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Abstract  
 
Owing to the high cost of modern MRI systems, their use in clinical care and 

neurodevelopmental research is limited to hospitals and universities in high income countries. 

Ultra-low-field systems with significantly lower scanning costs present a promising avenue 

towards global MRI accessibility, however their reduced SNR compared to 1.5 or 3T systems 

limits their applicability for research and clinical use.  In this paper, we describe a deep 

learning-based super-resolution approach to generate high-resolution isotropic T2-weighted 

scans from low-resolution paediatric input scans. We train a ‘multi-orientation U-Net’, which 

uses multiple low-resolution anisotropic images acquired in orthogonal orientations to 

construct a super-resolved output. Our approach exhibits improved quality of outputs compared 

to current state-of-the-art methods for super-resolution of ultra-low-field scans in paediatric 

populations. Crucially for paediatric development, our approach improves reconstruction of 

deep brain structures with the greatest improvement in volume estimates of the caudate, where 

our model improves upon the state-of-the-art in: linear correlation (r = 0.94 vs 0.84 using 

existing methods), exact agreement (Lin’s concordance correlation = 0.94 vs 0.80) and mean 

error (0.05 cm3 vs 0.36 cm3).  Our research serves as proof-of-principle of the viability of 

training deep-learning based super-resolution models for use in neurodevelopmental research 

and presents the first model trained exclusively on paired ultra-low-field and high-field data 

from infants.  
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1 Introduction  
 
Neuroimaging studies on infant and child populations have become increasingly vital in 

establishing the relationship between neurodevelopment and resultant cognitive functioning. 

Magnetic resonance imaging (MRI) has proven to be particularly essential in this endeavour, 

owing to its ability to provide insight into structural, functional and metabolic brain 

development, in addition to revealing pathologies pertaining to neurobiological disorders 

(Nolen-Hoeksema et al., 2014). Accessing these capabilities, however, is only possible by 

overcoming significant financial barriers: on top of the cost of a scanner itself (roughly 

$1,000,000 per Tesla; Arnold et al., 2023), the high field strength of existing systems requires 

facilities with electromagnetic shielding and specialised staffing. Furthermore, since most 

modern MRI systems use superconducting magnets, they require the use of cryogens, which 

themselves come with storage, transportation and maintenance costs (Sarracanie et al., 2015). 

Altogether, these expenses establish strict financial boundaries on neuroimaging studies and 

clinical work. Even in hospitals and universities within high-income countries (HICs), 

scanning costs ($500-$1000/hr per research scan) place a limit on the number of participants 

scanned and the duration of longitudinal research.  

 

More concerningly from a global health perspective, infrastructural costs severely limit MRI 

accessibility in low- and middle-income countries (LMICs). Evaluating MRI accessibility 

based on ratio of MRI units per million population, HICs such as Japan and the US boast 51.67 

and 38.96 units/million, respectively (Ogbole et al., 2018). Comparing these values with those 

of Nigeria and Ghana – which own 0.30 and 0.48 units/million, respectively – reflects a 

hundred-fold difference between HICs and LMICs (Jalloul et al., 2023). Consequently, our 

current understanding of neurodevelopment in such regions, where adversities pertaining to 

nutrition, sanitation and higher rates of infectious risk play a crucial role, is primarily based on 

psychometric measures or low-cost, functional imaging methods such as EEG or fNIRS 

(Perdue et al., 2019, Jensen et al., 2021).  

 

Ultra-low-field (ULF) imaging systems with magnetic field strengths ranging from 50 to 

100mT (e.g., the 64mT Hyperfine Swoop) present a potential solution to issues of access 

inequality (Sarracanie et al., 2015, Abate et al., 2024). Such systems rely on the use of large, 

permanent magnets instead of superconducting electromagnets and as such have significantly 

reduced component prices, reduced room requirements, and reduced costs for power, cooling 
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and maintenance compared to high-field (HF) imaging systems (Campbell-Washburn et al., 

2019). Unfortunately, these benefits are paired with a significantly diminished signal-to-noise 

ratio (SNR) (Klein, 2020), rendering image outputs sub-optimal for visual reading by 

radiologists or for a large portion of automated processing methods in currently available 

neuroimaging toolkits. Such processing methods usually require high-resolution MRI scans 

(1mm isotropic), whereas product sequences on the Hyperfine system yield a default spatial 

resolution of 1.5×1.5×5 mm in 3-6 minutes per image. Higher resolution images may be 

acquired with increased acquisition times (∼12–15 min for a single 2×2×2mm T2-weighted 

image), although this may decrease patient compliance and satisfaction and increase the risk of 

head motion, particularly in sensitive populations such as infants or elderly participants 

(Madan, 2018; Padormo et al., 2023). 

 

One technique that has found success in enhancing the SNR of ULF outputs is super-resolution 

(SR) reconstruction of a single image from multiple lower-resolution images, acquired in three 

orthogonal orientations (i.e., axial, sagittal, and coronal) (Deoni et al., 2022). This is carried 

out through repeated multi-resolution registration (MRR) of the scans using the Advanced 

Normalization Tools (ANTs) multivariate template construction command. Here, low-

resolution images are aligned using linear and diffeomorphic registration with symmetric 

normalization, outputting a final image with effective dimensions of 1.5×1.5×1.5mm (Figure 

1). Although this approach still entails a longer scanning session (up to ~18 min to acquire 

three scans), multiple shorter acquisitions may reduce the risk of head motion within each scan 

compared to a single higher-resolution acquisition. Furthermore, a single instance of head 

motion would only corrupt one of three scans instead of the whole higher-resolution scan. 
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An alternative approach involves the use of modern image translation methods based on 

convolutional neural networks (CNNs), which learn a transformation between a source image 

and a target image. A decade of research has gone into the use of CNNs for super-resolution, 

with architectures ranging in complexity from simple three-layer models (Dong et al., 2014) to 

twenty-layer models (Kim et al., 2016). In models tailored for medical image super-resolution, 

a similar variety in complexity and functionality is present (Oktay et al., 2016), (Pham et al., 

2019), however the U-Net (Ronneberger et al., 2015) has consistently presented itself as one 

of the most reliable architectures for use in a wide array of MRI image translation tasks (Kelly 

et al., 2022). The architecture consists of a contracting path to capture context and a symmetric 

expanding path that enables precise localization of biological structures. Through the 

contracting path, spatial information is normally lost, however skip connections between the 

two paths ensure feature reusability.  

 

In their standard form, super-resolution U-Nets train to minimise a voxel-wise loss between 

input and target images (such as L1 or L2). This ensures appropriate outputs by constraining 

Figure 1) Columns 1-3: non-isotropic Hyperfine scans of a 6-month-old subject (high-resolution plane highlighted with 
dashed blue lines); Column 4: isotropic output of MRR (highlighted in red) 
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voxel values of generated high-resolution images to be close to those of the ground truth. 

Unfortunately, such losses do not take perceptual quality or textures into account, resulting in 

outputs that are often perceptually unsatisfying and lack high frequency details (Wang, 2019; 

Zhang, 2018). As such, more recent super-resolution models tend to supplement traditional 

voxel-wise loss functions via the addition of other losses, for instance a Dice loss (Iglesias et 

al., 2021, 2023) or an adversarial loss (Zhou, 2022).  

 

In our paper, we employ an alternative loss function that relies on the internal activations of 

deep CNNs trained on high-level image classification tasks. The computer vision community 

has noted the effectiveness of such deep CNNs and related features in their correspondence to 

human perceptual judgments (Zhang, 2018). As such, by adding a loss term targeted on 

extracted image features, we can encourage feature similarity between predicted and real 

images and, in turn, enhance perceptual similarity. Unlike a Dice loss, this operates directly on 

the level of image features, and unlike an adversarial loss, it allows us to improve perceptual 

quality without the computational burden of training a classifier in addition to our generator. 

The latter factor is crucial for our training needs, for it frees us to feed three separate 3D 

volumes into the generator at each training step, as inspired by the MRR approach of combining 

three ULF scans into a single high-resolution output. Here we present the Multi-Orientation 

(MO) U-Net, which produces a synthetic 1mm isotropic scan from three non-isotropic ULF 

input scans. To the best of our knowledge, deep learning-based SR of ultra-low-field brain MRI 

has only been investigated in adult populations, where in many cases models are being trained 

on partially or even entirely synthetic datasets. As such, we propose the first U-Net trained on 

real, paired ULF-HF data from a paediatric population, and demonstrate its ability to surpass 

alternative SR techniques.   

 
2 Methods 
 
2.1 Imaging data  
 
MRI data used in this paper stems from a study investigating the neurodevelopment of 

executive function over the first 3 years of life in participants based in South Africa and Malawi 

(Zieff et al., 2024, Abate et al., 2024). Images used here included subjects from South Africa 

exclusively, at ages of either 3- or 6-months, with no known neurological abnormalities. A total 

of 82 subjects attended two scanning sessions (ULF and HF); all subjects had HF T2w scans 

acquired using a Siemens 3T scanner (Erlangen, DE) and had ULF T2w scans acquired using 
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a Hyperfine Swoop 64mT system (Guildford, CT), with high in-plane resolution along three 

orthogonal planes (axial, sagittal, coronal). Of these subjects, 63 successfully completed all 

four scanning protocols (one HF and three ULF scans). Pre-processing involved rigid 

registration between all HF scans and a custom age-specific HF template, and each subject’s 

ULF with the corresponding pre-registered HF scan (Ashburner, 2007). Following this, we 

skull-stripped HF and ULF scans separately using HD-BET, a deep-learning tool for MRI brain 

extraction (Isensee et al., 2019). Seven subjects were excluded due to major artifacts being 

present in at least one of their ULF scans (see supplementary Figure S1 for details), thus our 

final sample size consisted of N=56 subjects (26 Male, 30 Female), of which 16 were scanned 

at 3-months and 40 at 6-months. Each subject had three ULF (64mT; 1.5×1.5×5 mm) and one 

HF (3T; 1×1×1×mm) T2-weighted scans.  

 

To maximise the data available from a single subject, we fed all three ULF scans into our 

network as input (Hyperfine scans acquired in three orthogonal orientations), thus each 

matched ‘pair’ of ULF-HF scans included three orthogonal ULF scans and one HF scan. We 

split these pairs across 4 folds with a training/validation/test split of 42/7/7. As such, 7 subjects 

were used in each fold to monitor validation loss, and inference was carried out on a total of 

28 subjects (7 subjects x 4 folds). Age and gender stratification was applied for each split, 

across each of the 4 folds (see supplementary Table S1 for demographic details on splits).   

 
 
2.2 CNN architecture and training protocol 
 

Our MO U-Net builds on the architecture of the 3D U-Net (Çiçek et al., 2016). It has three 

input channels jointly flowing into three encoding levels, each consisting of a convolution with 

a 3×3×3 kernel (allowing the model to capture fine-grained details while reducing parameter 

requirements), group normalisation (speeding up convergence by preventing internal covariate 

shift), a rectified-linear unit (ReLU) activation and maxpooling. The first layer has 64 features, 

with the number of features doubling after each maxpooling and halving after each upsampling. 

The final layer uses a linear activation to produce the final image output. All input and output 

images were resized (and padded where necessary) to have a uniform size of 160, 160, 160.   

The model is implemented using PyTorch. 
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Our MO U-Net was trained across all 4 folds until convergence (1500-2000 epochs) using the 

Adam optimizer (Kingma, 2014) with a learning rate of 10−4. The average training time was 

41.2 hours using an Nvidia RTX 3090 GPU. ULF images were normalised and scaled to 1-mm 

isotropic resolution, ensuring that input and output resolutions match. Augmentation of images 

was carried out on the fly, with random affine transform or random elastic deformation applied 

to both ULF and HF data with pre-set probability (p = 0.5). Batch size was set to 1, as feeding 

in more than one triplet of ULF images to our model at each training step exceeded our GPU 

capacity. After training, weights of the model were frozen and inference was carried out (∼1 

second on an Nvidia RTX 3090 GPU and ∼30 seconds on a modern CPU).  

 

 

 

 
 
 
 

Figure 2) Model training: Multi-orientation U-Net (in blue) with three input channels and one output channel, allowing a 
transformation from three ULF scans to one SR image. Outputs of this model, along with ground-truth high-field images, are 
fed into a frozen AlexNet for feature extraction. The final loss is calculated by comparing model outputs with corresponding 
high-field scans, both at the level of full images and their feature space 
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2.3 Loss function 
 

To capture anatomical similarity between predicted and ground truth images, the training of 

our network minimises the L2-norm with respect to the neural network parameters θ: 

 

ℒ!"#𝜃; 𝑌', 𝑌) = ‖𝑦 −	𝑦/‖"" (1) 

 

where ŷ denotes the model output and y denotes the target image. Although necessary for pair-

wise image-translation, previous work has noted that training exclusively using a voxel-wise 

loss can diminish the quality of outputs and result in excessively smooth SR images (Zhang et 

al., 2022). We support this finding with our own analyses (see supplementary Table S2 and 

Figure S2). As such, we add a perceptual loss to enhance similarity in features between input 

and target images by employing the Learned Perceptual Image Patch Similarity (LPIPS) 

(Zhang et al., 2018). This metric quantifies the similarity between features from two separate 

images, as extracted by a pre-trained classifier. For this, we use AlexNet (Krizhevsky et al., 

2012). Although other classifiers can be used for feature extraction, including the much larger 

VGG (Simonyan et al., 2014), we employ AlexNet it allows for more efficient training and has 

been shown to provide deep embeddings which agree equally well with humans (Zhang et al., 

2018). The formula for this distance metrics is shown below: 
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where ẑ denotes the features of prediction ŷ and z denotes the features of ground-truth y 

extracted from the first 5 layers of AlexNet, with ẑl, zl ∈	ℝHxWxC for each layer l. Features ẑ and 

z are first normalised across the channel dimension then scaled across the same dimension by               

wl ∈	ℝC	(a hyperparameter set by the original authors of LPIPS), after which an L2 norm is 

computed between the two values. The difference is averaged spatially then summed across 

layers to produce the final output. To train our MO U-Net, we combine equations 1 & 2, 

yielding the following loss:    
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where λ is a hyperparameter set at λ=100, inspired by previous image-to-image translation work 

(Isola et al., 2016). Importantly, AlexNet was trained to classify 2D images, therefore random, 

paired slices Ŷs and Ys are taken from the set of predictions and ground-truth images Ŷ and Y 

to compute an average LPIPS score across all slices S. To allow for multiple slices to be 

assessed across all volumetric dimensions while minimising the number of computations 

needed to be performed at each training step, we set S to 6. The full training scheme is depicted 

in Figure 2. 

 

2.4 Related work and model evaluation 
 

Although the literature surrounding SR of medical images is vast, research centered specifically 

on SR of ULF scans is comparatively scarce, largely owing to the relatively recent emergence 

of such imaging systems. As discussed in the introduction, the use of multi-resolution 

registration by Deoni et al. (2022) stands as the state-of-the-art in the space of non-deep 

learning-based SR of ULF scans. SynthSR emerged as the first publicly available CNN-based 

SR toolkit for use on images of any contrast and resolution (Iglesias et al., 2021), with a 

subsequent dedicated ultra-low-field model that transforms non-isotropic T1w or T2w images 

to 1mm isotropic T1w scans (Iglesias et al., 2023). LoHiResGAN soon followed, introducing 

a model based on the Pix2Pix architecture to generate synthetic 1mm isotropic scans from non-

isotropic inputs acquired at 64mT (similar to our model) (Islam, 2023). Additional work was 

also carried out on alternative resolutions and field strengths using a model based on multiscale 

feature extraction and spatial attention (Lau, 2023). This was used to generate synthetic 1.5mm 

isotropic scans from 3mm isotropic inputs acquired at 55mT (Man, 2023) and 1mm isotropic 

scans from 3mm isotropic inputs acquired at 50mT (Zhao, 2024). For comparative analyses, 

we restrict ourselves to techniques designed for an identical image translation task as ours 

(MRR) or of any field-strength and resolution (SynthSR version 2.0).  

 

As such, in addition to assessing the extent to which our MO U-Net enhances ULF inputs, we 

compared its performance against MRR and SynthSR using the metrics described below: 
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2.4.1 Segmentation-based metrics 

The quality of model outputs relative to ground-truth HF images was evaluated via Dice 

overlap of segmented brain regions within subjects and tissue volume correlations across 

subjects. Both segmentation outputs and volume estimations were obtained using SynthSeg 

(Billot, 2023), a segmentation toolkit that is agnostic to contrast and resolution. This feature of 

SynthSeg allowed us to include SynthSR in our comparative analyses, which exclusively 

outputs T1w scans regardless of the contrast of the input. In addition to segmenting cortical 

grey matter (GMC), subcortical grey matter (GMS), white matter (WM) and cerebrospinal fluid 

(CSF), we segmented the following deep brain structures: accumbens, amygdala, pallidum, 

hippocampus, caudate, putamen, thalamus, and ventral diencephalon. Considering that one of 

the primary applications of successful SR techniques would be use in ULF-based 

neurodevelopmental research in LMIC settings, selecting regions that play an important role in 

neurodevelopmental outcomes is particularly beneficial to underscore the value of our 

technique. These deep grey matter nuclei are known to be affected in conditions such as 

hypoxic-ischemic encephalopathy (HIE) (Hassett et al., 2022) or perinatal stroke (Ilves et al., 

2022), such that damage is associated with worse neurodevelopmental outcomes. All 

segmentations were visually inspected prior to running analyses, with two test subjects being 

removed due to failed segmentations (see supplementary Figure S3 for more details on the 

segmentations and supplementary Table S3 for demographics after exclusion). As such, a final 

sample of N=26 subjects was used for segmentation-based analyses. 

 

2.4.2 Intensity differentiation and image quality assessment 

We additionally assessed model performance by directly comparing the output images. We 

first investigated whether the separation between grey matter and white matter was enhanced 

via our MO U-Net, based on the difference in intensities between these two tissue types. This 

was done by applying grey matter and white matter segmentations from high-field scans as 

masks to other images (ULF scans, MRR outputs, MO U-Net outputs and HF scans), followed 

by calculating the difference in median voxel intensities between these two regions. Since this 

metric was used to assess whether GM and WM separation in super-resolved images more 

closely matched that of high-field T2w scans, the metric was not calculated for SynthSR. 

 

Image quality was additionally evaluated using normalized mean squared error (NMSE), peak 

signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between predicted images 

and corresponding high-field scans. Once again, the T1w SynthSR outputs could not be directly 
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compared to the T2w outputs of MRR or MO U-Net. Nevertheless, we were able to calculate 

these metrics for SynthSR outputs on a subset of the 28 test subjects who also had a T1w 3T 

scan acquired as part of their scanning protocol (N=25). See supplementary Table S3 for details 

on the demographic distribution within this subset. 

 

2.4.3 Performance with reduced input 

Using our trained MO U-Net, we additionally assessed performance with varying numbers of 

input scans. More specifically, we assessed model outputs when the MO U-Net only received 

an axial scan or axial and sagittal scans (as opposed to all three orientations, with which it was 

originally trained). Since our trained model requires three input images, inference with missing 

scans was achieved by cloning the axial scan either once or twice, depending on whether one 

or two distinct inputs were provided. As such, we ran inference with each subject a total of 

three times, with the following combination of scans: 1) axial, axial, axial; 2) axial, axial, 

sagittal; 3) axial, sagittal, coronal. The choice of prioritising scans in the order of axial > sagittal 

> coronal was done based on the scanning protocol used, which involved scanning participants 

in this order.  

 

2.5 Statistical methods  
 
We compared the within-subject Dice overlap of segmentations between pairs of models using 

the Wilcoxon signed-rank tests to compare the medians (Wilcoxon, 1945). Tissue volume 

correlations across participants were assessed using both Pearson’s correlation coefficient 

(Pearson, 1895), determining linear correlation, and Lin’s concordance correlation coefficient 

(Lin, 1989), determining exact agreement, or alignment with the x = y identity line. Accuracy 

of volume estimations was additionally assessed by reporting the mean difference in volumes 

obtained from high-field segmentations and SR outputs. The choice of analyses is based on 

previous work investigating correspondence between ULF and HF scanners (Váša et al., 2024). 
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3 Results 
 
3.1 Segmentations 

 
Segmentations obtained from MO U-Net predictions significantly improved compared to those 

obtained from ULF scans (Figure 3). This is highlighted by an increased Dice overlap of 

segmented MO U-Net predictions and HF scans compared to Dice overlap of segmented ULF 

and HF scans across all brain four global tissue types (Figure 4). Comparing Dice overlap of 

model predictions and HF scans to that of MRR outputs and HF scans, median Dice scores 

increased on average by 0.023. The greatest difference was seen in subcortical grey matter (Δ 

Dice = 0.034) and the lowest in white matter (Δ Dice = 0.015). In comparison to SynthSR 

outputs, median Dice scores of MO U-Net outputs rose on average by 0.067, with the greatest 

difference in CSF and lowest in white matter (Δ Dice = 0.138 and 0.007, respectively). Across 

age groups, we note that Dice overlap of all images assessed was higher in 6-month-old subjects 

than 3-month-old subjects (see supplementary Table S4). Significance testing using the 

Figure 3) Input images (rows 1 & 3) and corresponding SynthSeg segmentations (rows 2 & 4) from a single test subject. 
Columns, from left to right: sagittal ULF scan, MRR output, SynthSR output, MO U-Net output, ground-truth HF scan. Note: 
the figure displays SynthSeg outputs including cortical parcellation, however these were merged into single a cortical label 
(cortical grey matter) for segmentation-based analyses. 
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Wilcoxon signed-rank test revealed significant improvement in MO U-Net Dice scores for all 

global tissue types relative to MRR, and all tissue types except subcortical grey matter (GM) 

when compared to SynthSR, given a family-wise error rate (FWER) of 0.00625 (Table 1). 

Furthermore, volume-based analysis of global tissue types revealed a reduction in mean error 

and increase in Lin’s Concordance Correlation Coefficient (CCC) for both cortical and 

subcortical grey matter. Full details of volumetric analysis can be viewed in supplementary 

Figure S4.  

 

 

Table 1) Wilcoxon signed-rank test applied to Dice scores of 26 test subjects, comparing outputs of MO U-Net to MRR, and 
MO U-Net to SynthSR. For each comparison, the rank biserial correlation (RBC) and associated significance of the 
underlying Wilcoxon signed-rank test are displayed. Analysis is centred on global tissue types. 

Region 
MO U-Net > MRR MO U-Net > SynthSR 

RBC Sig. RBC Sig. 
Grey Matter (cortical) 0.778 0.00011* 0.978 <0.0001* 

Grey Matter (subcortical) 0.852 <0.0001* 0.493 0.014 

White Matter 0.556 0.0060* 0.652 0.0013* 

Cerebrospinal Fluid 0.704 0.00052* 0.994 <0.0001* 

 

When examining individual subcortical regions, we similarly observed increased Dice overlap 

of MO U-Net predictions compared to ULF scans across all structures. The same pattern was 

seen in comparison with MRR outputs, and in five out of eight regions in comparison to 

SynthSR outputs. For brevity, the Dice scores of subcortical regions showing minimum, 

median, and maximum MO U-Net performance are depicted in Figure 5, however a full 

summary table can be found in supplementary Table S5, with significance testing in Table S6 

and age stratification in Table S7. When examining subcortical volumes, we observed that the 

MO U-Net produced outputs with similar linear correlation to high-field volumes as other SR 

techniques, however we found that the MO U-Net deviated from ground-truth subcortical 

Figure 4) Dice coefficients between HF scan and the original Hyperfine scan (average of axial, coronal, and sagittal), MRR 
output, SynthSR output, and MO U-Net output, across tissue types. From left to right: cortical grey matter, subcortical grey 
matter, white matter and cerebrospinal fluid.  
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volumes by the smallest margin. This is evidenced by a mean difference between high-field 

and predicted volumes (across regions) of -0.281cm3, compared to -0.521cm3 and 0.506cm3 

for MRR and SynthSR, respectively, and mean Lin’s CCC of 0.73, compared to 0.66 and 0.57 

for MRR and SynthSR, respectively. Subcortical regions with minimum, median, and 

maximum correlation values are depicted in Figure 6, with a full summary provided in 

supplementary Table S8. 

 

Figure 5) Dice coefficients between HF scan and the original ULF scan (average of axial, coronal, and sagittal), MRR output, 
SynthSR output, and MO U-Net output, across subcortical regions. From left to right: accumbens (minimum), amygdala 
(median) and thalamus (maximum). 

Figure 6) Region-specific volume analysis between MRR outputs and ground-truth HF scans (light blue), SynthSR outputs 
and ground-truth HF-scans (dark blue), and MO U-Net outputs and ground-truth HF scans (red). For each SR method and 
region, we display volume correlation (left box) and Bland-Altman plot (right box). Regions, from left to right, include: 
accumbens (minimum r), amygdala (median r) and caudate (maximum r). 
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3.2 Intensity differentiation and image quality assessment  

We next compared the quality of all output T2w images. Predictions from the MO U-Net 

yielded visually superior images compared to both original ULF scans and MRR outputs; MO 

U-Net outputs appeared less noisy and captured fine details more accurately (Figure 7). The 

enhanced quality of outputs is further evidenced by greater GM/WM intensity differentiation, 

with a percentage increase in median difference between GM and WM intensities relative to 

ULF scans of 39.4% for the MO U-Net compared to 12.7% for MRR (Table 2).   

 

When assessing how well each SR technique’s output matched their corresponding high-field 

scan (i.e. T2w high-field for MRR and MO U-Net vs T1w high-field for SynthSR), MO U-Net 

predictions yielded the lowest NMSE, highest PSNR, and highest SSIM (Table 3). As stated 

in the Methods section, these analyses were conducted on a subset of N=25 test subjects who 

had a T1w HF scan in addition to their T2w HF scan, however analyses on all 28 T2w scans for 

MRR and MO U-Net outputs (excluding SynthSR) yielded nearly identical results (see 

supplementary Table S9). Additionally, repeating the same analyses after age stratification 

indicated that our MO U-Net had greater consistency in output quality on 3-month-old subjects 

and 6-month-old subjects than either MRR or SynthSR (see supplementary Table S10). 

Figure 7) Model outputs from a single test subject. Left to right: raw sagittal ULF scan, MRR output, MO U-Net output 
and ground-truth HF scan. 
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Table 2) Absolute difference in median grey matter and median white matter intensity in ULF scans, MRR outputs, MO U-Net 
outputs, and ground-truth high-field scans. The percentage difference in intensity differentiation from ULF ((X-ULF)/ULF) is 
also shown. The analyses are conducted on N=28 test subjects. 

Intensity 
measure ULF (average) MRR MO U-Net HF 

Median difference 
(GM vs WM)  0.0213 0.0240 0.0297 0.0285 

% difference 
relative to ULF 0.00 ±12.7 ±39.4 ±33.7 

 

 
Table 3) Image quality metrics (NMSE, PSNR, SSIM) for each SR method: MRR, SynthSR and MO U-Net. Values are obtained 
by comparing SR outputs with ground-truth HF scans. The analyses are conducted on N=25 test subjects. 

SR Method NMSE (↓) PSNR (↑) SSIM (↑) 
MRR 0.162 26.696 0.451 

SynthSR 0.742 21.377 0.872 
MO U-Net 0.063 30.814 0.906 

 

 

3.3 Performance with reduced number of scans  
Finally, we assessed how our pre-trained model performed using a reduced number of inputs. 

We observed that the MO U-Net performed best given all three inputs (axial, coronal and 

sagittal), with average Dice score rising from 0.723 to 0.730 from one input to all three in 

global tissue-types (Table 4), and from 0.775 to 791 across individual subcortical regions 

(supplementary Table S11). Moreover, we found that regardless of the number of distinct input 

scans used, the MO U-Net yielded the highest Dice scores across all global tissue types, 

outperforming both SynthSR and MRR even when using only a single axial scan from each 

subject for inference.  

 
Table 4) Tissue-specific Dice scores between HF segmentations and segmentations obtained from ULF scans, MRR outputs, 
SynthSR outputs and MO U-Net outputs. MO U-Net scores are further stratified according to how many unique inputs the 
model received (A = axial, A/S = axial + sagittal, A/C/S = axial + sagittal + coronal). 

Region ULF (avg) MRR SynthSR 
MO U-Net 

A A/S A/C/S 
GMC 0.615 0.725 0.655 0.732 0.742 0.741 
GMS 0.493 0.827 0.836 0.842 0.857 0.861 
WM 0.633 0.757 0.753 0.765 0.768 0.772 
CSF 0.331 0.520 0.409 0.554 0.535 0.547 

Average 0.517 0.707 0.663 0.723 0.726 0.730 
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4 Discussion 
 
Obtaining accurate, high-resolution MRI scans in paediatric populations is essential for studies 

of neurodevelopment and for diagnosis of neurological conditions. In LMICs where MRI 

accessibility is significantly reduced, this may be achieved via the use of ULF scanners, 

supplemented with techniques to improve scan quality. Here we demonstrate improved results 

compared to previous efforts (Deoni et al., 2022; Iglesias et al., 2023) using our MO U-Net for 

SR of ULF paediatric images. We present greater Dice overlap of segmentations and increased 

agreement of corresponding volumes across most brain regions, as well as improved scores on 

quality metrics of underlying images.  

 

By setting the MO U-Net to have three input channels for each of three separate ULF scans, 

our model is designed to maximise the amount of anatomical data available from a single 

subject. As such, our model shows peak performance when all three inputs are provided, 

however Dice scores from model outputs with varying numbers of unique input scans indicate 

that a single input is sufficient to produce outputs that outperform other techniques. Tolerance 

to long scanning times is low in infants (Barkovich et al., 2019), thus successfully completing 

three separate 3-6 minute-scanning sessions is often infeasible. As such, having a model that 

can reconstruct an image from just one ULF scan has major practical benefits. An alternative 

approach would involve modifying our architecture to have one full encoding branch for each 

input image, where these separate encodings are then combined before they enter the expanding 

path (Lau et al 2023). This would encourage distinct, image-specific encodings, which may 

further maximise the information extracted from each scan, however it would impede the 

applicability of the model to scenarios with a reduced number of scans. A further alternative to 

our current method would be to utilise multiple contrasts as opposed to multiple orientations 

(i.e. to train a model using axial T1w and axial T2w ULF scans as opposed to axial, coronal and 

sagittal T2w ULF scans), as differing contrast may afford a greater benefit. In our study we 

opted for multiple orientations, as this allowed for a straightforward comparison with MRR 

and allowed us to make the most use of a dataset where a large portion of subjects completed 

three T2w ULF scans and comparatively few completed a T1w ULF scan (see supplementary 

Table S12). Finally, models could be trained on single-orientation input scans. Both multi-

contrast and single-scan models will be a compelling avenue for further work. 
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Given the demographic of the dataset we used, our model manages to tackle a particularly 

difficult image translation problem. Owing to differing water and fat content in the developing 

brain compared to adults, alterations in signal intensities in newborns and infants are seen with 

both T1- and T2-weighted anatomical MRI. In particular, the first 6 months of life are 

characterised by a reversal of the normal adult contrast (T1-weighted: lower WM intensity than 

GM; T2-weighted: higher WM intensity than GM) (Dubois et al., 2021), resulting in an 

“isointense” phase at the 6-month mark where the intensity distributions of GM and WM show 

strong overlapping (Bui et al., 2020). These neurodevelopmental changes amplify the drastic 

difference in contrast between HF and ULF MRI, already present in both T1w and T2w scans. 

Despite these additional challenges compared to adolescent or adult MRI datasets, we succeed 

in producing output images with significantly enhanced quality, where GM/WM differentiation 

closely resembles that of 3T HF scans. 

 

The lack of contrast in paediatric ULF MRI scans additionally complicates segmentation-based 

analyses. We used SynthSeg (Billot et al., 2023) as it is the only widely available toolkit 

agnostic to contrast and resolution, allowing direct comparison with non-isotropic T2w ULF 

scans, 1.5mm T2w isotropic MRR outputs, as well as 1mm isotropic T1w SynthSR outputs. 

Moreover, SynthSeg has shown excellent performance on ultra-low-field scans of healthy 

adults (Váša et al., 2024). However, as SynthSeg was trained on adult data, its application to 

paediatric images runs the risk of producing unexpected outputs. In particular, we observe that 

Dice scores from 3-month-old subjects are consistently lower than those of 6-month-old 

subjects, across all regions tested. This may be due to our MO U-Net being trained primarily 

on 6-month data, however seeing as this pattern is not replicated when viewing image quality 

metrics that do not rely on a segmentation (NMSE, PSNR, SSIM), it may rather be an effect of 

inconsistent segmentations by SynthSeg on an age-group whose brain scans differ significantly 

from those of adults. Consequently, a more accurate approach to testing our model performance 

would involve the use of a segmentation model trained specifically on paediatric scans. Given 

such a reliable segmentation scheme, we could further expand upon our performance metrics 

with additional boundary-based measures (such as the Hausdorff distance or average 

symmetric surface distance; Reinke et al., 2024). Nevertheless, we demonstrate that the outputs 

of our MO U-Net result in higher-quality segmentations of all four global tissue types, and 

most subcortical regions, than either MRR or SynthSR. 
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We note that volumes derived from segmentations of all super-resolved outputs show 

deviations from reference standard estimates derived from HF scans. Both MRR and our MO 

U-Net tend to underestimate the volumes of GM and WM, including individual subcortical 

regions, and overestimate the volume of CSF (in line with recent work on adults; Váša et al., 

2024). Conversely, SynthSR tends to underestimate cortical GM volumes and overestimate 

subcortical GM volumes. However, volume estimates derived from our MO U-Net show 

smaller deviations than other models in most evaluated regions. Multiple factors may 

contribute to deviations of super-resolved volume estimates from HF scans, as well as 

differences in these deviations across models. Both deep-learning-based models were trained 

on fundamentally different data (empirical paediatric scans for our MO U-Net vs synthetic 

adult scans for SynthSR), and across all models, differences in output image contrast are shown 

(T2w for MRR and MO U-Net vs T1w for SynthSR), which may in turn impact partial-volume 

effects at tissue boundaries. 

 

A limitation of our study is that we only assess model performance on unseen subjects of the 

same age and from the same scanning site. To fully assess the limits of our model, we would 

run inference on ULF scans from subjects of varying ages and alternative sites, investigating 

the magnitude of deviation from the training set that results in a sharp decline in model 

performance. Additionally, including test subjects with pre-specified neurobiological 

conditions/lesions would allow us to investigate whether using deep learning-based SR runs 

the risk of failing to capture pathologies. This would provide insight as to whether a model 

trained on normative images can be applied to subjects with potential pathologies, or if disease-

specific models need to be trained to ensure reliable SR outputs.  

 

Furthermore, although the U-Net has proven to be the gold-standard for many deep-learning 

applications to medical imaging (Kelly et al., 2022), the use of novel architectures such as 

diffusion models or vision transformers may yield further improvements in quality of model 

outputs. These methods have the potential to address critical limitations of previous techniques, 

further enhancing overall realism in super-resolved images. Within the domain of various 

medical image translation tasks, both diffusion models and vision transformers have been 

shown to outperform CNN and GAN-based models in terms of SSIM and PSNR (Dalmaz et 

al., 2021; Kim and Park, 2023). As such, future work will explore the use of such models. 
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Conclusion 
 
Ultra-low-field (ULF) imaging presents a potential paradigm-shift in neuroimaging, however 

its ingress into widespread research and clinical use is impeded by limitations on image 

resolution and quality. Here we demonstrate how the use of deep learning can aid in deriving 

higher-resolution T2-weighted scans of healthy paediatric subjects from ULF scanners. We do 

so by training our MO U-Net on paired ULF-HF scans using a combined voxel-wise and 

perceptual loss, and demonstrate superior performance in comparison to alternative deep 

learning and non-deep learning based methods for super-resolving paediatric scans. 
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Table S2) Demographic distribution across training, validation and test sets across all four folds.  

 Age 
(months) 

Training set Validation set Test set 
 Male Female Male Female Male Female 

Fold 1 
3 6 (14.3%) 6 (14.3%) 1 (14.3%) 1 (14.3%) 0 (0.0%) 1 (14.3%) 
6 17 (40.5%) 13 (30.9%) 3 (42.8%) 2 (28.6%) 3 (42.8%) 3 (42.8%) 

Fold 2 
3 5 (11.9%) 5 (11.9%) 1 (14.3%) 2 (28.6%) 1 (14.3%) 1 (14.3%) 
6 19 (45.3%) 13 (30.9%) 2 (28.6%) 2 (28.6%) 2 (28.6%) 3 (42.8%) 

Fold 3 
3 5 (11.9%) 6 (14.3%) 1 (14.3%) 1 (14.3%) 1 (14.3%) 1 (14.3%) 
6 17 (40.5%) 14 (33.3%) 3 (42.8%) 2 (28.6%) 3 (42.8%) 2 (28.6%) 

Fold 4 
3 5 (11.9%) 6 (14.3%) 1 (14.3%) 1 (14.3%) 1 (14.3%) 1 (14.3%) 
6 16 (38.1%) 15 (35.7%) 4 (57.1%) 1 (14.3%) 3 (42.8%) 2 (28.6%) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S3) Sample of subjects who were excluded from the training set. All subjects A, B and C exhibit significant imaging 
artifacts that make them unsuitable for model training or inference. 
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Table S2) Image quality assessment of predictions from MO U-Nets trained on varying loss functions (L1, L2, L2 + LPIPS). 
All models were trained for 1000 epochs on a subset of the data used in the final experiment  

Loss function used NMSE (↓) PSNR (↑) SSIM (↑) 
L1 loss 0.0835 29.504 0.875 
L2 loss 0.807 29.642 0.878 

L2 + LPIPS loss 0.708 30.200 0.885 
 
 

 
 
 
 
 

Figure S2) Model outputs from MO U-Nets trained on varying loss functions. Left to right: axial ULF scan, MO U-Net output 
with L1 loss, L2 loss, L2 + LPIPS loss, ground-truth HF scan. 
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Table S3) Distribution of sex and age across test set. Row 1: total test subjects; Row 2: test subjects for segmentation-based 
analyses. where two subjects with failed segmentations were excluded; Row 3: test subjects for image quality metrics 
(NMSE, PSNR, SSIM), where three subjects with no T1w HF scan were excluded 

Number of subjects 
Sex Age 

Male Female 3-months 6-months 
Total (N=28) 14 14 7 21 

Segmentation (N=26) 13 13 5 21 
Image quality (N=25) 13 12 6 19 

 
 
Table S4) Median Dice overlap with segmentations from HF scans, across global tissue types. Scores are stratified 
according to age group: 3-months (N=5) and 6-months (N=21). Both values are shown for ULF scans, MRR outputs, 
SynthSR outputs and MO U-Net outputs 

Region 
ULF (avg) MRR SynthSR MO U-Net 

3M 6M 3M 6M 3M 6M 3M 6M 
GMC 0.553 0.635 0.726 0.719 0.657 0.654 0.726 0.742 
GMS 0.054 0.585 0.752 0.828 0.748 0.847 0.843 0.864 
WM 0.469 0.633 0.734 0.760 0.718 0.753 0.708 0.776 
CSF 0.208 0.332 0.530 0.509 0.427 0.408 0.520 0.548 

Average 0.321 0.546 0.686 0.704 0.638 0.666 0.699 0.732 
 

Figure S3) Test subjects excluded from segmentation-based analyses, owing to poor SynthSeg outputs. A) Subject with acceptable 
HF segmentation, but failed segmentations for all three SR outputs (MRR, SynthSR, and MO U-Net). B) Subject with failed HF 
segmentation, preventing comparison to ground-truth. Both subjects excluded had scans taken at 3-months of age. 
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Figure S4) Tissue-type-specific volume analysis between MRR outputs and ground-truth HF scans (light blue), SynthSR 
outputs and ground-truth HF-scans (dark blue), and MO U-Net outputs and ground-truth HF scans (red). For each SR 
method and tissue type, we display volume correlation (left) and Bland-Altman plot (right). Tissue types, from left to right, 
top to bottom: cortical grey matter, subcortical grey matter, white matter, cerebrospinal fluid.  
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Table S5) Median Dice overlap with segmentations from HF scans, across subcortical regions. Columns 2-5: average of ULF 
scans (axial, coronal and sagittal), MRR outputs, SynthSR outputs, MO U-Net outputs. 

Region ULF (avg) MRR SynthSR MO U-Net 
Accumbens 0.272 0.673 0.703 0.715 
Amygdala 0.156 0.720 0.782 0.766 
Caudate 0.412 0.747 0.735 0.803 

Hippocampus 0.256 0.698 0.708 0.764 
Pallidum 0.289 0.625 0.799 0.741 
Putamen 0.456 0.781 0.819 0.838 
Thalamus 0.579 0.872 0.870 0.906 

Ventral DC 0.374 0.786 0.808 0.798 
Average 0.349 0.738 0.778 0.791 

 
 
 
Table S6) Wilcoxon signed-rank test applied to Dice scores of 26 test subjects, comparing outputs of MO U-Net to MRR, and 
MO U-Net to SynthSR. For each comparison, the rank biserial correlation (RBC) and associated significance of the underlying 
Wilcoxon signed-rank test are displayed. Analysis is centred on subcortical regions. FWR = 0.003125 

Region 
MO U-Net > MRR MO U-Net > SynthSR 

RBC Sig. RBC Sig. 
Accumbens 0.385 0.045 0.569 0.57 

Amygdala 0.556 0.0060 0.037 0.44 

Caudate 0.749 0.00021* 0.442 0.025 

Hippocampus 0.943 <0.0001* 0.601 0.0031 

Pallidum 0.778 0.00011* -0.413 0.97 
Putamen 0.875 <0.0001* 0.162 0.24 
Thalamus 0.726 0.00033* 0.675 0.00089* 

Ventral DC 0.527 0.0088 0.265 0.12 
 
 
Table S7) Median Dice overlap with segmentations from HF scans, across subcortical regions. Scores are stratified 
according to age group: 3-months (N=5) and 6-months (N=21). Both values are shown for ULF scans, MRR outputs, 
SynthSR outputs and MO U-Net outputs 

Region 
ULF (avg) MRR SynthSR MO U-Net 

3M 6M 3M 6M 3M 6M 3M 6M 
Accumbens 0.010 0.313 0.518 0.694 0.667 0.716 0.648 0.723 
Amygdala 0.0 0.301 0.441 0.721 0.671 0.783 0.664 0.774 
Caudate 0.006 0.445 0.679 0.771 0.646 0.764 0.781 0.804 

Hippocampus 0.0 0.320 0.385 0.703 0.512 0.729 0.559 0.778 
Pallidum 0.0 0.308 0.448 0.630 0.534 0.804 0.675 0.754 
Putamen 0.010 0.515 0.690 0.781 0.735 0.833 0.804 0.841 
Thalamus 0.0 0.654 0.806 0.875 0.806 0.876 0.904 0.910 

Ventral DC 0.0 0.432 0.701 0.793 0.711 0.815 0.781 0.800 
Average 0.003 0.411 0.584 0.746 0.660 0.790 0.727 0.798 
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Table S8) Pearson’s r, Lin’s CCC, and mean estimated volume difference as calculated for each SR technique. MRR = multi-
resolution registration, SSR = SynthSR, MOU = multi-orientation U-Net 

Region 
Pearson’s r Lin’s CCC Volume μ Δ (cm3) 

MRR SSR MOU MRR SSR MOU MRR SSR MOU 
Accumbens 0.627 0.583 0.544 0.599 0.336 0.524 0.057 0.220 0.003 
Amygdala 0.800 0.858 0.827 0.683 0.570 0.791 -0.238 0.439 -0.127 
Caudate 0.839 0.775 0.935 0.800 0.490 0.934 -0.359 1.016 -0.047 

Hippocampus 0.835 0.822 0.861 0.638 0.408 0.860 -0.899 1.356 -0.056 
Pallidum 0.806 0.784 0.807 0.486 0.712 0.594 -0.598 0.245 -0.439 
Putamen 0.798 0.734 0.829 0.529 0.704 0.583 -1.193 -0.127 -1.004 
Thalamus 0.916 0.714 0.918 0.839 0.649 0.901 -0.721 0.350 -0.246 

Ventral DC 0.840 0.790 0.770 0.705 0.649 0.688 -0.219 0.546 -0.332 
Average 0.808 0.758 0.811 0.660 0.537 0.734 -0.521 0.506 -0.281 

 
 
 
Table S9) Image quality metrics (NMSE, PSNR, SSIM) for SR methods generating T2w scans: MRR and MO U-Net. Values 
are obtained by comparing SR outputs with ground-truth HF scans. The analyses are conducted on all N=28 test subjects. 

SR Method NMSE (↓) PSNR (↑) SSIM (↑) 
MRR 0.166 26.164 0.447 

MO U-Net 0.068 30.527 0.901 
 
 
Table S10) Image quality metrics (NMSE, PSNR, SSIM) for each SR method: MRR, SynthSR and MO U-Net. Scores are 
stratified according to age group: 3-months (N=6) and 6-months (N=19) 

SR 
Method 

NMSE (↓) PSNR (↑) SSIM (↑) 
3-month 6-month 3-month 6-month 3-month 6-month 

MRR 0.126 0.175 27.770 26.357 0.494 0.438 
SynthSR 0.277 0.954 24.032 20.539 0.878 0.870 

MO U-Net 0.063 0.063 30.826 30.810 0.875 0.915 
 
 
Table S11) Dice scores between HF segmentations and segmentations obtained from MO U-Net outputs, across subcortical 
regions. MO U-Net scores are further stratified according to how many unique inputs the model received (A = axial, A/S = 
axial + sagittal, A/C/S = axial + sagittal + coronal). For comparison with ULF scans, MRR outputs and SynthSR outputs, see 
Table S5. 

Region 
MO U-Net 

Axial Axial/Sagittal Axial/Coronal/Sagittal 
Accumbens 0.707 0.717 0.715 
Amygdala 0.724 0.765 0.766 
Caudate 0.813 0.808 0.803 

Hippocampus 0.738 0.744 0.764 
Pallidum 0.713 0.728 0.741 
Putamen 0.818 0.829 0.838 
Thalamus 0.898 0.896 0.906 

Ventral DC 0.785 0.801 0.798 
Average 0.775 0.786 0.791 
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Table S12) Portion of total subjects having completed three separate T2w ULF scans (axial, coronal and sagittal), compared 
to those who additionally completed a T1w axial scan. 

Total subjects T2w Axial/Coronal/Sagittal T1w Axial 
82 63 35 
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