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Abstract. 
 
Alzheimer's Disease (AD) exhibits a complex molecular and phenotypic profile. Investigating 
gene expression plays a crucial role in unraveling the disease's etiology and progression. 
Transcriptome data across ethnic groups lack, negatively impacting equity in intervention and 
research. 
We employed 565 brains across six U.S. brain banks (n=399 non-Hispanic Whites, n=113 
Hispanics, n=12 African Americans) to generated bulk RNA sequencing from prefrontal cortex. 
We sought to identify cross-ancestry and ancestry-specific differentially expressed genes (DEG) 
across Braak stages, adjusting for sex, age at death, and RNA quality metrics. We further 
validated our findings using the Religious Orders Study/Memory Aging Project brains 
(ROS/MAP; n=1,095) and performed metanalysis (n=1,660). We conducted Gene Set and 
Variation and Enrichment analysis (GSVA; GSEA). We employed a machine-learning approach 
for phenotype prediction and gene prioritization to construct a polytranscriptomics risk score 
(PTRS) splitting our sample into training and testing sub-samples, either randomly or by 
ethnicity (“ancestry-agnostic” and “ancestry-aware”, respectively). Lastly, we validated top DEG 
using single-nucleus RNA sequencing (snRNAseq) data. 
We identified several DEG associated with Braak staging: AD-known genes VGF (Padj =3.78E-
07) and ADAMTS2 (Pad j=1.21E-04) were consistently differentially expressed across statistical 
models, ethnicities, and replicated in ROS/MAP. Genes from the heat shock protein (HSP) family, 
e.g. HSPB7 (Padj =3.78E-07), were the top differentially expressed genes and replicated in 
ROS/MAP. Ethnic-stratified analyses prioritized TNFSF14 and SPOCD1 as top Hispanics DEG. 
GSEA highlighted “Alzheimer disease” (Padj =4.24E-06) and “TYROBP causal network in 
microglia” (Padj =1.68E-08) pathways. Up- and down-regulated genes were enriched in several 
pathways (e.g. “Immune response activation signal pathways”, “Vesicle-mediated transport in 
synapse”, “cognition”). Ancestry-agnostic and ancestry-aware PTRS effectively classified brains 
(AUC=0.77 and 0.73 respectively) and replicated in ROS/MAP. snRNAseq validated prioritized 
genes, including VGF (downregulated in neurons; Padj =1.1 E-07). 
This is the largest diverse AD transcriptome in post-mortem brain tissue, to our knowledge. We 
identified perturbated genes, pathways and network expressions in AD brains resulting in cross-
ethnic and ethnic-specific findings, ultimately highlighting the diversity within AD pathogenesis. 
The latter underscores the need for an integrative and personalized approach in AD studies. 
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Introduction. 

Alzheimer disease exhibits complexity through the interplay of numerous genetic, epigenetic, 
and environmental factors contributing to its onset and progression. Brains of individulas with a 
diagnosis of Alzheimer disease undergo notable neuropathological alterations, including a 
progressive atrophy, in particular of the hippocampal and cortical regions1. Numerous past 
investigations have led to the discovery of specific genes and proteins integral to the neural 
system, and several risk factors that influence the onset of Alzheimer disease 2, including 
alternative regulation of gene expression mechanisms, such as mRNA-transcription factor 
interactions, non-coding RNAs, alternative splicing, and/or copy number variants3. Differential 
gene expression analyses contrasting affected vs. non-affected brains are a primary interest of 
investigation aiming to uncover pathological mechanisms in Alzheimer disease and other 
neurological diseases4.  

Although genetic and environmental factors exhibit variability across different ancestral and 
ethnic groups5, most genomic research, especially in the context of neurodegenerative diseases, 
remains primarily focused on non-Hispanic White (NHW) individuals. This highlights an 
underlying health disparity in Alzheimer disease research resulting in a significant gap in 
understanding disease mechanisms. There is a pressing need to diversify research efforts and 
extend comprehensive genomic studies to include a broader spectrum of ethnic and ancestral 
groups6-8. In this study, we assembled a large dataset of diverse ethnic backgrounds and detailed 
neuropathological assessment. In addition to NHW samples, our study includes 113 brains from 
Hispanic individuals, marking this the largest collection of its kind to date. This dataset allows 
for a detailed exploration into ethnic-specific molecular profiles and their complex associations 
with AD.  

Braak staging, which refers to the extent and location of hyperphosphorylated tau pathology in 
the brain, effectively categorizes the progression of AD 1. We employed Braak staging as a 
primary outcome because most of our samples (>90%) were ascertained from individuals with at 
least some degree of AD pathology, thus lacking true pathology-free control brains. This 
imbalance necessitated an alternative method of categorization beyond the traditional case vs. 
control contrast. The strong association between Braak staging and clinical manifestations, i.e. 
memory deficits or poor clinical dementia ratings, has been extensively studied in previous 
investigations9,10. This methodological choice ensures a thorough and detailed investigation, 
accommodating the sample composition and enhancing the depth of our insights into the 
complex nature within the disease’s spectrum. Furthermore, categorization of individuals with 
and without AD often oversees secondary pathological findings or clumps together those (rare) 
pathology-free brains with others still exhibiting low-to-medium pathology burden. 

We present MU-BRAIN (MUltiethnic Brain Rna-seq for Alzheimer INitiative), a multiethnic 
transcriptome: through differential gene expression analysis, ML-based prediction scores, and 
pathway analyses, we report a complex molecular interplay aiming to foster a more inclusive and 
representative outlook in AD research. 
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Materials and methods 
Description of cohorts and sample filters 
 
We obtained a total of 925 prefrontal cortical brain samples across six distinct U.S. cohorts: New 
York Brain Bank at Columbia University, University of California Davis, University of 
California- San Diego, Mayo Clinic Florida, and University of Miami. Additionally, we accessed 
the data related to the brain samples through the National Comprehensive Repository for 
Alzheimer’s Disease (NCRAD). Age, sex, self-reported ethnic group, neuropathological 
diagnoses, RIN (RNA integrity number representing integrity values to RNA measurements) and 
Postmortem Interval (PMI) were collected. After excluding samples with missing 
neuropathological diagnosis, primary diagnosis other than Alzheimer’s Disease 11, or minimum 
set of covariate data (sex, age at death, RIN), we retain 565 brains (“Main model”). In secondary 
analyses (detailed in the supplementary material) we additionally included PMI (“Model 2”, 
final n=272), which was missing in a significant number of brains. Additionally, we expanded 
the analyses to all brains with an available Braak stage, regardless of their primary 
neuropathological diagnosis (i.e. AD + non-AD dementias, with or without PMI available 
[n=720 “Model 3” and n=398 “Model 4”, respectively]). 
 

RNA Sequencing (RNA-Seq) 
 
Samples were submitted to the New York Genome Center for transcriptome library construction. 
Total RNA was extracted using Qiagen's RNeasy Mini Kit, according to manufacturer 
recommendations. Samples were run on a Bioanalyzer or Fragment Analyzer (Agilent) and 
quantified using Qubit and Ribogreen. Samples were prepped using Kapa's Kapa Hyper with 
RiboErase prep, with a standard input of 100ng, and using unique Illumina barcodes. Libraries 
were sequenced on a NovaSeq 6000 flow cell using 2x100bp cycles, targeting 60 million reads 
per sample. The RiboErase library prep avoids 3’ bias found with oligo-dT priming with 
fragmented RNA, and is ideal for autopsy tissue, allowing us to perform RNA-seq with RINs as 
low as 4 that results in high-quality FASTQ files that pass QC using FastQC v 0.11.8. We found 
that samples that have RIN values between 2.5-3.9 gave high-quality FASTQ data using the 
RiboErase prep after passing visual inspection of trace degradation and ribosomal subunit 
presence (for our project, samples that had medium/low trace degradation and visually distinct 
ribosomal subunits were sequenced). 
Gene counts for each BAM file were calculated using the function featureCounts. The 
integration of several genomic datasets offered the potential to increase statistical power, but this 
advantage may be compromised by batch effects — unintended data variations arising from 
technical discrepancies across different batches. To mitigate these batch effects across the six 
cohorts, we first employed a batch correction method, ComBat-seq12, to remove batch effect for 
better statistical power and control of false positives in differential expression analysis. A total of 
62,649 genes were initially quantified, but genes exhibiting zero expression across all 
participants were excluded from subsequent analyses, reducing the dataset to 58,942 informative 
genes. 
 

Outcome definition 
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Considering Braak staging (ordered categorical variable ranging from 0 to VI) could lead to an 
excessive number of contrasts and a subsequent loss of statistical power, we utilized the R 
(version 4.2.2) package "PResiduals"(version 1.0) to transform the Braak stage into a continuous 
scale13 by converting ordered categorical data into probability-scale residuals, effectively 
mapping the Braak stage into a continuous interval of (-1,1). Alternatively, we constructed a 
binary phenotype: late-stage Braak vs. early-stage Braak ( Braak � IV vs. Braak �  IV, 
respectively). 
 

Differential gene expression (DGE) analysis 
 
The DESeq2 package(version 1.38.3) was used to identify differentially expressed genes (DEG) 
associated with the continuous/binary Braak14 as previously defined. The DESeq2 ‘des’ function 
was used to model the counts following a negative binomial distribution, with mean parameter 
associated with the covariates included in the statistical models. Due to the distributional 
assumption on the counts, ‘des’ function was only capable of processing the integral counts 
without normalization. As explained previously, we included in the main analyses only brains 
with a primary neuropathological diagnosis of AD and pathology-free control brains. The main 
statistical model was defined as: RNA count ~ Age + Sex + RIN + Braakcontinuous. For Model 2 
(RNA count ~ Age + Sex + RIN + PMI + Ethnicity + Study site + Braakcontinuous) we retained 
only NHW and Hispanic brain samples, due to the limited representation of African American 
brains. 
The function ‘plotPCA’ in DESeq2 was used to compute the principal components of the gene 
expression counts.  
 

Validation dataset: ROS/MAP 
 
We replicated our findings using results from the ROS/MAP database15. This external validation 
contrasted AD pathologically diagnosed brains with AD-free control brains. For consistency, we 
applied the same criteria to define DEG. To ensure consistency between statistical models 
implemented between MU-BRAIN and ROS/MAP, the Main model employed RNA quality 
metrics that captured the distribution of the bases within the transcripts (denoted as “Main model 
+ RNAmetrics”). To do so, we used the function CollectRnaSeqMetrics from the Picard 
software16 to estimate several parameters as reported in Supplementary methods. We further 
applied “Main model + RNAmetrics” to the ROS/MAP dataset using the DESeq2 package 
following an identical pipeline described above to obtain DEG associated with Braak staging.  
Finally, we conducted a meta-analysis using Metal17 across MU-BRAIN and ROS/MAP.  
 

Stratified analyses by ethnic group 
 
To investigate potential differences in transcriptomic signatures between Hispanics and NHWs, 
we performed stratified analysis within NHW and Hispanics separately. Furthermore, we tested 
an additional model by incorporating an interaction term (Braak*ethnicity) within the Main 
model. 
 

Gene set variation analysis and functional enrichment analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.02.20.581250doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
We conducted gene set variation analysis (GSVA) using the GSVA package18(version 1.36.0) to 
pinpoint differentially expressed gene ontology (GO) sets. This approach groups biologically 
related genes into sets. The statistical model and covariates used here were consistent with those 
applied in the DEG analyses. We employed “Gene Ontology gene sets” from the “Molecular 
signatures database” (MSigDB)19 and conducted the differential expression analysis at the 
pathway level using the “limma” package20 (version 3.54.2) because GSVA enrichment scores 
are continuous.  
 
We performed functional enrichment analysis, i.e. enrichment analysis and Gene Set Enrichment 
Analysis (GSEA) against GO and WikiPathways databases respectively, using the clusterProfile 
package21(version 4.10.0). We conducted GSEA for Wikipathways using the gseWP function. We 
applied the enrichGO function to conduct GO enrichment analysis with genes stratified into up- 
and down-regulated expressions. The GO enrichment analysis performs Fisher’s exact test to 
identify the overrepresented pathways associated with sets of differentially expressed genes that 
were previously revealed in the differential gene expression analysis, whereas GSEA assesses 
pathways for statistical overrepresentation across the entire spectrum of ranked DEG through a 
permutation test. GSEA and GO enrichment analysis were carried out using DEG from the Main 
model.  
 

Multiple testing correction 
 
We applied the Benjamini-Hochberg false discovery rate (FDR) to account for multiple testing 
across genes and gene-sets, implemented in the DESeq2, limma, GSVA, and clusterProfile 
packages. We define a significant DEG if FDRp-value < 0.05 and an absolute log2-fold change 
(LFC) threshold >0.15 in differential gene expression analyses, GSVA, and GO enrichment 
analysis.  
 

Phenotype prediction using machine learning algorithm 
 
We applied Python (version 3.9.13) library Scikit-learn (version 1.0.2) to employ the Random 
Forest algorithm for the machine learning (ML) approach. More details in the Supplementary 
methods. Random Forest generates a multitude of decision trees, each trained on a different 
subset of the data and with random feature subsets. The data was partitioned into training and 
testing sets: 75% of the sample was allocated randomly to the training subset, while the 
remaining 25% was designated as the testing set. To ensure a balanced representation of samples, 
the stratification was based on the binary Braak outcome as the stratifying variable.  
We employed two distinct models: an “Ethnicity-Agnostic” Model (randomly assigning samples 
to training and testing samples independently of their ethnicity) and a “Ethnicity-Aware” Model 
(NHW samples were included in the training subset, while Hispanics were included in the testing 
subset). We employed a bootstrapping approach to the training and testing data independently. (A) 
For the training dataset, in the “Ethnicity-Agnostic” Model, we generated 1,000 samples with 
replacement. Each of these samples consisted of 500 individuals (250 brains with high Braak 
with replacement from a training subset of 346 brains and 250 brains with low Braak, sampled 
with replacement from a training subset of 63 brains). (B) The same method was applied to the 
testing dataset: we generated 1,000 samples sets, each consisting of 126 brains (63 high Braak 
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drawn with replacement from a testing subset of 149 brains, and 63 low Braak brains sampled 
with replacement from a training subset of 27 brains). We used the 1,000 training datasets to 
independently train the 1,000 random forest algorithms. Then, we tested the performance of the 
algorithms using 1,000 testing samples and the average result was reported. The same 
bootstrapping approach was implemented in the “Ethnicity-Aware” model with the only 
difference that all brains from the training data were sampled only from NHW, while all brains 
from the testing data were sampled only from Hispanics. The model performance was evaluated 
using multiple parameters: accuracy, confusion matrix, receiver operating characteristics area 
under the curve (ROC AUC). For each model trained within the Random Forest ensemble, we 
obtained a vector representing the importance of each feature (i.e. gene). To identify the most 
relevant features (the relative importance - frequency - of each feature in a dataset when building 
a predictive model), we calculated the average contribution of each feature across all 1,000 
models. Then, we ranked the features based on their average contribution, helping us pinpoint the 
most influential ones. 
 

Polytranscriptomics risk score 
 
We generated a polygenic transcriptome risk score (PTRS) using several filters. Starting from all 
gene transcripts (58,954) and after removing pseudogenes and genes with zero expression level, 
we retained 48,356 genes. We used the ML findings to prioritize the gene list to be included in 
the PTRS: all the genes with a significant contribution (average weight >0, total n=43,718 for 
the agnostic model, and total n=43,635 for the aware model) were then employed in a logistic 
regression to estimate the weights (i.e. �) within the training set, adjusting for the covariates (sex, 
age, RIN). The PTRS for each sample was constructed as the weighted sum of the individual’s 
Log10 of the normalized RNA-seq expression values of K identified genes (with beta different 
than zero): 
 	
��� 
 ����� � ����� � � � �����   

(1) 
where β denotes weight and g denotes Log10 of the normalized RNA-seq gene expression values. 
Four different regression logistic models were implemented for AUC calculations:  
 Braakbinary ~ PTRS (2) 
 Braakbinary ~ PTRS + age (3) 
 Braakbinary ~ PTRS + sex (4) 
 Braakbinary ~ PTRS + age + sex (5) 
 
Finally, the prediction model with PTRS and covariates was implemented in the testing dataset 
and validated in ROS/MAP.  The ROC-AUC was used to compare the models’ performances via 
the R package pROC (version 1.18.5). We used the R package cutpoint (version 1.1.2) to 
estimate the optimal cut points that maximizes the Youden-Index for determining the Braak 
binary outcome and validated performances using bootstrapping. Delong test was used to test 
significant difference between AUCs. 
 

Comparison of transcriptomics to human single nucleus dataset 
 
To evaluate the RNA expressions of prioritized genes at the single nucleus/cell level, we used 
publicly available human single nucleus RNA sequencing (snRNAseq) dataset 22. Matrices were 
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generated with 10X function of Seurat (version 4.1.3) R package 23. To generate a Seurat object, 
we filtered out any cells with less than 200 expressed genes, and with genes expressed in less 
than 3 cells. Following the normalization of the dataset, top 2,000 variable genes were used for 
further analyses. Anchors were identified by using FindIntegrationAnchors, and integration was 
performed using the IntegrateData functions of DoubletFinder 24, while differential gene 
expressions were identified by FindMarkers function.  
 
 

Results 
 
We included 565 brains in the Main model (mean age at death of 80.8�9.76 years old; 43.5% 
females; 96.1% with a primary neuropathological diagnosis of AD). The Columbia University 
New York Brain Bank contributed with the largest cohort, accounting for 46.2% of the total 
samples. 399 (70.6%) of the participants were self-reported as NHW, 113 (20.2%) as Hispanic, 
and 12 (2.1%) as African Americans. 85% of the participants received late-stage Braak 
neuropathological diagnosis (Braak > IV). Table 1 reports the cohort demographics, while 
Supplemental Fig. 1 shows the different sample sizes across Main model and model 2-4, 
depending on diagnosis selection and covariates availability. We included 1,095 samples in the 
validation dataset from ROS/MAP (mean age at death of 90.0�6.59 years old; 67.12% females; 
98.5% NHW; 63.20% with a primary neuropathological diagnosis of AD; Supplemental Table 
1). Supplemental Fig. 2 illustrates the first and second principal components of the gene 
expression counts of the individuals included in Main model, highlighted by AD status, 
continuous Braak, sex, and ethnicity.  
 

Differential gene expression analysis 
 
A total number of 1,630 and 480 genes were found significantly differentially expressed across 
the four models using the continuous or binary Braak phenotype, respectively. Figure 1A 
illustrates the differentially expressed genes identified by the Main model. Two four-way Venn 
diagrams (Figure 2) and correlation plots (Supplemental Fig. 3) confirmed the strong 
correlation across Main model and Models 2-4, either using binary or continuous Braak staging. 
Table 2 and Supplemental Table 2 include top DEG identified in the Main model (continuous 
and binary Braak, respectively). Top DEG include AD-known genes BDNF and VGF (Padj 
=1.41� 10��  and Padj =3.44� 10�� , respectively). An UpSet and a heatmap plots are also 
reported in Supplemental Fig. 4-5.  
 
To refine our findings, we prioritized 30 DEG that were replicated in ROS/MAP (Table 3), 
including: ADAMTS2 (LFC=0.253, Padj =1.21� 10��), VGF (LFC=-0.661, Padj =3.78� 10��), 
and HSPB7 (LFC=0.445; Padj=3.78� 10�� ). Supplemental Table 3 presents the top DEG 
identified by the transethnic metanalysis, including ADAMTS2 (LFCmeta=0.265, Padj-meta=1.00�

10��� ), VGF (LFCmeta =-0.332, Padj-meta=2.24� 10��), and HSPA6 (LFCmeta =-0.566; Padj-meta 
=1.17� 10�	�). 
  

Ethnic-stratified analyses 
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Overall, we observed high concordance between Hispanic and NHW transcriptome (Spearman’s 
rho=0.503; p < 2.2 � 10���; Figure 1B). Table 4 displays the top DEG identified in the ethnic-
stratified models, while Supplemental Table 4 outlines top DEG consistently identified in both 
NHW and Hispanics, i.e. genes that pinpoint to universal loci underlining AD pathology 
regardless of ethnicity (Figures 1C-D). VGF was identified in both Hispanics and NHW groups 
(Hispanic: LFC=-0.753, Padj =0.0499; NHW: LFC=-0.650, Padj =4.84� 10�
 ). While several 
HSP family genes were consistently differentially expressed within Hispanics and NHW (e.g. 
HSPB7; Hispanic: LFC=0.629, Padj =0.0224; NHW: LFC=0.408, Padj =1.80� 10��), others were 
uniquely differentially expressed within NHW (e.g. HSPA6; NHW: LFC=-1.57, Padj =2.72�

10�� ; Hispanic: LFC=0.467, Padj =0.449). CHI3L2 was found uniquely overexpressed in 
Hispanics (LFC=1.370; Padj =0.026) but not in NHW (LFC=-0.47, Padj =0.105). The ethnicity 
interaction model prioritized two DEG: TNFSF14 (LFC=-0.506; Padj =0.00268) and SPOCD1 
(LFC=-0.33; Padj =0.00319).  
 

Gene set variation analysis (GSVA) and functional enrichment 
analysis 
 
GSVA (Main model) identified a 118 differentially enriched gene sets (Supplemental Fig. 6A). 
A heatmap plot of GSVA enrichment scores associated with the top differentially expressed gene 
set is presented in Supplemental Fig. 7. Supplemental Table 5 shows the top differentially 
enriched gene sets identified by GSVA in association with the Main model.  
 
Figure 3A illustrates the most significantly overrepresented gene lists with GSEA using 
WikiPathways, where the pathway “Alzheimer disease” (WP5124; Padj=4.24 � 10�� ) and 
“Alzheimer disease and miRNA effects” (WP2059; Padj =4.24� 10��) have the largest counts of 
genes among the significant gene lists. Gene-concept networks (Supplemental Fig. 8) were also 
presented to demonstrate the relationships between genes and the overarching biological 
concepts/pathways. Several genes exhibited strong ties to concept “TYROBP causal network in 
microglia” (WP3945; Padj =1.68� 10��). 
 
GO enrichment analyses were implemented separately in up-regulated and down-regulated genes. 
Up-regulated genes were enriched in several pathways, including “Immune response activation 
signal pathways” and “extracellular structure organization” (Padj =1.16� 10�� and Padj =2.27�

10�
, respectively; Figure 3B). Among the top 50 pathways of down-regulated genes, 21 were 
found to be enriched in synapse-related processes (e.g. “Vesicle-mediated transport in synapse”, 
“regulation of trans-synaptic signaling”, “modulation of chemical synaptic transmission”; Padj < 
1 � 10��� ; Figure 3C). The remaining pathways included neurotransmitter, learning and 
cognitive pathways (“neurotransmitter transport”, “learning or memory”, and “cognition”; all 
Padj <1� 10��; Figure 3C). Supplemental Figures 9 A-B reconstruct networks of genes and 
their corresponding biological pathways. 
 

Stratified analyses by ethnic group in GSVA and functional 
enrichment analysis 
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Supplemental Fig. 10A-B display the heatmaps of GSVA enrichment scores for the Main model 
stratified by Hispanics and NHW: 677 gene sets were differentially enriched within Hispanics, 
and 145 in NHW. Supplemental Fig. 11 and Supplemental Table 6 present the differentially 
enriched gene sets within each ethnic subsample. The pathway “Alzheimer disease”, “Alzheimer 
disease and miRNA effects”, and “TYROBP causal network in microglia” were consistently 
identified as top significantly overrepresented gene lists in Main model for both Hispanics and 
NHW (Supplemental Fig. 12 A&B). The GO enrichment analysis in Main model stratified by 
Hispanic and NHW groups were provided in Supplemental Fig. 13&14 A-D. Supplemental 
Tables 7&9 display the top pathways uniquely associated with either Hispanic or NHW cohorts, 
as identified through GSEA and GO enrichment analysis in Main model stratified by ethnicity. 
Supplemental Tables 8,10 present the top pathways common to both ethnicities. 
 

Single-nucleus expression of prioritized genes 
 
Our analyses identified several concordant DEG between bulk RNAseq and snRNAseq 
(Supplemental Fig. 15) despite their inherent technical differences 25, including HSPA6, found 
downregulated in microglia (LFC=-1.488, Padj =1.1E-07), PCSK1 found downregulated in 
neurons (LFC=-0.034, Padj =4.2E-06) and endothelial cells (LFC=-1.050, Padj =3.9E-05), and 
SLC7A2 found upregulated in astroglia (LFC=0.630, Padj =2.1E-06).  

 
Phenotype prediction using machine learning algorithm 
 
In the “Ethnicity-Agnostic” Model, the random testing sample showed an AUC=0.74 
(Supplemental Fig. 16A). In the “Ethnicity-Aware” Model, the Hispanics + AA testing sample 
showed an AUC=0.70 (Supplemental Fig. 16B). The genes identified as most relevant for 
prediction (“feature importance”; average weight >0; total of 43,718 for the Ethnicity-Agnostic 
model and 43,635 for the Ethnicity-Aware model) were then selected to compile a priority gene 
list for subsequent use in PTRS (Supplemental Table 11).  
 

Polytranscriptomics risk score 
 
After prioritizing genes using the random forest ML and logistic regression, the PTRS was 
constructed using 256 and 284 genes (Agnostic and Aware models, respectively; Supplemental 
Fig. 17). The PTRS effectively classified brains in low vs. high Braak stage in both the 
“Ethnicity-Agnostic” and “Ethnicity-Aware” model (ANOVA P =7.5� 10��, and P =2. 5 � 10�
, 
respectively). The Violin plots for each model are shown in Figures 4A-B.  
 
The model showed an AUC=0.78 in the “Ethnicity-Agnostic” model, and AUC=0.73 in the 
“Ethnicity-Aware” model. We did not observe significant differences in terms of performance 
between the two models (PDeLong = 0.4; Figures 4A-B). Additionally, the “Ethnicity-Agnostic” 
PTRS was validated in ROS/MAP (Supplemental Fig. 18), where it effectively classified brains 
into low vs. high Braak stage (ANOVA P =5.2� 10�
). 
 
 

Discussion 
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By utilizing a large number of brain samples as well as including individuals from various ethnic 
backgrounds, we implemented a range of conventional and innovative methods to explore the 
association between transcriptomic patterns and the manifestation of AD-related hallmarks, 
specifically Braak staging. Additionally, we examined how ethnicity might influence this 
association, shedding light on the potential role of ethnicity in modifying the impact of AD-
related hallmarks. 
 
Several genes were consistently differentially expressed across various models, such as VGF and 
members of the HSP family emerging as strongly associated with higher Braak stages. The 
consistent identification of VGF, widely reported in previous studies 26-29, underscores its 
potential significance as a key regulator in AD mechanisms. VGF is downregulated in neurons in 
AD brains and in amyloid toxicity model of zebrafish 30,31, indicating an evolutionarily 
conserved disease mechanism. The HSP70 family is a class of highly abundant and widely 
expressed chaperone proteins, encompassing up to 17 genes and 30 pseudogenes. HSP70, which 
is known to regulate protein misfolding including tau levels and toxicity, colocalizes in AD 
brains with Aβ plaques and takes part in the neuroprotective response to suppress Aβ aggregation. 
A recent study revealed expression levels of HSPA1A and HSPA2 were significantly increased in 
AD, while HSPA8 significantly decreased32. VGF has also been identified as a key regulator of 
AD-associated network, where its overexpression is associated with partial rescue of Aβ-
mediated memory impairment and neuropathology, suggesting its potential protective role 
against AD progression.33 The validation provided by ROS/MAP further enhances the robustness 
of our results. In the meta-analysis, genes identified as differentially expressed in both MU-
BRAIN and ROS/MAP exhibited identical directions of disexpression, underscoring a consistent 
regulatory impact on Braak staging across ethnicities and studies.  
 
HSPA6 was specifically downregulated in NHW in bulk and single nucleus data (Figure 1A, 
Table 3, Supplemental Fig. 15). Previous studies in mice34, zebrafish30,31 and fruit fly 35 have 
confirmed the relevance of Hsp70 genes to age-related neurodegeneration and amyloid toxicity, 
suggesting an evolutionarily conserved role of HSP70 proteins in resilience against 
neurodegeneration. In human single nucleus data, we found that HSPA6 is significantly 
downregulated in AD in microglial cells (Supplemental Fig. 15), supporting the critical role of 
immune system in clearing toxic protein aggregates in the brain. Consistent with this finding, we 
identified several GO-terms and pathways related to microglial activity. For instance, the 
“TYROBP causal network in microglia” pathway has been previous indicated to be pivotal in 
microglial activation in AD36. TYROBP/DAP12 has indeed been identified as a key AD 
modulator, when its suppression leads to elevated tau pathology and cognitive deficits, 
suggesting its role in mediating tau toxicity through microglial and oligodendrocyte 
interactions37. Additionally, the GSEA analysis underscores the significance of the “Alzheimer 
disease and miRNA effects” pathway, echoing recent expert-curated data from a comprehensive 
study that enhanced understanding of key proteins and interactions pivotal to AD research38. The 
identification of the "Alzheimer disease" pathway aligns with an independent study that 
employed a network-based strategy to discern anti-AD compounds, particularly emphasizing the 
apoptosis of neuron cells39. Studies have further indicated that the loss of synaptic structure and 
function is a hallmark among individuals with AD40,41. In our study, we found pathways related 
to neuronal connectivity and function (Supplemental Fig. 7,8), and further supported by our 
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findings of downregulation of GPCPD1 (Table 3, Supplemental Fig. 15), a gene required for 
formation of cholinergic neurotransmitters  that are reduced in AD 42,43 and reduced RPH3A, a 
critical regulator of neuronal synapse potentiation, neurotransmission and memory 44. 
Downregulated choline acetyltransferase gene CHAT, which is required for production of 
acetylcholine neurotransmitter 45, also supports these findings.  
 
The pathway “activation of immune responses” identified in GO enrichment analysis has also 
been highlighted in previous studies46. Notably, two pathways related to extracellular matrix 
(ECM) organization, i.e. “extracellular structure organization” and “extracellular matrix 
organization”, have also been shown to be pivotal in organizing ECM in neurodegenerative 
diseases47. Consistently, the upregulated genes KANK2 (Table 3) is required for cell polarization 
to regulate cell migration in response to extracellular matrix stiffness 48. Similarly, ADAMTS2, 
that we found upregulated in AD, and consistently reported in AD genome-wide association 
study (GWAS) studies, is a matrix metalloproteinase required for production of functional 
collagen residues in the extracellular matrix and potentially leading to extracellular stiffening 
that affects cellular signaling. Since ECM is critical for disease progression and pathophysiology 
of AD 49,50, ancestry-specific alterations in expression of ECM components can provide new drug 
targets. Interestingly, ADAMTS2 was ranked as the #1 gene in our random forest algorithm.  
 
The inclusion of brains from different ethnic groups, with a specific representation of individuals 
of Hispanic/Latino ethnicity, identified ethnic-specific transcriptome profiles. Top differentially 
expressed gene in Hispanic, TNFSF14, has been previously identified as a protective factor for 
vascular dementia in women51. SPOCD1 has also been linked to DNA methylation, which has 
been shown to be altered in AD52,53. Lastly, CHI3L2 has been suggested as potential biomarker in 
glioma54, a condition which frequency varies between Hispanics and NHW 55,56.  
 
Multiple studies have shown significant differences in gene expression profiles across 
populations, with particular emphasis in immune response and metabolism-related gene pools57. 
These differences, which are influenced by genomic profiles and are often tissue-specific, 
highlight the complexity of population-specific gene regulation. Despite these findings, it is 
important to note our data might not be generalizable to the general population. Indeed, autopsy-
based collections have numerous selection biases. It is also imperative to denote race and 
ethnicity are social constructs and can have numerous intertwined variables of which may relate 
to differences found58. Nevertheless, when NHW were employed to train the machine learning 
algorithm and Hispanics for testing (Ethnicity-Aware model), we found the model to perform 
comparably to the Ethnicity-agnostic one. This is in line with our recently published 
investigation where we showed a strong correlation between Hispanic and NHW transcriptome 
profiles59, ultimately confirming that the brain region used to extract RNA was more relevant 
than the ethnic group the brain belonged to. Additional proofs of the optimal transferability 
across ethnicities comes from a recent publication showing that gene expression signatures of 
aging in peripheral blood are shared between East Asian and NHW populations, with specific 
hub genes like NUDT7 and OXNAD1, decreasing in expression with age60. This finding 
reinforces the universality of aging biomarkers across ethnicities, which further validates our 
study. 
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Polygenic risk scores (PRS) play a crucial role in bridging the gap between GWAS and their 
application in clinical settings. Recently, new approaches have been developed to generate risk 
scores employing OMICS data, although training samples are often limited to a small subset of 
genes61. To this end, we introduced a polytranscriptomic risk score that was trained on the entire 
spectrum of genes to predict AD-related pathology, marking a significant advancement in our 
ability to predict and stratify samples for further investigations. Indeed, utilizing a 
comprehensive set of genes has been demonstrated to be more effective in enhancing predictions 
in AD studies62. Our results ultimately suggest that the PTRS matches or even outperforms the 
predictive accuracy of traditional PRS63. Notably, our score showed comparable performances 
between 'Ethnicity-Agnostic' and 'Ethnicity-Aware' models, contrary to previous investigations 
reporting significant differences across ethnicities64. The outcomes of our study highlight a 
potential implementation of PTRS in developing predictive models for AD pathology 
independently of ethnic backgrounds. This assertion was reinforced by deploying our PTRS in 
the ROS/MAP cohort, revealing its ability to distinguish between low and high Braak stages. 
 
The current study has limitation, notably the underrepresentation of African American and Asian 
samples. Furthermore, there is no consideration or comparison work on the diversity within 
Hispanic samples (e.g. Caribbean Hispanics, Mexicans, and others)65. Moreover, while our 
research has made considerable strides in characterizing the transcriptome associated with Braak 
staging, the resolution of insights is inherently limited using bulk RNA sequencing data. Despite 
applying bioinformatic tools to mitigate the batch effects, variation in procedures among AD 
centers may cause potential bias in the current study. Future efforts will focus on single-cell data 
of diverse ethnicities to enable a more refined analysis at the cellular level, thereby enhancing the 
significance of our findings.  

In conclusion, the expansion brought by MU-BRAIN to include a broader representation of 
ethnic groups and the advancement of our methodological approach to a single-cell resolution 
would undoubtedly augment the depth and applicability of our research in uncovering the 
molecular underpinnings of AD diverse populations. 
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Table 1. Demographics for MU-BRAIN. 

 

 Descriptive statistics 

Sample size 565* 

AGE (SD) 80.82 (9.76) 

SEX 43.54% 

Alzheimer’s Disease – primary diagnosis 96.11% 

Mean PMI (SD) 3.47 (15.66) 

Mean RIN (SD) 5.06 (1.16) 

Cohorts 

Columbia University 46.20% 

Mayo Clinic, Jacksonville 12.21% 

Indiana University (NCRAD) 25.13% 

University of Miami 9.38% 

University of California, San Diego 6.02% 

University of California, Davis 1.06% 

Ethnicity* 

Non-Hispanic Whites 70.62% 

Hispanics 20.00% 

African Americans 2.12% 

Braak stage 

0 0.53% 

I 1.06% 

II 1.06% 

III 3.19% 

IV 8.85% 

V 24.96% 

VI 60.35% 

* 565 brains were used to build the Main model; 41 have missing ethnicity. 
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Table 2. Top DEG �p��� � 1 � 10���  associated with both continuous and binary Braak (Main model). 

 

gene Mean Exp LFC LFC SE p padj 

HSPA6 625.629 -1.278 0.176 3.25e-13 1.43e-08 

HSPA7 160.241 -0.748 0.11 8.67e-12 1.91e-07 

LINC02458 67.61 -0.5 0.076 4.86e-11 3.57e-07 

ZHX3 11671.853 0.176 0.027 3.69e-11 3.57e-07 

HSPB7 133 0.445 0.068 6.17e-11 3.78e-07 

VGF 1730.121 -0.661 0.101 6.86e-11 3.78e-07 

PTPN21 2039.003 0.171 0.027 2.04e-10 6.42e-07 

KANK2 2279.701 0.345 0.054 1.86e-10 6.42e-07 

ITPKB 28404.246 0.316 0.05 2.66e-10 7.65e-07 

MTSS2 11148.713 0.276 0.044 2.78e-10 7.65e-07 

TEKT2 101.495 0.328 0.052 3.36e-10 8.24e-07 

LINC01164 104.189 -0.564 0.09 3.34e-10 8.24e-07 

TTC23 974.46 0.19 0.03 3.68e-10 8.54e-07 

LFC= log2 Fold Change; SE= standard error; p=p-value 
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Table 3. Top MU-BRAIN DEG �p��� � 1 � 10��; Main model + RNA metrics) also replicated in ROS/MAP.  

 

Gene 

MU-BRAIN ROS/MAP 

Mean Exp LFC LFC SE padj LFC padj 

HSPB7 133 0.445 0.068 3.78e-07 0.164 0.00723 

VGF 1730.121 -0.661 0.101 3.78e-07 -0.328 0.00156 

ITPKB 28404.246 0.316 0.05 7.65e-07 0.155 0.000554 

LINC01164 104.189 -0.564 0.09 8.24e-07 -0.223 0.00658 

SLC6A9 1418.577 0.35 0.058 2.55e-06 0.172 7.08e-05 

AQP6 102.784 0.413 0.069 2.55e-06 0.238 4.58e-05 

SAMD4A 8062.731 0.295 0.05 3.59e-06 0.156 0.000238 

GAREM2 2958.11 0.34 0.059 5.46e-06 0.248 6.6e-06 

ANGPT1 402.304 0.395 0.069 5.46e-06 0.24 5.18e-05 

TEAD2 197.351 0.422 0.074 5.46e-06 0.158 0.00526 

CHST6 2096.031 0.379 0.067 6.71e-06 0.176 0.00286 

MRGPRF 117.063 0.454 0.082 1.05e-05 0.263 7.01e-06 

DDIT4L 588.868 0.402 0.073 1.06e-05 0.163 0.0198 

IGFBP5 8972.946 0.438 0.081 1.29e-05 0.198 4.48e-05 

LINC02552 253.266 -0.419 0.078 1.56e-05 -0.168 0.0155 

NRIP2 661.458 0.185 0.034 1.58e-05 0.197 6.6e-06 

NPNT 500.897 0.414 0.077 1.64e-05 0.31 5e-09 

TRIP10 633.267 0.335 0.064 2.66e-05 0.181 0.000544 

LINC00310 163.586 0.233 0.045 3.35e-05 0.255 0.0017 

NAT16 41.22 -0.423 0.082 3.36e-05 -0.277 0.000144 

A2ML1 999.685 0.275 0.055 4.99e-05 0.238 9.4e-05 

CCDC102A 136.912 0.308 0.062 5.31e-05 0.176 0.00355 

IQGAP3 108.579 -0.329 0.067 6.95e-05 -0.262 6.6e-06 

ADAMTS2 1220.639 0.253 0.054 0.000121 0.329 1.06e-08 

SLC4A11 241.876 0.26 0.055 0.000121 0.276 6.6e-06 

APLN 1208.704 0.353 0.075 0.000122 0.215 0.000742 

SMTN 1714.79 0.334 0.074 0.000207 0.17 0.00312 

SLC38A2 12680.317 0.255 0.057 0.000273 0.234 1.96e-06 

GIPR 187.961 0.442 0.1 0.000298 0.289 0.00693 

GPCPD1 2137.119 -0.226 0.053 0.000446 -0.165 0.00076 

EMP3 269.718 0.26 0.061 0.000448 0.172 0.000751 

LINC02217 774.81 -0.224 0.053 0.00053 -0.155 0.00497 

TNFRSF18 26.298 -0.345 0.082 0.000586 -0.171 0.0354 

PRELP 2316.061 0.24 0.057 0.000606 0.227 1.87e-06 

SLC7A2 4964.733 0.295 0.072 0.000787 0.151 0.0254 

LFC= log2 Fold Change; SE= standard error; p=p-value 
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Table 4. Top DEG �p���;�	
���	

 � 1.5 � 10��; p���;���  �  1.5 � 10��� stratified by ethnicity (Main model).  

 

gene Mean Exp LFC LFC SE p padj 

Hispanics 

ZNF37A 4175.035 0.201 0.041 7.33e-07 0.0105 

SLC22A4 446.889 0.189 0.04 2.24e-06 0.0119 

TRAF3IP2 2634.819 0.301 0.063 2e-06 0.0119 

CCDC146 850.704 0.274 0.059 3.42e-06 0.0119 

CNTRL 3564.157 0.21 0.046 5.9e-06 0.0119 

CDKN2B 256.352 0.468 0.103 5.97e-06 0.0119 

RESF1 4267.864 0.24 0.053 5.23e-06 0.0119 

CNTLN 1027.817 0.289 0.065 8.08e-06 0.0148 

PLP2 110.09 0.584 0.131 8.79e-06 0.0149 

NHW 

UQCRC2 4604.066 -0.132 0.028 1.9e-06 0.000359 

MED10 739.921 -0.129 0.028 3.1e-06 0.000454 

SPCS1 889.946 -0.139 0.03 4.27e-06 0.00054 

CIAPIN1 958.817 -0.124 0.028 1.08e-05 0.000866 

OCIAD1 4124.498 -0.137 0.032 1.39e-05 0.000978 

RAMACL 481.161 0.121 0.028 1.64e-05 0.00106 

VDAC2 2107.145 -0.135 0.032 2.27e-05 0.00129 

NDUFB8 641.275 -0.117 0.028 2.38e-05 0.00132 

LFC= log2 Fold Change; SE= standard error; p=p-value; NHW=non-Hispanic Whites 
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Figure 1. (A) Volcano plot of differentially expressed genes (Main model). (B) Correlation
between NHW and Hispanic transcriptomes; points represent t-statistics from the ethnic-
stratified differential expression analyses. Ethnic-stratified Volcano plots (C=Hispanics;
D=NHW; Main model).  
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Figure 2. (A) (B)Venn diagrams of differentially expressed genes across Model 1-4 with binary
and continuous Braak (Model 1=Main model). (C) (D) Gene ranking plots of the differentially
expressed genes uniformly identified by Model 1-4 with binary and continuous Braak.  
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Figure 3. Results of GSVA and functional enrichment analysis.  (A) Top GSEA Wikipathways from functional enrichment analysis
(B) Top GO Enriched Pathways for up-regulated genes; (C) Top GO Enriched Pathways for down-regulated genes. 
 

sis; 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted M
arch 21, 2024. 

; 
https://doi.org/10.1101/2024.02.20.581250

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2024.02.20.581250
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. PTRS in high Braak (1) vs low Braak (0) stages within the testing sample for 
PTRS’s AUCs (plus covariates). (A) “Ethnicity-Agnostic” . (B) “Ethnicity-Aware” . (C) 
Ethnicity-Agnostic. (D) Ethnicity-Aware models.   
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