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Abstract

Owing to the high cost of modern MRI systems, their use in clinical care and
neurodevelopmental research is limited to hospitals and universities in high income countries.
Ultra-low-field systems with significantly lower scanning costs present a promising avenue
towards global MRI accessibility, however their reduced SNR compared to 1.5 or 3T systems
limits their applicability for research and clinical use. In this paper, we describe a deep
learning-based super-resolution approach to generate high-resolution isotropic T>-weighted
scans from low-resolution paediatric input scans. We train a ‘multi-orientation U-Net’, which
uses multiple low-resolution anisotropic images acquired in orthogonal orientations to
construct a super-resolved output. Our approach exhibits improved quality of outputs compared
to current state-of-the-art methods for super-resolution of ultra-low-field scans in paediatric
populations. Crucially for paediatric development, our approach improves reconstruction of
deep brain structures with the greatest improvement in volume estimates of the caudate, where
our model improves upon the state-of-the-art in: linear correlation (r = 0.94 vs 0.84 using
existing methods), exact agreement (Lin’s concordance correlation = 0.94 vs 0.80) and mean
error (0.05 cm? vs 0.36 cm?). Our research serves as proof-of-principle of the viability of
training deep-learning based super-resolution models for use in neurodevelopmental research
and presents the first model trained exclusively on paired ultra-low-field and high-field data

from infants.
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1 Introduction

Neuroimaging studies on infant and child populations have become increasingly vital in
establishing the relationship between neurodevelopment and resultant cognitive functioning.
Magnetic resonance imaging (MRI) has proven to be particularly essential in this endeavour,
owing to its ability to provide insight into structural, functional and metabolic brain
development, in addition to revealing pathologies pertaining to neurobiological disorders
(Nolen-Hoeksema et al., 2014). Accessing these capabilities, however, is only possible by
overcoming significant financial barriers: on top of the cost of a scanner itself (roughly
$1,000,000 per Tesla; Arnold et al., 2023), the high field strength of existing systems requires
facilities with electromagnetic shielding and specialised staffing. Furthermore, since most
modern MRI systems use superconducting magnets, they require the use of cryogens, which
themselves come with storage, transportation and maintenance costs (Sarracanie et al., 2015).
Altogether, these expenses establish strict financial boundaries on neuroimaging studies and
clinical work. Even in hospitals and universities within high-income countries (HICs),
scanning costs ($500-$1000/hr per research scan) place a limit on the number of participants

scanned and the duration of longitudinal research.

More concerningly from a global health perspective, infrastructural costs severely limit MRI
accessibility in low- and middle-income countries (LMICs). Evaluating MRI accessibility
based on ratio of MRI units per million population, HICs such as Japan and the US boast 51.67
and 38.96 units/million, respectively (Ogbole et al., 2018). Comparing these values with those
of Nigeria and Ghana — which own 0.30 and 0.48 units/million, respectively — reflects a
hundred-fold difference between HICs and LMICs (Jalloul et al., 2023). Consequently, our
current understanding of neurodevelopment in such regions, where adversities pertaining to
nutrition, sanitation and higher rates of infectious risk play a crucial role, is primarily based on
psychometric measures or low-cost, functional imaging methods such as EEG or fNIRS

(Perdue et al., 2019, Jensen et al., 2021).

Ultra-low-field (ULF) imaging systems with magnetic field strengths ranging from 50 to
100mT (e.g., the 64mT Hyperfine Swoop) present a potential solution to issues of access
inequality (Sarracanie et al., 2015, Abate et al., 2024). Such systems rely on the use of large,
permanent magnets instead of superconducting electromagnets and as such have significantly

reduced component prices, reduced room requirements, and reduced costs for power, cooling
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and maintenance compared to high-field (HF) imaging systems (Campbell-Washburn et al.,
2019). Unfortunately, these benefits are paired with a significantly diminished signal-to-noise
ratio (SNR) (Klein, 2020), rendering image outputs sub-optimal for visual reading by
radiologists or for a large portion of automated processing methods in currently available
neuroimaging toolkits. Such processing methods usually require high-resolution MRI scans
(1mm isotropic), whereas product sequences on the Hyperfine system yield a default spatial
resolution of 1.5x1.5x5mm in 3-6 minutes per image. Higher resolution images may be
acquired with increased acquisition times (~12—15 min for a single 2x2x2mm T>-weighted
image), although this may decrease patient compliance and satisfaction and increase the risk of
head motion, particularly in sensitive populations such as infants or elderly participants

(Madan, 2018; Padormo et al., 2023).

One technique that has found success in enhancing the SNR of ULF outputs is super-resolution
(SR) reconstruction of a single image from multiple lower-resolution images, acquired in three
orthogonal orientations (i.e., axial, sagittal, and coronal) (Deoni et al., 2022). This is carried
out through repeated multi-resolution registration (MRR) of the scans using the Advanced
Normalization Tools (ANTs) multivariate template construction command. Here, low-
resolution images are aligned using linear and diffeomorphic registration with symmetric
normalization, outputting a final image with effective dimensions of 1.5%1.5x1.5mm (Figure
1). Although this approach still entails a longer scanning session (up to ~18 min to acquire
three scans), multiple shorter acquisitions may reduce the risk of head motion within each scan
compared to a single higher-resolution acquisition. Furthermore, a single instance of head

motion would only corrupt one of three scans instead of the whole higher-resolution scan.
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Figure 1) Columns 1-3: non-isotropic Hyperfine scans of a 6-month-old subject (high-resolution plane highlighted with
dashed blue lines); Column 4: isotropic output of MRR (highlighted in red)

An alternative approach involves the use of modern image translation methods based on
convolutional neural networks (CNNs), which learn a transformation between a source image
and a target image. A decade of research has gone into the use of CNNs for super-resolution,
with architectures ranging in complexity from simple three-layer models (Dong et al., 2014) to
twenty-layer models (Kim et al., 2016). In models tailored for medical image super-resolution,
a similar variety in complexity and functionality is present (Oktay et al., 2016), (Pham et al.,
2019), however the U-Net (Ronneberger et al., 2015) has consistently presented itself as one
of the most reliable architectures for use in a wide array of MRI image translation tasks (Kelly
et al., 2022). The architecture consists of a contracting path to capture context and a symmetric
expanding path that enables precise localization of biological structures. Through the
contracting path, spatial information is normally lost, however skip connections between the

two paths ensure feature reusability.

In their standard form, super-resolution U-Nets train to minimise a voxel-wise loss between

input and target images (such as L1 or L2). This ensures appropriate outputs by constraining
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voxel values of generated high-resolution images to be close to those of the ground truth.
Unfortunately, such losses do not take perceptual quality or textures into account, resulting in
outputs that are often perceptually unsatisfying and lack high frequency details (Wang, 2019;
Zhang, 2018). As such, more recent super-resolution models tend to supplement traditional
voxel-wise loss functions via the addition of other losses, for instance a Dice loss (Iglesias et

al., 2021, 2023) or an adversarial loss (Zhou, 2022).

In our paper, we employ an alternative loss function that relies on the internal activations of
deep CNNss trained on high-level image classification tasks. The computer vision community
has noted the effectiveness of such deep CNNs and related features in their correspondence to
human perceptual judgments (Zhang, 2018). As such, by adding a loss term targeted on
extracted image features, we can encourage feature similarity between predicted and real
images and, in turn, enhance perceptual similarity. Unlike a Dice loss, this operates directly on
the level of image features, and unlike an adversarial loss, it allows us to improve perceptual
quality without the computational burden of training a classifier in addition to our generator.
The latter factor is crucial for our training needs, for it frees us to feed three separate 3D
volumes into the generator at each training step, as inspired by the MRR approach of combining
three ULF scans into a single high-resolution output. Here we present the Multi-Orientation
(MO) U-Net, which produces a synthetic Imm isotropic scan from three non-isotropic ULF
input scans. To the best of our knowledge, deep learning-based SR of ultra-low-field brain MRI
has only been investigated in adult populations, where in many cases models are being trained
on partially or even entirely synthetic datasets. As such, we propose the first U-Net trained on
real, paired ULF-HF data from a paediatric population, and demonstrate its ability to surpass

alternative SR techniques.

2 Methods
2.1 Imaging data

MRI data used in this paper stems from a study investigating the neurodevelopment of
executive function over the first 3 years of life in participants based in South Africa and Malawi
(Zieff et al., 2024, Abate et al., 2024). Images used here included subjects from South Africa
exclusively, at ages of either 3- or 6-months, with no known neurological abnormalities. A total
of 82 subjects attended two scanning sessions (ULF and HF); all subjects had HF Tow scans

acquired using a Siemens 3T scanner (Erlangen, DE) and had ULF T,w scans acquired using
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a Hyperfine Swoop 64mT system (Guildford, CT), with high in-plane resolution along three
orthogonal planes (axial, sagittal, coronal). Of these subjects, 63 successfully completed all
four scanning protocols (one HF and three ULF scans). Pre-processing involved rigid
registration between all HF scans and a custom age-specific HF template, and each subject’s
ULF with the corresponding pre-registered HF scan (Ashburner, 2007). Following this, we
skull-stripped HF and ULF scans separately using HD-BET, a deep-learning tool for MRI brain
extraction (Isensee et al., 2019). Seven subjects were excluded due to major artifacts being
present in at least one of their ULF scans (see supplementary Figure S1 for details), thus our
final sample size consisted of N=56 subjects (26 Male, 30 Female), of which 16 were scanned
at 3-months and 40 at 6-months. Each subject had three ULF (64mT; 1.5%1.5x5 mm) and one
HF (3T; 1x1x1xmm) Tz-weighted scans.

To maximise the data available from a single subject, we fed all three ULF scans into our
network as input (Hyperfine scans acquired in three orthogonal orientations), thus each
matched ‘pair’ of ULF-HF scans included three orthogonal ULF scans and one HF scan. We
split these pairs across 4 folds with a training/validation/test split of 42/7/7. As such, 7 subjects
were used in each fold to monitor validation loss, and inference was carried out on a total of
28 subjects (7 subjects x 4 folds). Age and gender stratification was applied for each split,
across each of the 4 folds (see supplementary Table S1 for demographic details on splits).

2.2 CNN architecture and training protocol

Our MO U-Net builds on the architecture of the 3D U-Net (Cigek et al., 2016). It has three
input channels jointly flowing into three encoding levels, each consisting of a convolution with
a 3x3x3 kernel (allowing the model to capture fine-grained details while reducing parameter
requirements), group normalisation (speeding up convergence by preventing internal covariate
shift), a rectified-linear unit (ReLU) activation and maxpooling. The first layer has 64 features,
with the number of features doubling after each maxpooling and halving after each upsampling.
The final layer uses a linear activation to produce the final image output. All input and output
images were resized (and padded where necessary) to have a uniform size of 160, 160, 160.

The model is implemented using PyTorch.
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Our MO U-Net was trained across all 4 folds until convergence (1500-2000 epochs) using the
Adam optimizer (Kingma, 2014) with a learning rate of 107*. The average training time was
41.2 hours using an Nvidia RTX 3090 GPU. ULF images were normalised and scaled to 1-mm
isotropic resolution, ensuring that input and output resolutions match. Augmentation of images
was carried out on the fly, with random affine transform or random elastic deformation applied
to both ULF and HF data with pre-set probability (p = 0.5). Batch size was set to 1, as feeding
in more than one triplet of ULF images to our model at each training step exceeded our GPU
capacity. After training, weights of the model were frozen and inference was carried out (~1

second on an Nvidia RTX 3090 GPU and ~30 seconds on a modern CPU).
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Figure 2) Model training: Multi-orientation U-Net (in blue) with three input channels and one output channel, allowing a
transformation from three ULF scans to one SR image. Outputs of this model, along with ground-truth high-field images, are
fed into a frozen AlexNet for feature extraction. The final loss is calculated by comparing model outputs with corresponding
high-field scans, both at the level of full images and their feature space
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2.3 Loss function

To capture anatomical similarity between predicted and ground truth images, the training of

our network minimises the L2-norm with respect to the neural network parameters 6:
LLZ(Q; Y, Y) = |ly - 3113 (1)

where y denotes the model output and y denotes the target image. Although necessary for pair-
wise image-translation, previous work has noted that training exclusively using a voxel-wise
loss can diminish the quality of outputs and result in excessively smooth SR images (Zhang et
al., 2022). We support this finding with our own analyses (see supplementary Table S2 and
Figure S2). As such, we add a perceptual loss to enhance similarity in features between input
and target images by employing the Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018). This metric quantifies the similarity between features from two separate
images, as extracted by a pre-trained classifier. For this, we use AlexNet (Krizhevsky et al.,
2012). Although other classifiers can be used for feature extraction, including the much larger
VGG (Simonyan et al., 2014), we employ AlexNet it allows for more efficient training and has
been shown to provide deep embeddings which agree equally well with humans (Zhang et al.,

2018). The formula for this distance metrics is shown below:

~ 1
Lupnes(859,¥) = 3 e > W @ (zhoy ~ 24 ), @)
l h,w

where £ denotes the features of prediction y and z denotes the features of ground-truth y
extracted from the first 5 layers of AlexNet, with #/, 7/ € RHxWxC for each layer I Features £ and
z are first normalised across the channel dimension then scaled across the same dimension by
w! € RC (a hyperparameter set by the original authors of LPIPS), after which an L2 norm is
computed between the two values. The difference is averaged spatially then summed across
layers to produce the final output. To train our MO U-Net, we combine equations 1 & 2,

yielding the following loss:

1 S
Lrotar = E Z [’LPIPS(?S» Ys) + ALy, (?» Y) 3)
s=1


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

where 4 is a hyperparameter set at A=100, inspired by previous image-to-image translation work
(Isola et al., 2016). Importantly, AlexNet was trained to classify 2D images, therefore random,
paired slices ¥ and ¥, are taken from the set of predictions and ground-truth images Yand ¥
to compute an average LPIPS score across all slices S. To allow for multiple slices to be
assessed across all volumetric dimensions while minimising the number of computations
needed to be performed at each training step, we set S to 6. The full training scheme is depicted

in Figure 2.

2.4 Related work and model evaluation

Although the literature surrounding SR of medical images is vast, research centered specifically
on SR of ULF scans is comparatively scarce, largely owing to the relatively recent emergence
of such imaging systems. As discussed in the introduction, the use of multi-resolution
registration by Deoni et al. (2022) stands as the state-of-the-art in the space of non-deep
learning-based SR of ULF scans. SynthSR emerged as the first publicly available CNN-based
SR toolkit for use on images of any contrast and resolution (Iglesias et al., 2021), with a
subsequent dedicated ultra-low-field model that transforms non-isotropic Tiw or Tow images
to Imm isotropic Tiw scans (Iglesias et al., 2023). LoHiResGAN soon followed, introducing
a model based on the Pix2Pix architecture to generate synthetic 1mm isotropic scans from non-
isotropic inputs acquired at 64mT (similar to our model) (Islam, 2023). Additional work was
also carried out on alternative resolutions and field strengths using a model based on multiscale
feature extraction and spatial attention (Lau, 2023). This was used to generate synthetic 1.5mm
isotropic scans from 3mm isotropic inputs acquired at 55mT (Man, 2023) and Imm isotropic
scans from 3mm isotropic inputs acquired at SOmT (Zhao, 2024). For comparative analyses,
we restrict ourselves to techniques designed for an identical image translation task as ours

(MRR) or of any field-strength and resolution (SynthSR version 2.0).

As such, in addition to assessing the extent to which our MO U-Net enhances ULF inputs, we

compared its performance against MRR and SynthSR using the metrics described below:
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2.4.1 Segmentation-based metrics

The quality of model outputs relative to ground-truth HF images was evaluated via Dice
overlap of segmented brain regions within subjects and tissue volume correlations across
subjects. Both segmentation outputs and volume estimations were obtained using SynthSeg
(Billot, 2023), a segmentation toolkit that is agnostic to contrast and resolution. This feature of
SynthSeg allowed us to include SynthSR in our comparative analyses, which exclusively
outputs Tiw scans regardless of the contrast of the input. In addition to segmenting cortical
grey matter (GMC), subcortical grey matter (GMS), white matter (WM) and cerebrospinal fluid
(CSF), we segmented the following deep brain structures: accumbens, amygdala, pallidum,
hippocampus, caudate, putamen, thalamus, and ventral diencephalon. Considering that one of
the primary applications of successful SR techniques would be use in ULF-based
neurodevelopmental research in LMIC settings, selecting regions that play an important role in
neurodevelopmental outcomes is particularly beneficial to underscore the value of our
technique. These deep grey matter nuclei are known to be affected in conditions such as
hypoxic-ischemic encephalopathy (HIE) (Hassett et al., 2022) or perinatal stroke (Ilves et al.,
2022), such that damage is associated with worse neurodevelopmental outcomes. All
segmentations were visually inspected prior to running analyses, with two test subjects being
removed due to failed segmentations (see supplementary Figure S3 for more details on the
segmentations and supplementary Table S3 for demographics after exclusion). As such, a final

sample of N=26 subjects was used for segmentation-based analyses.

2.4.2 Intensity differentiation and image quality assessment

We additionally assessed model performance by directly comparing the output images. We
first investigated whether the separation between grey matter and white matter was enhanced
via our MO U-Net, based on the difference in intensities between these two tissue types. This
was done by applying grey matter and white matter segmentations from high-field scans as
masks to other images (ULF scans, MRR outputs, MO U-Net outputs and HF scans), followed
by calculating the difference in median voxel intensities between these two regions. Since this
metric was used to assess whether GM and WM separation in super-resolved images more

closely matched that of high-field Tow scans, the metric was not calculated for SynthSR.

Image quality was additionally evaluated using normalized mean squared error (NMSE), peak
signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between predicted images

and corresponding high-field scans. Once again, the Tiw SynthSR outputs could not be directly
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compared to the Tow outputs of MRR or MO U-Net. Nevertheless, we were able to calculate
these metrics for SynthSR outputs on a subset of the 28 test subjects who also had a Tyw 3T
scan acquired as part of their scanning protocol (N=25). See supplementary Table S3 for details

on the demographic distribution within this subset.

2.4.3 Performance with reduced input

Using our trained MO U-Net, we additionally assessed performance with varying numbers of
input scans. More specifically, we assessed model outputs when the MO U-Net only received
an axial scan or axial and sagittal scans (as opposed to all three orientations, with which it was
originally trained). Since our trained model requires three input images, inference with missing
scans was achieved by cloning the axial scan either once or twice, depending on whether one
or two distinct inputs were provided. As such, we ran inference with each subject a total of
three times, with the following combination of scans: 1) axial, axial, axial; 2) axial, axial,
sagittal; 3) axial, sagittal, coronal. The choice of prioritising scans in the order of axial > sagittal
> coronal was done based on the scanning protocol used, which involved scanning participants

in this order.

2.5 Statistical methods

We compared the within-subject Dice overlap of segmentations between pairs of models using
the Wilcoxon signed-rank tests to compare the medians (Wilcoxon, 1945). Tissue volume
correlations across participants were assessed using both Pearson’s correlation coefficient
(Pearson, 1895), determining linear correlation, and Lin’s concordance correlation coefficient
(Lin, 1989), determining exact agreement, or alignment with the x =y identity line. Accuracy
of volume estimations was additionally assessed by reporting the mean difference in volumes
obtained from high-field segmentations and SR outputs. The choice of analyses is based on

previous work investigating correspondence between ULF and HF scanners (Vasa et al., 2024).
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3 Results

3.1 Segmentations

ULF
(Sagittal)

MRR SynthSR MO U-Net HF

Image
(Axial view)

Segmentation
(Axial view)

Image
(Coronal view)

Segmentation
(Coronal view)

Figure 3) Input images (rows 1 & 3) and corresponding SynthSeg segmentations (rows 2 & 4) from a single test subject.
Columns, from left to right: sagittal ULF scan, MRR output, SynthSR output, MO U-Net output, ground-truth HF scan. Note:
the figure displays SynthSeg outputs including cortical parcellation, however these were merged into single a cortical label
(cortical grey matter) for segmentation-based analyses.

Segmentations obtained from MO U-Net predictions significantly improved compared to those
obtained from ULF scans (Figure 3). This is highlighted by an increased Dice overlap of
segmented MO U-Net predictions and HF scans compared to Dice overlap of segmented ULF
and HF scans across all brain four global tissue types (Figure 4). Comparing Dice overlap of
model predictions and HF scans to that of MRR outputs and HF scans, median Dice scores
increased on average by 0.023. The greatest difference was seen in subcortical grey matter (A
Dice = 0.034) and the lowest in white matter (A Dice = 0.015). In comparison to SynthSR
outputs, median Dice scores of MO U-Net outputs rose on average by 0.067, with the greatest
difference in CSF and lowest in white matter (A Dice = 0.138 and 0.007, respectively). Across
age groups, we note that Dice overlap of all images assessed was higher in 6-month-old subjects

than 3-month-old subjects (see supplementary Table S4). Significance testing using the
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Wilcoxon signed-rank test revealed significant improvement in MO U-Net Dice scores for all
global tissue types relative to MRR, and all tissue types except subcortical grey matter (GM)
when compared to SynthSR, given a family-wise error rate (FWER) of 0.00625 (Table 1).
Furthermore, volume-based analysis of global tissue types revealed a reduction in mean error
and increase in Lin’s Concordance Correlation Coefficient (CCC) for both cortical and
subcortical grey matter. Full details of volumetric analysis can be viewed in supplementary

Figure S4.

Grey Matter (Cortical) Grey Matter (Subcortical) White Matter Cerebrospinal Fluid

IR RAREREXIE
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Figure 4) Dice coefficients between HF scan and the original Hyperfine scan (average of axial, coronal, and sagittal), MRR
output, SynthSR output, and MO U-Net output, across tissue types. From left to right: cortical grey matter, subcortical grey
matter, white matter and cerebrospinal fluid.

Table 1) Wilcoxon signed-rank test applied to Dice scores of 26 test subjects, comparing outputs of MO U-Net to MRR, and
MO U-Net to SynthSR. For each comparison, the rank biserial correlation (RBC) and associated significance of the
underlying Wilcoxon signed-rank test are displayed. Analysis is centred on global tissue types.

Region MO U-Net > MRR MO U-Net > SynthSR

RBC Sig. RBC Sig.
Grey Matter (cortical) 0.778 0.00011" 0.978 <0.0001"

Grey Matter (subcortical) 0.852 <0.0001" 0.493 0.014
White Matter 0.556 0.0060° 0.652 0.0013°
Cerebrospinal Fluid 0.704 0.00052" 0.994 <0.0001"

When examining individual subcortical regions, we similarly observed increased Dice overlap
of MO U-Net predictions compared to ULF scans across all structures. The same pattern was
seen in comparison with MRR outputs, and in five out of eight regions in comparison to
SynthSR outputs. For brevity, the Dice scores of subcortical regions showing minimum,
median, and maximum MO U-Net performance are depicted in Figure 5, however a full
summary table can be found in supplementary Table S5, with significance testing in Table S6
and age stratification in Table S7. When examining subcortical volumes, we observed that the
MO U-Net produced outputs with similar linear correlation to high-field volumes as other SR

techniques, however we found that the MO U-Net deviated from ground-truth subcortical
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volumes by the smallest margin. This is evidenced by a mean difference between high-field
and predicted volumes (across regions) of -0.281cm?, compared to -0.521cm?® and 0.506¢cm?
for MRR and SynthSR, respectively, and mean Lin’s CCC of 0.73, compared to 0.66 and 0.57
for MRR and SynthSR, respectively. Subcortical regions with minimum, median, and

maximum correlation values are depicted in Figure 6, with a full summary provided in

supplementary Table S8.
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Figure 5) Dice coefficients between HF scan and the original ULF scan (average of axial, coronal, and sagittal), MRR output,
SynthSR output, and MO U-Net output, across subcortical regions. From left to right: accumbens (minimum), amygdala
(median) and thalamus (maximum).
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Figure 6) Region-specific volume analysis between MRR outputs and ground-truth HF scans (light blue), SynthSR outputs
and ground-truth HF-scans (dark blue), and MO U-Net outputs and ground-truth HF scans (red). For each SR method and
region, we display volume correlation (left box) and Bland-Altman plot (vight box). Regions, from left to right, include:
accumbens (minimum r), amygdala (median r) and caudate (maximum r).
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3.2 Intensity differentiation and image quality assessment

ULF
(Sagittal)

MRR MO U-Net HF

Axial
view

Coronal
view

Axial view
(close-up)

Figure 7) Model outputs from a single test subject. Left to right: raw sagittal ULF scan, MRR output, MO U-Net output

and ground-truth HF scan.

We next compared the quality of all output Tow images. Predictions from the MO U-Net
yielded visually superior images compared to both original ULF scans and MRR outputs; MO
U-Net outputs appeared less noisy and captured fine details more accurately (Figure 7). The
enhanced quality of outputs is further evidenced by greater GM/WM intensity differentiation,
with a percentage increase in median difference between GM and WM intensities relative to

ULF scans of 39.4% for the MO U-Net compared to 12.7% for MRR (Table 2).

When assessing how well each SR technique’s output matched their corresponding high-field
scan (i.e. Tow high-field for MRR and MO U-Net vs T1w high-field for SynthSR), MO U-Net
predictions yielded the lowest NMSE, highest PSNR, and highest SSIM (Table 3). As stated
in the Methods section, these analyses were conducted on a subset of N=25 test subjects who
had a Tiw HF scan in addition to their Tow HF scan, however analyses on all 28 Tow scans for
MRR and MO U-Net outputs (excluding SynthSR) yielded nearly identical results (see
supplementary Table S9). Additionally, repeating the same analyses after age stratification
indicated that our MO U-Net had greater consistency in output quality on 3-month-old subjects
and 6-month-old subjects than either MRR or SynthSR (see supplementary Table S10).
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Table 2) Absolute difference in median grey matter and median white matter intensity in ULF scans, MRR outputs, MO U-Net
outputs, and ground-truth high-field scans. The percentage difference in intensity differentiation from ULF ((X-ULF)/ULF) is
also shown. The analyses are conducted on N=28 test subjects.

Intensity

ULF (average) MRR MO U-Net HF
measure
Median difference
(GM vs WM) 0.0213 0.0240 0.0297 0.0285
% difference
relative to ULF 0.00 +12.7 +39.4 +33.7

Table 3) Image quality metrics (NMSE, PSNR, SSIM) for each SR method: MRR, SynthSR and MO U-Net. Values are obtained
by comparing SR outputs with ground-truth HF scans. The analyses are conducted on N=25 test subjects.

SR Method NMSE (]) PSNR (1) SSIM (1)
MRR 0.162 26.696 0.451
SynthSR 0.742 21.377 0.872
MO U-Net 0.063 30.814 0.906

3.3 Performance with reduced number of scans

Finally, we assessed how our pre-trained model performed using a reduced number of inputs.
We observed that the MO U-Net performed best given all three inputs (axial, coronal and
sagittal), with average Dice score rising from 0.723 to 0.730 from one input to all three in
global tissue-types (Table 4), and from 0.775 to 791 across individual subcortical regions
(supplementary Table S11). Moreover, we found that regardless of the number of distinct input
scans used, the MO U-Net yielded the highest Dice scores across all global tissue types,
outperforming both SynthSR and MRR even when using only a single axial scan from each
subject for inference.

Table 4) Tissue-specific Dice scores between HF segmentations and segmentations obtained from ULF scans, MRR outputs,

SynthSR outputs and MO U-Net outputs. MO U-Net scores are further stratified according to how many unique inputs the
model received (A = axial, A/S = axial + sagittal, A/C/S = axial + sagittal + coronal).

. MO U-Net
Region ULF (avg) MRR SynthSR A A/S A/C/S
GMC 0.615 0.725 0.655 0.732 0.742 0.741
GMS 0.493 0.827 0.836 0.842 0.857 0.861
WM 0.633 0.757 0.753 0.765 0.768 0.772
CSF 0.331 0.520 0.409 0.554 0.535 0.547

Average 0.517 0.707 0.663 0.723 0.726 0.730



https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

4 Discussion

Obtaining accurate, high-resolution MRI scans in paediatric populations is essential for studies
of neurodevelopment and for diagnosis of neurological conditions. In LMICs where MRI
accessibility is significantly reduced, this may be achieved via the use of ULF scanners,
supplemented with techniques to improve scan quality. Here we demonstrate improved results
compared to previous efforts (Deoni et al., 2022; Iglesias et al., 2023) using our MO U-Net for
SR of ULF paediatric images. We present greater Dice overlap of segmentations and increased
agreement of corresponding volumes across most brain regions, as well as improved scores on

quality metrics of underlying images.

By setting the MO U-Net to have three input channels for each of three separate ULF scans,
our model is designed to maximise the amount of anatomical data available from a single
subject. As such, our model shows peak performance when all three inputs are provided,
however Dice scores from model outputs with varying numbers of unique input scans indicate
that a single input is sufficient to produce outputs that outperform other techniques. Tolerance
to long scanning times is low in infants (Barkovich et al., 2019), thus successfully completing
three separate 3-6 minute-scanning sessions is often infeasible. As such, having a model that
can reconstruct an image from just one ULF scan has major practical benefits. An alternative
approach would involve modifying our architecture to have one full encoding branch for each
input image, where these separate encodings are then combined before they enter the expanding
path (Lau et al 2023). This would encourage distinct, image-specific encodings, which may
further maximise the information extracted from each scan, however it would impede the
applicability of the model to scenarios with a reduced number of scans. A further alternative to
our current method would be to utilise multiple contrasts as opposed to multiple orientations
(i.e. to train a model using axial T1w and axial Tow ULF scans as opposed to axial, coronal and
sagittal Tow ULF scans), as differing contrast may afford a greater benefit. In our study we
opted for multiple orientations, as this allowed for a straightforward comparison with MRR
and allowed us to make the most use of a dataset where a large portion of subjects completed
three Tow ULF scans and comparatively few completed a Tyw ULF scan (see supplementary
Table S12). Finally, models could be trained on single-orientation input scans. Both multi-

contrast and single-scan models will be a compelling avenue for further work.
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Given the demographic of the dataset we used, our model manages to tackle a particularly
difficult image translation problem. Owing to differing water and fat content in the developing
brain compared to adults, alterations in signal intensities in newborns and infants are seen with
both Ti- and T>-weighted anatomical MRI. In particular, the first 6 months of life are
characterised by a reversal of the normal adult contrast (Ti-weighted: lower WM intensity than
GM; Ta-weighted: higher WM intensity than GM) (Dubois et al., 2021), resulting in an
“isointense” phase at the 6-month mark where the intensity distributions of GM and WM show
strong overlapping (Bui et al., 2020). These neurodevelopmental changes amplify the drastic
difference in contrast between HF and ULF MRI, already present in both Tiw and T>w scans.
Despite these additional challenges compared to adolescent or adult MRI datasets, we succeed
in producing output images with significantly enhanced quality, where GM/WM differentiation
closely resembles that of 3T HF scans.

The lack of contrast in paediatric ULF MRI scans additionally complicates segmentation-based
analyses. We used SynthSeg (Billot et al., 2023) as it is the only widely available toolkit
agnostic to contrast and resolution, allowing direct comparison with non-isotropic Tow ULF
scans, 1.5mm Tow isotropic MRR outputs, as well as Imm isotropic Tiw SynthSR outputs.
Moreover, SynthSeg has shown excellent performance on ultra-low-field scans of healthy
adults (Vasa et al., 2024). However, as SynthSeg was trained on adult data, its application to
paediatric images runs the risk of producing unexpected outputs. In particular, we observe that
Dice scores from 3-month-old subjects are consistently lower than those of 6-month-old
subjects, across all regions tested. This may be due to our MO U-Net being trained primarily
on 6-month data, however seeing as this pattern is not replicated when viewing image quality
metrics that do not rely on a segmentation (NMSE, PSNR, SSIM), it may rather be an effect of
inconsistent segmentations by SynthSeg on an age-group whose brain scans differ significantly
from those of adults. Consequently, a more accurate approach to testing our model performance
would involve the use of a segmentation model trained specifically on paediatric scans. Given
such a reliable segmentation scheme, we could further expand upon our performance metrics
with additional boundary-based measures (such as the Hausdorff distance or average
symmetric surface distance; Reinke et al., 2024). Nevertheless, we demonstrate that the outputs
of our MO U-Net result in higher-quality segmentations of all four global tissue types, and
most subcortical regions, than either MRR or SynthSR.
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We note that volumes derived from segmentations of all super-resolved outputs show
deviations from reference standard estimates derived from HF scans. Both MRR and our MO
U-Net tend to underestimate the volumes of GM and WM, including individual subcortical
regions, and overestimate the volume of CSF (in line with recent work on adults; Vasa et al.,
2024). Conversely, SynthSR tends to underestimate cortical GM volumes and overestimate
subcortical GM volumes. However, volume estimates derived from our MO U-Net show
smaller deviations than other models in most evaluated regions. Multiple factors may
contribute to deviations of super-resolved volume estimates from HF scans, as well as
differences in these deviations across models. Both deep-learning-based models were trained
on fundamentally different data (empirical paediatric scans for our MO U-Net vs synthetic
adult scans for SynthSR), and across all models, differences in output image contrast are shown
(Tow for MRR and MO U-Net vs Tiw for SynthSR), which may in turn impact partial-volume

effects at tissue boundaries.

A limitation of our study is that we only assess model performance on unseen subjects of the
same age and from the same scanning site. To fully assess the limits of our model, we would
run inference on ULF scans from subjects of varying ages and alternative sites, investigating
the magnitude of deviation from the training set that results in a sharp decline in model
performance. Additionally, including test subjects with pre-specified neurobiological
conditions/lesions would allow us to investigate whether using deep learning-based SR runs
the risk of failing to capture pathologies. This would provide insight as to whether a model
trained on normative images can be applied to subjects with potential pathologies, or if disease-

specific models need to be trained to ensure reliable SR outputs.

Furthermore, although the U-Net has proven to be the gold-standard for many deep-learning
applications to medical imaging (Kelly et al., 2022), the use of novel architectures such as
diffusion models or vision transformers may yield further improvements in quality of model
outputs. These methods have the potential to address critical limitations of previous techniques,
further enhancing overall realism in super-resolved images. Within the domain of various
medical image translation tasks, both diffusion models and vision transformers have been
shown to outperform CNN and GAN-based models in terms of SSIM and PSNR (Dalmaz et
al., 2021; Kim and Park, 2023). As such, future work will explore the use of such models.
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Conclusion

Ultra-low-field (ULF) imaging presents a potential paradigm-shift in neuroimaging, however
its ingress into widespread research and clinical use is impeded by limitations on image
resolution and quality. Here we demonstrate how the use of deep learning can aid in deriving
higher-resolution T2-weighted scans of healthy paediatric subjects from ULF scanners. We do
so by training our MO U-Net on paired ULF-HF scans using a combined voxel-wise and
perceptual loss, and demonstrate superior performance in comparison to alternative deep

learning and non-deep learning based methods for super-resolving paediatric scans.

Funding information

Artificial Intelligence Methods for Low Field MRI Enhancement, Bill and Melinda Gates
Foundation (INV- 032788). Wellcome Leap 1kD programme (The First 1000 Days)
[222076/Z/20/Z].

Conflict of interest

The authors report no significant financial conflicts of interest with respect to the subject matter
of this manuscript.

Code availability statement

All model training code, along with model weights, is available at:

https://github.com/levente-1/MO-U-Net.



https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

References

Abate, F., et al. (2024). "UNITY: A low-field magnetic resonance neuroimaging initiative to
characterize neurodevelopment in low and middle-income settings." Developmental
Cognitive Neuroscience 69: 101397

Arnold, T.C., Freeman, C.W., Litt, B. and Stein, J.M. (2023), Low-field MRI: Clinical
promise and challenges. J Magn Reson Imaging, 57: 25-44.

Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95—
113 10.1016/j.neuroimage.2007.07.007

Barkovich MJ, LiY, Desikan RS, Barkovich AJ, Xu D. Challenges in pediatric
neuroimaging. Neuroimage. 2019 Jan 15;185:793-801. doi:
10.1016/j.neuroimage.2018.04.044.

Billot, B., et al. (2023). "SynthSeg: Segmentation of brain MRI scans of any contrast and
resolution without retraining." Medical Image Analysis 86: 102789

Bui, T. D, et al. (2020). " 6-Month Infant Brain Mri Segmentation Guided by 24-Month Data
Using Cycle-Consistent Adversarial Networks." Proc IEEE Int Symp Biomed Imaging 2020

Campbell-Washburn, A. E., et al. (2019). "Opportunities in Interventional and Diagnostic
Imaging by Using High-Performance Low-Field-Strength MRI." Radiology 293(2): 384-393.

Cigek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O. (2016). 3D U-Net:
Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image
Computing and Computer-Assisted Intervention — MICCAI 2016. Springer, Cham.

Dalmaz, O., et al. (2021) ResViT: Residual vision transformers for multi-modal medical
image synthesis. arXiv:2106.16031 DOI: 10.48550/arXiv.2106.16031

Deoni SCL, O'Muircheartaigh J, Ljungberg E, Huentelman M, Williams SCR. Simultaneous
high-resolution T2-weighted imaging and quantitative T2 mapping at low magnetic field
strengths using a multiple TE and multi-orientation acquisition approach. Magn Reson Med.
2022; 88(3): 1273-1281. doi:10.1002/mrm.29273

Dong, C., Loy, C.C., He, K., Tang, X. (2014). Learning a Deep Convolutional Network for
Image Super-Resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer
Vision — ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8692. Springer,
Cham.

Dubois, J., Alison, M., Counsell, S.J., Hertz-Pannier, L., Hiippi, P.S. and Benders, M.J.N.L.
(2021), MRI of the Neonatal Brain: A Review of Methodological Challenges and

Neuroscientific Advances. J Magn Reson Imaging, 53: 1318-1343.
https://doi.org/10.1002/jmri.27192

Hassett, J., Carlson, H., Babwani, A., & Kirton, A. (2022). Bihemispheric developmental
alterations in basal ganglia volumes following unilateral perinatal stroke. Neurolmage:
Clinical, 35, 103143.


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Iglesias, J. E., Billot, B., Balbastre, Y., Tabari, A., Conklin, J., Gilberto Gonzalez, R., . . .
Fischl, B. (2021). Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes
from clinical MRI exams with scans of different orientation, resolution and contrast.
Neurolmage, 237, 118206.

Iglesias, J. E., et al. (2023). "Quantitative Brain Morphometry of Portable Low-Field-
Strength MRI Using Super-Resolution Machine Learning." Radiology 306(3): €220522.

Ilves, N., Ménnamaa, M., Laugesaar, R., Ilves, N., Loorits, D., Vaher, U., . . . Ilves, P.
(2022). Language lateralization and outcome in perinatal stroke patients with different
vascular types. Brain Lang, 228, 105108. doi:10.1016/j.band].2022.105108

Isensee F, Schell M, Tursunova I, Brugnara G, Bonekamp D, Neuberger U, Wick A,
Schlemmer HP, Heiland S, Wick W, Bendszus M, Maier-Hein KH, Kickingereder P.
Automated brain extraction of multi-sequence MRI using artificial neural networks. Hum
Brain Mapp. 2019; 1-13.

Islam, K. T., et al. (2023). "Improving portable low-field MRI image quality through image-
to-image translation using paired low- and high-field images." Sci Rep 13(1): 21183.

Isola, P., et al. (2016) Image-to-Image Translation with Conditional Adversarial Networks.
arXiv:1611.07004 DOI: 10.48550

Jalloul, M., et al. (2023). "MRI scarcity in low- and middle-income countries." NMR Biomed
36(12): e5022.

Jensen, S. K. G., Xie, W., Kumar, S., Haque, R., Petri, W. A., & Nelson, C. A., 3rd. (2021).
Associations of socioeconomic and other environmental factors with early brain development
in Bangladeshi infants and children. Dev Cogn Neurosci, 50, 100981.
doi:10.1016/j.dcn.2021.100981

Kelly, B.S., Judge, C., Bollard, S.M. et al. Radiology artificial intelligence: a systematic
review and evaluation of methods (RAISE). Eur Radiol 32, 7998-8007 (2022).
https://doi.org/10.1007/s00330-022-08784-6

Kim, J., Lee J. K., Lee, K. M. "Accurate Image Super-Resolution Using Very Deep
Convolutional Networks," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 1646-1654, doi:
10.1109/CVPR.2016.182.

Kim, J. and H. Park (2023) Adaptive Latent Diffusion Model for 3D Medical Image to Image
Translation: Multi-modal Magnetic Resonance Imaging Study. arXiv:2311.00265 DOI:
10.48550

Kingma, D.P., Ba, J., Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.LG]
(22 December 2014).

Klein, H. M. (2020). "Low-Field Magnetic Resonance Imaging." Rofo 192(6): 537-548.


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural
networks. Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1. Lake Tahoe, Nevada, Curran Associates Inc.: 1097-1105

Lariviere, S., Paquola, C., Park, By. et al. The ENIGMA Toolbox: multiscale neural
contextualization of multisite neuroimaging datasets. Nat Methods 18, 698—700 (2021).

Lau V, Xiao L, Zhao Y, et al. Pushing the limits of low-cost ultra-low-field MRI by dual-

acquisition deep learning 3D superresolution. Magn Reson Med. 2023; 90: 400-416.
doi: 10.1002/mrm.29642

Lawrence, I-Kuei Lin (1989). "A Concordance Correlation Coefficient to Evaluate
Reproducibility." Biometrics 45(1): 255-268.

Man, C., et al. (2023). "Deep learning enabled fast 3D brain MRI at 0.055 tesla." Science
Advances 9(38)

Nolen-Hoeksema, S. (2014). Abnormal psychology. New York, NY, McGraw-Hill Education.

Ogbole GI, Adeyomoye AO, Badu-Peprah A, Mensah Y, Nzeh DA. Survey of magnetic
resonance imaging availability in West Africa. Pan Afr Med J. 2018 Jul 31;30:240. doi:
10.11604/pam;.2018.30.240.14000

Oktay, O. et al. (2016). Multi-input Cardiac Image Super-Resolution Using Convolutional
Neural Networks. Medical Image Computing and Computer-Assisted Intervention - MICCAI
2016, Springer, Cham.

Padormo, F., et al. (2023). "In vivo T mapping of neonatal brain tissue at 64 mT." Magnetic
Resonance in Medicine 89(3): 1016-1025.

Pearson, K. (1895) Notes on Regression and Inheritance in the Case of Two Parents
Proceedings of the Royal Society of London, 58, 240-242.
https://doi.org/10.1098/rspl.1895.004 1

Perdue, K. L., Jensen, S. K. G., Kumar, S., Richards, J. E., Kakon, S. H., Haque, R, . . .
Nelson, C. A. (2019). Using functional near-infrared spectroscopy to assess social

information processing in poor urban Bangladeshi infants and toddlers. Dev Sci, 22(5),
€12839. doi:10.1111/desc.12839

Pham, C.-H., Tor-Diez, C., Meunier, H., Bednarek, N., Fablet, R., Passat, N., & Rousseau, F.
(2019). Multiscale brain MRI super-resolution using deep 3D convolutional networks.
Computerized Medical Imaging and Graphics, 77, 101647.

Reinke, A., et al. (2024). "Understanding metric-related pitfalls in image analysis validation."
Nature Methods 21(2): 182-194

Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted
Intervention — MICCALI 2015, Springer, Cham.


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Sarracanie, M., LaPierre, C. D., Salameh, N., Waddington, D. E. J., Witzel, T., & Rosen, M.
S. (2015). Low-Cost High-Performance MRI. Scientific Reports, 5(1), 15177.
doi:10.1038/srep15177

Shi, W. et al., "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-
Pixel Convolutional Neural Network," in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp. 1874-1883. doi:
10.1109/CVPR.2016.207

Simonyan, K. and A. Zisserman (2014) Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv:1409.1556 DOI: 10.48550

Vasa, F., et al. (2024). "Ultra-low-field brain MRI morphometry: test-retest reliability and
correspondence to high-field MRI." bioRxiv: 2024.2008.2014.607942

Wang, Z., et al. (2019) Deep Learning for Image Super-resolution: A Survey.
arXiv:1902.06068 doi: 10.48550

Wilcoxon, Frank (Dec 1945). "Individual comparisons by ranking methods". Biometrics
Bulletin. 1 (6): 80—83. d0i:10.2307/3001968

Zaitsev, M., et al. (2015). "Motion artifacts in MRI: A complex problem with many partial
solutions." J Magn Reson Imaging 42(4): 887-901

Zieff MR, Miles M, Mbale E et al. Characterizing developing executive functions in the first
1000 days in South Africa and Malawi: The Khula Study [version 1; peer review: awaiting
peer review]. Wellcome Open Res 2024, 9:157

Zhang, K., et al. (2022). "SOUP-GAN: Super-Resolution MRI Using Generative Adversarial
Networks." Tomography 8(2): 905-919

Zhang, R., et al. (2018) The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric. arXiv:1801.03924 DOI: 10.48550

Zhao, Y., et al. (2024). "Whole-body magnetic resonance imaging at 0.05 Tesla." Science
384(6696)

Zhou, Z., et al. (2022). "Super-resolution of brain tumor MRI images based on deep
learning." J Appl Clin Med Phys 23(11): e13758


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Information for:
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Subject A Subject B Subject C

Figure S3) Sample of subjects who were excluded from the training set. All subjects A, B and C exhibit significant imaging
artifacts that make them unsuitable for model training or inference.

Table S2) Demographic distribution across training, validation and test sets across all four folds.

Age Training set Validation set Test set
(months) Male Female Male Female Male Female
Fold 1 3 6 (14.3%) 6(14.3%) 1(14.3%) 1(143%) 0(0.0%) 1(14.3%)
6 17 (40.5%) 13 (30.9%) 3(42.8%) 2(28.6%) 3(42.8%) 3 (42.8%)
Fold 2 3 5(11.9%) 5(11.9%) 1(14.3%) 2(28.6%) 1(14.3%) 1(14.3%)
6 19 (45.3%) 13(30.9%) 2(28.6%) 2(28.6%) 2(28.6%) 3 (42.8%)
3 5(11.9%) 6(143%) 1(143%) 1(14.3%) 1(14.3%) 1(14.3%)
Fold 3 6 17 (40.5%) 14 (33.3%) 3(42.8%) 2(28.6%) 3(42.8%) 2 (28.6%)
3 5(11.9%) 6(143%) 1(143%) 1(14.3%) 1(14.3%) 1(14.3%)
Fold 4 6 16 (38.1%) 15(35.7%) 4 (57.1%) 1(14.3%) 3(42.8%) 2 (28.6%)
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Table S2) Image quality assessment of predictions from MO U-Nets trained on varying loss functions (L1, L2, L2 + LPIPS).
All models were trained for 1000 epochs on a subset of the data used in the final experiment

Loss function used NMSE (]) PSNR (1) SSIM (1)
L1 loss 0.0835 29.504 0.875
L2 loss 0.807 29.642 0.878
L2 + LPIPS loss 0.708 30.200 0.885
ULF scan L2 + LPIPS
(Axial) L1 loss L2 loss loss HF scan

Axial
view

Coronal
view

Sagittal
view

Figure S2) Model outputs from MO U-Nets trained on varying loss functions. Left to right: axial ULF scan, MO U-Net output
with L1 loss, L2 loss, L2 + LPIPS loss, ground-truth HF scan.
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Subject A Subject B

Volume  Segmentation Volume Segmentation

HF (snl:g 1)
MRR (sn'l: 2)
SynthSR (sn: 3)
MO U-Net (sliEeF 4)

Figure S3) Test subjects excluded from segmentation-based analyses, owing to poor SynthSeg outputs. A) Subject with acceptable
HF segmentation, but failed segmentations for all three SR outputs (MRR, SynthSR, and MO U-Net). B) Subject with failed HF
segmentation, preventing comparison to ground-truth. Both subjects excluded had scans taken at 3-months of age.

Table S3) Distribution of sex and age across test set. Row 1: total test subjects;, Row 2: test subjects for segmentation-based
analyses. where two subjects with failed segmentations were excluded,; Row 3: test subjects for image quality metrics
(NMSE, PSNR, SSIM), where three subjects with no Tyw HF scan were excluded

) Sex Age
Number of subjects Male Female 3-months 6-months
Total (N=28) 14 14 7 21
Segmentation (N=26) 13 13 5 21
Image quality (N=25) 13 12 6 19

Table §4) Median Dice overlap with segmentations from HF scans, across global tissue types. Scores are stratified
according to age group. 3-months (N=5) and 6-months (N=21). Both values are shown for ULF scans, MRR outputs,
SynthSR outputs and MO U-Net outputs

ULF (avg) MRR SynthSR MO U-Net
M 6M M 6M M 6M M 6M
GMC 0.553 0.635 0.726 0.719 0.657 0.654 0.726 0.742
GMS 0.054 0.585 0.752 0.828 0.748 0.847 0.843 0.864
WM 0.469 0.633 0.734 0.760 0.718 0.753 0.708 0.776
CSF 0.208 0.332 0.530 0.509 0.427 0.408 0.520 0.548
Average  0.321 0.546 0.686 0.704 0.638 0.666 0.699 0.732

Region
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Figure S4) Tissue-type-specific volume analysis between MRR outputs and ground-truth HF scans (light blue), SynthSR
outputs and ground-truth HF-scans (dark blue), and MO U-Net outputs and ground-truth HF scans (red). For each SR
method and tissue type, we display volume correlation (left) and Bland-Altman plot (right). Tissue types, from left to right,
top to bottom: cortical grey matter, subcortical grey matter, white matter, cerebrospinal fluid.


https://doi.org/10.1101/2024.02.16.580639
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580639; this version posted September 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table S5) Median Dice overlap with segmentations from HF scans, across subcortical regions. Columns 2-5: average of ULF
scans (axial, coronal and sagittal), MRR outputs, SynthSR outputs, MO U-Net outputs.

Region ULF (avg) MRR SynthSR MO U-Net
Accumbens 0.272 0.673 0.703 0.715
Amygdala 0.156 0.720 0.782 0.766
Caudate 0.412 0.747 0.735 0.803
Hippocampus 0.256 0.698 0.708 0.764
Pallidum 0.289 0.625 0.799 0.741
Putamen 0.456 0.781 0.819 0.838
Thalamus 0.579 0.872 0.870 0.906
Ventral DC 0.374 0.786 0.808 0.798
Average 0.349 0.738 0.778 0.791

Table S6) Wilcoxon signed-rank test applied to Dice scores of 26 test subjects, comparing outputs of MO U-Net to MRR, and
MO U-Net to SynthSR. For each comparison, the rank biserial correlation (RBC) and associated significance of the underlying
Wilcoxon signed-rank test are displayed. Analysis is centred on subcortical regions. FWR = 0.003125

. MO U-Net > MRR MO U-Net > SynthSR
Region RBC Sig. RBC Sig.
Accumbens 0.385 0.045 0.569 0.57
Amygdala 0.556 0.0060 0.037 0.44
Caudate 0.749 0.00021" 0.442 0.025

Hippocampus 0.943 <0.0001" 0.601 0.0031
Pallidum 0.778 0.00011" -0.413 0.97
Putamen 0.875 <0.0001" 0.162 0.24

Thalamus 0.726 0.00033" 0.675 0.00089"

Ventral DC 0.527 0.0088 0.265 0.12

Table S7) Median Dice overlap with segmentations from HF scans, across subcortical regions. Scores are stratified
according to age group. 3-months (N=35) and 6-months (N=21). Both values are shown for ULF scans, MRR outputs,
SynthSR outputs and MO U-Net outputs

ULF (avg) MRR SynthSR MO U-Net
3iM 6M 3iM 6M 3M 6M 3M 6M
Accumbens 0.010 0.313 0.518 0.694 0.667 0.716 0.648 0.723
Amygdala 0.0 0.301 0.441 0.721 0.671 0.783 0.664 0.774
Caudate 0.006 0.445 0.679 0.771 0.646 0.764 0.781 0.804
Hippocampus 0.0 0.320 0.385 0.703 0.512 0.729 0.559 0.778

Region

Pallidum 0.0 0.308 0.448 0.630 0.534 0.804 0.675 0.754
Putamen 0.010 0.515 0.690 0.781 0.735 0.833 0.804 0.841
Thalamus 0.0 0.654 0.806 0.875 0.806 0.876 0.904 0.910

Ventral DC 0.0 0.432 0.701 0.793 0.711 0.815 0.781 0.800
Average 0.003 0.411 0.584 0.746 0.660 0.790 0.727 0.798
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Table S8) Pearson’s r, Lin’s CCC, and mean estimated volume difference as calculated for each SR technique. MRR = multi-
resolution registration, SSR = SynthSR, MOU = multi-orientation U-Net

Pearson’s r Lin’s CCC Volume p A (cm®)

MRR SSR MOU MRR SSR MOU MRR SSR MOU
Accumbens  0.627  0.583  0.544 0.599 0.336  0.524 0.057 0.220 0.003
Amygdala 0.800 0.858 0.827 0.683 0.570 0.791 -0.238 0.439 -0.127
Caudate 0.839 0.775 0935 0.800 0490 0934 -0359 1.016 -0.047
Hippocampus 0.835 0.822  0.861 0.638 0408 0.860 -0.899 1.356 -0.056
Pallidum 0.806 0.784 0.807 0.486 0.712 0.594 -0.598 0.245 -0.439
Putamen 0.798 0.734 0.829 0.529 0.704 0.583 -1.193 -0.127 -1.004
Thalamus 0916 0.714 0918 0.839 0.649 0901 -0.721 0.350 -0.246
Ventral DC  0.840 0.790 0.770 0.705 0.649 0.688 -0.219 0.546 -0.332
Average 0.808 0.758 0.811 0.660 0.537 0.734 -0.521 0.506 -0.281

Region

Table S9) Image quality metrics (NMSE, PSNR, SSIM) for SR methods generating Tow scans: MRR and MO U-Net. Values
are obtained by comparing SR outputs with ground-truth HF scans. The analyses are conducted on all N=28 test subjects.

SR Method NMSE (]) PSNR (1) SSIM (1)
MRR 0.166 26.164 0.447
MO U-Net 0.068 30.527 0.901

Table S10) Image quality metrics (NMSE, PSNR, SSIM) for each SR method: MRR, SynthSR and MO U-Net. Scores are
stratified according to age group: 3-months (N=6) and 6-months (N=19)

SR NMSE () PSNR (1) SSIM ()
Method 3-month 6-month 3-month 6-month 3-month 6-month
MRR 0.126 0.175 27.770 26.357 0.494 0.438
SynthSR 0.277 0.954 24.032 20.539 0.878 0.870
MO U-Net 0.063 0.063 30.826 30.810 0.875 0.915

Table S11) Dice scores between HF segmentations and segmentations obtained from MO U-Net outputs, across subcortical
regions. MO U-Net scores are further stratified according to how many unique inputs the model received (A = axial, A/S =
axial + sagittal, A/C/S = axial + sagittal + coronal). For comparison with ULF scans, MRR outputs and SynthSR outputs, see
Table S5.

. MO U-Net
Region Axial Axial/Sagittal Axial/Coronal/Sagittal
Accumbens 0.707 0.717 0.715
Amygdala 0.724 0.765 0.766
Caudate 0.813 0.808 0.803
Hippocampus 0.738 0.744 0.764
Pallidum 0.713 0.728 0.741
Putamen 0.818 0.829 0.838
Thalamus 0.898 0.896 0.906
Ventral DC 0.785 0.801 0.798

Average 0.775 0.786 0.791
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Table S12) Portion of total subjects having completed three separate Tow ULF scans (axial, coronal and sagittal), compared
to those who additionally completed a Tiw axial scan.

Total subjects T,w Axial/Coronal/Sagittal Tiw Axial
82 63 35
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