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ABSTRACT 20 

Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, 21 

latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals 22 

resist tuberculin skin test (TST) and interferon gamma release assay (IGRA) conversion (RSTR), 23 

which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we 24 

compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact 25 

cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. In 26 

contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. 27 

Consistent with previous transcriptional findings in this cohort, differential methylation was 28 

enriched in lipid and cholesterol associated pathways including in the genes APOC3, KCNQ1, 29 

and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with 30 

cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling 31 

pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN 32 

stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor 33 

cohort. Moreover, serum-derived HDL from RSTR had elevated ABCA1-mediated cholesterol 34 

efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA 35 

conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate 36 

early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms. 37 

 38 

IMPORTANCE 39 

Tuberculosis (TB) remains an enduring global health challenge with millions of deaths and new 40 

cases each year. Despite recent advances in TB treatment, we lack an effective vaccine or a 41 
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durable cure. While heavy exposure to Mycobacterium tuberculosis often results in latent TB 42 

latent infection (LTBI), subpopulations exist who are either resistant to infection or contain Mtb 43 

with IFNγ-independent mechanisms not indicative of LTBI. These resisters provide an 44 

opportunity to investigate mechanisms of TB disease and discover novel therapeutic targets. 45 

Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household 46 

contact cohort. We identify methylation signatures in host lipid and cholesterol pathways with 47 

potential relevance to early TB clearance before the sustained IFN responses indicative of LTBI. 48 

This adds to a growing body of literature linking TB disease outcomes to host lipids.  49 

 50 

INTRODUCTION 51 

Tuberculosis (TB) remains one of the leading causes of single-agent infectious disease death 52 

worldwide with over 1 in 1000 people developing new TB and 1.4 million deaths annually (1). 53 

Individuals infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB, exhibit a 54 

range of clinical phenotypes from latent Mtb infection (LTBI) to pulmonary TB disease. LTBI, 55 

defined as a positive tuberculin skin test (TST) or interferon (IFN)-γ release assay (IGRA) with no 56 

clinical or radiographic evidence of TB disease, describes as much as a quarter of the world’s 57 

population (2). Some individuals resist TST/IGRA conversion (RSTR) despite prolonged and high-58 

level Mtb exposure (3–6). Many factors likely contribute to resistance to TST/IGRA conversion 59 

including genetics, previous Mycobacterium infections, lung function, and others (7). We and 60 

others previously found differences in immunologic profiles of RSTR and LTBI subjects (5), 61 

including transcriptional signatures in monocytes (8, 9). Further investigation of RSTR 62 
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populations may yield novel insights into host responses to Mtb and identify IFNγ-independent 63 

correlates of protection or targets for TB therapeutics. 64 

 65 

Epigenetic mechanisms may regulate transcriptional responses and contribute to RSTR 66 

mechanisms. Methylation has been associated with the risk of LTBI conversion (10, 11), anti-67 

mycobacterial activity (12–14), and response to Bacille Calmette-Guérin (BCG), a vaccine for TB 68 

disease in children (15). As one of Mtb’s first targets in the lung, macrophages are poised to 69 

accomplish early Mtb clearance through cell intrinsic microbicidal pathways or by priming IFNγ-70 

independent cellular responses, both of which may operative in the absence of TST/IGRA 71 

conversion (16, 17). Some macrophage responses to Mtb infection in vitro are modulated 72 

through methylation (18), and monocyte responses to BCG have been associated with 73 

chromatin remodeling (19). We also previously found that histone deacetylases (HDAC) were 74 

differentially expressed in RSTR monocytes compared to LTBI in a Ugandan household contact 75 

study (20) and that an HDAC3 inhibitor modulated macrophage signaling during Mtb infection 76 

(21). Together, these studies suggest that epigenetic “trained immunity” may regulate Mtb 77 

clearance without TST/IGRA conversion. 78 

 79 

In this study, we further characterize immune pathways in a Ugandan RSTR cohort consisting of 80 

household contacts of pulmonary TB cases who remain TST/IGRA-negative over 8 - 10 years (3, 81 

22). Genome-wide methylation and chromatin accessibility were assessed in unstimulated RSTR 82 

and LTBI monocytes. Orthogonal to RSTR transcriptional signatures identified previously (8, 9), 83 
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we identify methylation signatures in lipid and cholesterol pathways with potential relevance to 84 

IFN responses and macrophage function during Mtb infection. 85 

 86 

RESULTS 87 

RSTR methylation differs in lipid and cholesterol associated genes compared to LTBI. We 88 

examined chromatin accessibility and methylation in monocytes from RSTR and LTBI individuals 89 

(Table 1). RSTR and LTBI groups did not differ by sex, age, body mass index (BMI), BCG 90 

vaccination scar, TB exposure score at enrollment (3), or relatedness as measured by total first- 91 

and third-degree or closer relationships between each individual and all other individuals in the 92 

dataset (P > 0.05). All participants were HIV negative. 93 

 94 

Epigenetic signals were tested using a linear mixed effects model for RSTR vs LTBI corrected for 95 

age, sex, and genetic kinship (Figure S1). Two differentially accessible regions (DAR) and 174 96 

differentially methylated probes (DMP) were identified between RSTR and LTBI at FDR < 0.2 97 

(Figure 1 A,B, Table S1). DMP were then used to define 63 differentially methylated regions 98 

(DMR) (FDR < 1E-70) (Figure 1C) each containing two to seven probes (Table S1). In total, 44 of 99 

the 63 DMR contained at least one DMP site (Table S1). Significant DAR annotated to one gene 100 

(CAMK1D) and an intergenic region. DMP annotated to 125 genes and DMR to 44 genes. 101 

Significant epigenetic sites included 40 DMPs and 18 DMRs annotated to promoter regions 102 

within 1500 bp of a transcription start site (TSS1500) (Figure S2). Together, these data suggest 103 

that RSTR and LTBI monocytes contain distinct epigenetic profiles long after their initial Mtb 104 

exposure. 105 
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 106 

To assess for connections among the methylation genes, we used hypergeometric mean 107 

pathway enrichment analysis with Broad MSigDB gene-sets (23). DMR genes were enriched in 108 

11 gene ontology (GO) pathways (FDR < 0.2 and k/K > 0.04, Table S2). No Hallmark gene-sets 109 

were significantly enriched, and neither database was enriched within DMP genes. The most 110 

highly enriched GO gene-sets for DMR were associated with high-density lipoprotein (HDL) 111 

remodeling, lipid export, fatty acid biosynthesis, and Hippo signaling (Figure 2A). Nine DMRs 112 

annotated to 8 unique genes (APOC3, CIT, KCNQ1, MCM2, PER3, PLA2G3, RPTOR, SHANK2) 113 

drove significant enrichments (Figure 2B, Table S3). 114 

 115 

Among genes enriched in fatty acid, lipid, and HDL pathways (Figure 3A,B), APOC3, KCNQ1, and 116 

PLA2G3 each contained one DMR in their TSS1500 region. APOC3 had consistently higher 117 

methylation while PLA2G3 had consistently lower methylation as well as a significant DMP site 118 

(asterisk) in RSTR compared to LTBI (Figure 3A). In contrast, KCNQ1 had discordant DMR 119 

methylation and was driven by a single DMP site with higher methylation in RSTR (asterisk, 120 

Figure 3A). Among Hippo signaling associated genes (Figure 3C,D), CIT contained one TSS1500 121 

DMR driven by a single DMP site with higher methylation in RSTR compared to LTBI (asterisk, 122 

Figure 3C). SHANK2 contained two intronic DMRs both with consistently lower methylation in 123 

RSTR compared to LTBI (Figure 3C,D). Together, these data suggest that methylation signatures 124 

differentiate RSTR and LTBI monocytes with profiles related to lipid and cholesterol processes. 125 

 126 
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Utilizing a previously published transcriptomics study of this same cohort (9), we next 127 

investigated the impacts of Mtb infection on gene expression related to methylation signatures. 128 

Among lipid and HDL-associated genes identified in the methylation analysis (Figure 2), APOC3 129 

and PLA2G3 were significantly upregulated while KCNQ1 was downregulated in response to 130 

Mtb infection in monocytes (Figure 3E). For Hippo signaling genes, CIT was upregulated and 131 

SHANK2 was downregulated after Mtb infection (FDR < 0.05) (Figure 3F). None of these 132 

selected genes had differential expression between RSTR and LTBI groups (FDR > 0.2) (Figure 133 

3E,F). Gene-set enrichment analysis (GSEA) further revealed that the lipid export gene-set was 134 

upregulated by Mtb infection in both RSTR and LTBI monocytes with the highest expression 135 

among Mtb-infected RSTR monocytes (P < 0.05, Figure 4A, Table S4). While GSEA suggested 136 

Hippo signaling was not significantly impacted by Mtb infection (FDR > 0.05), RSTR Mtb-infected 137 

monocytes had higher Hippo signaling gene expression compared to LTBI (FDR < 0.05, Figure 138 

4A, Table S4). Thus, methylation signatures in uninfected monocytes correlate with Mtb-139 

dependent gene expression patterns that distinguish RSTR from LTBI.  140 

 141 

Interferon-specific lipid transcriptional responses in MDM. Given that RSTR and LTBI 142 

phenotypes are defined by Mtb-specific IFNγ responses, we next explored IFN-dependent gene 143 

expression in pathways associated with methylation. We looked for overlapping enrichment 144 

between methylation associated gene-sets described above and the transcriptional responses 145 

of an independent healthy cohort’s MDMs to Type I and Type II interferons (24). Among the 11 146 

methylation-enriched GO gene-sets, lipid export was significantly up-regulated by IFNα8 147 

stimulation in healthy MDMs (P < 0.05, Figure 4B, Table S4). We then utilized the STRING 148 
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protein-protein interaction network to visualize all genes in the GO lipid export gene-set and 149 

determine overlap between methylation and transcriptional signatures (Figure 4C). The leading-150 

edge genes for each enrichment analysis were colored to identify genes with differential 151 

methylation in RSTR (DMR gene) that likely drive expression changes in RSTR compared to LTBI 152 

(RSTR), in response to Mtb infection (Mtb), and/or in response to IFN stimulation (IFNα8, IFNγ, 153 

IFN other). As seen in the STRING network (Figure 4C), IFNα8 enrichment was driven by 13 154 

leading-edge genes that mostly overlapped with leading-edge genes in the non-significant 155 

interferon stimulations (12/13, Figure 4D). This MDM IFNα8 leading-edge also overlapped with 156 

leading-edge genes for lipid export in response to Mtb (8/13) and RSTR compared to LTBI in 157 

Mtb infected monocytes (3/13). Together, these data suggest that epigenetic programming 158 

may impact lipid export pathways that lead to differences in RSTR and LTBI responses to Mtb 159 

infection and may be modulated by IFN induced responses. 160 

 161 

In addition, the methylation-enriched Hippo signaling gene-set, which contributes to 162 

cholesterol homeostasis (25), was up-regulated by IFNγ (P < 0.05, Figure 4B). As visualized in 163 

the STRING network (Figure 4D), Hippo signaling in MDMs had 14 leading-edge genes that 164 

mostly overlapped with nonsignificant IFN stimulations (12/14) and somewhat overlapped with 165 

the RSTR compared to LTBI leading-edge in Mtb infected monocytes (3/13) (Figure 4D). Overall, 166 

these data indicate that epigenetically programmed pathways related to Hippo and cholesterol 167 

may be impacted by IFNγ induced responses that define RSTR and LTBI phenotypes.  168 

 169 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.02.27.582348doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Cholesterol efflux capacity of HDL differs between RSTR and LTBI. To examine lipid-dependent 170 

mechanisms of RSTR clearance of Mtb, we next measured serum HDL particle concentrations 171 

and sizes as well as cholesterol efflux capacity (CEC) of serum HDL from RSTR and LTBI 172 

individuals. Neither HDL particle concentrations nor sizes (xsHDL to xlHDL) differed between 173 

unstimulated RSTR and LTBI serum (Figure S3, Table S5, FDR > 0.2). RSTR and LTBI serum HDL 174 

had similar total CEC with cAMP activation to stimulate efflux in mouse J774 macrophages (6.1 175 

± 1.9 %, P > 0.05, Figure 5A, Table S5). In contrast, ABCA1-specific CEC in BHK cells was higher 176 

with RSTR serum HDL compared to LTBI (Δ LTBI = 6.2 ± 2.1 %, Δ RSTR = 7.5 ± 2.8 %, P = 0.02) 177 

with no differences in unstimulated cells (Figure 5B, Table S5). Moreover, investigation of the 178 

previously published transcriptomics study of this same cohort (9) revealed differential 179 

expression of ABCA1 in monocytes upon Mtb infection with RSTR displaying significantly higher 180 

induction compared to LTBI (Figure 5C). Together, the complimentary effects of increased CEC 181 

and ABCA1 may reduce intracellular cholesterol levels during infection and contribute to IFNγ-182 

independent Mtb control in RSTR. 183 

 184 

DISCUSSION 185 

We assessed monocyte methylation and chromatin accessibility signatures in latent 186 

tuberculosis infection (LTBI) and IGRA/TST resistant individuals (RSTR). We found differential 187 

methylation in genes related to high-density lipoprotein (HDL) remodeling, lipid export, and 188 

fatty acid metabolism. In addition, ABCA1-mediated HDL cholesterol efflux capacity (CEC) was 189 

higher in RSTR compared to LTBI. These results contribute to the growing body of literature 190 
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supporting the importance of host lipid and fatty acid metabolism in Mtb infection and disease 191 

progression (8, 26). 192 

 193 

RSTR had distinct methylation patterns compared to LTBI in genes associated with fatty acid 194 

metabolism and lipid transport. These genes included the phospholipase PLA2G3 (27) and 195 

lipase repressor APOC3 (28), which associate with HDL and impact intracellular lipid availability. 196 

Specifically, an overabundance of APOC3 may reduce HDL-mediated CEC, potentially through 197 

competitive binding to the scavenger receptor SCARB1 (29). In addition, the lipid-mediated 198 

voltage-gated potassium channel KCNQ1 contained methylation signatures in RSTR. Several 199 

KCNQ1 mutations are associated with plasma lipid accumulation (30), and KCNQ1’s antisense 200 

lncRNA, KCNQ1OT1, is associated with reduced CEC and increased lipid accumulation in 201 

macrophages specifically (31). These lipase and lipid transport activities impact free fatty acid 202 

(FFA) availability and contribute to the accumulation of lipids. This can lead to lipid-laden, or 203 

foamy, macrophages which are a permissive environment for Mtb persistence (32–34). In fact, 204 

PLA2G3 directly promotes foamy macrophage accumulation in mice (27). The importance of 205 

FFAs in the RSTR phenotype is further supported by previous work in this Ugandan as well as an 206 

independent South African cohort, where gene-sets associated with FFA metabolism were 207 

more highly expressed in unstimulated RSTR monocytes compared to LTBI (35). Finally, lipid 208 

transport after Mtb infection may be further regulated by IFN signaling, a defining feature of 209 

RSTR, as indicated by upregulation of lipid export gene expression in response to Mtb infection 210 

in RSTR monocytes and to IFNα8 in monocyte-derived macrophages (MDMs). Thus, differences 211 

in RSTR methylation in FFA metabolism and lipid transport genes correlate with transcriptional 212 
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signatures and suggest that epigenetic programming may control lipid accumulation, thus 213 

ultimately preventing Mtb persistence. 214 

 215 

The RSTR phenotype may be additionally mediated by cholesterol as indicated by the previously 216 

discussed lipid-associated genes (PLA2G3, APOC3, KCNQ1) as well as additional methylation hits 217 

related to Hippo signaling (CIT, SHANK2). Cholesterol represents an important fatty acid for Mtb 218 

as it is a preferred carbon source (32, 34) and contributes to macrophage responses to Mtb 219 

including membrane lipid rafts permissive to Mtb uptake (36), modulation of cellular function, 220 

and development of foamy macrophages (32, 33, 37, 38). Hippo signaling is involved in 221 

pleiotropic activities related to cell proliferation, differentiation, and survival (25) including in 222 

macrophages (39). Among these functions, Hippo signaling regulates cholesterol levels through 223 

sterol regulatory element-binding proteins (SREBPs) (25). We previously identified enrichments 224 

in IFNγ signaling that discriminated LTBI from RSTR monocytes (8, 9), an expected finding based 225 

on categoric IGRA responses (3, 22). Paradoxically, Hippo signaling expression was increased 226 

with IFNγ stimulation in healthy MDMs but associated with Mtb-infected RSTR monocytes. This 227 

suggests that Hippo signaling is activated among RSTR and may provide protection against Mtb 228 

infection in the absence of IFNγ (3, 22). We further investigated RSTR links to cellular 229 

cholesterol by measuring CEC. RSTR serum HDL resulted in higher ABCA1-mediated cholesterol 230 

efflux compared to LTBI, thus supporting that RSTR are better able to control intracellular 231 

cholesterol accumulation. Together, these findings support a hypothesis that Mtb growth is 232 

restricted among RSTR monocytes due to enhanced CEC that leads to decreased intracellular
 233 
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(40) or membrane (36) cholesterol with CEC potentially regulated by ABCA1 and/or Mtb-234 

induced Hippo signaling as a result of specific methylation signatures.  235 

 236 

Our study has several limitations. The peripheral blood monocytes investigated in this study 237 

represent an important cell population relevant to TB disease. However, epigenetic profiles in 238 

lung resident cell populations such as alveolar macrophages may reveal additional markers of 239 

the RSTR phenotype. Additionally, while methylation is known to alter gene expression, the 240 

impacts of hyper- vs hypomethylation are not clear for gene expression directionality or 241 

association with disease (41, 42). Therefore, a more complete analysis of RSTR with paired 242 

methylation and gene expression in Mtb-infected cells is needed to elucidate the impacts of 243 

methylation on Mtb-relevant gene expression. This design may also reveal differences in 244 

chromatin accessibility not captured in the current dataset from uninfected cells. While 245 

methylation remains relatively stable over time, changes can occur on the time scale of years to 246 

decades (43). This RSTR cohort was defined by long-term follow-up spanning up to 10 years. 247 

Thus, the epigenetic markers of this stringently defined RSTR phenotype that was sampled long 248 

after documented exposure may not fully capture mechanisms relevant to Mtb clearance at the 249 

time of exposure. Finally, these findings are based on a single RSTR cohort, and epigenetic 250 

inquiry into additional cohorts with varied RSTR definitions is needed to confirm findings 251 

applicable to a larger population.  252 

 253 

Overall, these results indicate that RSTR have distinct epigenetic programming related to lipid 254 

and cholesterol transport in monocytes. Differentially methylated genes in RSTR and LTBI likely 255 
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lead to differences in lipid accumulation in monocytes and this, in turn, may alter Mtb 256 

outcomes and contribute to IFNγ independent control of Mtb in RSTR. Together with previous 257 

work in this cohort (8, 9, 44), this study supports the role of lipid and fatty acid metabolism in 258 

defining the Ugandan RSTR cohort as well as provides novel targets for the development of TB 259 

treatment. 260 

 261 

METHODS 262 

Cohort. Individuals with culture-positive pulmonary tuberculosis (TB) were recruited as part of 263 

the Kawempe Community Health Study in Kampala, Uganda from 2002 to 2012 as previously 264 

described (3, 22). Household contacts of index cases were initially followed for 2 years with 265 

serial tuberculin skin test (TST) monitoring (22). A subset of individuals were retraced from 266 

2014 and 2017 and re-assessed by TST as well as IFNγ release assays (IGRA) for another 2 years 267 

(3). Individuals were classified as concordant negative resisters (RSTR) or concordant positive 268 

latent tuberculosis infection (LTBI). All participants were at least 15 years old at the time of 269 

retracing, HIV-negative, and gave written, informed consent, approved by the institutional 270 

review boards of their associated institution. Cryopreserved peripheral blood mononuclear cells 271 

(PBMC) and plasma from a subset of retraced individuals were used here. 272 

 273 

Cell culture and DNA extraction. Cryopreserved PBMCs were thawed, washed, and 274 

resuspended at 2E6 cells/mL in RPMI-10 supplemented with M-CSF (50 ng/mL), then rested 275 

overnight in 6-well non-TC treated dishes. CD14+/CD16+ monocytes were isolated by negative 276 

selection magnetic bead column purification (Pan Monocyte Isolation Kit, Miltenyi Biotec). For 277 
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chromatin accessibility (ATAC-seq), 5x10E4 monocytes were removed and lysed in resuspension 278 

buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2) plus 0.1% NP40, 0.1% Tween-20, and 279 

0.01% digitonin. Cells were lysed on ice for 3 minutes and then washed in resuspension buffer 280 

plus 0.1% Tween-20. Nuclei were centrifuged for 10 min at 500xg and 4°C. Supernatant was 281 

removed and nuclei were resuspended in 50 μL of transposition mix (Tagment DNA Buffer, 0.1% 282 

Tween-20, 0.05% digitonin, 2.5 µL Tagment DNA Enzyme). Transposition reactions were 283 

incubated for 30 minutes at 37°C with shaking at 10E3 RPM. DNA fragments were purified with 284 

MinElute Reaction kit according to the manufacturer’s instructions (Qiagen). For methylation, 285 

monocytes were plated at 5x10E5 per well in RPMI-10 supplemented with M-CSF. After 24 286 

hours, media was removed, and genomic DNA was isolated using Quick-gDNA MiniPrep kit 287 

according to the manufacturer’s instructions (Zymo Research). 288 

 289 

Chromatin accessibility. DNA from unstimulated monocytes was amplified by PCR for 5 cycles 290 

with indexing primer and barcoded primers. Amplicons were purified with the Agencourt 291 

AMPure XP Purification Kit (Beckman Coulter) and sequenced using 50 bp paired-end 292 

Tn5 transposase-accessible chromatin sequencing (ATAC-seq) on a NovaSeq6000. Sequence 293 

quality was assessed using FastQC (v0.11.8 (45)), and sequencing adapters were removed using 294 

AdapterRemoval (v2.3.1 (46)). Reads were aligned to the human genome (GRCh38) using STAR 295 

(v2.7.5 (47)), and alignments were assessed with Picard (v2.33.3 (48)) and samtools (v1.10 (49)). 296 

Peaks were called from alignments using Genrich (v0.6 (50)) with PCR duplicates removed and 297 

using the default ATAC-seq mode. Further data cleaning was completed in R (v4.0.2 (51)). 298 

Consensus peaks across samples were determined using ChIPQC (v1.24.1 (52)). Blacklisted 299 
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(5421 (53)), mitochondrial (1), and rare peaks (32537 present in < 10% of samples) were 300 

removed. Nucleosome-free reads in peaks were quantified with Rsubread (v2.2.4 (54)) and 301 

filtered to peaks on autosomal chromosomes with > 0.1 counts per million (CPM) in at least 302 

10% of samples. This resulted in 40919 peaks and 1.3 million ± 1.1 million s.d. reads per sample. 303 

Reads were TMM normalized with edgeR (v3.30.3 (55)) and log2 CPM normalized with limma 304 

(v3.44.3 (56)). Peaks were annotated to the human genome using ChIPseeker (v1.24.0 (57)) and 305 

the UCSC known gene track for GRCh38 (58). 306 

 307 

Methylation. DNA from unstimulated monocytes was bisulfate treated using the EZ-96 DNA 308 

Methylation kit (Zymo Research). Bisulfite conversion was confirmed by PCR using Universal 309 

Methylated Human DNA Standard with hMLH1 Primers (Zymo Research). Converted DNA was 310 

then applied to an Illumina Infinium MethylationEPIC850 BeadChip (865918 probes) and 311 

sequenced on a NovaSeq6000. Data cleaning and analysis were performed using ChAMP 312 

(v2.18.3 (59)) in R (51). Probes were filtered (59)to remove poor-quality (23907), non-CpG 313 

(2860), XY chromosome (16424), and SNP adjacent probes (94347). Beta values for the 314 

remaining 728380 probes were normalized using functional normalization, chip bias was 315 

removed using Combat, and values were log2 transformed to M values. Probes were annotated 316 

to the human genome (hg19) within ChAMP and ported to GRCh38 (60).  317 

 318 

Kinship. Kinship was determined as previously described (9). Briefly, genotypes were 319 

determined using the Illumina MEGA
EX

 array or Infinium OmniExpress BeadChip as previously 320 

reported (44). In PLINK2 (61), SNPs present in both arrays were filtered by Hardy-Weinberg 321 
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Equilibrium (P < 1x10E-6), minor allele frequency (MAF > 0.05), call rate (> 0.95), and linkage 322 

disequilibrium (LD R
2
 < 0.1 in 50 bp windows with a 5 bp slide). Pairwise kinship was calculated 323 

using the robust King method for identity-by-descent (IBD, SNPRelate v1.22.0 (62)) and a 324 

genetic relationship matrix (GRM, GENESIS v2.18.0 (63)) calculated from these 63812 filtered 325 

SNPs. 326 

 327 

Differential analyses. Differentially methylated probes (DMP) and differentially methylated 328 

regions (DMR) were determined in 29 RSTR and 29 LTBI samples with complete methylation 329 

and kinship data. Differentially accessible regions (DAR) were determined for 29 RSTR and 31 330 

LTBI with complete chromatin accessibility and kinship data. DMP and DAR were assessed with 331 

kimma (v1.4.4 (64)) using a linear mixed effects model of RSTR vs LTBI corrected for age, sex, 332 

and kinship. Genetic kinship was included to account for closely related household contacts, 333 

and it improved model fit as assessed by sigma (Figure S1A). Sex and age were included as co-334 

variates as they improved model fit for some sites (Figure S1B) and were significant for many 335 

sites (Figure S1C,D). Additional co-variates including body mass index (BMI), tuberculosis 336 

exposure score (3), and BCG vaccination scar were removed due to missing data, lack of 337 

significance, or no improvement in model fit assessed by residual sigma.  338 

 339 

DMP model estimates were then used to determine differentially methylation regions (DMR) in 340 

DMRcate (v2.2.1 (65)) with settings recommended in (66) (min probes = 2, lambda = 500 bp, 341 

scaling = 5). DMR were assessed at FDR < 1E-70, a slight relaxation of DMRcate’s default cutoff 342 

of 8.16E-85, which was determined based on the rate of DMP within the data set. 343 
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 344 

Gene enrichment. Epigenetic sites were annotated to hg38 genes based on overlap with intron, 345 

exon, untranslated region (UTR), or promoters defined as within 1500 bp of the transcription 346 

start site (TSS1500). DAR were annotated using ChIPseeker, DMP using the Infinium hg38 347 

manifest (60), and DMR using DMRcate. Genes were queried for enrichment in Broad MSigDB 348 

(23) Hallmark (H) and gene ontology biological process (C5 GO BP) gene-sets using 349 

hypergeometric enrichment with SEARchways (v1.0.0). Gene-sets with FDR < 0.2 and > 4% 350 

enrichment (k/K) were considered significant. Gene ontology term similarity was visualized by 351 

semantic similarity using rrvgo implementing GOSemSim (67). DAR genes were not assessed 352 

due to the small number of associated genes.  353 

 354 

Gene expression. Previously, Ugandan RSTR and LTBI monocyte gene expression was profiled 355 

with and without 6-hour Mtb infection (9). Differentially expressed genes (DEGs) were defined 356 

for the Mtb:RSTR interaction term in a model of Mtb*RSTR corrected for age, sex, sequencing 357 

batch, and genetic kinship. This original model was used for ABCA1 expression in the present 358 

study. Since several methylation genes of interest did not meet the original study’s gene 359 

expression cutoff (1 CPM in at least 5% of samples), an additional targeted analysis of these 360 

genes was performed. Here, all genes with > 0 CPM in at least 1 sample were obtained and log2 361 

counts per million (CPM) were calculated. Genes of interest (APOC3, CIT, KCNQ1, PLA2G3, 362 

SHANK2) were modeled using the same interaction model as the original study, and significant 363 

genes were defined at Benjamini-Hochberg FDR < 0.2. In addition, targeted gene-set 364 

enrichment analysis (GSEA (68)) was performed for the 11 MSigDB gene-sets that were 365 
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significantly enriched in methylation genes. Gene-level fold change estimates were extracted 366 

from the original linear mixed effects model for the four Mtb:RSTR contrasts (e.g. Mtb vs media 367 

in RSTR, RSTR vs LTBI in media, etc). Significant enrichment using GSEA was defined at P < 0.05. 368 

 369 

Monocyte-derived macrophages (MDM) stimulated with IFN. Additional analyses were 370 

performed with a previously published RNA-seq data set of human MDM stimulated with 371 

IFNα8, IFNβ, IFNε, or IFNγ (24). Briefly, MDMs isolated from 5 healthy donors were treated with 372 

recombinant interferons for 6 hours. Total RNA was extracted and sequenced as described (24). 373 

In this study, linear mixed effects model fold change estimates of IFN-stimulated expression vs 374 

unstimulated controls were used in GSEA (68) of the 11 MSigDB gene-sets that were 375 

significantly enriched in methylation genes. Significant enrichment using GSEA was defined at P 376 

< 0.05. 377 

 378 

Cholesterol efflux capacity. Cholesterol efflux capacity (CEC) was measured in serum from 41 379 

RSTR and 43 LTBI. CEC of serum HDL was quantified using J774 murine macrophages (ATCC) to 380 

measure total CEC and baby hamster kidney fibroblast (BHK) cells transfected with a 381 

mifepristone inducible ABCA1 transporter to measure ABCA1-specific CEC as previously 382 

described (69, 70).
 
In short, serum from RSTR and LTBI was reconstituted from freshly thawed 383 

plasma, and polyethylene glycol (20% PEG8000, 2:5 v/v) was added to precipitate apoB-384 

containing (non-HDL) lipoproteins. After centrifugation, supernatants containing HDL (serum 385 

HDL) were incubated for 4 hours with unstimulated or stimulated cells labeled with 386 

radiolabeled [
3
H]-cholesterol (71). For J774 macrophages, the cells were stimulated with cAMP 387 
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to activate the cells including induction of ABCA1 expression. For BHK cells, stimulation was 388 

completed with 0.01 μM mifepristone to specifically induce expression of the ABCA1 389 

transporter. Thus, the J774 cell model captures overall efflux of cholesterol through multiple 390 

pathways, including ABCA1, while the ABCA1-BHK model specifically measures cholesterol 391 

efflux through the ABCA1 pathway.  392 

 393 

For both J774 and BHK cells, HDL CEC (percent total cholesterol effluxed from cells to HDL) was 394 

determined as the ratio of radio-labeled cholesterol in the media at the end of the incubation 395 

relative to the total in the system (media + cell pellet). For BHK cells, ABCA1-specific efflux was 396 

calculated as the difference in the percent efflux between stimulated cells more highly 397 

expressing ABCA1 versus unstimulated cells. Total CEC and ABCA1-specific CEC were compared 398 

in RSTR and LTBI in a linear mixed effects model corrected for age, sex, and BMI using kimma 399 

(64). Significance was evaluated at P < 0.05.  400 

 401 

HDL particle concentration and size. HDL was assessed for the same participants as CEC. Total 402 

lipoprotein fraction was separated from plasma proteins by a single step density 403 

ultracentrifugation of EDTA plasma as described previously
 
(72, 73). HDL particle concentration 404 

and size were quantified by calibrated differential ion mobility analysis on a differential mobility 405 

analyzer (DMA) (TSI Inc., MN) as described previously (72, 73). Six HDL subspecies (extra small, 406 

small, medium, medium large, large, extra-large) were fitted to the DMA profiles by 407 

unsupervised, iterative curve-fitting using Fityk (74). Because DMA directly quantifies the 408 

number of particles, areas under the curve fitted for each subspecies were directly converted to 409 
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HDL particle concentration using a calibration curve constructed with a protein standard. For 410 

total HDL particle concentration, intra-day and inter-day coefficients of variation (CV) were < 411 

10%. For individual species, CV were < 10% with the exception of xsHDL and sHDL (14.8 and 412 

18.5%, respectively). HDL concentration and size were compared in RSTR and LTBI in a linear 413 

mixed effects model corrected for age, sex, and BMI using kimma (64). Significance was 414 

evaluated at FDR < 0.2.  415 

 416 

Data availability. Access to raw epigenetic and transcriptomic data for the Uganda cohort is 417 

available through the NCBI database of Genotypes and Phenotypes (dbGaP) Data Browser 418 

(https://www.ncbi.nlm.nih.gov/gap/) under accession 002445.v3.p1 but first must be approved 419 

by the data access committee (DAC) for the study site (see Supplemental Methods in (9)). Data 420 

related to the MDM-IFN experiment are available in the Gene Expression Omnibus (GEO) 421 

GSE236156. Scripts for this manuscript are available at https://github.com/hawn-422 

lab/RSTR_epigenetics_public 423 
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TABLES 439 

Table 1.  440 

  

Chromatin 

accessibility 

RSTR vs LTBI 

p-value
 a

 
Methylation 

RSTR vs LTBI 

p-value
 a

 

Pass-filter donors 

with kinship 

RSTR 29 
NA 

29 
NA 

LTBI 31 29 

Female, %
 

46.7 1 50.0 1
 

Age at enrollment, yrs
 

16.7 ± 12.2 0.48 17.2 ± 12.6 0.44
 

Age at sampling, yrs
 

25.0 ± 11.7 0.40 25.8 ± 12.3 0.32
 

BMI 22.6 ± 4.4 0.61 22.9 ± 4.3 0.56 

BCG scar, % 60.0 0.50 56.9 0.26 

HIV+, % 0 NA 0 NA 

TB exposure score at enrollment 6.2 ± 1.2 0.49 6.1 ± 1.2 0.91 

Relatedness 
b
 

Mean 3° and closer per 

person 

Mean 1° and closer per 

person 

 

0.13 ± 0.34 

0.63 ± 0.92 

 

0.92 

0.86 

 

0.10 ± 0.31 

0.55 ± 0.88 

 

0.40 

0.77 

a
 Continuous metrics expressed at mean ± standard deviation (sd) and tested by t-test. 441 

Categorical metrics expressed as percentages and tested by Chi-squared. 
b
 Relatedness was 442 
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measured as the total number of first-degree relationships (kinship > 0.5) and third-degree or 443 

closer relationships (kinship > 0.125) per person, then summarized as mean ± sd across all 444 

individuals. BMI: body mass index, BCG: bacille Calmette-Guerin  445 
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FIGURE LEGENDS 446 

Figure 1. Monocyte epigenetic sites associated with RSTR vs LTBI. Genome-wide methylation 447 

and chromatin accessibility were assessed in unstimulated monocytes. RSTR and LTBI were 448 

compared using a mixed effects model corrected for age, sex, and kinship. (A) Differentially 449 

accessible chromatin regions (DAR, N = 40,919) were measured using log2 counts per million 450 

(CPM) reads in open chromatin peaks. (B) Differentially methylated probes (DMP, N = 728,380) 451 

and (C) differentially methylated DMRcate regions (DMR, N = 63) were measured using log2 M 452 

values. Significant hits are defined as FDR < 0.2 for DAR and DMP (solid line) or FDR < 1E-70 for 453 

DMR (dashed line). This resulted in 2 DAR, 174 DMP, and 63 DMR significantly different 454 

between RSTR and LTBI. 455 

 456 

Figure 2. Pathways and genes with differentially methylated regions in RSTR and LTBI 457 

monocytes. Differentially methylated regions (DMR) were analyzed with hypergeometric mean 458 

pathway enrichment analysis with Broad MSigDB gene sets. (A) Gene ontology gene sets 459 

significantly enriched in DMR (FDR < 0.2 and k/K > 0.04). Gene sets visualized by semantic 460 

similarity in MDS space. Each dot is a gene set with size indicating percent enrichment (k/K * 461 

100) and colors grouping similar terms. (B) DMR genes within significant GO gene sets. Colored 462 

boxes indicate presence in gene sets as in (A). Fold changes of probes in differentially 463 

methylated regions (DMR) are indicated by + positive for all probes, - negative for all probes, 464 

and -/+ variable across probes with the mean region trend in parentheses. 465 

 466 
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Figure 3. Methylation regions associated with significantly enriched gene sets in RSTR and 467 

LTBI monocytes. Genes annotated to differentially methylated regions (DMR, FDR < 1E-70) 468 

were assessed for enrichment in gene ontology (GO) gene sets. DMR associated with 469 

significantly enriched gene sets (FDR < 0.2) are grouped by (A,B,E) Ss or (C,D,F) Hippo signaling 470 

associated genes. The 3 DMR in other enriched pathways (Figure 2B) are not shown. (A,C) Log2 471 

M values for each probe in a DMR are shown with standard deviation error shading for LTBI 472 

(orange) and RSTR (purple). Significant individual probes (DMP) are indicated with * (FDR < 0.2). 473 

(B,D) DMRs annotated to their nearest gene. Grey arrows indicate full gene transcripts, and 474 

black boxes are DMRs. SHANK2 includes DMR 20 and DMR 59 that are too close to be resolved 475 

in (D). (E,F) Log2 normalized gene expression in RSTR and LTBI monocytes with and without 476 

Mtb infection. FDR indicates the Mtb vs media comparison (FDR < 0.2). No genes were 477 

significant for the main effect RSTR vs LTBI or the interaction of Mtb:RSTR (FDR > 0.2). 478 

 479 

Figure 4. Mtb and IFN stimulated gene expression in gene sets enriched for RSTR methylation 480 

signature. Gene set enrichment analysis (GSEA) was performed for pathways that were 481 

significantly enriched for DMR annotated genes (N = 63 genes, Figure 2). Fold change estimates 482 

were used from mixed effects models run on one of two RNAseq data sets. (A) GSEA for Mtb 483 

and RSTR contrasts. Monocytes from RSTR and LTBI were infected with Mtb for 6 hours, and 484 

gene expression was modeled for the interaction of Mtb and RSTR status (Mtb:RSTR) corrected 485 

for age, sex, kinship, and sequencing batch. Contrast fold changes were compared for Mtb 486 

infection vs media within RSTR or LTBI as well as RSTR vs LTBI within media or Mtb infected 487 

groups. Significant enrichment is indicated in red (P < 0.05). (B) GSEA for IFN stimulation. MDMs 488 
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from healthy donors were stimulated with type I and II interferons for 6 hrs. Gene expression 489 

was modeled for IFN vs media. (C) All genes in the GO gene set “lipid export from cell” are 490 

visualized in the STRING protein-protein interaction network. Color indicates leading-edge GSEA 491 

and significant DMR genes. Leading-edge genes include +Mtb vs media in RSTR and/or LTBI 492 

(Mtb), RSTR vs LTBI in Mtb-infected samples (RSTR), and IFNα8 stimulation vs media (IFNα8). 493 

Genes that were leading edge in non-significant IFNβ, IFNε, and IFNγ GSEA are grouped in “IFN 494 

other”. Genes annotated to a significant DMR are additionally colored (DMR gene). Edge width 495 

indicates STRING combined score with only scores > 400 shown. (D) GO “Hippo signaling” gene 496 

set genes are similarly represented, except leading-edge genes for IFNγ are colored and non-497 

significant “IFN other” includes IFNα8, IFNβ, and IFNε. 498 

 499 

Figure 5. Total and ABCA1-specific cholesterol efflux capacity in RSTR and LTBI. Cholesterol 500 

efflux capacity (CEC) was measured in serum-derived HDL from RSTR and LTBI participants. 501 

Serum HDL was incubated for 4 hours with unstimulated or stimulated [
3
H]-cholesterol labeled 502 

cells. CEC was calculated as percent cholesterol in media versus total (media + cell pellet). RSTR 503 

and LTBI were compared using a linear model corrected for age sex, and body mass index 504 

(BMI). (A) Total CEC from J774 cells was measured after exposure to RSTR and LTBI serum HDL. 505 

Macrophages were stimulated with cAMP to increase CEC. (B) CEC in ABCA1-transfected BHK 506 

cells with RSTR and LTBI HDL. ABCA1-transfected BHK cells were stimulated with media or 507 

mifepristone to induce ABCA1 expression. ABCA1-specific CEC was calculated as stimulated 508 

(ABCA1 expressing) BHK minus unstimulated. (C) ABCA1 gene expression in monocytes with and 509 

without Mtb infection 
9
. RSTR and LTBI monocytes were cultured with and without Mtb 510 
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infection for 6 hrs. Gene expression was modeled for the interaction between Mtb infection 511 

and RSTR status (Mtb:RSTR). Significant Mtb:RSTR contrasts are labeled by FDR (FDR < 0.2). 512 
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