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Abstract
Time-dependent birth-death sampling models have been used in nu-

merous studies for inferring past evolutionary dynamics in different areas,
e.g. speciation and extinction rates in macroevolutionary studies, or ef-
fective reproductive number in epidemiological studies. These models are
branching processes where lineages can bifurcate, die, or be sampled with
time-dependent birth, death, and sampling rates, generating phylogenetic
trees. It has been shown that in some subclasses of such models, different
sets of rates can result in the same distributions of reconstructed phyloge-
netic trees, and therefore the rates become unidentifiable from the trees
regardless of their size. Here we show that widely used time-dependent
fossilised birth-death (FBD) models are identifiable. This subclass of mod-
els makes more realistic assumptions about the fossilisation process and
certain infectious disease transmission processes than the unidentifiable
birth-death sampling models. Namely, FBD models assume that sampled
lineages stay in the process rather than being immediately removed upon
sampling. Identifiability of the time-dependent FBD model justifies using
statistical methods that implement this model to infer the underlying
temporal diversification or epidemiological dynamics from phylogenetic
trees or directly from molecular or other comparative data. We further
show that the time-dependent fossilised-birth-death model with an extra
parameter, the removal after sampling probability, is unidentifiable. This
implies that in scenarios where we do not know how sampling affects
lineages we are unable to infer this extra parameter together with birth,
death, and sampling rates solely from trees.
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1 Introduction
Birth-death models have been widely used to model different processes that

are described by phylogenetic trees, from evolutionary histories of species (Raup
et al., 1973; Nee et al., 1995; Nee, 2006; Heath et al., 2014; Silvestro et al., 2014;
Morlon et al., 2011) to infectious disease transmission histories (Stadler et al.,
2012, 2013). A birth-death process describes how lineages bifurcate and die with
corresponding birth and death rates, and results in a phylogenetic tree (Feller,
1939; Kendall, 1948). Given molecular or other data of sampled lineages one
can reconstruct a phylogenetic tree, and given the tree infer the rates, or infer
trees and rates in a joint analysis (Yang and Rannala, 1997; Höhna et al., 2016;
Bouckaert et al., 2019). The birth and death rates or their transformations are
then interpreted as parameters of the underlying processes, e.g. speciation and
extinction rates in macroevolutionary studies or effective reproductive number
in epidemiological applications.

An important aspect of modelling the process that produces phylogenetic
trees is the fact that such trees are reconstructed from a sample of extant
species and do not represent all lineages that are involved in the evolutionary
process. Extinct or unsampled lineages remain unobserved. To model present
sampling, additionally to the birth and death rates we have a sampling fraction
parameter (Stadler, 2009). Furthermore, we consider reconstructed trees that
represent the observed part of the evolutionary history (Nee et al., 1995), that
is, a phylogeny that relates sampled extant species only.

Temporal changes in the rates of species diversification or infectious dis-
ease transmission have been accounted for by time-dependent birth and death
rates (Kendall, 1948; Stadler et al., 2013). The probability density functions for
reconstructed trees, in this case, were derived for the simple case of piecewise
constant rates (Stadler, 2011) or more general case with arbitrary time-dependent
rates (Morlon et al., 2011), which enabled efficient inference of the speciation
or transmission temporal dynamics (Stadler et al., 2013; Louca and Pennell,
2020a). Importantly, such inference relies on statistical identifiability of the
time-dependent birth-death models, which is one of the conditions that guarantee
that the estimated rates approach their true values as the tree size increases.

Kubo and Iwasa (1995) initially showed that time-dependent birth-death
models are unidentifiable for reconstructed trees, that is, multiple pairs of birth
and death rates have the same probability of producing a reconstructed tree.
Despite the age of Kubo and Iwasa’s result, and the continuing popularity of
these models, widespread concern (Pagel, 2020) about this unidentifiability issue
was only recently prompted by the work of Louca and Pennell (2020b). The
major implication of the unidentifiability is that we cannot estimate the two
rate functions without placing additional constraints (Morlon et al., 2022) on
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one of them. Crucially, it has been shown that the number of congruent pairs
of birth and death rates, — the rates that produce the same distributions of
reconstructed trees, in the absence of such constraints is infinite (Kubo and Iwasa,
1995; Louca and Pennell, 2020b). This rules out manual parameter selection
from the class of equally likely parameter pairs as a mitigating strategy.

The unidentifiability of the time-dependent birth-death models have been
at least partially alleviated by Legried and Terhorst’s findings that piecewise
constant, and subsequently, piecewise polynomial birth-death models, are iden-
tifiable for reconstructed trees (Legried and Terhorst, 2022, 2023). However,
no such result for other classes of models such as those involving exponential
growth or decay has been obtained.

In many applications, samples are obtained at different points in time, for
example, when fossils are included in the analysis or when heterochronous
sampling of pathogen genomic material is employed. Modelling such sampling
through time is very important to avoid bias in the rate estimates (Stadler, 2010).
For this reason, an additional parameter, sampling rate, was added to the birth-
death process, introducing a birth-death sampling process (Morlon et al., 2011;
Stadler, 2010; Stadler et al., 2013; Gavryushkina et al., 2014; MacPherson et al.,
2021). Early applications of this process to inference assumed that lineages are
removed from the process immediately after sampling, which might be the case
for some infectious diseases (e.g. HIV), where the diagnosis typically prevents a
patient from transmitting the disease further. Louca et al. (2021) showed that
this time-dependent birth-death sampling model is again unidentifiable when we
consider reconstructed trees.

Removing lineages immediately after sampling is a strong and unrealistic
assumption (Andréoletti and Morlon, 2023) for many other processes, e.g. fossili-
sation or transmission process for highly transmittable diseases where isolation is
not performed on the diagnosis, such as influenza or coronavirus. A birth-death
sampling model where sampling does not imply removing the lineage from the
process is called the fossilised birth-death (FBD) model (Stadler, 2010; Heath
et al., 2014). This model is widely used to estimate fossilisation rates and
date species phylogenies (Stadler et al., 2018; Wright et al., 2022), however,
the identifiability of the time-dependent rates for the FBD model has not been
established (Andréoletti and Morlon, 2023).

In this paper, we show that the time-dependent FBD model is identifiable
for arbitrary rate functions with strictly positive sampling rate. Although this
does not imply that it is practically possible to estimate arbitrary rates from
finite phylogenies, it provides a strong theoretical basis for using the FBD model
to estimate speciation, extinction, and sampling parameters from phylogenies,
and eliminates the requirement that the rates are restricted to be piecewise-
polynomial. We demonstrate an important relationship between the distributions
of complete and reconstructed trees under the time-dependent FBD model. We
also show that the time-dependent birth-death sampling model (MacPherson
et al., 2021), in which the removal probability is another unknown time-dependent
parameter, is unidentifiable. That is, if the status of a sample after sampling
is unknown and likely changes with time, we are again unable to estimate the

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2024. ; https://doi.org/10.1101/2024.02.08.579547doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.08.579547
http://creativecommons.org/licenses/by/4.0/


birth and death rates.
Further, we use normalised deterministic lineages through time (nLTT) curves

to demonstrate how the number of lineages in the reconstructed trees is affected
by allowing sampled ancestors, that is, allowing species sampled in the past to
be ancestors of younger species, which is the case when sampling does not imply
removal. Finally, we discuss the implications of our results for data analysis.

2 Materials & Methods
2.1 Preliminaries

Here we consider a time-dependent fossilised birth-death (FBD) process (Stadler,
2010; MacPherson et al., 2021; Heath et al., 2014; Nee et al., 1994). The time
in this process is usually set backwards, and the process runs from the time of
origin t0 > 0 until the present (time zero). It starts with a single lineage, and all
lineages arising in the process independently bifurcate, die, and/or are sampled
through time with time-dependent Poisson rates λ(t), µ(t), and ψ(t). These
rates are lineage-independent, i.e. all lineages at the same time point will have
the same birth, death, and sampling rates. At the present time, extant lineages
are additionally sampled uniformly at random with probability ρ0, called the
sampling fraction. This time-dependent FBD process is a special case of the
time-dependent birth-death sampling process (MacPherson et al., 2021) in which
there is an extra parameter: the removal probability, which is a probability of
a lineage being removed from the process immediately after sampling. In the
FBD process this probability is set to zero, reflecting that sampling does not
influence whether lineages remain in the process.

All lineages created by such a process together with the marks for the
sampling events form a phylogenetic tree, which we call a complete tree T
(Fig. 1). To write down the probability density of complete trees under the FBD
process we need to introduce the following notation, that we keep consistent
with MacPherson et al. (MacPherson et al., 2021). We assume that ρ0 = 1
when considering complete trees. Let N0 denote the number of present day
taxa, each of which is sampled at present. The tree has n death events at times
(y1, y2, . . . yn), N0 + n− 1 branching events at times (x1, x2, . . . xN0+n−1), and
m sampling events at times (z1, z2, . . . zm). The first branching event at x1 is
called the root of the tree. A tree T can be split into its discrete and continuous
components and can be written as a pair (T, t̄) where T is the ranked ordered
tree topology (Gavryushkin and Drummond, 2016; Steel, 2016; Gavryushkin
et al., 2018), and t̄ = (t1, . . . , tN0+2n+m−1) is the vector of times of branching,
death, and sampling-through-time events with t0 > t1 > · · · > tN0+2n+m−1 > 0.

In what follows, we assume that λ(t) ≥ 0, µ(t) ≥ 0, and ψ(t) ≥ 0 for all
t ∈ [0, t0] and are Lebesgue-integrable on [0, t0]. Following the well described
derivation (see, e.g. Stadler, 2010; Morlon et al., 2011; MacPherson et al., 2021),
we obtain the probability density function for the complete trees under the
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time-dependent FBD process:

f compl. (T |λ(t), µ(t), ψ(t), t0) = Ψ(t0)
N0+n−1∏
i=1

λ (xi) Ψ(xi)
n∏
j=1

µ (yj)
Ψ(yj)

m∏
k=1

ψ(zk)

(1)
where Ψ(t) = e

−
∫ t

0
λ(u)+µ(u)+ψ(u) du. Each node in the tree contributes to the

probability density function as the rate of the event (birth, death, or sampling)
at the corresponding time, and each edge contributes the exponential term, Ψ (t),
reflecting that no events took place along them. SI Figure S1 illustrates the
parts of a tree that correspond to the exponential of the integral terms.

Note that it is common in the literature to use the term “likelihood” for the
probability density function even if it is not considered as a function of parameters.
In this paper, we prefer to use the term “probability density function”.

t0

0

x1

x2

x3
x4
x5

z1
y1
z2

y2

Figure 1: An example of a complete tree generated by a time-dependent Fossilised
Birth-Death (FBD) process. The stem of the tree is denoted t0, and the present
occurs at time 0. Birth events occur at times xi, death events at times yj , and
samples at times zk.

In a complete tree, all speciation, extinction, and sampling events (through
time and at present) are observed. However, in practice we are not able to
observe (or infer) the complete tree, and therefore parameter estimation relies on
the reconstructed tree. The reconstructed tree is a tree induced by the sampled
nodes and is shown in Figure 2b given the complete tree in Figure 2a.

We now introduce a notation for reconstructed trees which is similar to that
used in the complete tree case. The sampling at present probability ρ0 can now
take any value between zero and one. The reconstructed tree has M0 sampled
extant species, M0 + n− 1 branching events, n sampling events that result in
termination of lineages in the tree (tips), and m remaining sampling events that
lie within lineages of reconstructed tree and are called sampled ancestors. We
denote the times of the branching events as (x1, x2, . . . xM0+n−1), the times of
the terminal sampling events as (y1, y2, . . . yn), and the times of the remaining
sampling events as (z1, z2, . . . zm) (Fig. 2b).

To derive the probability density function for reconstructed trees, we need to
define function E(t), which is the probability that a lineage alive at time t does
not leave sampled descendants. It was shown (MacPherson et al., 2021) that
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(a) Complete tree

t0

0

x1

x2

x3

x4

z1

z2

y1

y2

(b) Reconstructed tree

Figure 2: An example of a complete tree (a) and the corresponding reconstructed
tree (b) obtained from the complete tree by trimming unobserved lineages (blue,
dotted). The unobserved lineages are the lineages that do not terminate with
samples (solid squares). In the resulting reconstructed tree, there are three types
of nodes: branching nodes at times (xi), tip samples (yi and present time), and
sampled ancestors (zi).

this function is the solution to the following differential equation:

dE
dt = − (λ+ µ+ ψ)E + λE2 + µ (2)

with initial condition E(0) = 1 − ρ0. The following proposition establishes
the conditions on the rate functions which guarantee that the solution to this
equation exists and is unique.

Proposition 2.1. Equation (2) has a unique extended solution on [0, t0] if the
following conditions are satisfied:

• λ ≥ 0, µ ≥ 0, and ψ ≥ 0 are Lebesgue-integrable on [0, t0],

•
∫ t

0 λ(s)e−
∫ s

0
λ(u)−µ(u)−ψ(u)du

ds < ∞ for t ∈ [0, t0], and

• either ρ0 > 0 or ψ(0) > 0 and λ, µ, and ψ are continuous at zero.

Proof. See SI Section S2

In what follows, whenever reconstructed trees are considered, we assume that λ,
µ, and ψ satisfy these conditions.

The probability density function for reconstructed trees (MacPherson et al.,
2021) is:

f rec. (T |λ(t), µ(t), ψ(t), ρ0, t0) =

ρM0
0 Φ(t0)

M0+n−1∏
i=1

λ (xi) Φ(xi)
n∏
j=1

ψ (yj)E(yj)
Φ(yj)

m∏
k=1

ψ (zk) (3)

where Φ(t) = e

∫ t

0
2λ(u)E(u)−λ(u)−µ(u)−ψ(u) du. Note that 1−E (t0) is the probabil-

ity that at least one lineage was sampled either in the past or the present (Morlon
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et al., 2011). Then the probability density function for reconstructed trees, con-
ditioning on the event of sampling at least one lineage (S), is:

f rec. (T |λ(t), µ(t), ψ(t), ρ0, t0, S) = f rec. (T |λ(t), µ(t), ψ(t), ρ0, t0)
1 − E (t0) (4)

Consider a parametric statistical model, which is a class of distributions Pθ
across a set of parameters Θ: PΘ = {Pθ : θ ∈ Θ}.

Definition 2.1 (Identifiability). A statistical model PΘ = {Pθ : θ ∈ Θ} is
identifiable if θ 7→ Pθ is injective; that is, for all θ1, θ2 ∈ Θ, we have Pθ1 = Pθ2 ⇒
θ1 = θ2. Two probability density functions Pθ1 , Pθ2 are considered equal if the
set of points where they differ has Lebesgue measure zero.

The parameters θ of the FBD model are (λ, µ, ψ, ρ0, t0). We consider two
models for which we show identifiability. The complete tree model is described
by probability densities f compl.

θ defined by equation (1) with restrictions on the
parameters formulated in Theorem 3.1 that define set Θcompl.. The reconstructed
tree model is described by probability densities f rec.

θ defined by equation (3)
and has a slightly different set of allowable (with restrictions from theorem 3.2)
parameters Θrec..

nLTT code implementation

In unidentifiable models (birth-death or birth-death sampling with removal
at sampling cases) there are sets of birth, death, and sampling rates for which
the probability density functions and therefore reconstructed tree distributions
are identical (Louca and Pennell, 2020b; Louca et al., 2021). Such parameters
form congruence classes, where any pair of parameters are congruent if they
produce the same distributions of reconstructed trees.

To demonstrate congruent scenarios Louca and Pennell (2020b) and Louca
et al. (2021) used deterministic lineage through time (dLTT) curves. This curve
is the deterministic limit of the number of observed lineages at times t generated
in the stochastic birth-death sampling processes (Kubo and Iwasa, 1995). The
stochastic process describes the number of lineages present, given diversification
and sampling events which are realisations of a birth-death sampling process.
Deterministic calculations assume that the timing of events is solely determined
by the birth, death, and sampling rates with no random component. dLTT
curve also corresponds to the expected number of lineages in the reconstructed
trees generated by the stochastic birth-death sampling process (SI S4.2). There-
fore, pairs of rates that produce different dLTT curves also produce different
distributions of reconstructed trees.

Here we follow Louca et al. (2021) who considered a normalised lineage
through time (nLTT) curve, which is a dLTT curve normalised by its area
under the curve (Janzen et al., 2015). Obviously, different nLTT curves imply
different dLTT curves. To plot nLTT curves Louca et al. (2021) used the
R package castor (Louca and Doebeli, 2018). They randomly selected birth,
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death, and sampling rates, which were generated under either an exponential
or an Ornstein-Uhlenbeck stochastic process. Here we either randomly select
exponential rates as in Louca et al. (2021) or manually select linear rates to
avoid technical difficulties with obtaining congruent scenarios with positive
rates. Given the selected rates θ1 = (λ1, µ1, ψ1), we use the castor function
congruent hbds model and calculations based on the pulled diversification
rate to obtain congruent rates θ2 = (λ2, µ2, ψ2). Then we calculate deterministic
values using the simulate deterministic hbds function by generating a tree
with between 100,000 and 200,000 tips, given the rates (θ1 or θ2) and sampling
fraction ρ0 = 0 to achieve a good approximation of the nLTTs. Rather than
utilising the removal probability r, the package functions use the retention
probability κ = 1 − r, which we specify accordingly.

We use a fork of castor v.1.7.11 suitable for calculating nLTT curves for
trees with sampled ancestors. This is available at https://github.com/bioDS/
castor. The R code from Louca et al. (Louca et al., 2021) was used as a basis
for the simulations. The deterministic parameter calculation code for FBD trees
is available at https://github.com/bioDS/FBD-dLTTs.

3 Results
3.1 Identifiability of the time-dependent FBD model

Here we show the identifiability of the time-dependent FBD model parameters
from complete trees.

Theorem 3.1. Suppose t0 is fixed and λ(t) ≥ 0, µ(t) ≥ 0, and ψ(t) ≥ 0 are
Lebesgue-integrable on [0, t0]. Then the time-dependent FBD complete tree
model (the probability density function for this model is defined by equation 1)
is identifiable.

Proof. The key ingredient of the proof of the theorem is the following lemma:

Lemma 3.1. Assume f compl.
θ1

= f compl.
θ2

almost everywhere, then the following
equalities hold:

λ1(t)Ψ1(t) = λ2(t)Ψ2(t) for almost all t ∈ [0, t0] (5)
λ1(t)µ1(t) = λ2(t)µ2(t) for almost all t ∈ [0, t0] (6)
ψ1(t) = ψ2(t) for almost all t ∈ [0, t0] (7)
Ψ1(t0) = Ψ2(t0) (8)

Proof. Equalities (5)–(7) are obtained by considering trees that differ by one
event as follows. To show (5), we note that the densities should be equal for
almost all trees with s edges and se extant edges, and also for almost all trees
with s+ 1 edges and se + 1 extant edges. Given a pair of trees in which one tree
is obtained from the other by attaching an additional edge at time t (Figs. 3a
and 3b), their densities differ by one term, namely, λ(t)Ψ(t), which implies
equality (5).
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t0
x1

0

(a)

t0
t1

0

t

(b)

t0
t1

0

t

(c)

Figure 3: Tree modifications used in the proof of Lemma 3.1. Subfigure (a)
depicts the original tree, while Subfigure (b) shows the addition of an extant
edge born at time t and Subfigure (c) shows the contraction of an extant edge
such that it dies at time t.

By considering pairs of trees in which one edge switches from being extant to
going extinct at time t (Figs. 3a and 3c), we obtain µ1(t)

Ψ1(t) = µ2(t)
Ψ2(t) , which together

with (5) implies (6). Similarly, considering trees with an additional sampling
event, we obtain (7). Since all the individual terms except for Ψ(t0) are equal in
the probability density functions of all trees under θ1 and θ2, we conclude that
the Ψ(t0) terms should also be equal (8). The detailed proof can be found in SI
section S3.2.

We now finish the proof of the theorem as follows. Denote γ(t) = Ψ1(t)
Ψ2(t) .

Equalities (5)-(7) imply that γ must satisfy the following differential equation:

dγ

dt
=λ1γ

2 − (λ1 + µ1)γ + µ1 for almost all t ∈ [0, t0] (9)

Definition of γ and equality (8) implies the boundary condition γ(0) = γ(t0) = 1.
γ(t) = 1 is a solution to this equation, which must be unique (SI section S3.3).
Therefore, λ1(t) = λ2(t) and µ1(t) = µ2(t) for almost all t ∈ [0, t0].

Theorem 3.2. Suppose t0 is fixed, parameters λ, µ, ψ and ρ0 satisfy the
conditions of Proposition 2.1, and ψ(t) > 0 for almost all t ∈ [0, t0]. Then the
time-dependent FBD reconstructed tree model (the probability density function
is defined by equation 3) is identifiable.

Proof. We prove this theorem by showing that there exists a one-to-one transfor-
mation of the FBD parameters (Eq. (10), Lemma 3.2) such that the distribution
of the reconstructed trees produced by the process with original parameters and
conditioned on sampling of at least one lineage is the same as the distribution
of complete trees produced by the FBD process with transformed parameters
(Lemma 3.3).Then we apply Theorem 3.1 to complete the proof.

Consider the following parameter transformation of original rates to pulled
rates:
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λ̃ = λ(1 − E)

µ̃ = ψE

1 − E

ψ̃ = ψ

ρ̃0 = 1

(10)

where E(t) is defined in Equation (2). Note that since ψ(t) > 0 we have E(t) < 1
for all t ∈ (0, t0] (SI Section S2). Then if ρ0 = 0, implying E(0) = 1, we set µ̃(0)
to zero. Thus, all the rates are well-defined for all t.

We say that two sets of rates
[
λ1(t), µ1(t), ψ1(t)

]
and

[
λ2(t), µ2(t), ψ2(t)

]
are

different if at least one of the rates (λ, µ, or ψ) differ on at least a non-zero
measure subset of [0, t0].

Lemma 3.2. Parameter transformation (10) is a one-to-one correspondence.

Proof. See SI Section S4.3.

Lemma 3.3. The distribution of reconstructed trees for the time-dependent
FBD process, conditioned on sampling of at least one lineage (through-time
or at present), is the same as the distribution of the complete trees under the
time-dependent FBD process with pulled rates and a sampling probability of
one. That is,

f rec. (T |λ, µ, ψ, ρ0, t0, S) = f compl. (
T | λ̃, µ̃, ψ̃, t0

)
Proof. The proof follows from substituting the pulled rates into the probability
density function for the complete trees (SI Section S4).

To finish the proof of the theorem suppose f rec.
θ1

= f rec.
θ2

. Then 1 − E1(t0) =
1 −E2(t0), because 1 −E(t0) is the cumulative probability of all surviving trees.
So frec.

θ1
1−E1(t0) = frec.

θ2
1−E2(t0) . Lemma 3.3 implies that f compl.

θ̃1
= f compl.

θ̃2
. Then it

follows from Theorem 3.1 that θ̃1 = θ̃2, and from Lemma 3.2 that θ1 = θ2.

Note, that if ψ is equal to zero on some time interval within [0, t0] then only
birth or death events can happen at this time interval. Therefore within this
time interval, the process can be described by only one pulled birth rate as
shown in (Louca and Pennell, 2020b) and the model becomes unidentifiable. In
other words, by choosing identical birth, death and sampling rates whenever
ψ is greater than zero and congruent birth and death rates (as defined for
unidentifiable birth-death models) whenever ψ is zero we obtain congruent rates
for the reconstructed FBD model.
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3.2 Unidentifiability of the birth-death model with removal
at sampling

In this section we address the identifiability problem for a time-dependent
birth-death sampling model with removal at sampling (MacPherson et al., 2021).
This model is defined by a time-dependent FBD process where sampled lineages
are removed from the process after sampling with time-dependent removal
probability r(t), where 0 ≤ r(t) ≤ 1.

For this model, we can also define pulled rates:

λ̃ = λ(1 − E)

µ̃ = ψE

1 − E
+ ψr

ψ̃ = ψ(1 − r)

(11)

where r ̸= 0 on some non-zero measure subset of [0, t0]. Similarly to the FBD
case, the probability density function of the reconstructed trees with original
rates is the same as the probability density function of complete trees under the
model with pulled rates (see SI section S5.2).

Now, for any given λ > 0, µ ≥ 0, ψ > 0, 1 ≥ r ≥ 0, ρ0 ∈ (0, 1], and for any
alternative rate ψ∗ > 0 (here we also assume λ, ψ, and ψ∗ are differentiable
almost everywhere on [0, t0]) we define

λ∗ = λψ

ψ∗ (12)

µ∗ = λ∗ − ψ∗ + 1
λ∗

dλ∗

dt − λ+ µ+ ψ − 1
λ

dλ
dt (13)

r∗ = 1 − ψ(1 − r)
ψ∗ (14)

Equation (14) implies ψ̃ = ψ̃∗. Louca et al. (Louca et al., 2021) showed that (12)
and (13) imply:

λ(1 − E) = λ∗(1 − E∗)
ψ

1 − E
= ψ∗

1 − E∗

Therefore we have λ̃ = λ̃∗. Noting that µ̃ = ψ
1−E − ψ̃ we have µ̃ = µ̃∗.

Thus for a given model with parameters θ and an arbitrary ψ∗ distinct from ψ
we obtained another model defined by distinct parameters θ∗ for which the pulled
rates are equal and therefore the probability distributions over reconstructed
trees are also equal. Given that we have found distinct parameter sets that
produce the same probability distributions, the following theorem holds:

Theorem 3.3. Suppose t0 is fixed, parameters λ, µ, ψ and ρ0 satisfy the
conditions of Proposition 2.1, ψ(t) > 0 for almost all t ∈ [0, t0], λ and ψ are
differentiable almost everywhere on [0, t0], 0 ≤ r(t) ≤ 1, and r ̸= 0 on an non-zero
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measure subset of [0, t0]. Then the time-dependent birth-death sampling model
with removal at sampling is unidentifiable for reconstructed trees.

In the above theorem, we assumed a restricted set of parameters for which the
unidentifiability holds. For any wider parameter set that contains this restricted
set, the model remains unidentifiable. However, if stricter or non-overlapping
conditions apply, the model may become identifiable, e.g. fixing r to zero (FBD
model identifiability) or fixing ψ to zero and considering piecewise constant
or piecewise polynomial birth and death rates (Legried and Terhorst, 2022,
2023). Furthermore, if we fix the removal probability to a function that is not
equal to one then given that the pulled rate transformation 11 is one-to-one (SI
section S5), we obtain the following corollary:

Corollary 3.1. Suppose t0 is fixed, parameters λ, µ, ψ and ρ0 satisfy the
conditions of Proposition 2.1, ψ(t) > 0 for almost all t ∈ [0, t0], 0 ≤ r(t) ≤ 1,
and r(t) is a fixed function such that r(t) ̸= 1 almost everywhere on [0, t0]. Then
the time-dependent birth-death sampling model with fixed removal at sampling
probability is identifiable for reconstructed trees.

3.3 nLTT curves
Louca et al. (2021) illustrated the congruency of the birth-death model by

comparing the nLTT curves produced using different congruent rate functions.
We follow this methodology to assess deterministic properties given particular
speciation, extinction, and sampling rates, in our case under the FBD process. We
use two sets of rate functions, θ1 and θ2. Given θ1 = (λ1, µ1, ψ1), θ2 = (λ2, µ2, ψ2)
is chosen such that θ1 and θ2 result in the same nLTT curve under the time-
dependent birth-death sampling model with a removal probability r = 1. We
then use θ1 and θ2 to produce nLTT curves for scenarios under the process with
smaller removal probabilities, specifically r = 0.5 and r = 0, which allow for
sampled ancestors.

Figure 4 illustrates the diversification rates and deterministic curves for a
scenario with linear diversification rates for θ1, while Figure 5 depicts a scenario
with exponential forms for θ1. Note that restricting θ1 to linear or exponential
rates does not place the same restriction on θ2. We observe that the introduction
of sampled ancestors for the same speciation, extinction, and sampling rates
affects the nLTT curve, particularly near its peak. As time passes and sampling
events occur without removing lineages, we expect the total number of speciation,
extinction, and sampling events to increase with the number of lineages, given
the same lineage-independent rates.

While using a removal probability of less than one results in different nLTT
curves for scenarios that were previously congruent under r = 1, the difference
in the nLTT may be small for all times considered. An example of this is shown
in Figure 6. This small difference between nLTT curves is observed in scenarios
where the rate of sampling is low compared to the total tree length. In such
cases, there are relatively few time points at which a lineage may be removed
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Figure 4: A set of congruent scenarios where θ1 has linear rates. Subfigures a–c)
show the parameters of θ1 and θ2 where θ1 = (0.2t+ 3.5, 0.015t+ 0.15, 0.1t+ 1.9).
Subfigures d–f) illustrate that when sampled ancestors are permitted, θ1 and θ2
no longer produce identical nLTT curves.
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Figure 5: A set of congruent scenarios where θ1 has exponential rates which
were randomly selected. Subfigures a–c) show the parameters of θ1 and θ2
where θ1 ≈ (9.84 − 2.41e−0.35t, 7.16 − 0.92e0.17t, 1.57 + 0.02e0.43t). Subfigures
d–f) illustrate that when sampled ancestors are permitted, θ1 and θ2 no longer
produce identical nLTT curves.
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Figure 6: A set of congruent scenarios, where θ1 has linear rates. Sub-
figures a–c) show the parameters of θ1 =

(
12,−0.1t+ 11, 1

120
)

and θ2 =(
0.1t+ 1, 1

120 ,
0.1

0.1t+1

)
. Subfigures d–f) illustrate that although reducing the

removal probability results in different nLTT curves for θ1 and θ2, the difference
in density is small for all times considered.

due to sampling, and thus the number of lineages in trees is largely unaffected
by the removal probability.

A direct comparison of nLTT curves under different linear removal probabili-
ties is shown in Figure 7. In this example scenario, the speciation, extinction and
sampling rates are fixed. The linear removal probability functions with different
slops reflect scenarios ranging from rapid growth of removal probability with
time to constant removal probability. We observe that the steeper the removal
probability function, the greater the deviation in the nLTT curve compared to
the case where the removal probability is constant (shown as a solid line).

4 Discussion
In this study, we have shown that the time-dependent FBD model is iden-

tifiable and therefore eliminated the concern related to the use of such models
for parameter inference (Pagel, 2020) caused by the previous unidentifiability
results. Given the identifiability, the FBD model is an absolutely suitable model
for inferring speciation and extinction rates from dated phylogenies, as well as
epidemiological parameters in scenarios where removal upon diagnosis is not
implied.

Previous studies showed identifiability of the birth-death model without
sampling for piecewise constant and piecewise polynomial rates. The FBD
model is identifiable in an arbitrary class of rate functions. While a piecewise
constant model can be defined to approximate an unidentifiable model arbitrarily
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Figure 7: An example of differences in nLTT curves caused by changing the
removal probability r while keeping speciation, extinction and sampling rates
fixed: θ = (0.2t+ 3.5, 0.015t+ 0.15, 0.1t+ 1.9).

closely (Legried and Terhorst, 2022), it is unclear how much a particular piecewise
constant model that maximises the likelihood function deviates from the true
non-piecewise constant set of rates. Although computational methods do not
allow us to infer arbitrary functions, and we still need to restrict the form of the
estimated rates, we can now directly model, for example, exponential growth,
which would reduce the number of estimated parameters and required tree size
compared to piecewise constant or polynomial approximations.

Previous implementations of the FBD model have relied on simulation studies
to show identifiability (Gavryushkina et al., 2014); our theoretical results make
this time-consuming step of investigating parameter identifiability via simula-
tion unnecessary, whether one wishes to use constant rates, piecewise-constant,
piecewise-polynomial, or more complex scenarios. Such simulations can still
be useful for assessing the precision of estimated parameters, robustness of the
model to assumptions violation or validation of software implementations.

It is important to note, that although the FBD model is theoretically identi-
fiable, a given dataset may not be of a sufficient size for rate selection (Morlon
et al., 2022; Legried and Terhorst, 2023). While theoretically unidentifiable
models cannot be resolved with any amount of data (Louca and Pennell, 2020b),
there is no fixed finite quantity of data for theoretically identifiable scenarios
which guarantees a desired precision of the inferred rates. Small trees or sam-
ples may lead to wide confidence or credible intervals for parameters such as
extinction rate even in the case when the true rates have simple forms (Morlon
et al., 2022). A further caveat to applying theoretical identifiability results is
that they unrealistically rely on knowing the true phylogeny without an error.
With limited molecular, morphological, or other data, simplified evolutionary
models and otherwise non-perfect inference methods, knowing the true phylogeny
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without an error is not possible.
The results of our study show the importance of including fossils when

estimating speciation and extinction rates. The general case when only a dated
phylogeny is available is consistent with many congruent rates. Once fossils are
placed on the phylogeny, the congruence class collapses to a single set of rates
that are consistent with the given sampled ancestor phylogenetic tree (a tree
in which fossil samples can be sampled ancestors, Gavryushkina et al., 2014).
Including sampled ancestor fossils has been shown to be very important in
reducing biases in estimated extinction rates (Gavryushkina et al., 2014; O’Reilly
and Donoghue, 2019). Here, we have shown that allowing fossils to be sampled
ancestors is crucial for theoretical identifiability of the diversification rates.

It is intuitive that allowing removal probabilities of less than one provides
more information about the sampling rate, which in turn helps determine the
birth and death rates. As a lineage under the time-dependent FBD model may
survive being sampled, there is the potential for each lineage to be sampled on
multiple occasions. These additional sampling events define the time intervals
between sampling on continuing lineages, which are informative for determining
the sampling rate. Whereas if sampling guarantees removal, the sampling rate
is confounded by the unknown birth and death rates. It becomes impossible
to distinguish between scenarios with low sampling rate and many unobserved
lineages and high sampling rate with few unobserved lineages.

The ability to infer the sampling rate itself, even if the sampling scheme was
not constant through time, is an additional benefit of the FBD model. Inferred
fossilisation rates could for example be further used in consecutive studies as
prior information.

As we demonstrated in the nLTT examples, the sampling rate has to be high
enough to introduce noticeable differences in the distributions of the reconstructed
trees and therefore enable precise maximum likelihood or Bayesian inference
of the rates. Our identifiability finding cannot be applied to scenarios which
allow past time periods with no probability of sampling lineages. The proven
one-to-one correspondence between complete and reconstructed trees relies upon
a non-zero past sampling rate to determine original rates from pulled rates.
Given that species’ physical structure or habitat may make them unsuitable
for fossilisation (Shaw et al., 2021), the FBD model might not be suitable for
scenarios requiring ψ (t) = 0 for significantly long periods of time. However if
the birth and death rates are piecewise polynomial where ψ is equal to zero we
can apply the results of Legried and Terhorst (Legried and Terhorst, 2022, 2023)
to obtain the identifiability of the reconstructed FBD model.

It is important to note, that although the inclusion of fossils helps identify
the speciation and extinction rates, the age uncertainty and biased sampling
associated with fossil data could still propagate to the speciation and extinction
rates estimates. Modelling fossil age uncertainty and using stratigraphic ranges
of species as opposed to single fossil representatives (Stadler et al., 2018) could
improve the accuracy of credible intervals and reduce the bias.

The identifiability of the time-dependent FBD model arises from allowing
sampled fossils to remain in the process (removal probability r fixed to zero)
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and no longer holds once the removal probability is set to one (Louca et al.,
2021), as has been previously shown for piecewise constant rates (Gavryushkina
et al., 2014). Here we have also shown that the time-dependent birth-death
sampling model remains identifiable, provided r is fixed to a function not equal
to one. Such a model could be used in epidemiological studies for diseases
where diagnosis does not imply that the patient prevents new transmissions,
for example, influenza or coronavirus (where isolation strategies have not been
applied). However, if one wants to estimate the removal probability from the
data, the model becomes unidentifiable. In this case, one can impose strong prior
assumptions on the rates (Morlon et al., 2022) or explore congruence classes for
patterns that are conserved within them (Höhna et al., 2022; Kopperud et al.,
2023).

While we have considered the impact of different fixed constant and linear
removal probabilities on nLTT curves in several examples, the question of how
misspecified removal probabilities impact the inference is yet to be explored. The
difference in nLTT curves for different linear removal probabilities (Figure 7)
demonstrates how this parameter affects the distribution of reconstructed trees,
highlighting that a misspecified fixed removal probability could potentially
influence diversification rate estimates. Potential avenues of inquiry include
describing how the estimates of selected parameter rates are affected by the
magnitude of error in removal probabilities.

By extending pulled rates introduced for birth-death sampling models (Louca
et al., 2021) to the case of the FBD model, we also showed that the distributions
of reconstructed and complete trees generated by related FBD processes are
equivalent. This equivalence provides a different view on the nature of recon-
structed trees that can be seen as complete trees generated by an FBD model
with adjusted or pulled rates, as was previously noted by Louca et al. (2021)
for trees without sampled ancestors. The original birth rate is adjusted by the
probability of the newly born lineage to be observed. The original sampling rate
is split in two: pulled death rate and pulled sampling rate, depending on the
type of the occurred sampling event. Events that are followed by lineage disap-
pearance from the observer become death events and events that are followed by
further sampling events (sampled ancestors) become sampling events.

Despite the identifiability of the FBD model in the arbitrary class of rates,
the inference methods require fixing the class of inferred rates. An avenue for
future research would be to quantify how well different classes of functions that
are available for inference (e.g., the widely used piece-wise constant functions)
approximate the true rates of different function classes which imply identifiability
of the corresponding FBD model.

Another direction for future research is to investigate identifiability for
variations of birth-death models that account for lineage specific birth and death
rates (Maddison et al., 2007), age-dependent rates (Hagen et al., 2015), or
different speciation types (Stadler et al., 2018). While the identifiability of the
pure birth multi-type model with some restrictions on the transition rates has
been recently shown (Dragomir et al., 2023), the identifiability of the parameters
in other models has not yet been generally established.
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Finally, we would like to emphasise that this study completely answers the
question of the time-dependent reconstructed FBD model identifiability. We have
shown the identifiability for arbitrary rate functions (subject to the conditions
that guarantee the probability distribution over the reconstructed trees can be
defined) as long as the sampling rate is strictly positive. The last requirement
is essential for identifiability, because allowing ψ to be equal to zero produces
congruent scenarios and therefore implies unidentifiability.

In conclusion, the FBD model is an excellent candidate for modelling evo-
lutionary processes. It shares computational conveniences of other birth-death
models, describes sampling process with more realistic assumptions, and as we
have shown here, possesses an essential statistical property of identifiability.
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