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Abstract

Decision-making in uncertain environments often leads to varied outcomes. Understanding how
individuals interpret the causes of unexpected feedback is crucial for adaptive behavior and
mental well-being. Uncertainty can be broadly categorized into two components: volatility and
stochasticity. Volatility is about how quickly conditions change, impacting results. Stochasticity,
on the other hand, refers to outcomes affected by random chance or “luck”. Understanding these
factors enables individuals to have more effective environmental analysis and strategy
implementation (explore or exploit) for future decisions. This study investigates how anxiety and
apathy, two prevalent affective states, influence the perceptions of uncertainty and exploratory
behavior. Participants (N = 1001) completed a restless three-armed bandit task that was analyzed
using latent state models. Anxious individuals perceived uncertainty as more volatile, leading to
increased exploration and learning rates, especially after reward omission. Conversely, apathetic
individuals viewed uncertainty as more stochastic, resulting in decreased exploration and
learning rates. The perceived volatility-to-stochasticity ratio mediated the anxiety-exploration
relationship post-adverse outcomes. Dimensionality reduction showed exploration and
uncertainty estimation to be distinct but related latent factors shaping a manifold of adaptive
behavior that is modulated by anxiety and apathy. These findings reveal distinct computational
mechanisms for how anxiety and apathy influence decision-making, providing a framework for

understanding cognitive and affective processes in neuropsychiatric disorders.
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Introduction

Life is filled with unexpected challenges. How individuals interpret the causes of undesirable
outcomes, such as investment failures, career plateaus, or bad weather, in uncertain environments
shapes their subsequent actions (1). When people attribute changes in outcomes to environmental
volatility (the speed at which the environment is changing), they may be motivated to explore
more, seeking additional information and altering their behavior. In contrast, attributing adverse
outcomes to mere chance or “bad luck” (stochasticity) may decrease the motivation to explore,

leading some individuals to persist with their existing strategies (2).

The response to environmental uncertainty likely interacts with individuals’ affective states in a
bidirectional manner. Attributing adverse outcomes to stochasticity may lead individuals to stick
to previous behaviors, potentially protecting them from hurtful feedback through additional
interaction with the world. However, this approach may also dampen an individual’s ability to
adapt to a changing environment, potentially reinforcing a negative cycle and leading to apathy
and depression. Conversely, perceiving sources of negative outcome as volatile may motivate
individuals to learn more about the world and reduce uncertainty, though this may also increase
the chances of experiencing more adverse outcomes and potentially worsening negative feelings

such as anxiety.

Reciprocally, how individuals perceive and respond to environmental uncertainty can be
influenced by underlying affective states (3). Apathy, characterized by a lack of motivation and

goal-directed behavior (4, 5), is an affective state associated with imprecise beliefs about action


https://doi.org/10.1101/2024.06.04.597412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597412; this version posted July 23, 2024. The copyright holder for this preprint (which

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

outcomes (6) and a tendency to persist with previous choices rather than explore (7). This
suggests that apathetic individuals may view outcomes as primarily stochastic, attributing events
more to chance than controllable variables. This bias could discourage exploration and

potentially reinforce a cycle of failure and helplessness (8).

In contrast, anxiety, marked by excessive worry and a heightened perception of potential threats
(9, 10) and uncertainty (11), may lead individuals to overestimate environmental volatility.
Consequently, anxious individuals could be driven to seek new information to update their
beliefs and reduce uncertainty (12). However, research on the link between anxiety and
exploration has yielded mixed findings, with some studies showing increased exploration to
mitigate uncertainty (13, 14) and others showing reduced exploration to avoid unpredictable
feedback under high anxiety (15, 16). Notably, apathy and anxiety often coexist in clinical
populations, such as Alzheimer’s (17), Parkinson’s disease (18), and depression (19), despite

having distinct neural representations (20, 21).

Building on these findings, we propose three fundamental questions to further elucidate the
relationship between affective states and decision-making under uncertainty. First, we aim to
investigate whether apathy and anxiety exhibit distinct behavioral patterns when individuals are
faced with uncertain situations. Second, we seek to examine how individual differences in levels
of apathy and anxiety are associated with perceptions of different types of uncertainty,
specifically volatility and stochasticity. Finally, we intend to explore how perceived volatility

influences exploratory behavior during decision-making processes.
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We posit two competing hypotheses:

1. Apathetic individuals manifest less exploration, while anxious individuals engage in more
exploration. Apathetic individuals weigh stochasticity over volatility and explore less, while
anxious individuals overestimate volatility but explore more to reduce their uncertainty. This
result would be consistent with previous findings suggesting that the two affective states have
distinct neural substrates (20, 22).

2. Both apathetic and anxious individuals engage in less exploratory behavior but through
different computational mechanisms. Apathetic individuals weigh stochasticity over volatility
and explore less, while anxious individuals overestimate volatility, leading to a sense that their
actions cannot track or learn from the environment, ultimately leading to exploitation. This may
provide a computational account for learned helplessness (23) and the co-occurrence of apathy

and anxiety in various clinical populations, such as Parkinson’s and Alzheimer’s diseases.

To address these questions, we employed a restless three-armed bandit task (Figure 1A), a well-
established paradigm for capturing adaptive learning in volatile environments(24). We adopted
Hidden Markov Model (HMM) to obtain the likelihood of individuals switching between
exploitation and exploration states (25, 26). To further investigate how volatility and
stochasticity modulate exploration, we utilized a Kalman filter model, which can dissociate two
distinct sources of noise, volatility (process noise variance) and stochasticity (observation noise
variance), during inference (27). Together, these methods offer a comprehensive view of the
cognitive mechanisms underlying exploratory behavior and the manifestation of anxiety and

apathy.
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Results

We recruited a large gender-balanced online sample consisting of 1,001 adults. The participants,
ranging in age from 18 to 54 years (mean + SD = 28.446 £ 10.354 years; gender: 493 female),
performed a restless three-armed bandit task, as depicted in Figure 1A. During this task,
participants selected among three playing card images, with each card representing a different
option. They made their selections by moving their cursor over their chosen card. The probability
of receiving a reward from each card deck varied randomly over time. After each choice,
feedback was displayed on the screen indicating whether a reward was received. Participants also
completed symptom surveys assessing levels of anxiety and apathy (details in Methods and Sl
Section 1, Table S1). We defined the trial as a switch trial if the chosen option was different from

the last trial, and a stay trial if the choice was the same as the last trial.
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129  Figure 1. Three-armed restless bandit task and distinct behavioral patterns associated with
130 apathy and anxiety.

131  (A) Three-armed restless bandit task. Participants chose one option from among the three targets
132  to receive reward or non-reward feedback. Each target was associated with a hidden reward

133  probability that randomly and independently changed throughout the task. The lower panel

134  indicates the example choice and reward sequence and the definition of stay and switch.

135  Specifically, stay was defined as choosing the same target as in the previous trial, while switch
136  was defined as choosing a different target. “+1” denotes reward feedback, and “+0” denotes

137  reward omission.

138  (B) Most participants earned more rewards than expected by chance

(yopms)d


https://doi.org/10.1101/2024.06.04.597412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597412; this version posted July 23, 2024. The copyright holder for this preprint (which

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(C) Apathy and anxiety correlated positively.

(D) Apathy correlated negatively with switch behaviors, while anxiety correlated positively with
switch behaviors. Anxious individuals were more sensitive to undesired feedback (no reward)
and exhibited more switch behaviors compared to reward feedback.

(Panels in Figure 1C and 1D utilize binned correlation plots [25 quantile bins based on the x-
axis], with lines representing the standard error (S.E.). N.B. that these may be smaller than the

symbol. Statistical analyses were performed on raw data.)

Apathy and anxiety predicted distinct exploratory behaviors

We first evaluated the performance by comparing the total number of rewarded trials each
participant experienced against the number expected by chance. Out of the 1001 participants,
985 accrued more rewarded trials than would be statistically expected by chance, suggesting
significant effectiveness in their decision-making strategies (Figure 1B). As expected, anxiety
and apathy showed a significant positive correlation (r = 0.35, p<10?°, Figure 1C), which is
consistent with previous findings on their co-occurrence (17).

To investigate the relationship between apathy and the percentage of switch behaviors
(P(switch)), as well as anxiety and P(switch), we conducted partial correlations between apathy
and exploration while controlling for anxiety, and between anxiety and exploration while
controlling for apathy. We found that apathy negatively predicted P(switch) (r = -0.16, p<0.001)
regardless of feedback type (reward or no-reward), while anxiety positively correlated with
P(switch) (r = 0.13, p<0.001). Intriguingly, the relationship between anxiety and switch
behaviors was greater after non-reward feedback (r = 0.16, p<0.001) compared to reward

feedback (r = 0.07, p=0.024) (their difference, z-score = 2.40, p=0.01). Though co-existing in
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this population, these two affective states predicted distinct switch behaviors under uncertainty
(Figure 1D). The stronger relationship between anxiety and P(switch) after undesirable feedback
indicates that highly anxious individuals are more sensitive to negative feedback, which may
lead them to disengage.

Next, we fitted the behavior with a Hidden Markov Model (HMM) to decode the hidden states,
“explore”, and “exploit” (Figure 2A) (24, 25, 28, 29). Each arm is associated with a hidden
reward probability that randomly and independently changes throughout the task (Figure 2A). In
our study, exploration and exploitation states are considered hidden states underlying the
observed choices, such as switching between decks or repeatedly choosing from the same deck.
We calculated the percentage of explore states, i.e., P(explore). Consistently, apathy correlated
negatively with P(explore) (r = -0.17, p<0.001), while anxiety positively correlated with
(P(explore)) (r = 0.11, p=0.003) as well as the percentage of exploration after reward
omission(P(explore|0) (r = 0.13, p<0.001) (Figure 2C).

In addition to the overall frequency with which hidden states occur, examining the transitions
between these states can further illuminate the dynamics of decision-making. Therefore, we
investigated how apathy and anxiety manifest in the transition probability (Figure 2B) between
explore and exploit. As predicted, apathy had a positive correlation with the transition
probability from explore to exploit (r = 0.13, p<0.001) but a negative correlation with the
transition probability from exploit to explore (r =-0.08, p=0.011). In contrast, anxiety had a
negative correlation with the transition probability from explore to exploit (r = -0.07, p=0.035)
but a positive correlation with the transition probability from exploit to explore (r = 0.07,

p<0.022) (Figure 2D). All significant results reported in the study survived False Discovery Rate

10
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189  Figure 2. Apathy and anxiety have opposing relationships with exploration and explore and
190 exploit state dynamics.
191 (A) Unrolled structure of the hidden Markov model (HMM) used to infer the explore and
192 exploit states' underlying behavior.
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(B) The transition probabilities within and between states in the HMM.

(C) The probability of exploration, plotted as a function of apathy (top left) and anxiety (top
right). The probability of exploration following a reward omission is plotted as a function of
apathy (bottom left) and anxiety (bottom right).

(D) The transition probability from explore to exploit, plotted as a function of apathy (top
left) and anxiety (top right); the transition probability from exploit to explore plotted as a
function of apathy (bottom left) and anxiety (bottom right).

(Panels in Figure 2C and 2D utilize binned correlation plots [25 quantile bins based on the x-
axis], with lines representing the standard error (S.E.). N.B. that these may be smaller than
the symbol. Statistical analyses were performed on raw data). * p <0.05, ** p <0.01, *** p

< 0.001. All p-values remained significant after FDR p<0.05 correction.
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205 Apathy and anxiety are associated with distinct computational processes underlying

206  exploration.

207  We then asked whether differing perceptions of the environment might explain the distinct

208  patterns of exploration predicted by apathy and anxiety we observed.

209  To address this question, we utilized a Kalman filter model (Figure 3A), which can dissociate
210  sources of uncertainty into perceived volatility and stochasticity (27). Kalman filter (KF) models
211  have been widely applied in psychology and neuroscience to study various aspects of learning
212  and decision-making (30, 31) (for more detailed information about the model, please refer to the
213  Method section).

214  We also fitted the behavioral data to alternative models including volatile Kalman filter (VKF)
215  (27), Rescorla-Wagner models single (RW1) (32) and dual learning rates (RW2) to weigh

216  positive and negative learning rates (33). We employed Hierarchical Bayesian inference (HBI) to
217  fit models to choice data (34). Further, we used Bayesian model selection (BMS) and protected
218  exceedance probability (PXP) to select the winning model (Figure 3B). The Kalman filter served
219  as the best model for our population, and we examined the resulting distribution of volatility and
220  stochasticity (Figure 3B).

221  We first conducted correlation analyses using all data points. Specifically, we found that apathy
222 was positively correlated with stochasticity (r = 0.08, p=0.013) but negatively correlated with
223  volatility (r = -0.08, p=0.008). Conversely, anxiety showed a negative correlation with

224  stochasticity (r = -0.12, p=0.001) and a positive correlation with volatility (r = 0.12, p=0.002).
225  These correlations highlight the distinct cognitive biases associated with apathy and anxiety in
226  processing environmental uncertainties.

227  To clearly illustrate and confirm the findings, we categorized participants into distinct groups

13
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based on their apathy and anxiety levels. For apathy, we identified the high apathy group (N =
223) as those scoring in the top 25% on the Apathy Motivation Index (AMI), which assesses
apathy in behavioral and social domains (35). Conversely, the low apathy group (N = 251)
comprised individuals scoring in the bottom 25% of apathy scores. Similarly, for anxiety, the
high anxiety group (N = 228) included participants within the top 25% of scores on the GAD-7
scale (36), while the low anxiety group (N = 250) consisted of those in the bottom 25%. These
classifications allowed for a direct comparison of behaviors and traits between individuals with
varying degrees of apathy and anxiety.

We conducted linear regression analyses using volatility and stochasticity as the dependent
variables with the high versus low anxiety and apathy groups as predictors. The Methods section
provides details of the regression model specifications.

As hypothesized, apathetic individuals overestimated stochasticity (t(471) = 3.06, p=0.002) and
underestimated the volatility compared to those with low apathy (t(471) = -3.24, p=0.001)(Figure
3C). Consequently, apathetic individuals exhibited a lower learning rate than their low apathy
counterparts (t(471) = -3.11, p=0.002).

In contrast, individuals with high anxiety levels tended to overestimate volatility (t(475) = 2.84,
p=0.004) and underestimate stochasticity compared to those with low anxiety (t(475) = -3.04,
p=0.002), resulting in a higher learning rate among the high anxiety group (t(475) = 3.21,
p=0.001) (Figure 3D). Furthermore, comparisons showed that anxious individuals had higher
volatility estimates than those with high apathy (t(449) = 2.75, p=0.006), whereas apathetic
individuals had higher stochasticity estimates than their anxiety counterparts (t(449) = -3.01,

p=0.002) (S| Section 2, Figure S1).

14
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251  Figure 3. Apathy and anxiety have opposing relationships with volatility and stochasticity.
252  (A) The schematic of the Kalman filter model used in our analysis. The diagram illustrates how
253  this model can differentiate between volatility (process noise variance) and stochasticity

254  (observation noise variance), providing insights into the underlying decision-making processes.
255  (B) Bayesian model comparison and the distribution of volatility, stochasticity

256

257  (C) Highly apathetic individuals overestimated stochasticity but underestimated the volatility,

258  resulting in a lower learning rate.
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259 (D) In contrast, highly anxious individuals overestimated volatility but underestimated

260  stochasticity, resulting in a higher learning rate.

261  *p <0.05, ** p <0.01, *** p < 0.001. All p-values remained significant after FDR p<0.05

262  correction.

263

264  The ratio of volatility to stochasticity distinguished apathy and anxiety

265  To clarify the differential impacts of apathy and anxiety on decision-making under uncertainty,
266  we computed the ratio of volatility to stochasticity, v/s to represent the balance between these
267  two types of uncertainties. A higher v/s indicates a perception of greater volatility relative to
268  stochasticity, while a lower ratio suggests a perception of more stochasticity relative to volatility.
269  We applied a logarithmic transformation to the ratio to manage extreme values (e.g. cases where
270 individuals might perceive very high volatility but very low stochasticity).

271  Consistently, our findings reveal a clear distinction: v/s correlated negatively with apathy (r = -
272 0.08, p=0.010) but positively with anxiety (r = 0.13, p<0.001) (Figure 4A).

273

274  The ratio of volatility and stochasticity mediated the relationship between anxiety and the

275  exploration after negative feedback

276  To determine whether individual differences in the perception of uncertainty explain the

277  relationship between exploratory behavior and affect, we conducted a mediation analysis with
278  anxiety, switching after reward omission (P(switch | 0)), and v/s. The results demonstrate that
279 the relationship between anxiety and the tendency to switch after receiving no reward is

280  significantly mediated by v/s (Figure 4B). This mediation was also significant for the analogous

281  HMM model-based measures (see SI Section 3, Figure S2). No significant mediation effect was
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found for apathy, however, reinforcing the unique pathways through which anxiety influences
exploratory behavior. These results explain why individuals with higher anxiety might explore
more after negative feedback, driven by an overweighting of perceived volatility relative to

stochasticity as a strategy to reduce uncertainty and manage risks.

A ¢=.0.08 p=00103 r=0.13, p <0.0001

21 0'0 '¢ | i ® | 2
o 1 \ 1 e 4 0 <
?-2 | o » :+ 1 L 4 o.. -2 s
| T . © I e ®e 1-4
=2 il . W {-6 0.003**(c)
22 24 26 5 10 N/ Anan ,
apathy anxiety 0.032 ()

95%Cl [0.002, 0.005]

Figure 4. Distinctions in apathy and anxiety on the ratio of volatility to stochasticity and its
mediation effect.

(A) The ratio of volatility to stochasticity, plotted as a function of apathy (left) and anxiety
positively (right).

(B) Mediation analysis, showing the mediating effect of the ratio of volatility to stochasticity on
the relationship between anxiety and switch behavior after reward omission.

(Panels in Figure 4A utilize binned correlation plots [25 quantile bins based on the x-axis], with
lines representing the standard error (S.E.). N.B. that these may be smaller than the symbol.
Statistical analyses were performed on raw data). * p < 0.05, ** p <0.01, *** p <0.001. All p-

values remained significant after FDR p<0.05 correction).
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300

301 A low dimensional manifold unifies exploration, perceptions of uncertainty and affective
302  state.

303 The HMM state-model of exploration-exploitation and the Kalman filter process model of

304  uncertainty estimation represent complementary ways of understanding adaptive behavior that
305  our mediation results suggest are intrinsically related. We hypothesized that a latent structure
306 underlying adaptive behavior on this task might unify these descriptions of behavior. We utilized
307  advanced dimensionality reduction methods to uncover such a latent structure in the raw task
308  behavior.

309 First, we formatted each participant’s trial-by-trial task data into sequences of choices to stay
310 (repeat the choice on the last trial) or switch (choose a different option) and reward outcome for
311  two consecutive trials ({choicet.1, outcomer., choicet}, Figure SA and 5B). The behavioral data
312  for each participant was then transformed into counts for each of these eight unique sequences.
313  Then we applied Uniform Manifold Approximation and Projection (UMAP) (37), a

314  computationally efficient algorithm that can preserve both the local and global distances between
315 data points in high-dimensional space, to learn the two-dimensional manifold underlying the
316 eight-dimensional behavioral data (Figure 5C, see Methods for more algorithm details).

317 Including additional reward history and applying other dimensionality reduction methods like
318  principle component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE)
319 did not change the results (SI Section 4, Figure S3, Table S2).

320  Our analysis using UMAP revealed distinct correlations within the derived dimensions.

321  Specifically, the dimension 1 score (the horizontal axis) exhibited a very strong significant

322  negative correlation with exploratory behavior (P(explore) (r = -0.90, p<102%), but it showed no
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significant relationship with the ratio of volatility to stochasticity (v/s)(r = 0.01, p=0.74) (Figure
5D, 5E). In contrast, the dimension 2 score (the vertical axis) demonstrated a strong negative
correlation with v/s (r = -0.76, p<1078%), which was significantly more pronounced than its
correlation with P(explore) (r = -0.19, p<109) (Figure 5F, 5G). This suggests that dimension 1
primarily represents exploratory behavior, while dimension 2 primarily reflects the
computational factors: volatility and stochasticity (i.e., volatility and stochasticity).

Further, both dimensions also showed correlations with affective states: the dimension 1 score
was positively correlated with apathy (r= 0.14, p<0.001), and negatively correlated with anxiety
(r=-0.11, p<0.001). Similarly, the dimension 2 score had a positive correlation with apathy (r =
0.097, p=0.002) and a negative correlation with anxiety (r = -0.088, p=0.004).

It is worth noting that we only found linear relationships between apathy, anxiety, and
exploration, as well as between these affective states and the ratio of volatility to stochasticity
(our analysis using higher order effects among these variables did not yield significant results,
more details can be found in SI Section 5, Table S3).

To delve deeper into how these factors interact in the low-dimensional space defined by UMAP,
we divided the data manifold into two groups based on the dimensionl score: a monotonically
decreasing group (left part, dimension 1 score < -0.671, N=390) and a monotonically increasing
group (right part, dimension 1 score> -0.671, N=611). The methodology used to identify the
turning point (dimension 1 score = -0.671) that differentiates the monotonically decreasing group
from the monotonically increasing group is detailed in the Methods section. The analysis
revealed that the monotonically decreasing group had relatively higher levels of anxiety
compared to the monotonically increasing group (t(999)=2.08, p =0.037), while their apathy

levels were significantly lower (t(999)= -3.56, p=0.0003). This segmentation allows us to further
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346  explore and understand the complex interplay between affective states, computational

347  parameters, and exploratory behaviors within a structured, low-dimensional framework.

348  Notably, individuals in the left monotonically decreasing group, characterized by high anxiety
349  and low apathy, generally perceive higher volatility relative to stochasticity and demonstrate
350  greater exploratory behavior compared to those in the right monotonically increasing group.
351  Within the decreasing group, higher perceived volatility correlates with reduced exploration.
352  Conversely, in the increasing group, an increased perception of volatility tends to stimulate more
353  exploratory actions. These results suggest that while severe anxiety might suppress exploration
354  due to overwhelming uncertainty, moderate anxiety in the general population can promote

355  exploration as a coping mechanism to gather information and reduce anxiety symptoms.

356

357  We now address our final research question; what is the relationship between volatility and

358  exploratory behavior? Considering the parabolic relationship between the manifold dimension
359 reflecting exploration and the dimension representing v/s, we hypothesized that the relationship
360 between exploration and v/s might be quadratic.

361  To test this hypothesis, we constructed a regression model as follows:

362 P(explore) ~ v/s+ v/s? + anxiety + apathy

363  The results revealed that both the linear and quadratic terms are significant (linear term,

364  coefficient = 0.02, SE = 0.003, t(996)=5.83, p<107; quadratic term, coefficient = 0.005, SE =
365  7.86x10%, 1(996)=6.59, p<107?), indicating a complex, non-linear relationship between the ratio
366  of volatility to stochasticity and exploration (see SI Section 6, Figure S4), which was consistent

367  with the manifold representation.
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Figure 5. Visualizing the complex relationships in decision-making through low-
dimensional space.

(A) All possible sequences of choices and rewards that participants could make during the
experiment

(B) The frequency distribution of individual decision-making patterns. The black line in the box
plot represents each pattern's mean value, highlighting participants' typical behaviors

(C) Schematic high-dimensional space of participants’ decision-making pattern

(D) The two-dimensional space representation of exploration by using the Uniform Manifold
Approximation and Projection (UMAP) (Different dimensionality reduction methods such as
principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE)
lead to a similar space)

(E) Dimension 1 exclusively represents P(explore) but does not represent the ratio of volatility to
stochasticity

(F) The two-dimensional space representation of the ratio of volatility to stochasticity behavior
by using UMAP (Different dimensionality reduction methods such as principal component
analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) lead to a similar
space)

(G) Dimension 2 mainly represents the ratio of volatility to stochasticity but not P(explore)

(H) The manifold has been separately dissociated into the monotonically decreasing group (the
most left panel) and monotonically increasing group (the most right panel). The monotonically
decreasing group was associated with a relatively higher anxiety level than the monotonically
increasing group, while the apathy level was significantly lower than the monotonically

increasing group. Within the monotonically decreasing group (left part), a higher volatility to
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392  stochasticity ratio leads to decreased exploration. In contrast, within the monotonically
393 increasing group (right part), a higher volatility to stochasticity ratio encouraged higher
394  exploration. This exploration serves as a coping strategy to relieve anxious feelings in the
395  environment.

396  All p-values remained significant after FDR p<0.05 correction.

397

398
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Discussion

We found that apathy and anxiety predicted opposing patterns of exploratory behavior, which
were explained partly by differing perceptions of uncertainty. Anxiety was associated with
increased exploration after reward omission and greater volatility estimation: the attribution of
uncertainty to a rapidly changing (but still learnable) environment. Apathy, in contrast, predicted
decreased exploration and higher stochasticity estimation: the perception of uncontrollable
randomness. Following a dimensionality reduction of the raw behavioral data, exploration and
perceptions of uncertainty emerged as the dimensions of an underlying latent structure that
unified the different model approaches and the affective states. These findings elucidate the
complex interplay between cognitive assessments of uncertainty, affective states, and decision-
making processes, offering several key insights into adaptive and maladaptive behaviors under

uncertainty.

The distinct patterns of exploratory behavior observed in anxious and apathetic individuals
highlight the role of affective states in shaping responses to uncertainty. Anxious individuals,
who generally display a heightened sensitivity to potential threats and environmental changes,
exhibited a bias toward perceiving greater volatility and exploring more after negative outcomes.
Our mediation analysis revealed that the perception of volatility relative to stochasticity partially
mediates the relationship between anxiety and exploratory behavior after reward omission. This
finding is consistent with previous results (38) and offers a mechanistic explanation for why
anxious individuals in a healthy population might choose to explore more after receiving

negative feedback. The perceived overweighting of volatility relative to stochasticity may drive
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these individuals to seek more information, potentially as a strategy to reduce uncertainty and
manage perceived risks more effectively (39). Although such a strategy may be beneficial for
adaptation in genuinely volatile environments, it may also contribute to excessive worry and
stress, especially if the perceived level of volatility exceeds actual environmental volatility (9,
11). Consequently, anxious individuals may find themselves in a prolonged state of heightened

arousal and uncertainty, leading to suboptimal decision-making and diminished well-being.

On the other hand, apathetic individuals, who generally exhibit diminished motivation and
responsiveness (40), tended to attribute outcomes more to stochasticity in our study. This
perception might underlie their reduced exploratory behavior, reflecting a disengagement from
active learning and adaptation. If outcomes seem random and beyond our control, expending
energy to explore may seem futile, and focusing on what we know seems rational. While this
approach may conserve energy, the inflexibility can perpetuate a cycle of disengagement and
maintain apathetic symptoms (41, 42). Apathetic individuals may fail to recognize the potential
benefits of exploration and remain stuck in suboptimal decision-making patterns, further

reinforcing their disengagement from the environment (4).

The dimensionality reduction of the behavioral sequence data using UMAP allowed us to
examine the relationship between exploration and the estimation of volatility and stochasticity.
Despite the intuitive connection between these two behavior models, their relationship has not
been directly examined. Our results showed that exploration and uncertainty estimation related
closely to the two axes of a parabolic latent structure of adaptive behavior. As a result, both

model-based metrics were necessary to characterize the spectrum of individual differences fully.
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Segmenting the data on the manifold further illuminated the fine-grained interplay between
affective states and exploratory behavior. Individuals with relatively higher anxiety and lower
apathy (the monotonically decreasing group) generally weighted volatility more and
demonstrated greater exploratory behavior compared to those with lower anxiety and higher
apathy (the monotonically increasing group). However, within these groups formed on the
manifold, individuals exhibited opposing relationships between uncertainty and exploration. In
the higher anxiety group, perceived volatility correlates inversely with exploration. However, in

the lower anxiety group, increased volatility perception predicts greater exploration.

These results reconcile previously inconsistent findings regarding exploratory behavior in
individuals with anxiety, with some studies showing more exploitative behavior (15, 16), and
others finding that higher anxiety predicts more exploratory behaviors (13, 14). The relationship
between perceived volatility and exploration is modulated by the degree of anxiety, with more
severe anxiety potentially suppressing exploration as a form of avoidance. Conversely, moderate
anxiety may drive exploration to gather information and reduce uncertainty, potentially easing
discomfort. This dual response to perceived volatility underscores the complex interplay between
anxiety levels, environmental perceptions, and behavioral strategies in managing emotional

responses.

Our findings have implications for personalized behavioral interventions in mental health. For
anxious individuals, therapies focusing on recalibrating volatility perceptions and improving
uncertainty management may reduce worry and enhance decision-making (43, 44). Encouraging

longer-term information integration could also benefit anxiety management (38). For apathetic
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individuals, strengthening perceived control and action efficacy may counteract stochasticity
attribution. Incorporating these strategies into existing therapies like Behavioral Activation and
Motivational Interviewing (45) could promote balanced environmental perceptions and

exploration.

Another important clinical implication involves using an individual’s position on the behavioral
manifold (Figure 5) to predict how their behavior might change in response to treatment based
on their symptoms. For example, a patient positioned in the upper left quadrant before treatment
may exhibit higher anxiety, lower apathy, and increased exploratory behavior. During and after
treatment, monitoring these behavioral shifts may allow us to infer changes in their affective
states or symptoms based on their new manifold position. To develop such a tool, several
questions remain: Do changes within an individual follow a predictable trajectory on this
manifold? Do clinical populations conform to the same manifold, or do they deviate, projecting
into the larger, unoccupied areas of the manifold? The answers to these questions could enhance

the implementation of dimensional approaches for individualized neuropsychiatric care (46).

Our results must be interpreted in light of notable limitations. First, the study primarily utilized
an online sample, which may not accurately represent the demographic and clinical
characteristics of populations with specific mental health diagnoses. The potential differences in
internet access, motivation, and the self-report nature of online studies can introduce biases that
may differ from clinical settings. Consequently, the generalizability of our findings to clinical
populations remains to be determined. Second, while our results are statistically robust and

significant, it is important to note that the observed effect sizes are relatively small. This is not
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491  uncommon in studies of individual differences, where effect sizes often are modest due to the
492  complex nature of human behavior and the multitude of factors influencing decision-making

493  processes (47). Nonetheless, these small effects can still provide valuable insights into the

494  relationships between affective states and decision-making under uncertainty. Third, our results
495  are inherently correlational, limiting our ability to infer causal relationships between the affective
496  states of apathy and anxiety and their impacts on decision-making processes. The observed

497  associations provide a strong foundation for hypothesizing causal mechanisms but do not

498  confirm them. Future studies may examine clinical samples of conditions known to affect

499  adaptive decision-making under uncertainty, such as depression, anxiety disorders, and

500 Parkinson’s disease, as well as interventions targeting the physiology of adaptive behavior.

501
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Method

Ethics approval

The experimental procedures of all experiments were in line with the standards set by the
Declaration of Helsinki and were approved by the local Research Ethics Committee of the
University of Minnesota, Twin Cities. Participants provided written informed consent after the
experimental procedure had been fully explained and were reminded of their right to withdraw at

any time during the study.

Participants

We recruited a sample of 1512 participants via Amazon Mechanical Turk (MTurk) and Prolific
(Prolific. co); exclusion criteria included current or history of neurological and psychiatric
disorders. 1001 participants completed all questionnaires and the bandit task (age range 18-54,
mean £ SD = 28.446 + 10.354 years; gender, 493 female). All participants were compensated for

their time in accordance with minimum wage.

Questionnaire measurement

Participants’ anxiety and apathy states were measured by the General Anxiety Disorder Screener
(GAD-7) (36), and the Apathy-Motivation Index (35), respectively. More specifically, GAD-7
contains 7 items for assessing anxiety severity in the last two weeks. All items were rated on a 4-
point scale, with higher scores indicating greater anxiety. Participants’ apathy level was
measured using the 18-item Apathy-Motivation Index (AMI), which was designed to identify

and measure general apathy, as well as subtypes of apathy in behavioral, social, and emotional
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domains. Higher scores on AMI represent greater apathy. We also measured depressive and
anhedonia states by Patient Health Questionnaire (PHQ-9) (48) and Snaith-Hamilton Pleasure
Scale (SHPS) (49). Our analysis did not reveal any significant results related to depressive states

or anhedonia. For all questionnaire scores, see Sl, Section 1 & Table S1.

Three-armed restless bandit task

We assessed exploration-exploitation behavioral dynamics using a 300-trial three-armed restless
bandit task (25). Participants were free to choose between three targets for the potential to earn a
reward of 1 point. Each target is associated with a hidden reward probability that randomly and
independently changes throughout the task. We seeded each participant's reward probability
walks randomly to prevent biases due to particular kinds of environments. We assessed
performance by comparing the total number of rewarded trials to that expected by chance. Out of

the 1001 participants, 985 accrued more rewarded trials than would be expected by chance.

Dimensionality reduction method

Popular and valid dimensionality reduction techniques to reveal manifolds include t-distributed
stochastic neighborhood embedding (t-SNE) (50), uniform manifold approximation and
projection (UMAP) (37), and Principal component analysis (PCA) (51). However, t-SNE suffers
from limitations, including slow computation time and loss of global data structure, and it is not
a deterministic algorithm (52). The main drawback of PCA is that it is highly affected by outliers
in the dataset (51). In contrast, UMAP is a deterministic and efficient algorithm, it also preserves
both local and global structure of original high-dimensional data. Uniform Manifold

Approximation and Projection (UMAP)
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548 UMAP was implemented in the R language. The eight-dimensional datasets from all participants
549  were passed into the R package umap, version 0.2.8.0, available at https://cran.r-

550 project.org/web/packages/umap/) with default parameter setting as n_component = 2,

551  n_neighbors = 15, min_dist = 0.3, metric = ‘Euclidean’. For reproducibility reasons, we fixed the
552  random_state in this algorithm. The hyperparameter n_neighbors decide the radius of the search
553  region. Larger values will include more neighbors, thus forcing this algorithm to consider more
554  global structure of original n-dimension data. Another important hyper-parameter, min_dist

555  determines the allowed minimum distance apart for cases in lower-dimensional space. metric
556  defines the way that UMAP is used to measure distances along the manifold.

557

558  Model-free analyses

559  We adopted some widely used model-free measures, including win-stay and lose-shift (33, 53) as
560 the direct measurement for this learning task.

561  Win-stay. Win-stay is defined as the percentage of times that the choice in trial t-1 was repeated
562  ontrial t following a reward.

563  Lose-shift. In contrast, lose-shift equals the percentage of trials that the choice was shifted or
564  changed when the outcome of trial t-1 was non-reward.

565  Model free results can be found at S| Section 7, Table S4.

566

567  Mediation analyses

568  Mediation analysis is a statistical method used to examine the underlying mechanisms by which
569 an independent variable influences a dependent variable through one or more mediator variables

570  (54). In our study, we employed the bootstrapping method to estimate the mediation effect of
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volatility and stochasticity on the relationship between affective states (apathy and anxiety) and
exploration. Bootstrapping is a nonparametric approach to effect-size estimation and hypothesis
testing that is increasingly recommended for many types of analyses, including mediation (55).
This method involves repeatedly resampling from the available data to generate an empirical
approximation of the sampling distribution of the indirect effect (i.e., the effect of the
independent variable on the dependent variable through the mediator). We used this distribution
to calculate p-values and construct confidence intervals based on 5,000 resamples. Bootstrapping
is preferred over other methods, such as the Sobel test because it does not assume the normality
of the sampling distribution and provides more accurate confidence intervals that are bias-
corrected and accelerated (54, 55). This approach offers a robust and powerful way to test
mediation hypotheses, particularly in cases where the sample size is relatively small or the data

violate assumptions of normality (56).

Hidden Markov Model

We fit a Hidden Markov Model (HMM) to the behavior, to decode the hidden state of each trial
for each participant. Fundamentally, the HMM has two layers, the hidden layer (i.e., state) and
the observable layer. The hidden dimension should satisfy the Markov property. That is, the
current hidden state only depends on the previous state but not any past model history. The
observable dimension entirely depends on the current hidden states and is independent of other
observations. Parameters of the hidden Markov model can be represented as 2 - (T, O, ¢).
Specifically, T is the transition probabilities matrix, O is the observation probabilities matrix, or
emissions matrix, and c refers to a vector with initial probabilities for each hidden state. Here,

we have two hidden states, an “exploration” state and an “exploitation” state.
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The transition probability between exploration and exploitation states can be represented by:

Lexplore exploit = P(q, = Sexploitl‘]k—l = Sexplore)

WHhere texpiore expioir T€fers to the transition probability from hidden state s,.0; t0 another
hidden state sexpiore

k = time instant, m = state sequence length

Then matrix O represents the transition probabilities between hidden and observable states.

Oexplore,exploit = P4 = 7"exploitrlchc—l = Sexplore)

k =time instant, n = observation sequence length
Both matrix O and T satisfy the principle that the sum along the rows must be equal to 1.
c is an m-dimensional row vector that refers to the initial probability distribution. In our current

study, the initial probability was fixed and equal to the available choices.
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We fit HMM via expectation-maximization using the Baum-Welch algorithm and decode hidden
states from observed choice sequences by the Viterbi algorithm (57). Model results of HMM can

be found at S| Section 7, Table S5.

Kalman filter

The Kalman filter (KF) model has been widely applied in psychology and neuroscience to study

various aspects of learning and decision-making (30, 31).

In the Kalman filter model for a multi-armed bandit task, process noise and observation noise

refer to two distinct sources of uncertainty that affect the learning and decision-making process.

Process noise represents the uncertainty in the evolution of the hidden state (reward mean) over

time. It accounts for how the true state evolves from one point in time to the next. In

mathematical terms, process noise is part of the state transition equation in the Kalman Filter:
Xt = Xe-1 t €

X, IS the state at time t

e, Is the process noise t, which is assumed to be drawn from a normal distribution with zeros

mean and process noise variance v. Where the e;,~N (0, v).

The process noise captures the idea that the reward-means for each arm can change from one

trial to the next, even in the absence of any observations. A higher process noise variance v

indicates a more volatile environment, where the reward means are expected to change more

rapidly.

In contrast, observation noise represents the uncertainty in the observed rewards, given the

current hidden state (reward mean). Which is assumed to be Gaussian with zero mean and a

fixed variance o2.

34


https://doi.org/10.1101/2024.06.04.597412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597412; this version posted July 23, 2024. The copyright holder for this preprint (which

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The observation noise captures the idea that the observed rewards are noisy and can deviate from
the true reward mean due to random fluctuations or measurement errors.

A higher measurement noise variance indicates a more stochastic environment, where the
observed rewards are less reliable and informative about the underlying reward means.

The Kalman Filter operates optimally when the statistical properties of the process noise and the
measurement noise are accurately known.

When observation noise variance () is high relative to the process noise variance (v), the
Kalman gain will be small, and the model will rely more on its prior beliefs and less on noisy
observations. Conversely, when the observation noise variance (v), is high relative to the process
noise variance (¢?), the Kalman gain will be large, and the model will update its beliefs more

strongly based on the observed rewards.

Extended Kalman filter for three-armed bandit task

The Kalman filter model can be extended to capture the effects of both volatility and
stochasticity in a multi-armed bandit task (27, 58).

In the current study, process noise variance (v) and observation noise variance (o2) represent
volatility and stochasticity, respectively.

A traditional assumption of the Kalman filter is that the process noise variance, v, as well as the
observation noise variance, o2are constant.

Reward means update:

me =me_g + k(0O —my_y)
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Where m, is the estimated mean or value of the chosen arm at time t
and O, is the observed reward at time t.
The mean update is driven by the prediction error, which is the difference between the observed

reward and the previous estimate.

Kalman gain is defined as:

ki = Wiy +v) /(W +v + 02)

Here, k; represents the Kalman gain or learning rate, which adjusts the weight given to new
information based on the relative uncertainty of the prior estimate (w,_,) and the total noise (v +
a?). When the stochasticity (¢2) is high relative to the volatility (v), the Kalman gain (learning
rate) will be small, and the model will rely more on its prior beliefs and less on the observations.
Conversely, when the volatility (v), is high relative to the stochasticity (¢2), the Kalman gain
(learning rate) will be large, and the model will update its beliefs more strongly based on the

observed rewards.

Variance update equation:

we = (1 —kg)(weq +v)

This equation updates the posterior variance (w,), which represents the estimate's uncertainty

after observing O,.
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Volatile Kalman filter for three-armed bandit task

The key difference between a standard Kalman filter and a volatile Kalman filter (VKF) is the
variance of the process noise, a stochastic variable that changes with time. In other words, the
VKEF introduces parameters to handle the volatility in the process noise. Specifically, it allows
the process noise variance v to vary with the observed prediction errors, reflecting changes in
environmental volatility.

Our approach here is essentially the same as that taken by Piray and Daw (27). Here, we briefly

described the model details as follows.

Kalman gain:

ke = Wetve_1)/(We—q+viq + 02)

Update for the reward means:

my =me_q + ki (0p —m_y)

Update for posterior variance w;:

we = (1= k) W1 +0e)We1e = (1 — k)weq

Update for volatility:

Ve = Vg + A((M — mt—1)2 + Wi+ W — 2w — Ve_1)
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706  Rescorla-Wagner models

707  We also fitted the data to the classical Rescorla-Wagner model. Successful adaptation in a dynamic
708  situation requires the appropriate feedback-based learning process where individuals integrate the
709  feedback (reward or non-reward) into the stimulus-outcome association (59). The basic
710 reinforcement learning model, the Rescorla-Wagner model can address this process well. So the
711 first model (RW1) was defined as:

712

713 Ve =Vig+aX (R —Vi_q)

714

715  where v, is the value of the option on trial t.

716  a represents the general learning rate from feedback.

717

718  To verify whether participants employed distinct or shared computational responses to positive
719  and negative feedback, we built another model with two learning rates, one for positive feedback

720  and the other for negative feedback (33). This model (RW2) can be defined as:

721
722
723 vy = Vi_q + aP% X (R,_; — v,_1), positive feedback
724 Ve = Vg +a™9 X (R,_, — v;_1),negative feedback
725

726  Where v; is the value of the option on trial t. a?°*and a™¢9 represent the learning rates from

727  positive and negative feedback, respectively.
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For these two models, R,_; € {0,1} represents the feedback received in response to participants’

choice on trial t-1. And R;_; — v,_; represents prediction error in trial t-1.

We used a softmax choice function to map the value into choice. The softmax function for these

four models can be defined as:

exp (ﬁvt)

Pt =
exp (BVe1+BVi2 +BVe3)

Where the g represents the inverse temperature with choice value.

Model fitting and comparison

Hierarchical Bayesian inference (HBI) is a powerful method for model fitting and comparison in
group studies (34). Unlike traditional approaches such as maximum likelihood estimation (MLE)
or maximum a posteriori (MAP) estimation, which fit models to each subject independently, HBI
simultaneously fits models to all subjects while constraining individual fits based on group-level
statistics (i.e., empirical priors). This approach yields more robust and reliable parameter
estimates, particularly when individual subject data is noisy or limited.

In our study, we employed HBI to fit models to choice data. The method quantifies group-level
mean parameters and their corresponding hierarchical errors. To ensure that parameter estimates
remain within appropriate bounds during the fitting process, we used the sigmoid function to
transform parameters bounded in the unit range or with an upper bound and the exponential
function to transform parameters bounded to positive values. The initial parameters of all models
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were obtained using a MAP procedure, with the initial prior mean and variance for all parameters
set to 0 and 6.25, respectively, based on previous research (27) . This initial variance allows
parameters to vary widely without substantial influence from the prior.

For model comparison, we used Bayesian model selection, specifically employing the protected
exceedance probability (PXP) to select the winning model. The PXP quantifies the probability
that a given model is more frequent in the population than all other models under consideration
while accounting for the possibility that the observed differences in model evidence may be due
to chance (60). The model with the highest PXP is selected as the winning model. This approach
inherently penalizes model complexity, favoring models that balance goodness-of-fit and

parsimony. Model performance (log-likelihood) can be found in SI Section 8, Table 6.

Turning point to divide the manifold into monotonically increasing and decreasing group

To divide the manifold into monotonically increasing and decreasing groups, we sorted the
scores for dimension 1 in ascending order. Initially, we fitted a linear model using the first three
data points located on the upper left of the manifold. We then expanded this model by
sequentially including one additional data point from dimension 1, continuing this process until
we incorporated the last score (i.e., the maximum dimension 1 score, situated on the upper right
of the manifold). Throughout this procedure, we monitored the t-statistic of the dimensionl
coefficient to assess the statistical significance of dimensionl as a predictor. Notably, a
dimension 1 score of -0.671 marked the most significant negative coefficient, after which the
relationship between dimension 1 and dimension2 gradually shifted to become positive (see S|

Section 9, Figure S5)
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774  False discovery rate correction

775  We adopted FDR (False Discovery Rate) correction, which was introduced by Benjamini and
776  Hochberg (61) to control the expected proportion of false positives (Type | errors).

777

778
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