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Abstract

Large pretrained protein language models (PLMs)
have improved protein property and structure pre-
diction from sequences via transfer learning, in
which weights and representations from PLMs
are repurposed for downstream tasks. Although
PLMs have shown great promise, currently there
is little understanding of how the features learned
by pretraining relate to and are useful for down-
stream tasks. We perform a systematic analysis of
transfer learning using PLMs, conducting 370 ex-
periments across a comprehensive suite of factors
including different downstream tasks, architec-
tures, model sizes, model depths, and pretraining
time. We observe that while almost all down-
stream tasks do benefit from pretrained models
compared to naive sequence representations, for
the majority of tasks performance does not scale
with pretraining, and instead relies on low-level
features learned early in pretraining. Our results
point to a mismatch between current PLM pre-
training paradigms and most applications of these
models, indicating a need for better pretraining
methods.

1. Introduction

Proteins perform a myriad of critical biological functions,
and thus the ability to design proteins has vast impacts
on healthcare, environment, and industry (Lutz & Iamurri,
2018). Since a protein’s function is largely determined by
its amino acid sequence, specifying a sequence that will
yield a desired function is feasible in principle. However,
the relationship between amino acid sequence and function
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remains poorly understood, and most experimental methods
for measuring function are costly and low-throughput (May-
nard Smith, 1970; Romero & Arnold, 2009). To overcome
the challenge presented by limited labelled data, researchers
have sought to use transfer learning, in which models are pre-
trained in a self-supervised fashion on large public datasets
in the hope that the pretrained features or model weights
will improve performance on downstream tasks where su-
pervised data is limited (Fig. 1a-b).

Protein language models (PLMs) have emerged as the most
popular framework for transfer learning for proteins (Rives
etal., 2021; Yang et al., 2022; Elnaggar et al., 2022; Brandes
et al., 2022; Alley et al., 2019; Elnaggar et al., 2023; Lin
et al., 2023). Most PLMs pretrain using the masked lan-
guage modeling (MLM) task, in which the model is trained
to predict the original identity of masked or corrupted amino
acids. PLMs have been effective at improving performance
on many protein function prediction tasks, and some are
now integrated into bioinformatics and structure prediction
tools (Teufel et al., 2022; Thumuluri et al., 2022; Wu et al.,
2022; Flamholz et al., 2024). Despite their widespread
adoption, it is not understood how or why PLMs improve
performance on downstream tasks.

Drawing from other domains like computer vision where
investigations of transfer learning are more established, we
synthesize a set of possible hypotheses to explain improve-
ment in downstream tasks, and design and conduct a com-
prehensive series of experiments to test them. We structure
our study around the following hypotheses:

Feature reuse (Fig. 1c-i). One popular hypothesis is that
MLM pretraining learns general features of protein biology,
and that these features can be re-used across tasks. Previous
work has shown that transfer learning improves performance
across diverse downstream tasks (Rao et al., 2019; Dallago
et al., 2021). However, the degree of feature reuse is also
important: ideally, the pretrain and downstream tasks should
be aligned, such that transferring PLM representations im-
proves downstream function prediction accuracy and that
this improvement increases with larger model sizes, deeper
layers, and better pretraining performance.

If this does not occur, it suggests that pretraining primarily
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Figure 1. Summary of the transfer learning procedure and our analyses. a) PLMs are pretrained using masked language modeling. b)
Typically, transfer learning uses respresentations from the last layer of the PLM for downstream tasks. We evaluate downstream task
performance at every layer in the model. ¢c) We compare to baselines and ablations and evaluate the effects of PLM size, model depth, and
pretraining time. These experiments characterize behavior consistent with either feature reuse (i), or an alternative hypothesis (inductive
biases/overparameterization - ii, weight statistics - iii, or reuse of low-level features only - iv).

learns features that cannot be reused on downstream tasks.
To determine whether or not this is the case for PLMs, we
explore three alternative hypotheses.

Inductive biases and overparameterization (Fig. 1c-ii).
The large number of parameters in pretrained models may
lead to some alignment with useful signal by chance (Raghu
et al., 2019). If inductive biases are sufficient, then transfer-
ring from randomly-initialized version of the same model
architecture should provide similar performance.

Statistics of pretrained weights (Fig. 1c-iii). The primary
benefit of pretraining may be initializing weights to a sen-
sible scale (Raghu et al., 2019; Matsoukas et al., 2022). If
pretraining primarily provides better weight initialization,
resampling weights from the empirical distribution after
pretraining should provide similar performance.

Reuse of low-level features (Fig. 1c-iv). It is possible for
only less complex features learned early in pretraining to
contribute to transfer learning (Neyshabur et al., 2021). If
low-level features are sufficient, then features extracted from
earlier layers of the pretrained model may provide better or
similar performance to those extracted from the last layer.
Similarly, earlier pretraining checkpoints or smaller, less
performant models should provide similar performance to
the full-size, fully-pretrained model.

Critically, while all three alternative hypotheses can still

lead to improvements in downstream task performance, they
do not predict that downstream task performance can be
improved by transferring representations from larger, better-
trained models (Raghu et al., 2019; Abnar et al., 2022).

Contributions

Our work evaluates the scalability of transfer learning for
PLMs and makes the following contributions:

1. The most comprehensive evaluation, to date and to
the best of our knowledge, of transfer learning with
PLMs, spanning 370 experiments over a diverse suite
of downstream tasks.

2. The discovery that current MLM pretraining paradigms
underserve many aspects of protein biology, as sup-
ported empirically by evidence from both structure and
function prediction tasks.

3. Systematic evidence that performance on many protein
property prediction tasks does not scale with PLM size
or pretraining. Our results uncouple improvements in
downstream performance from scaling properties.

Together, our results predict that scaling PLMs under current
pretraining paradigms may not improve performance on
many protein function prediction tasks and charts a direction
for identifying new, better-aligned pretraining tasks.


https://doi.org/10.1101/2024.02.05.578959
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578959; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Understanding Transfer Learning with Protein Language Models

2. Related Work

2.1. Pretrained Protein Language Models

While numerous pretrained PLMs have been proposed in
the past few years (Rives et al., 2021; Yang et al., 2022; El-
naggar et al., 2022; Brandes et al., 2022; Alley et al., 2019;
Rao et al.,, 2019; Elnaggar et al., 2023; Lin et al., 2023),
these works primarily focus on validating that pretraining
improves performance on downstream tasks. In contrast, our
work primarily seeks to understand the factors impacting
transfer learning, which have not been rigorously studied
to date for PLMs. Most PLM studies include comparisons
to models with randomly initialized weights (Rives et al.,
2021; Yang et al., 2022) to confirm that pretrained models
do not improve downstream task performance due to overpa-
rameterization or inductive biases alone. Other studies show
that under some circumstances, PLMs yield no detectable
improvement over a simple one-hot representation of se-
quences (Wittmann et al., 2021; Hsu et al., 2021; Dallago
et al., 2021). Compared to these individual baselines and
benchmarks, our paper conducts a systematic analysis over
many different factors impacting transfer learning.

The most similar work to ours is Detlefsen et al. (2022),
which analyzes the effects of model architecture, fine-tuning,
and different pooling schemes on transfer learning perfor-
mance. However, we use MLMs trained on complete se-
quences instead of autoregressive models trained on Pfam
domains. While they train proprietary, unreleased models
for analysis, we use established models in the public domain.
This makes our analysis more relevant to applications cur-
rently using these models and also improves documentation
around these models. For example, neither their paper nor
their released code describes the pretrained models in detail,
so it is uncertain what the size of their model is, whereas we
systematically vary the model size. More importantly, we
evaluate a larger and more diverse set of downstream tasks
with experiments designed to differentiate possible mech-
anisms by which transfer learning improves performance
on downstream tasks. Critically, our systematic analysis
identifies cases where transfer from PLMs is empirically
effective in improving downstream task performance but the
improvement is due to factors that are not expected to scale
with further pretraining or larger models.

2.2. Understanding Transfer Learning in Computer
Vision

While our analysis is differentiated as we focus on protein
sequences, we take inspiration from computer vision studies
that have sought to understand factors underlying successful
transfer learning. Many are motivated by the observation
that ImageNet-trained models are effective when transferred
to medical images, raising the question of whether trans-
fer performance is really due to reuse of features (given

the extreme mismatch in domain), or due to more trivial
factors. Raghu et al. (2019) compare pretrained models
against random initialization to demonstrate that in some
situations transfer performance is due to overparameteriza-
tion. By randomly initializing models to match the weight
statistics of pretrained models, the authors further demon-
strate that improvements from pretraining may arise from
good weight scalings rather than learning reusable features.
By scrambling input images, Neyshabur et al. (2021) show
that improvements from transfer learning can at least par-
tially be attributed to the pretrained models learning low-
level statistics of data rather than more sophisticated feature
use. Matsoukas et al. (2022) further demonstrate that these
factors vary depending upon downstream task dataset and
model architecture.

Beyond models pretrained on ImageNet, some papers have
looked at factors more specific to self-supervised pretrain-
ing. Abnar et al. (2022) show that improvements on the
self-supervised pretraining task do not necessarily translate
to improved performance on downstream tasks, and in some
cases, are even anti-correlated. Pioneering work in gener-
ative self-supervised models also demonstrates that these
models often saturate in downstream task performance in an
intermediate layer of the model and degrade after (Jing &
Tian, 2020). This is reinforced by empirical studies showing
that the representations learned by self-supervised models
versus supervised models rapidly diverge in the last few
layers (Grigg et al., 2021), underscoring the importance of
a layer-by-layer evaluation.

3. Datasets and Pretrained Models

To understand why and when transfer learning with PLMs
improves downstream performance and how the improve-
ments scale with increasingly large PLMs, we conducted
370 experiments on a diverse suite of downstream tasks with
PLMs of different sizes, architectures, and at different check-
points in training. The downstream tasks are summarized in
Tables 1 and Al.

3.1. Downstream Tasks

We test a diverse set of tasks covering both property and
structure prediction, different types of distribution shift rele-
vant to protein engineering, and global versus local variation
over the sequence.

Structure prediction. We use the three-class secondary
structure (SS3) task from TAPE with three independent
test sets, SS3 — CB513 (Cuff & Barton, 1999), SS3 —
TS115 (Yang et al., 2016), and SS3 — CASP12 (Moult et al.,
2018), where the objective is to predict whether each residue
belongs to an a-helix, -strand, or coil (Rao et al., 2019).

Property prediction. We use the thermostability, subcellu-
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Table 1. Summary of downstream prediction tasks

Dataset Description Tasks Task type

SS3 Secondary structure CB513, TS115, CASP12 Residue-level classification
Thermostability Melting temperature Thermostability Regression

Subcellular localization — Cellular location Subcellular localization Classification

GB1 Immunoglobulin binding  Sampled, low vs. high, two vs. rest Regression

AAV Viral viability Two vs. many, one vs. many Regression

lar localization, GB1, and AAV datasets from FLIP (Dallago
et al., 2021).

Thermostability and subcellular localization are global pro-
tein properties measured for sequences spanning different
functional families and domains of life. The thermostability
dataset measures the melting temperature of 48,000 proteins
across 13 species (Jarzab et al., 2020). Subcellular localiza-
tion is a classification task predicting the cell compartment
to which a eukaryotic protein localizes (Armenteros et al.,
2017; Stark et al., 2021).

In contrast, the GB1 and AAV datasets measure the effects
of local sequence variation. GB1 is the 56 amino-acid B1
domain of protein G, an immunoglobulin-binding protein.
The GB1 dataset covers binding measurements for simulta-
neous mutations of up to 4 interactive sites (Wu et al., 2016).
VP1 is an adeno-associated virus (AAV) capsid protein, over
700 amino acids long (Bryant et al., 2021). The AAV dataset
measures the effects of sparsely sampled mutations across a
contiguous 28 amino-acid region over the binding interface
on viral viability.

For GB1 and AAV, FLIP provides different train-test splits
with different distribution shifts, including sampled (in-
distribution) and out-of-distribution splits, as described
in Table Al. Out-of-distribution splits more closely re-
semble protein engineering applications where a few low-
functioning variants with a limited number of mutations are
initially generated, but high-functioning variants across the
larger sequence space are the engineering end goal. For
GBI, we test three splits, in order of increasing difficulty:

e Sampled: sequences randomly partitioned between
80% training and 20% testing.

e Low vs high: models are trained on mutants with
function worse than the parent and tested on those with
better function.

* Two vs rest: Models are trained on single and double
mutants and tested on triple and quadruple mutants.

For AAV, we test two splits, in order of increasing difficulty:

* Two vs many: Models are trained on single and dou-
ble mutants and tested on variants with three or more
mutations.

* One vs many: Models are trained on single mutants

and tested on variants with more mutations.

3.2. Transfer Learning with Protein Language Models

While a number of pretraining tasks have been proposed
for protein sequences, we focused on models trained using
the popular BERT (Devlin et al., 2019) masked language
modeling (MLM) task. During pretraining, 15% of tokens
are randomly selected. Of the 15%, 10% are replaced with
a special masking token, 2.5% are randomly changed to
another token, and the remaining 2.5% are unperturbed to
encourage the model to preserve the input sequence. The
corrupted sequence is passed to the model, which is trained
to maximize the probability of the original tokens at the
selected locations.

To evaluate the effect of model architecture, we chose
two families of protein MLMs with comparable model
sizes trained on UniRef50 (Suzek et al., 2015): the
ESM (Rives et al., 2021) family of transformer models and
the Convolutional Autoencoding Representations of Pro-
teins (CARP) (Yang et al., 2022) family of convolutional
models. Due to the sequence length limit of the ESM-1b
transformer model, the first and last 511 amino acids were
taken for all sequences exceeding 1022 amino acids. This
length restriction chiefly impacts the subcellular localiza-
tion dataset: targeting signals often occur at the N- or C-
terminal, and we reason that taking both terminals preserves
biologically-relevant signals.

Following standard protein transfer learning practice when
resources for full finetuning are not available (Dallago et al.,
2021), we pass representations from each PLM layer to
a linear model and compare the performance to a linear
model on the one-hot encoding of the sequence for each
task (Fig. 1b). For the SS3 and subcellular localization tasks,
we train linear classifiers with mini-batches in PyTorch and
perform early stopping based on the validation set. For
the regression tasks, we train ridge regression models with
Scikit-learn (Buitinck et al., 2013), using a grid search on
the validation set to tune the regularization strength. For all
tasks except secondary structure prediction, we mean pool
the representations over the length dimension from each
layer. Secondary structure prediction requires a representa-
tion for every residue, so no pooling is performed.
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As protein engineers often seek to identify top-ranked mu-
tants as opposed to predicting the absolute function of muta-
tions, we use ranking metrics, Spearman’s rank correlation
and Normalized Discounted Cumulative Gain (NDCG), as
the primary metrics for the regression tasks. For concision,
we report Spearman’s rank correlation for regression tasks
and accuracy for classification tasks in the main text. Com-
plete results, including mean square error, cross-entropy
loss, NDCG, and ROC-AUC are provided in the Supplemen-
tal Materials.

4. Experimental Setup

Baseline and ablations. We conduct baselines and model
ablations to determine when transfer learning improves
downstream task performance and whether improvements
in downstream task performance can be attributed to mecha-
nisms other than feature reuse (Fig. 1b-ii and 1b-iii).

¢ One-hot baseline (#). To determine whether transfer
learning with PLMs improves performance, we test if
representations from pretrained models perform better
than a one-hot representation.

¢ Random init (0). To evaluate whether the effect of
transfer learning is due to overparameterization and/or
the inductive biases of the PLM architecture, we test
the impact of randomly initialized weights.

¢ Stat transfer (®). To evaluate whether the effect of
transfer learning is due to weight statistics and/or ini-
tializing the weights to a sensible scale, we test the
impact of randomly initialized weights matching the
weight distribution of the pretrained PLM.

We consider transfer learning from a PLM to have improved
performance over a baseline or ablation if it improves the
metric by at least 10%.

Scaling experiments. To further understand if the MLM
pretraining task is aligned with downstream tasks, we sought
to understand if improving PLM performance by scaling
across three factors also improves transfer learning perfor-
mance on downstream tasks (Fig. 1b-iv):

¢ Model size. For both CARP (®) and ESM ( & ),
we test models with different numbers of layers and
parameters (Table A2). For concision, we refer to
CARP-38M and ESM-43M as the “small” models (©),
CARP-76M and ESM-85M as the “medium” models
(@), and CARP-640M and ESM-650M (ESM-1b) as
the “large” models (@).

* Model depth. For each architecture (CARP: —, ESM:
- -) and model size ( —), we test whether down-
stream task performance improves as we transfer
deeper layers by determining whether the Spearman
rank correlation between layer number and perfor-
mance is greater than 0.9 (Table A6). This experi-

ment allows us to understand if tasks primarily reuse
low-level features early in the pretrained models, or
if more complex features deeper in the models also
contribute to downstream task performance. Convo-
lutional neural networks (CNNSs) induce a stronger
correlation between the depth of the layer and the com-
plexity of the features than transformers, leading to
different patterns of feature reuse in previous transfer
learning studies (Matsoukas et al., 2022). However, we
find little empirical difference between CNNs (CARP)
and transformers (ESM) in our analyses.

¢ Model checkpoint. For each model size ( 9), we
test the effect of using checkpoints from earlier in pre-
training. We order these checkpoints based upon their
pretraining loss, as earlier checkpoints have higher
losses on the MLLM pretraining task (Table A7). We
evaluate whether features from later in pretraining im-
prove transfer learning by determining whether the
Spearman rank correlation between the negative pre-
train loss and downstream performance is greater than
0.9 (Table A8). Unfortunately, checkpoints are only
publicly available for CARP, so we cannot run this
analysis with ESM.

We define the MLM pretraining task to be aligned with a
downstream task if transferring PLM representations im-
proves downstream task performance over the baseline and
ablations and this improvement scales with improvements to
pretraining. Code for all experiments is available at ht tps :
//github.com/microsoft/protein-transfer

S
VN e e @ \0(‘?} @
&"’O&fﬁ gv‘;zloéf\o@ @"4 o<\°A S @o@QI &
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Transfer > One-hot v/ v v v 4 v 4 v X X
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Scale with PLM sizes v/ v v v X v X v ~ X
Scale with layer depths v/ 4 v X X X X X X X
Scale with pretrain losses v/ 4 v X X X X X X X

Figure 2. Downstream task result summary. v indicates true, ~
indicates true for only one architecture, and X indicates false.

5. Results

Overall, our analyses reveal three clusters of transfer learn-
ing behavior across downstream tasks (Figure 2). First, we
find that secondary structure prediction tasks are the only
tasks where pretraining improves downstream performance
and the pretrain and downstream tasks are aligned. Second,
we observe that transfer learning improves performance for
many downstream tasks despite the pretrain and downstream
tasks not being well-aligned, indicating that performance
on these tasks will not improve as PLMs improve. Third,
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we observe that although transfer learning improves per-
formance on almost all downstream tasks, for some tasks
this improvement can be attributed to overparameterization,
inductive biases, or sensible weight initialization. In sub-
sequent sections, we expand on each of these clusters of
observations in detail. The full results of our experiments
are available in the Supplemental Materials.

5.1. Structure Prediction Benefits from Transfer
Learning Because It Is Well-Aligned with MLM
pretraining

For all three residue-level secondary structure prediction
tasks, Fig. 3a and Table A3 show that PLM embeddings out-
perform the one-hot baseline as well as the random init and
stat transfer ablations, demonstrating that transfer learning
improves secondary structure prediction performance and
that the improvement is not due to the inductive biases or
weight statistics of the models. Secondary structure predic-
tion performance improves when transferring deeper PLM
features (Fig. 3b), indicating that more complex features
from later layers continue to improve performance. Further-
more, transfer learning with features from larger models
and from later in pretraining improve secondary structure
prediction (Fig. 3a and 3c), as previously observed by Rives
et al. (2021), Elnaggar et al. (2022), and Yang et al. (2022).
We therefore conclude that MLLM pretraining is well-aligned
to structure prediction, allowing PLM features to be reused
when predicting secondary structure from sequence.

5.2. Many Tasks Benefit from Transfer Learning
Despite Lack of Alignment with MLM Pretraining

Next, we observe a cluster of four downstream tasks (ther-
mostability, GB1 — low vs high, AAV — two vs many, and
AAV - one vs many) where transfer learning improves per-
formance over baselines even though the tasks do not align
well with the pretraining task (Fig. 4). For these tasks, trans-
fer learning improves performance over both the random init
and stat transfer ablations, indicating that transfer learning
confers at least some benefit over the inductive biases, pa-
rameterization, or weight statistics of the models alone (with
the exception of the AAV — one vs many task, where weight
statistics may still explain transfer learning performance)
(Fig. 4a and Table A4). However, for all of these tasks,
downstream task performance does not improve as features
from deeper layers are transferred (Fig. 4b) or as the PLMs
improve their pretraining loss over checkpoints (Fig. 4c),
suggesting that these tasks may rely upon low-level features
learned early in pretraining.

To supplement our quantitative cut-offs for alignment, we
qualitatively assess trends in layer-by-layer performance
across tasks. We observe that for all tasks where transfer
learning improves performance over the baselines (including
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Figure 3. Results for secondary structure prediction. a) Perfor-
mance on downstream tasks when transferring the final layer rep-
resentation from various sizes of ESM and CARP compared to
baselines and ablations. b) Downstream task performance by
depth of layer transferred. ¢) Downstream task performance by
pretraining loss. Each dot is a model checkpoint. For all subplots,
downstream task test performance is quantified using accuracy.

the secondary structure prediction tasks), the largest gains
in performance occur in the first 3-5 layers of both the ESM
and CARP models, across model sizes (Fig. 3b and 4b).
However, unlike the secondary structure prediction tasks,
which continue to improve in performance past this initial
peak, improvement on the downstream tasks in this cluster
generally plateaus (e.g. for the AAV — two vs many task),
supporting our interpretation that features contributing to
these tasks are already present within the first few layers of
pretrained PLMs.

Interestingly, although none of these tasks scale with model
depth or pretraining loss, two downstream tasks (thermosta-
bility and AAV — two vs many) scale with PLM size
(Fig. 4a). We reasoned that while our random init abla-
tion rules out that improvements in downstream task perfor-
mance is entirely due to parameterization, parameterization
may still partially contribute to performance independently
of feature reuse. To test this, we additionally evaluated
the performance of small and medium randomly initialized
models. Indeed, we observe that both types of randomly
initialized models scale in performance with model size
for both tasks, and in similar proportions to the improve-
ments for the pretrained models (Table A4). Together, this
suggests that observing that downstream task performance
scales with model size alone is not sufficient to conclude
that pretraining and downstream tasks are aligned, and that
demonstrating scaling across other axes (such as model
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Figure 4. Results for tasks where transfer learning improves down-
stream task performance, but the pretrain and downstream tasks are
not aligned. a) Performance on downstream tasks when transfer-
ring the final layer representation from various sizes of ESM and
CARP compared to baselines and ablations. b) Downstream task
performance by depth of layer transferred. ¢) Downstream task
performance by pretraining loss. Each dot is a model checkpoint.
For all subplots, downstream task test performance is quantified
using Spearman’s rank correlation.

depth and checkpoints in training, as we propose here) is
necessary.

5.3. Some Tasks Do Not Benefit from MLM Pretraining

Finally, we observe a cluster of three downstream tasks
(subcellular localization, GB1 — sampled, and GB1 — two vs
rest) where pretraining does not improve transfer learning
performance (Fig. 5). For subcellular localization, although
transfer learning improves over a one-hot representation,
pretrained models perform no better than randomly initial-
ized models, suggesting that the improvement can be en-
tirely attributed to inductive biases and parameterization.
In contrast, the GB1 tasks in this cluster fail to outperform
a one-hot representation by at least 10% (Fig. 5a and Ta-
ble AS). We hypothesize the GB1 splits in this cluster are
either too trivial, or too challenging for any representation.
GB1 — sampled is an in-distribution task with a relatively
large training set, and all models and baselines perform
well. Meanwhile, GB1 — two vs rest is a challenging out-of-
distribution split.

Intriguingly, our stats transfer ablation decreases perfor-
mance for all GBI tasks, including the GB1 — low vs high
task in the previous section, compared to the one-hot and
random initialization baselines (Fig. 4b and 5b; Tables A4
and AS5). We hypothesize that this is because the GB1
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Figure 5. Results for task where pretraining does not improve
downstream task performance. a) Performance on downstream
tasks when transferring the final layer representation from various
sizes of ESM and CARP compared to baselines and ablations. b)
Downstream task performance by depth of layer transferred. c)
Downstream task performance by pretraining loss. Each dot is a
model checkpoint. For subcellular localization, the downstream
classification task performance is quantified using accuracy. For
other tasks, the downstream regression task performance is quanti-
fied using Spearman’s rank correlation.

dataset is a highly local task, depending on finding interac-
tions between just four mutated positions in a sequence.

6. Discussion

In this work, we systematically evaluate the mechanisms via
which transfer learning from large pretrained protein lan-
guage models improve performance on downstream protein
function and structure prediction tasks. While most down-
stream tasks benefit from transfer learning, structure predic-
tion is the only task where we observe pretrain-downstream
alignment. Our results are consistent with previous studies
that show MLM pretraining imparts information about pro-
tein structure. Previous work has shown that the deepest
attention matrices in pretrained PLMs recapitulate contact
maps (Vig et al., 2020; Rao et al., 2021), and that it is pos-
sible to extract contact maps by perturbing the inputs to
PLMs (Zhang et al., 2024). More recent work has argued
that PLM representations contain similar co-evolution infor-
mation to multiple sequence alignments (Chowdhury et al.,
2022; Lin et al., 2023; Wu et al., 2022).

Our primary contribution is showing that scaling pretraining
does not improve performance on prediction tasks that are
less reliant on coevolutionary patterns, and that outperform-
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ing the one-hot and randomly initialized baselines does not
imply that downstream task performance will scale with pre-
training performance. Our results are most pronounced on
the protein engineering datasets, where the sequence varia-
tion is introduced artificially. The engineering tasks in FLIP
measure the effect of local sequence variation on the native
function. We expect coevolutionary patterns learned during
MLM pretraining to be even less helpful when designing
proteins for non-natural functions.

Limitations. There are factors known to impact transfer
that we could not test for PLMs due to a lack of public mod-
els or to computational expense. First, pretraining dataset is
important, both in terms of distance between the pretraining
and downstream task data domains (Cherti & Jitsev, 2022)
and data size (Abnar et al., 2022). PLMs pretrain on large
databases of natural sequences. In principle, this means
that some downstream tasks may be out-of-distribution (e.g.
those involving artificial variation or non-natural function),
or subject to biases in data collection (e.g. taxonomies
less-represented in UniProt (Consortium, 2019)). Previ-
ous studies have shown differences in pretraining perfor-
mance by taxonomy (Almagro Armenteros et al., 2020).
However, Meier et al. (2021) trained versions of ESM on
UniRef100 instead of UniRef50, and Dallago et al. (2021)
show that they perform very similarly on function prediction
tasks. Moreover, subsampling pretraining sequence datasets
has not been explored beyond downsampling redundant se-
quences, making the impact of data difficult to evaluate for
pretrained PLMs.

Second, while a variety of other pretraining tasks have been
proposed for protein transfer learning, and different pre-
training tasks could potentially learn different aspects of
protein biology, we remain uncertain if they will result in
significant differences from MLMs. Many pretraining tasks
still aim to reconstruct natural sequences (He et al., 2021;
Notin et al., 2022; Tan et al., 2023; Ma et al., 2023) and
so are also likely to primarily learn coevolutionary patterns.
Other tasks use structure as an additional input or target, but
they generally make only modest improvements on function
prediction tasks (Mansoor et al., 2021; Wang et al., 2022;
Yang et al., 2023; Su et al., 2023). Supporting the assertion
that learning to predict structure may not improve function
prediction, Hu et al. (2022) show that transfer learning using
the AlphaFold2 (Jumper et al., 2021) structure module is
less effective for function prediction than transferring PLMs.
Finally, Brandes et al. (2022) and Xu et al. (2023) recon-
struct both sequence and functional annotations but also find
that downstream performance does not always scale with
pretraining time.

Finally, we only test linear probes on mean pooled repre-
sentations to limit computational cost, but previous work
shows that for many tasks finetuning the PLM end-to-end

outperforms a linear probe or training a small neural net-
work on top of the frozen pretrained weights (Dallago et al.,
2021; Yang et al., 2022), and that mean-pooling is rarely
optimal (Detlefsen et al., 2022; Goldman et al., 2022). In
computer vision, models trained on different datasets (Cherti
& lJitsev, 2022) and pretraining tasks (Grigg et al., 2021)
exhibit different finetuning dynamics, and there is some
evidence for this in proteins as well (Detlefsen et al., 2022).

Implications for future work. First, our work emphasizes
the need for improved evaluation standards for PLMs. We
show that checking for improved performance over base-
lines may overestimate the generality of PLMs across ap-
plications in protein biology, as it does not rule out that
improvement may be due to alternate hypotheses that do not
scale. However, most current works rely on comparisons to
baselines to argue that PLMs are widely applicable, and to
the extent scaling has been studied, most only use scaling on
structure prediction accuracy alone to justify training larger
models (Rives et al., 2021; Elnaggar et al., 2022; Lin et al.,
2023; Chen et al., 2024). Future PLM evaluation should
therefore assess scaling on diverse downstream function pre-
diction and engineering tasks, and not just structure alone,
to validate the generality of models.

Second, synthesizing our empirical results with how the
current landscape of protein sequence pretraining tasks pri-
marily align with structure prediction, our work points to a
need for new pretraining tasks. For many downstream tasks,
the lack of alignment prevents transfer learning from taking
full advantage of the pretrained model, as features from
deep in the PLM perform no better than features from early
layers in the PLM. Likewise, for these tasks, simply scaling
to larger PLMs trained for more steps on more data will
not improve performance. Our study suggests that the field
needs to explore diversified pretraining strategies instead of
further scaling existing strategies in order to reach aspects
of protein biology that are not well-served by PLMs.

7. Impact Statement

This paper exposes current limitations in protein language
models, which are routinely used in protein engineering and
bioinformatics. Protein language models scale from year
to year, with current models reaching hundreds of billions
of parameters (Chen et al., 2024). By showing that current
model pretraining paradigms fail to confer benefits on many
aspects of protein biology, we caution against uncritically in-
vesting compute resources into scaling these models, which
we hope will translate to impact through reduced carbon
emissions. Additionally, by showing what kinds of tasks pro-
tein language models currently fail to scale on, we hope our
work leads to the development of pretrained models that im-
prove bioinformatics and protein design predictions beyond
those currently well-served by protein language models. If
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so, we anticipate both positive and negative impacts from
an expanded capability to design new proteins.
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A. Additional tables and figures

Table Al. Downstream functional and structural tasks

Task Task type Split type nTrain  n Val nTest Model type (n classes)
SS3-CB513 Residue-level Minimal homology 8678 2170 513  PyTorch linear classifier (3)
secondary struc-
ture
SS3 -TS115 Residue-level Released in 2016, from 8678 2170 115  PyTorch linear classifier (3)
secondary struc- 43 to 1085 residues
ture
SS3 - CASP12 Residue-level CASP12 targets, mostly 8678 2170 21  PyTorch linear classifier (3)
secondary struc- more than 400 residues
ture
Thermostability Global property  In-distribution 22335 2482 3134  Scikit-learn ridge regression
Subcellular localization ~ Global property  In-distribution 9503 1678 385  PyTorch linear classifier (10)
(scl)
GB1 — sampled Local property  In-distribution 6289 699 1745  Scikit-learn ridge regression
GBI —low vs high Local property  Out-of-distribution 4580 509 3644  Scikit-learn ridge regression
GBI — two vs rest Local property ~ Out-of-distribution 381 43 8309  Scikit-learn ridge regression
(fewer training samples)
AAV — two vs many Local property  Out-of-distribution 28626 3181 50776  Scikit-learn ridge regression
AAV - one vs many Local property ~ Out-of-distribution 1053 117 81413  Scikit-learn ridge regression
(fewer training samples)
Table A2. Pretrained models
Name Size Name in code Layers Parameters Embedding dimension
ESM-43M Small esml_t6_43M_URS50S 6 43M 768
ESM-85M Medium esml_t12_85SM_URS50S 12 85M 768
ESM-670M - esml _t34_670M_URS50S 34 670M 1280
ESM-650M Large esm1b_t33_650M_URS0S 33 650M 1280
CARP-600k  Tiny carp_600k 16 600k 128
CARP-38M  Small carp_38M 16 38M 1024
CARP-76M  Medium carp-76M 32 76M 1024
CARP-640M Large carp_640M 56 640M 1280
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Table A3. Last layer transfer learning performance for tasks that are aligned with MLM pretraining. Values are accuracy.

Task Model Ablation
pretrain rand stat
SS3 - CASP12  onehot 0.481946 - -
carp-600k 0.660695 0.478914 0.452729
carp-38M 0.688671 0.563534 0.497244
carp_76M 0.699283 0.543137 0.485254
carp_640M 0.725055 0.517503 0.487321

esml_t6_43M_URS50S 0.675441 0.552508 0.537486
esml_t12_85M_UR50S 0.681505 0.551130 0.540656
esml_t34_670M_URS50S  0.713892 0.545755 0.528528
esm1b_t33_650M_URS50S 0.717337 0.498208 0.509234

SS3 - CB513 onehot 0.488168 - -
carp_600k 0.711180 0.495941 0.451330
carp_38M 0.761277 0.573476 0.479191
carp_76M 0.792297 0.549633  0.443703
carp_640M 0.820865 0.530729 0.452383

esml_t6_43M_UR50S 0.742595 0.518412 0.507689
esml_t12_85M_URS50S 0.770913  0.518973  0.495643
esml_t34_670M_URS0S  0.802556 0.517013 0.504350
esm1b_t33_650M_UR50S 0.815163 0.449030 0.476766

SS3 - TS115 onehot 0.508551 - -
carp_600k 0.739395 0.506632 0.466368
carp_38M 0.779659  0.594533  0.504915
carp_76M 0.802989 0.571236 0.452633
carp_640M 0.824030 0.556827 0.459433

esml_t6_43M_UR50S 0.766227 0.568543  0.547502
esml_t12_85M_URS50S 0.789018 0.566826 0.527404
esml_t34_670M_UR50S  0.810127 0.565412 0.544607
esm1b_t33_650M_URS50S 0.821539 0.467715 0.501885
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Table A4. Last layer transfer learning performance for tasks where transfer learning improves performance but the pretrain and downstream
tasks are not aligned. Values are Spearman rank correlation.

Task Model Ablation
pretrain rand stat
Thermostability onehot 0.122666 - -
carp-600k 0.449869  0.318872  0.256522
carp_38M 0.509192  0.364122  0.312633
carp-76M 0.513822  0.351773  0.288485
carp-640M 0.577852  0.338858  0.301046
esm1_t6_43M_URS50S 0.484865 0.361920  0.348635

esml_t12_85M_URS50S 0.486672  0.353201  0.362120
esm1_t34_670M_URS50S 0.584666  0.375864  0.370748
esml1b_t33_650M_URS50S  0.581390  0.314951  0.259686

GBI - low vs high  onehot 0.321731 - -
carp-600k 0.240969  0.235198  0.120894
carp_-38M 0.477337  0.361751  0.269437
carp_76M 0.484498  0.402861  0.148487
carp_-640M 0.476085  0.390548  0.165406
esm1_t6_43M_URS50S 0.464535  0.342606  0.346474

esml_t12_85M_URS50S 0.429410  0.327024  0.350764
esm1_t34_670M_UR50S 0.507416  0.351403  0.343306
esmlb_t33_650M_UR50S  0.524692  0.345272  0.271115

AAV - two vs many onehot -0.001563 - -
carp-600k 0.360750  0.281241  0.385927
carp-38M 0.494635  0.437460  0.487872
carp_76M 0.618112  0.405575  0.525141
carp_640M 0.677730  0.399952  0.522515
esm1_t6_43M_URS50S 0.541579 -0.177062  0.255282

esml_t12_85M_URS50S 0.640249 -0.151353 -0.080374
esml_t34_670M_UR50S 0.458588 -0.161850  0.286662
esmlb_t33_650M_UR50S  0.653732 -0.142248  0.409976

AAV - one vs many onehot 0.190348 - -
carp_600k 0.515201  0.371767  0.482898
carp_38M 0.387172  0.326028  0.311081
carp_76M 0.447145 0.191918  0.216075
carp_640M 0.434172  0.331103  0.367918
esml_t6_43M_URS50S 0.363238  0.354442  0.348771

esml_t12_85SM_URS50S 0.450142  0.479789  0.352977
esm1_t34_670M_UR50S 0.362221  0.351326  0.472707
esml1b_t33_650M_UR50S  0.377456  0.257278  0.399230
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Table AS. Last layer transfer learning performance for tasks where transfer learning does not improve performance. Values are Spearman
rank correlation for the GB1 tasks and accuracy for subcellular localization.

Task Model Ablation
pretrain rand stat
GBI - two vs rest onehot 0.542840 - -
carp_600k 0.562338 0.515097 0.175361
carp_38M 0.539823 0.420235 0.413975
carp_76M 0.534144  0.444437 0.293423
carp_640M 0.581670 0.518491 0.191882

esml_t6_43M_URS50S 0.480617 0.609323  0.629515
esml_t12_85SM_URS50S 0.396941 0.585249 0.597770
esml_t34_670M_URS50S  0.506492 0.588215 0.566406
esm1b_t33_650M_UR50S 0.543660 0.542069 0.411151

GBI - sampled onehot 0.788505 - -
carp_600k 0.785568 0.752780 0.655448
carp_38M 0.859780 0.825859  0.776026
carp_76M 0.850627 0.831454 0.715282
carp_640M 0.867894 0.831186 0.675240

esml_t6_43M_UR50S 0.852435 0.797663 0.813344
esml_t12_85M_URS50S 0.857460 0.793028 0.813187
esml_t34_670M_UR50S  0.865990 0.800310 0.816400
esm1b_t33_650M_URS50S 0.884644 0.789944 0.793893

Subcellular localization  onehot 0.374026 - -
carp_600k 0.449351 0.433766 0.431169
carp_38M 0.488312 0.548052 0.501299
carp_76M 0.542857 0.537662 0.550649
carp_640M 0.574026 0.558442 0.566234

esml_t6_43M_UR50S 0.558442  0.555844 0.576623
esml_t12_85SM_URS50S 0.568831 0.571429 0.568831
esml_t34_670M_UR50S  0.615584 0.610390 0.610390
esm1b_t33_650M_UR50S 0.605195 0.610390 0.612987

Table A6. Spearman’s rank correlation (p) between downstream task performance and layer depth

CARP-640M ESM-650M

Task

p p p p
SS3 - CB513 0.989 5.850 x 1047 0.954 2.511 x 10~18
SS3-TS115 0.985 6.109 x 10~ 0.953 4.197 x 10718
SS3 - CASP12 0.991 2.136 x 104 0.957 1.063 x 1018
Thermostability —0.090 5.042 x 1071 —0.432 1.068 x 1072
GBI1 - low vs high 0.289 2.922 x 1072 0.814 4.817 x 107?
AAV - two vs many 0.809 2.583 x 10714 0.014 9.378 x 107!
AAV - one vs many 0.853 3.966 x 1017 0.757 2.160 x 107
Subcellular localization 0.694 2.085 x 1079 0.621 8.896 x 1075
GB1 - sampled 0.325 1.362 x 1072 0.850 1.961 x 10710
GBI - two vs rest 0.436 7.023 x 107*  —0.267 1.266 x 107!
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Table A7. Pretrained CARP checkpoints

Name Fraction  Loss Accuracy Step
carp_600k 1 2505 0.240 4.889 x 10°
carp_600k 0.5 2.512 0.239 2.393 x 10°
carp_600k 025 2518 0.237 1.143 x 10°
carp_600k 0.125 2.527 0.234 5.204 x 10*
carp_38M 1 2.303 0.300 1.027 x 10°
carp_38M 0.5 2.319 0.295 5.176 x 10°
carp_38M 025 2.339 0.289 2.569 x 10°
carp_38M 0.125 2.363 0.282 1.296 x 10°
carp_76M 1 2.206 0.328 6.545 x 10°
carp_76M 0.5 2.225 0.322 3.280 x 10°
carp_76M 0.25 2.248 0.315 1.630 x 10°
carp_76M 0.125 2.278 0.307 8.318 x 104
carp_640M 1 2.019 0.382 6.220 x 10°
carp_640M 0.5 2.054 0.372 3.118 x 10°
carp_640M 025 2.094 0.360 1.547 x 10°
carp_640M 0.125 2.146 0.345 7.881 x 10*

Table A8. Spearman’s rank correlation (p) between downstream task performance and CARP pretrain loss

Task p p
SS3 - CB513 1.000 0.000
SS3 - TS115 1.000 0.000
SS3 - CASP12 0.949 2.000 x 1076
Thermostability 0.552 6.251 x 1072
GBI - low vs high —0.392 2.081 x 1071
AAV - two vs many 0.483 1.121 x 10!
AAV - one vs many 0.727 7.355 x 1073
Subcellular localization 0.832 7.980 x 10~*
GBI - sampled 0.441 1.517 x 107!
GBI1 - two vs rest —0.084 7.954 x 1071
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