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Abstract 1 

Single image super-resolution (SISR) neural networks for optical microscopy have shown great 2 

capability to directly transform a low-resolution (LR) image into its super-resolution (SR) 3 

counterpart, enabling low-cost long-term live-cell SR imaging. However, when processing time-4 

lapse data, current SISR models failed to exploit the important temporal dependencies between 5 

neighbor frames, often resulting in temporally inconsistent outputs. Besides, SISR models are 6 

subject to inference uncertainty that is hard to accurately quantify, therefore it is difficult to 7 

determine to what extend can we trust the inferred SR images. Here, we first build a large-scale, 8 

high-quality fluorescence microscopy dataset for the time-lapse image super-resolution (TISR) 9 

task, and conducted a comprehensive evaluation on two essential components of TISR neural 10 

networks, i.e., propagation and alignment. Second, we devised a deformable phase-space 11 

alignment (DPA) based TISR neural network (DPA-TISR), which adaptively enhances the cross-12 

frame alignment in the phase domain and outperforms existing state-of-the-art SISR and TISR 13 

models. Third, we combined the Bayesian training scheme and Monte Carlo dropout with DPA-14 

TISR, developing Bayesian DPA-TISR, and designed an expected calibration error (ECE) 15 

minimization framework to obtain a well-calibrated confidence map along with each output SR 16 

image, which reliably implicates potential inference errors. We demonstrate the unique 17 

characteristics of Bayesian DPA-TISR underlie the ultralong-term live-cell SR imaging 18 

capability with high spatial fidelity, superb temporal consistency, and accurate confidence 19 

quantification on a wide variety of bioprocesses. 20 
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Introduction 

In the past two decades, optical super-resolution microscopy (SRM) has become an essential tool 

for life science research. However, the increase in spatial resolution with any SRM is 

accompanied by the tradeoffs with other imaging metrics such as speed and duration1, 2. Recent 

advancements in deep neural networks have demonstrated remarkable capability to transform 

low-resolution (LR) images to their super-resolution (SR) counterparts, thereby enabling instant 

single image super-resolution (SISR) without any modifications on optical setups and realizing 

ultra long-term live-cell SR imaging3-12. Nevertheless, there are two major limitations in existing 

SISR neural networks when applied to time-lapse data. Firstly, when applied to process time-

lapse images which is common in biological research, SISR models cannot capture the temporal 

dependencies between adjacent frames, thus yielding inferior SR fidelity and temporally 

inconsistent inferences5. Secondly, existing SISR models only generate monochromatic intensity 

images of biological structures without providing a quantitative and reliable evaluation on output 

confidence13, which makes it equivocal whether one could trust those outputs or not14. These two 

defects severely impede the wide applications of SR neural networks in routine biological 

imaging experiments. 

To address the aforementioned challenges, we first employed our home-built multimodality 

structured illumination microscopy (SIM) system to acquire a large-scale high-quality dataset for 

the biological time-lapse image super-resolution (TISR) task, named BioTISR. The BioTISR 

dataset contains thousands of well-matched LR-SR time-lapse image stacks with three different 

input signal-to-noise ratios (SNR) and five biological specimens (Methods), allowing us to 

systematically evaluate the state-of-the-art TISR neural networks. Instead of assessing numerous 

TISR models individually, we investigated two most essential parts of the TISR network 

architecture, temporal information propagation and neighbor feature alignment, using a custom-

designed general TISR framework (Methods). During the evaluation, we found that existing 

mainstream feature alignment mechanisms such as optical flow15 cannot always perform correct 

alignment speculatively due to the rapid motion of biological structures with global 

inconsistency and the intrinsic photon noise in fluorescent images  (Supplementary Fig. 1). To 

this end, inspired by the frequency shifting property of Fourier transform, that is, the spatial 

shifting of structures equals to phase changes in Fourier domain, we devised a deformable phase-

space alignment (DPA) mechanism that is able to adaptively learn large and tiny motions in the 
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phase space at a sub-pixel precision. Furthermore, resorting to the strong feature alignment 

capability of DPA, we proposed the DPA-based time-lapse image super-resolution network 

(DPA-TISR) model and demonstrated that DPA-TISR outperforms other state-of-the-art TISR 

models in terms of both fidelity and temporal consistency. 

To conquer the second issue, we incorporated Bayesian deep learning16 and Monte Carlo 

dropout approach17 with the DPA-TISR neural network, dubbed Bayesian DPA-TISR, to 

characterize the aleatoric uncertainty and epistemic uncertainty16, respectively. Then by 

calculating local integration of the mixed probability distribution function for each pixel 

(Methods), confidence maps that quantitatively evaluate the reliability of the output images 

could be generated. However, both our results and previous literature indicate that deep neural 

networks tend to be overconfident18, that is, the predicted confidence is higher than the real one. 

To cope with this issue, we developed an iterative finetuning framework to minimize the 

expected calibration error (ECE), where the ECE is defined as the weighted average of the 

absolute differences of inference accuracy and confidence, and can be reduced by more than 5-

fold with our methods. We demonstrate that the DPA-TISR and Bayesian DPA-TISR enable 

low-cost SR live imaging with ultrahigh spatiotemporal resolution, extended duration, and 

reliable confidence evaluation by visualizing and analyzing various intracellular organelle 

interactions in live cells. 

Results 

Evaluation of essential components for TISR neural network models 

TISR or video super-resolution (VSR) neural network models are designed to leverage temporal 

neighbor frames to assist the super-resolution of the current frame, thereby expected to achieve 

better performance than SISR models19 (Supplementary Note 1). Although TISR models have 

been widely explored in natural image SR to improve video definition, whether such models 

could be applied to super-resolve biological images, i.e., enhancing both sampling rate and 

optical resolution, has been poorly investigated. Here, we employed the TIRF/GI-SIM and 

nonlinear SIM20 modes of our home-built multimodality SIM system (Multi-SIM) to acquire an 

extensive TISR dataset of five different biological structures: clathrin-coated pits (CCPs), 

lysosomes (Lyso), outer mitochondrial membranes (Mito), microtubules (MTs), and F-actin 

filaments (Extended Data Fig. 1). For each type of specimen, we generally acquired over 50 sets 
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of raw SIM images with 20 consecutive timepoints at 2-4 levels of excitation light intensity 

(Methods). Each set of raw SIM images was averaged out to a diffraction-limited wide-field (WF) 

image sequence and was used as the network input, while the raw SIM images acquired at the 

highest excitation level were reconstructed into SR-SIM images as the ground truth (GT) used in 

network training. In particular, the image acquisition configuration was modified into a special 

running order where each illumination pattern is applied 2-4 times at escalating excitation light 

intensity before changed to the next phase or orientation, so as to minimize the motion-induced 

difference between WF inputs and SR-SIM targets (Methods).  
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Fig. 1 | Comparison of representative propagation and alignment mechanisms in TISR models. a-b, Schematic 

illustration of two temporal information propagation mechanisms: sliding window-based propagation (Sliding, a) 

and recurrent network-based propagation (Recurrent, b). c-e, Schematic illustration of three neighbor feature 

alignment mechanisms using optical flow (OF, c), non-local attention (NA, d), and deformable convolution (DC, e). 

f, Representative TISR microtubule images inferred by six models combined by two propagation methods (Sliding 

and Recurrent) and three alignment mechanisms (OF, NA, and DC). WF and GT-SIM images are shown in the first 

column for reference. g, Time-lapse correlation matrixes of TISR images inferred by the models evaluated. h-j, 

Statistical comparison of the six models in terms of PSNR, SSIM on F-actin (h, n=50), microtubules (i, n=50), and 

simulated tubular structures (j, n=200). Scale bar, 3 μm (f), 1 μm (zoom-in regions in f). 

To effectively utilize the temporal continuity of time-lapse data, the state-of-the-art (SOTA) 

TISR neural networks consist of mainly two important components21, 22: temporal information 

propagation and neighbor feature alignment. We selected two popular types of propagation 

approaches: sliding window (Fig. 1a) and recurrent network (Fig. 1b), and three representative 

neighbor feature alignment mechanisms: explicit warping using optical flow15 (OF, Fig. 1c), and 

implicit alignment by non-local attention23, 24 (NA, Fig. 1d) or deformable convolution21, 25, 26 

(DC, Fig. 1e), resulting in six combinations in total. For fair comparison, we custom-designed a 

general TISR network architecture composed of a feature extraction module, a propagation and 

alignment module, and a reconstruction module (Extended Data Fig. 2), and kept the architecture 

of the feature extraction module and reconstruction module unchanged while only modified the 

propagation and alignment module during evaluation (Methods). We then examined the six 

models on five different data types: linear SIM data of MTs, Lyso, and Mito, three of the most 

common biological structures in live-cell experiments; nonlinear SIM data of F-actin, which is of 

the highest structural complexity and upscaling factor in BioTISR; and simulated data of tubular 

structure with infallible GT references (Supplementary Note 2). As is shown in Fig. 1f, Extended 

Data Figs. 3 and 4, all models denoised and sharpened the input noisy wide-field (WF) image 

evidently, of which the model constructed with recurrent scheme and deformable convolution 

alignment resolved the finest details compared to the GT-SIM image (indicated by while arrows 

in Fig. 1f). Furthermore, we calculated time-lapse correlation matrixes (Fig. 1g) and image 

fidelity metrics (Fig. 1h-j), i.e., peak signal-to-noise ratio (PSNR) and structural similarity 

(SSIM), for the output SR images to quantitatively evaluated the temporal consistency and 

reconstruction fidelity, respectively. According to the evaluation, we found that (i) recurrent 

network-based propagation outperformed the sliding window-based one in both temporal 
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consistency and image fidelity, and (ii) alignment mechanisms had little effect on temporal 

consistency of the reconstructed SR time-lapse data, while the DC-based alignment generally 

surpassed the other two mechanisms in terms of PSNR and SSIM for all types of datasets.  

Moreover, we validated these findings by using simulated dataset under different dynamic 

and noise conditions, i.e., structures with larger or smaller displacement between adjacent frames, 

and lower input SNR, with all experiments presented similar results (Supplementary Figs. 2-5). 

We speculate the underlying reasons are threefold: first, the bidirectional and recurrent 

propagation allows the TISR model to learn longer-range dependencies and maximizes the 

temporal information gathering compared to the sliding window with a limited size; Second, 

biological images contain heavier photon noises and more rapid changes between adjacent 

frames than natural images, which significantly interferes with the accuracy of OF calculation, 

leading to adverse impact for the OF-based alignment; Third, the NA-based alignment mainly 

mix-ups the information from spatially and temporally neighbor pixels, without modeling sub-

pixel changes. In contrast, the DC-based alignment consists of both explicit sub-pixel shift 

estimation and implicit feature refinement, yielding the best capability to handle the complex 

motion pattern and spatially diverse speed for biological structures. 

Deformable phase-space alignment mechanism for time-lapse image super-resolution 

Based on our comprehensive evaluation of the state-of-the-art methods, a strong baseline, which 

is a combination of recurrent network-based propagation and DC-based alignment, has been 

well-established. However, the existing DC mechanism only aggregate local features26, and fails 

to model global information and spatially consistent motion of biological structures. To this end, 

we further devised a deformable phase-space alignment (DPA) mechanism to enhance the global 

feature alignment at sub-pixel precision (Supplementary Note 3). In contrast to existing DC 

alignment which estimates offset in the spatial space, the proposed DPA primarily works in 

frequential space to adaptively learn phase residuals (Fig. 2a, Methods), which is corresponding 

to inflicting sub-pixel spatial shifting for each frequency component respectively. By visualizing 

the features before and after phase-space alignment, we showed that the phase-space alignment is 

able to fully exploit global dependencies to subtly model and compensate the movement of 

biological structures (Fig. 2b). Afterwards, we incorporated the superior feature alignment 
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capability of DPA with the optimal TISR baseline model derived from the systematic evaluation 

to propose the DPA-based TISR neural network (DPA-TISR), as shown in Extended Data Fig. 5.  

 

Fig. 2 | DPA mechanism and comparison of DPA-TISR with other methods. a, Schematic of the DPA 

mechanism. b, Visualization of representative features before and after phase-space alignment. c, Comparison of SR 

images of microtubules inferred by VRT, BasicVSR++, DPA-TISR, and a modified SISR model from DPA-TISR 

(Methods). WF and GT-SIM images are shown in the first column for reference. d, Correlation matrixes of SR time-

lapse images inferred by the SISR model and DPA-TISR. e,f, Statistical comparison of VRT, BasicVSR++, DPA-

TISR, and the modified SISR model in terms of PSNR (e) and SSIM (f), respectively (n=50). Scale bar, 3 μm (c), 1 

μm (zoom-in regions in c). 

To test whether DPA outperforms conventional spatial DA mechanism, we replaced the DPA 

by DA and two other variants of phase-space alignment, i.e., amplitude convolution and phase & 

amplitude convolution, in DPA-TISR (Supplementary Note 3). We found that the DPA with only 

phase convolution generally provided higher SR reconstruction fidelity in terms of PSNR and 

SSIM for both experimental and simulated dataset than other methods under similar computation 
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complexity (Extended Data Fig. 6). Next, we compared the proposed DPA-TISR with two 

representative SOTA TISR models, i.e., BasicVSR++21, a superior baseline model combining the 

recurrent propagation and DC alignment, and VRT27, a recently published video restoration 

transformer that utilizes self-attention28 to model long-range temporal dependency, as well as a 

SISR variant of DPA-TISR (Methods) for biological time-lapse image super-resolution. As is 

shown in Fig. 2c-f, compared with TISR models, the SISR model failed to gathering cross-frame 

information thereby presented inferior noise robustness and output temporal consistency 

(Supplementary Fig. 6). Among three TISR models, with all aforementioned advances, DPA-

TISR reconstructed finer details even in regions with severe noisy and background fluorescence 

than BasicVSR++ and VRT (Fig. 2c) and achieved the highest PSNR and SSIM (Fig. 2e, f). 

Rapid, long-term, SR visualization of organelle ultrastructure and dynamics by DPA-TISR 

A great diversity of subcellular structures incessantly execute elaborate bioprocesses in living 

cells, among which F-actin cytoskeleton serves as a critical regulator of organelle positioning29 

and is involved in various important cell functionalities such as clathrin-mediated endocytosis 

(CME)30. However, due to the extremely structural complexity of F-actin filaments, conventional 

SR live imaging methods have to impose relatively high excitation laser power to obtain enough 

fluorescence required by SR reconstruction, thus the multi-color SR observation of F-actin and 

other organelles is usually limited to ~400 timepoints even assisted by SOTA deep learning-

based methods5. To test whether DPA-TISR is competent in the TISR live-cell imaging task 

under relatively critical imaging conditions, we trained two independent DPA-TISR models for 

F-actin and CCPs, respectively, using corresponding datasets in BioTISR, and applied them to 

characterize the fast and subtle dynamics of F-actin filaments and CCPs from noisy time-lapse 

total internal reflective fluorescence (TIRF) images. As shown in Fig. 3a, although the noisy 

images were acquired using 10-fold lower excitation laser power than routine TIFR experiments, 

DPA-TISR successfully resolved densely interlaced F-actin filaments and ring structures of 

CCPs, yielding an extended SR observation window of 4,800 timepoints (Supplementary Video 

1). Benefiting from the well-aligned temporal information, DPA-TISR substantially outperforms 

its SISR counterpart in both output image quality (Fig. 3b) and temporal consistency (Fig. 3c). 

Fig. 3d showcases that although the SISR model could also reconstruct the hollow structure of 

CCPs from a single WF image, their shapes varied unnaturally along with time supposedly due 
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to the random noises in each frame. In contrast, CCPs inferred by DPA-TISR maintained 

temporally consistent with higher reliability, clearly characterizing the spatiotemporal regulation 

and interaction between F-actin and CCPs during CME processes (Fig. 3e).  

 

Fig. 3 | Rapid, long-term, SR visualization of organelle ultrastructure and dynamics by DPA-TISR. a, A 

representative SR frame of F-actin and CCPs reconstructed by DPA-TISR from a 4,800-frame two-color video 

(Supplementary Video 1). A fraction of wide-field (WF) image is displayed in the left bottom corner for comparison. 

b, Comparison of structural abundance of SR F-actin images inferred by the DPA-TISR model and its SISR 

counterpart (Methods). c, Correlation matrixes of SR time-lapse images inferred by the DPA-TISR and SISR models. 

d, Time-lapse SR images inferred by the DPA-TISR and SISR models showing the interactions between a CCP and 

F-actin filaments. e, Time-lapse DPA-TISR images showcasing the F-actin-CCPs contacts during clathrin-mediated 

endocytosis. f, Comparison of mitochondrial cristae time-lapse images inferred by SISR and DPA-TISR. The GT-

SIM images are shown for reference. The yellow arrows indicate regions that are correctly inferred by DPA-TISR, 

whereas wrongly inferred by the SISR model. g, A representative SR frame of inner mitochondrial membrane and 
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nucleoids reconstructed by DPA-TISR from a 1,680-timepoint two-color video (Supplementary Video 2). A fraction 

of WF image is displayed in the central region for comparison. h, Two-color time-lapse TISR images showcasing a 

typical nucleoid fission event concomitant with the formation of a new cristae in between. i, Kymographs drawn 

from SR images reconstructed via DPA-TISR and SISR models along the lines indicated by yellow arrowheads in h. 

Scale bar, 3 μm (a, g), 1 μm (b, f), 0.2 μm (d, e), 0.5 μm (zoom-in regions in f), 0.1 μm (horizontal bar in i), 1 s 

(vertical bar in i). 

Besides the F-actin filaments, the mitochondrion is another exquisite organelle that exhibits a 

complicated inner architecture, i.e., the mitochondrial cristae with multiple nucleoids distributed 

in the interspace, of which the rapid dynamics are challenging to be long imaged using 

conventional SR microscopy31, 32. Although SISR neural networks can be utilized to reconstruct 

SR images from WF acquisitions, thus elongating the imaging duration, the overall time course 

has been limited to hundreds of timepoints5. To examine to what extend the DPA-TISR 

methodology could outperform the SISR scheme in this case, we individually trained two DPA-

TISR models and two SISR models using dataset of inner mitochondrial membrane labelled with 

PKMO-Halo and nucleoids labelled by TFAM-mEmerald, respectively, then applied the well-

trained models to process testing data (Fig. 3f) and a two-color time-lapse WF video of 1,680 

timepoints that were acquired at low light conditions (Fig. 3g and Supplementary Video 2). We 

noticed that the cristae-like inner membrane invaginations inferred by the SISR model changed 

acutely among adjacent frames with lots of noise-induced errors, whereas the DPA-TISR model 

could take advantage of the temporal continuity of the time-lapse inputs and generated high-

fidelity temporally-consistent SR results comparable to GT-SIM images (Fig. 3f). Facilitated by 

DPA-TISR, we clearly identified various delicate subcellular events such as nucleoid fission 

concomitant with the formation of a new cristae in between, even though they occurred in the 

maze-like ultrastructure of inner mitochondrial membrane (Fig. 3h and Supplementary Video 2). 

Confidence quantification and calibration with Bayesian DPA-TISR 

Learning transformation from LR to SR images is essentially an ill-posed problem for either 

SISR or TISR. It means that there exist multiple solutions that correspond to the same LR inputs 

in the high-dimensional solution space33, and a neural network is just trained to extrapolate one 

statistically and perceptually good result with poor interpretability34. Therefore, in SR imaging 

experiments for scientific purpose, it is of vital importance to have an access to quantitatively 

evaluate the reliability of the network outputs18, 35. To this end, we incorporated Bayesian deep 

learning16 and Monte Carlo dropout17 with the proposed DPA-TISR, named Bayesian DPA-TISR, 
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Fig. 4 | Confidence calculation and correction for DPA-TISR. a, Schematic illustration of uncertainty estimation 

and confidence map generation with Bayesian DPA-TISR. b, Progression of the confidence map (upper row), ECE 

value (lower left panel), and PSNR (lower right panel) during the iterative finetuning procedure of the Bayesian 

DPA-TISR. c, Reliability diagrams presented by accuracy curves versus average confidence for each searching step 

of iterative finetuning. d, Representative SR/WF image (first column) and confidence map generated by rFRC 

analysis (second column) and the well-calibrated Bayesian DPA-TISR model (third column). An absolute error map 

(fourth column) is shown for reference. Scale bar, 3 μm (d), 1 μm (zoom-in region in d). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2024. ; https://doi.org/10.1101/2024.05.04.592503doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.04.592503
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 
 

which is able to simultaneously reconstruct SR images and estimate corresponding uncertainty 

for each pixel of SR outputs (Fig. 4a, Methods, Supplementary Note 4). Generally, there are two 

major types of uncertainty that should be modelled16: the aleatoric uncertainty, also called data 

uncertainty, that arises from noise inherent in the observations; and the epistemic uncertainty, or 

called model uncertainty, which accounts for uncertainty in the model. Instead of directly 

inferring the fluorescence intensity values, Bayesian DPA-TISR is modified to estimate the 

Laplace distribution of each pixel, so as to capture the intrinsic aleatoric uncertainty (Methods). 

On the other hand, we introduce the dropout mechanism into the feature extraction module and 

reconstruction module of DPA-TISR, which allows Bayesian DPA-TISR to model the epistemic 

uncertainty and estimate the mixed probability distribution function (PDF) of each pixel by 

dropout-based self-ensemble (Methods). Moreover, parallel with the uncertainty characterization, 

a confidence map that intuitively indicates the output reliability could be generated by 

calculating the integral within an interval of the mixed PDF (Methods). The overall workflow of 

estimating uncertainty and generating confidence maps by Bayesian DPA-TISR is depicted in 

Fig. 4a. 

However, after applying the Bayesian DPA-TISR to experimental data of multiple biological 

structures, we found that the estimated confidence is prone to be overconfident, i.e., higher than 

actual prediction accuracy (Extended Data Fig. 7), which is consistent with other literatures18. To 

conquer this issue, we devised an iterative finetuning framework to eliminate the expected 

calibration errors (ECE) between estimated confidence and inference accuracy. During the 

finetuning process, the objective function is defined as 

ℒ௙௜௡௘௧௨௡௜௡௚ሺ𝑥,𝑦ሻ ൌ ℒ௙௜ௗ௘௟௜௧௬ሺ𝑥, 𝑦ሻ ൅ 𝛼 ∗ 𝑅௖௢௡௙௜ௗ௘௡௖௘ሺ𝑥, 𝑦ሻ, ሺ1ሻ 

where 𝑥 and y denote the TISR images inferred by Bayesian DPA-TISR and target GT-SIM 

images, respectively; ℒ௙௜ௗ௘௟௜௧௬  and ℒ௖௢௡௙௜ௗ௘௡௖௘  are the fidelity loss and confidence correction 

regularization (CCR), and 𝛼 is a weighting scalar to balance the two terms, which is empirically 

set as 0.1 in our experiments. The CCR is calculated by 

𝑅௖௢௡௙௜ௗ௘௡௖௘ሺ𝑥,𝑦ሻ ൌ 𝐸𝐶𝐸ሺ𝑥,𝑦ሻ ൅ 𝑘 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒ሺ𝑥ሻ, ሺ2ሻ 

where 𝑘  is the confidence suppression factor to be determined and optimized, and 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒ሺ𝑥ሻ  is the average confidence of the outputs. During the iterative finetuning 
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procedure, the optimal value of 𝑘 that minimizes the ECE will be determined by a combined 

strategy of linear searching and parabola fitting (Methods). As is shown in Fig. 4b, the optimal 𝑘 

can be determined with 3~5 iterations, which typically takes less than one hour. With the 

proposed iterative finetuning process, the ECE can be reduced by more than five-fold, i.e., 0.1 to 

0.018, while maintaining the output fidelity measured by PSNR, i.e., 33.48 dB v.s. 33.42 dB (Fig. 

4b). By visualizing the reliability diagram that plots the accuracy, i.e., the fraction of 

successfully predicted pixels, versus average confidence, we found that the curve became 

substantially closer to the identity function after the iterative finetuning process (Fig. 4c). Fig. 4d 

shows the representative SR reconstruction, corresponding absolute error map, and confidence 

maps generated by Bayesian DPA-TISR after correction and rolling Fourier ring correlation 

(rFRC)36. It can be noticed that the predicted confidence map is highly consistent with the error 

map, while the latest rFRC methods gave a coarse confidence evaluation that is inconsistent with 

the actual error (Supplementary Note 5). Moreover, using datasets of multiple organelles, i.e., 

lysosomes, mitochondria, and F-actin in BioTISR, we validated that the proposed confidence 

correction framework could generally reduce ECE by 5~10 fold with high generalization 

capability (Extended Data Figs. 7-9), implying that the calibrated confidence map estimated 

Bayesian DPA-TISR is well-competent to be a qualified error indicator. 

Long-term confidence-quantifiable SR live imaging via Bayesian DPA-TISR 

Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional 

mitochondrial network, of which the interactions with other organelles are essential for cellular 

homeostasis37 and quality control38. However, most literatures relied on conventional SR 

techniques to study these bioprocesses, e.g., interactions between mitochondria and lysosomes, 

with a narrow observation window of tens to hundreds of timepoints, which is limited by the 

phototoxicity and rapid photobleaching37, 39. To investigate the interaction dynamics over an 

extended time course, we acquired TIRF images using relatively low illumination intensity, and 

then reconstructed them into SR time-lapse images via well-trained DPA-TISR models. As such, 

we were able to record the interactions between Mito and Lyso in live COS-7 cells at a high 

spatiotemporal resolution for more than 10,000 two-color timepoints (Extended Data Fig. 10a 

and Supplementary Video 3), which is of two orders of magnitude more than conventional SIM 

imaging37, 40. Thus, it allowed for continuous capture of Lyso-Mito contacts and Lyso-mediated 
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mitochondrial dynamics with quantitative confidence indicating the reliability of the events 

observed (Extended Data Fig. 10b-d and Supplementary Fig. 7).  

 

Fig. 5 | Long-term SR live imaging with reliable confidence evaluation via Bayesian DPA-TISR. a,b, 

Comparison of WF, Conv. SIM, and DPA-TISR images of outer mitochondrial membrane and peroxisomes. c-f, 

Dynamic characteristics of Mander’s over coefficient (MOC) for POs and corresponding time-lapse two-color TISR 

images of Mito and POs, showcasing four typical modes of Mito-PO contacts (Supplementary Video 5). g, Sector 

diagram of the proportion of POs in terms of their interactions with Mito. h, Time-lapse DPA-TISR images of Mito 

and POs (upper row) and corresponding confidence maps of Mito (lower row) with POs labelled with white arrows. 

Scale bar, 3 μm (a), 1 μm (b), 0.2 μm (c-f and h).  

Besides Lyso, the peroxisome (PO) is another organelle that has been reported to 

occasionally contact with Mito to exert its functionality in regulating overall cellular lipid and 

reactive oxygen species metabolism within mammalian cells41. However, the category and 

proportion of Mito-PO contacts have been rarely explored which is perhaps limited by live-

imaging duration of existing SR techniques. To characterize the Mito-PO contacts, we integrated 

Bayesian DPA-TISR with our Multi-SIM system to record a COS-7 cell line labelled with 

2ൈmEmerald-Tomm20 and PMP-Halo (Methods). Facilitated by the high-speed and long-term 

SR imaging capabilities, we were able to clearly distinguish the correlated interactions from 
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random motions of the two organelles (Fig. 5a and Supplementary Video 4). In contrast, WF and 

conventional GI-SIM images with the same fluorescence budge are subject to diffraction-limited 

resolution and heavy noise-induced reconstruction artifacts, respectively (Fig. 5b). We tracked 

the displacements of individual POs and then calculated the Mander’s overlap coefficient (MOC) 

of each PO with its neighboring outer mitochondrial membrane for each frame to quantify the 

Mito-PO contacts (Methods). We found that nearly half of the identified POs (n=118 out of 210 

from 3 cells) underwent no Mito-PO contacts (Fig. 5c), while the other half were closely 

associated with Mito, which could be further classified into three categories (Supplementary 

Video 5): 17% of POs (n=36) underwent stable association with contact sites from a single 

mitochondrion (Fig. 5d); 8% (n=17) of POs served as the bridge that simultaneously tethered two 

or more mitochondria (Fig. 5e); and 11% of POs (n=24) unexpectedly changed their contact sites 

from one mitochondrion to another, acting like intracellular messengers (Fig. 5f). In particular, 

we retained the last 7% POs (n=15) as unidentified (Fig. 5g) in that the Bayesian DPA-TISR 

alerted us that the output confidence of the underlying regions in Mito TISR images is too low to 

make accurate classifications (Fig. 5h). In brief, the Bayesian DPA-TISR enable the rational 

study of intricacy of complex Mito-PO contact behaviors. These observations demonstrate that 

Bayesian DPA-TISR lays the groundwork for opening up a wider application range of ultralong-

term live-cell SR imaging and confidence-quantifiable biological analysis. 

Discussion 

In this work, we first provided an open-access time-lapse SR image dataset named BioTISR, 

which is used to evaluate existing TISR neural network models and develop the DPA-TISR. We 

regard the BioTISR as a complementary extension of our previously released BioSR dataset5 and 

expect they will inspire and support more extensive developments of computational SR methods 

in the future. Next, we decoupled the TISR neural networks into two essential components, 

temporal information propagation and neighbor feature alignment, and systematically evaluated 

five representative mechanisms. With this comprehensive study, two optimal solutions for the 

above two processes were concluded, forming a strong baseline. Moreover, we devised the 

phase-space alignment mechanism as a complementary refinement in frequency domain for the 

spatial deformable convolution, and developed the DPA-TISR neural network model. We 

demonstrated that DPA-TISR could efficiently aggregate information of biological specimens 
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from neighbor frames and generate time-lapse SR reconstructions of much superior fidelity and 

time-consistency compared with existing methods. 

Furthermore, we upgraded DPA-TISR to Bayesian DPA-TISR that could generate a 

confidence map accompanied with its SR outputs. To repress the intrinsic over-confidence effect, 

we devised a combined loss consisting of an image fidelity term and a confidence calibration 

regularization term (Eqs. 1 and 2), as well as an iterative finetuning framework to minimize the 

expected errors between average confidence and inference accuracy. The finetuning procedure 

can be finished within 3~5 steps with each step taking about 10 minutes. After optimization, the 

ECE of Bayesian DPA-TISR can be substantially reduced, resulting in a well-calibrated 

confidence quantification capability. With reliable confidence evaluation, Bayesian DPA-TISR 

enables error-aware SR investigation and analysis of intracellular interactions between 

mitochondria, cytoskeleton, and other organelles at an extended observation window up to 

10,000 timepoints. These results demonstrate the potential of Bayesian DPA-TISR to greatly 

advance the application of SR microscopy in live-cell imaging. 

Several improvements and extensions of DPA-TISR can be envisioned. It is known that deep 

neural networks are subject to the spectral bias towards low-frequency patterns42, which accounts 

for the resolution degradation of the output SR images. Adding regularization terms such as the 

discriminative loss43, perceptual loss44, and Fourier space loss45 during training procedures may 

be helpful to gain outputs with higher spatial resolution. Another major obstacle that may 

prevent the wide application of TISR methods such as DPA-TISR is the requirement on the 

training dataset. Acquiring a large amount of high-quality low-to-high resolution time-lapse 

image pairs is laborious and difficult especially when the biological specimen is highly dynamic 

or of weak fluorescent efficiency. Therefore, further developments of self-supervised or 

unsupervised learning scheme3 for TISR models could greatly reduce their cost for usage. We 

expected the BioTISR dataset along with the evaluation and development of TISR models would 

spark more explorations on TISR techniques in the flourishing SR imaging community. 
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Methods 

Network configurations for TISR model evaluation 

For fair comparison, we designed a template TISR model with the propagation and alignment 

modules replaceable, as is depicted in Extended Data Fig. 2. The template TISR model was 

modified from the foundational BasicVSR++ neural network21. It is comprised of three primary 

modules: a feature extraction module, a propagation and alignment module, and a reconstruction 

module. This architecture is meticulously crafted to be compatible with distinct components of 

the computational process. For a given image sequence 𝑋 ൌ

ሼ𝑥௜ି௞, 𝑥௜ି௞ାଵ, . . . , 𝑥௜ , . . . , 𝑥௜ା௞ିଵ, 𝑥௜ା௞ሽ, three identical residual blocks are employed to extract 

features from each frame. Each residual block is comprised of two convolutional layers, a 

LeakyReLU activation function, and a skip connection. Prior to passing through the residual 

blocks (RB), a convolutional layer is applied for channel augmentation. The operation of feature 

extraction module can be formulated as 

 𝑥ଵ ൌ FEሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ ൅ RBሺଷሻ൫𝑓ሺ𝑥ሻ൯, 𝑥 ∈ 𝑋 , ሺ1ሻ 

where 𝑓ሺ∙ሻ is a convolutional layer, and 

 RBሺଷሻሺ𝑥ሻ ൌ RB ቀRB൫RBሺ𝑥ሻ൯ቁ . ሺ2ሻ 

Subsequently, the output feature maps are fed into the propagation and alignment module 

through two distinct schemes, referred to as sliding window-based propagation (SWP) and 

recurrent network-based propagation (RNP).  

In the SWP scheme, feature maps from the central and adjacent frames within a local 

window are severally fed into an alignment block (AB) in order to refine all neighbor features 

towards the central frame. The AB consists of an alignment module, a convolutional layer and 

three residual blocks. In our validation, three distinct alignment modules based on optical flow, 

deformable convolution, and non-local attention, respectively, are employed (Extended Data Fig. 

2c-e). Afterwards, the resulting feature maps are concatenated, and go through a 1 ൈ 1 

convolutional layer to reduce the channels. The progress of SWP can be articulated as follows: 

𝑥௜
ଶ ൌ SWPሺ𝑥௜ି௞

ଵ , … , 𝑥௜
ଵ, … , 𝑥௜ା௞

ଵ ሻ 

ൌ 𝑓 ቀABሺ𝑥௜ି௞
ଵ , 𝑥௜

ଵሻ ⊕ …⊕𝑥௜
ଵ ⊕ …⊕ ABሺ𝑥௜ା௞

ଵ , 𝑥௜
ଵሻቁ ሺ3ሻ 

where ⊕ denotes channel-wise concatenation. 
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In the RNP scheme, the feature maps from adjacent frames generated by the feature 

extraction module propagate forward and backward in the time dimension following the second-

order grid propagation manner21. Given the feature map 𝑥௜
ଵ, corresponding features propagated 

from the first-order neighborhood ℎ௜ାଵ,ℎ௜ିଵ, and second-order neighborhood ℎ௜ାଶ,ℎ௜ିଶ, we have 

        𝑥௜
ଶ  ൌ RNPሺ𝑥௜ି௞

ଵ , … , 𝑥௜
ଵ, … , 𝑥௜ା௞

ଵ ሻ 

ൌ 𝑓ሺABሺℎ௜ାଶ, 𝑥௜
ଵሻ ⊕ ABሺℎ௜ାଵ, 𝑥௜

ଵሻ ⊕ ABሺℎ௜ିଵ, 𝑥௜
ଵሻ ⊕ ABሺℎ௜ିଶ, 𝑥௜

ଵሻ                 ሺ4ሻ 

In the optical flow-based alignment block, we compute the optical flow between neighbor 

frames via the SPyNet46. If we denote the optical flow from 𝑥௜ି௞ to 𝑥௜ as 𝑓௜ି௞→௜, the neighbor 

features ℎ௜ି௞ will be aligned according to 𝑥௜ by directly warping using the optical flow computed 

from 𝑥௜ି௞ and 𝑥௜: 

ℎത௜ି௞
ைி ൌ 𝑊ሺℎ௜ି௞ ,𝑓௜ି௞→௜ሻ, ሺ5ሻ 

where  𝑊 denotes the spatial warping operation. 

In deformable convolution-based alignment block, the optical flow 𝑓௜ି௞→௜ is used to pre-align 

the features. The aligned features are then concatenated with the current features 𝑥௜
ଵ and optical 

flow 𝑓௜ି௞→௜ to compute the DC offset 𝑜௜ି௞→௜ and modulation masks 𝑚௜ି௞→௜ with two sequential 

residual blocks:  

𝑜௜ି௞→௜  ൌ  𝑓௜ି௞→௜ ൅ RBሺଶሻ൫ℎത௜ି௞
ைி ⊕ 𝑥௜

ଵ ⊕  𝑓௜ି௞→௜൯, ሺ6ሻ 

𝑚௜ି௞→௜  ൌ  𝜎 ቀRBሺଶሻ൫ℎത௜ି௞
ைி ⊕ 𝑥௜

ଵ ⊕  𝑓௜ି௞→௜൯ቁ , ሺ7ሻ 

where 𝜎 denotes the sigmoid activation function. A deformable convolution layer is then applied 

to the unwrapped feature ℎ௜ି௞: 

ℎത௜ି௞
஽஼  ൌ  𝐷ሺℎ௜ି௞;  𝑜௜ି௞→௜ ,𝑚௜ି௞→௜ ሻ, ሺ8ሻ 

where 𝐷 denotes a deformable convolution. 

In non-local attention-based alignment block, three fully connected layers are initially used to 

generate the embedded query, key and value: 

ℎ௜ି௞
ொ௨௘௥௬  ൌ  𝐹ሺℎ௜ሻ 

ℎ௜ି௞
௄௘௬  ൌ  𝐹ሺℎ௜ି௞ሻ  

ℎ௜ି௞
௏௔௟௨௘  ൌ  𝐹ሺℎ௜ି௞ሻ, ሺ9ሻ 

where 𝐹 denotes a fully connected layer. Then the non-local attention mechanism is applied for 

feature alignment: 

ℎത௜ି௞
ே஺  ൌ  𝐹൫𝑆𝑜𝑓𝑡𝑚𝑎𝑥൫ℎ௜ି௞

ொ௨௘௥௬  ℎ௜ି௞
௄௘௬൯ ℎ௜ି௞

௏௔௟௨௘൯, ሺ10ሻ 
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where  refers to dot product operation. In practice, the embedded features have half of the 

channel compared to the original feature and we adopt a neighborhood attention mechanism47, 

which can be regarded as a more efficient implementation of nonlocal attention in our 

experiments, achieving similar SR performance. 

Finally, the aligned hierarchical features undergo through the reconstruction module (RM) 

consisting of three residual blocks, a pixel shuffle layer, and a concluding convolutional layer to 

generate the SR residuals, which are then added up with up-sampled raw input images, yielding 

final TISR images. The operation of RM can be formulated as: 

𝑥௜
ଷ  ൌ  𝑓 ൬PixelShuffle ቀ RBሺଷሻሺ𝑥௜

ଶሻቁ൰ ൅ Upsampleሺ𝑥௜ሻ, ሺ11ሻ 

Taking the final output of RM as 𝑦ො௜ and the ground truth as 𝑦௜ for the 𝑖௧௛ frame, the overall 

objective function can be formulated as 

ℒሺሼ𝑦ො௜ሽ௜ୀଵ
௡ , ሼ𝑦௜ሽ௜ୀଵ

௡ ሻ ൌ
1
𝑛
෍  |𝑦ො௜  െ  𝑦௜|

௡

௜ୀଵ

 , ሺ12ሻ 

Network architecture of DPA-TISR 

DPA-TISR was constructed based on the optimal TISR baseline model, i.e., adopting recurrent 

network for propagation and deformable convolution for alignment, following the evaluation 

conclusions in Fig. 1. In DPA as depicted in Fig. 3, the phase-space alignment mechanism serves 

as a complementary module to spatial deformable convolution, which synergistically improve 

the alignment between neighborhood feature maps ℎ௜ି௞ and current feature maps ℎ௜. Specifically, 

the DPA begins with the real-valued fast Fourier transform (denoted as FFTሺ∙ሻ, implemented 

with torch.fft.rfft) to extract the amplitude and phase of both ℎ௜ି௞ and ℎ௜: 

ℎ௜
௣௛௔௦௘  ൌ  𝐴𝑛𝑔𝑙𝑒ሺFFTሺℎ௜ሻሻ 

ℎ௜ି௞
௣௛௔௦௘  ൌ  𝐴𝑛𝑔𝑙𝑒ሺFFTሺℎ௜ି௞ሻሻ 

ℎ௜ି௞
௔௠௣௟௜௧௨ௗ௘  ൌ  𝐴𝑏𝑠൫FFTሺℎ௜ି௞ሻ൯, ሺ13ሻ 

where 𝐴𝑛𝑔𝑙𝑒ሺ∙ሻ and 𝐴𝑏𝑠ሺ∙ሻ represent the operation to obtain element-wise angle and absolute 

value of the features. Then the concatenation of phases from current and neighborhood feature 

maps further goes through a phase-space convolution module, containing one convolutional layer 

followed by two residual blocks and a skip connection: 

𝛿ሺℎ௜ି௞
௣௛௔௦௘,ℎ௜

௣௛௔௦௘ሻ   ൌ RBሺଶሻሺ 𝑓ሺ𝑝ሻሻ  ൅  ℎ௜ି௞
௣௛௔௦௘ 
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𝑝 ൌ  ℎ௜
௣௛௔௦௘ ⊕  ℎ௜ି௞

௣௛௔௦௘ , ሺ14ሻ 

An inverse real-valued fast Fourier transform (denoted as iFFTሺ∙ሻ , implemented with 

torch.fft.irfft) is then utilized to reconstruct the space-domain feature maps from the obtained 

amplitude and phase components: 

ℎ௜ି௞
௥௘௙௜௡௘ௗ  ൌ  iFFT ቀℎ௜ି௞

௔௠௣௟௜௧௨ௗ௘ ∗ 𝑒௜∗ఋሺ௛೔షೖ
೛೓ೌೞ೐,௛೔

೛೓ೌೞ೐ሻቁ , ሺ15ሻ 

The phase-refined feature maps are then fed into the deformable convolution module as is 

depicted in Extended Data Fig. 2 for subsequent spatial alignment. The overall architecture of 

DPA-TISR is illustrated in Extended Data Fig. 5. 

Assessment metrics calculation 

We performed image normalization for GT-SIM and TISR images following a commonly used 

procedure5, 11. Specifically, each GT-SIM image stack Y was normalized by dividing by the 

maximum value, then blurred by a 3×3 size Gaussian kernel with the standard deviation σ ൌ 0.4 

(denoted as 𝜌ሺ∙ሻ) to mitigate the SIM reconstruction artifacts: 

NormሺYሻ ൌ 𝜌 ൬
Y

maxሺYሻ
൰ , ሺ16ሻ 

Before computing the assessment metrics, i.e., PSNR and SSIM, a linear transformation was 

applied to each SR image stack H: 

Trans୪୧୬ୣୟ୰ሺHሻ ൌ 𝛼H ൅ 𝛽 , ሺ17ሻ 

where α and β were chosen by solving the convex optimization problem: 

arg max
ఈ,ఉ

ห|𝛼H ൅ 𝛽 െ NormሺYሻ|ห
ଶ

 , ሺ18ሻ 

where || ∙ ||ଶ  denotes L2-norm. The optimized 𝛼  and 𝛽  result in an MSE-minimized linear 

transformation of H, effectively scaling and translating every pixel to match the dynamic range 

of the ground truth. 

Three types of metrics were used for quantitatively evaluating the performance in output 

fidelity, resolution, and temporal consistency, respectively. PSNR and SSIM were utilized to 

evaluate pixel-level similarity between the inferred SR images and GT-SIM images. 

Decorrelation analysis48 were applied to quantify the image resolution. For temporal consistency 

assessment, time-lapse Pearson’s correlation matrix was used to visualize the similarity between 

adjacent SR images ሼ𝐻௜ሽ௜ୀଵ
௡ . The Pearson correlation between image x and y is calculated by: 
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Corrሺ𝑥, 𝑦ሻ ൌ
Eൣሺ𝑥 െ 𝜇௫ሻ൫𝑦 െ 𝜇௬൯൧

𝜎௫𝜎௬
, 𝑥,𝑦ϵሼ𝐻௜ሽ௜ୀଵ

௡  , ሺ19ሻ 

where  𝜇  and 𝜎  denote the mean value and standard deviation of corresponding images, 

respectively; and E represents the arithmetic mean. 

Comparison of DPA-TISR with other models 

For the comparative analysis between TISR and SISR models in Figs. 2 and 4, we modified the 

DPA-TISR into its SISR counterpart by excluding all DPA blocks while keeping other network 

components, i.e., the feature extraction module and reconstruction module, identical to DPA-

TISR. As such, the temporal feature aggregation capability of DPA-TISR was dismissed, thus 

yielding a SISR manner without too much trainable parameter reduction (~7M for DPA-TISR 

versus ~5.5M for SISR). 

In the comparative analysis between DPA-TISR and other TISR models, i.e., VRT and 

BasicVSR++, we utilized their publicly available implementations on Github21, 27.  All networks 

were trained with the same dataset and configurations including the initial learning rate, learning 

rate decay, batch size, etc., for fair comparison. It's noteworthy that the patch size of VRT was 

adjusted to 64, half of that for other models, to ensure similar GPU memory utilization.  

Training details of TISR models 

For each type of specimen, we acquired a minimum of 50 groups of WF sequences (512×512 

pixels), along with corresponding GT-SIM sequences (1024×1024 pixels for linear SIM and 

1536×1536 for nonlinear SIM) in the BioTISR dataset. Typically, we selected ~35 groups of 

original data for training and validation, and used the remaining ~15 groups for testing. Before 

training, each group of data was augmented into time-lapse image pairs with the size of 

128×128×7 for WF input and 256×256×7/384×384×7 for corresponding GT-SIM images by 

random cropping, horizontal/vertical flipping, and random rotation for further enrichment and 

avoiding overfitting. In particular, we conducted an evaluation on DPA-TISR models trained 

with different lengths of input sequence, and found that the input length of 7 is the optimal 

choice to balance the computation efficiency and SR performance (Supplementary Fig. 8). 

The training and inference were performed on a computer workstation equipped with four 

GeForce RTX 3090 graphic processing cards (NVIDIA) with python 3.6 and PyTorch 1.12.1. In 

the training phase, the batch size for all experiments was set to 3, and all models were trained 
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using the Adam optimizer with an initial learning rate of 5 ൈ 10ିହ which was decayed by 0.5 for 

every 1000 epochs. Training process typically took 18 hours within approximately 3000 epochs. 

Once the networks were trained, TISR models typically took about 1s to reconstruct a 7-frame 

SR stack of 1,024×1,024 pixels. The time required for both training and inference decreases 

linearly with the increase in the number of GPUs utilized. Multi-GPU acceleration has been 

incorporated into our publicly available Python codes.  

Calculation of uncertainty 

The reliability of DPA-TISR predictions can be quantified through two types of uncertainties: 

model uncertainty and data uncertainty, or referred to as epistemic uncertainty and aleatoric 

uncertainty, respectively, in Bayesian analysis16.  

Considering the Non-Bayesian DPA-TISR, represented by 𝑓ఏ , where 𝜃  is the trainable 

parameters, the output SR image sequence is denoted as yො ൌ 𝑓ఏሺ𝑥ሻ. The network parameters are 

chosen by minimizing the pixel-wise distance between ground truth y and yො. Taking the L1-loss 

for example, the objective function can be expressed as follows: 

ℒ௅ଵሺ𝑦ො,𝑦ሻ ൌ
1
T

1
N
෍෍ |𝑦௡௧ െ 𝑦ො௡௧|

୒

୬ୀଵ

୘

୲ୀଵ

 , ሺ20ሻ 

where T denotes the number of timepoints and N denotes the number of pixels in a single image.  

Inspired by previous work11, 17, we designed the Bayesian DPA-TISR that predicts both the 

intensity 𝑦ො௡  and the scale 𝜎ො௡  for every pixel. Instead of considering each pixel as a single 

intensity value, we modeled it as a Laplace distribution empirically: 

𝑝௅௔௣௟௔௖௘ሺ𝑦;𝑦ො,𝜎ොሻ ൌ
1

2𝜎ො
expቆെ

|𝑦 െ 𝑦ො|
𝜎ො

ቇ , ሺ21ሻ 

In this way, the scale 𝜎ො can be regarded as a measurement of the data uncertainty. Then the 

output SR image 𝑦ො and the scale 𝜎ො can be simultaneously addressed by minimizing the negative 

log-likelihood (NLL) function: 

ℒே௅௅ሺ𝑦ො,𝑦ሻ ൌ
1
T

1
N
෍෍

|𝑦௡௧ െ 𝑦ො௡௧|

𝜎ො௡௧
൅ log𝜎ො௡௧

୒

௡ୀଵ

୘

௧ୀଵ

 , ሺ22ሻ 

To characterize the model uncertainty, we adopted a Bayesian approximation approach17 that 

employs a distribution over model parameters by incorporating concrete dropout after 

convolutional layers. Within each inference, the dropout layers in Bayesian DPA-TISR randomly 
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zeroized half of the neurons thus yielding a distinctive network model. Then by aggregating a 

certain number (denoted as M) of the outcomes of the stochastic forward propagation, the SR 

results of Bayesian DPA-TISR can be obtained by averaging the predicted intensity of each trial: 

𝑦ො௠௘௔௡ ൌ
1
M
෍ 𝑦ොሺ௠ሻ

୑

௠ୀଵ

 , ሺ23ሻ 

where yොሺ௠ሻ is the predicted intensity map from the 𝑚௧௛ network. The model uncertainty is then 

quantified by calculated the standard deviation of the predicted results: 

𝜎௠௢ௗ௘௟ ൌ ඩ
1
M
෍ሺ𝑦ොሺ௠ሻ െ 𝑦ො௠௘௔௡ሻଶ
୑

௠ୀଵ

 , ሺ24ሻ 

Subsequently, the overall data uncertainty is assessed as follows: 

𝜎ௗ௔௧௔ ൌ ඩ
1
M
෍ሺ𝜎ොሺ௠ሻሻଶ
୑

௠ୀଵ

. ሺ25ሻ 

where 𝜎ොሺ௠ሻ is the predicted scale map from the 𝑚௧௛ network. 

Calculation of confidence map 

To enhance the integration of model and data uncertainty information and provide biologists 

with a more intuitive measurement of uncertainty, we take one step further by employing a pixel-

wise mixture probability distribution to generate an integrated confidence map. 

During the inference stage, we independently generated M models 𝜃ሺ௠ሻ , differing only 

through dropout layers as depicted above. Considering inferences from M independent models, 

each pixel 𝑖 follows a mixed Laplace distribution (see Fig. 2a for an example): 

𝑓௜ሺ𝑥ሻ ≡ 𝑝ఆ
௜ ሺ𝑥ሻ ൌ

1
𝑀
෍ 𝑝௟௔௣௟௔௖௘

௜ ൫yොሺ௠ሻ,𝜎ොሺ௠ሻ൯

ெ

௠ୀଵ

 , ሺ26ሻ 

with 𝛺 ൌ ሼ𝜃ሺ௠ሻሽ௠ୀଵ
ெ , and x is the coordinate of the probability distribution function (PDF). 

Accordingly, we defined the credible interval 𝐴ఌ ൌ ሾ𝑦ො௠௘௔௡ െ 𝜀,𝑦ො௠௘௔௡ ൅ 𝜀ሿ and the interval 

length 𝜀. Then the corresponding confidence 𝑝ఌ,௜ for pixel 𝑖 is defined as the probability that the 

true value 𝑦 falls within 𝐴ఌ: 

𝑝ఌ,௜ ≡ න 𝑓௜ሺ𝑥ሻ𝑑𝑥
௬ො೘೐ೌ೙ାఌ

௬ො೘೐ೌ೙ିఌ
, ሺ27ሻ 
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After defining a proper value for ε , which is empirically set as 0.04 by default in our 

experiments, a confidence map can be generated to indicate the probability that the true value 

falls within the predicted credible interval. 

Training and inference details of Bayesian DPA-TISR 

Based on uncertainty and confidence calculation mentioned above, we designed Bayesian DPA-

TISR, which differs from DPA-TISR in three main aspects. First, we integrated dropout layer 

after each convolutional layer in the feature extraction module and reconstruction module, 

randomly deactivating neurons during both training and prediction stages. Second, we adjusted 

the output channel number of the last convolutional layer in DPA-TISR from one to two, 

representing the predicted mean and scale, respectively. An additional sigmoid function was 

applied to the predicted scale channel to ensure its non-negativity. Third, the objective function 

was modified from L1-loss to NLL-loss as formulated in Eq. (22). 

During inference stage, we independently executed the trained network with dropout for 6 

times, i.e., M=6, averaged the results as the final SR output, and generated confidence map as 

described previously. Particularly, in long-term confidence-quantifiable TISR imaging 

experiments, we observed that the predicted scales tended to increase with the corresponding 

inferred intensities, making it unintuitive to discern which areas of an output image are reliable 

or unreliable solely from the confidence map. To address this issue, we adopted an intensity-

aware confidence generation scheme. Instead of using a constant 𝜀 of the credible interval 𝐴ఌ ൌ

ሾyො െ 𝜀, yො ൅ 𝜀ሿ, we modified the interval length 𝜀 as: 

𝜀̅  ൌ  Maximumሺγ ∗ Absሺyොሻ, 𝜀ሻ, ሺ28ሻ 

where the scalar scaling factor γ and 𝜀 were empirically set as 0.2 and 0.04, respectively, in our 

experiments. Using of 𝜀 ̅is essentially to define a threshold of 0.2 for foreground segmentation. 

For pixels with values greater than 0.2, which are more likely to belong to the actual structure, 

we assigned a proportion (0.2) of their absolute intensity as the interval length. Conversely, for 

pixels with values less than 0.2, typically representing the background region, we assigned a 

constant value of 0.04 as the interval length, thereby rationalizing the confidence calculation 

within background regions of the inferred TISR image. 

Calculation of ECE and reliability diagram 
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To evaluate the effectiveness of the uncertainty and confidence map, the reliability diagram 

which compares the empirical accuracy with averaged confidence is computed following a 

standard procedure11 in our experiments. Well-calibrated confidence in the reliability diagram 

should yield confidence values similar to accuracy, resulting in a diagonal diagram. 

Specifically, the empirical accuracy is defined as the proportionality that the ground truth 𝑦 

falls into the credible interval 𝐴ఌ ൌ ሾyො െ 𝜀, yො ൅ 𝜀ሿ. Consequently, the accuracy and confidence 

are specified as follows: 

AccuracyሺS, εሻ ൌ
1

|S|
෍1ሾ𝑦௜ ϵ 𝐴ఌሿ
௜஫ୗ

ൌ
1

|S|
෍1ሼ𝑦௜ ϵሾyො െ 𝜀, yො ൅ 𝜀ሿሽ
௜஫ୗ

 , ሺ29ሻ 

ConfidenceሺS, εሻ ൌ
1

|S|
෍𝑝ఌ

୧஫ୗ

ൌ
1

|S|
෍න 𝑓௜ሺ𝑥ሻ𝑑𝑥

୷ෝାఌ

୷ෝିఌ୧஫ୗ

 , ሺ30ሻ 

where S denotes a subset of all pixels, 1ሺ∙ሻ denotes the indicator function, and ε ൐ 0 determines 

the length of the credible interval around each yො. 

To construct a reliability diagram with K groups, we divided the value of confidence into K 

intervals segmented by 𝜏଴, 𝜏ଵ ,..., 𝜏௄ . For pixels in 𝑆௞
ఌ ൌ ሼ𝑝ఌ𝜖ሺ𝜏௞ିଵ, 𝜏௞ሿሽ , we plotted 

Confidenceሺ𝑆௞
ఌ , εሻ against Accuracyሺ𝑆௞

ఌ , εሻ to obtain the final reliability diagram. Furthermore, 

the expected calibration error (ECE) is determined as the weighted average of the absolute 

differences between the accuracy and confidence: 

ECEሺεሻ ൌ෍
|𝑆௞

ఌ|
N

|Confidenceሺ𝑆௞
ఌ , εሻ െ Accuracyሺ𝑆௞

ఌ , εሻ|
୏

୩ୀଵ

. ሺ31ሻ 

Confidence correction for Bayesian DPA-TISR 

Recognizing the disparity between the estimated confidence and actual accuracy, i.e., over 

confidence for most Bayesian neural networks, we developed an iterative finetuning framework 

to eliminate the ECE between the estimated confidence and accuracy. During the finetuning 

stage, the objective function is modified from Eq. (22) as follows: 

ℒ௙௜௡௘௧௨௡௜௡௚ሺ𝑦ො, 𝑦ሻ ൌ ℒே௅௅ሺ𝑦ො,𝑦ሻ ൅ 𝛼 ∗ 𝑅௖௢௡௙௜ௗ௘௡௖௘ሺ𝑦ො,𝑦ሻ, ሺ32ሻ 

where 𝑅௖௢௡௙௜ௗ௘௡௖௘ is the confidence correction regularization (CCR), and 𝛼 is a weighting scalar 

to balance ℒே௅௅  and 𝑅௖௢௡௙௜ௗ௘௡௖௘ , which is empirically set as 0.1 in our experiments. CCR is 

comprised of two parts: 

𝑅௖௢௡௙௜ௗ௘௡௖௘ሺ𝑦ො,𝑦ሻ ൌ 𝐸𝐶𝐸ሺ𝑦ො, 𝑦ሻ ൅ 𝑘 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒ሺ𝑦ොሻ, ሺ33ሻ 
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where the second term, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒ሺ𝑥ሻ , is the average confidence of the outputs and the 

corresponding weighting scalar 𝑘  aims at adjusting overall average confidence of prediction. 

Positive values of 𝑘 suppress over-confidence and negative values of 𝑘 restrain under-confidence, 

which is the key variable in our optimization framework. We adopted a combined strategy of 

linear searching and parabola fitting to determine the optimal value of 𝑘. 

In the optimization process, a relative ECE (rECE) of the original trained network, denoted 

as 𝐸଴, is first calculated by  

rECEሺεሻ ൌ෍
|𝑆௞

ఌ|
N

൫Confidenceሺ𝑆௞
ఌ , εሻ െ Accuracyሺ𝑆௞

ఌ , εሻ൯

୏

୩ୀଵ

, ሺ34ሻ  

of which the sign is used to determine the initial directions for subsequent optimization: 

𝑘ଵ ൌ 0.5 ∗ Sgnሺ𝐸଴ሻ, ሺ35ሻ 

𝑘ଶ ൌ 𝑘ଵ െ ∆ ∗ Sgnሺ𝐸଴ሻ, ሺ36ሻ 

Sgnሺ𝑥ሻ ൌ ቄ
1, 𝑥 ൒ 0
െ1,𝑥 ൏ 0 . ሺ37ሻ 

where ∆  is the step size set as 0.1 by default. Next, the first two trials of finetuning are 

independently performed with 𝑘ଵand 𝑘ଶ, respectively, using the objective function described in 

Eq. (32), after which, we obtained two new ECE values of the finetuned networks, denoted as 𝐸ଵ 

and 𝐸ଶ. If 𝐸ଵ ൏ 𝐸ଶ, we exchange 𝑘ଵ and 𝑘ଶ as well as the corresponding 𝐸ଵ and 𝐸ଶ, and reverse 

the searching direction, i.e., reset ∆ as -0.1, to ensure 𝑘ଶ is the ECE-descent direction compared 

to 𝑘ଵ. Afterwards, the linear searching process continues along this descent direction 

𝑘௜ ൌ 𝑘௜ିଵ െ ∆ ∗ Sgnሺ𝐸଴ሻ, 𝑖 ൒ 3, ሺ38ሻ 

until finding a 𝑘௜ that satisfies 𝐸௜ ൐ 𝐸௜ିଵ, where 𝐸௜ denotes the ECE value of the finetuned model 

with 𝑘௜. We then utilized the quadratic polynomial fitting to find the optimal 𝑘∗ value according 

to three latest weighting scalars 𝑘௜ ,𝑘௜ିଵ,𝑘௜ିଶ and corresponding ECE values 𝐸௜ ,  𝐸௜ିଵ,𝐸௜ିଶ: 

𝑘ଵതതത ൌ
1
2
ሺ𝑘௜ ൅ 𝑘௜ିଵሻ,𝑘ଶതതത ൌ

1
2
ሺ𝑘௜ିଵ ൅ 𝑘௜ିଶሻ, ሺ39ሻ 

𝛽ଵ ൌ ሺ𝐸௜ െ 𝐸௜ିଵሻ ሺ𝑘௜ െ 𝑘௜ିଵሻ,𝛽ଶ ൌ ሺ𝐸௜ିଵ െ 𝐸௜ିଶሻ ሺ𝑘௜ିଵ െ 𝑘௜ିଶሻ ⁄⁄ , ሺ40ሻ 

𝛽ሶ ൌ ሺ𝛽ଵ െ 𝛽ଶሻ ൫𝑘ଵതതത െ 𝑘ଶതതത൯⁄  , ሺ41ሻ 

𝑘∗ ൌ 𝑘ଶതതത െ 𝛽ଶ/𝛽ሶ  , ሺ42ሻ 

Finally, one last finetuning is carried out using the optimal 𝑘∗ in the objective function to 

obtain a confidence-calibrated Bayesian DPA-TISR model. During the fine-tuning stage, the 
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models were trained using the Adam optimizer with an initial learning rate of 5 ൈ 10ିହ, which is 

decayed following a cosine annealing strategy over a course of 30 epochs. The overall finetuning 

process typically takes less than 1 hour. The workflow diagram of the confidence correction is 

shown in Supplementary Fig. 9. 

Mito-PO contact quantification 

The contact level between Mito and POs was evaluated by confidence-weighted Mander’s 

overlap coefficient (MOC). Considering that Mito-PO contact sites were principally situated at 

the periphery of POs, we first identified the boundary of each PO using the following procedure: 

(i) Estimate the background of the region of interest (ROI) of the PO by applying a Gaussian 

filter with a standard deviation σ ൌ 10  pixels; (ii) Smooth the TISR image using another 

Gaussian filter with σ ൌ 1 pixel and then subtract the estimated background; (iii) Generate a 

binary mask by setting a threshold to the background-subtracted image; (iv) Extract the boundary 

of each PO using the Sobel operator; (v) The PO boundary image is convolved with the 

equivalent PSF of SIM, thereby delineating potential contact regions of POs. Next, following the 

aforementioned steps (i)-(iii), a binary Mito mask, denoted as M୑୧୲୭, was calculated.  

We reasoned that the regions with higher confidence should have higher weights in MOC 

calculation. Therefore, we applied the confidence map estimated by the Bayesian DPA-TISR 

model as adaptive wights to rationalize the quantification of Mito-PO contacts as follow: 

MOC ൌ
∑ Y୧ ∙ M୑୧୲୭,୧ ∙ C୑୧୲୭,୧୧

∑ Y୧୧
 , ሺ43ሻ 

where Y୧, M୑୧୲୭,୧, and C୑୧୲୭,୧ denote the value of the 𝑖௧௛ pixel in the ROIs of the PO boundary 

image Y, Mito mask M୑୧୲୭ and the confidence map C୑୧୲୭. 

Cell culture, transfection, and staining 

COS-7 and HeLa cells as well as their stable cell lines were cultured in DMEM (Gibco, cat. no. 

11965092), supplemented with 10% fetal bovine serum (Gibco, cat. no. 10099141C) and 1ൈ 

penicillin-streptomycin (Thermo Fisher, 15140122) under 37 ℃  in Thermo Scientific™ 

Heracell™ 150i CO2 incubator. SUM159 cells were cultured in DMEM/F12K medium 

supplementary with 5% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin solution. 

For live cell imaging, the 35 mm coverslips were pre-coated with 50μg ml-1 of collagen and 

1ൈ105 cells were seeded onto coverslips. For transient transfection, cells were transfected with 
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plasmids using Lipofectamine 3000 (Invitrogen, cat. no. L3000150) according to the 

manufacturer’s protocol 12 hours post plating. Cells were imaged for 12 hours after transfection. 

Where indicated, the cells transfected with Halo Tag plasmids were labelled with 10 nM JF549 

ligand for 15 min according to the published protocol49. The cells were rinsed with fresh medium 

to remove unbound ligand and imaged immediately afterward. The plasmids used in transient 

transfection include Lifeact-mEmerald, Lifeact-SkylanNS, Clathrin-mEmerald, Clathrin-

mCherry, 3ൈmEmerald-Ensconsin, Lamp1-Halo, 2ൈmEmerald-Tomm20, TFAM-mEmerald, 

PKMO-Halo, and PMP-Halo. 

Statistics and reproducibility 

Figs 1h-1j, 2e, 2f, and Extended Data Fig. 3c, 3d, 6f, 6h were plotted in Tukey box-and-whisker 

format. The box extends from the 25th and 75th percentiles and the line in the middle of the box 

indicates the median. The upper whisker represents the larger value between the largest data 

point and the 75th percentiles plus 1.5× the interquartile range (IQR), and the lower whisker 

represents the smaller value between the smallest data point and the 25th percentiles minus 1.5× 

the IQR. Data points larger than the upper whisker or smaller than the lower whisker is identified 

as outliers, which are displayed as black spots. 

Data availability 

The BioTISR dataset will be made publicly accessible at the Zenodo repository after the paper is 

accepted by a peer-reviewed journal. All data that support the findings of this study in Figs. 1-5, 

Extended Data Figs. 1-10, Supplementary Figs. 1-9, and Supplementary Videos 1-5 are available 

upon requests. 

Code availability 

The python codes of Bayesian DPA-TISR, several representative pre-trained models, as well as 

some example data for testing are already publicly accessible on Github 

(https://github.com/liushuran2/Bayesian_DPA_TISR). 
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Extended Data Figures 

 

Extended Data Fig. 1 | Gallery of BioTISR dataset. Representative time-lapse GT-SIM images of CCPs, Mito, 

Lyso, MTs, F-actin (linear SIM), and F-actin (nonlinear SIM). Scale bar: 3μm, and 1μm (zoom-in regions). Gamma 

value: 0.8 for F-actin images of both linear and nonlinear SIM.   
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Extended Data Fig. 2 | Template TISR neural network architecture used in evaluation. a,b, Template TISR 

neural network architectures equipped with sliding window-based propagation (a) and recurrent network-based 

propagation (b). c-e, Three representative neighbor feature alignment mechanisms based on optical flow (OF, c), 

nonlocal attention (NA, d), and deformable convolution (DC, e). 
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Extended Data Fig. 3 | Comparison of representative propagation and alignment mechanisms in TISR models 

with nonlinear SIM dataset of F-actin. a,b, Representative TISR images of mitochondria (a) and lysosomes (b) 

inferred by six models combined by two propagation methods, sliding window-based propagation (simplified as 

sliding) and recurrent network-based propagation (simplified as recurrent), and three alignment mechanisms based 

on optical flow (OF), nonlocal attention (NA) and deformable convolution (DC). WF and GT-SIM images are 

shown in the first column for reference. c,d, Statistical comparison of the six models in terms of PSNR, SSIM on 

images of mitochondria (c, n=50) and lysosomes (d, n=50). Scale bar, 3 μm (a, b), 0.5 μm (zoom-in regions in a and 

b). 
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Extended Data Fig. 4 | Comparison of representative propagation and alignment mechanisms in TISR models 

with nonlinear SIM dataset of F-actin. Representative TISR images inferred by six models combined by two 

propagation methods, sliding window-based propagation and recurrent network-based propagation, and three 

alignment mechanisms based on optical flow (OF), nonlocal attention (NA) and deformable convolution (DC). All 

models are configured to up-scaling the input image by 3-fold and trained with the nonlinear SIM F-actin dataset in 

BioTISR. WF and nonlinear GT-SIM images are shown in the first column for reference. The intensity profiles 

along the white dotted lines in magnified images are shown on the bottom left corner of each image. Scale bar, 3 μm, 

1 μm (zoom-in regions). 
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Extended Data Fig. 5 | Network architecture of DPA-TISR. a, Overall network architecture of DPA-TISR model, 

which consists of the feature extraction module, propagation and alignment module, and reconstruction module. b, 

Deformable phase-space alignment (DPA) mechanism which is sequentially comprised of two parts: the phase-space 

alignment (left panel) and spatial deformable convolution (DC) alignment (right panel). 
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Extended Data Fig. 6 | Comparison of the phase-space alignment mechanism and its variants. a-d, Four 

variants of phase-space alignment in which convolution is imposed on the amplitude (a), phase (b), both amplitude 

and phase each with half of the convolutional depth in the frequential space (c) and pure spatial features (d). TISR 

models compared in here are identical except for the pre-alignment methods in the alignment block (Supplementary 

Note 3). e, Representative TISR images of microtubules inferred by models equipped with four different pre-

alignment mechanisms depicted in a-d. The input wide-field image and GT-SIM image are provided for reference. f, 

Statistical comparison in terms of PSNR and SSIM for microtubule SR images inferred by TISR models with four 

alignment variants (n=50). g, Representative TISR images of simulated tubular structures inferred by models 

equipped with four different pre-alignment mechanisms depicted in a-d. The input wide-field image and GT-SIM 

images are provided for reference. h, Statistical comparison in terms of PSNR and SSIM for simulated images 

inferred by TISR models with four alignment variants (n=200). These results demonstrated that feature alignment in 

frequential space generally outperforms alignment in purely spatial domain. Among three frequential alignment 

mechanisms, phase convolution-based alignment surpasses other configurations with similar convolutional depth 

and computation complexity, indicating the superiority of the proposed phase-space alignment mechanism. Scale bar, 

3μm (e, g), 1μm (zoom-in regions of e and g). 
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Extended Data Fig. 7 | Confidence calibration of Bayesian DPA-TISR models trained with microtubule and 

mitochondrion datasets. a,b, Reliability diagrams generated by Bayesian DPA-TISR models before (left panel) 

and after (right panel) confidence calibration for microtubule (a) and mitochondrion images (b). c, Representative 

wide-field (WF) images (bottom left corner of the first column), TISR images (top right corner of the first column), 

absolute error maps (second column), rFRC maps generated with rolling Fourier ring correlation36 (third column), 

and confidence map estimated by Bayesian DPA-TISR models (four column) of microtubules and mitochondria. 

Scale bar: 1μm (c), and 0.5μm (zoom-in regions in c). 
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Extended Data Fig. 8 | Confidence calibration for the Bayesian DPA-TISR model trained with lysosome 

images. a, Confidence map generated by the Bayesian DPA-TISR model before confidence calibration. b, The 

absolute error map calculated with the inferred TISR image and GT-SIM image shown for reference. c, Confidence 

map generated by the Bayesian DPA-TISR model after confidence calibration. d, Reliability diagrams presented by 

accuracy versus average confidence before and after confidence correction with corresponding expected calibration 

error (ECE) and k value labeled. e,f, Representative detailed searching steps of the iterative finetuning process. The 

reliability diagrams (e) and corresponding confidence maps (f) are shown. Scale bar, 1 μm (a-c and f). 
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Extended Data Fig. 9 | Confidence calibration for the Bayesian DPA-TISR model trained with F-actin images. 

a, Confidence map generated by the Bayesian DPA-TISR model before confidence calibration. b, The absolute error 

map calculated with the inferred TISR image and GT-SIM image shown for reference. c, Confidence map generated 

by the Bayesian DPA-TISR model after confidence calibration. d, Reliability diagrams presented by accuracy versus 

average confidence before and after confidence correction with corresponding expected calibration error (ECE) and 

k value labeled. e,f, Representative detailed searching steps of the iterative finetuning process. The reliability 

diagrams (e) and corresponding confidence maps (f) are shown. Scale bar, 1 μm (a-c and f). 
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Extended Data Fig. 10 | Long-term SR live imaging of interactions between mitochondria and lysosomes 

enabled by DPA-TISR. a, Representative two-color DPA-TISR frame of outer mitochondrial membrane and 

lysosomes from a long-term video of ~10,000 timepoints. Wide-field image before processing is shown in the left 

panel for comparison. b, Time-lapse TISR images showing that a mitochondrion underwent the directional 

movement by hitchhiking on a moving lysosome. The temporally color-coded trajectory of the lysosome is plotted. 

c,d, Time-lapse images visualizing two typical cases of mitochondrial fission under the mediation of lysosomes at 

the contact sites. Scale bar: 3μm (a), and 1μm (b-d).  
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