

1 **Optimization of an adeno-associated viral vector for epidermal keratinocytes**

2 ***in vitro* and *in vivo***

3

4 Qi Shen, MD¹, Shogo Suga, PhD², Yuta Moriwaki, MD¹, Zening Du, MD¹, Emi

5 Aizawa, PhD⁴, Mutsumi Okazaki, MD¹, Juan Carlos Izpisua Belmonte, PhD³,

6 Yusuke Hirabayashi, PhD², Keiichiro Suzuki, PhD^{4,5,6*}, Masakazu Kurita, MD^{1*}

7

8 ¹ Department of Plastic and Reconstructive Surgery, The University of Tokyo

9 Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 135-8655, Japan

10 ² Department of Chemistry and Biotechnology, School of Engineering, The

11 University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

12 ³Altos Labs, Suite 300, 5510 Morehouse Dr, San Diego, CA 92121, USA

13 ⁴Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama,

14 Toyonaka, Osaka 560-8531, Japan

15 ⁵ Institute for Advanced Co-Creation Studies, Osaka University, 1-3

16 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

1 ⁶ Graduate School of Frontier Bioscience, Osaka University, 1-1 Yamadaoka,

2 Suita,Osaka 565-0871, Japan

3

4 ***Correspondence to:**

5 Masakazu Kurita, Department of Plastic and Reconstructive Surgery, The

6 University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 135-8655, Japan

7 E-mail: masakazukurita@aol.com

8 Keiichiro Suzuki, Institute for Advanced Co-Creation Studies, Osaka University,

9 1-3 Machikaneyamacho, Toyonaka, Osaka,560-8531, Japan

10 E-mail: ksuzuki@chem.es.osaka-u.ac.jp

11

12 **Funding**

13 This work was supported by JSPS KAKENHI grant numbers JP20H03847 (to

14 M.K.) and JS22H03247 (to M.K. and O.M.), a JSPS KAKENHI Grant-in-Aid for

15 Challenging Research (Pioneering) (JP20K20609) (to M.K.), and AMED under

16 grant numbers JP20bm070403 (to M.K.) and JP21zf0127002 (to K.S. and M.K.).

17

1 **Conflict of Interest**

2 M.K. has a patent pending for AAV capsids and the tissue-specific promoter. The
3 remaining authors have no conflicts of interest to declare.

4

1 **Abstract**

2

3 **Background**

4 Local gene therapies, including *in vivo* genome editing, are highly anticipated for
5 the treatment of genetic diseases in skin, especially the epidermis. While the
6 adeno-associated virus (AAV) is a potent vector for *in vivo* gene delivery, the lack
7 of efficient gene delivery methods has limited its clinical applications.

8

9 **Objective**

10 To optimize the AAV gene delivery system with higher gene delivery efficiency
11 and specificity for epidermis and keratinocytes (KCs), using AAV capsid and
12 promoter engineering technologies.

13

14 **Methods**

15 AAV variants with mutations in residues reported to be critical to determine the
16 tropism of AAV2 for KCs were generated by site-directed mutagenesis of AAVDJ.
17 The infection efficiency and specificity for KCs of these variants were compared
18 with those of previously reported AAVs considered to be suitable for gene delivery

1 to KCs *in vitro* and *in vivo*. Additionally, we generated an epidermis-specific
2 promoter using the most recent short-core promoter and compared its specificity
3 with existing promoters.

4

5 **Results**

6 A novel AAVDJ variant capsid termed AAVDJK2 was superior to the existing
7 AAVs in terms of gene transduction efficiency and specificity for epidermis and
8 KCs *in vitro* and *in vivo*. A novel tissue-specific promoter, termed the K14 SCP3
9 promoter, was superior to the existing promoters in terms of gene transduction
10 efficiency and specificity for KCs.

11

12 **Conclusion**

13 The combination of the AAVDJK2 capsid and K14 SCP3 promoter improves gene
14 delivery to epidermis *in vivo* and KCs *in vitro*. The novel AAV system may benefit
15 experimental research and development of new epidermis-targeted gene therapies.

16

17 **Keywords:**

18 AAV, keratinocytes, epidermis, capsid, promoter, development

1

2 **Abbreviations**

3 KC (keratinocyte), AAV (adeno-associated virus), PBS (phosphate-buffered
4 saline), EDTA (ethylenediaminetetraacetic acid), PFA (paraformaldehyde), DAPI
5 (4',6-diamidino-2-phenylindole), GFPNLS (green fluorescent protein with a
6 nuclear localization signal), mCherryNLS (mCherry with a nuclear localization
7 signal), mASCs (mouse adipose-derived stromal cells), hDFs (human dermal
8 fibroblasts), K14 (*KRT14*), K16P5 (*KRT16* pseudogene 5).

9

1 **Introduction**

2

3 Epidermis, composed dominantly of keratinocytes (KCs), plays an important role
4 in skin homeostasis, wound healing, and tissue regeneration [1][2]. Many skin
5 disorders are caused by genetic dysfunctions and/or mutations [3]. Despite the easy
6 accessibility of the skin and the urgent medical needs, the application of gene
7 therapy to skin-related diseases has received little attention because of the low
8 achievable efficiency of gene transduction [4].

9

10 Adeno-associated viruses (AAVs) are useful vectors for *in vivo* gene transduction
11 and are clinically used as replacement therapies to treat diseases such as lipoprotein
12 lipase deficiency, spinal muscular atrophy, retinal dystrophy, and hemophilia [5].
13 Recently, they have become promising vectors for the development of potent
14 therapeutics targeting localized morbidities [2][6][7] and therapeutic *in vivo*
15 genome editing [8].

16

17 Each serotype (*i.e.*, capsid structure variant) of AAV has a specific cell/tissue
18 tropism, and engineering of the capsid, the protein shell that surrounds the viral

1 genome, allows for increased gene transduction efficiency and specificity for a
2 particular cell/tissue, thereby minimizing unspecific off-target effects [9].

3

4 The use of AAVs for KCs has mostly been described in the context of *in vitro*
5 applications. Sallach *et al.* generated a highly efficient engineered AAV2 through
6 tropism engineering by directed evolution of AAV2 [10] and identified a variant
7 targeting $\alpha v\beta 8$ integrin on KCs. Furthermore, Melo *et al.* reported that AAVDJ, a
8 hybrid serotype, outperforms previously reported AAV2 and AAV6 in terms of
9 transduction efficiency of KCs *in vitro* [11].

10

11 We reasoned that modification of AAVDJ with an $\alpha v\beta 8$ integrin-targeting variant
12 would generate an optimized hybrid AAV vector for *in vivo* gene transduction of
13 the epidermis. In the current study, the relative superiority of the novel hybrid AAV
14 over existing AAVs considered suitable for KCs was evaluated *in vitro* and *in vivo*.

15 The performance of tissue-specific promoters, including originals, was also
16 evaluated in terms of gene transduction efficiency and specificity *in vitro* to
17 optimize the novel AAV system useful for the development of epidermis-targeted
18 gene therapies.

1 **Materials and methods**

2

3 **Approval for animal studies and biosafety**

4 All animal experiments were approved by the Animal Research Committee of the
5 University of Tokyo (IRB approval number Med-P21-024). All genetic
6 modification experiments were approved by the Biosafety Committee of the
7 University of Tokyo (IBC approval number 37-5).

8

9 **Generation of AAV capsid plasmids by mutagenesis**

10 Site-directed mutagenesis was performed with a QuikChange Lightning Site-
11 Directed Mutagenesis Kit (Agilent technologies, Inc., Santa Clara, CA) to generate
12 AAV2 and AAVDJ using keratinocyte-targeting variants [10][12] in pXR2
13 (encoding AAV2 Rep-Cap) and pAAVDJ plasmids (Cell Biolabs, Inc., San Diego,
14 CA), respectively.

15

16 **AAV plasmid construction**

17 The pAAV-CAG-GFPNLS plasmid was prepared by modification of pAAV-CAG-
18 GFP (Plasmid #37825) from Addgene using an In-Fusion® HD Cloning Kit

1 (Clontech, Mountain View, CA). The human *KRT14* enhancer and promoter
2 sequence [13] [14] was amplified using human genomic DNA from HEK293 cells
3 with PrimeSTAR GXL DNA polymerase (Takara Bio Inc., Shiga, Japan). The
4 human *KRT16* pseudogene 5 (K16P5) enhancer and promoter sequence was
5 amplified from pRZ-hKeratin (Cat# SR900CS-1, System Biosciences). The SCP3
6 core promoter [15] was synthesized by Genewiz. To generate the pAAV-K14-
7 GFPNLS plasmid, 2 kb of the *KRT14* (K14) enhancer/promoter replaced the CAG
8 promoter of pAAV-CAG-GFPNLS using the In-Fusion HD Cloning kit. To
9 generate the pAAV-K14short-GFPNLS plasmid, 0.7 kb of the *KRT14* enhancer and
10 0.3 kb of the *KRT14* minimal promoter [14] replaced the CAG promoter of pAAV-
11 CAG-GFPNLS using the In-Fusion HD Cloning kit. To generate the pAAV-
12 K14SCP3-GFPNLS plasmid, 0.7 kb of the *KRT14* enhancer and 0.1 kb of the SCP3
13 core promoter replaced the CAG promoter of pAAV-CAG-GFPNLS using the In-
14 Fusion HD Cloning kit. To generate the pAAV-K16P5-GFPNLS plasmid, 2 kb of
15 the K16P5 enhancer-promoter replaced the CAG promoter of pAAV-CAG-
16 GFPNLS using the In-Fusion HD Cloning kit. To generate the pAAV-K16P5short-
17 GFPNLS plasmid, 0.7 kb of the K16P5 enhancer and 0.3 kb of the K16P5 minimal
18 promoter replaced the CAG promoter of pAAV-CAG-GFPNLS using the In-

1 Fusion HD Cloning kit. To generate the pAAV-K16P5SCP3-GFPNLS plasmid, 0.7
2 kb of the K16P5 enhancer and 0.1 kb of the SCP3 core promoter replaced the CAG
3 promoter of pAAV-CAG-GFPNLS using the In-Fusion HD Cloning kit.

4

5 **AAV production**

6 AAVs were prepared using 293AAV cells (Cell Biolabs, Inc.) as described
7 previously [2] [16] with minor modifications (calcium phosphate transfection
8 followed by CsCl gradient purification). The virus titer was determined by qPCR
9 using primers ITR-F, 5'-GGAACCCCTAGTGATGGAGTT-3' and ITR-R, 5'-
10 CGGCCTCAGTGAGCGA-3'.

11

12 **Mouse keratinocyte isolation and culture**

13 Mouse keratinocytes were isolated from the back skin of 3–5-week-old female
14 C57BL/6J Jcl mice which were purchased from Nippon Bio-Supp (Japan). The
15 skin specimens were washed three times in phosphate-buffered saline (PBS),
16 finely shredded with scissors, and incubated with 0.25% trypsin and 0.02%
17 ethylenediaminetetraacetic acid (EDTA) in PBS for 16–24 h at 4 °C. Trypsinized
18 skin pieces were suspended in F medium (3:1 [v/v] Ham's F12 nutrient mixture-

1 DMEM, high glucose [Wako Pure Chemical Industries, Ltd., Osaka, Japan])
2 supplemented with 5% FBS, 0.4 µg/ml hydrocortisone (Sigma-Aldrich, St Louis,
3 MO), 5 µg/ml insulin (Sigma), 8.4 ng/ml cholera toxin (Wako), 10 ng/ml EGF
4 (Sigma), 24 µg/ml adenine (Sigma), 100 U/ml penicillin, 100 µg/ml streptomycin
5 (Wako), and 10 µM Rho-kinase inhibitor Y27632 (Selleck Chemicals, Houston,
6 TX) [2]. The epidermis is peeled off, and the remaining epidermal cells adhering
7 to the superficial side of the dermis are further peeled off with square tweezers to
8 recover the epidermal cells. The cells are isolated by centrifugation and maintained
9 on mitomycin C-treated 3T2-J2 feeder cells in F medium.

10

11 **Human keratinocyte culture**

12 Normal human epidermal keratinocytes (adult donor, pooled, Product code:
13 C12006; PromoCell, Heidelberg, Germany) were maintained on 3T3-J2 feeder
14 cells under the same conditions used for mouse keratinocytes.

15

16 **Mouse adipose-derived stromal cell isolation culture**

17 Mouse adipose-derived stromal cells were isolated from subcutaneous groin-
18 lumber fat pads of 3–5-week-old female C57BL/6JJcl mice which were purchased

1 from Nippon Bio-Supp (Japan). Briefly, adipose tissue was enzymatically digested
2 as described previously [17]. The stromal vascular fraction was isolated by
3 centrifugation and maintained in complete growth medium consisting of DMEM
4 containing 4.5 g/L glucose, 110 mg/L sodium pyruvate, and 4 mM L-glutamine
5 supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 1:100 (v/v)
6 MEM non-essential amino acid solution (Wako), and 1:100 (v/v) GlutaMAX
7 supplement (Wako) [2].

8

9 **Human dermal fibroblast culture**

10 Normal human dermal fibroblasts (juvenile foreskin, Product Code: C12300;
11 PromoCell, Heidelberg, Germany) were maintained under the same conditions
12 used for mouse adipose-derived stromal cells.

13

14 **Analysis of gene transduction efficiency of keratinocytes**

15 Keratinocytes were cultured on feeders in 24-well plates. At 50% confluence, the
16 medium was changed to medium containing 1×10^9 GC/well of AAVs for four
17 technical replicates (day 0). On the day of assessment, phase contrast and
18 fluorescence images were obtained at four positions. On the final day of each

1 assessment, cells were fixed with 4% paraformaldehyde (PFA), stained with 4',6-
2 diamidino-2-phenylindole (DAPI), and imaged. The efficiency of gene
3 transduction was calculated as the GFPNLS-positive cell number per area of
4 keratinocyte colonies defined in phase contrast images. ImageJ software was used
5 to quantify the areas.

6

7 **Analysis of gene transduction efficiency of mesenchymal cells**

8 Mesenchymal cells were seeded in 24-well plates. At 50% confluence, the medium
9 was changed to medium containing 1×10^9 GC/well of AAVs for four technical
10 replicates (day 0). On the day of assessment, phase contrast and fluorescent images
11 were obtained at four positions. On the final day of each assessment, cells were
12 fixed with 4% PFA, stained with DAPI, and images. The number of positive cells
13 per fluorescence image (area: 1.99 mm^2) was counted.

14

15 **Animals**

16 For *in vivo* experiments, 4-week-old female C57BL/6 mice were purchased from
17 Nippon Bio-Supp (Japan) and used between the ages of 4 and 6 weeks.

18

1 **Evaluation of the nanoparticle distribution after intradermal injection**

2 Original silica nanoparticles (1 mg/ml, Sicastar®-green F, 30 nm diameter;

3 Micromod Partikeltechnologies, Germany) were diluted 20-fold in PBS. Under

4 inhalation anesthesia, 20 µl of the solution was injected intradermally using a 1 ml

5 syringe with a 29 G needle (SS-10M2913; Terumo Corp., Tokyo, Japan). To ensure

6 intradermal injection into the thin mouse dermis, all injections were performed

7 under a high-resolution surgical microscope (MM100-YOH; Mitaka Kohki, Tokyo,

8 Japan). At 0, 1, and 3 hours after injection, a portion of the skin was collected and

9 immediately embedded in OCT compound. Samples were sectioned using a

10 cryofilm (Cryofilm type 2C(9), 2.5 cm C-FP094; Section-Lab, Hiroshima, Japan)

11 with a previously described method [18] at 200 µm intervals. Nuclei were

12 counterstained with DAPI. Samples were imaged with a slide scanner (VS200-FL;

13 Olympus, Tokyo, Japan).

14

15 **Analysis of gene transduction efficiency *in vivo***

16 Mixtures of 1×10^{11} GC (genome copies) of AAVDJK2-CAG-GFPNLS and 1×10^{11}

17 GC AAVDJ-CAG-mCherryNLS were prepared as a 35 µl solution and injected

18 intradermally into mouse back skin under an operative microscope (n=6). Two

1 days later, the regional skin was collected with the assistance of a stereoscope.

2 The samples were fixed in 4% PFA for 24 h, immersed in 30% sucrose for 2 days,

3 and then embedded in OCT compound. Samples were sectioned with the cryofilm

4 at 200 μ m intervals. The center of gene transduction was identified by observation

5 under a fluorescence microscope. The sections were further processed for nuclear

6 staining and imaging.

7 For machine-assisted quantitative analyses, an 800 \times 800 μ m rectangular frame was

8 set at the central site of gene transfer. With the guidance of nearby HE-stained

9 sections, the border between each skin layer (epidermis, dermis, superficial fat,

10 cutaneous muscle, and deep fat) was defined manually.

11 For the comparative analysis of the *in vivo* gene transduction efficiency of

12 AAVDJK2-CAG-GFPNLS and AAVDJK2-K14 SCP3-GFPNLS, 35 μ l of 1×10^{11}

13 GC solution was tested in 3 animals each using the same technique. Cryosections

14 were processed for immunohistochemistry using cytokeratin 14 antibody

15 (ab181595, 1:500; Abcam) as previously described [2].

16

17 **Automated analysis of gene transduction efficiency**

18 To unbiasedly extract nuclei from DAPI-stained images of each skin layer

1 (epidermis, dermis, superficial fat, cutaneous muscle, and deep fat), DAPI-stained
2 images were binarized by multiple thresholding steps. Initially, the images were
3 binarized by the threshold set to $0.1875 \times$ the maximum intensity of the DAPI-
4 stained images (MIP_{dapi}) of each skin layer. Individual objects in the binarized
5 images were labeled and objects within the size range of [10, 100] pixels were
6 defined as nuclei. For the second cycle, we masked the areas defined as nuclei in
7 the first cycle, and the same procedure was performed with the threshold set to 0.2
8 $\times MIP_{dapi}$. Then, newly defined objects were merged with the nuclear regions
9 defined in the first cycle. By repeating the process 15 times while incrementally
10 adding 0.0125 to the multiplier for MIP_{dapi} , the nuclear regions were segmented.
11 Next, to determine whether the nuclei defined above were positive for mCherry or
12 GFP, we set a threshold for binarization of each image so that the area of the
13 binarized image was 4% of the total, and binarized images accordingly. Nuclei
14 with more than five mCherry-positive pixels were defined as nuclei from AAVDJ-
15 CAG-mCherryNLS-infected cells, and nuclei with more than five GFP-positive
16 pixels were defined as nuclei from AAVDJK2-CAG-GFPNLS-infected cells. We
17 visually verified that the binarization defined GFP- and mCherry-positive cells
18 correctly. The numbers of infected cells were counted in each region and layer. For

1 each sample, 30 sections from six mice were analyzed.

2

3

4 **Flow cytometric analysis**

5 Primary mouse KCs and primary mASCs were seeded in 24-well plates. At 50%

6 confluence, the medium was replaced with medium containing 1×10^9 GC of AAVs

7 per well for four biological replicates. The medium was changed on days 1 and 3.

8 On day 4, single cell suspensions of KCs and ASCs were prepared. Each

9 suspension was prepared by passing the cells through a 35 μ m filter using

10 Dulbecco's PBS containing 5% fetal bovine serum (FBS) and 2 mM EDTA. For

11 cell analysis, a FACSMelody Cell Sorter (BD Biosciences, San Jose, CA) and

12 FlowJo (BD) were used. Single cells were gated sequentially using two-parameter

13 FSC-A versus SSC-A, SSC-H versus SSC-W, and FSC-H versus FSC-W dot plots,

14 and then a one-parameter histogram of GFP fluorescence intensities was plotted

15 for the selected population.

16

17 **AAV production analysis**

18 To determine the influence of the AAV type on production, AAV2-CAG-GFPNLS,

1 AAVDJ-CAG-GFPNLS, AAVDJK2-CAG-GFPNLS, AAVDJK2-K14-GFPNLS,
2 and AAVDJK2-K16-GFPNLS plasmids were collaterally transfected into 293
3 AAV cells in eight flasks. Cells were harvested and processed to PEG-concentrated
4 aliquots (100 µl for each flask), and the titer was measured by qPCR [2][16].

5

6 **Image analyses**

7 Imaging was performed using a Stereoscope Zeiss AXIO Zoom.V16, Olympus
8 VS-200 Slide Scanner, and Olympus IX73 Inverted LED Fluorescence
9 Microscope. Analyses were carried out using ImageJ software version 1.53.

10

1 **Results**

2

3 **Generation and evaluation of the gene transduction efficiency of AAVDJ**

4 **variants in cultured KCs**

5

6 Site-directed mutagenesis of AAVDJ was employed to generate four AAVDJ
7 variants with mutations reported to increase tropism of AAV2 for KCs [10]. The
8 gene transduction efficiencies of these AAVDJ variants in cultured mouse and
9 human KCs were compared with those of seven AAVs reported previously as
10 optimal vectors for gene transduction of KCs (AAV2 and four of its variants [10],
11 AAVDJ [11], and AAV6 [19]) (Fig. 1a).

12 AAVs encoding green fluorescent protein with a nuclear localization signal
13 (GFPNLS) were used to assess gene transduction efficiency because nucleus-
14 localized fluorescence facilitates distinguishing gene expression from background
15 signals [7]. KCs cultured on feeder cells form colonies with a defined edge [2][20].
16 At 2, 4, and 8 days after addition of AAVs, the number of GFPNLS-positive cells
17 in the KC colony area was counted (Fig. 1b). For both mouse and human KCs,
18 gene transduction efficiency, as assessed by the number of GFPNLS-positive cells

1 per KC colony area, was consistently highest with a type of mutant AAVDJ termed
2 AAVDJK2 (Fig. 1c, 1d). AAVDJK2 demonstrated approximately twice the gene
3 transfer efficiency of previously known capsids on keratinocytes *in vitro*.

4

5 **Evaluation of gene transduction efficiency of AAVDJK2 in cultured**
6 **mesenchymal cells**

7

8 To evaluate the specificity of AAVDJK2 for skin, the gene transduction efficiency
9 in skin and soft tissue-derived mesenchymal cells, mouse adipose-derived stromal
10 cells (mASCs), and human dermal fibroblasts (hDFs), was examined in
11 comparison with AAV2, AAV2K2, and AAVDJ. We found that the gene
12 transduction efficiency of AAV2 differed between mASCs and hDFs, the highest
13 tropism towards both mouse and human mesenchymal cells specific to the original
14 AAVDJ [2] was lost in AAVDJK2 (Fig. 2a, 2b), which increased specificity of
15 AAVDJK2 for epidermal cells.

16 For future *in vitro* research and development, we also examined the efficiency of
17 gene transfer by the 4 AAVs on mitomycin untreated and treated 3T3-J2 cells, a
18 mesenchymal cell line derived from fetal mice and best known as a feeder for

1 keratinocytes. A trend similar to that observed in mASC, with only AAVDJ
2 showing high gene transfer efficiency, was also observed in 3T3-J2 cells (Fig. 2c,
3 2d).

4

5 **Evaluation of the nanoparticle distribution after intradermal injection**

6

7 To evaluate efficiency and specificity *in vivo*, intradermal injection was used to
8 deliver AAVs as a simple, consistent, reproducible, and highly accessible method.

9 Although intradermal injection is a very common methodology, to our knowledge,
10 no studies have examined the *in vivo* distribution of an injected drug after injection

11 into mouse skin. Therefore, after injection, we investigated the distribution of
12 fluorescent silica nanoparticles with a diameter of 30 nm, which was similar to that

13 of AAVs [7][21]. The distribution of fluorescent silica nanoparticles was examined
14 histologically at 0, 1, and 3 hours after intradermal injection (Fig. 3a–c). We found

15 that only a small fraction of the nanoparticles diffused into the epidermis over time
16 (Fig. 3d). This result suggested that only a small portion of administered AAVs
17 entered the epidermis.

18

1 **Evaluation of AAVDJK2 *in vivo***

2

3 Assuming the inefficient properties of intradermal injection into mouse skin, the

4 gene transduction efficiency of AAVDJK2 after intradermal injection into mouse

5 skin was evaluated in comparison with AAVDJ. The time of sample collection was

6 2 days after injection because, in preparatory *in vivo* assessments, the frequency of

7 fluorescence-positive cells was higher than at 4 and 7 days after injection, which

8 is consistent with the rapid turnover cycle (8–10 days) of the mouse epidermis [22].

9 To minimize variances caused by the administration, a mixture of 1×10^{11} GC (gene

10 copies) of AAVDJK2-CAG-GFPNLS and 1×10^{11} GC AAVDJ-CAG-mCherryNLS

11 was prepared as a 35 μ l solution and injected intradermally into the back skin of

12 mice (Fig. 4a) (n=6). After confirming the position of the center of AAV delivery

13 by fluorescence stereoscopic observation (Fig. 4b), specimens were collected.

14 Frozen serial sections were prepared at 200 μ m intervals, nuclei were stained with

15 DAPI, and samples were imaged using the slide scanner.

16

17 Nucleus-localized fluorescence was detected from the superficial to deep layer

18 around the injection site (Fig. 4c). The expression efficiency of AAVDJK2-CAG-

1 GFPNLS and AAVDJ-CAG-mCherryNLS in each skin layer (epidermis, dermis,
2 superficial fat, and cutaneous muscle) was quantified by automated and unbiased
3 analysis.

4

5 Considerable intersectional variation and fluorescence detection were observed,
6 but significant differences in the expression patterns of GFPNLS between
7 AAVDJK2 and AAVDJ were found in several animals per layer. The number of
8 AAVDJK2-delivered, GFPNLS-positive cells was higher than that of AAVDJ-
9 delivered, mCherryNLS-positive cells in the epidermis, and the opposite trend was
10 observed in deeper layers (Fig. 4d). Thus, the higher epidermal specificity of
11 AAVDJK2 suggested by *in vitro* analyses was confirmed in mouse skin *in vivo*.

12

13 **Development and evaluation of tissue-specific promoters**

14

15 Another approach to increase the efficiency and specificity of gene delivery to
16 specific cells/tissues is the use of tissue-specific promoters.

17

18 With reference to the reported *KRT14* (K14) promoter [13], enhancer, and

1 minimal promoter elements [14], we generated constructs containing GFPNLS
2 under the control of the human K14 promoter, K14 short promoter with
3 endogenous minimal promoter, and original hybrid short promoter composed of
4 the K14 enhancer and engineered potent core promoter, SCP3 [15]. For each
5 construct, another version with multiple single nucleotide polymorphisms in the
6 promoter sequence for the *KRT16P5* pseudogene used in the commercially
7 available keratinocyte differentiation reporter vector was also prepared (Fig. 5a).
8 Examination of the GFPNLS-positive rate of mouse KCs and mASCs treated with
9 AAVDJK2-packaged AAVs with each promoter and the ubiquitous CAG promoter
10 revealed that the K14 SCP3 promoter had the best gene transduction efficiency in
11 keratinocytes, whereas expression in mASCs was maintained at relatively low
12 levels (Fig. 5b–e). The *In vivo* gene transduction efficiency of AAVDJK2-CAG-
13 GAPNLS and AAVDJK2-K14 SCP3-GFPNLS was tested (n=3, each) and it was
14 confirmed that the use of the K14 SCP3 promoter increased the specificity for the
15 epidermis without apparent loss of the gene expression efficiency of the CAG
16 promoter (Fig. 6).
17

18 **Effects of the capsid and promoter on AAV production**

1

2 In our experiences with repeated production of AAVs with various capsids,
3 promoters, and genes [2][7][23], AAV production using the same procedure is
4 substantially affected by the type of capsid, promoter, and gene. We examined AAV
5 production of various types of capsids and promoters, and confirmed significant
6 differences (Supplementary Fig.1), suggesting that AAV production is a practical
7 reason for selecting AAV types, especially when used for experiments.

8

1 **Discussion**

2

3 The newly developed AAVDJ variant capsid termed AAVDJK2 showed higher
4 gene transduction efficiency in mouse and human KCs *in vitro* than other AAVs
5 reported to be appropriate for KCs.

6

7 The use of high doses results in stronger phenotypes. However, most AAV vectors
8 cause non-specific effects [24]. In this context, the specificity of gene expression
9 at target tissues, minimizing off-target effects, is important for *in vivo* applications
10 [7]. Changing the tropism of an AAV to a specific cell type may affect its
11 interaction with other cell types. Therefore, we investigated the effect of the
12 mutagenesis on the efficiency of gene transduction in representative skin-derived
13 non-epidermal cells. As expected, the mutagenesis reduced the tropism for both
14 mASCs and hDFs, implying acquisition of epidermal specificity in skin.

15

16 To evaluate the utility of AAVDJK2 for *in vivo* gene transduction of the epidermis,
17 we conducted experiments using mouse skin by intradermal injection, followed by
18 analysis of the distribution of injected particles. Intradermal injection was not an

1 efficient administration method for the mouse epidermis. However, in the central
2 region, AAVDJK2 consistently achieved a positive rate of approximately 20% of
3 cells in all epidermal layers. The comparison between AAVDJK2 and AAVDJ was
4 not as clear as that in the *in vitro* experiment, but as suggested, the higher gene
5 transfer efficiency and specificity of AAVDJK2 were confirmed. In current capsid
6 engineering, peptide modifications were targeted at the heparin-binding region,
7 situated on the outermost surface of AAV2 and AAVDJ capsids in three dimensions,
8 exerting a significant influence on cellular targeting by strongly binding to heparin
9 sulfate proteoglycans on cell surfaces [10] [25]. As demonstrated for AAV2 [10],
10 these modifications in AAVDJ may have resulted in stronger binding of the capsid
11 to $\alpha\beta\gamma 8$ integrin on the surface of keratinocytes, thereby increasing infectivity.
12 Thus, the differential expression of sites across different capsids is not attributed
13 to changes in AAV distribution but rather to variations in the types of cells that
14 AAV can effectively target, as confirmed by *in vitro* assessments.

15
16 The thickness of the mouse dermis is much thinner (100–200 μm) than that of the
17 human dermis (several millimeters) [26]. Moreover, the subcutaneous fat layer
18 under the mouse dermis is very rough and flexible. Therefore, injected drugs

1 disperse easily subcutaneously, making it difficult for drugs injected into the
2 dermis to achieve effective delivery to the epidermis. Conversely, intradermal
3 injection into human skin can be performed more consistently. Furthermore,
4 various types of specialized methods, such as microneedles, fractional laser, and
5 other methods that use physically created small holes and chemical drug carriers
6 to enhance penetration, are being developed for epidermis-specific drug delivery
7 in humans [27] [28] [29] [30]. Human skin is likely to be more amenable than
8 mouse skin in terms of drug delivery to the epidermis, which should be considered
9 when evaluating results from mouse skin as a model.

10

11 In this study, to achieve high specificity using AAVDJK2, we developed K14 SCP3,
12 which combined a *KRT14*-derived enhancer with a recently reported short core
13 promoter, and confirmed *in vitro* that it had higher gene expression and specificity
14 in KCs than CAG (ubiquitous strong promoter) and previously reported specific
15 promoters. This enhancer-promoter sequence is relatively short (781 bp) and is
16 expected to be effective in AAVs because of their limited capacity (approximately
17 4.7 kb).

18

1 The amount of AAV production varies with the capsid and promoter, even when
2 the same gene is mounted and the same procedure is used for production. This is
3 especially important to note for experimental use because the efficiency of AAV
4 production is very important in terms of cost and labor.

5

6 In the current study, we did not analyze gene transfer efficiency and gene
7 expression intensity for specific terminal differentiation states of the epidermis
8 because the accuracy of the fluorescent signal detection decreases as the terminal
9 differentiation progresses. The epidermis is a tissue with a strong background
10 signal, especially in the superficial layers and near the stratum corneum. The
11 nuclear localization signal becomes unreliable due to denucleation during terminal
12 differentiation. We anticipate that in most applications targeting keratinocytes and
13 epidermis, progenitor cell fractions will be targeted. However, for special
14 applications, more focused studies, such as calcium-added differentiation
15 induction in non-serum culture, are envisioned.

16

17 Many skin disorders are caused by single gene mutations in keratinocytes. Some
18 types of skin diseases, such as epidermolysis bullosa, are clinically treated by ex

1 *in vivo* gene therapies [31][32]. Recently, other types of *in vivo* topical approaches
2 are emerging [33] [34]. Although AAVs have not received much attention as an
3 *in vivo* topical gene transfer method for the epidermis, AAVs have some unique
4 advantages, such as capsid tropism. Along with ongoing development of various
5 epidermal specific delivery systems [27] [28] [29] [30], our optimized AAV
6 system for the epidermis/ keratinocytes is useful for developing new epidermis-
7 targeted gene therapies.

8

1 **Acknowledgments**

2 We thank Mitchell Arico from Edanz (<https://jp.edanz.com/ac>) for editing a draft
3 of this manuscript.

4

5 **Disclosures**

6 During the preparation of this work, the authors used DeepL Translate and DeepL
7 Write to identify grammatical errors. After using these tools, the authors
8 reviewed and edited the content as needed and they take full responsibility for the
9 content of the publication.

10

1 References

2 1) G. C. Gurtner, S. Werner, Y. Barrandon, M. T. Longaker, Wound repair and
3 regeneration, *Nature* 453 (2008) 314-321.

4 2) M. Kurita, T. Araoka, T. Hishida, D. D. O'Keefe, Y. Takahashi, A. Sakamoto, et
5 al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue,
6 *Nature* 561 (2018) 243-247.

7 3) J. R. Lemke, K. Kernland-Lang, K. Hörtnagel, P. Itin, Monogenic human skin
8 disorders, *Dermatology* 229 (2014) 55-64.

9 4) Q. U. Ain, E. V. R. Campos, A. Huynh, D. Witzigmann, S. Hedtrich, Gene
10 delivery to the skin - How far have we come? *Trends Biotechnol.* 39 (2021) 474-
11 487.

12 5) F. Migozzi, K. A. High, Therapeutic in vivo gene transfer for genetic disease
13 using AAV: progress and challenges, *Nat. Rev. Genet.* 12 (2011) 341-355.

14 6) D. Wang, P. W. L. Tai, G. P. Gao, Adeno-associated virus vector as a platform
15 for gene therapy delivery, *Nat. Rev. Drug Discov.* 18 (2019) 358-378.

16 7) M. Kato, S. Ishikawa, Q. Shen, Z. Du, T. Katashima, M. Naito, et al. In situ-
17 formable, dynamic crosslinked poly(ethylene glycol) carrier for localized adeno-
18 associated virus infection and reduced off-target effects, *Commun. Biol.* 6 (2023)

1 508.

2 8) D. Wang, F. Zhang, G. P. Gao, CRISPR-based therapeutic genome editing:

3 Strategies and in vivo delivery by AAV vectors, *Cell* 181 (2020) 136-150.

4 9) M. A. Kotterman, D. V. Schaffer, Engineering adeno-associated viruses for

5 clinical gene therapy, *Nat. Rev. Genet.* 15 (2014) 445-451.

6 10) J. Sallach, G. D. Pasquale, F. Larcher, N. Niehoff N, M. Rübsam, A. Huber, et

7 al. Tropism-modified AAV vectors overcome barriers to successful cutaneous

8 therapy, *Mol. Ther.* 22 (2014) 929-939.

9 11) S. P. Melo, L. Lisowski, E. Bashkirova, H. H. Zhen, K. Chu, D. R. Keene, et

10 al. Somatic correction of junctional epidermolysis bullosa by a highly

11 recombinogenic AAV variant, *Mol Ther.* 22 (2014) 725-733.

12 12) D. Grimm, J. S. Lee, L. Wang, T. Desai, B. Akache, T. A. Storm, et al. In vitro

13 and in vivo gene therapy vector evolution via multispecies interbreeding and

14 retargeting of adeno-associated viruses, *Virol.* 12 (2008) 5887-5911.

15 13) W. R. Staggers, A. J. Paterson, J. E. Kudlow, Sequence of the functional human

16 keratin K14 promoter, *Gene* 153 (1995) 297-298.

17 14) S. Sinha, L. Degenstein, C. Copenhaver, E. Fuchs, Defining the regulatory

18 factors required for epidermal gene expression, *Mol. Cell. Biol.* 20 (2000) 2543-

1 2555.

2 15) D. Y. Even, A. Kedmi, S. Basch-Barzilay, D. Ideses, R. Tikotzki, H. Shir-

3 Shapira, et al. Engineered promoters for potent transient overexpression, PLoS

4 One. 11 (2016) e0148918.

5 16) J. C. Grieger, V. W. Choi, R. J. Samulski , Production and characterization of

6 adeno-associated viral vectors, Nat. Protoc. 1 (2006) 1412-1428.

7 17) G. Yu, X. Wu, G. Kilroy, Y. D. Halvorsen, J. M. Gimbl, Z. E. Floyd, Isolation

8 of murine adipose-derived stem cells, Methods Mol. Biol. 702 (2011) 29-36.

9 18) T. Kawamoto, K. Kawamoto, Preparation of thin frozen sections from nonfixed

10 and undecalcified hard tissues using Kawamoto's film method (2012), Methods

11 Mol. Biol. 1130 (2014) 149-164.

12 19) J. Bonafont, A. Mencía, E. Chacón-Solano, W. Srifa, S. Vaidyanathan, R.

13 Romano, M, et al. Correction of recessive dystrophic epidermolysis bullosa by

14 homology-directed repair-mediated genome editing, Mol. Ther. 29 (2021) 2008-

15 2018.

16 20) J. G. Rheinwald, H. Green, Formation of a keratinizing epithelium in culture

17 by a cloned cell line derived from a teratoma, Cell 6 (1975) 317-330.

18 21) C. A. Maguire, L. Balaj, S. Sivaraman, M. H. Crommentuijn, M. Ericsson, L.

1 Mincheva-Nilsson, V, et al. Microvesicle-associated AAV vector as a novel gene
2 delivery system, Mol. Ther. 20 (2012) 960-971.

3 22) C. S. Potten, R. Saffhill, H. I. Maibach, Measurement of the transit time for
4 cells through the epidermis and stratum corneum of the mouse and guinea-pig, Cell
5 Tissue Kinet 20 (1987) 461-472.

6 23) Y. Moriwaki, Q. Shen, H. Okada, Z. Du, S. Suga, M. Kato, T, et al. In vivo
7 reprogramming of wound-resident cells generates skin with hair. bioRxiv (2023)
8 e531138.

9 24) D. A. Kuzmin, M. V. Shutova, N. R. Johnston, O. P. Smith, V. V. Fedorin, Y. S.
10 Kukushkin, et al. The clinical landscape for AAV gene therapies, Nat Rev Drug
11 Discov. 20 (2021) 173-174.

12 25) T.F. Lerch, J.K. O'Donnell, N.L. Meyer, Q. Xie, K.A. Taylor, S.M. Stagg, M.S.
13 Chapman, Structure of AAV-DJ, a retargeted gene therapy vector: cryo-electron
14 microscopy at 4.5 Å resolution. Structure. 20(2012)1310-1320.

15 26) J. C. J. Wei, G. A. Edwards, D. J. Martin, H. Huang, M. L. Crichton, M. A. F.
16 Kendall, Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for
17 micro-medical device translation: from mice, rats, rabbits, pigs to humans, Sci.
18 Rep. 7 (2017) 15885.

1 27) T. Waghule, G. Singhvi, S. K. Dubey, M. M. Pandey, G. Gupta, M. Singh, et
2 al. Microneedles: A smart approach and increasing potential for transdermal drug
3 delivery system, *Biomed. Pharmacother.* 109 (2019) 1249-1258.

4 28) T. W. Prow, J. E. Grice, L. L. Lin, R. Faye, M. Butler, W. Becker, et al.
5 Nanoparticles and microparticles for skin drug delivery, *Adv. Drug Deliv. Rev.* 63
6 (2011) 470-491.

7 29) H. Marwah, T. Garg, A. K. Goyal, G. Rath, Permeation enhancer strategies in
8 transdermal drug delivery, *Drug Deliv.* 23 (2016) 564-578.

9 30) M. Haedersdal, A. M. Erlendsson, U. Paasch, R. R. Anderson, Translational
10 medicine in the field of ablative fractional laser (afxl)-assisted drug delivery: A
11 critical review from basics to current clinical status, *J. Am. Acad. Dermatol.* 74
12 (2016) 981-1004.

13 31) T. Hirsch, T. Rothoeft, N. Teig, J. W. Bauer, G. Pellegrini, L. De Rosa, et al.
14 Regeneration of the entire human epidermis using transgenic stem cells, *Nature.*
15 551 (2017) 327-332.

16 32) S. Eichstadt, M. Barriga, A. Ponakala, C. Teng, N. T. Nguyen, Z. Siprashvili,
17 et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for
18 recessive dystrophic epidermolysis bullosa, *JCI Insight* 4 (2019) e130554.

1 33) M. García, J. Bonafont, J. Martínez-Palacios, R. Xu, G. Turchiano, S.

2 Svensson, et al. Preclinical model for phenotypic correction of dystrophic

3 epidermolysis bullosa by *in vivo* CRISPR-Cas9 delivery using adenoviral

4 vectors, Mol. Ther. Methods Clin. Dev. 27 (2022) 96-108.

5 34) S. V. Guide, M. E. Gonzalez, I. S. Bağcı, B. Agostini, H. Chen, G. Feeney, et

6 al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis

7 bullosa, N. Engl. J. Med. 387 (2022) 2211-2219.

8

9

1 **Figure legends**

2

3 **Fig. 1. AAVDJK2 is effective in cultured mouse and human keratinocytes.**

4 a) Schematic of the amino acid sequence of modified AAVDJ and AAV2 with
5 mutations and AAV6 prepared for comparison. Additional peptide was inserted just
6 before Arg588 in AAV2 capsid and Arg590 in AAVDJ capsid. b) Appearance of
7 AAVDJK2-treated mouse and human keratinocytes on feeders. Dotted red line
8 indicates the colony border in mouse KC culture. Dotted yellow line indicates the
9 colony border in human KC culture. Scale bar = 100 μ m. c) GFPNLS-positive cell
10 counts of AAV-treated mouse KCs. Mean and distribution of the data are shown.
11 d) GFPNLS-positive cell numbers of AAV-treated human KCs. Mean and
12 distribution of the data are shown.

13

14 **Fig. 2. AAVDJK2 reduces AAVDJ-specific tropism for mesenchymal cells.**

15 a) GFPNLS-positive cell numbers of AAV-treated mouse adipose-derived stromal
16 cells. Mean and distribution of the data are shown. b) GFPNLS-positive cell
17 numbers of AAV-treated human dermal fibroblasts. Mean and distribution of the
18 data are shown. 3) GFPNLS-positive cell numbers of AAV-treated 3T3J2 cells.

1 Mean and distribution of the data are shown. 4) GFPNLS-positive cell number of
2 AAV-treated feeder cells (mitomycin treated 3T3J2 cells). Mean and distribution
3 of the data are shown

4

5 **Fig. 3. Most injected nanoparticles diffuse into the dermis and subdermal**
6 **tissues after intradermal injection.**

7 a) Schematic of fluorescent nanoparticle injection. b) Appearance of the
8 intradermal injection. Black dotted line was designed as a 1 cm square rectangle.
9 c) Representative findings of three-dimensional histological analysis of serial
10 sections of skin samples. Epidermal diffusion was evaluated in the section with the
11 broadest nanoparticle diffusion. Red scale bar = 1 mm. d) Representative
12 magnified results of histological analysis of skin samples. Over time, diffusion of
13 the injected nanoparticle towards the epidermis was low. Scale bar = 50 μ m.

14

15 **Fig. 4. AAVDJK2 has high epidermal specificity in mouse skin.**

16 a) Schematic of intradermal injection of mixtures of AAVDJK2-CAG-GFPNLS
17 and AAVJD-CAG-mCherryNLS. b) Confirmation of the position of AAV delivery
18 by fluorescence stereoscopy. Red scale bar = 5 mm. c) Representative hematoxylin

1 and eosin-stained sections and DAPI-stained fluorescence sections. The square
2 indicates the areas used for deep learning-based image analysis. Dotted line
3 indicates the boundaries of skin layers used for layer-specific analyses (epidermis,
4 dermis, superficial fat, cutaneous muscle, and deep fat). Scale bar = 200 μ m. d)
5 Percentage of transgene expression-positive cells in each layer in six animals.
6 Differences between groups were analyzed by the paired Student's t-test. *P<0.05,
7 **P<0.01, and ***P<0.001 (n=6).

8

9 **Fig. 5. K14 SCP3 promoter enhances keratinocyte specificity *in vitro*.**

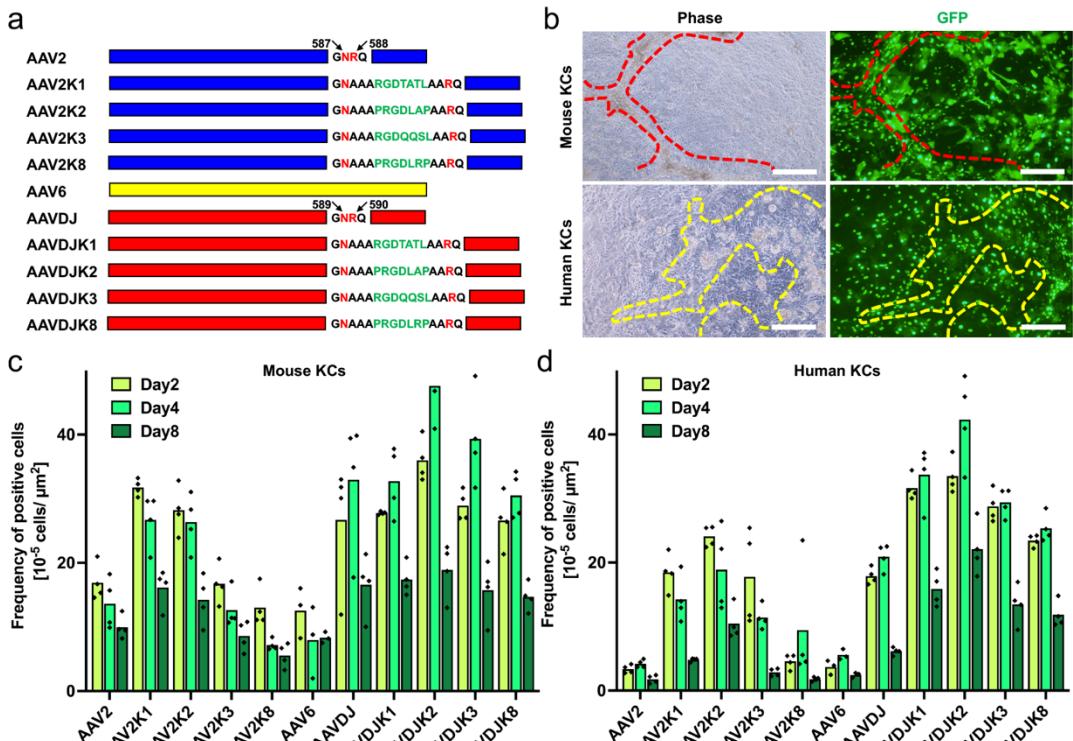
10 a) Schematic of the tissue-specific promoter vector. K14MP, *KRT14* minimal
11 promoter. K16MP, *KRT16 pseudogene 5* minimal promoter. S, SCP3 core promoter.
12 pA, polyA signal. WPRE, Woodchuk hepatitis virus Posttranscriptional Regulatory
13 Element. b) GFPNLS-positive cell counts of AAV-treated mouse keratinocytes.
14 Mean and distribution of the data are shown. c) Flow cytometric analysis of AAV-
15 treated mouse keratinocytes. Mean and distribution of the data and representative
16 histograms are shown. d) GFPNLS-positive cell counts of AAV-treated mouse
17 adipose-derived stromal cells. Mean and distribution of the data and representative
18 histograms are shown. e) Flow cytometric analysis of AAV-treated mouse adipose-

1 derived stromal cells. Mean and distribution of the data and representative
2 histograms are shown.

3

4 **Fig. 6. K14 SCP3 promoter enhances epidermal specificity *in vivo*.**

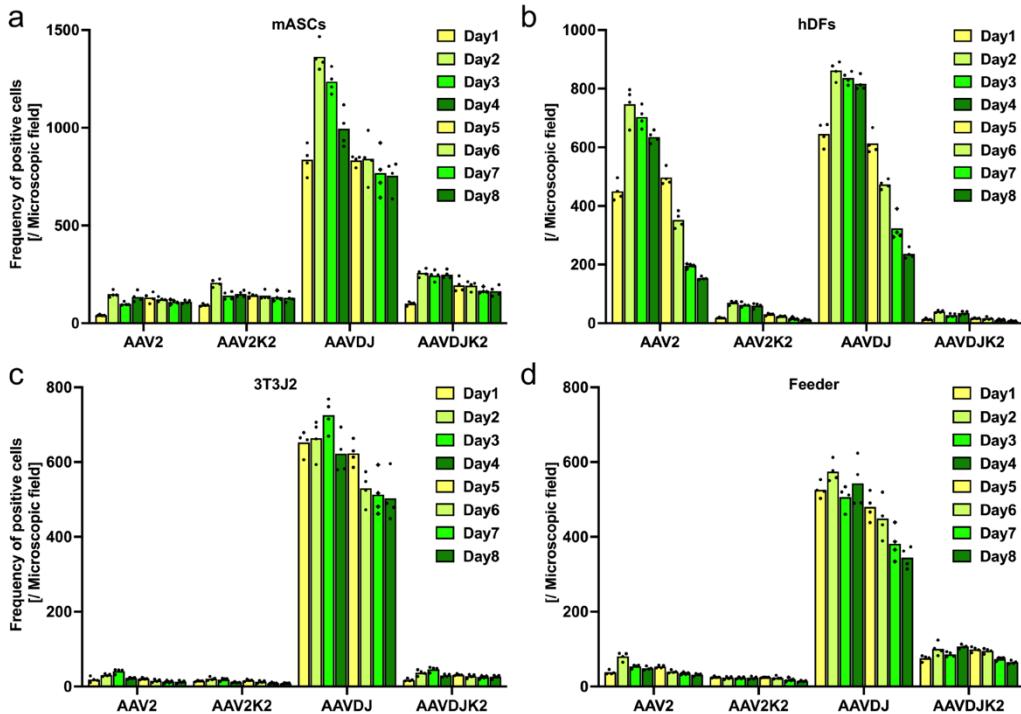
5 Representative hematoxylin and eosin-stained sections and immunofluorescence
6 sections of mouse skin after intradermal injection of AAVDJK2-CAG-GFPNLS
7 and AAVDJK2-K14 SCP3-GFPNLS. Black and white scale bar = 300 μ m. Yellow
8 scale bar = 100 μ m.


9

10 **Supplementary Fig. 1. AAV yields are influenced by the capsid and promoter.**

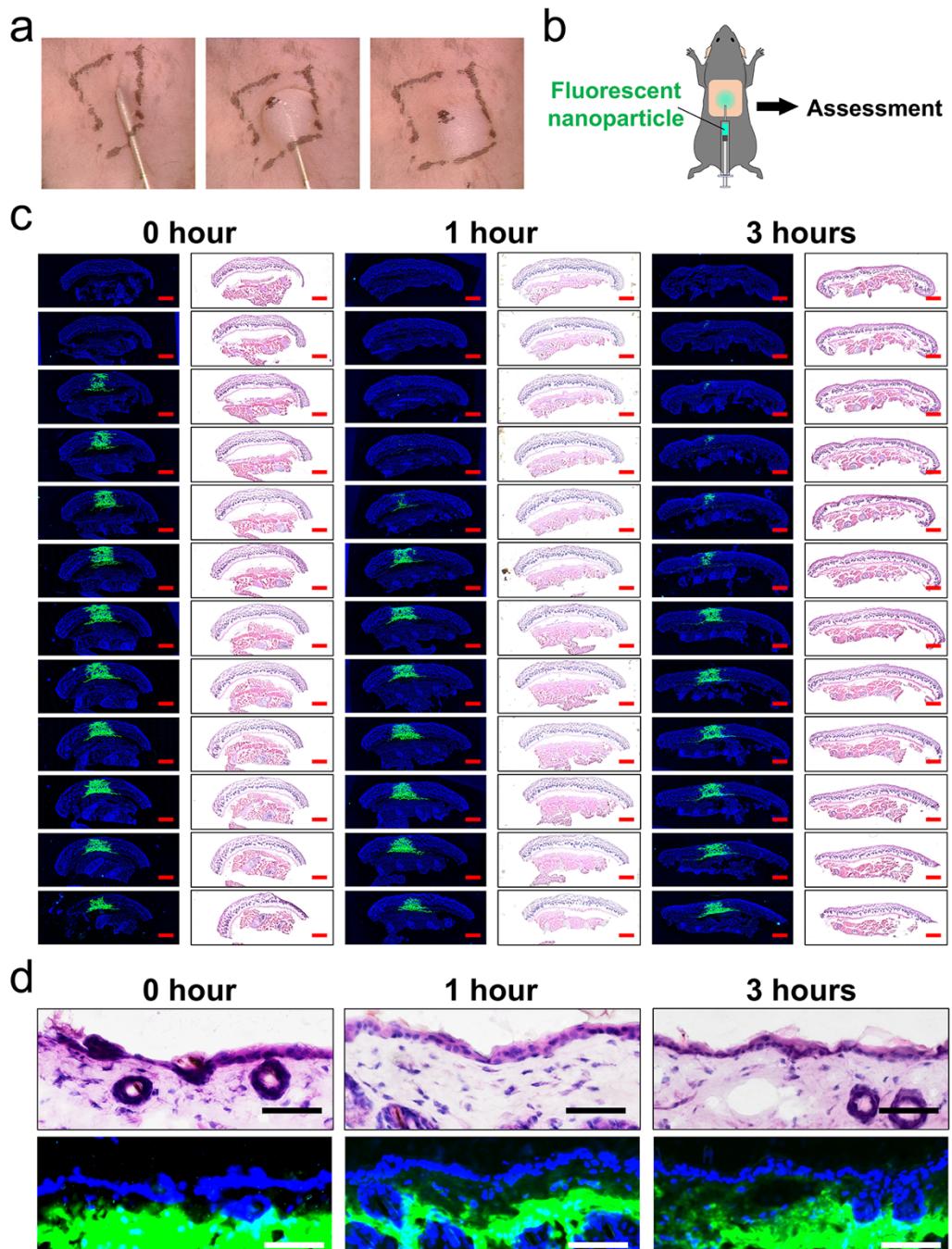
11 AAV yields of GFPNLS-expressing AAVs with various capsids and promoters
12 were evaluated. AAVDJ and AAVDJK2 were superior to AAVs in terms of
13 packaging CAG-GFPNLS AAVs, whereas K14 and K16 promoters were superior
14 to GFPNLS-expressing AAVDJK2 AAVs.

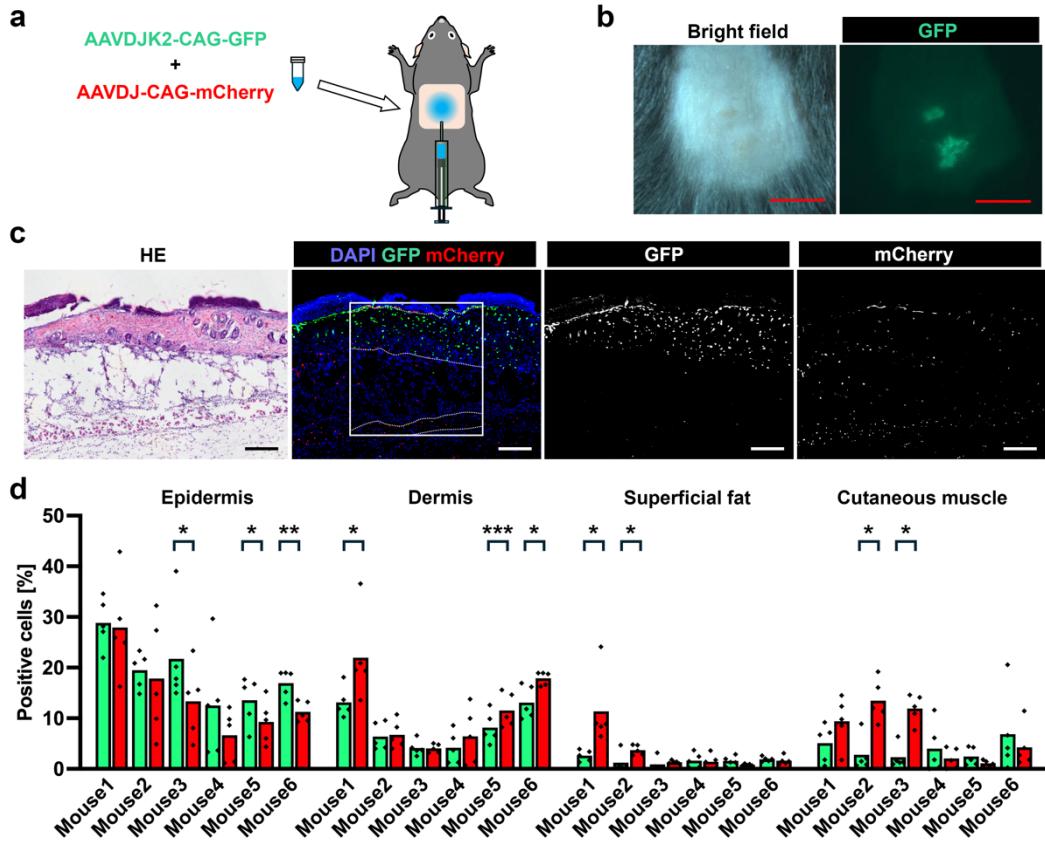
15


1 **Fig. 1**

2

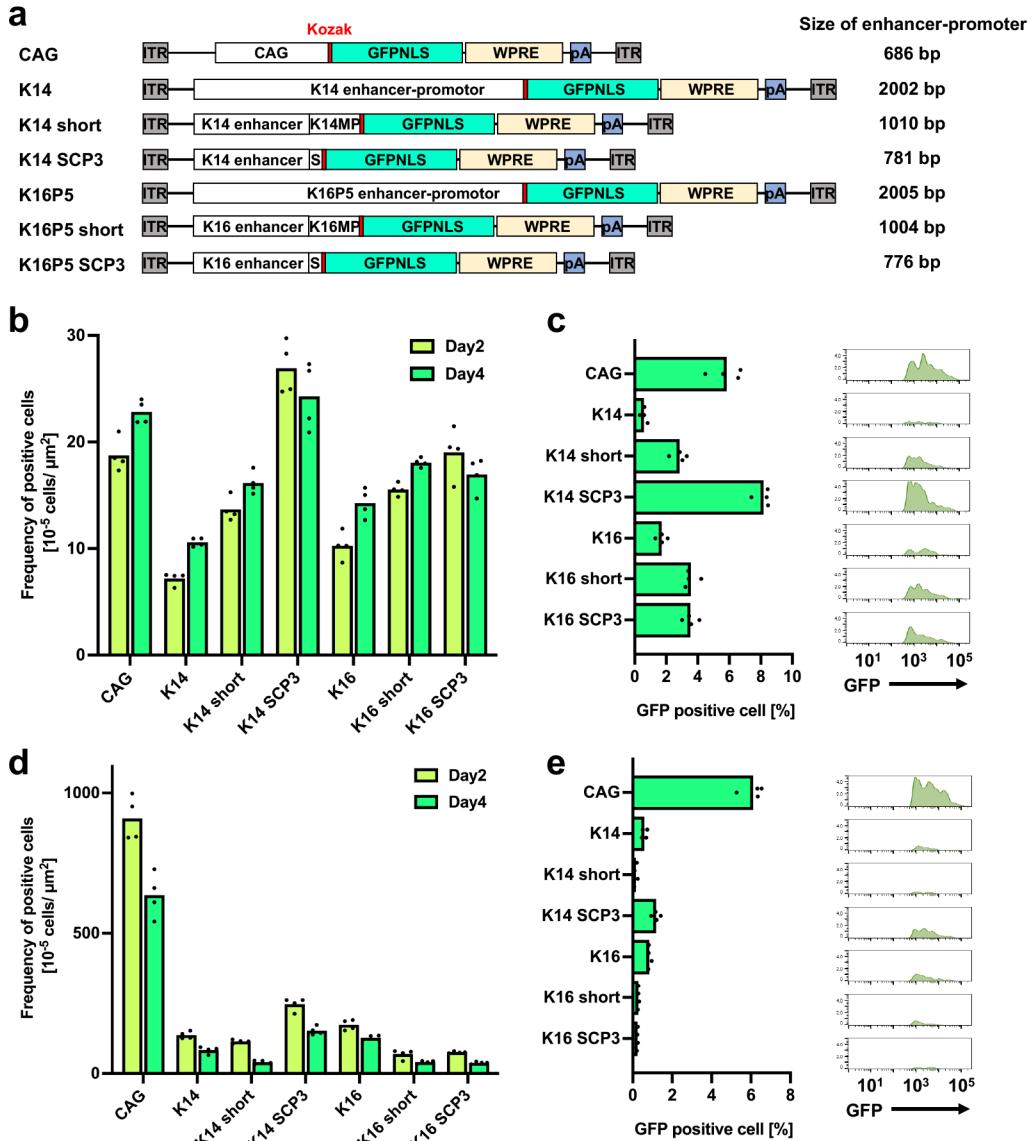
3


1 **Fig 2.**

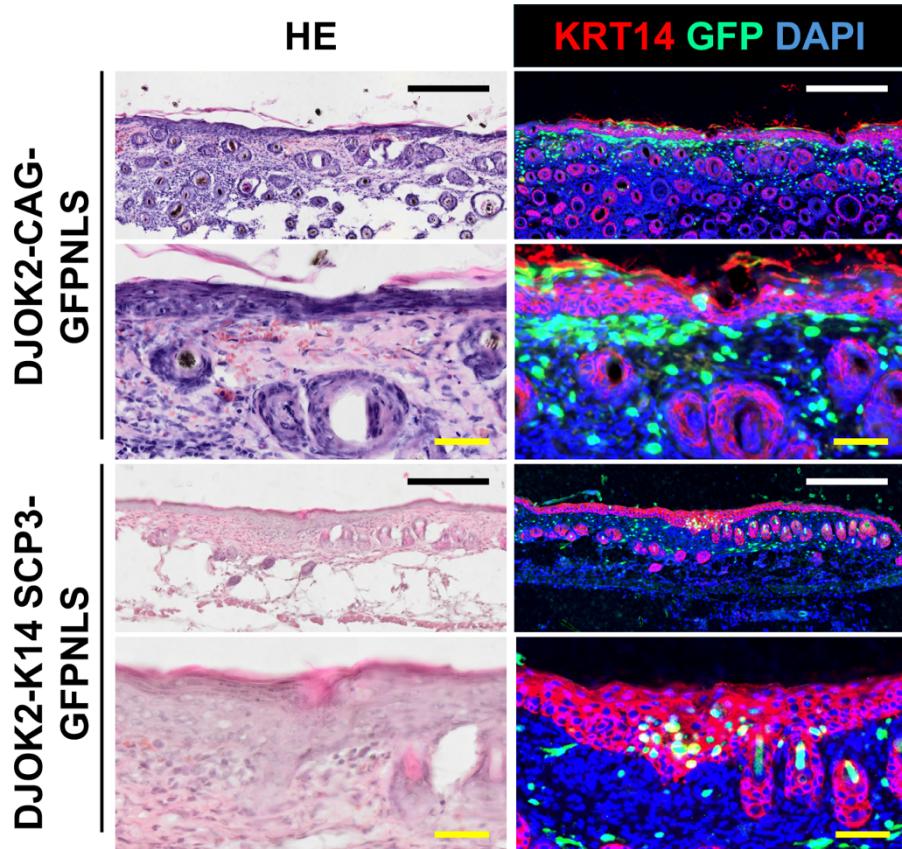

2

3

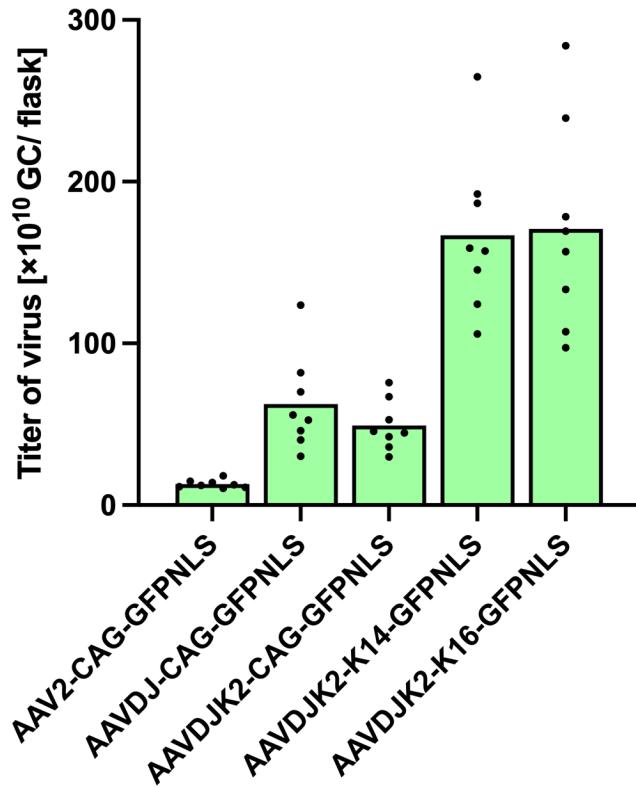
1 **Fig 3.**


1 **Fig. 4**

2


3

1 **Fig. 5**



2
3

1 **Fig. 6**

1 **Supplementary fig. 1**

2