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Abstract

Despite effective antiretroviral therapy (ART), transcriptionally competent HIV-1
reservoirs persist and contribute to persistent immune activation in people living with
HIV (PWH). HIV-1-infected macrophages are important mediators of chronic innate
immune activation, though mechanisms remain unclear. We previously reported that
nuclear export and cytoplasmic expression of HIV-1 intron-containing RNA (icRNA)
activates mitochondrial antiviral signaling protein (MAVS)-mediated type | interferon
(IFN) responses in macrophages. In this study, we demonstrate an essential role of
melanoma differentiation-associated protein 5 (MDAS5) in sensing HIV-1 icRNA and
promoting MAVS-dependent IRF5 activation in macrophages. Suppression of MDAS,
but not RIG-I expression nor disruption of endosomal TLR pathway, abrogated HIV-1
icRNA-induced type | IFN responses and IP-10 expression in macrophages.
Furthermore, induction of IP-10 in macrophages upon HIV-1 icRNA sensing by MDAS
was uniquely dependent on IRF5. Additionally, monocytes and MDMs from older (>50
years) individuals exhibit constitutively higher levels of IRF5 expression compared to
younger (<35 years) individuals, and HIV-1 icRNA induced IP-10 expression was
significantly enhanced in older macrophages, which was attenuated upon ablation of
IRF5 expression suggesting that IRF5 functions as a major mediator of pro-
inflammatory response downstream of MDA5-dependent HIV-1 icRNA sensing,

dysregulation of which might contribute to chronic inflammation in older PWH.
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Introduction

HIV-1 remains a global burden with approximately 39 million people living with
HIV (PWH) as of 2022 (UNAIDS/WHO, 2023). Although antiretroviral therapy (ART)
has been successful in suppressing virus replication to undetectable levels and
extending the lifespan of PWH, systemic inflammatory responses in ART-suppressed
PWH remain elevated (1-3). Additionally, chronic systemic inflammation increases the
risk for diseases associated with aging such as neurocognitive disorders, cancer, and
coronary artery disease (4-7) which account for most of the morbidity and mortality in
virologically-suppressed PWH (8) and 5 to 10 years loss in life expectancy compared to
risk-adjusted people without HIV (9).

The exact mechanism by which chronic HIV-1 infection contributes to systemic
inflammation in virologically-suppressed PWH is unclear. It is well established that early
in the course of infection, viral reservoirs are established in long-lived cell populations
such as memory CD4+ T cells and macrophages (10, 11). Tissue-resident
macrophages located in peripheral lymphoid tissues, liver, brain, lungs, and mucosal
tissues harbor HIV RNA and DNA (12-19), and remain persistently infected even during
suppressive ART (19-21). While ART reduces peripheral viremia, currently available
ART regimens do not suppress viral transcription, and a subset of cells containing
integrated provirus remain transcriptionally competent (22). As a result, both viral RNAs
and proteins have also been detected in lymph nodes and CNS of ART-suppressed
patients (23-25) and are hypothesized to act as pathogen-associated molecular patterns
(PAMPs) that can induce persistent inflammatory responses. In concordance with this

hypothesis, several recent studies have utilized patient cohort samples to show
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correlations of HIV-1 RNA/DNA persistence with elevated innate immune markers, and
chronic inflammation (26-28).

Chronic immune activation as a consequence of persistent HIV-1 infection is
compounded by the low-grade chronic inflammation that occurs during aging, and a
combination of these phenotypes is referred to as “HIV inflammaging” (29, 30). This
innate immune aging phenotype is proposed to be mediated by cells in the tissue and
stroma responding to diverse stimuli within the tissue microenvironment and at the
systemic level (31, 32). Tissue-resident macrophages are potentially the primary
sensors of cellular injury or infection and responsible for elevated secretion of infection-
or injury-induced inflammatory cytokines such as IL-6, sCD14 and sCD163 (33). In
addition, aged macrophages have diminished phagocytic capabilities, resulting in a
failure to resolve inflammation (34, 35), and have been primarily associated with tissue
pathology and age-associated end-organ diseases (36-39). Several studies have
indicated that the population of monocytes and macrophages increases with age in
many tissue compartments and the polarization of these cells towards an inflammatory
phenotype is also enhanced in older people without HIV (40-42) and in older PWH (43).
How HIV infection contributes to premature and accelerated aging of the innate immune
system has remained unclear.

Previous findings from our group and others showed that cytoplasmic expression
of HIV-1 intron-containing RNA (icRNA) triggers induction of interferon stimulated gene
(ISG) expression and type | interferons in macrophages and dendritic cells (44, 45).
Nuclear export of HIV-1 icRNA is dependent on HIV-1 protein Rev which recognizes

and binds a structured domain of HIV-1 RNA referred to as the Rev Response Element
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(RRE) (46). Upon Rev binding to RRE, a nuclear export factor, CRM1, is recruited to
Rev and the Rev/RRE complex is shuttled out of the nucleus into the cytosol (47).
Sensing of HIV-1 icRNA in the cytoplasm results in the activation of the mitochondrial
antiviral signaling protein, MAVS, initiating a downstream signaling response and innate
immune activation (44, 45). However, the sensor involved in HIV-1 icRNA sensing in
macrophages remains unknown.

Retinoic acid-inducible gene | (RIG-I) like receptors (RLRs) are cytosolic sensors
that detect double stranded RNAs (dsRNA) and mediate an interferon response to viral
infections (48). RLRs include RIG-I, melanoma differentiation-associated protein 5
(MDAJS), and laboratory of genetics and physiology 2 (LGP-2), though only RIG-I and
MDAS have been shown to sense dsRNAs in a sequence-independent manner (49, 50),
Oligomerization of MAVS allows for the recruitment of various E3 ubiquitin ligases, TNF
receptor associated factors (TRAFs) and cytosolic kinases, which in turn leads to
activation of transcription factors such as NF-kB and interferon regulatory factors (IRFs)
(51). In this study, we highlight a critical role of MDAS as a sensor of HIV-1 icRNA in
human macrophages and IRF5 in mediating MDA5/MAVS-dependent type | IFN
responses and pro-inflammatory cytokine production. Interestingly, monocytes and
MDMs from older donors (ages 50 and above, >50 yo) displayed elevated levels of
constitutive IRF5 expression compared to younger donors (ages 35 and younger, <35
yo), which correlated with higher levels of HIV-1 icRNA-induced IP-10 production in
MDMs. Taken together, these findings offer mechanistic insights into the understanding
of how persistently-expressed HIV-1 icRNA can promote chronic expression of

proinflammatory cytokines, and might contribute to inflammaging in older PWH.
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Results
Rev/ICRM1-dependent nuclear export and MAVS are required for HIV-1 icRNA
sensing in THP-1/PMA macrophages

Previous work from our group and others identified that Rev/CRM1-mediated
export of HIV-1 icRNA in MDMs and DCs was required for induction of MAVS-
dependent innate immune responses, though the identity of the RNA sensor or the
signaling pathway downstream of MAVS activation has remained unclear (44, 45) . To
further characterize this signaling pathway in a tractable system, we employed
monocytic THP-1 cells and differentiated them with phorbol 12-myristate-13-acetate
(PMA) to macrophage-like cells (52). THP-1/PMA macrophages were infected with
VVSV-G-pseudotyped single-cycle HIV-1 encoding GFP as a reporter in place of nef
(LaiAenvGFP/G) (Fig. 1A), and pro-inflammatory cytokine, CXCL10 (IP-10) secretion in
infected cultures was employed as a quantitative measure of infection-induced innate
immune activation. Similar to findings in MDMs, establishment of productive infection in
THP-1/PMA macrophages resulted in robust secretion of IP-10 (Fig. 1B), which was
abrogated in the presence of inhibitors that target reverse transcriptase (efavirenz),
integrase (raltegravir), or viral transcription (spironolactone) (563-55) (Fig. 1B).
Furthermore, infection with HIV-1/M10 mutant (Fig. 1C) that is incapable of exporting
HIV-1 icRNA via the Rev/CRM1 pathway(46), or infection in the presence of CRM1
inhibitor (KPT330) also failed to induce IP-10 secretion (Fig. 1B and D). Knock-down of
MAVS expression in THP-1/PMA macrophages (Fig. 1E, Sup. Fig. 1A-E) significantly

decreased |IP-10 secretion in virus-infected cells (Fig. 1F-G). Collectively, these findings
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suggest that sensing of a late post-transcriptional step of the HIV-1 replication cycle
induces innate immune responses in THP-1/PMA macrophages and recapitulate

previous findings in HIV-1-infected MDMs and DCs (44, 45).
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Figure 1: MAVS-mediated sensing of cytoplasmic icRNA triggers an innate immune response. THP-1/PMA
macrophages were infected with LaiAenv GFP/G (MOI 2) in the presence or absence of efaverinz (EFV, 1 uM),
raltegravir (RAL, 30 uM), spironolactone (Spiro, 100 nM), and KPT335 (KPT, 1 uM). Cells and culture supernatants
harvested at 3 dpi for (A) flow cytometry analysis to measure infection levels (%GFP+) and (B) ELISA to measure
IP-10 secretion. Infection levels (C) and IP-10 secretion (D) in THP-1/PMA macrophages infected with either WT
(LaiAenvGFP/G) or HIV-1/M10 were determined at 3 dpi by flow cytometry and ELISA, respectively. (E) MAVS
expression in THP1 cells transduced with shCTRL or shMAVS lentivectors was determined by western blot analy-
sis. (F, G) LaiAenvGFP/G infected THP-1/PMA macrophages and cell supernatants were harvested 3 dpi for flow
cytometry analysis (F) and ELISA (G) to measure infection establishment (%GFP+) and IP-10 secretion. Data is
displayed as the means + SEM with each dot representing an independent experiment. Statistical significance
assessed via 1-way ANOVA with Dunnet’s multiple comparisons test (A-B), unpaired t-test (C-D, F-G). *: p <0.05;

dkkk.

**: 1 <0.01, ** p<0.001, ****

p <0.0001, ns = not significant.
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MDAS5 is required for HIV-1 induced immune response in macrophages

In mammalian cells, detection of viral RNAs in the cytosol and endosomes is surveilled
by a limited number of nucleic acid receptors. In order to identify the nucleic acid
sensing mechanism required for detection of HIV-1 icRNA, we generated THP-1 cell
lines with stable knock-down of RIG-I (sensor of short, blunt ended dsRNAs with
uncapped 5’ triphosphate group), MDAS5 (sensor of long dsRNAs), or UNC93B1
(chaperone protein required for endosomal TLR 3/7/8 function) expression in THP-1
cells via lentiviral transduction of shRNA (56). Knockdown efficiency was measured at
the mRNA level via RT-gPCR (Fig 2A), while decrease in RLR or endosomal TLR
activity was functionally validated by measuring diminished IP-10 secretion in
knockdown cells in response to synthetic or viral RLR or TLR agonists (Sup Fig. S1F-J).
While single-cycle HIV-1 (LaiAenvGFP/G) infection of THP-1/PMA macrophages with
reduced expression of RIG-I, MDAS or UNC93B1 was unaffected compared to control
shRNA expressing cells (Fig. 2B), we found that only MDAS5, but not RIG-1 or
UNC93B1, knockdown resulted in significant downregulation of HIV-1 icRNA-induced
IP-10 production (Fig. 2C). We next recapitulated these findings in primary MDMs.
MDMs were transfected with pooled siRNAs against RIG-I, MDA5 or UNC93B1 and
reduction in mMRNA expression of RLRs and TLR chaperone was verified via RT-qPCR
(Fig. 2D). Upon infection of MDMs with LaiAenvGFP/G, we observed downregulation of
IP-10 and IFNB mRNA expression upon MDAS knockdown (Fig. 2E-F, Sup Fig. 1K), but
not upon knockdown of either RIG-I or UNC93B1 (Fig. 2F & Sup. Fig. 1K). Taken
together, these results suggest that MDAS is required for induction of innate immune

response upon cytoplasmic HIV-1 icRNA expression in MDMs.
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Figure 2: MDAS is required for HIV-1 induced innate immune response in macrophages. (A) RIG-I,
UNC93B1, and MDAS5 expression in THP-1 cells transduced with RIG-I, UNC93B1, MDA5 or Ctrl shRNA-express-
ing lentivectors was quantified via RT-gPCR. (B) THP-1/PMA knockdown cell lines were infected with LaiAenvGF-
P/G at MOI 2 and harvested 3 dpi for infection establishment (%GFP+) via flow cytometry. (C) Supernatants from
infected THP-1/PMA cells were used to assess IP-10 secretion via ELISA. (D) MDMs were transfected with siRNA
targeting RIG-I, UNC93B1, and MDAS for 2 days and knockdown of RIG-I, UNC93B1, and MDAS5 expression was
assessed via RT-qPCR. MDMs were infected LaiAenvGFP/G at MOI 1 in the presence of dNs and harvested at 2
dpi for analysis of infection efficiency via flow cytometry (E) and IP-10 mRNA expression via RT-qPCR (F). Data
is displayed as the means + SEM with each dot representing an independent experiment (A-C) or cells from an
independent donor (D-F). Statistical significance assessed via unpaired t-test (A, D), 1-way ANOVA with Dunnett’s
multiple comparisons (B-C, E-F). *: p<0.05; ***: p<0.001, ****: p <0.0001, ns = not significant.
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MDAS recognizes unspliced HIV-1 RNA

In order to investigate the interaction of MDAS with HIV-1 icRNA, HEK293T cells
were infected with HIV-1 (LaiAenv GFP/G) in the presence or absence of efaverinz and
then transfected with plasmids expressing either Flag-epitope tagged MDAS or RIG-I.
To ensure equivalent expression level of MDAS and RIG-I, HEK293T cells were
transfected with varying amounts of expression plasmids, and transfection conditions
that resulted in similar levels of RIG-I or MDAS expression were utilized for RNA
immunoprecipitation analysis (Sup. Fig 1L). RNA-protein interactions were stabilized in
situ via UV crosslinking prior to fractionation of cell lysates to nuclear and cytoplasmic
fractions, and immunoprecipitation of ribonucleoprotein particles (RNPs). Immunoblots
confirmed equivalent MDAS5 and RIG-I expression in cytoplasmic fractions (Fig. 3A), and
immunoprecipitation by anti-flag mAb (Fig. 3B). Immunopreciptated RNA was quantified
via RT-qPCR with primers complementary to gag (unspliced RNA, usRNA), tat-rev
(multiply spliced RNA, msRNA), GAPDH or actin. In concordance with the robust
functional attenuation of HIV-1 icRNA sensing upon knock-down of MDAS expression
(Fig. 2), HIV-1 usRNA was significantly enriched in RNPs immunoprecipitated with anti-
flag mAb in MDAS5-flag expressing cells (mean ~20-fold enrichment for MDAS), but not
in RIG-I flag expressing cells or control IgG immunopreciptates (Fig. 3B). In contrast, no
significant differences were observed in the level of msRNA co-immunopreciptated with
MDAS or RIG-1. Specificity of HIV-1 usRNA immunopreciptation by MDAS was
confirmed by the absence of GAPDH or actin RNAs in anti-flag or IgG

immunoprecipitates (Fig. 3B). These findings are in agreement with recently published
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studies that demonstrate the ability of MDAS to specifically recognize HIV-1 usRNA in
virus-infected dendritic cells (57, 58). Taken together, these results suggest that MDA5S
specifically interacts with HIV-1 icRNA and that MDAS sensing of HIV-1 icRNA triggers

innate immune activation in macrophages.


https://doi.org/10.1101/2024.09.06.611547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.06.611547; this version posted September 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MW (kDa)
250

250
130

130
95

95
70
55

70

e A\ctin

40
C 30— %% ns ns ns NS s
I_ ] ] [ | ] Il MDAS5-FLAG
o ‘I Bl RIG-I-FLAG
()
2 20 o
(1]
K-
(&)
=]
© 10
('8
o_
¥ & F F QS
F &L
> & > & o

HIV-1only  HIV-1+EFV

Figure 3: MDAS recognizes unspliced HIV-1 RNA HEK293T cells were infected with LaiAenvGFP/G at MOI 1
and transfected with either MDA5-Flag or RIG-I-Flag at 24 h post infection. Cytoplasmic fractions were immuno-
precipitated with either anti-Flag mAb or IgG coated beads.(A) Input and (B) IP lysates were run on western blot
to ensure equivalent levels of transfection and immunoprecipitation among conditions (1) HIV MDA5-Flag (2) HIV
MDAS5-1gG (3) HIV+EFV MDAS-Flag (4) HIV+EFV MDAS5-1gG (5) HIV RIG-I-Flag (6) HIV RIG-I-IgG (7) HIV+EFV
RIG-I-Flag (8) HIV+EFV RIG-I-IgG (9) Mock (C) RT-gPCR analysis for HIV-1 usRNA, HIV-1 msRNA, GAPDH or
Actin mRNA in transfected and infected 293Ts in the presence or absence of efaverinz. Fold enrichment of immu-
noprecipitated RNA reported as RNA transcripts detected from each IP condition using anti-flag mAb or control
IgG to the input amount. Data is displayed as means + SEM with each dot representing a different experiment.
Statistical significance assessed via unpaired t-tests (C). **: p<0.01, ns = not significant.
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IRF5 is a mediator of HIV-1 induced IP-10 production in macrophages

Upon sensing of viral RNAs, CARD-dependent interactions of MDAS with MAVS
(59, 60) leads to MAVS oligomerization and activation of downstream transcription
factors including NF-kB and IRFs(60). Within the IRF family of transcription factors,
IRF3, 5, and 7 have well-described roles in mediating antiviral and inflammatory
responses downstream of diverse viral infections (61). To characterize the roles of
these IRFs in mediating HIV-1 icRNA-induced innate immune response in
macrophages, we generated THP-1 cells with stable knockdown of IRF3, IRF5 or IRF7
expression using lentiviral ShRNA transduction. We confirmed knockdown of these IRFs
via Western blot (Fig 4A) and RT-gPCR (Sup. Fig 2A-C), and observed similar
efficiency of decrease in IRF3, IRF5 and IRF7 expression. Functional knockdown was
characterized by measuring response to 3p-hpRNA (RIG-I agonist) or LPS (TLR4
agonist) treatment. Decreased IRF3, 5 or 7 expression in THP-1/PMA macrophages led
to attenuated responses to both 3p-hpRNA and LPS (Sup. Fig 2D-E). THP-1/PMA
macrophages were infected with LaiAenvGFP/G, and infection efficiency was assessed
via flow cytometry 3 days post infection. We found there was no significant effect of
IRF3, IRF5, or IRF7 knockdown on HIV-1 infection (Fig. 4B). Culture supernatants were
harvested 3 days post infection and analyzed for IP-10 production via ELISA. While
knock down of IRF5 expression resulted in robust downregulation of HIV-1 icRNA-
induced IP-10 production, decrease in IRF3 or IRF7 expression led to a modest though
significant attenuation of IP-10 secretion (Fig. 4C). Interestingly, requirement of IRFs for

IP-10 secretion was dependent on the nature of viral PAMPs and the RLR sensing
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pathway, as IRF3, but not IRF5 or IRF7, was selectively required for Sendai virus-
induced RIG-I-dependent IP-10 secretion (Sup. Fig.2F-G). To confirm these findings in
primary MDMs, expression of IRF3, IRF5 and IRF7 was knocked-down via transient
transfection with pooled siRNAs (Fig. 4D, Sup Fig. 2H-J) prior to infection with
LaiAenvGFP/G. While knock-down of IRF3, IRF5 or IRF7 expression had no impact on
the efficiency of infection establishment (Fig. 4E), we observed significant
downregulation in IP-10 expression upon IRF5 or IRF3 knockdown, but not IRF7, in
HIV-infected MDMs (Fig. 4F). In contrast to IP-10, expression of IFN3 was robustly
attenuated by knockdown of IRF3, IRF5 or IRF7 expression in HIV-1-infected MDMs
(Sup Fig. 2K), suggesting a selective and non-redundant role of IRF5 in mediating a

proinflammatory response to HIV-1 infection in macrophages.
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Figure 4: IRF5 is necessary for HIV-1 icRNA-induced IP-10 expression in macrophages (A) IRF3, IRF5 and
IRF7 expression in THP-1 cells transduced with IRF3, 5, 7 or Ctrl shRNA lentivectors was quantified via western
blot analysis and normalized to shControl transduced cells. (B) THP1/PMA macrophages were infected with LaiA
envGFP/G at MOI 2 and cells and supernatants harvested 3 dpi for analysis via flow cytometry to assess infection
levels (B) and ELISA for IP-10 secretion (C). (D) Expression of IRFs in MDMs transfected with siRNA against
IRF3, IRF5, or IRF7 mRNA was assessed via RT-gPCR. (E) MDMs were infected with LaiAenvGFP/G at MOI 1 in
the presence of dNs and harvested at 2 dpi for analysis of infection efficiency via flow cytometry (E) and IP-10
expression via RT-gPCR (F). Data is displayed as the means + SEM with each dot representing a different donor.
Statistical significance assessed via 1-way ANOVA with Dunnet’'s multiple comparisons (B-C, E-F). *: p<0.05;
*** p<0.001, ns = not significant.
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TRAF6 and IKKp are required for IP-10 production in HIV-1-infected macrophages
Upon sensing of viral RNA by MDAS and activation of the MAVS signalosome,
diverse kinases including IKK, IKKe, and TBK1 and ubiquitin ligases such as TRAF2,
TRAFS5 and TRAFG6 are recruited and activated, which in turn post-translationally modify
IRFs and NF-kB to drive expression of antiviral genes and inflammatory cytokines (62,
63). These modifications are critical for IRF5 activation (62, 63). It has previously been
shown that the E3 ubiquitin ligase, TRAF6, and serine kinase, IKK[3, are required for
K63-linked polyubiquitination and phosphorylation events and IRF5 activation
downstream of TLR and RLR sensing (64), though their requirement for HIV-1-induced
type | IFN responses and IP-10 production has not been assessed. To determine
whether IKKB and TRAF6 were required for IP-10 production upon HIV-1 icRNA
sensing in macrophages, we utilized lentiviral ShRNA to generate stable TRAF6 or IKK(
knock-down THP-1 cell lines. Knockdown of gene expression of these factors was
validated by Western blot and RT-gPCR. (Fig. 5A, Sup Fig. 2L-M). These knockdown
cell lines were also validated functionally by measuring IP-10 secretion, which was
significantly attenuated in IKKB or TRAF6 knock-down cells in response to RLR and
TLR agonists such as 3p-hpRNA and LPS (Sup Fig. 2N-O). While knockdown of TRAF6
or IKKB expression resulted in no difference in HIV-1 infection (Fig. 5B), we observed a
significant decrease in IP-10 production in HIV-1-infected THP-1/PMA macrophages
(Fig. 5C). In contrast, IP-10 secretion was only modestly attenuated in HSV or Sendai
virus-infected THP-1/PMA macrophages deficient for TRAF6 or IKKp expression (Sup
Fig. 2P-Q). These results suggest that, in contrast to complementary roles of TRAF2,

TRAF5, and TRAF6 downstream of MAVS activation in HSV or Sendai virus-infected
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cells (43), TRAF6 has a non-redundant role in the induction of IP-10 expression in
response to HIV-1 icRNA sensing by MDA5. We next sought to determine the roles of
TRAF6 and IKKB in transducing signals downstream of HIV-1 icRNA sensing in primary
MDMs. MDMs were transfected with pooled siRNAs against TRAF6 or IKK prior to
infection with LaiAenvGFP/G. Quantitative RT-gPCR and western blot analysis
confirmed robust knock-down efficiency of both TRAF6 and IKKB in MDMs (Fig. 5D,
Sup Fig. 2R-S). Similar to the findings in THP-1/PMA macrophages, while knockdown of
TRAFG6 or IKKB expression did not attenuate HIV infection (Fig. SE), there was a robust
reduction in HIV-1 icRNA-induced IP-10 and IFNB mRNA expression upon knockdown
of TRAFG6 or IKKB expression in MDMs (Fig. 5F, Sup Fig. 2T), indicating an important
role of TRAF6 and IKKB in MDAS/MAVS-dependent activation of IRF5 for induction of

IP-10 and type I IFN responses in HIV-1-infected macrophages.
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Figure 5: TRAF6 and IKK are required for HIV-1 induced IP-10 expression in macrophages (A) TRAF6
or IKKB expression in THP-1 cells transduced with TRAF6 or IKKb shRNA lentivectors was quantified via
western blot analysis and normalized to shControl transduced cells. THP1/PMA macrophages infected with Lai
AenvGFP/G at MOI 2 and harvested 3 dpi for analysis via flow cytometry to assess infection levels (B) and
ELISA to assess IP-10 secretion (C). (D) MDMs were transfected with siRNA against TRAF6 or IKKB mRNA for
2 days and knockdown of TRAF6 or IKKB was assessed via WB and RT-gPCR. (E) MDMs infected with LaiA
envGFP/G at MOI 1 in the presence of dNs and harvested at 2 dpi for analysis of infection efficiency via flow
cytometry (E) and IP-10 expression by RT-qPCR (F). Data is displayed as the means + SEM with each dot
representing a separate experiment (A-C) with cells from independent donors (D-F). Statistical significance
assessed via 1-way ANOVA with Dunnet’s multiple comparisons (B-C, E-F). **: p<0.01, ****: p <0.0001, ns =
not significant.
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HIV-1 infection results in nuclear translocation of IRF5 in THP-1/PMA
macrophages

Since IRF5 is an ISG (65), and HIV-1 infection of macrophages induces type |
IFN responses, we next sought to determine if IRF5 activation in HIV-infected MDMs
occurred directly downstream of MDAS/MAVS sensing of HIV icRNA in a cell-intrinsic
manner in infected cells or required activation in bystander uninfected cells. IRF5 exists
in an inactive form in the cytosol in unstimulated cells, post-translational modifications of
which result in its translocation to the nucleus (66). To visualize IRF5 activation in
response to HIV-1 infection in macrophages, we utilized immunofluorescence and
confocal microscopy to assess its nuclear localization. THP-1/PMA macrophages were
infected with LaiAenvGFP/G, and stained for intracellular localization of IRF5 expression
on coverslips at 3 days post infection. DAPI was utilized as a nuclear stain and HIV
infected cells were distinguished by GFP positivity. HIV-1 (WT) infection of THP-1/PMA
macrophages resulted in nuclear translocation of IRF5 from cytoplasm in infected cells
(Fig. 6A), which was not observed upon infection with HIV-1/M10 mutant (Sup. Fig
S4A). In order to quantify nuclear translocation of IRF5, we assessed the mean signal
intensity of nuclear IRF5 using CellProfiler (Sup Fig. 3). In HIV-1 (WT)-infected, GFP+
THP-1/PMA macrophages, we observed a significant increase in nuclear IRF5 staining,
that was blocked upon pre-treatment with EFV or upon infection with HIV-1/M10 mutant
virus (Sup Fig. S4A). Furthermore, nuclear localization of IRF5 was selectively
enhanced in GFP* cells with HIV WT infection (Sup Fig. S4B), suggesting that cell-
intrinsic HIV-1 icRNA sensing activates IRF5 in infected cells. Importantly, nuclear IRF5

localization in HIV-1 (WT)-infected cells was attenuated upon depletion of MDAS,
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MAVS, IKKp, or TRAF6 expression (Fig. 6D-G), but not RIG-I expression (Fig. 6C).
These results indicate that MDAS, MAVS, IKKf, and TRAF6 are required for IRF5
activation and nuclear localization directly downstream of HIV-1 icRNA sensing in

macrophages.
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Figure 6: MDAS5, MAVS, TRAF®6, and IKKp are required for HIV-1 icRNA-induced nuclear localization of IRF5 in
macrophages (A) THP-1/PMA macrophages, and infected with LaiAenvGFP/G at MOI 2 and harvested 3 dpi for
analysis via confocal microscopy to assess changes in IRF5 localization. Representative images are shown (scale bar
= 5um). (B-F) Fluorescence microscopy images were quantified via CellProfiler to assess mean pixel intensity of IRF5
staining that colocalized with DAPI (mean nuclear intensity). Images from three independent infection experiments
were analyzed and quantified, with each dot representing a field containing approximately 50-150 cells. Statistical
significance assessed via Kruskal-Wallis test with Dunn’s multiple comparisons analysis (B-G). ****: p < 0.0001, ns =
not significant.
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Macrophages and monocytes isolated from older donors exhibit elevated levels
of IRF5

Several cohort studies have demonstrated that older PWH experience co-
morbidities and age-associated disease at a greater level compared to age-matched
people without HIV (67-69). Despite suppression of viremia, HIV-1 RNA and DNA can
persist in long-lived cells such as macrophages and may contribute to the development
of co-morbidities in PWH (12-18). We sought to determine whether macrophages
isolated from older as compared to younger individuals exhibit a greater inflammatory
response to HIV-1 icRNA. To test this hypothesis, we utilized samples from two cohorts,
one from the HIV/Aging cohort at Boston Medical Center (BMC) (Sup. Table 1), and the
other from NY Biologics Blood Center (Sup. Table 2). Donors were stratified by age as
older (>50 years old) or younger (18-35 years old). PBMCs were isolated from whole
blood samples from people without HIV, and CD14+ monocytes were collected via
positive selection on the day of sample collection, and differentiated to MDMs. In order
to investigate basal expression differences in factors involved in sensing of HIV-1
icRNA, we quantified expression levels of MDA5, MAVS, TRAF6, and IRF3/5/7 in
CD14+ monocytes and MDMs from younger and older donors. We did not observe any
age-associated differences in the expression of MDA5, MAVS, TRAFG6, IRF3 or IRF7
expression in peripheral blood CD14+ monocytes and MDMs derived from PBMCs from
the NY Biologics Blood Center (Fig. 7A-E). Interestingly, IRF5 expression was
constitutively elevated in CD14+ monocytes and MDMs from older individuals (Fig. 7F).

We validated this finding by measuring IRF5 protein level via Western blot and found
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that IRF5 protein expression was significantly elevated in older monocytes and trended

to higher expression in older macrophages (Fig. 7G-H).
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Figure 7: MDMs and monocytes isolated from older individuals exhibit higher levels of IRF5 expression
(A-F) Constitutive mRNA expression of (A) MDAS5, (B) MAVS, (C) TRAF®6, (D) IRF3, (E) IRF7, and (F) IRF5 in
MDMs and monocytes was assessed via RT-gPCR. (G-H) Western blot analysis for constitutive IRF5 expression
in MDMs and monocytes. Data is displayed as mean + SEM with each dot representing a donor. Statistical
significance assessed via unpaired t-tests (A-H). *: p <0.05; ns = not significant.
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Innate immune sensing of HIV-1 infection in macrophages is impacted by age
Since IRF5 expression was elevated in macrophages from older donors, we next
sought to assess age-related differences in innate immune response to HIV-1 infection.
Total RNA was extracted from uninfected and HIV-infected MDMs from 12 donors from
the BMC HIV/Aging cohort, and mRNA expression profiles were analyzed via
Nanostring using the Myeloid Innate Immunity Panel consisting of 730 target genes.
The samples were selected to ensure the same number of older/younger donors (6
each), equal numbers of male/female individuals within each group (3 each per group).
We first compared differences in these myeloid innate immune genes at the baseline
level in uninfected older and younger MDMs. We observed elevated mRNA levels of
several IRF5 target genes including CCL21, IP-10, IL-6, and IL12A/B in older MDMs
(Sup Fig. 6A). We also observed slightly elevated expression of IRF5 in MDMs from
older donors but did not observe this trend with IRF3 and IRF7 (Sup Fig. 6B). We
repeated this analysis using the virus only conditions and found that IRF5, but not IRF3
or IRF7, was significantly upregulated in HIV-1-infected MDMs isolated from older
donors (Fig. 8A-B) despite similar levels of infection in vitro (Sup Fig. 6C). We next
sought to assess age-related differences in induction of the innate immune responses in
older and younger MDMs upon HIV-1 infection. To do this, we compared the fold
change in innate immune gene expression in the HIV-1-infected samples to the
efavirenz control within each age group. We found that the number of upregulated
genes as well as the extent of induction of innate immune gene expression varied
based on age. MDMs from older donors demonstrated approximately 97 significantly

upregulated genes compared to 42 genes from younger donors (Fig. 8C). These
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upregulated genes were primarily ISGs including IRF5 and IRF7, as well as several
known IRF5 target genes (Fig. 8C) including CCL5, CXCL16 and IL23A, suggesting that
MDMs from older individuals display an enhanced IRF5-dependent innate immune
response to HIV-1 infection. Additionally, while we observed that IP-10 was upregulated
in both older and younger MDMs upon HIV-1 infection, the extent of upregulation was
greater in older MDMs (Fig. 8C-D). Surprisingly, we observed no significant induction of
IRF5-regulated target gene expression in MDMs from younger donors upon HIV-1
infection (Fig. 8D). Instead, expression of IRF5-regulated genes IL1A and IL23A were
significantly down-regulated in response to HIV-1 infection in MDMs from younger
donors (Fig. 8D).

Interestingly, while there was no significant difference in extent of HIV-1 infection
in MDMs derived from younger or older MDMs (Fig. 8E and Sup Fig. 5A), IP-10
production in HIV-infected older MDMs was higher than that observed with HIV-infected
MDMs from younger donors (Fig. 8F and Sup Fig. 5B). The difference was evident even
when IP-10 secretion levels were normalized to HIV-1 infection levels (p24 production in
the culture supernatants) across donors to account for donor-to-donor variation in
infection establishment (Fig. 8G). In contrast, no significant age-associated differences
in IP-10 production was observed upon stimulation with 3p-hp RNA (RIG-I agonist) or
LPS (TLR4 agonist) in MDMs (Sup. Fig. 5C-F), suggesting an HIV-specific enhanced
innate immune response in macrophages from older donors. Finally, knock-down of
IRF5 expression in older MDMs suppressed HIV-infection induced IP-10 secretion to
levels observed in younger MDMs (Fig. 8H). Taken together, these results indicate that

the inflammatory response induced upon MDAS sensing of HIV-1 icRNA expression in
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MDMs is impacted by age and cell-intrinsic IRF5 expression. Importantly, constitutively
elevated IRF5 expression in macrophages from older donors might contribute to the
heightened pro-inflammatory state and accelerated course of clinical disease in older

PWH.
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Figure 8: MDMs isolated from older exhibit higher levels of HIV-1 induced immune activation (A) RNA
isolated from LaiAenvGFP/G-infected MDMs (MOI 2) was analyzed via Nanostring nCounter using the Myeloid
Innate Immunity V2 panel. Baseline expression of the gene panel was calculated using nSolver and plotted as a
ratio of Old (HIV) vs. Young (HIV) with IRFs (red) highlighted. The dashed line represents p-value of 0.05. (B) Raw
count values for IRF3, IRF5, and IRF7 were plotted to assess differences. (C-D) Fold changes in innate immune
gene expression in HIV-infected MDMs + EFV were plotted. Data from MDMs from (C) older (>50 yo) and (D)
younger (<35 yo) donors are shown. Differentially expressed ISGs (blue) and IRFs/IRF targets (red) are highlight-
ed. The dashed line represents a p-value of 0.05. (E-F) Supernatants were analyzed for (E) p24gag production
and (F) IP-10 levels via ELISA. (G) IP-10 levels were normalized to those of p24gag for each donor. (H) MDMs
were transfected with either control or IRF5 targeting siRNA prior to infection with LaiAenvGFP/G. IP-10 and
p24gag secretion was measured at 3 dpi. Data is represented as mean + SEM with each dot representing an
individual donor (B, E-G) or with each dot representing a target gene (A, C-D). Significance was assessed via
unpaired two-tailed t-test (A-B, E-G), paired two-tailed t-test (C-D), or 1-way ANOVA with Tukey’s multiple compari-
sons test (H). *: p<0.05, ns = not significant.
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Discussion

In this study, we highlight an important, non-redundant role of MDAS in sensing
of HIV-1 icRNA in macrophages and induction of type | IFN responses. These findings
were corroborated in a recent study that showed MDAS-mediated sensing of HIV-1
icRNA in dendritic cells (57, 58). Though the specific motif within HIV-1 icRNA that is
recognized by MDAS is currently unclear, sensing of non-self RNA by RLR family
members is dependent on unique invariant features. For instance, discrimination
between cellular and viral dsRNA by RIG-| is based on 5’ tri-phosphate motifs and blunt-
ended RNA duplex structure of <100bp in length, though size requirement can be
variable (70). Though previous studies suggest that transfected HIV-1 RNA can be
sensed by RIG-I, it is unclear whether this mechanism is conserved in infection models
(71). Importantly, in our studies, knock-down of RIG-I expression in macrophages had
no impact on HIV-1 icRNA-induced type | IFN responses (Fig. 2). In contrast, MDAS
does not require terminal 5'-tri-phosphates for ligand recognition, but rather
preferentially recognizes long dsRNAs (>500bp), and utilizes length specificity to
distinguish self from non-self dsRNAs (72, 73). Ligand binding nucleates MDA5
filaments on dsRNA, and subsequent recruitment and induction of MAVS filament
formation in a caspase activation and recruitment domain (CARD)-dependent
manner(74).

Our results demonstrate specific immunoprecipitation of HIV-1 icRNA but not
msRNA by MDAS in virus-infected cells. While, MDAS is known to bind to long dsRNA
genomes or replication intermediates of single strand viruses (75), it is plausible that

MDAS recognizes duplex regions of stem-loops (76, 77) or other uncharacterized RNA
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features uniquely existing in HIV icRNA. Further studies are warranted to elucidate the
molecular mechanisms underlying MDAS sensing of HIV icRNA. Interestingly, MDA5
has also been implicated in sensing of endogenous retroelement 3° UTR-containing
dsRNAs generated either via bidirectional transcriptional mechanisms or upon
cytoplasmic spillover of intron-retained endogenous retroelement (ERE) RNAs (78).
While expression of ERE RNAs is enhanced due to transcriptional de-repression in
senescent or aging cells (79) or exacerbated due to HIV-1 infection (80, 81),
contributions of ERE dsRNAs to innate immune activation in HIV-infected cells need
further investigations. Additionally, while other studies have implicated TLR7 in sensing
of HIV-1 gRNA in plasmacytoid dendritic cells (82), abrogation of endosomal TLR
sensing in macrophages upon downregulation of UNC93B1 expression did not impact
HIV-1 icRNA-induced IP-10 and IFNB induction, suggesting that the mechanism of HIV-
1 RNA sensing varies in a cell-type dependent manner, and that MDAS is required for
sensing of intron-containing HIV-1 transcripts in macrophages.

This study also highlights an important role of IRF5 in the innate immune
signaling pathway downstream of MDAS/MAVS-dependent HIV-1 icRNA sensing. While
previous studies have implicated IRF3 and IRF7 in inducing expression of IFN3 and
ISGs in HIV-1-infected cells (83-86), here we show that IRF5 also has an important role
in inducing IFNB and pro-inflammatory cytokine IP-10 expression in HIV-1-infected
macrophages, suggesting functional redundancies in IRF requirements. This is
consistent with previous findings that IRF5 does not bind to virus response elements
(VREs) in the promoter region of IFNa, which highlights that IRF5 activation leads to the

transcription of specific type | IFNs and ISGs (87). This IRF5 DNA binding specificity
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may also account for conflicting findings that IRF7, but not IRFS5, is crucial for ISG15
induction in HIV-1-infected macrophages and DCs (57, 58). We also find that the type of
viral infection has an impact on IRF5 involvement in mediating IP-10 production. For
instance, IRF5 knockdown attenuated IP-10 production in HSV-1 but not in Sendai virus
infected cells, highlighting that IRF5 activation might uniquely be dependent on the
infecting virus and their replication intermediates.

Previous studies have shown that MAVS activation downstream of RLR sensing
pathways leads to recruitment of various E3 ubiquitin ligases, TRAF2, TRAF5, and
TRAF®G, and cytosolic serine kinases, IKK and TBK1 (88, 89) for IFNB induction. As
opposed to the redundant roles of TRAF2/3 and TRAF6 for NF-kB and IRF3 activation
and IFN induction downstream of Sendai virus infection (88), our results suggest a
non-redundant role of TRAFG6 in IRF5 activation downstream of HIV-1-icRNA sensing in
macrophages. These findings align with the purported requirement for TRAF6-mediated
K63-linked ubiquitination of IRF5 as an essential protein modification for IRF5 activation
(63). Interestingly, knock-down of IKK abrogated IP-10 and IFN induction in HIV-1-
infected macrophages, highlighting the essential role for additional post-translational
modifications of IRF5 such as phosphorylation (64) (66, 90) downstream of HIV-1
icRNA sensing by MDA5 and MAVS. Taken together, we propose that HIV-1 icRNA
sensing by MDAS and MAVS activation leads to the recruitment and activation of
TRAF6 and IKKp, resulting in ubiquitination and phosphorylation and subsequent
nuclear translocation of IRF5, contributing to IP-10 and IFN expression. IFNf3
production might further induce IRF5 expression thus exacerbating production of type |

IFNs and proinflammatory cytokines.
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As the population of individuals living with HIV increases in age, it is crucial to
understand the mechanisms that contribute to higher levels of immune activation in
older PWH (91-93). While duration of ART, sex, lifestyle and comorbidities are all
contributing factors, results described in this study propose a cell-intrinsic role of IRF5 in
inducing innate immune activation in HIV-1-infected macrophages from older donors.
We found that MDMs and monocytes from older donors in two distinct cohorts had
higher baseline levels of IRF5 expression at the mRNA and protein level, and
consequently expressed elevated mRNA expression levels of several IRF5 target genes
including CCL21, IP-10, IL12A, IL12B, and IL-6. Upon HIV-1 infection of MDMs, we also
observed a higher level of ISG induction in MDMs from older donors, including IRF5, as
well as several known IRF5-responsive genes such as CXCL16, CCL5, and CD80. IP-
10 has been shown to be upregulated in the plasma of older individuals and is
negatively correlated with working memory (94). Serum IL-6 levels also increase with
age and have been associated with frailty and mortality in chronic disease settings (95-
97) as well as age-related neurodegenerative diseases such as Alzheimer’s (98-100).
Additionally, significantly higher serum levels of CXCL16 were correlated with severe
COVID19 outcome, which is more common among individuals over 65 years old (101,
102). Similar to previous studies which reported elevated IRF5 expression in monocytes
from older donors compared to younger donors upon RIG-I activation (103),
MDAS/MAVS-mediated IRF5 nuclear translocation in HIV-1-infected macrophages and
type | IFN-induced IRF5 expression might contribute to IRF5 hyperactivation. Taken
together, these results indicate that enhanced levels of constitutive IRF5 expression in

older monocytes ad macrophages and HIV-infection-induced IRF5 activation may


https://doi.org/10.1101/2024.09.06.611547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.06.611547; this version posted September 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

contribute to enhanced inflammatory responses in PWH and persistent expression of
“‘inflammaging’-related genes.

IRF5 has been considered a promising therapeutic target for a variety of
inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis
(104, 105) IRF5 function is cell-type specific and limited primarily to induce pro-
inflammatory cytokines in response to infection (106, 107). Unlike other transcription
factors such as NF-kB, the downstream targets of IRF5 are more specific (108, 109),
and incorporation of IRF5-targeting therapeutics in combination with ART could
potentially reduce chronic inflammation and thus prevent the development of co-

morbidities associated with accelerated inflammaging in older PWH.
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Methods

Study Population

PBMCs were derived from the HIV and Aging Cohort established at Boston Medical
Center (BMC HIV Aging cohort) (26). Cohort recruited people without HIV in two age-
stratified groups, younger (18-35 years old) and older (aged =50 years old) group.
Donors with active hepatitis B or C, or recent immunomodulatory therapy (oral or
injected corticosteroids, plaquenil, azathioprine, methotrexate, biologic therapies,
systemic or local interferon, chemotherapy or HIV vaccine) were excluded (26). PBMCs
were also isolated from leukopaks (NY Biologics, Long Island, NY) from anonymous

donors stratified by age into younger (18-35 years) or older (=50 years).

Plasmids

Single-cycle HIV-1 encoding GFP in place of nef (LaiAenv/GFP) and an HIV-1 Rev
mutant (M10) deficient in CRM1 binding (LaiAenv/GFP-M10) have been previously
described (44, 110). Lentiviral vectors (pLKO.1) expressing shRNAs against IRF3,
IRF5, IRF7, RIG-I, UNC93B1, MDA5, TRAF6, and IKKpB were purchased from Sigma-
Aldrich (or constructed by ligating annealed double-stranded oligonucleotides into
pLKO.1 using Agel and EcoRI sites). HIV-1 packaging plasmid, psPAX2, and VSV-G

expression plasmid, H-CMV-G, have been described previously (111).

Cells
HEK293T cells (ATCC) and TZM-bl (NIH AIDS Reagent Program) were cultured in

DMEM (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1%
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penicillin/streptomycin (pen/strep) (Gibco). THP-1 cells (NIH AIDS Reagent Program)
were cultured in RPMI (Gibco, 11875-119) supplemented with 10% FBS and 1%
pen/strep (R10). THP-1 cells were differentiated to macrophages with 100nM PMA
(Sigma-Aldrich) for 48 hours as described previously (56). THP-1 cells were transduced
with lentivectors (100 ng p24929 per 0.5x10° cells) expressing shRNAs (shControl,
shMDAS5, shMAVS, shTRAF6, shiIKKB, shIRF3, shIRF5, and shIRF7). Sequences of
shRNA targets are listed in Table 1. Transduced cells were maintained and selected in
the presence of 2 yg/mL puromycin (Invivogen). Validating knockdown cell lines at the
functional level were carried out by incubating PMA/THP-1 cells with a variety of RLR or
TLR ligands for 24-48 hours and measuring IP-10 in the culture supernatants via ELISA
(described below). Ligands used include 3p-hpRNA (2.5 ng/mL, Invivogen tIrl-hprna),
LPS (TLR4 ligand, 100 ng/mL, Invivogen tlrl-eblps), or high molecular weight (HMW)
poly I:C (TLR3 ligand, 10 ug/mL, Invivogen, tIrl-pic). Human monocyte derived
macrophages (MDMs) were derived from CD14+ monocytes isolated from PBMCs by
anti-CD14 antibody conjugated magnetic beads (Miltenyi Biotech) and cultured in RPMI
supplemented with 10% Human AB Serum (Sigma-Aldrich) and 20 ng/ml M-CSF

(Peprotech,) for 6 days as previously described (44, 56).

TABLE 1
GENE SEQUENCE REFERENCE (Sigma-
Aldrich)
RIG-I CCAGAATTATCCCAACCGATA | TRCN0000153712
UNC93B1 CAAGGAGAGACAGGACTTCAT |  TRCN0000138268
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MDA5 CCAACAAAGAAGCAGTGTATA TRCNO000050849
IRF3 GCCTGGATGGCCAGTCACAC (Made in the lab)
IRF5 CCTAGCTGTATAGGAGGAATT TRCNO0000274044
IRF7 CCCGAGCTGCACGTTCCTATA TRCNO0000014858

MAVS ATGTGGATGTTGTAGAGATTC TRCN0000236031

TRAF6 GCCACGGGAAATATGTAATAT TRCNO000007349

IKKRB GCTGGTTCATATCTTGAACAT TRCNO000018917

Viruses

VSV-G-pseudotyped single-round HIV-1 were generated by transient transfection of
HEK293T cells as previously described (44). Virus titer was measured in TZM-bl cells
(112). Lentivectors expressing shRNA were generated by co-transfecting HEK293T
cells with pLKO.1, psPAX2 and H-CMV-G using calcium phosphate (111). Virus
containing supernatants were harvested 2 days post-transfection, passed through 0.45
pum filters and concentrated on a 20% sucrose cushion (24,000 rpm at 4 °C for 2 h with a
SW28 rotor (Beckman Coulter)). Virus pellets were resuspended in 1xPBS, aliquoted,
and stored at -80 °C until use. Lentiviral p24929 content was measured via p2499 ELISA
as previously described (111). HSV-1 and Sendai viruses were generously provided by

Dr. Mohsan Saeed (Boston University CAMed).

Infections
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THP-1/PMA macrophages were infected with single-cycle HIV-1 reporter viruses (MOI
2) in presence of polybrene (10 ug/mL, Millipore Sigma, TR-1003-G) via spinoculation
(2,300 rpm, 1h at RT). In some experiments, THP-1/PMA macrophages were pre-
treated (for 20 minutes) with efavirenz (1 uM, NIH AIDS Reagent Program), raltegravir
(30 pM, Selleck Chemical #50-615-1), spironolactone (100 nM, Selleck Chemical, #
S4054), and KPT 330 (1 uM, Selleck Chemical # 50-136-5156). MDMs were pre-treated
with 2.5 mM dNs (Sigma-Aldrich)(113-115) for 2 hours and then infected with
LaiAenvGFP/G or LaiAenvGFP-M10/G (MOI 1) as previously described (44) in the

presence or absence of HIV-1 inhibitors.

siRNA transfection of primary MDMs

MDMs (1.5x108 cells/well in a 6-well plate) were transfected with SMARTPool siRNA
(25-50 nM, Horizon) via Trans-IT X2 (Mirius Bio, MIR6004) in Opti-MEM (Gibco).
SMARTPool siRNA catalog numbers are listed in Table 2. Transfected cells were
detached with enzyme-free cell dissociation buffer (Millipore, # S014B) at 24 h post

transfection and reseeded for infections as described above.

TABLE 2
Gene Catalog #
RIG-I L-012511-00-0005
UNC93B1 L-014650-00-0005
MDA5 L-013041-00-0005
IRF3 L-006875-00-0005
IRF5 L-011706-00-0005
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IRF7 L-011810-00-0005
IKKB L-003503-00-0005
TRAF6 L-004712-00-0005

RNA Isolation and RT-qPCR

Total RNAs were extracted using the RNeasy kit (Qiagen). cDNA was generated using
Superscript Ill 15t Strand cDNA Synthesis kit (Invitrogen), and gPCR was done using
Maxima SYBR Green (Thermo Scientific). Ct value of target mMRNA was normalized to
that of GAPDH mRNA (ACr), then AC+ of the target mMRNA was further normalized to
that of a control sample by the 2-22¢t method as described (116, 117). Primer
sequences for GAPDH, IP-10, IFNa, and IFNB have been described previously (44).
Primer sequences to assess expression of RIG-I1. MDA5, UNC93B1, IRF3, IRF5, IRF7,

MAVS, TRAF6 and IKK are listed in Table 3.

GENE FORWARD SEQUENCE REVERSE SEQUENCE

RIG-I CACCTCAGTTGCTGATGAAGGC | GTCAGAAGGAAGCACTTGCTACC

UNC93B1 | TGACCTGAACCACACGCTGTAC | ATGAGCACGCTCTCCACCACAA

MDAS5 | GCTGAAGTAGGAGTCAAAGCCC | CCACTGTGGTAGCGATAAGCAG

IRF3 TCTGCCCTCAACCGCAAAGAAG | TACTGCCTCCACCATTGGTGTC

IRF5 TATGCCATCCGCCTGTGTCAGT | GCCCTTTTGGAACAGGATGAGC

IRF7 CCACGCTATACCATCTACCTGG | GCTGCTATCCAGGGAAGACACA
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MAVS | ATGGTGCTCACCAAGGTGTCTG | TCTCAGAGCTGCTGTCTAGCCA

TRAF6 | CAATGCCAGCGTCCCTTCCAAA | CCAAAGGACAGTTCTGGTCATGG

IKKB ACAGCGAGCAAACCGAGTTTGG | CCTCTGTAAGTCCACAATGTCGG

Flow Cytometry

THP-1/PMA macrophages were detached using Enzyme Free Dissociation Buffer
(Millipore, S014B), while MDMs were detached using CellStripper (Corning, MT-25-
056Cl), washed once with 1x PBS, and fixed in 4% PFA for at least 30 minutes. Cells
were analyzed on LSRII (BD) flow cytometer to assess infection efficiency via GFP

positivity. Data was analyzed using FlowJo software (FlowJo).

Western Blot analysis

In order to assess levels of IRFS expression or validate knockdown of host factors, cell
lysate (30 pug) were analyzed by western blotting using the following antibodies: rabbit
anti-MAVS (Invitrogen, PA5-17256, 1:1000), rabbit anti-IRF3 (Cell Signaling, 4302S,
1:1000), rabbit anti-IRF5 (Cell Signaling, 76983S, 1:1000), rabbit anti-IRF7 (Cell
Signaling, 4920S, 1:1000), rabbit anti-TRAF6 (Cell Signaling, #8028, 1:1000), rabbit
anti-IKKB ( Cell Signaling, 2684S, 1:1000), mouse anti-actin antibody (Thermo Fisher,
#AM4302, 1:5000), goat anti-mouse IgG secondary antibody Dylight 680 (Thermo
Fisher, SA5-35518, 1:10,000), and goat anti-rabbit IgG secondary antibody Dylight 800
(Thermo Fisher, SA5-35571, 1:10,000). Membranes were scanned using an Odyssey

scanner (Li-Cor).
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Immunofluorescence and Microscopy

THP-1/PMA macrophages were cultured and infected on coverslips (Fisher Scientific,
12-541-001) in 12-well plates. Three days post-infection, cells were fixed using 4% PFA
(BM-155, Boston Bioproducts) for 30 min at 4°C, washed once with PBS and
permeabilized using 0.1 % Triton X-100 (NC1636886, Cayman Chemical) in PBS for 5
minutes at room temperature. Cells were stained with anti-IRF5 antibody (Cell
Signaling, 76983S) and Alexa594-conjugated goat anti-mouse antibody (Invitrogen),
and counterstained with DAPI (Sigma-Aldrich, D1306). Cells were mounted on slides
using Fluoromount mounting medium (Southern Biotech, OB100-01). Images were
acquired using an EVOS M5000 Microscope (Invitrogen, A40486) or a Leica SP5

Confocal Microscope and analyzed using Imaged (NIH) or CellProfiler (118, 119).

RNA Co-Immunoprecipitation Assay

HEK293T cells were infected with LaiAenvGFP/G at MOI 1, and transfected 18 h post
infection with either 3 ug of MDA5-Flag plasmid or 0.1 ug of RIG-I-Flag plasmid (+ filler
plasmid). The next day, cells were washed twice with PBS and UV crosslinked at 40
mJ/cm?. Cells were lysed with 400 uL of Fractionation Buffer (Life Technologies,
4403461) supplemented with protease inhibitor (Roche, 11836170001), RNAseOUT
(100 U/ml, Invitrogen, 10777019), and DTT (5 pyL/ml, Invitrogen, 18080051). 40 uL of
lysate was saved as ‘input’ and the remaining cytoplasmic lysate was incubated with
antibody coupled beads as described previously (120). Beads (Invitrogen, 61-011-LS)

were coated with 2ug of anti-Flag antibody (Sigma, F3165) or IgG control (Novus
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Biologicals, NBP1-97019). Following overnight antibody coupling, beads were washed
using high salt buffers as described previously (121). RNA extraction, cDNA synthesis,

and gPCR were carried out as previously described (120).

ELISA
IP-10 in THP-1/PMA and MDM supernatants was measured with ELISA according to

manufacturer’s protocol (BD Biosciences, 550926).

Nanostring Analysis

Total RNA was isolated from infected MDMs using RNeasy kit (Qiagen, #74106) and
quantified via Nanodrop. Samples were analyzed using the Human Myeloid Innate
Immunity V2 panel (Nanostring, 115000171) on the NCounter system. Nanostring
counts were analyzed using nSolver; raw counts of all targets normalized to geometric
mean of positive controls, housekeeping controls included in the Nanostring Myeloid
Innate Immunity panel. Counts between donors were compared using two-tailed t-test
and data was plotted as logz(fold change) vs -log(p-value) with the line representing p-

value of 0.05.

Statistics
Statistical analysis was performed using GraphPad Prism 10. P-values were calculated
via 1-way ANOVA with Tukey’s post-test or Dunnett’s post-test for multiple comparisons

analysis, or unpaired t-test.
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Supplementary Table 1

Age (Mean * SD) - 295142
Gastrointestinal
Supplementary Table 2

Table 1 summarizes characteristics of participants in the HIV/Aging Cohort (BMC).Table

2 summarizes donor characteristics of leukopaks obtained from NY Biologics.
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Supplementary Figure 1. (A) Knockdown of MAVS expression in THP-1/PMA macrophages was validated using
RT-gPCR. (B-E) THP-1/PMA cells expressing MAVS shRNA were treated with 3p-hpRNA (2.5 ng/mL), LPS (100
ng/ml), infected with HSV (MOI 0.1) or Sendai virus (SEV) (MOI 1), and supernatants were harvested 24 h
post-stimulation or 48 h post-infection for analysis of IP-10 production via ELISA. (F-J) THP-1/PMA cells with
knock-down of RIG-I, MDA5 or UNC93B1 expression were treated with 3p-hpRNA (2.5 ng/mL) (F), LPS (100
ng/mL) (G), HMW polyl:C (10 mg/ml) (J) or infected with HSV (MOI 0.1) (H) or Sendai virus (MOI 1) (I). Superna-
tants were harvested 24 hours post-stimulation or 48 h post infection for analysis of IP-10 production via ELISA. (K)
siRNA-transfected MDMs were infected with LaiAenv GFP/G (MOI 1) in the presence of dNs and harvested for
analysis of IFNB mRNA expression via RT-qPCR at 2 dpi. Data is displayed as mean + SEM with each dot repre-
senting an experiment (A-J) or individual donor (K). Statistical significance assessed via unpaired t-test (A-E,
F-J,L-N,S-U) or 1-way ANOVA (F, K,0-R,V) with Dunnett’'s multiple comparisons analysis. *: p <0.05; **: p<0.01,
*** p<0.001 ****: p < 0.0001, ns = not significant. (L) HEK293T cells were transfected with varying concentrations
of RIG-I-Flag, or a single amount of MDA5-Flag expression plasmids. Expression of MDA5/RIG-I-Flag was
assessed via Western blot analysis. Flag intensity was normalized to that of actin and plotted as a graph.
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Supplementary Figure 2. Knockdown of (A) IRF3, (B) IRF5, or (C) IRF7 expression in THP-1/PMA macrophages
was validated by RT-qPCR for (n=3). Functional knockdown of IRF3, IRF5 and IRF7 expression in THP1/PMA
macrophages was validated using (D) 3p-hpRNA (2.5 ng/ml), (E) LPS (100ng/ml), (F) HSV (MOI 0.1) infection or
(G) Sendai virus (MOI 1) infection. MDMs were transfected with siRNA targeting (H) IRF3, () IRF5, or (J) IRF7 for
48 hours and knockdown validated using RT-gPCR (n=4). siRNA transfected MDMs were infected with LaiAenvGF-
P/G (MOI 1) in the presence of dNs and harvested for analysis of IFNB mRNA expression (K) via RT-gPCR at 2
dpi. Knockdown of TRAF6 (L) and IKKB (M) expression in THP-1/PMA macrophages was validated using RT-qP-
CR, and functionally validated by treatment with 3p-hpRNA (2.5 ng/mL) (N), LPS (100 ng/mL) (O), infection with
HSV (MOI 0.1) (P) or Sendai virus (MOI 1) (Q). Cell supernatants were harvested 24 h post-stimulation or 48 h
post infection for analysis of IP-10 production via ELISA. (R-S) MDMs were transfected with SmartPool siRNA
against (R) TRAF6 or (S) IKKB and mRNA expression was measured by RT-gPCR (n=4). (T) MDMs transfected
with SmartPool siRNA targeting TRAF6 or IKKB and infected with LaiAenvGFP/G (MOI 1) in the presence of dNs
and harvested for analysis of IFNB mRNA expression at 2 dpi. Data is represented as mean + SEM with each dot
representing an individual experiment (A-G, L-Q) or donor (K, T). Statistical significance was assessed using
unpaired t-test (A-C, H-J, L-M, O-S) or 1-way ANOVA with Dunnett’'s multiple comparisons analysis (D-H, K, N, T ).
* p<0.05; **: p<0.01, ***: p<0.001 ****: p < 0.0001, ns = not significant.
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Supplementary Figure 3. THP1/PMA macrophages transduced with lentivectors expressing Ctrl, RIG-I, MDAS5,
MAVS, TRAF6 or IKKB shRNAs cells were infected with LaiAenvGFP/G (MOI 2) + EFV (1uM) on coverslips. Cells
were fixed at 3 dpi and stained to visualize intracellular IRF5 localization and DAPI via immunofluorescence
imaging. Scale bar = 100 pm.
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Supplementary Figure 4. (A) THP-1/PMA macrophages were infected with LaiAenvGFP/G (WT or M10 mutant)
viruses (MOI 2). At 3 dpi, cells were fixed and stained for IRF5 localization and DAPI to visualize nuclei. Scale bar
=100 um. (B) Cell Profiler was utilized to assess IRF5 nuclear intensity in infected and uninfected cells Images
from three independent infection experiments were analyzed and quantified, with each dot representing a field
containing approximately 50-150 cells. Statistical significance assessed via unpaired t-test (B). *: p < 0.05, ns =
not significant.
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Supplementary Figure 5. (A-B) MDMs (NY Biologics) were infected with LaiAenvGFP/G (MOI 1) in the presence
of dNs and cells and supernatants were harvested at 3 dpi to assess (A) levels of infection and (B) IP-10 secre-
tion. MDMs from HIV/Aging cohort (C-D) or NY Biologics (E-F) were treated with either 3p-hpRNA (2.5 ng/mL) or
LPS (100 ng/mL) (G) and supernatant was harvested at 18 h post-stimulation to assess levels of IP-10 secretion
by ELISA. Statistical significance was assessed via unpaired t-test (A-F) *: p<0.05, ns = not significant.
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Supplementary Figure 6 (A) RNA isolated from LaiAenvGFP/G-infected MDMs (MOI 2) was analyzed via Nanos-
tring nCounter using the Myeloid Innate Immunity V2 panel. Baseline expression of the gene panel was calculated
using nSolver and plotted as a ratio of Old (Mock) vs. Young (Mock) with significantly upregulated IRFs (red)
highlighted. The dashed line represents p-value of 0.05. (B) Raw count values for IRF3, IRF5, and IRF7 were
plotted to assess differences in basal MRNA expression. (C) p24gag levels for selected donors in order to ensure
equivalent levels of infection measured by ELISA. Significance was assessed via unpaired two-tailed t-test (A-C).

ns = not significant.
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