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ABSTRACT

Pleural mesothelioma (PM) comprises sarcomatoid, epithelioid and biphasic histologic subtypes.
Bulk PM RNA-sequencing identifies a histology-associated molecular gradient with features of epithelial-
mesenchymal (EM) transition but cannot parse malignant, stromal, and immune tumor components. The
mechanisms driving PM malignant cell phenotype and associated histology is not well-characterized.
Here, we use single-cell RNA-sequencing (scRNA-seq) paired with exome, bulk RNA-sequencing, and
histologic analysis of adjacent samples to characterize malignant cell EM state, parse the tumor
microenvironment (TME), and identify candidate drivers of PM cell fate. We observe EM variation in
malignant cells analogous to bulk samples. We characterize epithelioid and sarcomatoid malignant cell
programs and identify a new uncommitted malignant cell EM phenotype enriched in biphasic histology
samples. Using inferred CNVs we observe that single individual PM clones consist of cells exhibiting all
three EM cell states. We find that distinct non-malignant microenvironments associated with tumors
consisting of mostly cells in each state, and identify WNT inhibition, GAS6-AXL, and HBEGF-EGFR signaling
as pathways associated with distinct EM cell states. These findings provide deeper insight into the
molecular drivers of PM malignant cells and identify non-malignant cell signals as potential EMT and
growth drivers in PM.
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INTRODUCTION

Pleural mesothelioma (PM) is an incurable, near-universally lethal, and rare malignancy
arising from the pleura. PM is associated with asbestos exposure (Carbone et al., 2019; Peto et
al., 1982; Sekido, 2013). Asbestos has been banned in several countries, but its continued
widespread use internationally and the decades-long latency period of PM pathogenesis mean
PM incidence is unfortunately unlikely to decline soon(Alpert et al., 2019). PM may be divided
broadly into three prognostic histologic types: epithelioid, biphasic, and sarcomatoid. Median
survival ranges for each type are 12-27, 8 to 21, and 7 to 8 months, respectively (Yap et al., 2017).
Additionally, overall survival benefit with immunotherapy treatment is greatest in non-
epithelioid tumors (Baas et al., 2021; Nowak et al., 2022). Although histology provides insight
into patient outcomes and response, the drivers behind histologic type are poorly understood.
In particular, the mechanism behind biphasic cases, tumors with a mixture of the other histologic
type, remains unknown.

Numerous studies in the last two decades have utilized next generation sequencing of
bulk tissue samples to understand the heterogeneity of genetic and molecular perturbations
across PM tumors (Severson et al., 2020). Collectively, these studies have built upon previous
work to thoroughly characterize the predominant genetic lesions and identify epithelial-
mesenchymal transition (EMT) and inflammation signatures as major axes of molecular variation
in the disease (Alcala et al., 2019; Blum et al., 2019; Bueno et al., 2016; Hmeljak et al., 2018;
Reyniés et al., 2014). Earlier work identified discrete molecular groups, but more recently the
benefits of viewing PM tumors on a histopathologic epithelial mesenchymal (EM) gradient have
been demonstrated (Alcala et al., 2019; Blum et al., 2019). A recent multi-omics approach also
identified ploidy and methylation as additional important discriminating features (Mangiante et
al., 2023).

Despite this extensive work characterizing PM, therapeutic options and predictive
biomarkers remain unacceptably limited. Among several possible reasons frustrating
translational efforts is the presence of substantial within-patient tumor and associated
microenvironment heterogeneity. Another study explicitly examining key features in PM from
two samples taken from a single tumor demonstrated distinct histomolecular and methylation
phenotypes within an individual patient (Meiller et al., 2021). Although two samples may not
provide a comprehensive description of intra-patient heterogeneity, clearly the PM tumor
microenvironment (TME) is not constant even within a single patient’s tumor. Additionally, bulk
studies are unable to parse which molecular features are driven by bona fide tumor cells or those
found in the microenvironment. For this reason, the variation of malignant and stroma cells
across and within patients remain poorly understood in PM. Specifically, the effect, if any, of
genetic features and TME on tumor histopathologic state and, conversely, malignant cell specific
features that sculpt the stroma and immune micro-environment are not well-described. Thus, a
new map that parses the TME across multiple well-annotated tumor sites is necessary to navigate
the complex and dynamic TME of PM and a critical step towards sorely needed efficient and
successful drug discovery.

To that end, we performed in-depth examination of the TME of multiple anatomically
mapped tissue samples freshly allocated from PM tumor resections using histopathology coupled
with adjacent bulk and single-cell RNA-sequencing (scRNA-seq). To define truncal genetic lesions,
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we also obtained genomic profiles of each surgical case. With this approach, we demonstrate
that previously reported histopathologic EM gradients are properties of bona fide malignant
cells, define a new malignant cell specific EM gene program, and identify a gene program
associated with malignant cell commitment to EM phenotype. We also identify variation in extra-
cellular matrix (ECM) gene expression with associated clonal and immune micro-environment
features.

RESULTS

Anatomically mapped multi-sample TME characterization of PM

We developed a workflow for fresh allocation of multiple anatomically mapped samples
from surgical resections of PM tumors for in-depth TME characterization using scRNA-seq, bulk
RNA-seq, and histopathologic analysis of immediately adjacent tissue (Figure 1A). In total, we
collected 93 samples from 40 patients’ surgical resections including 3 negative-control pleura
cases with non-PM pathology. We collected 2.3 samples on average from each case. The cases
were distributed across anatomic site and diagnostic histology; the cohort included 19
epithelioid, 14 biphasic, and 3 sarcomatoid cases. One case was diagnosed on final clinical
pathology after sample analysis as a peripheral nerve sheath tumor (PNS) instead of PM, and one
of the 19 epithelioid case provided a post-treatment sample without viable tumor after
allocation. These served as additional control data points in our analysis. Salient cohort features
are described in Table S1A. For the 37 tumor cases, we performed parallel whole exome and
optical genome mapping analysis to identify predominant single nucleotide (SNVs) and copy
number variants (CNVs), respectively. We observed CNV and SNV lesions consistent with previous
PM studies (Figures 1B; Tables S1B-C) (Bueno et al., 2016; Hmeljak et al., 2018; Jean et al., 2012;
Mangiante et al., 2021). Histopathologic analysis of multiple sites revealed substantial variation
in cellularity and morphology within and across tumors (Figure 1C; Table S1E). Adjacent bulk
RNA-seq analysis confirmed our cohort was representative of previously observed EMT-related
histomolecular variation (Figure S9A-B; Table S1D (Blum et al., 2019; Bueno et al.,, 2016;
Severson et al., 2020).

We generated libraries for an average of 2,863 single cells per sample and 6,657 single
cells per case (n=266,262 total cells; UMIs > 300 & features > 80) (Figures 1D & S1; Table S1F).
The number of single cells isolated from each case and sample are depicted in Figure 1D.
Dimensionality reduction and clustering coupled with marker gene analysis identified diverse
immune and non-immune phenotypes (Figure S2A-B; Table S2A; Methods). We observed both
patient-ubiquitous and patient-specific clusters, where the latter implied the presence of non-
malignant and malignant cells consistent with previously observed in human malignancy studies
(Figure S2C-D) (Galen et al., 2019; Kim et al., 2018; Patel et al., 2014; Raghavan et al., 2021;
Tirosh, lzar, et al., 2016). PM tumor cases were highly variable in their malignant, stromal, and
immune cell content (pie charts in Figure 1D).

We thoroughly investigated these malignant cell calls by inferring CNVs from the scRNA-
seq profiles as previously described (Figures S3-4) (Patel et al., 2014; Tirosh, Venteicher, et al.,
2016). While broad phenotyping was readily accomplished with initial single cell library quality
thresholds, stricter parameters (n=136,910 total cells with UMIs = 750 and features = 400) were
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required for inferring CNVs. After characterizing single cell CNVs, cells with CNV profiles
suspicious for malignancy were re-analyzed and assigned to clonal groups as a function of their
CNV profile (Figures 1E, S5). By combining cell phenotype, membership in patient-specific
clusters, inferred CNVs, and clonal assignment, we were able to robustly assign malignant cells
with explicit clonal assignment and infer malignant identity in the larger, less stringent cohort
(Figure S2 E-G; Methods). Using the inferred malignant cell calls to assign microenvironment
components, we observed wide ranging malignant, immune, and stromal cell content across PM
tumors (Figure S2F-G).
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environment using bulk RNA-seq, scRNA-seq, and histopathology for 94 samples. The distribution of
samples collected per case and the cohort histology are also displayed. B) Somatic mutations in known
MPM driver genes are displayed in heatmap. Histology, sex, age, neoadjuvant therapy, average CV score,
mean % epitheliod, and predominant transcriptional cluster are annotated by color. The barplot above
summarizes the genetic perturbations to commonly mutated genes within the cohort and the line plot to
the right displays the total SNV and CNV burden of samples. C) Pathologic analysis of samples for each
case is displayed within each row, where slide size indicates cellularity and color indicates % epithelioid.
An asterisk indicates that the examined slide is not immediately adjacent to scRNA-sequencing sample.
D) Lollipop plot displays the number of cells isolated (length) in each case, where shapes denote cells
isolated by biologic sample (large circle) or technical replicate (small diamond). Shape fill indicates
anatomic site of sample. Pie charts display the TME distribution observed across cases. E) CNV structure
of MPM clones as inferred by inferCNV and mapped to bands. F) UMAP plots display case of origin (color,
2B) of highest quality stroma (left) and tumor (right) cells with UMI>750 and genes>400.

Malignant cells expression phenotypes encapsulate bulk EM gradient

We used the 32,383 high quality malignant cells (excluding the cases diagnosed as PNS
and no malignancy) to characterize malignant cell specific expression of molecular pathways in
PM (Figure 1F). Unbiased principal component analysis (PCA) revealed the EM gradient, ECM
composition, inflammation, and cell-cycle to be primary axes of variation in PM malignant cells
consistent with previous bulk studies (Figures 2A-B & S6A). Next, we examined previously
described bulk histomolecular signatures in this population of PM malignant cells (Figure 2C). We
observed that bulk epithelioid- and sarcomatoid-related gene signature scores were highly
concordant with the scRNA-seq signature. Histomolecular scores reflected diagnostic histology,
slide histology, and previously assigned cell expression class; however, cells isolated from
sarcomatoid cases more consistently separated from biphasic and epithelioid. Additionally,
single cell expression of bulk EM gradient signature correlated strongly with analogous signatures
in proximal bulk RNA-seq (Figure 2C & S6A). Taken together, these findings suggest that
previously observed variation in bulk samples had significant contributions from PM malignant
cell expression relative to stromal components.

Because the EMT-related histomolecular gradient previously described in bulk samples
(Blum et al., 2019; Severson et al., 2020) correlated significantly with primary axis of variation in
bona fide PM malignant cells using unbiased analysis (r: -0.826, p-value < 0.001) (Figure S6B), we
characterized a malignant cell-specific EM histomolecular gradient using the first principal
component (PC) of these isolated malignant cell transcriptomes. That is, we identified genes that
significantly correlated (|r| > 0.15) with a high (232 genes) or low (371 genes) first PC score to
form malignant cell derived S- and E-score signatures (henceforth, tS-score and tE-score),
respectively (Figure 2D & S6C; Table S3D). Interestingly, only 20 (46.5%) and 28 (63.6%) of
expressed Blum bulk signature S-score and E-score genes were present in these malignant cell-
specific EM signatures. By isolating our analysis to malignant cells, we identified malignant cell-
specific gene programs previously unreported in bulk studies illustrating the utility of a single-cell
approach. KEGG pathways enriched in tS-score included “ECM receptor interaction”, “regulation
of actin skeleton”, and “TGF-B signaling” while “antigen processing and presentation”,
“complement and coagulation cascade”, and “glycolysis / gluconeogenesis” pathways were
enriched in tE-score genes (Table S3F).
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annotated by initial malignant cell transcriptional classification, PM case diagnosis, and adjacent slide
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ordered by clone and ECM score. G) scRNA-seq cell-wise scores for inflammation signature developed
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Mesenchymal malignant cells express distinct ECM signatures

We also observed orthogonal variation (second PC) present in all samples but was
especially evident in different tumor regions representing distinct CNV clones from a single
sarcomatoid surgical case, 27306 (Figures 2A, S5, S7A-B). Excluding 27306 from PCA produced
similar results suggesting that this variation was not driven by this sarcomatoid case alone (Figure
S7C). To parse out EM gradient and case specific effects, we constructed shared and 27306-
specific signatures from genes differentially expressed between cells at the extremes of PC 2
(Table S4). We annotated these signatures ECM-A (low PC 2) and ECM-B (high PC 2) to reflect the
finding that numerous differentially expressed genes at either extreme were associated with the
ECM, e.g., decorin/DCN, cathepsin B/CTSB, and lumican/LUM in ECM-A, and integrin beta
1/ITGB1 and type VIII collagen A1/COL8A1 in ECM-B (Figure S7D-E; Table S4A). This annotation
was corroborated by unbiased pathway analysis that identified enrichment in focal adhesion,
ECM-receptor response, and tight junctions in either signature (Table S4B,E). Most malignant
cells had middling PC 2 scores and exhibited neither phenotype; these cells tended to be isolated
from epithelioid tumors (Figures 2E & S7F). Intriguingly, in the 27306 sarcomatoid case,
immediately adjacent histopathology revealed distinct architecture between two samples with
different clone composition and ECM phenotype (Figures 2F & S71). While ECM phenotype in this
case clearly associated with cell clonotype (max clone difference: 0.679; p-value<0.001), the ECM
phenotype of each clone also varied by sample (Figure S71). This suggested that sample ECM, and
thus architectural, phenotype was determined by both clonal composition and influence of
microenvironment due to either the malignant component itself or infiltrating non-malignant cell
perturbation of the milieu. Overall, these findings suggest that distinct ECM modules exist in PM
independent of previously described EM variation, especially in sarcomatoid tumors, and these
modules may influence tumor morphology and architecture.

The ECM-A and ECM-B modules, especially within case 27306, were also associated with
specific chromosomal abnormalities and tumor immune microenvironment phenotype. Distinct
clones isolated from anatomically disparate sites of 27306 expressed each module, which
allowed contrasting of inferred CNVs to generate candidate causal CNVs. For ECM-A, these
included losses of 13q, 5q, and 19q arms and 8q amplification. In contrast, the ECM-B phenotype
was associated with 13q, 5q and 19q amplification and 16q loss (Figures 2F & S5; Table S4C). We
observed similar CNV lesions in cells with similar ECM phenotypes isolated from other cases
(Figure S7G). The tumor immune microenvironment also differed between these two sites. The
27306 sample with high ECM-B expression had a lower histologic inflammatory score and fewer
CD274/PD-L1 expressing malignant cells (Figure S7J; Table S1E). In cells from all cases, ECM-A
phenotype significantly correlated with both MHC class | (r=0.259; p<0.001) and Il (r=0.493;
p<0.001) expression (Figure S7H).

PM malignant cells are variably committed to EM gradient cell fate

We observed a subset of malignant cells that equivalently expressed the E and S signature
programs at low levels. These cells were not outliers in terms of UMIs detected, genes expressed,
or mitochondrial transcript content and were detected in 27 of 28 cases (96.4%) with at least 50
high quality malignant cells per case (Figures 3A-B & S8A). This population had middling PC 1
scores and small differences in E- and S-scores suggesting that these cells were not committed to



either phenotype (Figure 3C). Therefore, we computed the distance of all malignant cells from
equal expression of E and S signatures, identified the ‘uncommitted’ malignant cells with this
phenotype, and generated a histomolecular uncommitted signature consisting of genes
associated with this cell population (Figures 3D-E). These uncommitted cells tended to be
isolated from biphasic tumors (72.7% of cells) and to be actively cycling (18.2% of cells) compared
to committed epithelioid (41.4% from biphasic, 6.8% cycling) and sarcomatoid type (7.1% from
biphasic, 8.0% cycling) (Figure S8B-C). As seen previously, sarcomatoid cells exhibited a bimodal
distribution of ECM phenotype (ECM-A vs ECM-B), but the epithelioid and this uncommitted cell
population had middling ECM scores suggesting that the previously described ECM variation is
largely a property of committed mesenchymal cells (Figure S8D). Finally, this cell population was
enriched for a DNA methyltransferase (DNMT3A), a hydroxymethyltransferase (TET1), mesoderm
specific transcript (MEST), and a sonic hedgehog ligand, HHIP (Figure SSE).
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Figure 3: MPM malignant cells are variably committed to EM cell fate. A) scRNA-seq histomolecular
signature scores and cell phenotype features (B) for 32,383 high quality inferred CNV confirmed MPM
tumor cells ordered by the difference of Blum E- and S-scores. C) Principal component (PC) 1 and scRNA-
seq EM scores for individual malignant cells. D) Histomolecular commitment (HC) distance, classification,
and uncommitted (U) scores for malignant cells. E) Relationship between gene expression correlation to
malignant cell corrected HC distance and PC1. Genes colored by phenotype program signature. F)
Relationship between uncommitted and log ratio of epithelioid to sarcomatoid scRNA-seq malignant cell
phenotype fractions in PM samples. G) Hierarchically clustered correlation of mean aggregated expression
of scRNA-seq malignant cell phenotype signatures for each PM case (rows and columns). H) Mean
aggregated expression of scRNA-seq malignant cell type signature genes (columns) for each PM case
(rows). 1) Fraction of cells by scRNA-seq malignant cell phenotype within each PM case (rows). Cases are
annotated by histologic diagnosis. K) Morphology and architecture of adjacent H&E frozen sections are
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Cells are ordered by clone and ECM score.
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We examined the composition of uncommitted, committed sarcomatoid, and committed
epithelioid malignant cells populations in each PM sample with at least 50 isolated malignant
cells. Samples with higher fractions of uncommitted cells had similarly sized epithelioid and
sarcomatoid committed populations (Figure 3F). Conversely, samples that skewed heavily
sarcomatoid or epithelioid had a lower uncommitted cell fraction. Samples with the highest
fractions of uncommitted cells were collected from PM cases with a biphasic diagnosis (Figure 3F
& S8F). When examining cases in aggregate, we observed that malignant cells from PM tumors
clustered into three groups, or pseudobulk phenotypes, expressing the sarcomatoid,
uncommitted, and epithelioid malignant cell programs, respectively (Figure 3G-H). These clusters
directly corresponded to the fraction of malignant cells of each type expressing these programs
suggesting that bulk signatures represent a composition of these three discrete phenotypes
(Figure 3l). Interestingly, a similar morphologic phenotype was observed in several samples,
especially those isolated from case 27278, which had a particularly high fraction of uncommitted
cells (Figure 3K). In contrast, the biphasic sample 197652, isolated from case 30001, contained
high fractions of committed sarcomatoid and epithelioid malignant cells with relatively few
uncommitted cells and exhibited correspondingly well-differentiated biphasic histology (Figures
3F,K).

We examined how malignant cell phenotype composition as measured by scRNA-seq
associated with tissue-level features such as histopathologic and bulk transcriptional phenotype.
Epithelioid and sarcomatoid malignant cell scRNA-seq phenotype composition significantly
correlated (R=0.787, p=2.81x10°) with histopathologic estimations of sarcomatoid and
epithelioid content of adjacent slides (Figure S8G). Moreover, molecular cluster (Bueno et al.,
2016) assigned to adjacent bulk RNA-seq samples trended with histopathologic and scRNA-seq
phenotype compositions (Figure S9D). Samples with high fractions of uncommitted cells were
assigned into the more mesenchymal molecular clusters 3 and 4 (Figure S9E). Together, these
findings illustrate the utility of previous bulk classifications and pathologic analysis in capturing
ratios of malignant cell phenotype despite confounding stroma and immune TME components.
However, augmenting these approaches with scRNA-seq revealed the presence of a subset of
phenotypically uncommitted cells which had not been previously described.

Diverse non-immune stromal cells form the PM TME

To dissect malignant and stromal cell components of the PM TME, we examined high
quality non-immune, non-malignant cells concomitantly isolated with malignant and immune
cells (Figure 1F-G). The 10,659 high-quality isolated stromal cells included 668 non-neoplastic
mesothelial cells, 3,386 fibroblasts, 2,456 endothelial cells, 856 vascular smooth muscle cells
(VSMCs), 415 alveolar cells, 198 adipocytes, and 95 pericytes (Figure 1G & S10A-D; Table S5A-B).
One hundred and thirty-six unfiltered macrophage cells formed a single cluster. An additional
2,154 fibroblasts predominantly isolated from the sarcomatoid 27306 case expressed MHCII
programs representing either doublet or antigen-presenting fibroblast (apFibroblast) cells
(Kerdidani et al., 2022). Other patient-specific clusters included 24 erythrocytes, 37 reactive
endothelial cells, and 258 cells suspicious for epithelioid PM malignant cells. In general, stromal
cell types were isolated from samples and cases across each histologic diagnosis (Figure S10E)
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and sample microenvironment histology (Figure S10F), especially when accounting for patient
specific subpopulations which may represent uncalled malignant cells.

Fibroblast populations isolated from the cohort were diverse. In addition to 2 clusters
identified as apFibroblasts, 10 other fibroblast subpopulations were observed. All 10 of these
fibroblast subpopulations contained cells from multiple patients within our cohort indicating
these were not patient-specific phenotypes and thus unlikely to be unidentified malignant cells
(Figure S10A-B; Table S5A-B). Two fibroblast subpopulations expressed TGFBI; these had the
strongest thrombospondin/THBS2 expression (labelled ‘THBS+ fibroblasts’). Notably,
‘apFibroblasts’ with class Il expression and ‘cycling fibroblasts’ with robust cell-cycle expression
(MKI67, TOP2A) also expressed middling TGFBI in contrast to all other fibroblasts, which
expressed THBS2 minimally. Seven fibroblast subpopulations expressed insulin growth factor-
1/IGF1 and osteoglycin/OGN. Four of these, co-expressed WISP2, CXCL14, and CFD, where 2 of
these 4 WISP2+ fibroblasts expressed PCOLCE2 and APOD. Overall, these clustering and marker
gene analyses suggested that fibroblasts infiltrating PM tumors have diverse and heterogenous
expression phenotypes.

PM immune microenvironment varies across PM tumors

After sub-setting high-quality cells and excluding multiplet or heat shock program
dominated clusters, a total of 50,309 immune cells were isolated from PM samples (Figure 1F-
G). We identified 2,132 B cells, 636 mast cells, 24,206 T- and NK cells, and 16,922 monocyte,
macrophage, and dendritic cells (DCs) using cluster and known cell type marker genes (Figure
S11A-C; Table S6A-B). Next, we separately sub-clustered the T- and NK cell and monocyte,
macrophage, and DC groups to identify more granular subtypes of each of these populations
(Figure S11D-E, Table S6C-D). PCA readily segregated monocytes, DCs, and macrophages (Figure
S11F). A subset of macrophages expressed MARCO with or without VCAN and FN1, consistent
with recruited and tissue resident alveolar macrophages, respectively (Figure S11G; Table S6A-
C). Among tumor associated macrophages (TAMs), the expression phenotypes varied as two
broad subtypes expressing distinct programs associated with either SEPP1 or SPP1 (Figure S11H)
as previously observed in other cancer TMEs (Raghavan et al., 2021). We also observed that
subsets of macrophages expressed either antiviral programs exemplified by IFIT1 expression or
pro-inflammatory programs including THBS1, CXCL8, and IL1B (Figure S11G-H). This variation was
reflected in the resulting clusters (Figure S11A-B, D). Intriguingly, expression of antiviral
programs was associated with AXL (Table S6C), a receptor tyrosine kinase known to promote
EMT and proliferation in malignant cells and polarizes macrophages toward an
immunosuppressive phenotype(Engelsen et al., 2022).

For NK and T-cells, sub-clustering and marker gene analysis identified subpopulations of
CD4+ T cells, CD8+ T cells, and NK cells (Figure S11A-B,E; Table S6A-B). CD8+ T cells were
differentiated by variable expression of features of exhaustion (i.e., SLAMF7, HAVRC2, and
PDCD1) and cytotoxicity (i.e., GZMB and PRF1). One cluster of CD8+ T cells which we annotated
as interferon CD8+ T cells (IFNr CD8 T cell) expressed anti-viral genes such as IFIT1 and MX1.
Among CD4+ T cells, we isolated regulatory (Treg), naive, activated, and Th1l CD4+ T cells. Tregs
were identified by FOXP3 expression. Naive and activated T cells were identified by the absence
or presence of TNF and IL4R, respectively. INFG and EOMES were marker genes for the Th1l CD4+
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subpopulation. Possibly because of the shared feature of cytokine program expression, the Thl
CD4+ T cell cluster also contained cytotoxic CD8+ T cells. Notably macrophage/T-cell doublet
populations were also found in both sub-clustering analyses; these have been previously
reported and may be biologic. These were annotated appropriately and excluded from further
analysis.

ScRNA-seq deconvolves benign and malignant mesenchymal signatures

To characterize non-malignant TME contributions to bulk RNA-sequencing signatures, we
used differential expression analysis (Table S5C) to generate stromal and immune signatures for
cell types identified in the microenvironment of our cohort (Figures 2A, S10, & S11; Table S5D).
We minimized inclusion of genes expressed by malignant cells in the resulting stromal signatures
by including malignant cell lineages as controls in our analysis (Methods). This analysis also
generated a list of genes expressed by non-malignant cells in the micro-environment (Table S5E).
Published bulk RNA-seq signatures were then assessed for genes expressed predominantly by
microenvironment cell types. We found that all signatures contained numerous genes expressed
by stromal and immune cells, where on average 36.9% of epithelioid and 66.9% of sarcomatoid
bulk signatures contained genes associated with non-malignant cells (Figure 4A & S12A, Table
S5F).
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We assessed the impact of removing these genes from bulk EM cell state signatures.
Specifically, we scored bulk transcriptomes of samples adjacent to scRNA-seq tissue using
published gene signatures with and without genes expressed by non-malignant cells. Bulk
signatures correlated significantly and strongly (p < 0.001 in all instances) with analogous
signatures where genes expressed by non-malignant cells were removed (Figure S12B-D). This
reinforces that malignant cell expression is the predominant signal underlying previous EM-
gradient descriptions of bulk PM samples. Bulk sarcomatoid signatures performed universally
worse than epithelioid signatures in terms of consistency; the average squared Pearson
correlation coefficients were 0.895 and 0.988, respectively. This likely reflects the substantial
overlap between bulk sarcomatoid signatures with non-malignant programs, especially
fibroblast, and illustrates the importance of empiric micro-environment deconvolution by scRNA-
seq. Additionally, bulk and scRNA-seq mean EM-gradient scores were concordant for the 51
scRNA-seq samples containing at least 10 malignant cells with bulk RNA-sequencing from the
same sample site (Figure 4B, Pearson R?: 0.563; p-value<0.001). We observed that several
samples had lower scRNA-seq tS-scores than would be predicted by their bulk score. These
consisted mostly of previously described cluster 2 and 3 epithelioid and biphasic samples. We
hypothesized that fibroblasts expressing some subset of genes within the sarcomatoid program
at higher levels could explain this discrepancy. Indeed, we found that fibroblast lineage marker
expression significantly correlated with the residuals computed in bulk and mean scRNA-seq
histomolecular score linear regression (Figure 4C; Pearson R?: 0.453, p-value < 0.001). Thus, in a
subset of PM tumors, benign mesenchymal expression modulates bulk tumor histomolecular
gradient scores in addition to the predominant malignant cell signal. This further underscores the
importance of explicit deconvolution of PM microenvironment cell type with scRNA-seq.

There is potential for diagnostic confusion between benign and malignant mesenchymal
cells. Indeed, we observe that 58.2% of malignant tS-score signature genes (93.3% of the top 30
used for cell scoring) were among the 1,091 marker genes (adj. p-value < 0.001) for clusters
identified as fibroblasts (Figure S11E). To clarify bulk molecular profile analysis and generate
potential histologic biomarkers, we performed differential expression analysis between these
two populations of single cells. We found that 140 fibroblast and 161 sarcomatoid genes were
differentially expressed (FC >= 2 and adjusted p-value < 0.01) respectively (Table S5F). These
included fibroblast markers of C3, SPARCL1, and IGF1 as well as sarcomatoid markers of CADM3,
LTBP1, and CDH2 (Figure S12F). These gene sets can be used to deconvolve benign and malignant
mesenchymal components of bulk PM microarray and RNA-sequencing samples for predictive
and prognostic analysis. The genes also represent candidate biomarkers to distinguish benign
fibroblasts and malignant sarcomatoid cells in PM samples.

In contrast, epithelioid malignant cells generally expressed mesothelial cell marker genes
at higher levels rather than unique genes suggesting that epithelioid mesothelioma malignant
cells express a similar gene program to non-neoplastic well-differentiated mesothelial cells
(Table S5F). Genes differentially expressed in mesothelial cells were frequently mitochondrial
genes. This is likely a reflection of the fragility of well differentiated mesothelium when compared
to transformed epithelioid malignant cells.

Given the observed consistency between bulk and scRNA-seq scores and the large
fraction of bulk sarcomatoid program genes expressed by fibroblasts, we hypothesized that EM-
gradient expression in the non-malignant cells present in the TME mirrors malignant expression.
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Indeed, we observe that EM-gradient expression is significantly and strongly correlated between
fibroblasts and malignant cells isolated from the same PM case (Figure 4D; Pearson R?: 0.361, p-
value: 0.002) or tumor site (Figure S12G; Pearson R?: 0.376, p-value < 0.001). Significance was
preserved when the malignant cell compartment was correlated with the entire stromal
compartment (Figure S12H; Pearson R?: 0.401, p-value < 0.001), but not the immune
compartment (Figure S12I; Pearson R?: 0.025, p-value: 0.200). These findings are consistent with
the hypothesis that a paracrine factor within the TME drives PM mesenchymal tone for all tumor
components.

PM tumor microenvironment varies with sample histomolecular phenotype

Next, we assessed how PM features varied across multiple anatomic sites within a tumor.
First, we assessed how malignant cell transcriptional state varies as a function of sample within
cases. To accomplish this, samples were classified into epithelioid, sarcomatoid, and
uncommitted pseudobulk phenotypes using correlation of aggregate expression of malignant cell
EM state signatures (Figure $S13). In general, the pseudobulk phenotype of samples isolated from
the same patient were most strongly correlated with one another. Of the 15 patients with
multiple samples, specimens from 7 of them more strongly correlated with other samples from
the same patient rather than samples from other patients (Figure S13E). Only 4 cases consisted
of samples assigned to distinct pseudobulk states. To classify the predominant malignant state in
bulk samples, we developed malignant-exclusive signatures filtered by removing genes
expressed by non-malignant cells in the TME (see Methods). The predominant malignant cell
state of bulk samples was assigned by taking the state with the highest score in bulk samples.
These bulk-assigned malignant states were mostly consistent (92.3% concordance) with
pseudobulk malignant type of adjacent scRNA-seq tissue (Figure S14A). This suggests that most
tumors have a predominant EM phenotype despite potentially large physical distances between
isolated samples from single PM tumor. We similarly assigned 211 previously published bulk RNA
sequencing profiles (Bueno et al., 2016), which demonstrated the presence of tumor samples
predominated by each of the three malignant cell states in an orthogonal cohort (Figure S14B).

Distinct immune and histopathologic axes of variation have been proposed with multi-
omics analysis (Mangiante et al., 2023). However, the interaction between immune and
histopathologic tumor phenotypes has not been well-described in the setting of bulk sample
analysis. To understand how sample microenvironment interacts with malignant cell state, we
analyzed the non-malignant microenvironment. First, we assessed overall TME diversity by
computing Simpson’s index for the 60 samples with at least 200 isolated non-malignant cells.
Among 45 samples with sufficient non-malignant and malignant cells, we found that increasing
diversity was significantly associated with more mesenchymal tumors (Figure 4E; R?: 0.109, p-
value: 0.027). However, this result may be confounded by weak correlation observed between
scRNA-seq EM signatures and the number of isolated cells (R2: 0.087, p-value: 0.042). Certainly,
a subset of epithelioid tumors demonstrated less diversity than the rest of the cohort.

We then clarified the relationships between stromal and immune cell types by correlating
relevant marker gene expression average over isolated cells of each type to understand
relationships between cell types (Figure S15A-B). As expected, related cell types clustered
together. APOD+ and, to a lesser extent, TGFBI+ fibroblasts were more unique in their expression
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profile than closely related IGF1+ and WISP2+ fibroblasts (Figure S15A). Cycling and apFibroblasts
shared expression features with both endothelial/pericyte populations and other fibroblasts
subtypes. For tumor-associated macrophage subtypes, SEPP1+ and CXLC8+ TAMSs were distinct
from the more closely related SEPP1/SPP1 co-expressing, SPP1+, and IFIT TAMs (Figure S15B).

After clarifying the relationships between TME cell types, we then clustered the 60 PM
samples with greater than 200 non-malignant cells isolated (Figure 4F). Interestingly, clustering
on TME composition segregated tumors into groups predominated by distinct pseudo-bulk
malignant cell states. A group of low malignant cellularity samples containing two of the normal
pleural controls contained higher fractions of WISP2+ fibroblasts, neutrophils and circulating
monocytes. Explicit comparison of cell type fractions within the TME identified exhausted CD8 T
cells to be significantly enriched in PM tumors predominated by uncommitted state (Figure
$15C). Although not significant, higher fractions of TGFBI+ fibroblasts, naive CD4, and SPP1+ TAM
were also observed in tumors predominated by uncommitted malignant cell state. Committed
epithelioid samples were significantly depleted in regulatory T cells (Treg), but significantly
enriched with IFN receptor positive CD8 T cells (IFNr CD8) and natural killer cells (NKCs). In
contrast, committed sarcomatoid samples were significantly enriched in CXCL8+ TAM.

ScRNA-seq data facilitates deconvolution of individual cell types but is costly, limiting the
number of samples. Additionally, specific populations may be differentially isolated as a function
of dissociation and processing time. Therefore, as aforementioned we developed cell type gene
signatures for malignant cell, stromal, and immune cell types that allow bulk RNA-seq samples to
be assessed for cell type composition (Figure S14, Table S5C-F, Methods). We scored bulk RNA-
seq tissue samples adjacent to scRNA-seq samples with these cell type scores (Figure S14C). We
observed that clustering on the TME composition segregated PM tumor samples by predominant
malignant cell state suggesting that malignant cell state phenotype and the associated TME are
related. Uncommitted samples were generally rich in fibroblasts and poor in macrophages.
Additionally, these tumor samples were rich in CD8+ T cells, especially exhausted T cell
phenotypes. Sarcomatoid and low cellularity samples were also enriched for macrophages,
especially CXCL8+ macrophages. Interestingly, biphasic samples with high epithelioid content
were rich in TGBI+ cells in adjacent bulk RNA-seq samples.

As with proximal bulk samples of the scRNA-seq samples, bulk malignant state was
assigned using malignant exclusive scRNA-seq phenotype scores in 211 previously published bulk
RNA-seq samples (Bueno et al., 2016) (Figure S14B). Next, we assessed scRNA-seq derived TME
cell type scores in these 211 samples. While scRNA-seq scores of bulk RNA samples provided did
not discriminate subtypes, i.e. cytotoxic vs exhausted CD8+ T cells, in the larger cohort of 211
bulk RNA-seq samples, broad cell type distributions were observed (Figure $14D). Malignant cell
state again segregated by TME phenotype reinforcing the finding that malignant cell and
associated TME phenotype are related in PM. Intriguingly, we observed that mesenchymal
tumors were broadly divided into fibroblast rich, macrophage poor and fibroblast poor,
macrophage rich groups. Explicit comparison revealed that in this orthogonal cohort with 7
sarcomatoid samples, CXCL8+ macrophages were indeed enriched in samples predominated by
sarcomatoid malignant cell state compared to uncommitted (p-value: 0.0038) and epithelioid (p-
value: 2.31x10®) phenotypes (Figure $15D). Uncommitted-dominant samples were also enriched
for exhausted CD8+ cells compared to epithelioid (Figure S15E; p-value: 5.68x107).
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Thus, both scRNA-seq and bulk RNA-seq analysis in an independent cohort demonstrate
that malignant cell state is associated with a distinct TME (Figure 4G). Specifically, sarcomatoid
samples are enriched for CXCL8+ macrophages, where some sarcomatoid tumors vary in their
overall fibroblast to macrophage ratio. Uncommitted-predominant samples are enriched for
infiltration of CD8+ T cells, especially those expressing markers of exhaustion. Epithelioid tumors
frequently have less TME cell type diversity and have an enrichment of natural killer cells.

MEST and HHIP operationalize uncommitted cell state

Although the multi-gene meHCscore successfully assigns uncommitted cell state in bulk
RNA sequencing data, we assessed top marker genes (Figure S8C), MEST and HHIP, to identify
single gene biomarkers of this newly identified PM malignant phenotype. We observed that cases
predominated by uncommitted cell state had significantly higher bulk RNA-seq MEST expression
than epithelioid cases (Figure S16A, p-value: 0.0409). Notably MEST was sensitive, identifying all
uncommitted rich cases, but not specific as it was also highly expressed in a subset of committed
samples (Figure S16B). Interestingly, committed samples with high MEST expression had middling
EM states as measured by Claudin-vimentin (CV) score (Figure S16C). Even in low uncommitted
samples, MEST may be a biomarker for mixed malignant state PM tumors. The biomarker HHIP
was similarly significantly enriched in uncommitted cases (Figure S16D; p-value: 0.006). Although
HHIP was more specific and still denoted mixed state PM cases (Figures S16E-F). The biomarkers
also identified uncommitted tumors in an orthogonal cohort of 211 bulk RNA-seq samples
(Figures S16G-H). In these 211 samples, both HHIP and MEST were significantly elevated in cases
with inferred uncommitted malignant cell state compared to epithelioid and sarcomatoid. Using
a representative biphasic sample, we observed in spatial transcriptomic analysis that MEST
demarcated a unique malignant cell population distinct from epithelioid and sarcomatoid
malignant cells (Figure S17).

Individual PM clones span the EM gradient

To assess how malignant cell state varied by clonotype, we examined the malignant cell
EM score across individual clones within PM cases. We observed that while EM state was
frequently restricted by case of origin, it generally did not vary by inferCNV defined clone within
PM samples (Figure 5A). Indeed, cells from individual clones often expressed two or three
malignant cell states. In one uncommitted biphasic case, five of six clones expressed all three
malignant cell phenotypes (Figures 5B). In this case, clones were found to represent genuine
subclonal heterogeneity as confirmed by orthogonal optical genome mapping (Figure 5C). Thus,
EM malignant cell phenotype is not restricted by specific malignant cell clones and varies among
cells that share the same copy number features. However, we did observe that EM malignant cell
phenotype was distinct among clones in a handful of cases from each histology (sarcomatoid:
30048, biphasic: 26547, and epithelioid: 29891, 30010). Thus, while distinct genetic features are
not a prerequisite for PM malignant cell heterogeneity, there may be specific lesions that restrict
or modify EM malignant cell state.
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Figure 5: PM EM gradient represents a plastic phenotype with candidate TME drivers. A) Boxplot displays
EM gradient score distribution of malignant cells across PM cases. Box outline and fill display scRNA-seq
pseudobulk state and inferred CNV clone, respectively. B) Proportion of cells in each malignant cell state
within six distinct inferred clones of biphasic case, 27278. C) Optical genome mapping (top) and inferred
CNV profile of biphasic case 27278. D) Log2 fold change gene expression of signal proteins in non-
malignant cells between tumors of distinct pseudobulk malignant cell states. Labelled genes were
identified as having significant TME interactions using CellPhoneDB.
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TME factors associate with EM gradient

Because EM malignant cell phenotype varied within PM clone, we hypothesized that
factors within the TME may drive EM cell state. To identify potential TME drivers, we performed
differential expression analysis comparing extra-cellular signal expression between tumors
predominated by each malignant cell phenotype. To parse extrinsic drivers expressed by non-
malignant cells in the TME and intrinsic ones expressed by malignant cells themselves, we
contrasted signal expression separately in non-malignant (Figure 5D; Table S7A) and malignant
(Figure S18A; Table S7B) cells. We further narrowed candidate drivers with CellPhoneDB by
filtering differentially expressed genes for those identified as components of significant
interactions between malignant cells with either themselves or other cell types in the TME (Table
$7C). We found that sarcomatoid malignant cell state was associated with TME expression of
CXCL2, CXCL12, VEGFA, THBS1, TGFB3, and GAS6 (Table S7D). THBS1, CXCL12, VEGFA and GAS6
were also significantly more expressed by sarcomatoid malignant cells themselves along with
TGFB1 and VEGFC (Table S7E). CXCL2 and CXLC12 were generally expressed by myeloid cells, but
mostly in CXCL8+ TAMs and alveolocytes, respectively (Figure S18B). These were identified as
interacting with DPP4 receptor expressed by malignant cells (Table S7C; Figure $S18C). VEGF and
THBS were mediated by NRP1/NRP2 or integrin expression in malignant cells, respectively, and
both widely expressed by sarcomatoid malignant cells, myeloid cells, and fibroblasts (Figure
S18B-C). TGFB3 interacted with the TGB1 receptor and was expressed by pericytes, vascular
smooth muscle cells, WISP2+ and TGFBI+ fibroblasts. Finally, GAS6 was expressed by sarcomatoid
cells, dendritic cells, and SEPP1 TAMs. It was identified as interacting with the AXL receptor, which
was highly expressed in sarcomatoid cells. These enriched signals provide new candidate
biomarkers for sarcomatoid PM and candidates for drivers of PM mesenchymal cell state.

Epithelioid predominant tumors were notable for their HBEGF expression mediated by
EGFR and expressed ubiquitously by myeloid cell types. Intriguingly, epithelioid malignant cells
had significantly higher WNT2B expression. In contrast, uncommitted and sarcomatoid cells
express the WNT inhibitory receptors SFRP2 and SFRP4, respectively. This could represent a
mechanism, whereby the more mesenchymal malignant states downmodulate beta-catenin.
Interestingly, WNT pathway inhibitors DKK1, DKK2, and DKK3 were also upregulated in
uncommitted and to a lesser extent, sarcomatoid malignant cells (Table S7B).

DISCUSSION

Using a large, histologically representative cohort of multi-site PM samples, we have
demonstrated that previously described EM histomolecular variation in bulk PM samples exists
within malignant cells themselves. To our knowledge, this is the first scRNA-seq PM cohort with
matched bulk RNA-sequencing and adjacent histologic samples with a multiple-site sampling
design. While previous studies in bulk RNA identified a continuous EM gradient across samples
(Alcala et al., 2019; Blum et al.,, 2019), these analyses were unable to identify which cell
components were driving this phenotype. The concordance between bulk and malignant cell-
specific EM signatures demonstrated in the present study suggests that previous findings in bulk
tissue were largely representative of malignant cell variation and is consistent with another
recent PM scRNA-seq study (Giotti et al., 2024). Furthermore, we describe a new malignant cell
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state, termed uncommitted, in PM most frequently isolated in biphasic tumor samples. We
identified malignant cell specific molecular signatures for EM, characterized by the expression of
ITLN1, KRT19, and C3 or COL1A1, FN1, and LOX at the epithelial or mesenchymal ends of the
spectrum, respectively. Uncommitted cells expressed MEST, HHIP, DNMT3A, and TETI1.
Additionally, we describe candidate genetic determinants of ECM component variation in
mesenchymal samples that associate with immune microenvironment. Given that tumor
architecture has been associated with tumor staging in other malignancies, e.g., non-small cell
lung carcinoma, these ECM modules may have further implications in prognosis as well.

We also demonstrate that individual malignant cell states are not defined as distinct
clones. Instead, individual PM clones may generate all three phenotypes. This does not preclude
genetic determinants of malignant cell state but does provide evidence that distinct mutations
are not required for changes in PM cell state. Indeed, by untangling the PM micro-environment
with scRNA-seq, we identify distinct drivers of proliferation and possibly EMT expressed by both
malignant cells and their surrounding micro-environment. Specifically, we identify fibroblasts,
pericytes, and myeloid lineage cells as cell types that express secreted drivers of EMT and
proliferation. This is an intriguing finding given PM is a cancer of tumor suppressor mutation.
While mutations remove the checkpoint on proliferation, it may be that non-malignant cells
provide the fuel for proliferation, where mesenchymal cells tend to be driven by GAS6-AXL and
epithelioid tumors by HBEGF-EGFR signaling. Notably, GAS6-AXL signaling has been previously
identified as a an important EMT gene in PM (Engelsen et al., 2022; Ou et al., 2011)and AXL was
recently described as associated with sarcomatoid malignant cell module gene expression in
another PM scRNA-seq study(Giotti et al., 2024). We also identify inhibition of WNT as a potential
mechanism for maintaining an uncommitted cell state, given the identification of SFRP2, HHIP,
DKK1, DKK2, and DKK3 as either signature biomarkers or significantly differentially expressed in
in uncommitted cells. Given these findings, modulation of non-malignant signaling may provide
a new drug target pathway in PM.

The single-cell RNA-sequencing approach utilized in this study is limited by the presence
of substantial noise characteristic of such experiments. While every effort was made to remove
multiplet cells, some libraries will inevitably contain expression from two or more distinct cells.
Additionally, for many cells, expressed genes may not have been detected and these so-called
"dropouts" may confound phenotypic and inferred CNV classification. The inferred CNVs provide
a powerful window into malignant cell clone architecture, especially in PM where the CNV burden
is high; however, these profiles are subject to the cell’s chromatin state and fluctuations in gene
expression which may generate incorrect CNV calls. Parallel Optical Genome Mapping (OGM)
does largely overcome this limitation by verifying genuine CNVs in many cases, but it could
incorrectly eliminate true inferred CNVs that are clonal and not sampled in the tissue allocated
to OGM. While the cohort was representative of all PM histologic types, the analysis was limited
by the collection of only three sarcomatoid samples, where only two of these yielded viable
malignant single cell libraries. Although bulk RNA-seq and IHC sections were taken from adjacent
tissue, the tumor micro-environment may change even over a few microns of tissue. As a result,
although this work was designed to minimize potential discordance between parallel modalities
due to sampling, it may not have eliminated this effect entirely.
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METHODS

PATIENT CONSENT AND TISSUE COLLECTION

All samples were obtained from surgical resections at Brigham and Women’s Hospital
from 2018-2021 under the Institutional Review Board (IRB) approval (Dana Farber Cancer
Institute Protocol No 98-063). Patients provided written informed consent for allocation,
banking, and downstream analytics and data publication. Using a common anatomic mapping
scheme (Figure 1A), surgeons performed systematic multi-site pleural sampling at the time of
macroscopic complete resection irrespective of gross malignant cell involvement at each site. In
most cases, six-site sampling (the prespecified maximum) was achieved. Fresh samples were then
processed by clinical pathology, and remaining tissue was allocated to the Brigham and Women’s
Tissue and Blood Repository Core for research. At the core, the largest sample from each site was
trisected. Half was allocated fresh for single cell transcriptomics, while the immediately adjacent
tissue of each side was oriented in OCT and banked for bulk RNA-sequencing and
histopathological analysis, respectively. Additional fresh frozen tissue was stored and annotated
by the Institutional Tumor Bank with IRB approval (#98-063) at the Brigham and Women’s
Hospital. Malignant cell content was confirmed by a pulmonary pathologist who reviewed H&E-
stained frozen sections.

BULK DNA AND RNA EXTRACTION

Bulk DNA for exome sequencing was isolated using the DNeasy Tissue kit (Qiagen, Hilden,
Germany). Matched normal DNA was prepared from peripheral blood or lung tissue. For RNA
extraction, the TRIzol (ThermoFisher Scientific, Waltham, MA) method in combination with
RNeasy kit (Qiagen) was conducted. RNase or DNase | (Qiagen) treatments were conducted
according to the manufacturer’s instructions. Nucleic acids were quantified using an NanoDrop
One spectrophotometer (ThermoFisher Scientific). The integrity of the DNA was determined
using Qubit 4.0 Fluorometer (ThermoFisher Scientific), whereas RNA integrity (RIN>7) was
confirmed using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA).

TISSUE DISSOCIATION FOR SINGLE-CELL ANALYSIS

Tissue was received fresh from the Brigham and Women’s Tissue and Blood Repository
Core in cold RPMI-1640 medium (Gibco 11875093) with 10% fetal bovine serum, hereafter
referred to as RP10). Research personnel were privy to preoperative biopsy histology, but
otherwise masked to clinical information. All efforts were made to minimize time between
tumor excision and single-cell processing. Tumor lysis was performed using the Miltenyi Tumor
Dissociation Kit (Miltenyi Biotec, 130-095-929) per manufacturer guidelines. Tumors were
sharply lysed on ice using Noyes spring scissors until fine enough to pass through a 2ml
serological pipette. Tumors were then transferred to enzymatic media, mechanically
dissociated using the gentleMACS tumor-02 protocol, and incubated for 15 minutes under
continuous rotation at 37°C. Dissociation was repeated using the gentleMACS tumor-03
protocol and a second 15-minute incubation was performed. The tumor lysates were filtered
through a 70uM filter and washed with cold RP10. RBC lysis was performed using ACK lysing
buffer (Quality Biological, 118-156-101) per manufacturer protocol. Following an additional
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wash with 5ml PBS (Gibco), cells were resuspended in RP10, placed on ice, and assessed for
concentration and viability using the Bio-Rad TC20 Automated Cell Counter per protocol.
Epithelioid samples with mean viability below 70% were excluded; however, this viability
threshold was not employed for biphasic or sarcomatoid samples to maximize collection of rare
tumors. Samples of any histology were excluded if mean cellularity was less than 50,000 cells
per mL.

SINGLE-CELL RNA-SEQ (SCRNA-SEQ) DATA LIBRARY GENERATION, SEQUENCING, AND
ALIGNMENT

ScRNA-seq processing followed the Seqg-Well protocol, a method uniquely compatible
with low-input samples (Gierahn et al., 2017). Briefly, on the day of processing, arrays were
loaded to saturation with RNA capture beads (ChemGenes) and temporarily stored in bead
loading buffer (100 mM sodium carbonate [Sigma 223530] with 10% bovine serum albumin
[Sigma A9418]). Prior to cell loading, arrays were resuspended in 5 mL RP10. After dissociation,
single-cell suspensions were counted as described above. Suspensions with adequate cellularity
were diluted to a target range of 10,000-20,000 cells per 200 pL of RP10. To generate technical
replicates in select samples, appropriately diluted single cell suspensions were divided into 200ul
aliquots and loaded onto multiple separate arrays. These arrays then proceeded through the
remainder of the Seq-Well protocol, including sequencing, in parallel. Excess RP10 was aspirated
from the array and cells were loaded onto arrays. Excess cells were washed off with PBS (4x5 mL,
Gibco), briefly left in RPMI (5 mL) and cell+bead pairs were sealed for 40 minutes at 37°C using a
polycarbonate membrane (Fisher Scientific NC1421644). Arrays were rocked in lysis buffer for 20
minutes and RNA was hybridized onto the beads for 40 minutes. Beads were removed from the
arrays using centrifugation and reverse transcription was performed overnight using Maxima H
Minus Reverse Transcriptase (Thermo Fisher EP0753). Prior to sequencing, the beads underwent
an exonuclease treatment (New England Biolabs M0293L) and second strand synthesis en
masse followed by whole transcriptome amplification (WTA, Kapa Biosystems KK2602) in 1,500
bead reactions (50 pL). cDNA was isolated using Agencourt AMPure XP beads (Beckman Coulter,
A63881) at 0.6X SPRI (solid-phase reversible immobilization) followed by a 1X SPRI and quantified
using the Agilent 2100 Bioanalyzer system.

Library preparation was performed using Nextera XT DNA tagmentation (lllumina FC-131-
1096) and N700 and N500 indices specific to a given sample. Tagmented and amplified sequences
were purified with a 0.6X SPRI. cDNA was loaded onto either an lllumina Nextseq (75 Cycle
NextSeq500/550v2 kit) or Novaseq (100 Cycle NovaSeq6000S kit, Broad Institute Genomics
Platform) at 2.4 pM. The paired end read structure was either 20 bases (containing 12 bp cell
barcode and 8bp UMI) by 50 bases (transcriptomic information) or 26 bases by 57 bases with an
8 base pair (bp) custom read one primer for NextSeg500 runs. For Novaseq runs, the paired end
read structure for libraries was either 28 bases by 85 bases or 150 bases by 150 bases with either
an 8bp or 10bp custom read one primer. The demultiplex and alignment protocol was followed
as previously described (Macosko et al., 2015). While Novaseq data were directly output as
FASTQs, Nextseq BCL files were converted to FASTQs using bcl2fastg2. The resultant Nextseq and
Novaseq FASTQs were demultiplexed by sample based on Nextera N700 and N500 indices. Reads
were then aligned to the hg38 transcriptome using the DropSeq tools (Macosko et al.,
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2015)pipeline implemented on the Brigham and Women’s ErisOne cluster using standard
settings.

BULK RNA-SEQUENCING ANALYSIS

Eighty-nine of the 93 samples had sufficient tissue to allocate for parallel bulk RNA-
sequencing. Of these, 71 samples were adjacent to scRNA-seq sample. Another 11 and 7 were
isolated from the same site or case, respectively. Extracted RNA was shipped to Medgenome on
dry ice. Polyadenylated RNA were enriched using poly-T oligo attached magnetic beads. Reverse-
stranded bulk cDNA libraries were prepared using the lllumina TruSeq stranded mRNA kit
(#20020595) and sequenced to approximately 100 million 100bp paired-end reads per samples
on the Novaseq 6000. Bulk RNA-sequencing reads examined for adequate mapping rates and
library sizes. Quality-controlled libraries were then mapped to the human genome (hg38) and
read counts were generated using STAR v.2.7.3 (Dobin et al., 2013). The resulting counts were
normalized to transcripts per million (tpm) with a library size adjusted using trimmed moving
means normalization in ‘edgeR’ (Chen et al.,, 2014; Robinson et al., 2009) for subsequent
visualization and analysis. Additionally, the raw counts matrix was intersected with the raw
counts matrix of 211 previously published PM transcriptomes and were assigned into the four
reported consensus clusters using the 400 most variable genes identified in the previously
published 211 transcriptomes as previously described (Bueno et al., 2016).

HISTOPATHOLOGIC ANALYSIS

Eighty-two of the 93 samples had sufficient tissue to allocate an adjacent piece to
histopathological sampling. For seven of the samples without adjacent tissue, slides were
sectioned from tissue obtained from the same surgical resection; one of these was taken from
the same anatomical site as the scRNA-seq sample. Four samples did not have sufficient tissue
for histopathologic analysis. All slides were read by a licensed pathologist for relevant
parameters including slide histology, composition (percent malignant cell, sarcomatoid,
epithelioid, and fibroblast content), inflammatory score (0-3), nuclear pleomorphism score (0-
3), notation of any non-pleural tissue observed, and whether sufficient tissue was present for
analysis.

BULK CNV IDENTIFICATION USING OPTICAL GENOME MAPPING

Banked fresh frozen tissue from each PM case was shipped on dry ice to Bionano for
optical genome mapping assay and analysis. There, ultra-high-molecular-weight-DNA was
extracted, followed by labeling, linearization, and imaging of DNA (Saphyr, Bionano). The results
were analyzed using the Bionano Access Version 1.6 and 1.7 Rare Variant (>5000 bp) and Copy
Number (>500,000 bp) pipelines and compared against the Bionano control database of 200
healthy individuals to exclude common germline CNVs. Resulting CNVs were examined for
overlap with coding regions of PM associated genes. For each sample, base pair coordinates of
observed CNVs were mapped to gene regions with sufficient scRNA-seq expression for inferred
CNV analysis and compared to scRNA-seq CNV events.

SNV IDENTIFICATION USING BULK WHOLE EXOME SEQUENCING
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Whole exome sequencing (WES) was performed on paired bulk tumor and normal (blood)
samples for each case. Exome capture was performed using Agilent SureSelect XT HS2 kit
(#G9983A) targeting specific genomic regions (Human Exome V7 #5191-4005). Resulting libraries
were sequenced to either 30X (normal DNA) or 100X (tumor DNA) depth with 100bp paired-end
on the Novaseq 6000.

Reads from multiple lanes were uploaded to the Seven Bridges Cancer Genomic Cloud
(www.cancergenomicscloud.org). Sequencing libraries from each case were concatenated using
the Seven Bridges SBG FASTQ Merge CWL1.0 tool. Next, tumor-normal pairs were analyzed for
somatic SNVs, copy number variants and tumor purity using the Seven Bridges “WES Tumor-
Normal with Variant Calling, CNV estimation, TMB, MSI and HRD scores” public application
(sgb:draft-2, v1.0) developed by PDXNet (https://cgc.sbgenomics.com/public/apps) using default
parameters. Briefly, the WES tumor-normal pipeline utilized the Broad Institute’s best practices.
Alignment was performed using BWA (Li & Durbin, 2009) to the hg38 genome. Variants were
called with Mutect2 (Version 4.1.3.0) (Benjamin et al., 2019) and resulting variant calls were
analyzed and annotated using the ‘SnpEFF’ (Cingolani, Platts, et al., 2012) and ‘SNPSift’ (Cingolani,
Patel, et al., 2012) tools. The resulting somatic SNV calls are summarized with the imputed
malignant cell and normal allele frequencies, the gene impacted, and the mutation effect rank
(High, Moderate, Modifier, or Low) in Table S1C. CNVs were also identified, and tumor purity and
loss of heterozygosity (LOH) regions were estimated using the ‘Sequenza’ R package (Favero et
al., 2015) by assessing the variation of tumor/normal read coverage and minor allele frequencies
across the exome-targeted genome.

To minimize false positives due to low allele frequency sequencing errors and numerous
C>A/G>T calls, the somatic mutations detected with “high confidence” were required to have an
imputed tumor allele frequency > 0.1 and tumor read coverage of at least 10 reads. Somatic
mutations in the most mutated genes in PM were extracted (Figure 1B; Table S1C).

SINGLE-CELL DATA QUALITY PRE-PROCESSING AND INITIAL CELL TYPE DISCOVERY

All single-cell data analysis was performed using the R language for Statistical Computing
(v4.0.5). Digital gene expression (DGE) matrices (cells x genes) containing UMI expression values
of genes in 10,000 “cells” for each sample or replicate were initially aggregated by batch to assess
distribution of genes, detected, UMls, and mitochondrial reads for bimodality (suggesting natural
threshold for information poor and rich cell observations). After inspection and threshold
determination, each sample or replicate’s DGE was then filtered to exclude low-quality cells (<80
genes detected; <300 UMls; >40% mitochondrial reads) before being merged (preserving all
unique genes) to create a DGE containing all 114 samples and replicates. The merged dataset was
further trimmed to remove cells with >10,000 genes which represented outliers and likely
doublet cells. Genes that were not detected in at least 3 cells were also removed. The resulting
DGE matrix contained 279,154 cells.

Using the R package Seurat (v4.0.1) (Satija et al., 2015), PCA was performed over 3,000
variable genes normalized using SCTransform (Hafemeister & Satija, 2019). Additionally, UMI
count data for 15,000 genes were normalized SCTransform controlling for mitochondrial content
(Hafemeister & Satija, 2019) to yield normalized counts and log-counts for downstream data
visualization and exploration of additional genes not utilized in clustering. After examining the
distribution of variance across components, 110 PCs were input to build an SNN graph and cluster
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cells (res=2; k.param=20). This identified clusters shown using UMAP (n.neighbors=30) in Figure
S1A. Lower quality cells (e.g. mitochondrial reads >25% but <40%) were included under the
expectation that cells primarily defined poor quality would cluster together (Figure S1B). Thus,
6,204 cells from cluster 17 were removed because they only expressed mitochondrial markers
and 589 cells from cluster 70 were also removed due to their low UMI to genes expressed ratio
(likely multiplets). Doublet cells were then identified using scDblIFinder (Germain et al., 2021) and
subsequently removed (n=6,678). Notably, clusters 6 (n=9,214) and 61 (n=1,046) were flagged
but retained as they simultaneously expressed high mitochondrial UMIs and clear cell type
markers (Table S2). This led to an overall high-quality dataset of 266,265 single cells assigned to
83 clusters with low overall fraction of mitochondrial reads (median =0.091) for downstream
analysis (Figure S1C).

The expression of known markers was used to collapse clusters containing shared lineage
information in the trimmed dataset. For example, clusters 1, 15, 28, 32, 34, and 81 all express
high levels of CD8+ T cell markers—CD3D, TRBC2, and CD8A—and were accordingly collapsed for
this first pass analysis (Figure S2A). To aid cell type identification, the Wilcox test implemented
in Seurat was performed to identify top marker genes in each cluster (Table S2).

SINGLE-CELL CNV IDENTIFICATION

Single-cell CNVs were estimated as previously described by computing the average
expression in a sliding window of 100 genes within each chromosome after sorting the detected
genes by their chromosomal coordinates (Patel et al., 2014; Tirosh, lzar, et al., 2016; Tirosh,
Venteicher, et al., 2016). While all 266,262 cells were readily assigned to phenotypic groups, CNV
identification was performed on a subset (136,910 cells) consisting of the highest quality cells (at
least 400 genes expressed and 750 UMls detected). Thirty cells were of sufficiently high quality
but could not be analyzed using inferCNV due to limited phenotypic representation (cluster size
= 1) in their respective surgical case. For this analysis, all NK, CD45+ proliferating, Epithelial, EM
hybrid, Mesenchymal, Mural, and Endothelial cells identified as above, of sufficient quality, and
isolated from three normal pleura samples were utilized as reference normal populations
(n=422). Complete information on the inferCNV workflow used for this analysis can be found at
the Broad Institute GitHub (https://github.com/broadinstitute/inferCNV/wiki).

Initially, CNVs were detected in all 136,880 cells of sufficient quality. As previously
described (Tirosh, lzar, et al., 2016), specialized immune cells such as B cells, monocyte, and
macrophages exhibited heterogeneous CNV profiles due to their chromatin state, so these cells
along with CD4+ T, CD8+ T, and Treg cells (n= 72,322 cells) were annotated as immune cells and
excluded from further CNV analysis. For reference and candidate malignant cells (n=64,558),
these CNVs were utilized to compute CNV score and correlation of CNV profile with the average
CNV signal for the top 5% of altered cells in each surgical case as previously described (Tirosh,
Izar, et al., 2016). Next, a subset of cells was selected with the purpose of capturing putative
malignant cells to enable computationally feasible subclone analysis. Cells were first separated
into non-malignant and putative malignant by entropy of patient distribution for their respective
phenotypic cluster (see above; Figure S3A-B). Visually determined thresholds using CNV score as
a function of CNV correlation divided cells into “tumor”, “ambiguous”, and “not tumor”
categories for each surgical case (Figure S3C). Cells annotated as “tumor” or “ambiguous” were
considered suspicious for malignancy and included in subclonal analysis. Additionally, all cells
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within clusters where greater than or equal to 60% cells, including those annotated as “not
tumor", were considered suspicious for malignancy were also included in subclonal analysis.

SUBCLONAL ANALYSIS WITH SINGLE-CELL INFERRED CNVS

For cells considered suspicious for malignancy and of sufficient quality, subclonal copy
number variants were called with high sensitivity using the inferCNV workflow comprehensively
outlined at the Broad Institute GitHub (https://github.com/broadinstitute/inferCNV/wiki) (Fan et
al., 2018; Patel et al., 2014; Tirosh, Venteicher, et al., 2016). Identical reference cells from control
cases were utilized as in the initial CNV identification. Briefly, a six-state Hidden Markov Model
(i6-HMM) was used to predict relative copy number status (complete loss to >3x gain) across
putative altered regions in each cell. A Bayesian latent mixture model then evaluated the
posterior probability that a given copy number alteration is a true positive. The default cutoff
(BayesMaxPNormal = 0.5) was used for this step. The results of this filtered i6-HMM output were
then used to cluster the single cells using Ward’s method. Statistical significance of potential
subclusters was tested using the “random trees” method (P < 0.05, 100 random permutations
for each split) implemented in inferCNV. Only significant subclusters were retained. To track
subclonal heterogeneity across anatomic sites, the above workflow was implemented for each
surgical case including all samples and replicates allowing the CNVs to determine cell sorting
agnostic to sample-of-origin (Figure S4).

In clonal CNV profile comparison analysis, inferred CNVs of each clone were mapped to
chromosomal bands. Band-summarized CNV profiles were then hierarchically clustered using the
Manhattan distance and ward.D2 linkage method (Figure 1E).

IDENTIFICATION OF MALIGNANT CELLS

Malignant cells were identified through an iterative process combining cluster phenotype,
patient-cluster distribution (entropy group), detected CNVs, and clonotype. After excluding
clearly non-malignant immune cells (e.g., macrophages, T cells, etc.), candidate malignant cells
were identified by examining the distribution of cells within each phenotypic cluster across
patients operationalized by normalized Shannon entropy (Figure S2B); cells in clusters
predominantly identified in a single patient (low entropy) were considered ‘putative tumor’
(Figure S2C & S2G). Next, the CNV signal score and correlation to the average profile of the top
5% altered cells were computed for each surgical case and utilized to enrich for cells suspicious
for malignancy as described (see ‘Single Cell CNV Identification’) with the intention of using
subclonal analysis to identify remaining non-malignant cells.

For 52,937 (82.0%) of the 64,558 tested cells, entropy group and CNV metric malignant
cell annotations were concordant (Figure S2D; Table S2). The 1,200 cells that were not
considered suspicious for malignancy, but putatively malignant by Shannon entropy analysis
were either isolated from non-malignant control samples (72 cells) or found within cluster 35
(1,128 cells). The profiles for the discordant cluster 35 cells were examined in the 6 surgical cases
containing the most cluster 35 cells (Figure S4) revealing these cells to be non-malignant. A total
of 15,212 cells (9,054 stroma and 6,158 immune) with CNV analysis were concordantly defined
as “non-tumor” by entropy group and CNV metrics. Subclonal analysis was performed on the
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remaining 49,346 cells suspicious for malignancy. Assigned clones were examined for evidence
of CNVs for each patient and assigned to “malignant” or “non-tumor” accordingly (Figure S5).
Some clones were partitioned on entropy group, detected CNVs, and phenotype due to visually
obvious intraclonal discrepancies in CNV evidence. In these cases, individual partitions were
assigned to “malignant” or “non-tumor”. Thus, 64,558 cells were characterized as “malignant”
(40,501 cells) or “non-tumor” (16,834 stroma and 7223 immune). Among “malignant” cells, 1,303
(3.22%) clustered and expressed markers consistent with stromal orimmune identity (Figure S2E)
and another 3,702 expressed PTPRC/CDA4S5; these were excluded as likely doublets leaving 35,496
malignant cells (Figure S2F & S2G).

Strictly for the purposes of tumor micro-environment description and cellularity
computation, malignancy was inferred from phenotype and entropy group alone for the
remaining 129,352 cells with insufficient data for CNV analysis. Notably, entropy group alone was
sensitive (90.90%) and specific (86.93%) for malignant cells in the data where CNV analysis was
available.

SUBCLUSTERING OF MALIGNANT AND NON-MALIGNANT CELLS

Detailed phenotyping required splitting the dataset into malignant and stroma (non-
immune, non-malignant) fractions and restricting analysis to the highest information cells
(greater than 400 genes and 750 UMIs). The 945 PNS malignant cells were excluded leaving
34,551 PM malignant cells. After sub-setting to only malignant cells, initial PCA was performed
using the first 35 PCs on the re-scaled data for SNN clustering (resolution = 1.5). Several low-
variance dimensions of this initial PCA had significant contributions from mitochondrial gene
features and 2 malignant cell clusters contained cells with high mitochondrial reads (first quartile
>25%). Cells in these clusters were removed in subsequent analysis leaving 32,383 high quality
PM malignant cells. As with malignant cells, PNS stroma (859 cells) and CD45+ cells (3,214)
leaving 12,776 high quality PM stromal cells (no high mitochondrial stromal clusters identified on
initial PCA). PCA was repeated on filtered malignant or stromal cells using the first 25 PCs for SNN
clustering (resolution=1.2) and UMAP visualization.

Marker genes were used to identify previously described stromal cell types (Figures S10;
Table S5A). Because the previous malignant cell identification emphasized specificity not
sensitivity, stroma clusters were assessed for patient-specificity to maximize enrichment of non-
malignant cells for further analysis. Clusters where greater than 90% of cells arose from a single
patient were considered patient-specific clusters and excluded from downstream stroma
phenotyping. These were stroma clusters 33 (100% from 27409), 8 (96.9% from 27306), 23
(96.8% from 27444), 0 (96.3% from 27409), 21 (93.0% from 27444), 32 (91.9% from 27042), and
1 (91.9% from 30285). Clusters 6, 16, 17, 19, 22, 23 expressed lineage markers from multiple
immune and stroma populations; these were likely doublets or cells with ambient RNA in the
setting of necrosis. A total of 4,566 cells were excluded from downstream variation and malignant
vs stromal cell differential expression analyses, where 2,695 cells were found in patient-specific
clusters, 2,093 cells from clusters expressing multiple lineage markers, and 222 cells in cluster 23
with both features.

For immune micro-environment comparisons and lineage signatures, analysis was also
restricted to 79,552 immune cells with greater than 750 UMIs and 400 expressed genes.
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Furthermore, immune cells of lymphoid ("CD8+ T cell", "CD4+ T cell", "Treg", "B cell", "CD45+
proliferating") and myeloid ("Macrophage", "Monocyte", "NKC", "Mast cell") origin were filtered
to contain less than 10% and 15% mitochondrial reads, respectively, leaving 64,163 immune cells
for signature and TME association analysis. PCA was repeated on filtered immune cells using the
first 35 PCs for SNN clustering (resolution 1.2) and UMAP visualization. Clusters were assigned
into broad immune types (Figure S11; Table S6). Several clusters contained at least 20% cells
expressing non-immune sarcomatoid and epithelioid genes, e.g. ITLN1, COL3A1A . These clusters
were annotated as “Multiplets/Ambient” and excluded from further analysis. Additional sub-
clustering analysis of NK/T-cells (30 PCs, resolution 1.2) and macrophages/dendrocytes (30 PCs,
resolution 1.2) were performed facilitating more granular functional sub-type assignment (Figure
S11D-E). For macrophages/dendrocytes, as previously observed (Raghavan et al., 2021; Zhang et
al., 2020; Zilionis et al., 2019), initial clustering identified a cluster of macrophage-T-cell doublets.
Additionally, the first principal component was driven by heat stress response expression and
three clusters contained at least 75% of cells expressing heat stress response genes above the
median. These four clusters were labelled appropriately, and the remaining 16,922 cells were re-
clustered as above. Clusters predominantly of macrophage-T-cell doublets and heat shock
response expression were also identified and removed in NK/T-cells, resulting in 24,206 cells
clustered as previously described.

Subsequent phenotyping for malignant, stromal, and immune cells is discussed below
(Generation of expression signatures/scores).

GENERATION OF SINGLE CELL EXPRESSION SIGNATURES & SCORES

The CV score (Bueno et al., 2016; Severson et al., 2020) for each cell was computed by
dividing scTransform normalized UMI counts of VIM+0.01 from CLDN15+0.01 and performing a
base two logarithm. All other expression scores were computed as previously described by taking
a given input set of genes and comparing their average relative expression to that of a control
set (n=100 genes) randomly sampled to mirror the expression distribution of the genes used for
the input (Raghavan et al., 2021; Tirosh, Izar, et al., 2016). While all scores were computed in the
same way, choosing the genes for input varied. The relevant approaches have been outlined
below. Where correlations (Spearman’sr)are performed over genes, we used the log-
transformed scTransform normalized UMI count data for each case.

Previously Published PM Bulk RNA-Seq Signatures

All gene sets were filtered for genes detected (normalized UMI >=1) in at least three
malignant or stroma cells. Parenthetical E and S were added to gene set names to indicate
similarity to Blum E- and S-score where appropriate. E-score and S-score gene sets consisted of
the detected genes found within the E-score and S-score components as reported by Blum et al
(Blum et al., 2019). The four continuous scores reported by Alcala et al, i.e. angiogenesis-low (E),
angiogenesis-high (S), inflammation-high, inflammation-low, were generated by taking the 30
detected genes with the highest positive or negative correlation with the relevant PC as
previously published (Alcala et al., 2019). The two TCGA iCluster signatures were generated by
taking the top 30 genes ordered by cluster centroid scores of the 2,807 mRNA classifier genes for
mMRNA iCluster 1 (E) and mRNA iCluster 3 (S), respectively (Hmeljak et al., 2018). The microarray
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derived C1 (E) and C2 (S) signatures were generated by identifying the subset of the published 40
discriminating genes (Reyniés et al., 2014) that were detected in the single cells and significantly
different (t-test, p-value<0.05) between C1 and C2 and then assigning genes with higher
expression to the appropriate cluster signature. Gene sets are reported in Table S2A.

Cell Cycle

The previously established signatures for G1/S (n=42 of 43 genes) and G2/M (n=55 of 55
genes) were filtered for genes detected in malignant cells and utilized to assess cycling status
(Tirosh, Izar, et al., 2016). After inspecting the distribution of scores in the complete dataset, any
cell >1.5 s.d. above the mean for either the G1/S or the G2/M scores were annotated as cycling
(Galen et al., 2019).

mSigDB Signatures

Relevant gene sets were retrieved from mSigDB and GSEA analysis was performed as
below. Scores were computed using the union of unique leading-edge genes identified in each
respective gene set (Table S3C).

SCRNA-seq Malignant Cell Derived E-scores and S-scores

All detected genes were correlated (Spearman) with the relevant histomolecular-related
PC 1. Candidate genes (|r| > 0.025) observations were scrambled in 1000 iterations to generate
an empiric expression-normalized gene-specific null of correlation to the PC. Genes with empiric
g-value £0.0001 and r20.15 or r £-0.15 formed the scRNA-seq S-score (tS-score: 232 genes) and
E-score (tE-score: 371 genes) signatures, respectively (Tables S3E). Scores were computed and
visualized using the top 30 genes in each category (Figures 2B & S7A).

ECM-A, ECM-B, ECM-A.27306, and ECM-B.27306

To minimize EM gradient signal, differential expression was performed comparing the top
and bottom deciles of PC 2 (ECM variation) within the bottom (Epithelioid-like) and top
(Sarcomatoid-like) quartiles of PC 1 (Table S4A). For ECM-A and ECM-B signatures, the resulting
genes with adjusted p-value < 0.01 and average log2 fold-change > 0.25 or £ -0.25, respectively,
from each PC1 quartile were intersected to identify a list of ECM genes unrelated to EM gradient.
The genes meeting identical criteria in the top quartile (Sarcomatoid-like) of PC 1 formed the
ECM-A.27306 and ECM-B.27306, which were created to describe the ECM variation primarily
captured by the case 27306. Resulting gene signatures are reported in Table S4C. All signature
genes were utilized for computing score, but only top 30 were used for visualization (Figure S7E).

Histomolecular Commitment Distance and Score

A subpopulation of malignant cells equivalently expressing low epithelioid and
sarcomatoid programs was revealed when cells were ordered by EM gradient (Figure S8A-B). To
characterize these malignant cells without histomolecular commitment (HC), the HC distance’
was computed by computing the Euclidean distance from equal expression of tE-score and tS-
score signatures for each tumor cell (Figure S8C). Cells with an HC distance 1.5 standard
deviations below the mean HC distance, i.e. less than 0.94, were considered uncommitted. To
generate an HC score, all detected genes were then correlated (Spearman) with computed
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Euclidean distance to generate a HC correlation. To enrich for genes specific to uncommitted
cells, the absolute value of each genes’ correlation to PC 1 was added to their HC correlation
resulting in a corrected HC correlation. In this way, genes highly correlated with tS-score or tE-
score signatures were excluded from the uncommitted (U) score. Several genes with low
corrected commitment correlation were ubiquitously expressed; to filter these genes,
differential expression between uncommitted cells and epithelioid or sarcomatoid committed
populations was performed (Table 3F). Genes with corrected commitment correlation < -0.05
(empiric g-value £0.0001), significantly differentially expressed in both comparisons (adj. p-value
<0.01), and expressed in less than 20% of cells in either committed population were considered
uncommitted genes and formed the HC score signature (n=48 genes) (Figure S8D; Tables S3E-F).
Cells were visualized and scored using the 30 genes with the greatest negative corrected
commitment correlation (Figures S8C & 3D-E).

Inflammation Score

All detected genes were correlated (Spearman) with the relevant inflammation-related
PC 3. Genes (n= with empiric g-value < 0.0001 and r > 0.15 formed the scRNA-seq inflammation
score (Inf-score) (Table S3E,G). All signature genes were utilized for computing score, but only
top 30 were used for visualization (Figure 2C).

PATHWAY ANALYSIS WITH GSEA AND SELECTION-UNBIASED CATEGORY ENRICHMENT

For gene set enrichment analysis (GSEA), the gene set search space consisted of canonical
pathways and hallmark gene sets from MSigDB (Liberzon et al., 2011, 2015) and previously
published PM gene sets as described above. These were utilized for GSEA using ‘fgsea’
(Korotkevich et al., 2019), where the enrichment metric was computed from either ordered
embeddings of each PC dimension or average log2 fold-change in gene expression. For GSEA on
PC embeddings, general biological perturbations for each component were inferred where
possible (Figure S6B) from resulting significant gene sets (adj. p-value <0.05) reported in Table
S2B. Significant gene sets (adj. p-value<0.05) resulting from GSEA of log2 fold-changes in gene
expression between top and bottom deciles of PC 2 are reported in Table S4B.

For selection-unbiased category enrichment, over-representation of KEGG pathways was
tested accounting for gene length for relevant gene signatures using ‘goseq’ (Young et al., 2010).
Genes without KEGG pathway categories were excluded and the over-representation scores
were computed with the “Wallenius” method. Pathways were considered significant if FDR < 0.5.
Pathway over-representation results are reported in Tables S3B and S4D.

ASSIGNMENT OF PSEUDO-BULK MALIGNANT CELL STATE

Cases (n=29) and samples (n=64) with at least 10 malignant cells were assigned to
“Sarcomatoid”, “Epithelioid”, and “Uncommitted” by averaging expression of the top 30 genes
of each gene program across all malignant cells isolated from the case or sample. This generated
a pseudo-bulk pure malignant cell case or sample with 90 gene features representing the three
malignant programs (Figures 3H & S12B). The Pearson correlation distance was computed and
used to hierarchically cluster with “Ward.D2” linkage cases or samples into three pseudo-bulk
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clusters representing the average malignant cell state found in the tumor tissue (Figures 3G &
S12A). Individual cell-type composition of pseudo-bulk cases or samples was visually confirmed
and corresponded to pseudo-bulk assignment (Figures 31 & S12C).

TME ASSOCIATIONS

Samples were filtered for sufficient isolation of non-malignant cells (n > 200). Thus, of 89
samples, 29 were excluded for insufficient capture of TME cell types leaving 60 samples from 29
cases for TME association analysis. Of these, 15 samples had insufficient malignant cells (n < 10)
to be assigned pseudobulk malignant cell type. The TME association with malignant cell
phenotype was analyzed in two steps as previously described in pancreatic samples (Raghavan
et al., 2021). The Simpson’s Index (a measure of ecological diversity) was computed using the
count of each non-malignant cell type captured from each sample as input and correlated with
each PM sample’s scRNA-seq malignant cell histologic score, i.e. tS-tE score (Figure 4E). In these
samples, the number of non-malignant cells isolated was weakly, but significantly correlated with
EM scRNA-seq malignant cell state (R?=0.087; p=0.0418) but not sample Simpson index
(R?=0.053; p=0.0791). Next, the fractional representation for every non-malignant cell type in
each PM resection sample was used to compute the pairwise correlation distance (Pearson’s r)
followed by hierarchical clustering using Ward’s D2 method identifying TME relationships
between samples. Because identified cell type assignment is dependent on choice in cluster
granularity, stromal and immune cell types were clustered using Pearson correlation and Ward’s
D2 clustering to identify relationships between identified cell types (Figure S15A-B). Features in
this analysis were restricted to stroma marker genes (Table S5A) or immune, myeloid, and
lymphoid marker genes (Tables S6A,6C-D), respectively.

Additionally, trends in fraction TME cell content by pseudobulk type were visualized by
sample (Figure S14C-D). To identify significant associations between predominant malignant cell
pseudobulk phenotype and TME components, distributions of fraction cells were compared for
each cell type using a Kruskal-Wallis rank-sum test (Figure S15C). Values were considered
significant for g-value <0.1, after correction for multiple hypothesis testing.

GENERATION OF BULK RNA-SEQ SCORES FROM SINGLE CELL EXPRESSION

Bulk RNA-seq profiles obtained in this study as well as previously published (Bueno et al.,
2016) were scored using single cell expression signatures above using single sample gene set
enrichment analysis (ssGSEA) (Barbie et al., 2009; Subramanian et al., 2005). These scores were
computed using the GSVA package in Bioconductor (Hanzelmann et al., 2013). Additional
signature scores were generated from single-cell expression data to deconvolute bulk RNA-seq
profiles, but not utilized to score individual cells as above. The generation of these signatures are
described in detail below.

Stromal Subpopulation Signatures

Stromal subpopulation signatures were established using iterative differential expression
(DEG) analysis analogous to the approach described by Krishna et al (Krishna et al., 2021). Initial,
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“subpopulation” DEG analysis compared each cluster (e.g. TGFBI+ fibroblast.1 cells) to all other
cells in its broad lineage (e.g. all fibroblasts). This round of DEG establishes the DEGs specific to
the cluster (i.e. subpopulation). For each cluster, only those genes (log FC > 0; adj. P < 0.01)
exclusive to that cluster's subpopulation DEG were retained. Subsequently, for each cluster a
“lineage” DEG analysis, in which each cluster (i.e. TGFBI+ fibroblast.1 cells) was compared to all
other clusters of other lineages (e.g. all mural cells, mesothelium, endothelium, etc.). For each
subpopulation (e.g. TGFBI+ fibroblast.1, mesothelial cell.1, etc) within a lineage (e.g. Fibroblast,
Mesothelium, Mural, Alveolocyte, Endothelium, Erythrocyte), the same set of lineage genes, i.e.
the set of genes that are commonly upregulated across at least 70% subpopulations of the same
lineage when performing DEG analyses vs other lineages were retained. To optimize lineage
specificity, only genes that were expressed in less than 20% of subpopulations of other lineages
were retained in signature. To define the final signature genes for each cluster, its subpopulation
and lineage DEGs were combined (Table S5C). In parallel, all genes were identified that were
present in at least 20% of subpopulations within a lineage in either subpopulation or lineage
analysis. These genes represent marker genes for stroma lineages and subpopulations which may
distort bulk estimates of malignant cells (see Malignant-exclusive E- and S-scores). To ensure that
genes in each signature were only expressed in non-malignant cells, malignant cells were also
included in analysis. Each malignant cell was assigned a lineage of either Sarcomatoid,
Uncommitted or Epithelioid and a subpopulation category defined by its lineage and patient of
origin (e.g. ‘Sarcomatoid.27306’). In this way, malignant lineages and subpopulations provided
filters for stromal signatures.

Immune Subpopulation Signatures

To identify immune infiltrate contributions to previously described bulk PM gene
signatures, PM immune infiltrate signatures were established for subpopulation and broad
immune phenotype (e.g. Mast cell, Treg, NKC, B cell, Monocyte, CD4+ T cell, CD8+ T cell, and
Macrophage). Immune subpopulations were defined by initial phenotype clustering (Figure S2A)
and signatures were defined using an analogous approach to the generation of stromal
subpopulation signatures. Treg clusters were considered part of the CD4+ T cell lineage for this
analysis.

Malignant-exclusive Uncommited, E- and S-scores

To deconvolute bulk samples, scRNA-seq tE-score and tS-score signatures derived from
malignant cells were filtered to exclude previously detected stroma marker genes (Table S5D).
Additionally, the stroma marker gene-filtered tS-score signature was filtered to only include
genes significantly differentially expressed that were also expressed in twice as many
sarcomatoid cells when compared to fibroblasts (Table S5F) to generate the malignant cell
exclusive sarcomatoid signature (meS-score: 13 genes). Given the absence of distinguishing
genes separating mesothelium and epithelioid, no additional filtering following stroma marker
gene exclusion was performed to generate the malignant cell exclusive epithelioid signature
(meE-score: 91 genes). For the malignant exclusive uncommitted score (meHCscore), no
differential expression filtering was applied resulting a 24 gene signatures (Figure S14A-B; Table
S5D-E).
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IDENTIFICATION OF CANDIDATE TME EM GRADIENT DRIVERS

To identify factors in the TME that drive EM cell state in either the malignant cells
themselves or in associated non-malignant cells, differential expression analysis was performed
on a short-list of candidate EM driving ligands. Candidate ligands were identified in MSigDB
(Liberzon et al., 2011) annotated with the “signaling receptor binding” molecular function gene
ontology excluding immunoglobulin complex genes (1,481 genes). A final list of candidate EM
driving ligands (630 genes) was created by intersecting the signaling genes with 1,891 genes
coding for secreted protein obtained from The Human Protein Atlas (Uhlén et al., 2015, 2019) by
searching “protein_class:Predicted secreted proteins”. For autocrine factors, differential
expression analysis was performed using these candidate ligands comparing malignant cells with
the “Sarcomatoid” cell state to those with the “Epithelioid”, and then comparing “Uncommitted”
malignant cells to the rest. A gene was considered differentially expressed if q < 0.05 and log(fold
change) > 0.2 in either comparison. Genes were then assigned to subtypes based on the log fold
change direction (Figure 5D, Table S7A). Paracrine factors were determined in a similar manner
with slight modifications. Non-malignant cells were grouped into “Sarcomatoid”, “Epithelioid”,
or “Uncommitted” based on clustering on average malignant cell expression of malignant
programs in their respective tumor samples (Figure S12). Differential expression was then
assessed between all cells from a given group contrasted to the remaining cells as above (Figure
S18A, Table S7B). Differentially expressed genes were filtered by significant interactions
identified using CellPhoneDB (Table S7C). This resulted in a short list of candidate factors
expressed by either non-malignant (Table S7D) or malignant cells (Table S7E) in the PM
microenvironment. Average expression for each factor was visualized in each cell type isolated
from each of the respective malignant cell state-specific TMEs (Figures $18B-C).
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