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ABSTRACT Cardiomyopathies, often caused by mutations in genes encoding muscle proteins, are traditionally
treated by phenotyping hearts and addressing symptoms post irreversible damage. With advancements in genotyping,
early diagnosis is now possible, potentially introducing earlier treatment. However, the intricate structure of muscle
and its myriad proteins make treatment predictions challenging. Here we approach the problem of estimating
therapeutic targets for a mutation in mouse muscle using a spatially explicit half sarcomere muscle model. We
selected 9 rate parameters in our model linked to both small molecules and cardiomyopathy-causing mutations. We
then randomly varied these rate parameters and simulated an isometric twitch for each combination to generate a
large training dataset. We used this dataset to train a Conditional Variational Autoencoder (CVAE), a technique
used in Bayesian parameter estimation. Given simulated or experimental isometric twitches, this machine learning
model is able to then predict the set of rate parameters which are most likely to yield that result. We then predict the
set of rate parameters associated with twitches from control mice with the cardiac Troponin C (cTnC) 161Q variant
and control twitches treated with the myosin activator Danicamtiv, as well as model parameters that recover the
abnormal 161Q cTnC twitches.

SIGNIFICANCE Machine learning techniques have potential to accelerate discoveries in biologically complex
systems. However, they require large data sets and can be challenging in high dimensional systems such as
cardiac muscle. In this study, we combined experimental measures of cardiac muscle twitch forces with mecha-
nistic simulations and a newly developed mixture of Bayesian inference with neural networks (in autoencoders)
to solve the inverse problem of determining the underlying kinetics for observed force generation by cardiac
muscle. The autoencoders are trained on millions of simulations spanning parameter spaces that correspond
to the mechanochemistry of cardiac sarcomeres. We apply the trained model to experimental data in order to
infer parameters that can explain a diseased twitch and ways to recover it.

INTRODUCTION

In muscle, force is generated by the interaction of two overlapping filaments, the myosin containing thick filaments and the actin
containing thin filaments (Fig. 1). The contractile process is regulated by troponin-tropomyosin complexes spaced along each
thin filament. In the presence of calcium ions, these complexes undergo a conformational change, allowing myosin motors
to attach to actin binding sites on the thin filament. Upon binding, myosin motors generate force (1). This complex series
of chemo-mechanical events can be modeled as state transitions in the regulatory proteins in the thin filament and energy
(ATP) transformations of the myosin crossbridges extending from the thick filament (Fig. 1) (2-6). Both genetic and acquired
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muscle disorders can alter or interrupt the chemo-mechanical state transitions of contractions, with several of the above studies
using computational simulations to connect estimates of state transition rates to observed mechanical behaviors of abnormal
muscle contraction. These approaches generally fall into the category of forward models — that is they generate predictions of
muscle contractile behavior based on the best possible estimates of the kinetics of state transitions as well as the mechanics and
geometry of the contractile lattice.
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Figure 1: Left: 3D rendering of a sarcomere’s lattice showing the thick (red) and thin filaments (blue) as well as a superimposed
spring network to give a sense of the model’s geometry. Following the geometry specified in (7) we model the filaments as a
network of springs for the thick and thin filaments, with crossbridges, each consisting of a torsional and linear spring. Right:
The rate transition diagram for the thick and thin filaments, indicating the four thin filament rates (labeled r;) and the six myosin
motor rates (labeled r,), as well as a table indicating the key biological elements. Crossbridges are modeled as a torsional and
linear spring.

Recently, advances in machine learning and optimization methods allow us to address the connection between the underlying
mechanochemistry of muscle and the emergent behavior as an inverse problem. That is, given the observed contractile behavior,
what underlying kinetics, mechanics, and geometry best explain the observation? Answering this question through experimental
efforts alone is both time consuming and challenging. Simulations, on the other hand, can allow us to both explore a vast
parameter space as well as estimate the effect of different underlying parameters. However, even then, there are significant
challenges regarding selection of rate constants or other model parameters at baseline or with particular diseased states. For one
thing, because we are exploring a high dimensional parameter space, our system is under-determined, and there are likely many
different combinations of rate constants which could correspond to indistinguishable outcomes. Also, because many current
simulations are based on Monte-Carlo methods (3, 6), random variation in both the simulation and experimental data can make
predictions difficult. Solving the inverse problem requires a very large data set that spans many combinations of rate constants.

A common way to approach inverse problems is by reformulating them as a probabilistic inference problem using Bayes’
Theorem. Rather than seeking a particular solution to a problem, we treat the solution as a random variable, and attempt to
quantify our uncertainty in its value. This allows for incorporating uncertainty, whether from noise or the under-determined
nature of the model in question, into our predictions. A challenge of Bayesian inference in high dimensional data is slow
convergence, which can be improved using machine learning techniques.

Previously, a machine learning architecture called Conditional Variational Autoencoders (CVAE) have been used in other
contexts in order to solve high dimensional noisy inverse inference problems (8). Auto encoders work by learning a distribution
over an abstract latent space of an input, and then learning to reconstruct the input from the reduced representation. In order to
solve the inverse problem of rate parameters that describe a particular twitch, we first generated a very large set of twitches
using our spatially explicit half sarcomere muscle model (2, 7, 9). In this model, the thick and thin filaments are comprised of a
series of springs with stiffnesses determined experimentally. Our model allows us to specify the geometric configuration of
filaments, myosin motors, and actin binding sites, and allows us to alter the rate kinetics of motors or binding sites (6, 7, 10), or
even a subset of the population according to any spatial distribution. We first trained the model to reduce and reconstruct the
distribution describing the vector of rate parameters 7 using both the vector (in time) of a twitch, f, and 7. We then tested the
model by giving it only information on f alone. The posterior distribution p (7| f) represents our belief that a set of rates ¥ will
result in an observation f, conditioned on our specific dataset, generated using our spatially explicit model. We are able to
successfully train that model to predict the probability of a given rate constant resulting in a particular twitch. We then apply the
model to a set of experimental mouse cardiac twitches and predict possible combinations of rate constants that can produce a
mouse genetic dilated cardiomyopathy (DCM) twitch or mouse twitches in muscle treated with a myosin activator. Lastly, we
predict a combination of parameters that can best recover the abnormal DCM twitch. We show feasibility and validation of
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using machine learning techniques to infer underlying mechanism of diseased muscle and best ways to correct them.

MATERIALS AND METHODS

Animals

All experiments followed protocols approved by the University of Washington Institutional Animal Care and Use Committee
according to the “Guide for the Care and Use of Laboratory Animals™ (National Research Council, 2011). We used a previously
published transgenic mouse model of genetic cardiomyopathy that over expresses the calcium desensitizing 161Q c¢TnC (cardiac
troponin C) variant. The transgenic mice have about 50% cTnC replaced with the 161Q cTnC variant and have cardiac chamber
dilation and reduced contractility compared to wild type mice (11, 12). Control and 161Q c¢TnC male and female mice between
the ages of 4-6 months were used to collect experimental cardiac twitch data. Danicamtiv treated twitches are imported from
our previously published study (12).

Experimental mouse cardiac twitch force measurements

Control and I61Q c¢TnC data presented here were newly collected for this project. Intact papillary muscles were dissected from
the right ventricle of mouse hearts, secured between two aluminum t-clips (Aurora Scientific, Ontario, Canada) and mounted
into the TonOptix Intact Muscle Chamber (IonOptix, Westwood, MA) between a force transducer and a length controller. The
papillary was then submerged in an experimental chamber and was continuously perfused with modified Krebs buffer (1.8 mM
CaCl) at 33 °C aerated with a 95/5 percent oxygen/carbon dioxide gas mixture to maintain physiological pH. Twitches were
generated after field stimulation at 1 Hz with oscillating polarity. The initial length was set to just above slack. After pacing for
about 20 minutes at 1 Hz, papillary muscles were stretched to an optimal length where peak twitch no longer increases for data
acquisition. Width and thickness were measured for each muscle preparation to determine cross-sectional area, and all twitches
are reported as stress ( nr:l;% ). Data was analyzed using the IonOptix IonWizard software. Twitches were averaged over a 30
second recording with ten individual twitches for each preparation exported. The Danicamtiv data - and its corresponding
control data - shown here were collected on a different set up and previously published in (12).

Spatially explicit half-sarcomere model

We began with the spatially explicit model as described in our previous publications (2, 4, 6, 7, 9, 10, 13, 14). In this model,
we define a 3D lattice of thick and thin filaments, each composed of a series of elastic elements in which the nodes represent
myosin crossbridges and actin binding sites respectively. We have relied on these prior publications above to set values for the
parameters that follow below. For example, the stiffness of k;p;cr (2020 pn/nm) and k;p;,, (1743 pn/nm) are determined by
measuring the stiffness of entire thick and thin filaments by a combination of microscopy and x-ray diffraction and using the
repeat distances of 38.7 and 43 nm to scale the stiffness of each segment of the two filament types (2, 15, 16). Titin is included,
and is modeled as a passive exponential spring as described in (7, 10):

a =220 pN
b =0.0045 nm ™!

bAL
Fritin = ae

Crossbridges themselves are composed of a torsional and linear spring, situated at the nodes of the thick filament. The three
state model described in previous articles consisted of a single free state, a loosely bound state (pre-powerstroke), and a tightly
bound state (post-powerstroke). The stiffness of the crossbridge states and the zero points for each spring for each state are
determined by electron tomography and x-ray diffraction (6, 17, 18). Force generated by the crossbridges is the spring force of
the torsional and linear spring system composing the crossbridges. Here, r and 6 represent the polar distance from a myosin
head to its nearest binding site, and k, and k¢ refer to the stiffness of the linear spring element (the globular domain) and
torsional stiffness (the converter domain), and the subscripts (W,S) refer to the weak and strong states, with the change in the
spring equilibrium point being what generates force. Energies are given in units of KT.
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Fws =k (r—rws)+ko(6—0ws) rs = 16.4 nm
Ow =47.16 rad
s =732 rad

In order to more easily connect to experimental measurements of state transitions and other models, we have expanded our
previous spatially explicit model to incorporate additional states in the crossbridge chemo-mechanical cycle. In the myosin
crossbridge, we now split the unbound state into two states corresponding to myosin with ATP and ADP (states 1 and 5,
respectively); we split the tightly bound state into two states corresponding to a post power stroke and a rigor like state (states 3
and 4, respectively). Transitions between states are based on the free energy differences between states, with free energy given
by the free energy changes at each step in the ATP cycle plus strain potential energy in the myosin head. Rate constants and
functions given in (3, 19) were used as a basis for the transition rates for the new states.

In the thick filament, forward rates depend on the free energy and the distance between the crossbridge head and the
actin binding site, and there is no explicit force or velocity dependence. We define free energy as the potential energy of the
two-spring crossbridge system, minus the free energy drop of each step of the ATP cycle, as measured in solution (19).

Gy =-23KT

G,=Uw —-43KT
G3=Ug - 18.6 KT

G4 =Us -20.72KT
AG arp = =23 KT
The rate equations are then calculated as:

7=72ms"!

renn=te v A= 8ms”!

rx23=A (1 +tanh(B+ C(Uw — Us))) B=5

rxsa =D (1+tanh(Us — Us)) + e Fs C=4

rxas = E Us +AGarp +e T D=9ms™!

rys1=H E=12ms""
H=.1ms"

All reverse equations are defined as rj; = EG?——,G, These equations are plotted in Fig. 2.

We also included transitions between the disordered relaxed state (DRX, state 1) and the super relaxed state (SRX, state 6).
The SRX state, also called the parked or OFF state, is a state with very low ATP turnover which allows for energy conservation
in resting muscle (20, 21). The rate ry 16 gives the rate from the DRX to the SRX state and was chosen so that during maximal
activation roughly 10% of crossbridges were in a bound state. The rate ry 61 gives the rate of SRX to DRX and uses the same
functional form as that of (3):

Fx,16 50 s !
X C 2+ 0 -1
(‘;’f?ﬁ ‘0,16)| a |b / 16 — 50 S

[Ca2+]é’0 + [Ca?*]?

0
Tx61 =Ty 16 +

with the baseline rate r°
found in (21, 22).

Thin filament activation is modeled as a four state system with transitions that include: r; 12 - Ca2+ binding to cTnC, r; 23
- change in the cTnC-cTnl interaction, and r; 34 - thin filament activation via movement of tropomyosin that allows myosin

16 Chosen so that in inactive muscle, approximately 50% of myosin heads would be in the SRX state, as
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binding. Each transition in the thin filament activation pathway contains tunable forward and reverse rate constants. Reverse
rates are based on the equilibrium rates below. K, 4 is not shown, since we define the rate r; 14 to be zero. Thin filament
cooperative effects are modeled as a nearest neighbor effect - binding sites with a neighbor in a calcium bound state have their
own forward rates multiplied by 100, as described in (14).

re12 = 37650 [Ca* 7' - ms™!

K, =2 . 2+71-1
i3 =33.4ms™! 11 =260000.0 [Ca™]

K2 =130.0

=0.13ms"!
ri4 = 0.13 ms Ki3 =091

rra1 =0.77 ms~!

In order to simulate twitches from sarcomere models, we drive force generation and relaxation via a calcium transient,
measured from isolated mouse adult cardiomyocytes. The measured Calcium transient is fit to the equation

[Ca2+](t) = [Ca2+]max - e b ((t9=1p)/w)?

where the three modifiable parameters describe asymmetry (a), time to peak (¢,,) and width of the calcium trace (w). The
constant b has units of 1 s(1-a) for dimensional similitude.
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Figure 2: The forward and backward rate functions for the myosin binding and power stroke cycling are plotted as a function of
the axial separation between a crossbridge and a binding site. The rates ry 16 and ry 61 given for a pCa of 4. Not shown are the
thick filaments rates ry 5 and ry s4 as well as the thin filament rate r; 14 which are all 0.

Another significant modification to the model involves the way we calculate the probability of state transitions. In each time
step, we determine the probability of a transition for each individual myosin head and its closest neighbor actin binding site.
Subsequently, we must compute the probability of transitioning from one state to another within the time-step dt. Previously, the
probability of a transition from state i to state j was calculated simply as P = ¢~"%*? Tn a multi-state Markov model, however,
when r;; is large compared to dt, this leads to the sum of all probabilities being greater than one. This also does not account for
the possibility of multiple transitions within a single time-step. For example, even though certain transitions may be directly
impossible, we need to account for the possibility that multiple state transitions occur within a single time step. When dt is
small relative to the rate r; 1 the equation is approximately correct. However, because the rate functions used have infinite walls
at some strain values, indicating rapid detachment at high strains, it can become impossible to have a small enough time step.

Here, we instead rely on the matrix exponential of the rate matrix Q, which is the matrix which has elements r;; giving the
transition rate from state i to state j, with r;; calculated for each possible transition based on each crossbridge’s configuration, at
each time step (23, 24). The diagonal entries of Q , r;;, are chosen so that each row sums to 0, guaranteeing conservation of state
transitions. Then the probability matrix P can be found by taking the matrix exponential: P = ¢Q*?"  The matrix exponential is
defined by X = DI %X k_but can be efficiently approximated using Pade’s approximation (25).

rm ... TIN pu ... PIN
_ . . _ Qxdr _ . .
Q - . rij . P=e - : Pij : M
N1 ... INN PN1 --- PNN
Each element p;; of the matrix P gives the probability that if the system starts in state 7, it will end up in state j after time
dt. It also guarantees that the sum of probabilities sums to 1. So, for each crossbridge in each time step, we draw a random
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number from a uniform distribution from 0 to 1 and compare it with the row in P which corresponds to the current state of the

crossbridge in order to determine the new state.

This also allows us to account for multiple transitions in a single time step as well. So for example, even though it’s
impossible to go directly from state 1 to 5 in the model (r, 15 = 0), we can still calculate the probability of a crossbridge passing
through multiple states in one time step, p 15 # 0. This allows us to use coarser time steps than previous instances of the model
while still gaining better signal to noise. As dt goes to zero, P becomes the identity matrix and as dt goes to infinity, P will
indicate the steady state distribution for the current geometric configuration and calcium concentration for each crossbridge.
Because it gives the steady state only for the current geometric configuration, it cannot take into account implicit cooperative
effects like compliant realignment. However, it can be used to initialize the state of the model for a given calcium concentration.

Training data

Our training data is generated by randomly choosing multiplicative factors over the range (.1, 100) from a log uniform
distribution, and every corner plot shown here shows this factor on a log scale. Each of the 9 rate functions or constants shown
in Fig. 2 is multiplied by this factor, changing it from its default value that was chosen based on literature values and previous
models to generate mouse cardiac twitch (2, 6, 26). Each simulated twitch was 1 second in duration, as in the experimental
protocol, and consisted of 1ms time steps. The calcium transient used in our simulations was obtained from isolated mouse
adult cardiomyocytes incubated in Tyrode’s Buffer with 1 M Fura-2 at room temperature in the dark for 13 minutes. After
incubation, cells were moved into fresh Tyrode’s Buffer and plated on a glass coverslide at 37 °C. Cells were paced at 1 Hz
and calcium transients were measured using the IonOptix Calcium and Contractility System. Because the calcium transient
recorded is ratiometric, we used minimum (6) and maximum (7) pCa values previously reported in mouse trabeculae at 35 °C
(27) to set the absolute magnitude of our calcium kinetics. This calcium transient was used in all simulations. We simulated
each randomly selected set of rates 50 times and average them to form one data point, and we generated approximately 1.1
million rate combinations and corresponding twitches. We simulated as many rate combinations as were feasible given our
computational resources to ensure that our training dataset was densely sampled enough that the probability distributions were

reflective of the spatially explicit model.

While the model makes use of periodic boundary conditions, we wanted to be able to compare the magnitude of force
in the spatially explicit model to experimental data. We therefore calculate the cross-sectional area of the spatially explicit
model by measuring the area of the unit cell which is defined by a rhombus with vertices centered on the 4 thick filaments. This
unit cell contains one thick filament (since it contains one-third of two separate thick filaments and one-sixth of two other
thick filaments) and 2 thin filaments. Since the model contains 4 thick filaments and 8 thin filaments in total, we consider the
cross-sectional area of the model to be 4 times the area of the unit cell. This lets us scale the output of the model, which is in

PN, to stress, which can then be compared to experimental data, which is also reported in stress (Z—nlyz).

We simulated the training dataset using Azure batch cloud computing service. Each instance of the model takes approximately
15-30 seconds to simulate, and 50 instances were averaged to form a single data point. We estimate the training dataset took

approximately .25 min - 50 - 10°/60/24 ~ 8000 cpu-days. We rented ‘F’ series processors from Azure cloud computing at

a cost of approximately $0.015 per cpu per hour, and we were able to rent several thousand at a time, so the ‘real’ compute

time was a few days. We estimate the cost of training data set to be $0.015 - 1/60 - 0.25 - 50 - 10® ~ $3000. We set 1% of

the data aside as validation data, and standardized the other 99% by subtracting the global mean and dividing by the global
standard deviation. These same values were used to scale validation data and experimental data for inference. Model training
was performed on a Nvidia RTX 3090, and took approximately 24 hours. After the model is trained, generating a probability
distributions corresponding to a target twitch takes approximately a minute. While generation of the training data can be
computationally intensive, it has the advantage of only needing to be trained once, and parameter inference of further targets

requires only minimal computational effort.

Conditional Variational Auto-encoder (CVAE)

Auto-encoders are a type of machine learning tool which can be used for both dimensionality reduction and generative purposes.
In general, they consist of encoder and decoder layers, where the dimensionality of the encoding layer’s output (often referred
to as the latent space, which we denote as z) is much smaller than the input, which allows them to be used for dimensionality
reduction. Variational auto-encoders are a particular type of auto-encoder in which the output of the encoder is designed to
describe a probability distribution within the latent space rather than a single point. A single point drawn from that space is then

used as the input to decoder. We also can condition the input to the auto-encoder on an observation, in our case, the twitch force

7.

The design of this specific Conditional Variational Auto-encoder (CVAE) follows that described in (8). It consists of three
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sub-networks: two encoders, Q1 and R;, and the decoder R, (Fig. 3). Both encoders and the decoder have the same general
architecture, consisting of a convolutional ResNet followed by a series of fully connected layers with only the width of the first
fully connected layer and size of the output differing between each of the sub-networks. The convolutional layers are shared by
each encoder and decoder, meaning they use the same weights.

In the encoder Qg, after the convolutional layers, the convolved twitch is concatenated with the true simulation rate
parameters r before being passed to the fully connected layers which outputs the means and log-variances describing a unimodal
n-dimensional Gaussian distribution ®¢, . In the encoder R; only the convolved twitch is passed to the fully connected layers,
which outputs the means, (log) variances, and (log) weights describing an n,-dimensional Gaussian mixture model with m
components, @g,. The KL divergence between these two distributions forms part of the loss function.

R1
Z w
(Mr1, ZRr1, Wr1) Used in
Inference only

Drs
(MR2, ZR2s Wgy) -
M'rR2

Used in
training only

I
©
!

(|JQ1/ Ql)

Figure 3: The encoding and decoding networks Q1, R;, and R, are each composed of the same shared deep convolutional
layers. The loss function -L+KL is composed of the log probability of the true rate at for the estimated probability distribution
function (L), and the Kullback-Liebler divergence (KL) between the probability distributions from the Q| and R networks
(KL). ®g,, ®r,, and P, are the probability distributions generated by the separate networks, and u, X, and w are the means,
variances, and weights of the components of each of the Gaussian Mixture distributions. The points z¢p, and zg, are random
points drawn from their respective distributions over the latent space, and rg, is a random rate drawn from its distribution. This
architecture follows that found in (8).

In the decoder R», after performing the same convolutional operation on the force time-series, a point is drawn from either
the distribution ®¢, or @, , depending on if we are in training or inference mode. During training, the point is drawn from the
unimodal z,,, which was given the true rate parameters as part of its input, while during inference the mixture distribution z,, is
sampled. In either case, this n,-dimensional point is concatenated to the convolved time-series and passed to the decoder R»,
which will output the parameters of an n,-dimensional, m-component Gaussian mixture model, ®g, .

The full derivation of the loss function is given in (8, 28). In short, we start with the cross-entropy loss between the ’true’
distribution p(r|f), and our estimate of the distribution generated by the CVAE, R(r|f):

zﬂnw=—/puvngmmﬁw.

Since the the distribution r(r|f) is actually the product of the distributions of the encoder/decoder pair R; and R;
marginalized over the latent variable z, we can write it as

RMﬁ=/R@V%&Mﬁ©&

During training, however, we use the simpler encoder/decoder pair O and R;, also called the recognition function

ﬁMﬁ=/QMﬁRwV@&.
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By finding the Kullback-Liebler divergence between these two networks, and substituting the difference into the equation
for H(p|r), and minimizing the expectation of H over our observed data f, we can derive that the difference between the ’true’
distribution p(r|f) and the CVAE distribution r(r|f) can be written as

H<- / p(r) dr / p(FIP) [E, [log Ra] - KLIO: IR 1] df

We approximate this integral as
L KL

H < —log Ra(r) + KL(Q1]|R1),

The loss function consists of two values, the log-probability L of the distribution R, at the location of the true rate parameters
r, and the Kullback-Leibler (KL) divergence between the distributions Q1 and R1. The value —L + KL is minimized. Similar to
(8), in practice we minimize the value —L + « * KL, where « is 0 for the first 30 epochs, and then linearly increases for the
next 60 epochs to one. This is done because the CVAE network can become stuck in local minima where the KL term is at its
minimum of 0, which prevents optimization of the L term.

The function we are interested in, P(r|f), is not in a closed form, but is modeled by the networks R, and R; together. The
network R; yields a distribution conditioned on the target twitch, from which we draw a single point zg; used to condition the
distribution ®g, from which we draw a single rate factor rg,. The network must then be sampled many times to obtain the
distribution P(r|f). To visualize P(r|f), we sample the network 5000 times to obtain a histogram of rate factor combinations.
We use the ‘pairplot’ function from Seaborn (29), which takes the histogram and fits and plots a distribution using a kernel
density estimator.

Besides the convergence of the loss function, we evaluate the model’s performance using the probability-probability plot, as
in (8), to ensure that the probability density estimate we find is representative of the actual probability density. On the x-axis is
shown the credible interval and on the y axis is shown the fraction of times the true rate was found within the credible region for
our validation dataset. For an ideal estimator, we should expect that when we estimate the probability that the true parameter
lies with a certain volume of the rate space to be X%, we should expect the true parameter to be in that volume X% of the time.
Values above the diagonal indicate under-confidence, and values below indicate over-confidence in the estimation. We show
this probability-probability plot in Fig. 4, with each colored line representing one of the nine rates and the black dashed line
indicating the ideal case. These were constructed by first finding the cumulative 1-D marginal distribution for each rate for each
data point (twitch) in our validation set. We then plotted the fraction of posterior samples less than the true rate parameter. Our
testing set contained approximately 11000 samples, or 1% of our total simulated dataset.
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Figure 4: The Probability-Probability plot shows how well our estimated probability distribution describes the actual probability
distribution across our validation dataset. The x-axis shows the estimated probability the rate is contained in a certain volume of
the rate space, and the y-axis indicates the actual fraction of times the rate was contained in that volume. For an ideal predictor,
the true parameter should be in the X% credible region X% of the time, indicated by the black dashed line. Values above the
diagonal indicate under-confidence, and values below indicate over-confidence.

RESULTS
Parameter Inference of a Simulated Twitch

After training the CVAE network on a simulated training dataset, as described in the Methods section, we can illustrate the
probability density function for all of the nine parameters that underlie a specified twitch. By examining only the time series of
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the twitch, and comparing to the known rate factors which led to the simulated twitch, we can estimate the accuracy of its
parameter inference on unseen data.

In order to visualize the posterior distribution p(7|f), we show the resulting multidimensional distribution as a corner
plot. In the corner plot, every 2-D projection of the high dimensional distribution is shown. This allows us to see every 2-D
marginalized probability distribution. Also, along the diagonal, we can show the 1-D marginalized probability distribution of
every rate factor. The axes indicate the rate factors that were multiplied by the base rates, and are shown on a log scale from
107! to 10%. An example simulated twitch and inferred distributions are shown in Fig. 5.

Corner plots allow us to visualize the covariance between each 2-D pairwise parameter combination. For example, we can
see in Fig. 5 the covariance between the rate factors r; 12 and r; 41, indicating that changes in one parameter can potentially
be partially compensated for by changes in the other. We can also interpret the uncertainty as a kind of parameter sensitivity
analysis, indicating, for example, that the rate r, 34 must be tightly constrained for this particular simulated twitch.

Control and 161Q c¢TnC twitches from mouse trabeculae

We wanted to see how our CVAE would perform on inferring rates in real muscle, so we collected twitch data from mouse
trabeculae. We used control and 161Q cTnC mice, which we have previously shown to model genetic cardiomyopathy with
hypocontractility at cellular and organ level (11, 12). The trabeculae were held isometrically and stimulated at 1 Hz while
stress was recorded (see Methods for further details). We recorded 10 twitches from 8 different muscles for both control and
161Q c¢TnC transgenic mice. We averaged the twitches together for each type and show the mean + standard deviation in Fig. 6.
Consistent with previous findings (11, 12), we found that the I61Q cTnC variant resulted in reduced stress relative to the control
twitch by approximately half. We also used previously published data on mouse trabeculae treated with Danicamtiv, as well as
their accompanying control data, and inferred rate distributions for those twitches as well. Table 1 shows mean and standard
deviation of the peak stress, as well as peak, rise, and fall timings of stress for all conditions.

Table 1: Stress and timing differences - Control, I61Q cTnC, and Danicamtiv and its control mice trabeculae. Danicamtiv - and
its matched control data - first published in (12). We define ¢4k as time to peak stress, 150, ,ising as time to 50% maximum
stress and #50,fai1ing as time to 50% relaxation, relative to the start of activation.

Control 161Q ¢TnC ‘ Control Danicamtiv
Peak Stress  59.8 + 13.0 n":’gz 28.9+9.3 r'n"—rfllz 25.1+14.3 ::,1”\/2 40.1 £ 16.0 n';’—n’;’Z
tpeak 98.7 + 18.6 ms 106.2 + 9.6 ms 119.5 + 4.1 ms 140.7 + 11.4 ms
150,rising 45.1 + 5.8 ms 48.2 + 3.1 ms 59.5 + 2.8 ms 68.5+7.1 ms

150, falling 1668 £339ms 1735+ 150ms | 1858 +£85ms 2248 +17.5ms

Parameter Inference of Mouse Cardiac Twitches

Using the mean experimental twitches for control and 161Q cTnC across individuals (Fig. 6), we next used the trained CVAE to
infer the set of rates which were most likely to lead to a simulated twitch which was similar to the experimental twitch. Fig 7
shows the predicted probability distributions for the mean experimental twitches of both the control (blue) and 161Q cTnC
(orange), with the most probable values indicated. One notable result from the probability distribution plots is that rate constants
for the calcium thin filament on and off rates (r;,12 and r; 41) are among the most divergent between the two twitches, which is
consistent with the known experimental data of the 161Q cTnC variant (30). To further demonstrate utility, we applied the
CAVE method to our previously published cardiac mouse twitches ((12)) that were collected in presence and absence of the
myosin activator Danicamtiv and show a different probability distribution compared to the 161Q cTnC twitches. The CAVE
method correctly identified the two underlying mechanisms of Danicamtiv, which are recruiting more myosin motors into the
“On” state (decreased ry 16) and slower ADP release(decreased r 34). The results demonstrate the strength of the CVAE as it
was not provided any information about the underlying mechanism of the abnormal twitches.

Next, we wanted to use the probability distributions plots to determine how well we can recapture the experimental twitches.
Using the most probable (peak) value of the estimated distribution, we simulated a twitch using our spatially explicit model and
plotted the resulting simulations along with the experimental twitches (Fig 7, upper right). In general, the simulated twitches
using the rate parameters estimated by the CVAE follow the rising and falling characteristics of the simulated twitches, but do
not achieve the same peak force. This is particularly noticeable in the control from the I61Q cTnC group and the Danicamtiv
treated twitches.
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Figure 5: The 2-D joint probability distributions for the 9 rates we chose to vary in our simulations are shown as contour plots
that indicate the probability density over the rate space. The 1-D marginalized probability distribution of every rate factor is
plotted along the diagonal. In each joint probability distribution, solid red dots indicate the true rate factor which the target
twitch had been generated with. The target twitch, drawn from the simulated validation subset, is shown in the upper right in

red. A second inset shows a blowup of the joint probability distribution for r; 12 and r; 34, with the true rate factor indicated as

a solid red dot. We also show the peak of the distribution as a solid green dot, and the resulting twitch simulated with that
rate factor combination is shown in the upper right in green. Also shown are 20 twitches (black) and their mean + standard
deviation (blue) which were simulated with rate factors drawn randomly from the distribution. The rate factors are multiplied by

the base rates, plotted in Fig. 2. Note that the rate factors are plotted on a log scale.

Thick filament intervention to correct thin filament Ca** deficiency

In the parameter inference above, we allowed the CVAE to vary all nine rates in order to best fit the experimental data in both
control and 161Q cTnC variants. However, we know from published experimental work that the primary mechanism by which

the 161Q c¢TnC variant decreases muscle performance is by reduced Ca>* binding affinity (30). We decided therefore to start
from the control parameters inferred in Fig. 7 (blue) and then selectively alter the two parameters affecting Ca”* affinity, r; 1,

and r; 41, to match that of the inferred 161Q cTnC twitch (orange). This hybrid twitch, shown in Fig. 8, therefore combines the
inference of the CVAE with experimental knowledge to provide an estimate of an 161Q c¢TnC twitch. The I61Q cTnC simulation
with this hybrid rate factor combination results in similar kinetics as the control simulations, allowing us to evaluate potential
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Figure 6: Here we show the experimental isometric twitch stress for the different conditions used in the CVAE. First, we show
mouse cardiac trabeculae from control (blue) and mice with the I61Q ¢TnC variant (orange). We also show control trabecula
(green) and trabecula treated with the myosin activator Danicamtiv (pink), previously published in (12). We show the control
datasets taken contemporaneously for both I61Q cTnC and the Danicamtiv, since a different experimental apparatus and protocol
was used. For each group, the overall average (dashed black line) is shown along with the 95% confidence of the mean intervals
(shaded region). The 161Q cTnC groups consisted of § individuals, while the Danicamtiv groups consisted of 4 individuals.
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Figure 7: As in Fig. 5, we show the 2-D joint probability distributions as contour plots that indicate the probability density
over the rate factor space. Here, however, our target twitches were the mean experimental data shown in Fig. 6 rather than
simulated data, and dots indicate the peak of the probability distribution, i.e. the most probable value. In the left panel, we show
the experimental twitches as well as the twitch simulated using rate parameters corresponding to the peak of the respective
distribution. In the right panel, we show the same using data previously published in (12). As before, the rate factors are
multiplied by the base rates, plotted in Fig. 2. Note that the rate factors are plotted on a log scale.

non-thin filament therapeutic targets to recover the twitch phenotype.

Starting from the hybrid twitch we simulated in Fig. 8, we asked what intervention(s) (in simulation) could potentially
correct for the alteration in thin filament Ca?* sensitivity we introduced. To accomplish this, we generated a second data set in
which we fixed the rate factors in the thin filament that were used in the hybrid twitch (Fig. 8) and allowed the rates in the
thick filament to vary as before, from .1 to 100 over a log uniform scale. We then trained a second CVAE network to predict
the probability distribution of rates over this reduced space. Once the CVAE had been trained sufficiently (as determined by
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Figure 8: Left) Isometric twitch stress is plotted against time. Dotted lines indicate the experimental data, and solid lines indicate
simulated data. The blue and and orange simulations are performed with the most probable rates identi from the distributions
shown in figure 7. The ‘hybrid’ twitch (green) combines rates from those two inferences: the r; 1> and r; 14 rates from 161Q, and
the control rates for the rest. Middle) Starting with the ‘hybrid’ twitch and using the Control twitch as a target, we trained a
separate CVAE on only the thick filament rates in order to estimate an ‘intervention’ in the thick filament, i.e. changes we could
make which would restore function. For this set of simulations we centered the training set around the ‘Hybrid’ rate factors,
represented by green dots. Here, we show the resulting distribution over the thick filament rates using the control twitch as a
target. As in Fig. 7, solid red dots indicate the most probable rate factor, and rate factors are plotted on a log scale. Right) We
show the resulting simulated twitch corresponding to the peak of the distribution, which is our best estimate for a thick filament
intervention. In short, we started with the control twitch (blue), reduced r; 12 and r; 14 to estimate an I161Q twitch (green), then
estimate what change would be necessary to restore function, i.e. give a twitch most similar to the control (red).

the training curve in conjunction with a prob-prob, as in Fig. 4), we used the original control twitch as input and generated a
probability distribution over the thick filament rates. We then chose the rate factors corresponding to the most probable (peak)
value of the probability distribution as input to the spatially explicit model. The probability distribution, most probable rate
factor, and resulting twitch are shown in Fig. 8. We found that the estimated intervention approximately restored the peak twitch
force, but that the relaxation time had been increased in comparison to the original control simulation. These findings are similar
to our published work using the myosin activator Danicamtiv to recover the abnormal twitch of the I61Q ¢TnC mice (12).

DISCUSSION

In this study, we wanted to combine Bayesian inference methods with a spatially explicit muscle model in order to predict
combination of transition rates that can reproduce the isometric twitches from healthy and diseases mouse cardiac trabeculae.
By re-framing this inverse problem using Bayes’ law, we can infer a probability distribution over the rate space - rather than
single rate values - which may generate simulated twitches matching experimental data. While MCMC methods can be more
effective in the case that only a single target twitch is of interest, Bayesian methods such as the CVAE can be more effective
when there are a broad range of target data of interest. We hope that by continuing with such methods, it may be easier for a
broad range of researchers - who may all be interested in different small molecule modulators or different genetic variants - to
get quick estimates for a range of parameters, and generate hypothesis on which steps of the crossbridge cycle may be effected
most by a particular intervention. By finding such distributions for both control as well as different genetic variants in mouse
cardiac trabeculae, we hope to further be able to develop a method to infer how changes in some rate factors can *undo’ changes
made in another.

We began by updating our previously published computational model of the sarcomere to include additional states in order
to more easily compare the spatially explicit muscle model to experimental results. The new model was used to generate a
large data set of cardiac twitches in which 9 of the model parameters were randomly varied. We then used Bayesian parameter
estimation with a Conditional Variational Autoencoder (CVAE) to generate probability density plots of parameter(s) that result
in a particular cardiac twitch.

Four key results emerge from our study. First, changes to probability calculations allow for more accurate simulations
with fewer times-steps and less variations. This will have implications for others who use similar stochastic models of muscle
contraction. Second, variational inference enables accurate parameter estimation for high dimensional data such as muscle
twitch. Third, machine learning tools such as conditional variational autoencoders that are trained on simulated data, can be
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applied to experimental twitch data. We are able to predict the relative importance of model parameters that can produce
particular normal or diseased twitches. Fourth, we are able to use our newly trained tools to predict possible ways to recover
abnormal cardiac twitches.

Before we expand on the results, it is important to highlight the limitations of this study. First, the spatially explicit model
only captures multiscale interactions at the half-sarcomere level while in whole muscle, interactions between heterogeneous
collections of half sarcomeres as well as structures outside the sarcomere may have significant effects on whole muscle function
(5, 31-33). A whole muscle is not simply a half sarcomere scaled up as we have done here. Despite this, is has been shown
that isometric twitch stress - simulated and experimental - can be predictive of underlying biophysical perturbations (34).
Another challenge is the vast number of parameters which could potentially be explored. Our spatially explicit model contains
parameters that kinetic, mechanical, and geometric aspects of the sarcomere. Kinetic parameters include the transition between
states in the actin binding states and myosin crossbridges, such as the nine rate factors we modified in this paper. However, those
nine are only a subset of the overall rate space that could be affected by genetic variants. Mechanical parameters represent the
elastic coupling between neighboring myosin heads and binding sites, as well as the mechanical properties of the myosin heads
themselves, and changes in that coupling can lead to very different sarcomeric function (2). Geometric parameters represent the
spatial distribution of myosin heads including their orientation, number relative to thin filaments and radial spacing, all of which
can depend on species (35, 36). Because the model is spatially explicit, any sub-population, or even multiple sub-populations,
can be given different characteristics, leading to an exceedingly large parameter space. And, because of the spatially explicit
nature of the underlying model, each value can be varied. Spatial variation in parameters can be useful, since the penetrance
of a genetic variant may not be 100%, but rather only a sub-set of proteins may be affected, and their distribution may be
uniformly random or spatially heterogeneous (34). Another limitation of our study is that we used the same calcium transient
for all simulations. We and others have shown that alterations in myofilament function results in changes in calcium dynamics
(11,37, 38). We elected to only look at sarcomeric parameters, to keep the parameter space more manageable.

Changes to probability calculations allow for more accurate calculations

One significant modification to the spatially explicit muscle model is the implementation of the matrix exponential in obtaining
the per time step probability of transition for states. Previous work with our model used fewer states and were isometric, in
which the approximate probability calculations were sufficient. Thus our model, and other similar Monte-Carlo simulations,
simply used the rate and simulation time step to compute a transition probability (7, 39). However, with the addition of states
this approximation should become less accurate. For example an unbound crossbridge in state 1 could transition into one of
three states. Using our previous probability calculation, each competing state would require a smaller and smaller time step for
an accurate approximation of the probability of transition, increasing computational cost. Using Eq. 1, since the probability is
guaranteed to be conserved regardless of time-step size, we can use coarser time steps. This speeds calculations not only by
having to simulate fewer time-steps per twitch, but because variation is reduced, we can average fewer twitches together to form
each data point in the training dataset (Fig 3). Due to these changes in the probability estimation, we expect that techniques with
higher frequency oscillations and amplitudes, such as Nyquist measurements in (40), should be feasible.

Variational inference allows for approximation of high dimensional inverse problems

In general, high dimensional inverse problems are difficult for a number of reasons, namely that there is often no unique solution
for a particular observation, but rather many solutions which lie on a manifold in a high dimensional space. In other words if we
observe some data f , we can expect for a theoretical model, there will be many parameters 7 which can generate that data (41).
This problem is further complicated by the addition of noise in a model. A common way to deal with this under-determined
nature of the problem is by adding regularization terms to a cost function. By adding additional constraints, one can limit the
number of potential solutions (42). By reformulating the problem in terms of Bayes Theorem, we can model the solution as a
random variable and guess its probability distribution instead of treating it as a single value.

We can then interpret the probability distribution as indicating the relative importance of one parameter compared to another.
The probability density plots indicate a measure of the covariance of parameters, or a kind of sensitivity analysis, with broad
uncertainties implying changing that particular parameter will have a relatively small effect on the resultant simulated twitch
compared to parameters with low uncertainty. Even in small training datasets, it can become apparent if a particular parameter
is especially dominant. However, ensuring the training set is dense enough is necessary to ensure uncertainties are reflective of
the ‘true’ covariance of the different parameters. For the density of training data to remain constant as the number of parameters
increase, the number of training data points must increase exponentially with the number of dimensions (parameters). We chose
the rate factors in this paper due to a combination of being important from a computational standpoint, as well as biologically
relevant due to the known effects of specific genetic variants (11, 30) and small molecule modulators (12, 43).
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Combination of Simulations and ML methods can illuminate underlying mechanisms of
muscle diseases and ways to recover function

Machine learning methods such as variational autoencoders are increasingly applied in a variety of biological settings to identify
cell types that contribute to disease states (44), design novel protein variants (45) or recombinases (46). Recently, autoencoders
have been applied to multiplexed immunofluorescence images to understand how alterations in different processes can alter
subcellular organization (47). For the first time, we apply CVAE to cardiac twitch simulated and experimental data.

As seen in Figures 7, this method can produce probability distributions which can inform us of the relative importance
of certain rates to a particular target twitch. This method can then aid in generating hypotheses about underlying cardiac
sarcomere biology. For example, in Figure 5, there is very little variation in the predicted r 34 for the single twitch shown. This
is consistent with the fact that ADP release is the rate-limiting step in the crossbridge cycle and cardiac muscle relaxation
kinetics.

The traditional way of studying sarcomeric pathology is to start with biochemical or biophysical assays often from
recombinant proteins and then scale up to cellular, tissue or animal models. Based on the mechanism of action, potential
treatment strategies can be tested in vitro and then in vivo. This approach is informative for single variants but lacks the
resolution to screen many variants at once. Here we apply novel ML tools to muscle twitch data to infer underlying mechanism
of action. As seen in Figure 7, there are many possible set of parameter combinations that can perform reasonably well in
generating a twitch that resembles an average control or 161Q c¢TnC. For many of the thick filament parameters, there is
significant overlap between the rates for these two conditions. However, for most of the thin filament parameters, there is very
little overlap between the possible rates. As seen in Figure 7, there is minimal overlap between the r; 12 and r; 4; parameter space
between control and 161Q cTnC. These findings are consistent with the known mechanism of 161Q cTnC variant, which reduces
Ca’* binding affinity and cTnC-cTnl interaction (30). This demonstrates the power of this technique as the trained model
did not know anything about the underlying mechanism of the diseased twitch. In order to demonstrate utility in a range of
conditions, we applied CVAE to our previously published mouse cardiac twitches treated with the myosin activator Danicamtiv
(12). As seen in the left panel of Figure 7, we were able to show changes on the thick filament parameters, namely decreased
rx 34 and decreased r 16, Which corresponds to our previously published on the primary mechanism of Danicamtiv (12).

To help in determining which rates account for the most difference between two twitches, we used the Kolmogorov—Smirnov
(KS) test. The KS statistic informs about the maximum difference between the two cumulative distribution functions (CDFs)
and the sign indicates which CDF is larger with a negative sign indicating that the value for the control CDF was smaller.
In case of the control vs. I61Q cTnC, the KS statistic for r; 1o and r; 4; distributions are higher than most other parameters,
consistent with the primary mechanism of action of the variant. One exception, however, is the rate . j¢. The results are even
more clear when comparing control and Danicamtiv twitches, as the KS statistic for the rates 7, 34 and 7 1 are larger than the
other rates, consistent with the hypothesis that changes in those rates account for most of the difference in those twitches.

Another use of of ML methods in cardiac biology is in predicting potential therapeutic targets. While there are no examples
of this approach in sarcomere biology, a recent study used ML methods to identify a small molecule that corrected gene
network dysregulation in NOTCH1-haploinsufficient hiPSC-derived endothelial cells (48). As seen in Figure 8, we generated a
twitch with the best predicted thin filament parameters that fit the I61Q c¢TnC data (orange trace). We then generated a new
smaller data set where only the thick filament parameters are varied in order to tell us about potential thick filament-based
interventions to correct the abnormal twitch. Two effective strategies seem to be reducing ADP release rate (decreasing r 34)
and increasing the DRX myosin population (decreasing 7 16). As discussed earlier, these two rate constants are affected by the
myosin activator Danicamtiv, which we have previously shown to correct the hypocontractility seen in the I61Q cTnC mouse
model (12). While the peak force is clearly recovered by using this type of approach, the relaxation is prolonged, which we also
saw in our experimental treatments with Danicamtiv.
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SUPPLEMENTARY MATERIAL
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Supplementary Figure 1: Here we show twitch force in mice cardiac trabeculae from both control (blue) and mice with the
161Q cTnC variant (orange). Black dotted lines indicate the twitches from 8 different individual mice, each of which is an

average of 10 twitches. The overall average is shown with 95% confidence of the mean intervals.

Mouse Cardiac Trabeculae Isometric Twitches

Here we show the individual traces of all 8 individual muscles for both control and 161Q c¢TnC mouse cardiac trabeculae, as

well as the 4 twitches which make up the danicamtiv dataset. Each individual trace is composed of 10 twitches which are
averaged (Fig. 1). Danicamtiv data was first published in (12).

Mean and Variance in exp data and model predictions

Because experimental data often has high variance between individual measurements, we wanted to see how the CVAE

performed when shown different instances of the same type of twitch. Here we inferred the set of rates associated with the
overall average twitch for a control muscle and plotted the resulting rate distribution. Then we inferred the rates for each of the 8
individual muscles separately, and then found the average rate distribution across those 8 distributions. The results show, in
general, that the average of the separate predictions has a larger variance, but that the two methods produce the same means
(Fig. 2).
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Supplementary Figure 2: Blue indicates the distribution obtained by predicting the rate distribution of each of the individual
experimental twitches separately, and then averaging the results. Pink indicates the prediction obtained by first averaging the
separate twitches and predicting on that target alone. All predictions were done on the control twitch set.
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Supplementary Figure 3: To show that the probability calculations converge faster, we simulated twitches at various time steps.
Left uses the old numerical scheme, and shows that even very small time steps still have not converged. Right simulations use
the numerical scheme in Eq. 1, and shows approximately the same twitches regardless of time-step used.
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Supplementary Figure 4: Because our muscle model is spatially explicit, meaning each crossbridge and binding site are treated
individually, we can modify populations of crossbridges to simulate heterozygous genetic variants. Here we show a control
simulation, using the same rate constants as the Control in Fig. 7. We then performed simulations in which r; 12 and r; 14 had
been reduced by 50% for 50% of the binding sites (teal), and another simulation in which 100% of binding sites had r; 1, and
rt.14 reduced by 25% (brown), therefore giving the same overall average reduction of 25%. But because of the spatially explicit
nature of the model, the simulations result in different twitches.

100

20 Manuscript submitted to Biophysical Journal


https://doi.org/10.1101/2024.05.08.593035
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.08.593035; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Biophysical Journal Template

Kolmogorov-Smirnov test

Control and 161Q cTnC Control and Danicamtiv
KS Statistic  KS Location  Sign KS Statistic  KS Location  Sign
12 0.51 -0.25 -1 0.12 -0.79 -1
re23 0.29 -0.011 1 0.06 -0.55 -1
134 0.43 0.60 1 0.07 -0.08 -1
Tta1 0.49 0.19 -1 0.13 0.99 -1
rx.12 0.37 0.76 -1 0.02 -0.78 1
Fx23 0.31 1.26 -1 0.06 -0.34 -1
x 34 0.36 -0.24 1 0.31 -0.65 -1
x5l 0.21 -0.33 1 0.08 0.98 1
rx.16 0.84 -0.75 1 0.48 -0.15 -1

Supplementary Table 1. The Kolmogorov-Smirnov test is used to show how similar or dissimilar two probability distributions
are. The KS statistic shows the maximum difference (supremum) between two cumulative distribution functions (CDFs), and
the KS Location indicates the rate factor at which the supremum occurs. The sign indicates which CDF was larger, with negative
indicating that the value of the CDF for the control type was smaller, consistent with the bulk of the probability distribution’s
mass occurring at larger rate factors, and positive indicating the opposite. The p-value in each pair-wise comparison was less
than 107>,
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