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Abstract—Typical sex differences in white matter (WM)
microstructure during development are incompletely understood.
Here we evaluated sex differences in WM microstructure during
typical brain development using a sample of neurotypical
individuals across a wide developmental age (N=239, aged 5-22
years). We used the conventional diffusion-weighted MRI
(dMRI) model, diffusion tensor imaging (DTI), and two advanced
dMRI models, the tensor distribution function (TDF) and neurite
orientation dispersion density imaging (NODDI) to assess WM
microstructure. WM microstructure exhibited significant,
regionally consistent sex differences across the brain during
typical development. Additionally, the TDF model was most
sensitive in detecting sex differences. These findings highlight the
importance of considering sex in neurodevelopmental research
and underscore the value of the advanced TDF model.
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I. INTRODUCTION

Prior diffusion-weighted magnetic resonance imaging
(dMRI) work has extensively characterized sex differences in
the adult human brain using multiple dMRI models, providing
evidence for subtle sex differences across the brain’s white
matter (WM) for multiple dMRI metrics [1, 2]. However, less
work has examined typical WM sex differences during
development. Underscoring the importance of studying
developmental sex differences, childhood through emerging
adulthood is a period of substantial physiological and neural
change — including in the brain’s WM microstructure [3, 4].
WM microstructure is implicated in multiple neuropsychiatric
disorders that begin to manifest during adolescence and exhibit
sex differences in their prevalence or presentation, including
depression, bipolar disorder, and schizophrenia [5-7].
Understanding sex differences in WM microstructure during
typical development may thus offer an important foundation
for studying the neural mechanisms of such neuropsychiatric
conditions.

Most studies of typical microstructural sex differences in
individual WM tracts or regions during development have been
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constrained by the limitations of the diffusion model used,
small sample sizes, and/or narrow age ranges. Most dMRI
studies use the conventional diffusion tensor imaging (DTI)
model [8]. However, the DTI model cannot accurately model
complex fiber configurations, such as fiber crossing, due to its
strict Gaussianity and use of a single tensor [9]. Most studies of
regional WM sex differences in typical development examined
fewer than 100 participants; existing larger studies have
focused on narrow age ranges or early developmental periods
that do not allow for the assessment of how sex differences
may evolve between childhood and emerging adulthood [10—
12].

Diffusion models beyond the conventional DTI model can
capture the underlying microenvironment more accurately and
enable additional insights into WM microstructure. One such
advanced diffusion model is the tensor distribution function
(TDF), which uses a continuous mixture of Gaussian
distributions to model diffusion and assigns weights to tensors
based on their contribution to describing the diffusion in the
voxel [13, 14]. TDF can also be computed from single-shell
dMRI, making it well-suited for archival single-shell datasets
and for developmental samples that require shorter scan
acquisitions than adult samples. Prior work using TDF in
Alzheimer’s disease, cognitive impairment, and normative
aging has also shown that TDF can capture WM differences
with greater sensitivity than DTI [2, 14, 15]. However, no prior
work has used TDF to characterize WM microstructure in
typical development. Advanced biophysical diffusion models
are complementary to models such as TDF by reflecting
additional properties of water diffusion that may correspond
more closely with individual aspects of the cellular
environment and thus allow for a more nuanced
characterization of sex differences. One such biophysical
model is the multi-compartment neurite orientation and
dispersion density imaging (NODDI) model, which uses a
Watson distribution to estimate the dispersion about the
dominant orientation [16]. However, prior studies that have
used NODDI to assess WM microstructure during typical
development did not assess sex differences, focused on a
selected region, or used very small samples [17-20]. TDF and
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NODDI have been widely used in multiple conditions, such as
Alzheimer’s disease, traumatic brain injury, and aging, and
have been shown to be more accurate in modeling WM
microstructure compared to traditional DTI [2, 13-16, 21-22].

In this study, we used the dMRI models DTI, TDF, and
NODDI to characterize WM sex differences in a sample of
neurotypical individuals across a broad developmental age
range. To ensure robust results, we conducted supplemental
analyses that consider methodological and physiological
factors important to developmental populations. We also
assessed which dMRI model was the most sensitive to sex
differences in developmental populations to inform future
study design. As a whole, this comparatively large study
(spanning this age range) is the first set of analyses to assess
WM sex differences from childhood through emerging
adulthood using the advanced dMRI models, TDF and
NODDI.

II. METHODS

A. Participants

The data used in this study is from the open-source Healthy
Brain Network (HBN), an ongoing large-scale study across
four data acquisition sites in the New York City area. The
HBN initiative seeks to create a biobank of multimodal brain
imaging and phenotypic data that captures a broad range of
commonly encountered clinical psychopathology in childhood
through emerging adulthood [23]. The HBN study was
approved by the Chesapeake Institutional Review Board.
Written informed consent was obtained from all participants
ages 18 or older. For participants younger than 18, written
informed consent was obtained from their legal guardian and
written assent from each participant.

Table 1: Sample characteristics

(see MRI Acquisition and MRI Processing). Sex was defined as
the biological sex of the participant. Our final sample consisted
of 239 neurotypical subjects between the ages of 5 to 22 years
old (46.0% female; Table 1).

Males and females in our sample did not significantly differ
in age (p=0.16) or mean relative head motion (p=0.86). As
expected, females were significantly more pubertally advanced
than males (p=0.01) in the N=141 subset of participants with
self-reported Peterson Puberty Scale (PPS) questionnaire
scores [24, 25]. We thus included categorical puberty stage
(pre-/early pubertal vs. mid-/late/post-pubertal) as a covariate
in supplemental analyses to account for the unequal
distribution of pubertal stages in our sample.

B. MRI Acquisition

dMRI scans were acquired across four Siemens scanners in
HBN: three Siemens 3T scanners (two Prismas and one Trio:
1.8 mm isotropic voxel size, 104 x 104 matrix, 72 slices, TR =
3320 ms, TE = 100.2 ms, multiband acceleration factor = 3),
and one 1.5T scanner (Avanto: 2.0 mm isotropic voxel size, 96
x 96 matrix, 72 slices, TR = 4500 ms, TE = 93.8 ms, multiband
acceleration factor = 3). All dMRI scans consisted of one b =0
s/mm? (bg) volume and 64 diffusion encoding directions for
two diffusion-weighted shells: 64 directions at b = 1000 s/mm?
and 64 directions at b = 2000 s/mm?,

C. MRI Processing

All raw Tl-weighted and dMRI scans were visually
inspected for quality assurance. Each subject’s dMRI scan was
denoised using the Marcenko-Pastur principal component
analysis (PCA) algorithm in DIPY to enhance the signal-to-
noise ratio [26]. To correct for susceptibility artifacts in the
dMRI images, we first generated an estimate of the

Boys Girls Boys vs. Girls

Sample Size 129 110 -

Age (years) 11.44 £+ 3.80 10.93 + 4.21 0.34

PPS Category - - 0.01
Pre-pubertal to 52 29 -
early-pubertal

Mid-pubertal to 27 37 -
post-pubertal

Head motion (mm) 0.30 & 0.22 0.29 & 0.20 0.56

This table presents key demographic and clinical characteristics of the sample by sex. The age and
head motion of participants are reported as mean + standard deviation. 'PPS’ denotes Peterson
Puberty Scale staging, a measure used for assessing pubertal development. In the last column,
p-values indicate the statistical significance of the differences observed between boys and girls.

For the current analyses, we included neuroimaging and
demographic data from neurotypical participants available
through Release 10. As the purpose of the current study was to
understand typical sex differences in white matter
microstructure, included subjects were required to have
completed a full clinical evaluation and received no diagnosis
(i.e., neurotypical) and have a complete dMRI scan that passed
quality control, including not having excessive head motion

susceptibility-induced off-resonance field calculated from a
pair of reverse-phase encoded by images [27] using FSL’s
topup [28]; for six participants who did not have a reverse-
phase encoded by image, the off-resonance field was generated
using the previously validated method, Synb0-DisCo, to create
a synthetic by image derived from the dMRI and T1-weighted
image [29]. FSL’s eddy cuda then used this field to correct for
susceptibility distortions, while also correcting for head motion
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and eddy currents, including rotating the b-matrix. We then
corrected for bias field artifacts in the dMRI scans using
ANTS’ N4BiasFieldCorrection algorithm [30], as implemented
in MRtrix3’s dwibiascorrect [31, 32].

We employed three distinct diffusion reconstruction models
to derive eight relevant metrics. Using FSL’s dtifit, we fit the
traditional DTI model, which generates a single tensor, to
derive measures of fractional anisotropy (FAP™: indicative of
non-uniform diffusion), mean diffusivity (MD: overall
magnitude of diffusion), axial diffusivity (AD: diffusion in the
principal direction), and radial diffusivity (RD: diffusion in the
orthogonal directions) [8]. Using publicly available code
(https://git.ini.usc.edu/ibagari/TDF), we fit the probabilistic
TDF model, which models diffusion with a continuous mixture
of Gaussians, to generate a measure of FATPF that is similar to
FAPT but more accurately describes diffusion in areas of
crossing fibers [13, 14]. For DTI and TDF, only the lower b-
value shell, 5 = 1000 s/mm?, was used in the reconstruction, to
be consistent with previous literature [2, 12, 33]. We fit the
multi-compartment NODDI model using the Dmipy Toolbox
[34], which models the dispersion of a single bundle using a
Watson distribution [16]. Using this model, we derived
measures of orientation dispersion index (ODI: orientation
dispersion of the bundle), intracellular volume fraction (ICVF:
restricted diffusion), and isotropic volume fraction (ISOVF:
isotropic Gaussian diffusion). All diffusion-weighted shells
were used to reconstruct the NODDI model.

To generate white matter summary measures for each
region of interest (ROI), we used the ENIGMA-DTTI protocol
(http://enigma.ini.usc.edu/protocols/dti-protocols) [35]. Briefly,
FSL’s tract-based spatial statistics (TBSS) [36] was used
together with the ENIGMA-DTI template to skeletonize the
FAPT image; the projection used for FAP™ was then used to
skeletonize all other dMRI metrics. The average of each
diffusion metric in the skeleton was then calculated for 25
bilateral deep WM ROIs from the Johns Hopkins University
(JHU) DTI atlas [37]: the corpus callosum (CC), genu of CC
(GCC), body of CC (BCC), splenium of CC (SCC), fornix
(FX), corticospinal tract (CST), internal capsule (IC), anterior
limb of IC (ALIC), posterior limb of IC (PLIC), retrolenticular
part of IC (RLIC), corona radiata (CR), anterior CR (ACR),
superior CR (SCR), posterior CR (PCR), posterior thalamic
radiation (PTR), sagittal stratum (SS), external capsule (EC),
cingulum (cingulate gyrus) (CGC), cingulum (hippocampus)
(CGH), fornix/stria terminalis (FX/ST), superior longitudinal
fasciculus (SLF), superior fronto-occipital fasciculus (SFO),
tapetum (TAP), uncinate fasciculus (UNC), and whole white
matter average (full WM). To adjust for inter-scanner
variability, we used ComBat (neuroCombat;
[https://github.com/Jfortinl/neuroCombat]) to  harmonize
subjects’ ROI data within each dMRI metric while preserving
variance due to age and sex [38, 39]. All image pre-processing
and processing steps were checked visually for quality
assurance, and subjects with excessive head motion were
excluded.

D. Statistics

Our primary analyses used a fixed-effects linear regression
to assess sex differences in WM microstructure (main effect of

sex), with additional analyses testing the interaction between
sex and age (sex % age and sex x age?) to determine if age
modified the effect of sex; all analyses also included demeaned
age and age’ terms as nuisance covariates. We report effect
sizes as the standardized beta, as we included nuisance
covariates in our regression and standardized betas also allow
for comparability with previous WM sex differences studies
[10, 40]. A false discovery rate (FDR) [41] of 5% was used to
correct for multiple comparisons across ROIs. Significance of
all results were determined as ¢ < 0.05 after FDR correction.
Supplemental analyses were completed to determine if our
results remained significant when including mean relative head
motion or pubertal stage as additional nuisance covariates, and
when using the alternative scanner harmonization method
ComBat-GAM (NeuroHarmonize’s harmonizationLearn) [42].
ComBat-GAM removes batch effects between sites by fitting a
generalized additive model (GAM) with a penalized nonlinear
term to describe age effects.

III. RESULTS

Our analyses investigating the main effect of sex revealed
significant microstructure differences between boys and girls in
multiple WM ROIs across the brain (Fig. 1-5). As a whole, the
DTI model showed that boys had reduced fractional anisotropy
and greater diffusivity when compared to girls. Boys displayed
significantly lower FAP™ in the SS than girls, on average. Boys
also exhibited significantly greater MD than girls in the full
WM and in multiple ROIs; the largest effect size was observed
in the SS, with similar effect sizes across the EC, UNC, PTR,
SLF, CR, ACR, and PCR. For AD, boys displayed
significantly higher values compared to girls in the SLF, SS,
and PCR, with similar effect sizes across these ROIs.
Compared to girls, boys also showed significantly greater RD
in the SS. When using the TDF model, boys displayed
significantly lower FATPF than girls, on average. The largest
effect sizes for FATPF were in the SS, PCR, PTR, and FXST,
with slightly smaller effect sizes in the CR, SCR, RLIC, TAP,
SLF, and EC. For the NODDI measures, boys displayed
significantly lower ICVF in the SS, TAP, and PTR compared
to girls, with similar effect sizes across the ROIs. Boys also
displayed significantly greater ISOVF than girls, on average, in
the full WM and in multiple ROIs across the brain. The largest
effect sizes for ISOVF were in the SS, EC, and CGH, with
smaller effect sizes in the CR, ACR. For the ODI metric, no
ROIs exhibited a significant main effect of sex. Altogether
across the three dMRI models, multiple ROIs displayed
significant sex differences: girls displayed higher anisotropy
and restricted diffusion compared to boys, together with lower
diffusivity and overall free diffusion than boys.

To consider the relative sensitivity of the different dMRI
models to the main effect of sex (Fig. 1), we examined the
number of significant ROIs in each of the three models. DTI
captured significant sex effects in 9 ROIs, with the MD metric
exhibiting the greatest sensitivity by capturing sex differences
in all 9 significant ROIs. The TDF model captured significant
effects on FA™ in 10 ROIs. Across all NODDI metrics,
significant sex effects were observed in 8 ROIs; the most
sensitive metric, ISOVF, captured significant effects in 6 ROIs.
In sum, the TDF model detected significant differences
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Fig 1. Effect sizes for the main effect of sex. ROIs are displayed if they exhibited a significant main effect of sex for at least one metric, with solid circles
representing significant effects, and hollow circles representing non-significant effects. Positive effect sizes represent metrics that were greater in boys
compared to girls, and negative effect sizes represent metrics that were greater in girls compared to boys.
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Fig. 2. Magnitude of effect sizes for the main effect of sex on the DTI metrics. Significant ROIs are mapped onto the brain and colored
according to the magnitude of the standard beta term for the main effect of sex. The yellow represents greater effect sizes and red represents
smaller effect sizes. The title above each set of brain images indicates the direction of the effect. (A) the significant effect on FAP™, (B)
significant effects on MD, (C) significant effect on RD, and (D) significant effects on AD.
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Fig. 3. Magnitude of effect sizes for the main effect of sex on the NODDI metrics. Significant ROIs are mapped onto the brain and colored
according to the magnitude of the standard beta term for the main effect of sex. The yellow represents greater effect sizes and red represents
smaller effect sizes. The title above each set of brain images indicates the direction of the effect. (A) the significant effects on ICVF and (B)

significant effects on ISOVF.
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Fig. 4. Magnitude of effect sizes for the main effect of sex on the FA™TF
Significant ROIs are mapped onto the brain and colored according to the
magnitude of the standard beta term for the main effect of sex. The yellow
represents greater effect sizes and red represents smaller effect sizes. The title
above each set of brain images indicates the direction of the effect.

between boys and girls in the greatest number of ROIs,
although the number of significant ROIs was similar across all
three dMRI models.

In supplemental analyses, we assessed the robustness of our
significant sex difference results to multiple considerations,
including scanner harmonization method, head motion, and
pubertal development. As a whole, most of our sex difference
findings remained significant. When using the harmonization
method ComBat-GAM, the observed sex effects remained
significant for all metrics in all ROIs. All sex difference results
similarly remained significant when statistically covarying for
mean relative head motion. When only considering participants
with complete pubertal data and including pubertal stage as a
nuisance covariate to account for the unequal distribution of
pubertal stage in our sample, many of the metric and ROI
combinations continued to exhibit significant sex differences.
For the DTI measures, FAP™ and RD in the SS remained
significant for the main effect of sex. For AD, only the SLF
remained significant. For MD, the SS, UNC, and PCR
remained significant. TDF’s FAT™F measure remained

significant for the SS, PCR, CR, and EC. In the NODDI model,
the SS remained significant for ICVF. For ISOVF, the SS,
CGH, and full WM remained significant. In sum, multiple sex
difference results remained significant in the supplemental
analyses, with the most robust results seen in the SS, CR, and
PCR.

Our analyses examining the interaction between sex and
age demonstrated a significant interaction for the NODDI
metric ODI in the SCR only. Visual inspection of the data
revealed that boys display declining ODI between early
childhood and emerging adulthood, whereas girls display
increasing ODI from adolescence through emerging
adulthood, such that girls exhibit greater ODI than boys by
emerging adulthood. This interaction between sex and age
remained significant in the supplemental analyses using
ComBat-GAM and covarying for mean relative head motion,
although it no longer quite attained significance when only
including participants with complete pubertal data and
covarying pubertal stage (p=0.055). In short, ODI exhibits a
significant interaction between sex and age that is relatively
robust.

IV. DISCUSSION

Here we wused multiple advanced dMRI models to
rigorously characterize sex differences in WM microstructure
during typical development, including how such differences
may vary between childhood and emerging adulthood.
Neurotypical boys and girls exhibited significant
microstructure differences in a range of deep WM regions
across the brain when using the conventional model, DTI, as
well as the advanced models, TDF and NODDI. The
directionality of such sex differences was consistent across all
WM regions assessed here. Compared to boys, girls exhibited
greater FAPTL FATPF and ICVF than boys, on average. Boys
displayed higher MD, AD, RD, and ISOVF than girls, on
average. These sex differences were observed in WM regions
that included a mixture of projection, association, commissural,
and limbic tracts. When considering how sex differences
depended on age in our cross-sectional sample, the greatest sex
differences in ODI were observed in emerging adulthood.
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Fig 5. Plots displaying the distribution of boys and girls for dMRI metrics
values of (A) FAP™, (B) FA™", and (C) ICVF in the sagittal stratum plotted
against age.

We also considered the relative sensitivity of the DTI, TDF,
and NODDI models to sex effects on WM microstructure in
our developmental sample. When examining sex differences
across development, TDF detected significant sex differences
in the greatest number of WM regions, followed by DTI and
NODDI; however, the overall sensitivity of these three models
to the main effect of sex was similar. When investigating how
sex differences are modulated by age, NODDI was the only
reconstruction model to capture a significant interaction
between sex and age. Taken together, these findings suggest
the utility of including advanced dMRI models when
evaluating WM sex differences in developmental populations.

The current study has several strengths. The use of multiple
dMRI models allows for a more thorough characterization of
white matter sex differences, including the relative sensitivity
of each model to these differences. Our use of the advanced

model, TDF, also allows for greater compatibility with large-
scale single-shell archival dMRI data, as well as newly
collected single-shell dMRI scans in populations less likely to
tolerate long multi-shell scans (e.g., infants) [43, 44]. Our
results from the advanced multi-shell model NODDI may
provide greater biological specificity than DTI or TDF by
directly modeling multiple aspects of the cellular environment
[16], although some recent studies suggest that the assumptions
underlying the specificity of NODDI’s metrics may not always
be met [45, 46]. Future studies should assess the
generalizability of our findings by including additional dMRI
models (e.g., restriction spectrum imaging) and using
complementary dMRI analytic techniques beyond the TBSS
method used here (e.g., tractography).

V. CONCLUSION

We found widespread and regionally consistent sex effects
on WM microstructure during development. These results
expand on prior neurodevelopmental studies that used the DTI
model to examine regional WM sex differences in smaller
samples or narrower age ranges [10-12]. Furthermore, these
findings provide the first robust characterization of regional sex
differences in WM microstructure between childhood and
emerging adulthood when using the advanced dMRI models,
TDF and NODDI. In sum, our study provides an important
reference for the future analysis of sex differences in typical
development and adolescent-onset neuropsychiatric conditions.
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