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Abstract

We develop a data harmonization approach for C. elegans volumetric microscopy data, still or
video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-
loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain
neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online
repository called WormID (wormid.org). We use this repository to train three existing automated cell
identification algorithms to, for the first time, enable accuracy in neural identification that generalizes
across labs, approaching human performance in some cases. We mine this repository to identify factors
that influence the developmental positioning of neurons. To facilitate communal use of this repository,
we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for
contribution to the scientific community. This repository provides a growing resource for
experimentalists, theorists, and toolmakers to (a) study neuroanatomical organization and neural activity
across diverse experimental paradigms, (b) develop and benchmark algorithms for automated neuron
detection, segmentation, cell identification, tracking, and activity extraction, and (c) inform models of
neurobiological development and function.
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Introduction

Whole-brain imaging experiments with single-neuron resolution (herein shortened to simply
“whole-brain imaging”) have undergone explosive growth since first demonstrated in the nematode C.
elegans, a millimeter-sized worm, and the zebrafish D. rerio in 2013.12 Since then, these methods have
been widely adopted and advanced in the worm3456.7 zebrafish®910.11.12.13 ‘and larval'4 and adult!> fly
communities. Moreover, there have been significant efforts and advances in neuron-resolution imaging
of multiple and/or large brain regions in mammals, rapidly approaching whole-brain imaging, especially
in mice.17'18’19'20'21

In C. elegans, whole-brain imaging datasets have enabled characterization of neural dynamics®®,
functional connectivity?6222324 and the roles of individual neurons during behavior’. These studies
leverage the property of eutely in this organism: each cell has a unique and stereotyped identity,
consistent across every animal, that allows for data from individual neurons to be pooled and compared
across multiple trials and animals. However, analyses of these experiments are bottlenecked by the need
to determine the unique identities of each neuron in 3D volumetric recordings. Manual cell identification
from fluorescent microscopy imagery is a notoriously difficult skill, requiring substantial expertise and
labor. This task is particularly difficult for neurons labeled with nuclear localized fluorophores, which
is typical for whole-brain recordings. We recently developed NeuroPALS, the first method where the
unique identity of every single neuron can be distinguished by an invariant fluorescent color barcode in
living animals at all developmental stages of both sexes.?> NeuroPAL has greatly simplified the task of
cell identification and has thus seen rapid adoption, with at least 6 labs®7:262224 publishing whole-brain
imaging datasets using these animals, and many more labs incorporating the system into their
experimental protocols since its release in 2021.

Despite this innovation, neural identification remains a challenging task that requires expertise
and many hours of manual work. In the past few years, researchers have proposed various algorithmic
auto-identification approaches to attack this problem.282926.30.3L32 However, none of them have achieved
widespread adoption, due at least in part to their incompatibility with different microscopy data formats
and low performance on data acquired from different labs. Automatic approaches to the complementary
problem of tracking neurons across video frames have achieved some generalized performance across
various datasets3*24, but so far there have not been efforts to perform similar training and benchmarking
for automatic cell identification. In order to build automatic approaches that are robust, accurate, and
generalizable, there is a critical need for a standardized format and compatible tools trained and
benchmarked on a consolidated corpus of data that reflects the heterogeneity of microscopy equipment,
experimental conditions, and protocols across labs.

To address this need, we take a data harmonization approach: a process of combining datasets
from different sources and homogenizing them to produce a substantially larger data corpus that, in our
case, minimizes non-biological inconsistencies across individual datasets while increasing the overall
biological diversity of training and benchmarking data. Harmonization includes: i) aggregating the data,
i) converting it to a standardized format, iii) normalizing it, iv) handling duplicate and missing data,
and v) pre-processing data to register it to a common space and coordinate system. Data harmonization
is standard in many data science fields but has seen slower adoption in the life sciences®. Similar efforts
to standardize data formats and build large corpuses of data have been essential in the development and
benchmarking of many modern machine learning algorithms.36:37:38

We introduce WormID (wormid.org). This resource consists of: i) data harmonization tools
including a standardized file format for both raw and processed data alongside related metadata that
extends the existing Neurodata Without Borders (NWB) format, ii) pre-processing to align the color and
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coordinate space of new datasets, and iii) open-source software to analyze whole-brain activity images.
We also provide tutorials and documentation that enable researchers to easily incorporate these tools
into their data pipelines. Finally, we provide a large online corpus of harmonized C. elegans whole-brain
activity imaging and structural data that can be used for large-scale experimental analysis,
neurobiological modeling, and algorithmic development. This corpus is stored in a popular community
archive called the Distributed Archives for Neurophysiology Data Integration (DANDI), which serves
as a repository for experimental neuroscience data from a variety of model organisms.*

By aggregating a diversity of datasets from multiple labs into a large data corpus, we achieve a
substantial boost in the performance of three existing neural auto-identification algorithms, arguably
moving into the regime of practical utility for the broader community of users. Furthermore, we mine
this corpus to investigate the relationship between neural lineage, synaptic connectivity, and somatic
positioning of C. elegans neurons to better understand the factors that drive the positioning of neurons
in the adult worm.

This corpus and set of tools should be of wide utility to C. elegans researchers. We hope it will
serve as a seed for continued community aggregation of brain imaging datasets and further the
development and improvement of community data-analysis tools applicable across many model
organisms.

Results

A standardized format for whole-brain C. elegans recordings enables data aggregation and
algorithm interoperability

Current state-of-the-art whole-brain recordings of C. elegans typically consist of a combination
of structural images that often use the NeuroPAL multi-channel fluorescent system to determine neuron
identities (Fig. 1a-b) and time series images of neural activity acquired by using genetically-encoded
activity sensors (e.g., GCaMP6s*) (1c). This imaging is performed either on immobilized worms (often
constrained within a microfluidic chip to maximize image quality*34) or on freely-moving worms.*%
To aid interpretation, herein we visualize whole-brain structural NeuroPAL images via i) an unrolled
‘butterfly’ plot of neuron positions that projects the 3D worm structure into a 2D plane (Fig. 1a), ii) a
2D projection plot of the NeuroPAL color space (Fig. 1b), and iii) 2D dorsal-ventral and lateral
projection plots of the neurons (Fig. 1b). These visualizations facilitate quick comparisons of neuron
color and position from different samples and fine-tuning of their global alignment.

All associated raw data and metadata is stored in the standardized NWB*? file format with an
additional extension that we developed, ndx-multichannel-volume (ndx = neurodata extension), to
provide support for multi-channel volumetric recordings and C. elegans specific metadata (Fig. 2a).
This extension is available in the NWB Extensions Catalog and is now the official NWB standard for
data sharing of C. elegans whole-brain neural-activity imaging. NWB data is hierarchically organized
with basic metadata stored at the file’s root level, raw data stored in the ‘acquisition module’, and various
processed experimental data stored in ‘processing modules’ (Fig. 2b). Individual NWB files contain a
single experimental run for a single animal. These NWB files are then stored and accessed from the
DANDI archive, where they receive a unique persistent digital object identifier (DOI) in accordance
with the International Organization for Standardization (ISO).

We incorporated NWB ndx-multichannel-volume read and write functionality into two software
tools. These independent software implementations both offer both user-friendly GUIs that analyze C.
elegans NeuroPAL structural images and neural activity in immobilized worms (NeuroPAL software
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https://github.com/Yemini-Lab/NeuroPAL _ID, Fig. 2¢ and eats-worm software
https://github.com/focolab/eats-worm, Fig. 2d). This functionality can be straightforwardly
incorporated into other data-analysis pipelines and software.

In Table 1 we present a summary of the data we aggregated and harmonized into a corpus: 108
worms from six datasets acquired by five different labs, each with segmented neurons and human-
labeled identities. This corpus can be mined for biological insights, training and benchmarking of
machine-vision approaches, and neurobiological studies of structural and neural-activity time-series data.
Each of these datasets is stored on DANDI and range from a few hundred megabytes to several terabytes
(see Methods for dataset references). DANDI supports streaming from the cloud and allows users to
selectively load data objects and data chunks, substantially reducing the local data storage and RAM
requirements necessary to work with this data on a personal computer.
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Figure 1: NWB file contents

(a) Hlustration of a NeuroPAL worm. The head is highlighted by a red box. A butterfly plot visualizes the full 2D representation of the
worm brain by projecting neurons onto the surface of the cylindrical body and then unrolling the cylinder. Neuron centers are colored
using their composite NeuroPAL expression. (b) Visualizations of the raw NeuroPAL structural image and 2D projections of its RG, RB,
GB color subspaces and XZ and XY projections of its neuron positions. Neuron centers are colored using their composite NeuroPAL
expression. (c) Example activity traces for five neurons contained in the NWB file and of the raw neural-activity (GCaMP6s) images.
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Figure 2: NWB schema and two software programs with NWB 1/O support

(a) Names and content for objects used in C. elegans optophysiology NWB files. (b) File organization hierarchy of NWB files for C.
elegans optophysiology. Modules are structured like folders within the root file in an HDF5-based hierarchy. (c-d) NeuroPAL 1D
software (c) and eats-worm software (d) GUIs with NWB 1/O support for visualization and annotation of NeuroPAL structural images,
neural segmentation and automated 1D, and time-series of neural-activity with stimulus-presentation in immobilized worms.
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Dataset # # of Worms | Lab Code NeuroPAL, # of Segmented | # of ID Labels
in the GCaMP, or Neurons (Avg) (Avg)
Dataset Both
NP 10 NP NeuroPAL 189-196 (193) 186-193 (190)
1 21 EY Both 166-188 (177) | 164-184 (175)
2 9 HL NeuroPAL 113-125 (119) | 58-69 (64)
3 9 KK Both 149-163 (154) | 149-163 (154)
4 38 SF Both 29-96 (70) 29-96 (70)
5 21 SK1 Both 78-139 (111) 30-82 (48)
6 10 SK2 NeuroPAL 166-180 (173) | 38-63 (49)
Summary 118 5 labs 29-196 (126) 29-193 (99)

Table 1: Summary of aggregated dataset characteristics
NP dataset comes from the original NeuroPAL paper®, obtained as part of a collaboration between the labs of Oliver Hobert (Columbia
University) and Aravinthan D.T. Samuel (Harvard University).

An updated atlas of the C. elegans hermaphrodite head

Our multi-lab data corpus allows data scientists to train and benchmark the performance of
algorithms for automated neuron identification using datasets that reflect real-world diversity. In this
section, we focus on the statistical atlas approach presented in Varol et al. 2020.%2 This approach was
the first to take advantage of the color information provided by NeuroPAL and was presented alongside
the original NeuroPAL work.® This neuron identification assignment algorithm was framed as a bipartite
graph matching problem, with the goal of minimizing the total assignment cost using the well-known
Hungarian algorithm.*® Cost is calculated by comparing neuron position and color in the animal sample
with the mean and covariance of neuron position and colors in a reference statistical atlas (see Methods).
The original atlas presented in the paper was trained on 10 worms from the original NeuroPAL work.
We retrain this atlas using the full multi-lab corpus that we present in this work, increasing the training
set by over 10-fold. The statistical atlas generated by this approach serves the additional purpose of
characterizing the mean and covariance of neuron position and color across the whole corpus of data.

In Fig. 3 we present visualizations of the statistical atlas of neuron colors and positions trained
on 104 of the 118 worms in our consolidated NWB/DANDI dataset as well as on the smaller dataset of
10 worms used in the original NeuroPAL paper (employing the Statistical Atlas algorithm in Yemini et
al. 2021 and Varol et al. 2020528). 14 worms were omitted from the atlas due to large nonlinear
deformities or obvious artifacts. With 104 wormes, this represents, to the best of our knowledge, the most
broadly trained statistical atlas for C. elegans neuron positions and NeuroPAL coloring available. By
leveraging the diversity of the multi-lab corpus this atlas captures variability between individual worms,
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strains, and lab-specific experimental conditions. This atlas can be used as a basis for automatic labeling
algorithms and biological investigations of neuron positions and brain organization. This statistical atlas
further complements detailed electron-microscopy (EM) based anatomical atlases with cellular
structural detail and provides nearly 100 more animals in its corpus than the approximately 10 EM ones
available.**4546 Although our corpus lacks the synaptic connectivity found in the EM datasets, it
provides the complementary functional activity that is not available from EM imaging.

WormlD.org supplies links to the software, visualization tools, and datasets discussed previously
in this paper. Furthermore, WormlID.org provides links to the data corpus and related tools to work with
whole-brain structural and activity images, convert datasets to NWB, and supplies tutorials and
instructions for using these tools. Our aim is that this data standard, data corpus, and atlas of cell
positions will be a continually evolving resource for the C. elegans neuroscience community, and
eventually other model organisms.

Analysis of biological factors in neuron positions

We statistically analyzed the spatial positions of C. elegans neuronal somas across individuals,
strains, and lab conditions based on the mean and covariances in the statistical atlas. We focused on
relative pairwise displacements rather than absolute positions because the absolute position of cells is
dependent on positioning and deformation of the animal’s body during recording and thus requires
global alignment of all animals. Aligning multiple animals into identical positions is an imperfect task.
In contrast, measuring pairwise cell positions does not require alignment and is relatively robust against
animal positioning and deformation.

Before analyzing statistical properties on the neuron positions, we assessed the percentage of
neurons that were labeled by humans in each dataset. We found that neurons in the ventral ganglion and
retrovesicular ganglion were less commonly labeled than neurons in other ganglia. As is shown here and
previously in Yemini et al. 20218, neurons in the ventral and retrovesicular ganglia exhibit high relative
positional variability, which may explain why fewer of them were confidently labeled by researchers
(Fig. 4a). For this reason, we explored several different factors hypothesized to contribute to the
organization and variability of relative cell positions: i) gangliar boundaries (e.g., basal lamina and
abutting tissue) which may restrict cell movement within the coelem, ii) synaptic connectivity which
may impose energetic costs dependent on neuronal proximity, and iii) developmental-time and cell
lineage effects whereby recently divided cells (i.e., sister cells) remain close together and more distant
relatives (e.g., mother and grandmaother cells) end up further apart.

Figure 3 (on next page): Multi-lab atlas of C. elegans neurons and their positional variability

(a) Butterfly plot showing the mean locations of neurons in the atlas colored by ganglion. (b) 2D color plots showing the distribution
of neuron colors in the atlas. (b-c) Ellipses represent covariance (1 SD) and are centered at the mean for each neuron. (c) 2D
projections of neuron positions and colors in the aligned atlas space. XZ projection (top) and XY projection (bottom). Ellipses are
colored by the mean color, per color channel, for each neuron in the atlas.
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To test the first hypothesis, that gangliar boundaries regulate positional organization and
variability, we measured the positional variability of neurons that are spatially close and compared pairs
within the same ganglion to pairs straddling each other in different ganglia (see Methods). We found
that neurons in the anterior pharyngeal bulb and neurons in the dorsal, lateral, and retrovesicular ganglia
all exhibit significantly lower variability for pairs within the same ganglion compared to pairs in
different ganglia. Conversely, for neurons in the anterior and ventral ganglia, we observed no significant
difference between pairs in the same ganglion and pairs in different ganglia (Fig. 4b). We used an
independent samples t-test to compare pairs within the same ganglion with those in different ganglia.
Known anatomical features of the worm support this hypothesis: the pharynx is a muscular epithelial
tube*’ that rigidly encases neurons; the remaining ganglia are separated by basal lamina that loosely
restricts their boundaries*; finally, the anterior and ventral ganglia (and comparatively smaller
retrovesicular ganglion) are completely bounded whereas all other ganglia are open at least at one end,
and in White et al. 1986 it had been noted that tight cellular packing in these regions led to “slop”,
“uncertainty”, and in live animals even “flipping” from side to side of the cells contained therein. This
finding suggests that neural identification algorithms could be improved by a hierarchical approach,
such as first predicting ganglia membership, then predicting neuron identities within each ganglion.

Next, we explored the relationship between somatic distance and synaptic connectivity. Overall,
there was a very weak but statistically significant correlation between nuclear distance and synaptic
weight for chemical synapses and no significance or detectable correlation for electrical synapses.
However, we found that nearby neurons (mean distance < 40 um) exhibit a wide range of chemical
synaptic weights ranging anywhere from 0 to 70 synapses (with a median synaptic count of 3), whereas
distant neurons (mean distance > 40 um) have a maximum synaptic count of ~25 synapses (with a
median count of 2) (Fig. 4c). This choice of distance cutoff was chosen by observing a distinct elbow at
40 um in a 2D kernel density estimate plot of the scatter data (Supplement 1). Our data suggests that
neurons that are strongly wired together tend to be close to each other, although somatic proximity alone
is not sufficient to imply strong connectivity. Recent findings in C. elegans have substantiated Peter’s
rule: neurons with larger colocalized axodendritic regions are more likely to form connections.* Our
findings lend further support to this principle and suggest that close somatic or nuclear proximity also
plays a role in determining neural connectivity.

Lastly, we explored the hypothesis that cell lineage is a determinant of adult cell positioning.
Embryonic C. elegans are confined to a fixed volume within an eggshell approximately 50 pm in length
and 30 um in diameter.*® After hatching, they grow over 4x in length from birth (~250 pm) to adulthood
(over 1 mm), with an exponential expansion in their volume.5%%! Sister cells are cells whose lineage
differs only at the very last division. We hypothesized that animal growth should lead to both larger
distances and higher variability between older sister cells that divided in the embryo, versus younger
sister cells born much later at postembryonic larval stages of development. Surprisingly, we found no
statistically significant correlation between the time of cell division and nuclear distance or between
time of cell division and distance variability measured by SEM (Fig. 4d). In fact, most sisters remained
within 15 pm of each other (~3 nuclei apart) at adulthood, regardless of when they were born. Strikingly,
a substantial cohort of embryonic sisters ended up closer together at adulthood (< 8 pm) than those
dividing at larval stages that occur more than 16 hours later (Fig. 4d). Our data rule out exponential
postembryonic growth spurts as a major determinant of divergence and variability in neuron positions.
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Neuron identification performance increases for all laboratories and all tested algorithms when
trained on a harmonized multi-lab corpus

Our previously published statistical atlas algorithm (“StatAtlas”) for automated neuron
identification was trained on a homogenous dataset of 10 NeuroPAL worms.®28 Formerly, this 10 worm
training set achieved average accuracies of 86% overall in head neurons that ranged from 50% for the
ventral ganglion to 100% for the anterior pharyngeal ganglion. These accuracies facilitate neural
identification, but in practice they require substantial verification and manual corrections, and thus
necessitating significant time expenditure in these tasks. Moreover, the algorithm fails to generalize to
datasets produced by other labs (Fig. 5b). We tested the performance of our previously published
algorithm on each of the six aggregated datasets. Initial performance on these datasets ranged from
~21% to ~65% with an average of 41%, (Supplement 2). This substantial decrease in accuracy on
datasets from different labs exposes the limitation of using single-lab training sets to produce tools
intended for use by different labs with different instrumentation, experimental methods, and data
acquisition pipelines.

To assess the performance benefits of using a large, harmonized corpus to train commonly-used
automated neural-identification methods we tested two more popular algorithms: coherent point drift
(“CPD”)*2 and CRF_ID?. Coherent point drift is an untrained and unsupervised algorithm that: 1)
globally aligns a sample point cloud of neurons to a reference atlas, then 2) locally matches points from
the sample to their nearest neighbors in the atlas, and finally 3) identifies sample neurons (points) by
their corresponding matches in the atlas. CRF_ID is a newer graph-based approach that identifies
neurons using a combination of statistics from their individual features (e.g., absolute position and color)
and pairwise relationships (e.g., displacement and angle relative to each other). There are no currently
published benchmarks on the neural identification problem using CPD. Formerly, CRF_ID
demonstrated a high accuracy of 83% when originally trained and tested solely on the HL dataset.
Similar to StatAtlas, when testing the generalizability of the CPD and CRF_ID base models on the full
WormID corpus we observed poor performance with an average overall accuracy of 39% and 59%
respectively.

After inspecting recordings from multiple labs, we hypothesized that differences in color space
may have negatively impacted algorithmic performance. Potential sources of color space variability
include differences in microscope hardware, software and image settings, and configuration of the
optical path. Anecdotally, in addition to these known sources of variability, researchers also typically
adjust exposure, contrast, and other channel display parameters to make the composite rendered colors
appear more like the images in the NeuroPAL reference manual.5® In aggregate, this suggested that
harmonizing the color space may aid automatic algorithms.

Figure 4 (on next page): Analyses of neuron positions, distances, and positional variability

(a) Left: percentage of datasets containing each labeled neuron, organized anterior-posterior within each ganglion. Middle: heatmap of the
STD of pairwise positional distances between each pair of neurons across datasets. Right: Averaged sums of heatmap rows. Neurons with
higher mean positional variability have less stereotyped positions within the worm body. (b) Pairwise positional variability by ganglia for
10 closest neighbors of each neuron, separating neuron pairs in the same ganglion from pairs in different ganglia. Anterior pharynx: effect
size 95% CI [-1.79, -1.38] um, p = 2.5 * 107!, Nygme = 53, Ngirp = 36; Dorsal: effect size 95% CI [-1.16, -0.72] pm, p = 7.1
1076, Nygme = 13, Nyisp = 27; Lateral: effect size 95% CI [-2.80, -2.38] um, p = 5.3 * 10731, , Nygme = 319, Ny = 159; Retrovesicular: 95%
Cl effect size=[-1.97,-1.19]um p =9.3% 107, Nygme = 89, Nyir = 43 ; Anterior: p = 0.161, Ny, = 176, Nyyrp = 50 ; Ventral: p =
0.252, Nygme = 52, Ny;pr = 37.(C) Relationship between pairwise neuron synaptic weights and their mean positional distance for chemical
and electrical synapses. Chemical synapses: KendallTau = = —0.036, p = 0.021, Pearson R = —0.098, p = 6.4 107, N=2119; Electrical
synapses: KendallTau = = 0.009, p = 0.80, Pearson R = 0.031, p = 0.51, N=444. (d) Relationship between cell birth times and the mean and
SEM of their nuclear positional distance in adulthood for sister cells. Mean: KendallTau r = —0.144, p = 0.052, Pearson R = —0.161, p =
0.129; SEM: KendallTau = = 0.014, p = 0.845, Pearson R = 0.074, p = 0.487.Most sisters are within 15 pm of each other in adulthood. More
sisters that divide embryonically remain close together (<8 pum) than sisters that divide >16 hours later at postembryonic larval stages.
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We developed an approach to match the color histogram of a sample image to a reference
histogram representing ideal coloring (see Methods). Histogram-matching the original small training
set improved the accuracy of all three tested algorithms by an average of 8%, 9%, and 7% for CPD,
statistical atlas, and CRF_ID respectively. It also qualitatively made composite color renderings better
match the NeuroPAL reference manual, aiding users in annotating and correcting algorithmic
predictions (Fig. 5a,b,c).

Given this success on the original small training set, we used the histogram-matched images to
train a new atlas for the StatAtlas and CRF_ID algorithms on the full corpus of data. Test accuracy is
reported using 5-fold cross-validation where each worm is tested against an atlas that was not trained on
that worm. For CPD, we updated the algorithm to select the best template out of the full corpus (see
Methods for further details). This led to significant improvement in accuracy across algorithms (Fig.
5b, ¢), with an average improvement of 17%, 22%, and 18% that further raised average predictive
accuracy from 22% to 39%, 41% to 62%, and 55% to 74% for CPD, StatAtlas, and CRF_ID respectively.
This is equivalent to a ~1.3x, ~1.6x, and ~1.7x reduction in error rate. Accuracy reached as high as 95%
for several individual datasets for both StatAtlas and CRF_ID. Furthermore, when considering the top
5 neural identity assignments (rather than just the top 1), the multi-lab models showed average
accuracies of 65%, 86%, and 89% for CPD, StatAtlas, and CRF_ID respectively, with some datasets
reaching 100% accuracy for both StatAtlas and CRF_ID (Fig. 5¢, Supplement 3). In addition, we see
similar improvements in accuracy across most datasets for StatAtlas and CRFID when training using all
except one dataset and then testing on the left-out dataset (Supplement 6). This indicates that most of
the benefits from retraining come from achieving a better representation of the full diversity across
datasets, rather than capturing the specific nuances of any one dataset. This generalizability will enable
labs to use these retrained algorithms out of the box rather than needing to do additional fine-tuning on
their own data.

Differences in accuracy between datasets may have been caused by a variety of factors including
poor initial alignment, optical quality, non-neuronal artifacts in the images, and nonlinear deformations
of the worm body. Additionally, datasets with less neurons annotated had better automatic labeling
accuracy, presumably because experimenters only labeled the easiest neurons to identify and left the
hardest ones unannotated (Supplement 4,5).

Figure 5: Improvements in neural identification accuracy (on next page)

(a) Examples of raw and color-corrected (histogram matched) images from each lab and dataset. (b) Top ranked test accuracy for
training set of original 10 reference worms with no color correction (orange), 10 reference worms with color correction (green), and the
multi-lab corpus with color correction (yellow) for coherent point drift (CPD, left), the statistical atlas model (StatAtlas, middle), and the
conditional random field model (CRF_ID, right). Algorithmic performance was evaluated using paired t-tests (where N=94 for each
training set) to compare the performance of different atlases. Significance is reported using a Bonferroni correction with the convention
of * for p<0.05, ** for p<0.01, and *** for p<0.001. (c) Same as b but using top 5 rank. Summary statistics and p values can be found in
supplementary table 1.
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Discussion

Aggregation and harmonization of data from a variety of different sources is necessary to build
a corpus for analytical methods and machine learning tools that generalize across the diversity of real-
world data. In this work, we present a data harmonization pipeline for analyzing whole-brain structural
and activity imaging in C. elegans. This pipeline includes data aggregation, conversion to a standardized
file format, software for analyzing these standardized datasets, pre-processing approaches to align
images and color spaces, and spatial registration of sample neuron point clouds to a common atlas.

We used this corpus to study potential biological factors that organize cell position in C. elegans.
Specifically, we find that: i) restrictions in bounding tissue and gangliar space likely contribute to
variability in neuron positions, ii) neurons with somatic distances less than ~40 um of each other show
higher synaptic connectivity, and iii) sister neurons that divide in the embryo can be found closer
together at adulthood than ones dividing at larval stages more than 16 hours later. The positive
relationship between synaptic connectivity and neuron somatic proximity thus augments the previously
observed correlation of synaptic connectivity to axodendritic adjacency, termed Peter’s Rule. Moreover,
the close distances and low positional variability we measured for embryonically born sister neurons
rules out exponential organismal growth as a major cause in driving neurons apart from each other
during the establishment of the adult Bauplan.

We then used the corpus to train a machine learning tool to automate the intensive task of labeling
cells in these datasets. This substantially boosted generalized performance across datasets from
contributing labs for each tested algorithm, despite the variability in data from these different groups.
Accuracy of auto-identification now approaches human performance for certain datasets using the
StatAtlas or CRF_ID algorithms. In the future, our corpus can be used to incorporate neuronal shape-
and size- based descriptors as well as dynamical time-series features to further improve neural
identification algorithms.

The WormlID.org tools and resources are readily applicable to new whole-brain structural and
activity imaging datasets, and these new datasets can be easily added to the existing corpus. These tools
streamline public data sharing to facilitate both open science and to satisfy data-sharing mandates. We
hope this resource will continue to grow in size and breadth to enable the development and
benchmarking of new machine learning tools and algorithms. Our analyses of cell features based on the
full corpus of data can immediately be used to inform better feature selection and algorithms that
continue to improve automated approaches for neuron-subtype identification in volumetric images.
Additionally, the large corpus and trained statistical atlas can serve as a descriptive resource of the
underlying neurophysiology of C. elegans. Moreover, our resources can be incorporated into
computational neurobiology courses, such as the Neuromatch Academy (neuromatch.io)®* to train the
next global generation of neuroscientists on real-world datasets. As the community continues to develop
new tools, this corpus will allow these new tools to be benchmarked for generalizable performance,
spurring innovation.

As the community continues to scale up the generation of neural data and increasingly relies on
machine learning analysis to tame this “big data”, there is an ever-growing need to unify disparate
datasets to produce verifiably robust, accurate, and generalizable analytical approaches. Harmonization
efforts such as ours can significantly reduce the activation energy necessary for collaboration, data
sharing, and the development of unified community-wide tools across labs. While some of the resources
we created are specific to C. elegans, the framework and much of our toolkit can be applied to other
model organism imaging communities.
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Methods
Standardized file format - Neurodata Without Borders

NWB is an HDF5-based format built specifically for neurophysiology data and has emerged as
the de facto standard for storing neurophysiology datasets with associated metadata for reuse and sharing.
NWB provides object types for data and metadata including acquisition parameters, segmentation of 3D
image regions, fluorescent time series (e.g., for neural activity), experimental design information,
multichannel electrophysiology time series data, 3D images, stimulus events during an experiment, and
behavioral data.*?

The base NWB schema supports two-dimensional structural and time-series multi-channel
images but did not originally support the type of five-dimensional (multi-channel, volumetric, time-
series) data that is used in C. elegans whole-brain activity imaging or other metadata associated with
these types of experiments. To solve this problem, we developed ‘ndx-multichannel-volume’ as a novel
extension to the existing Neurodata Without Borders (NWB) standardized file format. More information
and resources about NWB can be found at nwb.org.

Our extension adds new objects built off of existing ones in the schema to add and improve
support for multi-channel, volumetric, time-series images and the metadata associated with those images
as well as volumetric segmentation data and metadata fields specific to C. elegans such as cultivation
temperature and growth stage. This extension and the datasets presented in this work represent the first
applications of the NWB data format to C. elegans and have now been incorporated as the standard for
this model organism. This extension is flexible, open-source, and can be continuously updated to
incorporate new types of data for future experiments.

Storage on DANDI

Data and associated metadata were uploaded to the DANDI archive [RRID:SCR_017571] using
the Python command line tool (https://doi.org/10.5281/zenodo.3692138). The data were first converted
into the NWB format (https://doi.org/10.1101/2021.03.13.435173) and organized into a BIDS-like
(https://doi.org/10.1038/sdata.2016.44) structure.

All datasets can be streamed or downloaded from the DANDI archive, available on WormID.org as well
as these individual URLs:55:56:57:58,59,60,61

Original NeuroPAL.: https://doi.org/10.48324/dandi.000715/0.240614.1942

EY: https://doi.org/10.48324/dandi.000472/0.240625.0454

HL.: https://doi.org/10.48324/dandi.000714/0.240611.1954

KK: https://doi.org/10.48324/dandi.000692/0.240402.2118

SF: https://doi.org/10.48324/dandi.000776/0.240625.0015

SK1: https://doi.org/10.48324/dandi.000565/0.240625.0439

SK2: https://doi.org/10.48324/dandi.000472/0.240625.0450

Software systems with embedded NWB 1/0O

We present two software examples with user-friendly GUIs to interface with NWB datasets and
run standard analysis pipelines for cell segmentation, identification, tracking, and extracting time-series
of neural-activity traces annotated with any experimental stimuli presented. First, we present the
NeuroPAL_ID software (Figure 2c) for visualization, annotation, neuronal segmentation and
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identification, neural tracking, activity trace extraction and stimulus presentation data of volumetric
NeuroPAL images and whole-brain activity. This software is pre-compiled for use on MacOS and
Windows. The software is open-source, available from  https://github.com/Yemini-
Lab/NeuroPAL _ID/releases, and is written in MATLAB and Python. It has now been updated to include
functionality described in this paper to enable histogram matching, color-corrected image visualization,
and automated neural identification using the new Statistical Atlas. This software is written and managed
by the Yemini Lab; further information can be found at https://www.yeminilab.com/neuropal.

Second, we present the eats-worm software for visualization, segmentation, and activity
extraction of neural-activity time series from immobilized worms. Eats-worm similarly allows for
manual verification and curation of the automatic segmentation and tracking algorithms. The tracking
algorithm was optimized for tracking neurons across frames in immobilized worms, but there are
currently efforts to extend this functionality to work for freely-moving worms as well. Eats-worm is
written in Python and is built as a plugin to Napari, a popular 3D visualization tool. This software is
written and managed by the Kato Lab; further information can be found at
https://github.com/focolab/eats-worm.

Both software programs have embedded functionality to read and write NWB files. NWB 1/0
functionality enables a user to quickly run similar analyses on all of the datasets presented in this work
without the need to develop specific pipelines to read in data from each dataset. Furthermore, this
functionality can be easily embedded into MATLAB or Python-based analysis software.

Data acquisition

NeuroPAL structural volumes and neural activity time series volumes were acquired using the
protocols outlined in Yemini et al. 2021.6 After collection of these images, neurons were segmented and
annotated according to the guidelines in the NeuroPAL manual.>® Specific immobilization methods,
microscope setup, and experimental protocols differ slightly between datasets. All datasets were taken
using spinning disk confocal microscopes with XY resolution varying from 0.1604-0.54 um/pixel and
Z resolutions varying from 0.54-1.5 pm/pixel. XY resolution was the same for NeuroPAL structural
images and neural-activity images (using GCaMP6s) for all datasets, but Z resolution varied from 0.54-
3 um/pixel. Z resolution is generally lower for neural-activity images due to limitations in optical
sectioning with confocal microscopes. Lower Z resolution also helps to reduce the number of frames
needed to record a full volume for a single time-point, to aid imaging at a higher temporal resolution.
Most images were taken with the worm immobilized in a microfluidic chip with the exception of the
KK dataset (where worms were semi-restricted in a microfluidic device) and the SF dataset (where
worms were freely moving). The NWB files and the DANDI datasets that hold them contain metadata
for the specific setup and conditions in each dataset. For published datasets, additional information can
be found in the associated publications.®’

After acquisition of NeuroPAL structural volumes and whole-brain activity time-series, images
were segmented using various automatic segmentation algorithms ranging from classical computer
vision approaches (e.g., template matching®) to deep neural network approaches. These were then
manually verified. Ground truth annotations were done using a combination of existing automatic
identification algorithms followed by manual corrections. Each neuron identity label was either
explicitly annotated by experts or manually verified after algorithmic identification. Note that varying
levels of completeness in labeling are due to the difficulty of this manual annotation task. For several
datasets with lower image quality, even experts could only confidently label 30-50% of segmented
neurons in the volume. For neural activity time-series, neuron centers were first tracked across images
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using various algorithms and then manually verified by experts.%62 Fluorescence activity is then
extracted from these tracked ROIls to obtain time series of neural-activity traces. Neurons in the
NeuroPAL structural volume were then matched to the ROIs in the neural activity time-series to get
labeled activity traces.

Datasets from various labs were converted to the NWB standardized file format using the ndx-
multichannel-volume extension presented in this work. These files were then uploaded to the DANDI
archive where they are now publicly accessible for data streaming, download, or online visualization.

Dataset Microscope Length of Sample rate Resolution Strain Setup
recording (um/pixel)
NP_og Zeiss LSM880 ~4 min ~4Hz 0.208 x 0.208 x 1.02 OH16230 Microfluidic chip
spinning disk
confocal
SF Andor spinning disk | ~15 min 1.7 Hz 0.54 x 0.54 x 0.54 Various Freely moving
confocal w/ Nikon
ECLIPSE Ti
microscope
40x water
immersion
SK1 Leica DMi8 inverted | ~25 min 1.04 Hz 0.1604 x 0.1604 x 1 FC121, FC128, Microfluidic chip
spinning disk (3 for calc images) OH16230
confocal, 40x WI, OR
11NA 0.3208 x 0.3208 x
0.75 (2.5 for calc
images)
SK2 Leica DMi8 inverted | ~15 min 3.3Hz 0.3208 x 0.3208 x OH16230 Microfluidic chip
spinning disk 0.75 (1.5 for calc
confocal, 40x WI, images)
11NA
KK Nikon Eclipse Ti-U | ~15-20 1.67 0.32x0.32 x 1.5 for KDK92 Semi-restricted in
inverted spinning both images microfluidic device
disk confocal, 40x
1.3NA
HL Perkin Elmer NA NA 0.33x0.33x1 OH15495 Microfluidic device
spinning disk
confocal 1.3 NA,
40x oil OR Brucker
Opterra Il swept
field confocal 0.75
NA, 40x air
EY Spinning disk ~4 min ~4 Hz 0.27x0.27x1.5 OH16230
confocal

Butterfly plot

To produce the butterfly plot, we first manually found three orthogonal basis vectors to align
neuron point clouds to a new cartesian coordinate space. To do so, we used human-guided affine
transformation to roughly align these basis vectors to the anterior-posterior, dorsal-ventral, and left-right
axes. The xyz coordinates of each neuron were projected into this new cartesian coordinate space and
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then converted to cylindrical coordinates by the following equations. We plotted the new x and 6
coordinates on a 2D plane to get the butterfly plots shown in (Fig. 1a, Fig. 5a). This projection is akin
to flattening the positions of the neurons along the circumference of a cylinder of the worm body and
then unrolling that cylinder into a flattened plane.

Xcylinder = ~Xnew

r= \/ynewz + ZneWZ
6 = aTCtaTIZ(ynew; Znew)

Histogram matching

We modified the established approach of histogram matching to apply to 3-D volumetric, multi-
channel data.®* We created a reference histogram using the 10 worms from the original NeuroPAL work.
This data is stored as uint16, so there are 65,536 possible values for each pixel. For each channel, we
created a histogram counting the number of pixels within the bin edges, assigning each color value its
own bin, and then averaged the values in each of these bins across the 10 images. Practically, these
histograms were very similar across these 10 datasets, so the averaged histogram looked similar to each
of the individual histograms.

To color match a new animal sample, we calculated a histogram for each channel. The number
of bins for each channel histogram was equal to the maximum intensity value present in that channel in
the image. Practically, this means that there are a different number of histogram bins for each channel
in each image because images were collected at different bit depths and with varying levels of saturation.

bincount pannet = Max(Xchannet)

We then calculated a cumulative density at each color value for both the sample and the
reference. We created a lookup table M to associate each gray count value X in the sample to the color
value in the reference with the closest cumulative density. Next we created a new matched image with
each pixel transformed into the new color space using this lookup table as shown below.

Mchannel (x) = (|Cdfsample (x) - Cdfreference (x,) D
MatchedImage ngnnei(i,J, k) = Mcpannei (A, J, k))

Color extraction

To extract the color values for the neurons in each image, we first calculated the mean and
standard deviation of the pixel gray counts in each channel, and then converted each pixel value into its
Z-score based on its gray count value. We then took a sample of a 3x3x1 grid of pixel values around
each segmented neuron center in each channel. We use the median values of this 3x3x1 grid as the RGB
values for that neuron center. Color values were extracted post-histogram matching when training or
testing using histogram-matched images. For non-histogram-matched images, there are no additional
color pre-processing steps beyond Z-scoring.
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Positional variability analysis

We calculated pairwise positional variability by measuring the Euclidean distance between every
pair of canonical head neurons across each structural volume when both neurons in that pair had a ground
truth label. We then took the average and standard deviation of these distances for each neuron pair to
find mean nuclear distance and pairwise positional variability, respectively. For these analyses we
ignored pairs that are not present in at least 5 datasets. We used pairwise positional variability instead
of absolute positional variability because absolute position is extremely sensitive to point-cloud
realignment, which would make it hard to disaggregate natural positional variability from alignment
errors; and furthermore, we are not interested in only how individual cells vary but rather how cells vary
relative to each other. To get the mean positional variability for a given neuron, we averaged the mean
pairwise distance for all pairs that contained that neuron.

Intra vs inter ganglion measures: for every neuron in the atlas, we found its n closest atlas
neighbors and only measured pairs for its n closest neighbors. We then separated these pairings based
on whether the two neurons in the pair are within the same ganglion or in two different ganglions. Note
that pairs in different ganglions will appear twice: e.g. if one neuron in the pair is in the anterior ganglion
and the other is in the lateral ganglion, the pair will be counted in the analysis for both the anterior
ganglion and the lateral ganglion (Fig. 4b). Pairs within the same ganglion are only counted once. We
compared this approach for n =1-20 (Supplement 7). For all numbers of neighbors there is higher
positional variability for neighbors in different ganglia when compared to the same ganglion. The pattern
stabilizes around n=7 and holds steady through n=20. Therefore, we selected 10 to use for n in our
analysis.

Synaptic connection: synaptic weights between neuron pairs are derived from the whole-brain
connectome of the adult hermaphrodite in Cook et al. 2019.4°

Lineal distance: the cell lineage tree and associated birth times were taken from Sulston et al.
1982.%3 The last shared parent cell between two neurons is the most recent shared parent node in the
lineal tree. We used the birth time of the last shared parent cell between two neurons as the lineal distance
and explored the relationship between this lineal distance and mean pairwise nuclear distance (Fig. 4d).
In this analysis, we focus only on sister cells: terminal cells that only divided from each other at the very
last stage of their lineal tree.

Coherent Point Drift (CPD)

Coherent point drift has been a common algorithm for registering two similar point clouds to
each other since its introduction in Myronenko and Song 2009%. CPD allows for both rigid and non-
rigid point set registration. CPD models one point set as a set of GMM centroids that are fit to the second
point set by maximizing the likelihood. GMM centroids are set to move coherently to preserve the
structure of the point clouds. In the rigid case, the algorithm learns an affine transformation of the GMM
centroid locations while in the non-rigid case, the algorithm learns a displacement function on the
original centroid positions with an enforced regularization term to enforce smoothness. The objective
function is optimized using an iterative EM optimization approach and yields both the aligned point set
as well as an NxM correspondence probability matrix that represents the likelihood that each point n in
set 1 corresponds to each point m in point set 2.

In this paper, we use the specific implementation of CPD used in Yu et al. 20213 First, rigid
CPD is used to roughly align a test worm point cloud to a template point cloud. Then, non-rigid CPD is
used to model non-linear deformations between the semi-aligned test and template. Neuron assignments
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are then determined by creating a matrix of pairwise Euclidean distances between every neuron’s
position and color in the test and every neuron in the template in the aligned space. We then use the
Hungarian algorithm on this distance matrix to find the optimal label assignments. To get 2" ranked
assignments, we assigned an infinite cost to each label assignment from the first pass and reran the
Hungarian algorithm. We repeat this for the 3rd-5th order assignments.

Accuracy was calculated by counting the number of neurons whose algorithmic assignment was
the same as the ground truth label and then dividing by the total number of neurons that have a ground
truth label. Note that neurons without a ground truth label were not included in the accuracy metric but
are still part of the cost matrix and received neuron assignments. Since there is no ground truth for these
neurons we did not determine the accuracy of their label assignments.

The difference between the use of the ‘original (10) worms’ versus ‘multi-lab corpus’ for CPD
is what set is included in possible options for the template. For the ‘original’ group, we compare every
test set to each of the original 10 neuroPAL worms and report the accuracy for the template that has the
highest average probability of correspondence after the rigid alignment step. Similarly, for the ‘multi-
lab corpus’, each test worm is compared to each possible template worm in the whole multi-lab corpus
and accuracy is reported similarly. The accuracy of CPD is highly sensitive to a good rough initial
alignment and to similarity of the template and the test point cloud. The template with the highest
average probability of correspondence is not necessarily the template that yields the highest accuracy,
but it is the template that the algorithm has the highest confidence that it has found the ‘correct’
correspondence.

Statistical Atlas training and inference

Statistical atlases used for testing performance were trained using the algorithm described in
Varol et al. 2020.28 This algorithm uses a training set of neuron point clouds with both XYZ and RGB
values and takes a block-coordinate descent approach where it iteratively learns affine transformation
parameters to align the neuron point clouds, then updates the means and covariances of the positions
and colors of each neuron until reaching convergence. This process generates mean and covariance
parameters for each neuron as well as an aligned coordinate space for all the worms in the training set.
The trained atlas consists of a list of neuron names alongside their associated means and covariances in
the aligned position and color space.

We trained three atlases: the original atlas trained on just the original 10 NeuroPAL worms from
Yemini et al. 20218, the color corrected atlas trained on these same 10 worms after histogram matching,
and the multi-lab + color-corrected atlas which is trained on the full corpus of histogram-matched data.

For the original atlas, we tested every dataset in the full corpus without histogram matching. For
the color-corrected atlas, we similarly tested every dataset on the full corpus of data with histogram
matching. For the atlas trained on the full corpus, we use K-fold cross-validation. The corpus was split
into five equally-sized groups. For each group, an atlas was trained on all datasets in the other four
groups and performance was reported for the out-of-training set group. The 10 worms used to train the
original and color-corrected atlas were included in the training for each of these five groups. These 10
worms were not used to report testing accuracy for any of the atlases (Fig. 5). The fully trained atlas
presented in Fig. 3 was trained using the 10 original worms and the full corpus of data presented in this
work, without splitting it into groups. This full atlas was embedded into the autolD functionality of the
NeuroPAL ID software shown in Fig. 2.

Neuron point clouds used for testing were pre-aligned by learning an affine transformation from
each sample dataset to the aligned coordinates of the atlas based on a subset of the ground truth labeled
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neurons in the sample. Briefly, assuming N neurons in the test sample and M neurons in the atlas, we
calculated an NxM cost matrix using the Mahalanobis distance between each neuron center in the sample
and each neuron distribution in the atlas. x; represents the XYZRGB values of neuron i, while x; and

2; represent the XYZRGB mean and covariance respectively for neuron j in the atlas.
Costy,;j = (x; = )" 57 (X = 1))

We then treated this cost matrix as a linear sum assignment problem. Label assignments (for
neural identification) were calculated using the Hungarian algorithm.*® 2nd-5t order ranked assignments
and accuracy are calculated in the same way as described for CPD.

CRF_ID training and inference

CRF_ID atlases and inference are conducted using the algorithm described in Chaudhary et al.
20212%, This approach follows a probabilistic-graphical-model framework based on conditional random
fields. The graph is defined by node features corresponding to unary measures for each neuron center
such as position and color and edge features corresponding to pairwise measures for each pair of neurons
such as distance, relative angle, or probability that one neuron is anterior to the other. After features are
selected, a data-driven atlas is trained on a corpus of data to determine the average values for each of
the measured features; then for a test worm, node and edge potentials are calculated based on comparison
of each feature in the test worm to the atlas and infer the best global assignment of labels by maximizing
an energy function using an approximate inference method. For the analysis in this work, we used the
color information solely to define the node potentials, and the pairwise angle relationships only to define
the edge potentials. Optimizing the weights of the node and edge features may result in a higher
prediction accuracy.

We trained three atlases: the original atlas trained on just the original 10 NeuroPAL worms from
Yemini et al. 20218, the color corrected atlas trained on these same 10 worms after histogram matching,
and the multi-lab + color-corrected atlas which is trained on the full corpus of histogram-matched data.
This training approach follows the same K-fold cross validation approach used for the Statistical Atlas
method.

We use the roughly pre-aligned point clouds used in the Statistical Atlas algorithm as input to
the CRF_ID algorithm to eliminate possible difference in the initial alignment step, which can
dramatically change accuracy.

In practice, there are nearly always fewer detected neuron centers in a given image than total
cells in the atlas. CRF_ID handles this by modeling a hidden variable h € {0,1}" where N is the number
of neurons in the atlas. This variable specifies the probability that a given cell is missing in the image.
Based on the number of cells in the test image, P cells are uniformly selected across different regions of
the head and removed from the atlas. This process is repeated ~1000 times to sample multiple possible
combinations of h. The top 1-5 predicted assignments are generated by compiling a list of the most
frequent labels for each cell in the test image across all runs. Accuracy is reported in the same way as
CPD and CRF_ID.

Optimizing the aforementioned energy function using an approximate inference method
produces marginal distributions of label assignments for each cell. The top 1-5 predicted label
assignments for each cell were generated by sorting the marginal probability of labels in a descending
order. The label that resulted in the highest marginal probability was assigned as top 1.
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Supplement 1: KDE plot of mean nuclear distance and synaptic weight between pairs of neurons. Contour encompasses 95% of the
cumulative mass of the data. Color shows density with higher density colored darker.

N=94 Topl mean effect size Topl p-value | Top5 mean effect size Top5 p-value
[95% CI) [95% CI]

CPD: Original vs color 7.66% [5.07%, 10.25%)] 6.298e-08 12.63% [9.41%, 15.85%] | 8.959%-12

corrected

CPD: Original vs 17.62% [13.60%, 21.63%)] | 9.881e-14 23.44% [18.71%, 28.17%]| 4.119e-16

multi-lab + color corrected

CPD: Color corrected vs. 9.96% [6.69%, 13.23%)] 2.958e-08 10.81% [7.20%, 14.42%] | 4.398e-08

multi-lab + color corrected

StatAtlas: Original vs color | 9.05% [7.60%, 10.50%] 2.217e-21 8.30% [7.12%, 9.47%] 1.117e-24

corrected

StatAtlas: Original vs 21.57% [19.71%, 23.42%] | 2.373e-40 19.76% [17.51%, 22.00%]| 3.449e-31

multi-lab + color corrected

StatAtlas: Color corrected vs,| 12.52% [11.18%, 13.86%] | 4.698e-33 11.46% [9.68%, 13.24% | 3.172e-22

multi-lab + color corrected

CRF_ID: Original vs color | 7.30% [5.09%, 9.51%)] 2.829%¢-09 4.11% [2.19%, 6.02%] 4.948e-05

corrected

CRF_ID: Original vs 18.39% [15.16%, 21.62%] | 3.222e-19 8.70% [5.53%, 11.86%] 3.839e-07

multi-lab + color corrected

CRF_ID: Color corrected vs | 11.09% [8.44%, 13.75%)] 7.682e-13 4.59% [2.52%, 6.67%] 2.910e-05

multi-lab + color corrected

Multi-lab + color corrected: | 23.61% [20.82%, 26.40%] | 6.064e-30 20.51% [18.17%, 22.85%]| 4.519e-31

CPD vs StatAtlas

Multi-lab + color corrected: | 35.24% [31.80%, 38.67%] | 4.167e-36 24.17% [21.26%, 27.07%]| 1.825e-29

CPD vs CRF_ID

Multi-lab + color corrected: | 11.63% [9.09%, 14.16%)] 1.492¢-14 3.66% [2.52%, 4.79%] 5.908e-09

StatAtlas vs CRF_ID

Supplementary table 1: Summary statistics for figure 5.
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Supplement 2: Top accuracy by dataset

(a, b, ¢) Top ranked test accuracy for training set of original 10 reference worms with no color correction (orange), 10 reference
worms with color correction (green), and the multi-lab corpus with color correction (yellow) broken out by model. Algorithmic
performance was evaluated using paired t-tests (where N=94 for each training set) to compare the performance of different atlases.
Significance is reported using a Bonferroni correction with the convention of * for p<0.05, ** for p<0.01, and *** for p<0.001. (a)
Accuracy by dataset for CPD. EY dataset: original (10 worms) no color correction versus with color correction - mean effect size
=-2.00%, 95% ClI effect size = [-3.60%, -0.39%], p = 2.491e-02; original with no color correction versus multi-lab with color
correction - mean effect size = -6.59%, 95% CI effect size = [-10.85%, -2.34%], p = 6.695e-03. HL dataset: original (10 worms)
no color correction versus with color correction - mean effect size = 33.75%, 95% ClI effect size = [27.57%, 39.93%)], p = 6.815e-
06; original with no color correction versus multi-lab with color correction - mean effect size = 37.66%, 95% ClI effect size =
[29.39%, 45.94%)], p = 2.624e-05. KK dataset: original (10 worms) no color correction versus with color correction - mean effect
size =-0.67%, 95% ClI effect size = [-3.01%, 1.67%], p = 6.075e-01; original with no color correction versus multi-lab with color
correction - mean effect size = 1.42%, 95% CI effect size = [-1.58%, 4.43%], p = 4.041e-01. SF dataset: original (10 worms) no
color correction versus with color correction - mean effect size = 2.96%, 95% CI effect size = [1.83%, 4.09%], p = 2.671e-05;
original with no color correction versus multi-lab with color correction - mean effect size = 26.09%, 95% CI effect size = [21.17%,
31.02%], p = 1.469e-10. SK1 dataset: original (10 worms) no color correction versus with color correction - mean effect size =
7.39%, 95% CI effect size = [5.08%, 9.70%], p = 5.516e-06; original with no color correction versus multi-lab with color
correction - mean effect size = 19.55%, 95% ClI effect size = [14.16%, 24.95%], p = 1.010e-06. SK2 dataset: original (10 worms)
no color correction versus with color correction - mean effect size = 23.88%, 95% CI effect size = [17.33%, 30.44%], p = 6.968e-
05; original with no color correction versus multi-lab with color correction - mean effect size = 37.46%, 95% ClI effect size =
[30.69%, 44.24%)], p = 2.406e-06. (b) Accuracy by dataset for StatAtlas. EY dataset: original (10 worms) no color correction
versus with color correction - mean effect size = 3.43%, 95% CI effect size = [1.76%, 5.10%)], p = 6.888e-04; original with no
color correction versus multi-lab with color correction - mean effect size = 12.85%, 95% CI effect size = [10.79%, 14.91%], p =
1.080e-10. HL dataset: original (10 worms) no color correction versus with color correction - mean effect size = 20.67%, 95% CI
effect size = [16.96%, 24.38%], p = 5.871e-06; original with no color correction versus multi-lab with color correction - mean
effect size = 31.95%, 95% CI effect size = [27.70%, 36.20%], p = 5.955e-07. KK dataset: original (10 worms) no color correction
versus with color correction - mean effect size = 4.01%, 95% CI effect size = [1.70%, 6.31%], p = 1.403e-02; original with no
color correction versus multi-lab with color correction - mean effect size = 12.22%, 95% CI effect size = [7.57%, 16.87%], p =
1.719e-03. SF dataset: original (10 worms) no color correction versus with color correction - mean effect size = 8.56%, 95% ClI
effect size = [7.01%, 10.11%)], p = 6.380e-11; original with no color correction versus multi-lab with color correction - mean effect
size = 22.85%, 95% CI effect size = [20.21%, 25.50%)], p = 3.298e-15. SK1 dataset: original (10 worms) no color correction
versus with color correction - mean effect size = 9.78%, 95% ClI effect size = [6.80%, 12.75%], p = 3.856e-06; original with no
color correction versus multi-lab with color correction - mean effect size = 25.88%, 95% CI effect size = [22.85%, 28.90%], p =
8.466e-13. SK2 dataset: original (10 worms) no color correction versus with color correction - mean effect size = 14.23%, 95% CI
effect size = [10.56%, 17.91%)], p = 4.361e-05; original with no color correction versus multi-lab with color correction - mean
effect size = 26.06%, 95% CI effect size = [21.88%, 30.25%], p = 8.712e-07. (c) Accuracy by dataset for CRF_ID. EY dataset:
original (10 worms) no color correction versus with color correction - mean effect size = 6.04%,95% CI effect size = [3.22%,
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8.86%)], p = 4.601e-04; original with no color correction versus multi-lab with color correction - mean effect size = 10.97%,95%
Cl effect size = [8.32%, 13.62%], p = 9.944e-08. HL dataset:

original (10 worms) no color correction versus with color correction - mean effect size = 6.94%,95% ClI effect size = [3.56%,
10.32%], p = 4.708e-03; original with no color correction versus multi-lab with color correction - mean effect size = 7.28%,95%
Cl effect size = [4.05%, 10.50%], p = 2.776e-03. KK dataset: original (10 worms) no color correction versus with color correction
- mean effect size = 3.61%,95% ClI effect size = [1.13%, 6.10%], p = 2.958e-02; original with no color correction versus multi-lab
with color correction - mean effect size = 9.42%,95% CI effect size = [6.72%, 12.12%], p = 3.264e-04. SF dataset: original (10
worms) no color correction versus with color correction - mean effect size = 9.70%,95% CI effect size = [3.94%, 15.46%)], p =
2.897e-03; original with no color correction versus multi-lab with color correction - mean effect size = 31.28%,95% ClI effect size
=[23.27%, 39.28%], p = 5.119e-08. SK1 dataset: original (10 worms) no color correction versus with color correction - mean
effect size = 5.15%,95% CI effect size = [0.17%, 10.13%], p = 5.838e-02; original with no color correction versus multi-lab with
color correction - mean effect size = 21.75%,95% CI effect size = [17.54%, 25.97%], p = 4.768e-09. SK2 dataset: original (10
worms) no color correction versus with color correction - mean effect size = 11.27%,95% CI effect size = [5.15%, 17.38%], p =
6.775e-03; original with no color correction versus multi-lab with color correction - mean effect size = 10.91%,95% ClI effect size
=[3.73%, 18.08%], p = 1.803e-02.
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Supplement 3: Top n ranked assignment accuracy broken out by training group and model. Algorithmic performance was
evaluated using paired t-tests (where N=94 for each training set) to compare the performance of different atlases. Significance is
reported using a Bonferroni correction with the convention of * for p<0.05, ** for p<0.01, and *** for p<0.001. (a) Accuracy by
rank for CPD. Original (10 worms) no color correction versus with color correction: topl - mean effect size = 7.66%, 95% ClI
effect size = [5.07%, 10.25%], p = 6.298e-08; top2 - mean effect size = 10.28%, 95% CI effect size = [7.42%, 13.14%], p =
2.018e-10; top3 - mean effect size = 11.52%, 95% CI effect size = [8.55%, 14.49%], p = 1.252e-11; top4 - mean effect size =
12.34%, 95% ClI effect size = [9.16%, 15.52%], p = 1.326e-11; top5 - mean effect size = 12.63%, 95% CI effect size = [9.41%,
15.85%], p = 8.959-12. Original with no color correction versus multi-lab with color correction: topl - mean effect size =
17.62%, 95% ClI effect size = [13.60%, 21.63%], p = 9.881e-14; top2 - mean effect size = 21.80%, 95% CI effect size = [17.31%,
26.28%], p = 1.047e-15; top3 - mean effect size = 22.64%, 95% CI effect size = [18.03%, 27.25%], p = 6.53%¢-16; top4 - mean
effect size = 23.21%, 95% ClI effect size = [18.50%, 27.91%)], p = 5.260e-16; top5 - mean effect size = 23.44%, 95% CI effect size
= [18.71%, 28.17%], p = 4.119e-16 . (b) Accuracy by rank for StatAtlas. Original (10 worms) no color correction versus with
color correction: topl - mean effect size = 9.05%, 95% ClI effect size = [7.60%, 10.50%], p = 2.217e-21; top2 - mean effect size =
9.01%, 95% ClI effect size = [7.62%, 10.40%)], p = 1.964e-22; top3 - mean effect size = 8.66%, 95% CI effect size = [7.44%,
9.89%], p = 8.658e-25; top4 - mean effect size = 8.83%, 95% ClI effect size = [7.60%, 10.06%], p = 3.591e-25; top5 - mean effect
size = 8.30%, 95% CI effect size = [7.12%, 9.47%], p = 1.117e-24. Original with no color correction versus multi-lab with color
correction: topl - mean effect size = 21.57%, 95% CI effect size = [19.71%, 23.42%], p = 2.373e-40; top2 - mean effect size =
21.37%, 95% CI effect size = [19.31%, 23.42%], p = 1.468e-36; top3 - mean effect size = 20.91%, 95% CI effect size = [18.98%,
22.85%], p = 6.920e-38; top4 - mean effect size = 20.84%, 95% CI effect size = [18.71%, 22.96%], p = 1.310e-34; top5 - mean
effect size = 19.76%, 95% ClI effect size = [17.51%, 22.00%], p = 3.449e-31. (c) Accuracy by rank for CRF ID. Original (10
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worms) no color correction versus with color correction: topl - mean effect size = 7.30%, 95% CI effect size = [5.09%, 9.51%], p
= 2.829e-09; top2 - mean effect size = 6.45%, 95% CI effect size = [4.30%, 8.60%], p = 4.148e-08; top3 - mean effect size =
4.98%, 95% CI effect size = [3.00%, 6.96%], p = 2.710e-06; top4 - mean effect size = 4.38%, 95% CI effect size = [2.42%,
6.34%], p = 2.473e-05; top5 - mean effect size = 4.11%, 95% ClI effect size = [2.19%, 6.02%)], p = 4.948e-05. Original with no
color correction versus multi-lab with color correction: topl - mean effect size = 18.39%, 95% CI effect size = [15.16%, 21.62%],
p = 3.222e-19; top2 - mean effect size = 14.97%, 95% CI effect size = [11.47%, 18.47%], p = 2.851e-13; top3 - mean effect size =
11.55%, 95% ClI effect size = [8.16%, 14.94%)], p = 1.101e-09; top4 - mean effect size = 9.89%, 95% CI effect size = [6.58%,
13.19%], p = 4.730e-08; top5 - mean effect size = 8.70%, 95% ClI effect size = [5.53%, 11.86%], p = 3.83%e-07.

Accuracy by # of ground truth labels
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Supplement 4: Top ranked neural identification accuracy for datasets with varying numbers of ground truth labels. All statistics
are conducted with a paired t-test. First quartile N=25, second quartile N=26, third quartile N=27, fourth quartile N=16. Quartiles
are determined by the number of ground truth labels in each dataset. Significance is reported using a Bonferroni correction with
the convention of * for p<0.05, ** for p<0.01, and *** for p<0.001. (a) Accuracy by quartile for CPD. 1st quartile: original (10
worms) no color correction versus with color correction - mean effect size = 11.11%, 95% CI effect size = [7.25%, 14.96%], p =
1.162e-05; original with no color correction versus multi-lab with color correction - mean effect size = 24.40%, 95% CI effect size
= [18.20%, 30.61%], p = 1.124e-07; original with color correction versus multi-lab with color correction - mean effect size =
13.30%, 95% ClI effect size = [7.85%, 18.74%)], p = 9.123e-05. 2nd quartile: original (10 worms) no color correction versus with
color correction - mean effect size = 17.21%, 95% CI effect size = [10.39%, 24.03%], p = 6.144e-05; original with no color
correction versus multi-lab with color correction - mean effect size = 32.96%, 95% CI effect size = [27.42%, 38.49%], p = 7.032e-
11; original with color correction versus multi-lab with color correction - mean effect size = 15.74%, 95% CI effect size = [8.48%,
23.00%], p = 3.335e-04. 3rd quartile: original (10 worms) no color correction versus with color correction - mean effect size =
4.58%, 95% CI effect size = [1.20%, 7.96%)], p = 1.414e-02; original with no color correction versus multi-lab with color
correction - mean effect size = 19.99%, 95% ClI effect size = [14.47%, 25.51%)], p = 3.175e-07; original with color correction
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versus multi-lab with color correction - mean effect size = 15.40%, 95% CI effect size = [9.73%, 21.08%], p = 2.166e-05. 4th
quartile: original (10 worms) no color correction versus with color correction - mean effect size = -1.72%, 95% ClI effect size = [-
3.26%, -0.19%], p = 3.829¢-02; original with no color correction versus multi-lab with color correction - mean effect size = -
5.96%, 95% CI effect size = [-9.80%, -2.12%], p = 5.834e-03; original with color correction versus multi-lab with color correction
- mean effect size = -4.23%, 95% CI effect size = [-7.51%, -0.96%], p = 1.864e-02. (b) Accuracy by quartile for StatAtlas. 1st
quartile: original (10 worms) no color correction versus with color correction - mean effect size = 11.01%, 95% CI effect size =
[8.35%, 13.68%], p = 5.059e-08; original with no color correction versus multi-lab with color correction - mean effect size =
26.44%, 95% CI effect size = [23.56%, 29.32%], p = 1.265e-14; original with color correction versus multi-lab with color
correction - mean effect size = 15.43%, 95% ClI effect size = [12.38%, 18.47%], p = 1.443e-09. 2nd quartile: original (10 worms)
no color correction versus with color correction - mean effect size = 13.54%, 95% CI effect size = [10.27%, 16.81%], p = 4.780e-
08; original with no color correction versus multi-lab with color correction - mean effect size = 27.71%, 95% ClI effect size =
[25.22%, 30.20%], p = 2.244e-16; original with color correction versus multi-lab with color correction - mean effect size =
14.16%, 95% ClI effect size = [11.53%, 16.80%], p = 4.772e-10. 3rd quartile: original (10 worms) no color correction versus with
color correction - mean effect size = 8.22%, 95% Cl effect size = [5.98%, 10.47%], p = 2.624e-07; original with no color
correction versus multi-lab with color correction - mean effect size = 19.75%, 95% CI effect size = [16.14%, 23.36%], p = 2.053e-
10; original with color correction versus multi-lab with color correction - mean effect size = 11.52%, 95% CI effect size = [9.18%,
13.87%], p = 1.536e-09. 4th quartile: original (10 worms) no color correction versus with color correction - mean effect size =
3.68%, 95% ClI effect size = [2.18%, 5.19%], p = 7.996e-05; original with no color correction versus multi-lab with color
correction - mean effect size = 12.84%, 95% ClI effect size = [11.00%, 14.68%], p = 1.557e-12; original with color correction
versus multi-lab with color correction - mean effect size = 9.16%, 95% CI effect size = [7.32%, 10.99%], p = 1.189e-09. (c)
Accuracy by quartile for CRF_ID. 1st quartile: original (10 worms) no color correction versus with color correction - mean effect
size = 7.22%, 95% CI effect size = [2.25%, 12.18%], p = 9.428e-03; original with no color correction versus multi-lab with color
correction - mean effect size = 19.97%, 95% CI effect size = [15.62%, 24.32%], p = 8.294e-09; original with color correction
versus multi-lab with color correction - mean effect size = 12.75%, 95% CI effect size = [8.00%, 17.51%], p = 2.936e-05. 2nd
quartile: original (10 worms) no color correction versus with color correction - mean effect size = 5.53%, 95% CI effect size =
[2.51%, 8.55%], p = 1.646e-03; original with no color correction versus multi-lab with color correction - mean effect size =
21.42%, 95% ClI effect size = [11.84%, 31.00%], p = 2.412e-04; original with color correction versus multi-lab with color
correction - mean effect size = 15.89%, 95% CI effect size = [7.27%, 24.50%], p = 1.563e-03. 3rd quartile: original (10 worms) no
color correction versus with color correction - mean effect size = 10.91%, 95% CI effect size = [5.08%, 16.75%], p = 1.304e-03;
original with no color correction versus multi-lab with color correction - mean effect size = 21.73%, 95% ClI effect size = [15.50%,
27.96%], p = 5.751e-07; original with color correction versus multi-lab with color correction - mean effect size = 10.82%, 95% ClI
effect size = [8.39%, 13.25%], p = 9.590e-09. 4th quartile: original (10 worms) no color correction versus with color correction -
mean effect size = 5.45%, 95% ClI effect size = [2.90%, 8.00%], p = 3.574e-04; original with no color correction versus multi-lab
with color correction - mean effect size = 10.63%, 95% CI effect size = [8.26%, 13.00%], p = 8.450e-09; original with color
correction versus multi-lab with color correction - mean effect size = 5.18%, 95% CI effect size = [3.34%, 7.02%)], p = 1.358e-05.
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Ranked accuracy by # of ground truth labels
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Supplement 5: Top n ranked neural identification accuracy for datasets with varying numbers of ground truth labels. All statistics
are conducted with a paired t-test. First quartile N=25, second quartile N=26, third quartile N=27, fourth quartile N=16. Quartiles
are determined by the number of ground truth labels in each dataset. Significance is reported using a Bonferroni correction with
the convention of * for p<0.05, ** for p<0.01, and *** for p<0.001. (a) Accuracy by rank and quartile for CPD. 1st quartile: top1 -
mean effect size = 24.40%, 95% CI effect size = [18.20%, 30.61%], p = 1.124e-07; top2 - mean effect size = 33.12%, 95% ClI
effect size = [27.39%, 38.86%], p = 1.250e-10; top3 - mean effect size = 34.51%, 95% CI effect size = [29.51%, 39.51%], p =
3.980e-12; top4 - mean effect size = 34.70%, 95% CI effect size = [29.53%, 39.87%], p = 6.885e-12; top5 - mean effect size =
35.63%, 95% ClI effect size = [30.26%, 41.01%], p = 8.878e-12. 2nd quartile: topl - mean effect size = 32.96%, 95% CI effect size
= [27.42%, 38.49%], p = 7.032e-11; top2 - mean effect size = 38.79%, 95% CI effect size = [33.73%, 43.84%], p = 4.837e-13;
top3 - mean effect size = 40.45%, 95% ClI effect size = [35.58%, 45.33%], p = 1.003e-13; top4 - mean effect size = 42.43%, 95%
Cl effect size = [37.62%, 47.24%)], p = 2.827e-14; top5 - mean effect size = 42.46%, 95% ClI effect size = [37.67%, 47.25%], p =
2.595e-14. 3rd quartile: topl - mean effect size = 19.99%, 95% ClI effect size = [14.47%, 25.51%)], p = 3.175e-07; top2 - mean
effect size = 22.78%, 95% ClI effect size = [16.36%, 29.20%], p = 4.413e-07; top3 - mean effect size = 23.65%, 95% CI effect size
=[16.71%, 30.58%], p = 8.273e-07; top4 - mean effect size = 23.67%, 95% CI effect size = [16.39%, 30.96%], p = 1.708e-06;
top5 - mean effect size = 23.43%, 95% ClI effect size = [16.17%, 30.70%], p = 1.918e-06. 4th quartile: topl - mean effect size = -
5.96%, 95% ClI effect size = [-9.80%, -2.12%], p = 5.834e-03; top2 - mean effect size = -6.32%, 95% CI effect size = [-10.24%, -
2.41%], p = 4.364e-03; top3 - mean effect size = -6.82%, 95% CI effect size = [-10.77%, -2.86%], p = 2.630e-03; top4 - mean
effect size = -6.70%, 95% CI effect size = [-10.16%, -3.23%], p = 9.588e-04; top5 - mean effect size = -6.46%, 95% CI effect size
=[-9.99%, -2.92%], p = 1.601e-03. (b) Accuracy by rank and quartile for StatAtlas. 1st quartile: topl - mean effect size = 26.44%,
95% Cl effect size = [23.56%, 29.32%)], p = 1.265e-14; top2 - mean effect size = 27.31%, 95% CI effect size = [24.42%, 30.20%],
p = 6.743e-15; top3 - mean effect size = 26.80%, 95% CI effect size = [23.62%, 29.98%], p = 7.078e-14; top4 - mean effect size =
27.89%, 95% CI effect size = [23.77%, 32.02%], p = 6.028e-12; top5 - mean effect size = 26.03%, 95% CI effect size = [21.95%,
30.11%], p = 1.840e-11. 2nd quartile: topl - mean effect size = 27.71%, 95% CI effect size = [25.22%, 30.20%], p = 2.244e-16;
top2 - mean effect size = 27.48%, 95% ClI effect size = [24.62%, 30.35%], p = 5.028e-15; top3 - mean effect size = 26.09%, 95%
Cl effect size = [23.60%, 28.58%], p = 7.857e-16; top4 - mean effect size = 25.60%, 95% CI effect size = [23.16%, 28.04%], p =
7.552e-16; top5 - mean effect size = 24.67%, 95% CI effect size = [21.88%, 27.46%], p = 2.711e-14. 3rd quartile: topl - mean
effect size = 19.75%, 95% ClI effect size = [16.14%, 23.36%)], p = 2.053e-10; top2 - mean effect size = 20.62%, 95% CI effect size
= [16.74%, 24.50%], p = 3.608e-10; top3 - mean effect size = 21.18%, 95% CI effect size = [17.93%, 24.43%], p = 6.459%¢-12;
top4 - mean effect size = 20.90%, 95% ClI effect size = [17.37%, 24.44%)], p = 4.479e-11; top5 - mean effect size = 21.27%, 95%
Cl effect size = [17.20%, 25.34%)], p = 4.985e-10. 4th quartile:topl - mean effect size = 12.84%, 95% CI effect size = [11.00%,
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14.68%], p = 1.557e-12; top2 - mean effect size = 10.57%, 95% CI effect size = [8.72%, 12.42%)], p = 8.887e-11; top3 - mean
effect size = 10.05%, 95% ClI effect size = [8.53%, 11.57%)], p = 4.861e-12; top4 - mean effect size = 9.44%, 95% CI effect size =
[7.84%, 11.03%], p = 4.475e-11; top5 - mean effect size = 7.53%, 95% ClI effect size = [5.83%, 9.23%], p = 1.037e-08. (c)
Accuracy by rank and quartile for CRF ID. 1st quartile: topl - mean effect size = 19.97%, 95% ClI effect size = [15.62%, 24.32%)],
p = 8.294e-09; top2 - mean effect size = 16.07%, 95% CI effect size = [12.47%, 19.67%], p = 1.329¢-08; top3 - mean effect size =
11.56%, 95% ClI effect size = [7.71%, 15.40%)], p = 6.574e-06; top4 - mean effect size = 8.63%, 95% CI effect size = [4.70%,
12.55%], p = 2.912e-04; top5 - mean effect size = 7.24%, 95% CI effect size = [3.38%, 11.09%)], p = 1.342e-03. 2nd quartile: topl
- mean effect size = 21.42%, 95% ClI effect size = [11.84%, 31.00%)], p = 2.412e-04; top2 - mean effect size = 20.18%, 95% ClI
effect size = [9.41%, 30.94%], p = 1.360e-03; top3 - mean effect size = 15.61%, 95% CI effect size = [4.96%, 26.26%], p =
8.945e-03; top4 - mean effect size = 14.52%, 95% Cl effect size = [4.12%, 24.92%], p = 1.220e-02; top5 - mean effect size =
13.62%, 95% ClI effect size = [3.71%, 23.53%)], p = 1.343e-02. 3rd quartile: topl - mean effect size = 21.73%, 95% CI effect size
= [15.50%, 27.96%], p = 5.751e-07; top2 - mean effect size = 16.31%, 95% CI effect size = [9.15%, 23.47%], p = 1.789e-04; top3
- mean effect size = 12.68%, 95% CI effect size = [5.67%, 19.68%], p = 1.737e-03; top4 - mean effect size = 10.92%, 95% ClI
effect size = [4.19%, 17.64%], p = 4.178e-03; top5 - mean effect size = 9.21%, 95% ClI effect size = [2.76%, 15.66%], p = 1.027e-
02. 4th quartile: topl - mean effect size = 10.63%, 95% ClI effect size = [8.26%, 13.00%], p = 8.450e-09; top2 - mean effect size =
7.58%, 95% ClI effect size = [5.54%, 9.62%], p = 2.031e-07; top3 - mean effect size = 6.54%, 95% CI effect size = [4.95%,
8.12%], p = 3.564e-08; top4 - mean effect size = 5.63%, 95% CI effect size = [4.15%, 7.10%], p = 1.420e-07; top5 - mean effect
size = 4.87%, 95% CI effect size = [3.62%, 6.12%)], p = 9.202e-08.

Accuracy for leave lab out atlas training
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Supplement 6: Top ranked assignment accuracy for leave-one-lab-out training. For each dataset, we train using the full corpus of
data excluding all data from the dataset being tested. We then report the test accuracy for the dataset that was left out. All statistics
are conducted with a paired t-test. Significance is reported using a Bonferroni correction with the convention of * for p<0.05, **
for p<0.01, and *** for p<0.001. (a) Accuracy by dataset for CPD. EY: original (10 worms) no color correction versus with leave-
lab-out with color correction - mean effect size = -2.00%, 95% CI effect size = [-3.60%, -0.39%], p = 2.491e-02; original with no
color correction versus multi-lab with color correction - mean effect size = -15.97%, 95% CI effect size = [-19.26%, -12.68%], p =
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7.764e-09; leave-lab-out with color correction versus multi-lab with color correction - mean effect size = -13.97%, 95% ClI effect
size = [-17.10%, -10.84%], p = 3.041e-08. HL: original (10 worms) no color correction versus with leave-lab-out with color
correction - mean effect size = 33.75%,95% ClI effect size = [27.57%, 39.93%)], p = 6.815e-06; original with no color correction
versus multi-lab with color correction - mean effect size = 34.68%,95% ClI effect size = [31.18%, 38.18%)], p = 6.960e-08; leave-
lab-out with color correction versus multi-lab with color correction - mean effect size = 0.93%,95% ClI effect size = [-6.29%,
8.15%], p = 8.137e-01. KK:

original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = -0.67%,95% Cl effect
size = [-3.01%, 1.67%], p = 6.075e-01; original with no color correction versus multi-lab with color correction - mean effect size =
7.28%,95% CI effect size = [3.80%, 10.75%], p = 5.809e-03; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 7.95%,95% CI effect size = [5.26%, 10.63%], p = 8.722e-04. SF:

original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = 2.96%,95% CI effect
size = [1.83%, 4.09%], p = 2.671e-05; original with no color correction versus multi-lab with color correction - mean effect size =
29.87%,95% ClI effect size = [27.07%, 32.67%], p = 2.330e-17; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 26.91%,95% CI effect size = [23.62%, 30.20%], p = 1.165e-14. SK1:

original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = 7.39%,95% ClI effect
size = [5.08%, 9.70%], p = 5.516e-06; original with no color correction versus multi-lab with color correction - mean effect size =
22.22%,95% ClI effect size = [17.35%, 27.08%)], p = 3.335e-08; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 14.83%,95% ClI effect size = [9.00%, 20.65%], p = 8.723e-05. SK2:

original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = 23.88%,95% Cl effect
size = [17.33%, 30.44%], p = 6.968e-05; original with no color correction versus multi-lab with color correction - mean effect size
= 35.29%,95% ClI effect size = [31.00%, 39.58%], p = 7.940e-08; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 11.41%,95% ClI effect size = [5.67%, 17.15%], p = 4.398e-03. (b) Accuracy by dataset for
StatAtlas. EY: original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size =
7.63%,95% CI effect size = [5.54%, 9.72%)], p = 6.863e-07; original with no color correction versus multi-lab with color
correction - mean effect size = 12.85%,95% CI effect size = [10.79%, 14.91%], p = 1.080e-10; leave-lab-out with color correction
versus multi-lab with color correction - mean effect size = 5.22%,95% Cl effect size = [4.03%, 6.41%], p = 4.261e-08. HL:
original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = 27.40%,95% CI effect
size = [23.34%, 31.46%], p = 1.361e-06; original with no color correction versus multi-lab with color correction - mean effect size
= 31.95%,95% ClI effect size = [27.70%, 36.20%)], p = 5.955e-07; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 4.55%,95% Cl effect size = [1.93%, 7.17%], p = 1.123e-02. KK: original (10 worms) no color
correction versus with leave-lab-out with color correction - mean effect size = 9.27%,95% CI effect size = [4.06%, 14.49%], p =
1.268e-02; original with no color correction versus multi-lab with color correction - mean effect size = 12.22%,95% CI effect size
=[7.57%, 16.87%], p = 1.719e-03; leave-lab-out with color correction versus multi-lab with color correction - mean effect size =
2.94%,95% CI effect size = [0.74%, 5.15%)], p = 4.095e-02. SF: original (10 worms) no color correction versus with leave-lab-out
with color correction - mean effect size = 24.01%,95% CI effect size = [20.07%, 27.95%)], p = 7.939¢-12; original with no color
correction versus multi-lab with color correction - mean effect size = 22.85%,95% CI effect size = [20.21%, 25.50%], p = 3.298e-
15; leave-lab-out with color correction versus multi-lab with color correction - mean effect size = -1.16%,95% CI effect size = [-
4.18%, 1.87%], p = 4.601e-01. SK1: original (10 worms) no color correction versus with leave-lab-out with color correction -
mean effect size = 25.56%,95% CI effect size = [23.05%, 28.08%], p = 3.666e-14; original with no color correction versus multi-
lab with color correction - mean effect size = 25.88%,95% CI effect size = [22.85%, 28.90%], p = 8.466e-13; leave-lab-out with
color correction versus multi-lab with color correction - mean effect size = 0.31%,95% CI effect size = [-1.52%, 2.15%], p =
7.414e-01. SK2: original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size =
26.04%,95% CI effect size = [21.35%, 30.72%], p = 2.302e-06; original with no color correction versus multi-lab with color
correction - mean effect size = 26.06%,95% ClI effect size = [21.88%, 30.25%], p = 8.712e-07; leave-lab-out with color correction
versus multi-lab with color correction - mean effect size = 0.03%,95% CI effect size = [-1.57%, 1.63%)], p = 9.738e-01. (c)
Accuracy by dataset for CRFID. EY: original (10 worms) no color correction versus with leave-lab-out with color correction -
mean effect size = 8.51%,95% CI effect size = [5.94%, 11.08%], p = 2.641e-06; original with no color correction versus multi-lab
with color correction - mean effect size = 10.97%,95% CI effect size = [8.32%, 13.62%], p = 9.944e-08; leave-lab-out with color
correction versus multi-lab with color correction - mean effect size = 2.46%,95% CI effect size = [1.33%, 3.60%)], p = 4.055e-04.
HL.: original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size = 5.86%,95% CI
effect size = [2.81%, 8.91%], p = 6.772e-03; original with no color correction versus multi-lab with color correction - mean effect
size = 7.28%,95% ClI effect size = [4.05%, 10.50%], p = 2.776e-03; leave-lab-out with color correction versus multi-lab with color
correction - mean effect size = 1.42%,95% Cl effect size = [0.26%, 2.58%], p = 4.977e-02. KK: original (10 worms) no color
correction versus with leave-lab-out with color correction - mean effect size = 7.07%,95% Cl effect size = [4.27%, 9.87%], p =
2.133e-03; original with no color correction versus multi-lab with color correction - mean effect size = 9.42%,95% ClI effect size =
[6.72%, 12.12%], p = 3.264e-04; leave-lab-out with color correction versus multi-lab with color correction - mean effect size =
2.35%,95% CI effect size = [1.76%, 2.93%], p = 1.356e-04. SF: original (10 worms) no color correction versus with leave-lab-out
with color correction - mean effect size = 26.05%,95% CI effect size = [18.80%, 33.29%)], p = 2.164e-07; original with no color
correction versus multi-lab with color correction - mean effect size = 31.28%,95% CI effect size = [23.27%, 39.28%], p = 5.119%-
08; leave-lab-out with color correction versus multi-lab with color correction - mean effect size = 5.23%,95% ClI effect size =
[1.22%, 9.24%], p = 1.705e-02. SK1: original (10 worms) no color correction versus with leave-lab-out with color correction -
mean effect size = 19.66%,95% CI effect size = [15.19%, 24.13%], p = 5.897e-08; original with no color correction versus multi-
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lab with color correction - mean effect size = 21.75%,95% CI effect size = [17.54%, 25.97%], p = 4.768e-09; leave-lab-out with
color correction versus multi-lab with color correction - mean effect size = 2.09%,95% ClI effect size = [0.66%, 3.52%], p =
1.015e-02. SK2: original (10 worms) no color correction versus with leave-lab-out with color correction - mean effect size =
10.61%,95% CI effect size = [3.88%, 17.34%)], p = 1.521e-02; original with no color correction versus multi-lab with color
correction - mean effect size = 10.91%,95% CI effect size = [3.73%, 18.08%], p = 1.803e-02; leave-lab-out with color correction
versus multi-lab with color correction - mean effect size = 0.30%,95% CI effect size = [-3.51%, 4.11%], p = 8.847e-01.
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Supplement 7: Standard deviation of pairwise distance of n closest atlas neighbors.
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