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Abstract 27 

Decision-making in uncertain environments often leads to varied outcomes. Understanding how 28 

individuals interpret the causes of unexpected feedback is crucial for adaptive behavior and 29 

mental well-being. Uncertainty can be broadly categorized into two components: volatility and 30 

stochasticity. Volatility is about how quickly conditions change, impacting results. Stochasticity, 31 

on the other hand, refers to outcomes affected by random chance or “luck”. Understanding these 32 

factors enables individuals to have more effective environmental analysis and strategy 33 

implementation (explore or exploit) for future decisions. This study investigates how anxiety and 34 

apathy, two prevalent affective states, influence the perceptions of uncertainty and exploratory 35 

behavior. Participants (N = 1001) completed a restless three-armed bandit task that was analyzed 36 

using latent state models. Anxious individuals perceived uncertainty as more volatile, leading to 37 

increased exploration and learning rates, especially after reward omission. Conversely, apathetic 38 

individuals viewed uncertainty as more stochastic, resulting in decreased exploration and 39 

learning rates. The perceived volatility-to-stochasticity ratio mediated the anxiety-exploration 40 

relationship post-adverse outcomes. Dimensionality reduction showed exploration and 41 

uncertainty estimation to be distinct but related latent factors shaping a manifold of adaptive 42 

behavior that is modulated by anxiety and apathy. These findings reveal distinct computational 43 

mechanisms for how anxiety and apathy influence decision-making, providing a framework for 44 

understanding cognitive and affective processes in neuropsychiatric disorders. 45 

  46 
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Introduction 47 

 48 

Life is filled with unexpected challenges. How individuals interpret the causes of undesirable 49 

outcomes, such as investment failures, career plateaus, or bad weather, in uncertain environments 50 

shapes their subsequent actions (1). When people attribute changes in outcomes to environmental 51 

volatility (the speed at which the environment is changing), they may be motivated to explore 52 

more, seeking additional information and altering their behavior. In contrast, attributing adverse 53 

outcomes to mere chance or “bad luck” (stochasticity) may decrease the motivation to explore, 54 

leading some individuals to persist with their existing strategies (2).  55 

 56 

The response to environmental uncertainty likely interacts with individuals’ affective states in a 57 

bidirectional manner. Attributing adverse outcomes to stochasticity may lead individuals to stick 58 

to previous behaviors, potentially protecting them from hurtful feedback through additional 59 

interaction with the world. However, this approach may also dampen an individual’s ability to 60 

adapt to a changing environment, potentially reinforcing a negative cycle and leading to apathy 61 

and depression. Conversely, perceiving sources of negative outcome as volatile may motivate 62 

individuals to learn more about the world and reduce uncertainty, though this may also increase 63 

the chances of experiencing more adverse outcomes and potentially worsening negative feelings 64 

such as anxiety. 65 

 66 

Reciprocally, how individuals perceive and respond to environmental uncertainty can be 67 

influenced by underlying affective states (3). Apathy, characterized by a lack of motivation and 68 

goal-directed behavior (4, 5), is an affective state associated with imprecise beliefs about action 69 
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outcomes (6) and a tendency to persist with previous choices rather than explore (7). This 70 

suggests that apathetic individuals may view outcomes as primarily stochastic, attributing events 71 

more to chance than controllable variables. This bias could discourage exploration and 72 

potentially reinforce a cycle of failure and helplessness (8).  73 

 74 

In contrast, anxiety, marked by excessive worry and a heightened perception of potential threats  75 

(9, 10) and uncertainty (11), may lead individuals to overestimate environmental volatility. 76 

Consequently, anxious individuals could be driven to seek new information to update their 77 

beliefs and reduce uncertainty (12). However, research on the link between anxiety and 78 

exploration has yielded mixed findings, with some studies showing increased exploration to 79 

mitigate uncertainty (13, 14) and others showing reduced exploration to avoid unpredictable 80 

feedback under high anxiety (15, 16). Notably, apathy and anxiety often coexist in clinical 81 

populations, such as Alzheimer’s (17), Parkinson’s disease (18), and depression (19), despite 82 

having distinct neural representations (20, 21).  83 

 84 

Building on these findings, we propose three fundamental questions to further elucidate the 85 

relationship between affective states and decision-making under uncertainty. First, we aim to 86 

investigate whether apathy and anxiety exhibit distinct behavioral patterns when individuals are 87 

faced with uncertain situations. Second, we seek to examine how individual differences in levels 88 

of apathy and anxiety are associated with perceptions of different types of uncertainty, 89 

specifically volatility and stochasticity. Finally, we intend to explore how perceived volatility 90 

influences exploratory behavior during decision-making processes.  91 

 92 
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We posit two competing hypotheses: 93 

1. Apathetic individuals manifest less exploration, while anxious individuals engage in more 94 

exploration. Apathetic individuals weigh stochasticity over volatility and explore less, while 95 

anxious individuals overestimate volatility but explore more to reduce their uncertainty. This 96 

result would be consistent with previous findings suggesting that the two affective states have 97 

distinct neural substrates (20, 22). 98 

2. Both apathetic and anxious individuals engage in less exploratory behavior but through 99 

different computational mechanisms. Apathetic individuals weigh stochasticity over volatility 100 

and explore less, while anxious individuals overestimate volatility, leading to a sense that their 101 

actions cannot track or learn from the environment, ultimately leading to exploitation. This may 102 

provide a computational account for learned helplessness (23) and the co-occurrence of apathy 103 

and anxiety in various clinical populations, such as Parkinson’s and Alzheimer’s diseases.  104 

 105 

To address these questions, we employed a restless three-armed bandit task (Figure 1A), a well-106 

established paradigm for capturing adaptive learning in volatile environments(24). We adopted 107 

Hidden Markov Model (HMM) to obtain the likelihood of individuals switching between 108 

exploitation and exploration states (25, 26). To further investigate how volatility and 109 

stochasticity modulate exploration, we utilized a Kalman filter model, which can dissociate two 110 

distinct sources of noise, volatility (process noise variance) and stochasticity (observation noise 111 

variance), during inference (27). Together, these methods offer a comprehensive view of the 112 

cognitive mechanisms underlying exploratory behavior and the manifestation of anxiety and 113 

apathy. 114 

  115 
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Results 116 

We recruited a large gender-balanced online sample consisting of 1,001 adults. The participants, 117 

ranging in age from 18 to 54 years (mean ± SD = 28.446 ± 10.354 years; gender: 493 female), 118 

performed a restless three-armed bandit task, as depicted in Figure 1A. During this task, 119 

participants selected among three playing card images, with each card representing a different 120 

option. They made their selections by moving their cursor over their chosen card. The probability 121 

of receiving a reward from each card deck varied randomly over time. After each choice, 122 

feedback was displayed on the screen indicating whether a reward was received. Participants also 123 

completed symptom surveys assessing levels of anxiety and apathy (details in Methods and SI 124 

Section 1, Table S1). We defined the trial as a switch trial if the chosen option was different from 125 

the last trial, and a stay trial if the choice was the same as the last trial. 126 
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 127 

 128 

Figure 1. Three-armed restless bandit task and distinct behavioral patterns associated with 129 

apathy and anxiety. 130 

(A) Three-armed restless bandit task. Participants chose one option from among the three targets 131 

to receive reward or non-reward feedback. Each target was associated with a hidden reward 132 

probability that randomly and independently changed throughout the task. The lower panel 133 

indicates the example choice and reward sequence and the definition of stay and switch. 134 

Specifically, stay was defined as choosing the same target as in the previous trial, while switch 135 

was defined as choosing a different target. “+1” denotes reward feedback, and “+0” denotes 136 

reward omission. 137 

(B) Most participants earned more rewards than expected by chance 138 
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(C) Apathy and anxiety correlated positively. 139 

(D) Apathy correlated negatively with switch behaviors, while anxiety correlated positively with 140 

switch behaviors. Anxious individuals were more sensitive to undesired feedback (no reward) 141 

and exhibited more switch behaviors compared to reward feedback. 142 

(Panels in Figure 1C and 1D utilize binned correlation plots [25 quantile bins based on the x-143 

axis], with lines representing the standard error (S.E.). N.B. that these may be smaller than the 144 

symbol. Statistical analyses were performed on raw data.) 145 

 146 

Apathy and anxiety predicted distinct exploratory behaviors 147 

We first evaluated the performance by comparing the total number of rewarded trials each 148 

participant experienced against the number expected by chance. Out of the 1001 participants, 149 

985 accrued more rewarded trials than would be statistically expected by chance, suggesting 150 

significant effectiveness in their decision-making strategies (Figure 1B). As expected, anxiety 151 

and apathy showed a significant positive correlation (r = 0.35, p<10-29, Figure 1C), which is 152 

consistent with previous findings on their co-occurrence (17). 153 

To investigate the relationship between apathy and the percentage of switch behaviors 154 

(P(switch)), as well as anxiety and P(switch), we conducted partial correlations between apathy 155 

and exploration while controlling for anxiety, and between anxiety and exploration while 156 

controlling for apathy. We found that apathy negatively predicted P(switch) (r = -0.16, p<0.001) 157 

regardless of feedback type (reward or no-reward), while anxiety positively correlated with 158 

P(switch) (r = 0.13, p<0.001). Intriguingly, the relationship between anxiety and switch 159 

behaviors was greater after non-reward feedback (r = 0.16, p<0.001) compared to reward 160 

feedback (r = 0.07, p=0.024) (their difference, z-score = 2.40, p=0.01). Though co-existing in 161 
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this population, these two affective states predicted distinct switch behaviors under uncertainty 162 

(Figure 1D). The stronger relationship between anxiety and P(switch) after undesirable feedback 163 

indicates that highly anxious individuals are more sensitive to negative feedback, which may 164 

lead them to disengage. 165 

Next, we fitted the behavior with a Hidden Markov Model (HMM) to decode the hidden states, 166 

“explore”, and “exploit” (Figure 2A) (24, 25, 28, 29). Each arm is associated with a hidden 167 

reward probability that randomly and independently changes throughout the task (Figure 2A). In 168 

our study, exploration and exploitation states are considered hidden states underlying the 169 

observed choices, such as switching between decks or repeatedly choosing from the same deck. 170 

We calculated the percentage of explore states, i.e., P(explore). Consistently, apathy correlated 171 

negatively with P(explore) (r = -0.17, p<0.001), while anxiety positively correlated with 172 

(P(explore)) (r = 0.11, p=0.003) as well as the percentage of  exploration after reward 173 

omission(P(explore|0) (r = 0.13, p<0.001) (Figure 2C). 174 

In addition to the overall frequency with which hidden states occur, examining the transitions 175 

between these states can further illuminate the dynamics of decision-making. Therefore, we 176 

investigated how apathy and anxiety manifest in the transition probability (Figure 2B) between 177 

explore and exploit. As predicted, apathy had a positive correlation with the transition 178 

probability from explore to exploit (r = 0.13, p<0.001) but a negative correlation with the 179 

transition probability from exploit to explore (r = -0.08, p=0.011). In contrast, anxiety had a 180 

negative correlation with the transition probability from explore to exploit (r = -0.07, p=0.035) 181 

but a positive correlation with the transition probability from exploit to explore (r = 0.07, 182 

p<0.022) (Figure 2D). All significant results reported in the study survived False Discovery Rate 183 
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(FDR, p<0.05) correction. 184 

 185 

 186 

 187 

 188 

Figure 2. Apathy and anxiety have opposing relationships with exploration and explore and 189 

exploit state dynamics. 190 

(A) Unrolled structure of the hidden Markov model (HMM) used to infer the explore and 191 

exploit states' underlying behavior.  192 
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(B) The transition probabilities within and between states in the HMM. 193 

(C) The probability of exploration, plotted as a function of apathy (top left) and anxiety (top 194 

right). The probability of exploration following a reward omission is plotted as a function of 195 

apathy (bottom left) and anxiety (bottom right). 196 

(D) The transition probability from explore to exploit, plotted as a function of apathy (top 197 

left) and anxiety (top right); the transition probability from exploit to explore plotted as a 198 

function of apathy (bottom left) and anxiety (bottom right). 199 

(Panels in Figure 2C and 2D utilize binned correlation plots [25 quantile bins based on the x-200 

axis], with lines representing the standard error (S.E.). N.B. that these may be smaller than 201 

the symbol. Statistical analyses were performed on raw data).  * p < 0.05, ** p <0.01, *** p 202 

< 0.001. All p-values remained significant after FDR p<0.05 correction. 203 

  204 
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Apathy and anxiety are associated with distinct computational processes underlying 205 

exploration. 206 

We then asked whether differing perceptions of the environment might explain the distinct 207 

patterns of exploration predicted by apathy and anxiety we observed.  208 

To address this question, we utilized a Kalman filter model (Figure 3A), which can dissociate 209 

sources of uncertainty into perceived volatility and stochasticity (27). Kalman filter (KF) models 210 

have been widely applied in psychology and neuroscience to study various aspects of learning 211 

and decision-making (30, 31) (for more detailed information about the model, please refer to the 212 

Method section).  213 

We also fitted the behavioral data to alternative models including volatile Kalman filter (VKF) 214 

(27), Rescorla-Wagner models single (RW1) (32) and dual learning rates (RW2) to weigh 215 

positive and negative learning rates (33). We employed Hierarchical Bayesian inference (HBI) to 216 

fit models to choice data (34). Further, we used Bayesian model selection (BMS) and protected 217 

exceedance probability (PXP) to select the winning model (Figure 3B). The Kalman filter served 218 

as the best model for our population, and we examined the resulting distribution of volatility and 219 

stochasticity (Figure 3B). 220 

We first conducted correlation analyses using all data points. Specifically, we found that apathy 221 

was positively correlated with stochasticity (r = 0.08, p=0.013) but negatively correlated with 222 

volatility (r = -0.08, p=0.008). Conversely, anxiety showed a negative correlation with 223 

stochasticity (r = -0.12, p=0.001) and a positive correlation with volatility (r = 0.12, p=0.002). 224 

These correlations highlight the distinct cognitive biases associated with apathy and anxiety in 225 

processing environmental uncertainties. 226 

To clearly illustrate and confirm the findings, we categorized participants into distinct groups 227 
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based on their apathy and anxiety levels. For apathy, we identified the high apathy group (N = 228 

223) as those scoring in the top 25% on the Apathy Motivation Index (AMI), which assesses 229 

apathy in behavioral and social domains (35). Conversely, the low apathy group (N = 251) 230 

comprised individuals scoring in the bottom 25% of apathy scores. Similarly, for anxiety, the 231 

high anxiety group (N = 228) included participants within the top 25% of scores on the GAD-7 232 

scale (36), while the low anxiety group (N = 250) consisted of those in the bottom 25%. These 233 

classifications allowed for a direct comparison of behaviors and traits between individuals with 234 

varying degrees of apathy and anxiety. 235 

We conducted linear regression analyses using volatility and stochasticity as the dependent 236 

variables with the high versus low anxiety and apathy groups as predictors. The Methods section 237 

provides details of the regression model specifications. 238 

As hypothesized, apathetic individuals overestimated stochasticity (t(471) = 3.06, p=0.002) and 239 

underestimated the volatility compared to those with low apathy (t(471) = -3.24, p=0.001)(Figure 240 

3C). Consequently, apathetic individuals exhibited a lower learning rate than their low apathy 241 

counterparts (t(471) = -3.11, p=0.002).  242 

In contrast, individuals with high anxiety levels tended to overestimate volatility (t(475) = 2.84, 243 

p=0.004) and underestimate stochasticity compared to those with low anxiety (t(475) = -3.04, 244 

p=0.002), resulting in a higher learning rate among the high anxiety group (t(475) = 3.21, 245 

p=0.001) (Figure 3D). Furthermore, comparisons showed that anxious individuals had higher 246 

volatility estimates than those with high apathy (t(449) = 2.75, p=0.006), whereas apathetic 247 

individuals had higher stochasticity estimates than their anxiety counterparts  (t(449) = -3.01, 248 

p=0.002) (SI Section 2, Figure S1).  249 
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 250 

Figure 3. Apathy and anxiety have opposing relationships with volatility and stochasticity.  251 

(A) The schematic of the Kalman filter model used in our analysis. The diagram illustrates how 252 

this model can differentiate between volatility (process noise variance) and stochasticity 253 

(observation noise variance), providing insights into the underlying decision-making processes. 254 

(B) Bayesian model comparison and the distribution of volatility, stochasticity  255 

 256 

(C) Highly apathetic individuals overestimated stochasticity but underestimated the volatility, 257 

resulting in a lower learning rate. 258 
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(D) In contrast, highly anxious individuals overestimated volatility but underestimated 259 

stochasticity, resulting in a higher learning rate. 260 

*p < 0.05, ** p <0.01, *** p < 0.001. All p-values remained significant after FDR p<0.05 261 

correction. 262 

 263 

The ratio of volatility to stochasticity distinguished apathy and anxiety  264 

To clarify the differential impacts of apathy and anxiety on decision-making under uncertainty, 265 

we computed the ratio of volatility to stochasticity, 𝑣/𝑠 to represent the balance between these 266 

two types of uncertainties. A higher 𝑣/𝑠 indicates a perception of greater volatility relative to 267 

stochasticity, while a lower ratio suggests a perception of more stochasticity relative to volatility. 268 

We applied a logarithmic transformation to the ratio to manage extreme values (e.g. cases where 269 

individuals might perceive very high volatility but very low stochasticity).  270 

Consistently, our findings reveal a clear distinction: 𝑣/𝑠 correlated negatively with apathy (r = -271 

0.08, p=0.010) but positively with anxiety (r = 0.13, p<0.001) (Figure 4A).  272 

 273 

The ratio of volatility and stochasticity mediated the relationship between anxiety and the 274 

exploration after negative feedback 275 

To determine whether individual differences in the perception of uncertainty explain the 276 

relationship between exploratory behavior and affect, we conducted a mediation analysis with 277 

anxiety, switching after reward omission (P(switch | 0)), and 𝑣/𝑠. The results demonstrate that 278 

the relationship between anxiety and the tendency to switch after receiving no reward is 279 

significantly mediated by 𝑣/𝑠 (Figure 4B). This mediation was also significant for the analogous 280 

HMM model-based measures (see SI Section 3, Figure S2). No significant mediation effect was 281 
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found for apathy, however, reinforcing the unique pathways through which anxiety influences 282 

exploratory behavior. These results explain why individuals with higher anxiety might explore 283 

more after negative feedback, driven by an overweighting of perceived volatility relative to 284 

stochasticity as a strategy to reduce uncertainty and manage risks. 285 

 286 

 287 

 288 

Figure 4. Distinctions in apathy and anxiety on the ratio of volatility to stochasticity and its 289 

mediation effect. 290 

(A) The ratio of volatility to stochasticity, plotted as a function of apathy (left) and anxiety 291 

positively (right).  292 

(B) Mediation analysis, showing the mediating effect of the ratio of volatility to stochasticity on 293 

the relationship between anxiety and switch behavior after reward omission. 294 

(Panels in Figure 4A utilize binned correlation plots [25 quantile bins based on the x-axis], with 295 

lines representing the standard error (S.E.). N.B. that these may be smaller than the symbol. 296 

Statistical analyses were performed on raw data).  * p < 0.05, ** p <0.01, *** p < 0.001. All p-297 

values remained significant after FDR p<0.05 correction). 298 

  299 
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 300 

A low dimensional manifold unifies exploration, perceptions of uncertainty and affective 301 

state.  302 

The HMM state-model of exploration-exploitation and the Kalman filter process model of 303 

uncertainty estimation represent complementary ways of understanding adaptive behavior that 304 

our mediation results suggest are intrinsically related. We hypothesized that a latent structure 305 

underlying adaptive behavior on this task might unify these descriptions of behavior. We utilized 306 

advanced dimensionality reduction methods to uncover such a latent structure in the raw task 307 

behavior.  308 

First, we formatted each participant’s trial-by-trial task data into sequences of choices to stay 309 

(repeat the choice on the last trial) or switch (choose a different option) and reward outcome for 310 

two consecutive trials ({choicet-1, outcomet-1, choicet}, Figure 5A and 5B). The behavioral data 311 

for each participant was then transformed into counts for each of these eight unique sequences. 312 

Then we applied Uniform Manifold Approximation and Projection (UMAP) (37), a 313 

computationally efficient algorithm that can preserve both the local and global distances between 314 

data points in high-dimensional space, to learn the two-dimensional manifold underlying the 315 

eight-dimensional behavioral data (Figure 5C, see Methods for more algorithm details). 316 

Including additional reward history and applying other dimensionality reduction methods like 317 

principle component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) 318 

did not change the results (SI Section 4, Figure S3, Table S2). 319 

Our analysis using UMAP revealed distinct correlations within the derived dimensions. 320 

Specifically, the dimension 1 score (the horizontal axis) exhibited a very strong significant 321 

negative correlation with exploratory behavior (P(explore) (r = -0.90, p<10-200), but it showed no 322 
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significant relationship with the ratio of volatility to stochasticity (𝑣/𝑠)(r = 0.01, p=0.74) (Figure 323 

5D, 5E). In contrast, the dimension 2 score (the vertical axis) demonstrated a strong negative 324 

correlation with 𝑣/𝑠 (r = -0.76, p<10-185), which was significantly more pronounced than its 325 

correlation with P(explore) (r = -0.19, p<10-10) (Figure 5F, 5G). This suggests that dimension 1 326 

primarily represents exploratory behavior, while dimension 2 primarily reflects the 327 

computational factors: volatility and stochasticity (i.e., volatility and stochasticity). 328 

Further, both dimensions also showed correlations with affective states: the dimension 1 score 329 

was positively correlated with apathy (r= 0.14, p<0.001), and negatively correlated with anxiety 330 

(r = - 0.11, p<0.001). Similarly, the dimension 2 score had a positive correlation with apathy (r = 331 

0.097, p=0.002) and a negative correlation with anxiety (r = -0.088, p=0.004). 332 

It is worth noting that we only found linear relationships between apathy, anxiety, and 333 

exploration, as well as between these affective states and the ratio of volatility to stochasticity 334 

(our analysis using higher order effects among these variables did not yield significant results, 335 

more details can be found in SI Section 5, Table S3). 336 

To delve deeper into how these factors interact in the low-dimensional space defined by UMAP, 337 

we divided the data manifold into two groups based on the dimension1 score: a monotonically 338 

decreasing group (left part, dimension 1 score < -0.671, N=390) and a monotonically increasing 339 

group (right part, dimension 1 score> -0.671, N=611). The methodology used to identify the 340 

turning point (dimension 1 score = -0.671) that differentiates the monotonically decreasing group 341 

from the monotonically increasing group is detailed in the Methods section. The analysis 342 

revealed that the monotonically decreasing group had relatively higher levels of anxiety 343 

compared to the monotonically increasing group (t(999)=2.08, p =0.037), while their apathy 344 

levels were significantly lower (t(999)= -3.56, p=0.0003). This segmentation allows us to further 345 
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explore and understand the complex interplay between affective states, computational 346 

parameters, and exploratory behaviors within a structured, low-dimensional framework. 347 

Notably, individuals in the left monotonically decreasing group, characterized by high anxiety 348 

and low apathy, generally perceive higher volatility relative to stochasticity and demonstrate 349 

greater exploratory behavior compared to those in the right monotonically increasing group. 350 

Within the decreasing group, higher perceived volatility correlates with reduced exploration. 351 

Conversely, in the increasing group, an increased perception of volatility tends to stimulate more 352 

exploratory actions. These results suggest that while severe anxiety might suppress exploration 353 

due to overwhelming uncertainty, moderate anxiety in the general population can promote 354 

exploration as a coping mechanism to gather information and reduce anxiety symptoms. 355 

 356 

We now address our final research question; what is the relationship between volatility and 357 

exploratory behavior? Considering the parabolic relationship between the manifold dimension 358 

reflecting exploration and the dimension representing 𝑣/𝑠, we hypothesized that the relationship 359 

between exploration and 𝑣/𝑠 might be quadratic. 360 

To test this hypothesis, we constructed a regression model as follows: 361 

P(explore) ~ 𝑣/𝑠+ 𝑣/𝑠2 + anxiety + apathy 362 

The results revealed that both the linear and quadratic terms are significant (linear term, 363 

coefficient = 0.02, SE = 0.003, t(996)=5.83, p<10-9; quadratic term, coefficient = 0.005, SE = 364 

7.86×10-4, t(996)=6.59, p<10-9), indicating a complex, non-linear relationship between the ratio 365 

of volatility to stochasticity and exploration (see SI Section 6, Figure S4), which was consistent 366 

with the manifold representation. 367 
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Figure 5. Visualizing the complex relationships in decision-making through low-369 

dimensional space. 370 

(A) All possible sequences of choices and rewards that participants could make during the 371 

experiment 372 

(B) The frequency distribution of individual decision-making patterns. The black line in the box 373 

plot represents each pattern's mean value, highlighting participants' typical behaviors 374 

(C) Schematic high-dimensional space of participants’ decision-making pattern 375 

(D) The two-dimensional space representation of exploration by using the Uniform Manifold 376 

Approximation and Projection (UMAP) (Different dimensionality reduction methods such as 377 

principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) 378 

lead to a similar space) 379 

(E) Dimension 1 exclusively represents P(explore) but does not represent the ratio of volatility to 380 

stochasticity 381 

(F) The two-dimensional space representation of the ratio of volatility to stochasticity behavior 382 

by using UMAP (Different dimensionality reduction methods such as principal component 383 

analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) lead to a similar 384 

space) 385 

(G) Dimension 2 mainly represents the ratio of volatility to stochasticity but not P(explore) 386 

(H) The manifold has been separately dissociated into the monotonically decreasing group (the 387 

most left panel) and monotonically increasing group (the most right panel). The monotonically 388 

decreasing group was associated with a relatively higher anxiety level than the monotonically 389 

increasing group, while the apathy level was significantly lower than the monotonically 390 

increasing group. Within the monotonically decreasing group (left part), a higher volatility to 391 
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stochasticity ratio leads to decreased exploration. In contrast, within the monotonically 392 

increasing group (right part), a higher volatility to stochasticity ratio encouraged higher 393 

exploration. This exploration serves as a coping strategy to relieve anxious feelings in the 394 

environment. 395 

All p-values remained significant after FDR p<0.05 correction. 396 

 397 

  398 
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 399 

Discussion 400 

We found that apathy and anxiety predicted opposing patterns of exploratory behavior, which 401 

were explained partly by differing perceptions of uncertainty. Anxiety was associated with 402 

increased exploration after reward omission and greater volatility estimation: the attribution of 403 

uncertainty to a rapidly changing (but still learnable) environment. Apathy, in contrast, predicted 404 

decreased exploration and higher stochasticity estimation: the perception of uncontrollable 405 

randomness. Following a dimensionality reduction of the raw behavioral data, exploration and 406 

perceptions of uncertainty emerged as the dimensions of an underlying latent structure that 407 

unified the different model approaches and the affective states. These findings elucidate the 408 

complex interplay between cognitive assessments of uncertainty, affective states, and decision-409 

making processes, offering several key insights into adaptive and maladaptive behaviors under 410 

uncertainty. 411 

 412 

The distinct patterns of exploratory behavior observed in anxious and apathetic individuals 413 

highlight the role of affective states in shaping responses to uncertainty. Anxious individuals, 414 

who generally display a heightened sensitivity to potential threats and environmental changes, 415 

exhibited a bias toward perceiving greater volatility and exploring more after negative outcomes. 416 

Our mediation analysis revealed that the perception of volatility relative to stochasticity partially 417 

mediates the relationship between anxiety and exploratory behavior after reward omission. This 418 

finding is consistent with previous results (38) and offers a mechanistic explanation for why 419 

anxious individuals in a healthy population might choose to explore more after receiving 420 

negative feedback. The perceived overweighting of volatility relative to stochasticity may drive 421 
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these individuals to seek more information, potentially as a strategy to reduce uncertainty and 422 

manage perceived risks more effectively (39). Although such a strategy may be beneficial for 423 

adaptation in genuinely volatile environments, it may also contribute to excessive worry and 424 

stress, especially if the perceived level of volatility exceeds actual environmental volatility (9, 425 

11). Consequently, anxious individuals may find themselves in a prolonged state of heightened 426 

arousal and uncertainty, leading to suboptimal decision-making and diminished well-being.  427 

 428 

On the other hand, apathetic individuals, who generally exhibit diminished motivation and 429 

responsiveness (40), tended to attribute outcomes more to stochasticity in our study. This 430 

perception might underlie their reduced exploratory behavior, reflecting a disengagement from 431 

active learning and adaptation. If outcomes seem random and beyond our control, expending 432 

energy to explore may seem futile, and focusing on what we know seems rational. While this 433 

approach may conserve energy, the inflexibility can perpetuate a cycle of disengagement and 434 

maintain apathetic symptoms (41, 42). Apathetic individuals may fail to recognize the potential 435 

benefits of exploration and remain stuck in suboptimal decision-making patterns, further 436 

reinforcing their disengagement from the environment (4). 437 

 438 

The dimensionality reduction of the behavioral sequence data using UMAP allowed us to 439 

examine the relationship between exploration and the estimation of volatility and stochasticity. 440 

Despite the intuitive connection between these two behavior models, their relationship has not 441 

been directly examined. Our results showed that exploration and uncertainty estimation related 442 

closely to the two axes of a parabolic latent structure of adaptive behavior. As a result, both 443 

model-based metrics were necessary to characterize the spectrum of individual differences fully. 444 
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Segmenting the data on the manifold further illuminated the fine-grained interplay between 445 

affective states and exploratory behavior. Individuals with relatively higher anxiety and lower 446 

apathy (the monotonically decreasing group) generally weighted volatility more and 447 

demonstrated greater exploratory behavior compared to those with lower anxiety and higher 448 

apathy (the monotonically increasing group). However, within these groups formed on the 449 

manifold, individuals exhibited opposing relationships between uncertainty and exploration. In 450 

the higher anxiety group, perceived volatility correlates inversely with exploration. However, in 451 

the lower anxiety group, increased volatility perception predicts greater exploration.  452 

 453 

These results reconcile previously inconsistent findings regarding exploratory behavior in 454 

individuals with anxiety, with some studies showing more exploitative behavior (15, 16), and 455 

others finding that higher anxiety predicts more exploratory behaviors (13, 14). The relationship 456 

between perceived volatility and exploration is modulated by the degree of anxiety, with more 457 

severe anxiety potentially suppressing exploration as a form of avoidance. Conversely, moderate 458 

anxiety may drive exploration to gather information and reduce uncertainty, potentially easing 459 

discomfort. This dual response to perceived volatility underscores the complex interplay between 460 

anxiety levels, environmental perceptions, and behavioral strategies in managing emotional 461 

responses.  462 

 463 

Our findings have implications for personalized behavioral interventions in mental health. For 464 

anxious individuals, therapies focusing on recalibrating volatility perceptions and improving 465 

uncertainty management may reduce worry and enhance decision-making (43, 44). Encouraging 466 

longer-term information integration could also benefit anxiety management (38). For apathetic 467 
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individuals, strengthening perceived control and action efficacy may counteract stochasticity 468 

attribution. Incorporating these strategies into existing therapies like Behavioral Activation and 469 

Motivational Interviewing (45) could promote balanced environmental perceptions and 470 

exploration.  471 

 472 

Another important clinical implication involves using an individual’s position on the behavioral 473 

manifold (Figure 5) to predict how their behavior might change in response to treatment based 474 

on their symptoms. For example, a patient positioned in the upper left quadrant before treatment 475 

may exhibit higher anxiety, lower apathy, and increased exploratory behavior. During and after 476 

treatment, monitoring these behavioral shifts may allow us to infer changes in their affective 477 

states or symptoms based on their new manifold position. To develop such a tool, several 478 

questions remain: Do changes within an individual follow a predictable trajectory on this 479 

manifold? Do clinical populations conform to the same manifold, or do they deviate, projecting 480 

into the larger, unoccupied areas of the manifold? The answers to these questions could enhance 481 

the implementation of dimensional approaches for individualized neuropsychiatric care (46). 482 

 483 

Our results must be interpreted in light of notable limitations.  First, the study primarily utilized 484 

an online sample, which may not accurately represent the demographic and clinical 485 

characteristics of populations with specific mental health diagnoses. The potential differences in 486 

internet access, motivation, and the self-report nature of online studies can introduce biases that 487 

may differ from clinical settings. Consequently, the generalizability of our findings to clinical 488 

populations remains to be determined. Second, while our results are statistically robust and 489 

significant, it is important to note that the observed effect sizes are relatively small. This is not 490 
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uncommon in studies of individual differences, where effect sizes often are modest due to the 491 

complex nature of human behavior and the multitude of factors influencing decision-making 492 

processes (47). Nonetheless, these small effects can still provide valuable insights into the 493 

relationships between affective states and decision-making under uncertainty.  Third, our results 494 

are inherently correlational, limiting our ability to infer causal relationships between the affective 495 

states of apathy and anxiety and their impacts on decision-making processes. The observed 496 

associations provide a strong foundation for hypothesizing causal mechanisms but do not 497 

confirm them. Future studies may examine clinical samples of conditions known to affect 498 

adaptive decision-making under uncertainty, such as depression, anxiety disorders, and 499 

Parkinson’s disease, as well as interventions targeting the physiology of adaptive behavior. 500 

  501 
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 502 

Method 503 

Ethics approval 504 

The experimental procedures of all experiments were in line with the standards set by the 505 

Declaration of Helsinki and were approved by the local Research Ethics Committee of the 506 

University of Minnesota, Twin Cities. Participants provided written informed consent after the 507 

experimental procedure had been fully explained and were reminded of their right to withdraw at 508 

any time during the study. 509 

 510 

Participants 511 

We recruited a sample of 1512 participants via Amazon Mechanical Turk (MTurk) and Prolific 512 

(Prolific. co); exclusion criteria included current or history of neurological and psychiatric 513 

disorders. 1001 participants completed all questionnaires and the bandit task (age range 18-54, 514 

mean ± SD = 28.446 ± 10.354 years; gender, 493 female). All participants were compensated for 515 

their time in accordance with minimum wage. 516 

 517 

Questionnaire measurement 518 

Participants’ anxiety and apathy states were measured by the General Anxiety Disorder Screener 519 

(GAD-7) (36), and the Apathy-Motivation Index (35), respectively. More specifically, GAD-7 520 

contains 7 items for assessing anxiety severity in the last two weeks. All items were rated on a 4-521 

point scale, with higher scores indicating greater anxiety. Participants’ apathy level was 522 

measured using the 18-item Apathy-Motivation Index (AMI), which was designed to identify 523 

and measure general apathy, as well as subtypes of apathy in behavioral, social, and emotional 524 
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domains. Higher scores on AMI represent greater apathy. We also measured depressive and 525 

anhedonia states by Patient Health Questionnaire (PHQ-9) (48) and Snaith-Hamilton Pleasure 526 

Scale (SHPS) (49). Our analysis did not reveal any significant results related to depressive states 527 

or anhedonia. For all questionnaire scores, see SI, Section 1 & Table S1. 528 

 529 

Three-armed restless bandit task 530 

We assessed exploration-exploitation behavioral dynamics using a 300-trial three-armed restless 531 

bandit task (25). Participants were free to choose between three targets for the potential to earn a 532 

reward of 1 point. Each target is associated with a hidden reward probability that randomly and 533 

independently changes throughout the task. We seeded each participant's reward probability 534 

walks randomly to prevent biases due to particular kinds of environments. We assessed 535 

performance by comparing the total number of rewarded trials to that expected by chance. Out of 536 

the 1001 participants, 985 accrued more rewarded trials than would be expected by chance.  537 

 538 

Dimensionality reduction method 539 

Popular and valid dimensionality reduction techniques to reveal manifolds include t-distributed 540 

stochastic neighborhood embedding (t-SNE) (50), uniform manifold approximation and 541 

projection (UMAP) (37), and Principal component analysis (PCA) (51). However, t-SNE suffers 542 

from limitations, including slow computation time and loss of global data structure, and it is not 543 

a deterministic algorithm (52). The main drawback of PCA is that it is highly affected by outliers 544 

in the dataset (51). In contrast, UMAP is a deterministic and efficient algorithm, it also preserves 545 

both local and global structure of original high-dimensional data. Uniform Manifold 546 

Approximation and Projection (UMAP) 547 
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UMAP was implemented in the R language. The eight-dimensional datasets from all participants 548 

were passed into the R package umap, version 0.2.8.0, available at https://cran.r-549 

project.org/web/packages/umap/) with default parameter setting as n_component = 2, 550 

n_neighbors = 15, min_dist = 0.3, metric = ‘Euclidean’. For reproducibility reasons, we fixed the 551 

random_state in this algorithm. The hyperparameter n_neighbors decide the radius of the search 552 

region. Larger values will include more neighbors, thus forcing this algorithm to consider more 553 

global structure of original n-dimension data. Another important hyper-parameter, min_dist 554 

determines the allowed minimum distance apart for cases in lower-dimensional space. metric 555 

defines the way that UMAP is used to measure distances along the manifold. 556 

 557 

Model-free analyses 558 

We adopted some widely used model-free measures, including win-stay and lose-shift (33, 53) as 559 

the direct measurement for this learning task. 560 

Win-stay. Win-stay is defined as the percentage of times that the choice in trial t-1 was repeated 561 

on trial t following a reward. 562 

Lose-shift. In contrast, lose-shift equals the percentage of trials that the choice was shifted or 563 

changed when the outcome of trial t-1 was non-reward. 564 

Model free results can be found at SI Section 7, Table S4. 565 

 566 

Mediation analyses 567 

Mediation analysis is a statistical method used to examine the underlying mechanisms by which 568 

an independent variable influences a dependent variable through one or more mediator variables 569 

(54). In our study, we employed the bootstrapping method to estimate the mediation effect of 570 
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volatility and stochasticity on the relationship between affective states (apathy and anxiety) and 571 

exploration. Bootstrapping is a nonparametric approach to effect-size estimation and hypothesis 572 

testing that is increasingly recommended for many types of analyses, including mediation (55). 573 

This method involves repeatedly resampling from the available data to generate an empirical 574 

approximation of the sampling distribution of the indirect effect (i.e., the effect of the 575 

independent variable on the dependent variable through the mediator). We used this distribution 576 

to calculate p-values and construct confidence intervals based on 5,000 resamples. Bootstrapping 577 

is preferred over other methods, such as the Sobel test because it does not assume the normality 578 

of the sampling distribution and provides more accurate confidence intervals that are bias-579 

corrected and accelerated (54, 55). This approach offers a robust and powerful way to test 580 

mediation hypotheses, particularly in cases where the sample size is relatively small or the data 581 

violate assumptions of normality (56). 582 

 583 

Hidden Markov Model 584 

We fit a Hidden Markov Model (HMM) to the behavior, to decode the hidden state of each trial 585 

for each participant. Fundamentally, the HMM has two layers, the hidden layer (i.e., state) and 586 

the observable layer. The hidden dimension should satisfy the Markov property. That is, the 587 

current hidden state only depends on the previous state but not any past model history. The 588 

observable dimension entirely depends on the current hidden states and is independent of other 589 

observations. Parameters of the hidden Markov model can be represented as 𝛺 → (𝑇, 𝑂, 𝑐). 590 

Specifically, 𝑇 is the transition probabilities matrix, 𝑂 is the observation probabilities matrix, or 591 

emissions matrix, and 𝑐 refers to a vector with initial probabilities for each hidden state. Here, 592 

we have two hidden states, an “exploration” state and an “exploitation” state.  593 
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The transition probability between exploration and exploitation states can be represented by: 594 

 595 

𝑇 = (
𝑡11 ⋯ 𝑡1𝑚

⋮ ⋱ ⋮
𝑡𝑚1 ⋯ 𝑡𝑚𝑚

) 596 

 597 

  𝑡𝑒𝑥𝑝𝑙𝑜𝑟𝑒,𝑒𝑥𝑝𝑙𝑜𝑖𝑡 = 𝑃(𝑞𝑘 = 𝑠𝑒𝑥𝑝𝑙𝑜𝑖𝑡|𝑞𝑘−1 = 𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑒)  598 

 599 

Where 𝑡𝑒𝑥𝑝𝑙𝑜𝑟𝑒,𝑒𝑥𝑝𝑙𝑜𝑖𝑡  refers to the transition probability from hidden state 𝑠𝑒𝑥𝑝𝑙𝑜𝑖𝑡  to another 600 

hidden state 𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑒  601 

𝑘 = time instant, 𝑚 = state sequence length 602 

 603 

Then matrix 𝑂 represents the transition probabilities between hidden and observable states.  604 

 605 

𝑂 = (

𝑜11 ⋯ 𝑜1𝑛

⋮ ⋱ ⋮
𝑜𝑚1 ⋯ 𝑜𝑚𝑛

) 606 

 607 

𝑜𝑒𝑥𝑝𝑙𝑜𝑟𝑒,𝑒𝑥𝑝𝑙𝑜𝑖𝑡 = 𝑃(𝜆𝑘 = 𝑟𝑒𝑥𝑝𝑙𝑜𝑖𝑡|𝑞𝑘−1 = 𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑒) 608 

 609 

𝑘 = time instant, 𝑛 = observation sequence length 610 

Both matrix 𝑂 and 𝑇 satisfy the principle that the sum along the rows must be equal to 1. 611 

𝑐 is an m-dimensional row vector that refers to the initial probability distribution. In our current 612 

study, the initial probability was fixed and equal to the available choices.  613 
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We fit HMM via expectation-maximization using the Baum-Welch algorithm and decode hidden 614 

states from observed choice sequences by the Viterbi algorithm (57). Model results of HMM can 615 

be found at SI Section 7, Table S5. 616 

 617 

Kalman filter 618 

The Kalman filter (KF) model has been widely applied in psychology and neuroscience to study 619 

various aspects of learning and decision-making (30, 31).  620 

In the Kalman filter model for a multi-armed bandit task, process noise and observation noise 621 

refer to two distinct sources of uncertainty that affect the learning and decision-making process. 622 

Process noise represents the uncertainty in the evolution of the hidden state (reward mean) over 623 

time. It accounts for how the true state evolves from one point in time to the next. In 624 

mathematical terms, process noise is part of the state transition equation in the Kalman Filter: 625 

𝑥𝑡 = 𝑥𝑡−1 +  𝑒𝑡 626 

𝑥𝑡 is the state at time 𝑡 627 

𝑒𝑡 is the process noise 𝑡, which is assumed to be drawn from a normal distribution with zeros 628 

mean and process noise variance 𝑣. Where the 𝑒𝑡~𝑁(0, 𝑣). 629 

The process noise captures the idea that the reward-means for each arm can change from one 630 

trial to the next, even in the absence of any observations. A higher process noise variance  𝑣 631 

indicates a more volatile environment, where the reward means are expected to change more 632 

rapidly. 633 

In contrast, observation noise represents the uncertainty in the observed rewards, given the 634 

current hidden state (reward mean). Which is assumed to be Gaussian with zero mean and a 635 

fixed variance 𝜎2. 636 
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The observation noise captures the idea that the observed rewards are noisy and can deviate from 637 

the true reward mean due to random fluctuations or measurement errors. 638 

A higher measurement noise variance indicates a more stochastic environment, where the 639 

observed rewards are less reliable and informative about the underlying reward means. 640 

The Kalman Filter operates optimally when the statistical properties of the process noise and the 641 

measurement noise are accurately known.  642 

When observation noise variance (𝜎2) is high relative to the process noise variance (𝑣), the 643 

Kalman gain will be small, and the model will rely more on its prior beliefs and less on noisy 644 

observations. Conversely, when the observation noise variance (𝑣), is high relative to the process 645 

noise variance (𝜎2), the Kalman gain will be large, and the model will update its beliefs more 646 

strongly based on the observed rewards. 647 

 648 

Extended Kalman filter for three-armed bandit task 649 

The Kalman filter model can be extended to capture the effects of both volatility and 650 

stochasticity in a multi-armed bandit task (27, 58). 651 

In the current study, process noise variance (𝑣) and observation noise variance (𝜎2) represent 652 

volatility and stochasticity, respectively. 653 

A traditional assumption of the Kalman filter is that the process noise variance, 𝑣, as well as the 654 

observation noise variance, 𝜎2are constant.  655 

Reward means update: 656 

 657 

𝑚𝑡 = 𝑚𝑡−1 +  𝑘𝑡(𝑂𝑡 − 𝑚𝑡−1) 658 

 659 
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Where 𝑚𝑡 is the estimated mean or value of the chosen arm at time 𝑡 660 

and 𝑂𝑡 is the observed reward at time 𝑡. 661 

The mean update is driven by the prediction error, which is the difference between the observed 662 

reward and the previous estimate. 663 

 664 

Kalman gain is defined as: 665 

 666 

𝑘𝑡 = (𝑤𝑡−1 + 𝑣)/(𝑤𝑡−1 + 𝑣 + 𝜎2) 667 

 668 

Here, 𝑘𝑡 represents the Kalman gain or learning rate, which adjusts the weight given to new 669 

information based on the relative uncertainty of the prior estimate (𝑤𝑡−1) and the total noise (𝑣 +670 

𝜎2). When the stochasticity (𝜎2) is high relative to the volatility (𝑣), the Kalman gain (learning 671 

rate) will be small, and the model will rely more on its prior beliefs and less on the observations. 672 

Conversely, when the volatility (𝑣), is high relative to the stochasticity (𝜎2), the Kalman gain 673 

(learning rate) will be large, and the model will update its beliefs more strongly based on the 674 

observed rewards. 675 

 676 

Variance update equation: 677 

 678 

𝑤𝑡 = (1 − 𝑘𝑡)(𝑤𝑡−1 + 𝑣) 679 

 680 

This equation updates the posterior variance (𝑤𝑡), which represents the estimate's uncertainty 681 

after observing 𝑂𝑡. 682 
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 683 

Volatile Kalman filter for three-armed bandit task 684 

The key difference between a standard Kalman filter and a volatile Kalman filter (VKF) is the 685 

variance of the process noise, a stochastic variable that changes with time. In other words, the 686 

VKF introduces parameters to handle the volatility in the process noise. Specifically, it allows 687 

the process noise variance 𝑣 to vary with the observed prediction errors, reflecting changes in 688 

environmental volatility.  689 

Our approach here is essentially the same as that taken by Piray and Daw (27). Here, we briefly 690 

described the model details as follows. 691 

 692 

Kalman gain: 693 

𝑘𝑡 = (𝑤𝑡+𝑣𝑡−1)/(𝑤𝑡−1+𝑣𝑡−1 + 𝜎2) 694 

Update for the reward means: 695 

 696 

𝑚𝑡 = 𝑚𝑡−1 +  𝑘𝑡(𝑂𝑡 − 𝑚𝑡−1) 697 

 698 

Update for posterior variance 𝑤𝑡: 699 

 700 

𝑤𝑡 = (1 − 𝑘𝑡)(𝑤𝑡−1+𝑣𝑡−1)𝑤𝑡−1,𝑡 = (1 − 𝑘𝑡)𝑤𝑡−1 701 

 702 

Update for volatility: 703 

𝑣𝑡 = 𝑣𝑡−1 + 𝜆((𝑚𝑡 − 𝑚𝑡−1)2 + 𝑤𝑡−1 + 𝑤𝑡 − 2𝑤𝑡−1,𝑡 − 𝑣𝑡−1) 704 

 705 
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Rescorla-Wagner models 706 

We also fitted the data to the classical Rescorla-Wagner model. Successful adaptation in a dynamic 707 

situation requires the appropriate feedback-based learning process where individuals integrate the 708 

feedback (reward or non-reward) into the stimulus-outcome association (59). The basic 709 

reinforcement learning model, the Rescorla-Wagner model can address this process well. So the 710 

first model (RW1) was defined as: 711 

 712 

𝑣𝑡 = 𝑣𝑡−1 + 𝑎 × (𝑅𝑡−1 − 𝑣𝑡−1)  713 

 714 

where 𝑣𝑡 is the value of the option on trial t.  715 

𝑎 represents the general learning rate from feedback.  716 

 717 

To verify whether participants employed distinct or shared computational responses to positive 718 

and negative feedback, we built another model with two learning rates, one for positive feedback 719 

and the other for negative feedback (33). This model (RW2) can be defined as: 720 

 721 

 722 

𝑣𝑡  =  𝑣𝑡−1 + 𝛼𝑝𝑜𝑠 × (𝑅𝑡−1 − 𝑣𝑡−1), 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 723 

𝑣𝑡  =  𝑣𝑡−1 + 𝛼𝑛𝑒𝑔 × (𝑅𝑡−1 − 𝑣𝑡−1), 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 724 

 725 

Where vt is the value of the option on trial t. 𝛼𝑝𝑜𝑠and 𝛼𝑛𝑒𝑔 represent the learning rates from 726 

positive and negative feedback, respectively. 727 
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For these two models, 𝑅𝑡−1 ∈  {0,1} represents the feedback received in response to participants’ 728 

choice on trial t-1. And 𝑅𝑡−1 −  𝑣𝑡−1 represents prediction error in trial t-1.  729 

 730 

 731 

We used a softmax choice function to map the value into choice. The softmax function for these 732 

four models can be defined as: 733 

 734 

𝑃𝑡  =  
𝑒𝑥𝑝(𝛽𝑉,𝑡)

𝑒𝑥𝑝(𝛽𝑉𝑡,1+𝛽𝑉𝑡,2 +𝛽𝑉𝑡,3 )
 735 

 736 

Where the 𝛽 represents the inverse temperature with choice value. 737 

 738 

Model fitting and comparison 739 

Hierarchical Bayesian inference (HBI) is a powerful method for model fitting and comparison in 740 

group studies (34). Unlike traditional approaches such as maximum likelihood estimation (MLE) 741 

or maximum a posteriori (MAP) estimation, which fit models to each subject independently, HBI 742 

simultaneously fits models to all subjects while constraining individual fits based on group-level 743 

statistics (i.e., empirical priors). This approach yields more robust and reliable parameter 744 

estimates, particularly when individual subject data is noisy or limited. 745 

In our study, we employed HBI to fit models to choice data. The method quantifies group-level 746 

mean parameters and their corresponding hierarchical errors. To ensure that parameter estimates 747 

remain within appropriate bounds during the fitting process, we used the sigmoid function to 748 

transform parameters bounded in the unit range or with an upper bound and the exponential 749 

function to transform parameters bounded to positive values. The initial parameters of all models 750 
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were obtained using a MAP procedure, with the initial prior mean and variance for all parameters 751 

set to 0 and 6.25, respectively, based on previous research (27) . This initial variance allows 752 

parameters to vary widely without substantial influence from the prior. 753 

For model comparison, we used Bayesian model selection, specifically employing the protected 754 

exceedance probability (PXP) to select the winning model. The PXP quantifies the probability 755 

that a given model is more frequent in the population than all other models under consideration 756 

while accounting for the possibility that the observed differences in model evidence may be due 757 

to chance (60). The model with the highest PXP is selected as the winning model. This approach 758 

inherently penalizes model complexity, favoring models that balance goodness-of-fit and 759 

parsimony. Model performance (log-likelihood) can be found in SI Section 8, Table 6. 760 

 761 

Turning point to divide the manifold into monotonically increasing and decreasing group 762 

To divide the manifold into monotonically increasing and decreasing groups, we sorted the 763 

scores for dimension 1 in ascending order. Initially, we fitted a linear model using the first three 764 

data points located on the upper left of the manifold. We then expanded this model by 765 

sequentially including one additional data point from dimension 1, continuing this process until 766 

we incorporated the last score (i.e., the maximum dimension 1 score, situated on the upper right 767 

of the manifold). Throughout this procedure, we monitored the t-statistic of the dimension1 768 

coefficient to assess the statistical significance of dimension1 as a predictor. Notably, a 769 

dimension 1 score of -0.671 marked the most significant negative coefficient, after which the 770 

relationship between dimension 1 and dimension2 gradually shifted to become positive (see SI 771 

Section 9, Figure S5) 772 

 773 
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False discovery rate correction 774 

We adopted FDR (False Discovery Rate) correction, which was introduced by Benjamini and 775 

Hochberg (61) to control the expected proportion of false positives (Type I errors). 776 

 777 

  778 
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