sScCRNA data using unsupervised models is accurate at an organism-wide
26 scale and between species. To do this, we show adversarial training of a deep-learning model we term
27 batch-adversarial single-cell variational inference (BA-scVI) can be employed to align standardized
28 benchmark datasets comprising dozens of scRNA studies spanning tissues in humans and mice. In the
29 aligned space, we analyze cell types that span tissues in both species and find prevalent complement
30 expressing macrophages and fibroblasts. We provide access to the tools presented via an online interface

31 for atlas exploration and reference-based drag-and-drop alignment of new data.
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32 Introduction

33 Single-cell RNA sequencing (scRNA) is able to dissect tissue and experimental models with
34 unprecedented precision and is underpinning a wave of new biological discovery. Today, sScRNA analysis
35 focuses on individual datasets or a handful of datasets with similar etiology. Yet, to build a comprehensive
36 organism-wide understanding of gene expression profiles underlying cell types and stages we will need to
37 examine integrated transcriptional atlases that combine studies and patient populations at scale (Regev et
38 al. 2017). The ever-growing number of published scRNA studies creates an opportunity for the
39 development of a large aligned scRNA atlas (Gavish et al. 2023), that would enable standardized
40 reference based analysis, and seamless cross-dataset comparison (Lotfollahi et al. 2024). However, the
41 challenge of combining data from multiple disparate sScRNA studies remains (Butler et al. 2018; Gavish et
42 al. 2023; Lotfollahi et al. 2024; Ldhnemann et al. 2020).

43 While studies have looked at the alignment of batches within individual datasets or a collection of
44 integration tasks, none have focused on how well models align studies at scale, especially across tissue
45 types, instruments, and species as would be required for generation of a reference atlas (Huang et al.
46 2021; Xie et al. 2021; Abdelaal et al. 2019; Diaz-Megjia et al. 2019; Christensen et al. 2023; Butler et al.
47 2018; Song et al. 2023). Moreover, those studies that have used models across tissue types or studies have
48 used supervised models trained on cell-type labels, such as scBERT, Celltypist, and SCimilarity (Yang et
49 al. 2022; Dominguez Conde et al. 2021). Yet, unsupervised alignment is superior for cell-type discovery
50 (Vasighizaker, Danda, and Rueda 2022) and will be needed for unbiased cross-species comparative
51 analysis. Thus, a significant demand exists for a reference atlas and reference analysis based on
52 unsupervised alignment (Lotfollahi et al. 2024). In this study, we leverage the analysis of a large human
53 scRNA benchmark dataset to test the ability of methods to align scRNA data between studies and tissue
54 types first and then between species using a mouse atlas. In showing that top models can accurately align
55 the atlases with minimal loss to cell-type granularity, we demonstrate that reference-based analysis is
56 possible with a single unsupervised model and that cell types can be compared across tissues and between
57 species, paving the way to phylogenetic cell-type analyses. Finally, we provide this model, an online tool
58 for exploring the results, and a tool for drag-and-drop alignment of new data to give the broader

59 community access to the work we present here.
60 Results
61 Construction and state-of-the art alignment of the scREF scRNA benchmark dataset

62 In scRNA studies, unsupervised models transform a high-dimensional gene-expression space into

63 a low-dimensional cell-type space. We sought an optimum model for performing this task while aligning


https://doi.org/10.1101/2024.08.11.607498
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.607498; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

64 scRNA datasets across publications. To test alignment performance, we thus developed the scREF
65 benchmark, a collection of 46 human scRNA studies, spanning 2,359 samples and 36 tissues, where for
66 each dataset, quality checks have been performed and metadata standardized (Figure la; Methods). In
67 scREF, we include organ-specific and human-wide datasets, e.g., the Tabula Sapiens (Tabula Sapiens
68 Consortium* et al. 2022) and the Human Cell Landscape (Han et al. 2020). Importantly, scREF includes
69 data from droplet-based (10X 5°, 10X 3’, 10X multiome, and Dropseq) and plate/bead based methods
70 (Microwell-seq, Seq-Well and SMARTScribe) to test cross-technology alignment. Author-provided
71 cell-type labels for 45 studies were acquired and standardized, while for three cases, we generated labels
72 reproducing the original author's pipeline (Table S1; Methods); overall, this resulted in 60 unique
73 cell-type labels. Tissue-type labels were standardized for plotting and analysis (Table S1). For training
74 and testing, we balanced dataset representation by stratifying cell types from each tissue type in each

75 dataset (Table S1; Methods), leading to the final 1.21 million cell evaluation benchmark.

76 We aimed to identify models that most effectively remove technical batch effects while aligning
77 cell types. We thus sought a metric to compare model performance for this task. We developed two
78 metrics that we term K- and Radius-based Neighbors Intersection scores (KNI and RbNI; Methods;
79 Supplementary) that combine the kBET score for batch-effect detection (Biittner et al. 2019) with
80 cross-dataset cell-type prediction accuracy of author labels, a gold-standard metric for preservation of
81 biological signal (Dominguez Conde et al. 2021). In developing the KNI and RbNI scores, we evaluated
82 these and other benchmark metrics on simulated data, real data with synthetic batch effects or noise, and
83 in a real-world setting on a small scRNA benchmark that we also used for model optimization/
84 development (Supplementary; Table S2). Across these analyses, we find that the KNI and RbNI metrics
85 capture the quality of cell-type space in a single value, providing a simple, robust performance readout.

86 Following initial optimization, we tested the ability of published, scalable scRNA analysis models
87 to align the scREF atlas. Here we found that an optimized variant of single-cell Variational Inference
88 (scVI)(Lopez et al. 2018) outperformed Harmony (Korsunsky et al. 2019), PCA on highly variable genes,
89 geneFormer fine-tuned for batch effect correction with scVI (Theodoris et al. 2023) and scGPT fine tuned
90 for batch effect correction as per the author protocol (Cui et al. 2024) (Figure 1c; (Lopez et al. 2018)).
91 Qualitatively, UMAP projections showed that scVI produces a reasonably high degree of alignment
92 accuracy (Figure S8). Significantly, organism-wide studies from markedly different technologies
93 Microwell-seq (Han et al. 2020), and 10X (Tabula Sapiens Consortium* et al. 2022) overlap extensively
94 with each other and have KNI/RbNI scores at or above average (Table S3), indicating alignment
95 independent of technology. We thus find that an optimized scVI model can be used to perform effective
96 large-scale alignment. However, we noted that the direct penalization of batch effects performed in

97 Harmony can improve batch effect correction (Supplemental).
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98 Adversarial learning has emerged as a powerful approach to identifying and removing technical
99 artifacts in generative machine-learning outputs (Goodfellow et al. 2020). We developed batch adversarial
100 scVI (BA-scVI) as a variant of scVI, leveraging an adversarial training approach to remove technical
101 artifacts (i.e., batch effects) in scRNA data at train time, similar to that used for the cell-search algorithm
102 in cellBLAST (Cao et al. 2020; Shaham 2018). In BA-scVI, a discriminator learns to predict the batch
103 identifier from the encoder output and decoder input in the first update step (Figure 1b). In the second
104 update step, a modified scVI architecture seeks to minimize reconstruction loss and KL-divergence while
105 maximizing discriminator loss, where discriminator loss represents the discriminator’s ability to predict
106 the batch identifier (Figure 1b; Methods). By maximizing this discriminator loss while minimizing
107 reconstruction loss, the model directly penalizes batch effects while rewarding preserving cell-type
108 information in the latent space. In line with this, an optimized BA-scVI model outperforms scVI on
109 scREF (Figure 1c). This leads to effective cross study alignment, clearly resolved cell-type clusters in

110 qualitative UMAP projections of the embedding space (Figure 1d, e).
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111
112 Figure 1. Alignment of a human scRNA reference atlas: a) Summary statistics of the scREF dataset, broken down

113 by tissue type and instrument; b) Architecture of the optimized scVI and BA-scVI models; ¢c) KNI and RbNI scores
114 were determined for the aligned scREF dataset, based on standardized author cell type labels for the alignment tools.
115 Data points correspond to the average score achieved by the model on a study. The average score obtained on the
116 entire benchmark plotted as a line; d) A UMAP projection of the aligned stratified scREF atlas (n=1.27m), coloured by
117 ‘ground-truth’ standardized author cell-type label. The legend is omitted for brevity (coloring is the same as Figure
118 3d), boxes show major cell-type groupings; e) same projection as (d), coloured by study name the legend is omitted.
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119 Alignment of the scREF benchmark dataset maintains cell-type granularity

120 A major concern in the atlas-building community is that aligning datasets reduces the granularity
121 of cell-type detection. To qualitatively assess how well cell-type labelings are preserved at the organ level
122 in the aligned cell-type space, we fit UMAP to the three best-represented tissues: breast (4 studies), brain
123 (4 studies), and blood (7 studies). Supporting effective alignment with BA-scVI, we found effective
124 distinction of standardized cell types indicating preserved granularity (Figure 2a), alongside significant
125 overlap between studies (Figure 2b). BA-scVI could also resolve ‘original author’ labels in UMAP
126 projections of an example study for each tissue type, qualitatively supporting the preservation of cell-type

127 resolution (Figure 2¢) in the aligned space.
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129 Figure 2. BA-scVI scREF maintains cell-type granularity on alignment: a) 10-dimensional scRNA embeddings
130 from BA-scVI corresponding to Breast (n=0.4m cells), Brain (n=4.8m cells), and Blood (n=1.6m cells) tissue-types
131 were projected into a 2-dimensional space with UMAP. Cells are coloured by the standardized ground-truth labels,
132 highlighting the consistency with which BA-scVI is able to align similar cell types. The cell-type and study legends
133 here and in (b/c) are omitted for brevity; major groupings are in boxes; b) The same UMAP projections coloured by
134 study name; c) The same UMAP projections coloured by original author labels for example studies; Breast (n=0.3m
135 cells), Brain (n=0.8m cells), Blood (n=1m cells); d) scREF UMAP projections coloured by expression of CRYBA2,
136 CLEC4C, and MPZ; selective markers of colorectal endocrine, plasmacytoid dendritic, and Schwann cells
137 respectively.
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138 Quantitatively, using a KNN accuracy test with 2-fold cross-validation, for example, studies
139 (Methods), we found that relative cell-type embedding localizations of the original author labels are
140 conserved since the model can obtain high cell-type labeling accuracies on held-out data. Specifically,
141 KNN accuracies of; (1) 83% were obtained on a large breast dataset (Reed et al. 2023); increasing to 96%
142 on ‘numerical’ subtype merging (e.g. cell subtypes ‘LP1’ to ‘LP5’ become ‘LP’); 2) 99 % for a brain
143 study Gabitto et al. (Gabitto et al. 2023); and 3) 83% for the Kock et al. blood dataset where T-cell
144 subtype label overlap is notably seen in projections in the original study (Kock et al. 2024). Overall this
145 analysis further supports preservation of cell-type granularity. Furthermore, we also find that rare cell
146 types can be distinguished in BA-scVI alignments. Specifically, colorectal, endocrine cells, plasmacytoid
147 dendritic cells, and Schwann cells are marked by CRYBA2, CLEC4C, and MPZ, respectively
148 (Supplemental). In the aligned atlas, selective groupings of these genes can be seen, indicating these rare
149 cell-type groupings are captured effectively (Figure 2d). Finally, we see that BA-scVI performs well at the
150 identification of cell subtypes in a discovery setting (Supplemental). Overall, these results provide strong
151 evidence that cell-type granularity is preserved following alignment with BA-scVI, supporting its power

152 as a model for unsupervised reference-based scRNA analysis.
153 Cross-species alignment of scRNA reference atlases can improve accuracy in data-poor species

154 Next, we tested whether we could use BA-scVI to align atlases between species. For this, we
155 constructed scREF-mu, comprising 18 mouse scRNA studies, 1,290 samples, 34 tissues, and over 3
156 million cells, with author cell-type labels covering 11 studies (Table S1). As in scREF, each tissue type
157 included was required to appear in at least two datasets. However, we noted that in contrast to the scREF
158 human dataset, different mouse brain-tissue regions were often only represented abundantly in one
159 dataset, e.g., the hippocampus (Yao et al. 2021), and cerebellum (Kozareva et al. 2021). We trained
160 BA-scVI on scREF-mu alone and jointly with the scREF human dataset. KNI and RbNI scores were
161 calculated for scREF-mu alone, jointly trained using mouse cell-type labels, and jointly trained using both
162 human and mouse labels. Here, we found that joint training with the inclusion of cell-type labels from
163 both species resulted in the highest KNI and RbNI scores (Figure 3a; Table S4), indicating value in
164 cross-species alignment. Notably, the KNI and RbNI scores on the human scRNA datasets did not
165 decrease (Figure 3b), and qualitative assessment of UMAP projections of the aligned atlas also supports
166 successful alignment (Figure 3¢, d). Cerebellar granule cells only appear once in both the mouse and
167 human atlases and are thus excluded in the benchmarks. Yet, we find we can accurately label these cells
168 leveraging cross-species alignment (Supplemental; Figure S11). Overall, we show that cross-species
169 alignment of organism-wide scRNA atlases is possible and may improve the labeling of cell types in

170 data-poor species.
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171

172 Figure 3. Cross-species alignment of mouse and human scRNA atlases: a) Analysis of KNI and RbNI scores
173 obtained by BA-scVI on alignment of the mouse scRNA atlas scREF-mu only (Mouse Only), jointly trained with
174 assessment of alignment accuracy using mouse labels only (JT Mouse Labels), and jointly trained leveraging labels
175 from both mouse and humans for accuracy assessment (JT Both Labels); b) KNI and RbNI scores from BA-scVI
176 alignment of the human scRNA atlas scREF only (Human Only) and jointly trained with assessment of alignment
177 accuracy using human labels only (JT Human Labels), and jointly trained leveraging labels from both mouse and
178 humans for accuracy assessment (JT Both Labels); ¢) UMAP projections of the jointly aligned atlas, coloured by
179 organism with Mouse (Orange; n=528k), humans (Blue; n=1.27m); d) UMAP projection of the jointly aligned atlas
180 coloured by cell-type, with major groupings highlighted by boxes.

181 Cross-species alignments enables us to analyze cell-type conservation across tissues and species

182 Following organism-wide alignment, we looked to understand how cell types group together in
183 the aligned atlas using an unbiased approach. We tested both K-means clustering and Label Propagation
184 (LP) approaches ability to identify cell-type groupings on the aligned scREF and scREF-mu datasets
185 (~14m cells) as unbiased methods that could scale millions of cells (Methods). We found that LP results
186 aligned well with the original author as well as standardized labels, compared to K-means, as measured
187 by the Adjusted Rand Index (ARI), both on this dataset and the individual scREF and scREF-mu datasets
188 (Figure 4a; Figure S12). Notably, we found the ARI between LP groupings and standardized labels was
189 similar to that between standardized labels and author labels, giving us confidence this method of
190 clustering generates meaningful groupings. Overall, LP identified 792 unique clusters in the cross-aligned
191 atlas where more than 50 cells were present in at least two datasets. Approximately half of these clusters
192 were CNS cell types (Figure 4b), which is in line with the enormous cell-type diversity seen in the brain
193 (Zhang et al. 2023). The other half corresponded to the remaining tissue types, in line with prior estimates
194 that hundreds of cell types exist in the body (Hatton et al. 2023). Similar results were obtained for the

195 individual atlases (Supplemental).
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196 Where most studies have focused on organ-specific cell-type 1D, here we sought to characterize
197 cell-type groupings that span tissue types and are highly conserved between organisms. We reason this
198 may indicate evolutionary constraint. Clusters were filtered for those containing cells from 10 or more
199 tissues in both the mouse and human datasets; potential artifactual groupings were also removed
200 (Methods). After this, 32 conserved cross-tissue clusters remained, covering a diverse range of cell types,
201 as marked by the modal standardized cell-type label (Figure 4c). We then leveraged differential
202 gene-expression analysis to understand if these cell types are all well-defined or if new groupings emerge
203 from this cross-tissue analysis (Methods). While most cell types were well defined, we noted macrophage
204 groupings that show highly selective C1Q expression and fibroblast clusters that are enriched for CIR,
205 C18S, and CFD, and SERPING1 (complement inhibitor) expression in the cross-aligned and individual
206 atlases (Table S5). Pathway analysis (Ge, Jung, and Yao 2020) of the top 25 most-selective genes to each
207 cell type in the cross-species returns “Complement and coagulation cascade” as the most enriched

208 pathway in this gene set (Figure 4d), indicating this enrichment is not just qualitative.

209 While it is known that peripheral macrophages and dendritic cells express C1Q (Castellano et al.
210 2010; Miiller, Hanauske-Abel, and Loos 1978), these genes are not typically used as myeloid cell-type
211 markers. Moreover, while studies have shown that synovial fibroblasts can synthesize complement
212 proteins in vitro (Katz and Strunk 1988), widespread fibroblast expression of complement has not been
213 reported, although C7 is noted as a fibroblast markers (Buechler et al. 2021; Dominguez et al. 2020).
214 Supporting the results obtained from label propagation, we found in UMAP projections of myeloid cell
215 types, C1Q expression marks a distinct region (Figure 4d. Similarly, a C1R, C1S, and CFD signature
216 marks an axis of variation in fibroblast cell types (Figure 4e). Expression of the core complement gene
217 family in the unaligned scREF and scREF-mu atlas further supports our findings and also hints at broader
218 complement regulation by fibroblasts and macrophages. Specifically, in the scREEF and scREF-mu atlas,
219 we see three expression patterns emerge across standardized cell types and tissues (Figure 4f-i). Namely,
220 1) Myeloid selective expression of C1Q genes and C2; 2) Fibroblast selective expression of C1R, C18,
221 C3, CFH, CFD, and C7 with trace endothelial and PVL/SMC readouts; and 3) Liver / Hepatocyte
222 selective expression of C5, C6, C8 components, C9 and CFB; with outlier expression of C4A, C4B, CFI
223 and CFP. Importantly, these results are also seen in the individually aligned mouse and human atlases
224 (Supplemental; Figure S13, 14). Overall, this analysis thus finds peripheral complement mRNA
225 expression in broadly abundant, evolutionarily conserved fibroblasts and macrophages and highlights the

226 value of the cross-species alignment we perform here in uncovering these expression patterns.
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228 Figure 4. Analysis of conserved cell-types in the body: a) Comparison of label propagation and K-means clusters
229 with author or standardized cell-type labels, measured by the Adjusted Rand Index for the jointly aligned mouse and
230 human atlas; b) Proportion of unique cell-type groups, with more than 20 cells present in two datasets, by
231 standardized label in the jointly aligned atlas; c) Same as (b) but filtered for cell-types with over 20 cells present in 2
232 datasets, in more than 10 tissues in mice and humans; d) Pathway enrichment for the top 20 differentially expressed
233 genes in the conserved cell-types; e) UMAP projection of Myeloid lineages, coloured by mean C1QA, C1QB, and
234 C1QC read count (left), or standardized cell-type label (right), n=695,141 cells; f) UMAP projection of Fibroblastic,
235 Endothelial, and PVL / Smooth muscle cell types, colored by mean C1R, C1S, read counts (left), or standardized
236 cell-type label (right); g) Hierarchical clustering of complement expression patterns h-j) Heatmaps of log read-counts
237 of representative expression profiles for the three observed patterns; g) C9 = Liver; h) C1QA = Myeloid-types; i) C1R
238 = Fibroblasts); k) Cartoon of proposed cell-type contributors to complement signaling.

239 BA-scVI trained on scREF realizes drag-and-drop scRNA analysis

240 Unlike scVI, BA-ScVI only uses batch labels in training. This allows new samples to be
241 embedded de novo, as long as the contributing tissue is currently represented in the atlas. We demonstrate
242 this at scale by using BA-scVI trained on scREF without the Tabula Sapiens atlas to accurately predict
243 cell-type labels in the Tabula Sapiens atlas without further fine-tuning or training (Tabula Sapiens

244 Consortium* et al. 2022)(Supplemental, Figure S15). We also found that this approach can map in vitro
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245 cell types to tissue scRNA data, which is valuable for in vitro model relevance optimization
246 (Supplemental). To give broad access to this capability, we provide an online tool for drag-and-drop
247 embedding and labeling of new human scRNA data against scREF. This tool is available as a
248 user-friendly web app that also facilitates analysis and visualization at https://scref.phenomic.ai/. An API

249 alongside R and Python functions is also given in the data availability section below.

250 Discussion

251 Most scRNA data alignment benchmarking studies have used a handful of datasets to evaluate the
252 performance of machine-learning methods for this task (Pasquini et al. 2021; Abdelaal et al. 2019;
253 Diaz-Mejia et al. 2019). However, the development of reference-based atlases will require the alignment
254 of hundreds to thousands of samples and millions of cells to one another. In this study, we present scREF
255 as a large-scale benchmark dataset and the K- and Radius-based Neighbors Intersection scores (KNI and
256 RbNI) as metrics of model performance assessment on this benchmark that consider accuracy and
257 alignment quality. Leveraging this benchmark, we find that the scVI architecture outperforms other
258 methods in cross-dataset alignment. We enhance scVI’s performance by optimizing its architecture and
259 show how adversarial learning can be used to boost performance further (BA-scVI). Optimizing
260 architectures, loss functions, and parameters against metrics is common-place in machine-learning model
261 development, for example (Kraus, Ba, and Frey 2016). With the release of the data and tests we develop
262 here, we hope to increase adoption of these benchmark strategies in sScRNA model development and spur

263 development of yet better approaches.

264 It has been hypothesized that large cross-species atlases could be used to improve alignment
265 quality (Lotfollahi et al. 2024). Supporting this, we find that aligning the large mouse scREF-mu atlas to
266 the human scREF atlas improves accuracy on the mouse benchmark without reducing the quality of the
267 human alignment or cell-type labeling. In an unbiased cell-type analysis of the aligned atlases, we
268 identified complement-expressing macrophage and fibroblastic cell types that are prevalent across tissue
269 types in both species. Peripheral complement expression has been described for macrophages (Miiller,
270 Hanauske-Abel, and Loos 1978). However, the same cannot be said for fibroblasts, and overall,
271 complement expression has received limited attention (Bordron et al. 2020). We speculate that
272 liver-expressed complement factors combine with those produced by macrophages in peripheral tissue
273 and those of fibroblasts to modulate complement activity in humans and mice, pointing towards a broader
274 underappreciated role in immunity (Figure 4k). In highlighting this result, we also hope to demonstrate
275 the value of cross-species alignment and analysis for understanding cell-type evolution and conservation.
276 We anticipate that such alignments at scale could be used to identify evolutionary relationships between

277 cell types, thus tracing the emergence of the lineages we see today.
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278 Methods

279 Collection and standardization of human scRNA data: Raw scRNA UMI count matrices were
280 obtained from public repositories (Table S1). Quality control followed the original author filters.
281 Cells labeled by the authors as; (i) Unknown; (ii) Undetermined; or (iii) Mixed were excluded
282 from benchmark analysis. Gene identifiers were standardized across studies based on (i) Human
283 Protein Atlas (HPA) versions 13 to 20; and (i) ENSEMBL GRCh38 versions 78 to 103. Priority
284 was given to HPA identifiers. Genes common to 30 datasets or more were used for training
285 (Tables S1). In cases where the authors provided only general T-cell annotations, we used
286 Azimuth’s Human PBMC signatures (Hao et al. 2021) to assign those cells into CD8+, CD4+ or

287 gamma-delta T-cells.

288 Collection and standardization of mouse scRNA data: Similar to human datasets, mouse data
289 was obtained from public repositories (Table S1) and quality control followed the original author
290 filters and cells labeled as unknown, undetermined or mixed were excluded from analysis. To
291 align mouse and human datasets, gene names were uppercased and mouse-vs-human orthologs
292 were mapped using ENSEMBL v110. Azimuth’s Human PBMC signatures were used to

293 sub-classify general T-cells into CD8+, CD4+ or gamma-delta T-cells.

294 SCRNA data normalization: For scVI, PCAscmap, Harmony, and BA-scVI, the count matrices
295 were normalized on a per-cell basis using Scanpy v1.7.2 (Wolf, Angerer, and Theis 2018), by
296 dividing each cell by its total count over all genes. The normalized count was then multiplied by
297 a scale factor of 10,000, after which a log(X+1) transformation was applied. For RPCA, Seurat’s

298 SCTransform normalization was used with default parameters (Hao et al. 2021).

299 Calculation of K-Neighbors Intersection (KNI) score: To calculate the KNI we consider the set

300 C = {c p Gy cn} of cells in a low-dimensional cell-type feature space where each cell c, is

2
301 defined by its coordinates X batch identifier bi, and cell-type identifier t. The distance function
302 D between two cells is the Euclidean distance between their embedded coordinates. For the KNI,

303 we thus identify the k-nearest neighbors for each cell c, aspera K-nearest neighbors search:

304 K = {ci:D(ck, ci) SD(ck, cj) forall j#k and |K|= k}
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305 For each cell c,, we then identify a subset B of K in which cells have different batch identifiers,

306 defined as:

307 B = {ciEK: bk * bi}
308 We then use a function L to assign ‘predicted’ cell-type labels to each datapoint. Each cell c, is

309 labeled as either (1) an outlier if the number of elements in B is below a threshold number T (
310t < k), ie., too many nearest neighbors belong to the same batch, or (2) the most common
311 label from cells in B:

L _ { null |IBl<Tt
() = mode(t;: ¢, EB) |B|>7
312

313 The KNI score is then calculated as the total number of predicted labels that match author given
314 labels:

Correct Correct = L(cy) = t;,
Correct + Incorrect’ Incorrect — L(cy) # ty

Score =

315
316 An analysis of KNI parameters is given in the supplemental. For comparisons performed in this

317 paper, k=50 neighbors was used, with a cut-off t of 40. For the model comparisons performed
318 here quantile normalization was used (25%, 75%) to scale the embedding spaces prior to

319 determination of the KNI. For optimization studies, the scikit-learn KNN algorithm was used
320 (Pedregosa et al. 2012), while for scREF we use the FAISS GPU implementation of KNN search
321 (Johnson, Douze, and Jégou 2021).

322 Calculation of Radius-based Neighbors Intersection (RbNI) score: Calculation of the RbNN
323 proceeds as per the KNI, except that: (1) The set of neighboring cells is defined by a radius 7, as
324 per Radius-based Nearest Neighbors:

325 K = {ci: D(ck, ci)Sr forall i#k}

326 ; (2) a threshold percent of ‘self” data points t* is used; and (3) cells with no neighbors within

327 the radius r are also given an outlier label:

null IK|= 0
L(c,) = null |B| < *|K|

328 mode(t; : ¢; € B) |B| > t*[K]|
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329 An analysis of RbNI parameters is given in the supplemental. For comparisons performed in this
330 paper, a radius 7=1.0 was used alongside a cut-off % of t*=80%, alongside the same quantile

331 normalization as performed for the KNI. For the smaller ssMARK benchmark we use for

332 optimization (Suplemental), the scikit-learn Radius-based nearest neighbors algorithm was used
333 (Pedregosa et al. 2012) while for scREF we use the FAISS GPU implementation of Radius based

334 search (Johnson, Douze, and Jégou 2021).

335 Cell-type space alignment parameters: Methods were implemented as follows:

336 - PCA: Highly variable genes were selected as relevant features on the basis of higher
337 dispersion than genes with similar mean expression (Satija et al. 2015), as implemented
338 in scanpy v1.7.2 (Wolf, Angerer, and Theis 2018). PCA was run on the scaled,
339 normalized expression of those highly variable genes,

340 - RPCA: The RPCA method was implemented in R using Seurat (v4.0.3) (Hao et al. 2021)
341 with the top-10 larger samples used as references for anchor detection and the following
342 parameters (dims=10, npcs=10, k.filter=150, k.weight=100). The output of the functions
343 RunPCA (npcs=10) and RunUMAP (n.components=10), with assay="SCT” were used as
344 inputs for KNI or RbNI calculations.

345 - Harmony: The PCs identified from highly variable genes with PCA as described above
346 were passed to a python implementation of Harmony, harmony-pytorch v.0.1.7, using
347 default parameters (https://doi.org/10.1038/s41592-019-0619-0).

348 - scVI 2L Sample: We reimplemented the scVI variational auto-encoder described by
349 (Lopez et al. 2018). We used sample level batch-correction with the following
350 hyper-parameters: (1) 2-layer encoder and decoders; (2) 512 hidden nodes for each linear
351 layer; (3) Dropout regularization with 0.1 probability of an element to be zeroed; (4)
352 Batch normalization in between two hidden layers; and (5) The ReLU activation
353 function. The latent space dimension was set to 10 and modeled using a Normal
354 distribution. A Zero-Inflated Negative Binomial (ZINB) distribution was used to model
355 gene counts as per (Lopez et al. 2018). The Adam optimizer was used for training the
356 VAE with learning rate = 1E-4; weight decay = 1E-5; and eps = 0.01 (Kingma and Ba
357 2014). Early stopping was used with patience = 15 epochs. The model was trained with a

358 batch-size 64 and for a maximum of 100 epochs. All the implementation was done in


https://paperpile.com/c/Qj7dah/mqBfF
https://paperpile.com/c/Qj7dah/RlgM
https://paperpile.com/c/Qj7dah/t5lV
https://paperpile.com/c/Qj7dah/UJIEA
https://paperpile.com/c/Qj7dah/8CNMe
https://paperpile.com/c/Qj7dah/lQoLa
https://paperpile.com/c/Qj7dah/lQoLa
https://paperpile.com/c/Qj7dah/HWu6h
https://paperpile.com/c/Qj7dah/HWu6h
https://doi.org/10.1101/2024.08.11.607498
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.607498; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

available under aCC-BY 4.0 International license.

Python using Pytorch (1.7.0) library. One-hot Batch ID vectors corresponded to the

unique Sample ID, 386 batches/samples were defined over the 10 studies.

scVI 4L Sample: An optimized scVI model was identified (Table S3) based on
parameter and architecture optimisations. This model was implemented as above, but
leveraged 4 layers in the encoder and decoder (4L), and patience = 5 (Ip) for the early

stopping criteria.

scVI* (ScVI 4L-NoL-NoB Both) : An optimized scVI model, that did not require batch
ID in the encoder, was identified (Table S3) based on parameter and architecture
optimisations outlined in the Supplementary for us on held-out data. This model was
implemented as above, however; (1) Explicit handling of library size was removed
(Lopez et al. 2018), (NoL); (2) The batch ID vector was not injected into the encoder
layer, (NoB); (3) A two-hot batch ID vector was used that encoded ‘Both’ Sample ID
(386 long), and study ID (11 long); and (4) learning rate = SE-5 was used.

s¢GPT: For both zero-shot and fine-tuned embeddings, where applicable we used the
authors’ tutorials (accessed March 25th), 2024 for embedding. as well as preprocessing

pipelines as described in the paper.

https://github.com/bowang-lab/scGPT/blob/main/tutorials/zero-shot/Tutorial ZeroShot I

ntegration.ipynb
https://github.com/bowang-lab/scGPT/blob/main/tutorials/Tutorial Integration.ipynb
Models were retrieved from:

https://drive.google.com/drive/folders/IoWh -ZRdhtoGQ2Fw24HP41FglLoomVo-y (Cui
et al. 2024)

The 512-dimensional embeddings obtained from the fine-tuned scGPT models were
reduced to 10 dimensions using a two layer autoencoder trained using cosine similarity

loss. This step enabled direct comparison with the 10-dimensional BAscVI embeddings.

geneFormer: We used the authors’ provided zero-shot pipeline accessed March 27th,

2024) for preprocessing, tokenization, and embedding.
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https://github.com/bowang-lab/scGPT/blob/main/tutorials/Tutorial_Integration.ipynb
https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y
https://paperpile.com/c/Qj7dah/hiW7
https://paperpile.com/c/Qj7dah/hiW7
https://doi.org/10.1101/2024.08.11.607498
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.607498; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

386 https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/tokenizing_ scRNAse
387 q_data.ipynb

388 https://huggingface.co/ctheodoris/Geneformer/blob/main/examples/extract and plot cell
389 _embeddings.ipynb

390 We extracted embeddings using the provided weights (Theodoris et al. 2023), retrieved
391 from:

392 https://huggingface.co/ctheodoris/Geneformer/tree/main/geneformer-12L-30M

393

394 For both the geneFormer and scGPT embedding procedures dataloaders leveraging the TileDB
395 database were used (TileDB, 2024), while for VAE models (scVI, BA-scVI) data-loaders loaded
396 data in directly from HSAD files. All data-loaders and model training procedures leveraged the

397 PyTorch lightning library.

398 BA-scVI architecture: Batch-Adversarial scVI (BA-scVI) leverages the same core architecture
399 as scVI, but makes use of an adversarial framework for removing batch effects. The key
400 difference is where scVI injects one-hot batch ID vectors into the encoder and decoder layers,

401 BA-ScVI takes an adversarial learning approach to learning and removing batch-effects.

402 - Here discriminators seek to predict the batch-ID bl, using the encoder outputs and decoder
403 inputs. Namely, the discriminator D seeks to minimize loss L with respect to batch-ID on
404 the encoder outputs WE and decoder outputs WD. The encoder and decoder weights are
405 frozen in this step. We use cross entropy loss such that,

Lgisc. = Z b;log(p;) + Zbi log(q;), pi =DWg), q; =DWp)
i i

406

407 - The inference network then seeks to: (1) Maximize the probability of the posterior, which
408 in this case we use a Zero-Inflated Negative Binomial (ZINB) distribution as per ((Lopez
409 et al. 2018); (2) Minimize KL-divergence of the embedding distribution z and library

410 encoder [ (Kingma and Welling 2013); and (3) Maximize discriminator loss, i.e.,
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411 LBASCVI = _Eq(z, l|_x) logp(xIZ: l) + DKL (Z) + DKL(Z) - BLdisc.

412 The discriminator and inference networks are then trained in sequential steps with the first step
413 used to update weights on the discriminator networks and the second step weights on the
414 inference network. An optimal regimen for training was identified (Table S3) that leveraged an
415 Adam optimizer (Kingma and Ba 2014), with learning rate = SE-5 for the inference network,
416 1E-2 for the discriminator network; weight decay = 1E-5; and eps = 0.01, with a batch-size 64
417 and for a maximum of 100 epochs; f = 10 was used for the model described in the main text.
418 Other values of beta were tested, but performed similarly or worse than the top performing
419 model that emerged from initial optimization studies (Table S3). In this optimal training regime a
420 two-hot batch ID vector was also used that encoded ‘Both’ Sample ID (386 long), and study ID

421 (11 long) was also used.

422 Model training on scREF, scREF-mu and the joint scREF/scREF-mu atlas: Models were
423 trained on scREF, the scREF/scREF-mu atlas using a regime optimized on a smaller benchmark
424 sScMARK that we discuss in the supplemental, with the exception of our handling of a
425 standardized gene set for training. For scMARK genes common to all datasets were used. For
426 scREF and the joint atlas we took a list of genes common across 30 datasets or more. To handle
427 missing genes for a specific dataset, we then applied a mask to the reconstruction loss function at
428 train time, such that only genes present in the dataset affected the overall loss. This mask was not
429 applied to either the encoder or decoder, and thus will not affect prediction results. For the joint
430 atlas, we used ENSEMBL v110 (Martin et al. 2023) . On scREF-mu, mouse genes identifiers

431 common to all datasets were used (Table S1).

432 Comparison of label propagation and K-means methods for cell-type ID: Label propagation
433 was implemented as described in (Raghavan, Albert, and Kumara 2007). KNN graphs for Label
434 propagation were generated using the FAISS library (Johnson, Douze, and Jégou 2021), setting
435 the number of neighbors to k=50. Label propagation was run until complete convergence, with
436 the subsequent number of clusters identified by label propagation used to define the number of
437 clusters & for k-mean clustering. The sci-kit Learn K-means clustering function was used for
438 clustering (Pedregosa et al. 2012), with 150 iterations set as the maximum number of iterations.

439 The Adjusted Rand Index was calculated using the function provided in SciPy version 1.13.0.
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440 Differential Gene Expression: To identify enriched genes in the unbiased cell-type clusters we
441 calculated differentially expressed genes between the cell-type cluster and the distribution of
442 genes across all cell-types including that cluster, given that the size of the dataset was many
443 times larger than the largest cell-type grouping. This ensured that results would not be distorted
444 by including the group in question in the reference cluster, and the number of calculations run
445 was dramatically reduced. To enable us to store a full Scanpy annotated data object in memory
446 (Wolf, Angerer, and Theis 2018) for DGE calculations (64GB RAM), we took a sample of 2,000
447 cells within a cell-type cluster, or all cells in the cluster (whichever value is smaller). Samples
448 were taken from a TileDB array (TileDB, 2024)) of the full scREF object that we make available.
449 Raw read-counts were standardized as described in (Stuart et al. 2019), and we filtered genes
450 with very low expression (total standardized read-count <20 across all cell-types). To then
451 calculate differentially expressed genes, we calculated Welch's T-test score between the cell-type
452 grouping distribution and the distribution across the full cell sample. We multiplied the reference
453 standard deviation for each gene by a factor of 10 to enhance the ranking of genes that show
454 large effect size differences between the cluster and reference groups. The top 25 genes for each
455 cell-type cluster were assessed visually and passed into ShinyGO 0.8 for pathway enrichment
456 analysis (Ge, Jung, and Yao 2020). We provide the top 250 genes by DGE in Table S5 for each
457 cluster, alongside the cluster ID, and cell-type composition of the cluster and sample based on
458 standardized and author cell-type labels and tissue types represented in the cluster. A round of
459 hierarchical clustering on cluster gene expression means was also performed using scikit-learn

460 on the cluster medians to provide an easy to explore ordering of the clusters in the Tables.

461 We also provide the top 250 genes by DGE for a more complete set of 591 human filtered
462 for at least 30 cells present in at least 2 studies, 368 mouse clusters filtered for at least 20 cells
463 present in at least 2 studies, for the benefit of the reader in Supplemental Table S5. Here samples
464 of 250 cells were taken for each human cell-type grouping and 300 for mise. We note visual
465 inspection suggested no clear differences in top differentially expressed genes occur between 250
466 cell and 2,000 cell samples indicating these are sufficient sample sizes for ID of top differentially
467 expressed genes. Again cluster composition metrics are provided and ordering is as per

468 hierarchical clustering of cluster gene expression medians.

469 Heatmaps of Complement Pathway expression: Raw read-counts were standardized as

470 described in (Stuart et al. 2019). Heatmaps of complement pathway expression were calculated
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471 by then taking the mean across all cells of a specific author standardized cell-type and

472 tissue-type.

473 Filtering of artifactual clusters of conserved cell-types: Alongside filtering of clusters identified
474 by LP for those present in at least 10 tissue-types, we also removed those groupings that were
475 highly enriched for mitochondrial or ribosomal genes as determined by differential expression.

476 Specifically, those

477 UMAP projections: All UMAP projections were produced using the UMAP library version 0.5.6
478 with default setting unless otherwise specified (Mclnnes, Healy, and Melville 2018). For the
479 online tool we provide, UMAP is calculated using the parametric version of UMAP described in

480 Sainburg et al. (Sainburg, Mclnnes, and Gentner 2021).
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503 Data and Code Availability
504 The smaller scMARK benchmark we provide is publicly available at:

505 https://zenodo.org/record/7795653,

506 The larger scREF and scREF-mu dataset available as TileDB objects at https://cloud.tiledb.com/

507 under the “public/phenomic” repository - we can provide links to the files in ‘.mtx’ format on

508 request.

509 Functions used to access our sScRNA embedding capability programmatically, alongside code and
510 configuration files used to train all models and neural networks, links to weight for trained

511 models, and code used to generate key figures is all available at:

512 https://github.com/samocooper/bascvi

513 UMAP projections, dotplots of the alignments, DGE, and drag-and drop scRNA alignment

514 capabilities can all be interactively explored at:

515 https://scref.phenomic.ai/

516 Supplementary Data
517 Supplemental: Development Of the KNI and RbNI metrics for cell-type alignment evaluation

518 Table S1: List of studies used in the scMARK and scREF datasets, cell-type mappings for

519 standardization, genes used for training, barcodes used in final score calculation

520 Table S2: Agreement of RbNI and KNI scores with other scores across experiments

521 Table S3: Optimization of models against smaller scsMARK benchmark dataset

522 Table S4: Evaluation of model performance on the scREF dataset using KNI / RbNI scores

523 Table S5: Evaluation of model performance on the scREF-mu dataset using KNI / RbNI scores

524 Table S6: Analysis of label propagation groupings by differential expression on scREF and

525 scERF-mu
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