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Abstract

The ratio of predator-to-prey biomass density is not constant along ecological gradi-
ents: denser ecosystems tend to have fewer predators per prey, following a scaling relation
known as the “predator-prey power law”. The origin of this surprisingly general pattern,
particularly its connection with environmental factors and predator-prey dynamics, is un-
known. Here, we explore some ways that a sublinear predator-prey scaling could emerge from
density-dependent interactions among predators and between predators and prey (which we
call a top-down origin), rather than among prey (bottom-up origin) as proposed in Hat-
ton et al. (2015). We combine two complementary theoretical approaches. First, we use
phenomenological differential equations to explore the role of environmental parameters
and dynamical properties in controlling the predator-prey ratio. Second, we simulate an
agent-based model with tunable predator self-regulation to investigate the emergence of
predator-prey scaling from plausible microscopic rules. While we cannot rule out alterna-
tive explanations, our results show that density-dependent mechanisms relative to predation
and intraspecific predator interactions, including prey saturation, predator interference, and
predator self-regulation, offer potential explanations for the predator-prey power law.
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1 Introduction

General biological patterns offer precious opportunities for synthesis and unification [1–8]. Hat-
ton et al. [9] put forward evidence of such a general pattern, holding across many terrestrial
and aquatic ecosystems, dubbed the “predator-prey power law”. The analysis in Ref. [9] reveals
a decrease in the ratio of predator to prey when comparing ecosystems at increasingly higher
predator and prey densities. The law holds for focal predator species as well as for aggregate
communities and has been recently shown to be robust in ecosystems with more complex trophic
structures than previously analyzed (e.g., including omnivores) [10].

In this paper, we try to understand this observation, focusing on a central dataset: the total
of large mammalian herbivores and carnivores showing a large gradient of biomass density across
a range of 23 African reserves (Fig. 1 and Supplementary Material (SM)). Species composition
is similar across the gradient and includes herbivores with a body mass ranging from 5 to 500
kg and large carnivores (20 to 140 kg) [9, 11, 12]. A reason for focusing on this dataset is the
robustness of the pattern to various factors, including the taxonomy of species included in the
communities, variations in species body mass, the possibility of systematic bias in sampling,
and alternative regression approaches [9].

Figure 1: Predator biomass density B∗
2 scales sublinearly with prey biomass density B∗

1 , as
B∗

2 ∼ (B∗
1)

k with k ≃ 3/4. Data refers to predator-prey communities in African reserves
obtained from the meta-analysis in Ref. [9] (see SM). The pattern is robust across ecosystems [9].

Any explanation of this scaling must comprise two parts: what varies between sites to
explain that they exhibit different biomass densities and what holds across sites to explain the
existence (and exponent) of the scaling law between predator and prey biomass density (see
Fig. 2 for a summary of the following argument).

We focus first on what could cause the stark differences in density between different sites.
Here, we assume that these densities are close to their equilibrium value given the abiotic and
biotic environment (rather than, for instance, low and high densities representing early and late
stages in a colonization process), as suggested by the analysis of time series reported in Ref. [9].
Under this assumption, we could start by imagining at least two very distinct explanations.

One possibility is that the gradient is driven by environmental differences among the parks,
therefore, by variation in the conditions in which the species find themselves interacting. The
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Figure 2: Summary of potential explanations for the predator-prey power law. We need two
parts for any explanation: identify the drivers of biomass variation between samples and describe
what holds across samples that give origin to the 3/4 scaling. In this work, we focus on
explanations in which the 3/4 exponent stems from the functional form (density-dependence) of
population dynamics, and choose to call them ”bottom-up” when prey consumption and growth
control the exponent, and ”top-down” when predator consumption and mortality control it.
Typically, the source of variation between sites must then lie in the other equation, meaning
that the variation in biomasses is expected to arise from ’bottom-up’ factors, i.e. prey growth,
if the exponent of the scaling law is driven by ’top-down’ factors, i.e. predator consumption,
and conversely. We give some examples of other explanations for the predator-prey power law,
and of reasons why we are setting them aside here: for instance, the exponent may come from
individual-level metabolic scaling, but average organism size and mass do not differ significantly
between sites; the differences in biomasses may stem from sites being out of equilibrium, but
these differences seem to be lasting (biomass-poor sites do not appear to be simply early stages
in biomass growth); the scaling may be due to several parameters changing in correlated ways,
but this would require a precise ”conspiracy” of physiological and environmental covariates to
lead to such a robust, seemingly unidimensional, gradient across sites.

other possibility is that, in equivalent environmental conditions, there are differences (pheno-
typic differences) in the species in the different parks. In the latter case, reaching different
equilibria would require having different species or phenotypes, e.g. variation in body mass,
size of territory or home range, resource needs, etc. Yet, evidence reported in Ref. [9] stands
against the idea that the different parks have significantly different composition in species or
individual size, at least none that would systematically create such a gradient. Therefore, we
assume that the biomass density gradient is caused by environmental factors.

We can proceed now to explore the reasons behind the specific form of the scaling along
the biomass gradient. We first rule out individual-level metabolic theory (which relates organ-
ism mass and metabolism or growth with a 3/4 exponent [5, 13]) as the explanation for the
community-level 3/4 law, again because there appears to be no systematic variation in individ-
ual body mass distribution across the gradient so these metabolic properties should be constant.
Turning to other explanations, predator and prey densities could both be controlled entirely by
changes in external factors, such as more or less productivity and mortality due to aridity or
landscape features, irrespective of any dynamics within and between these trophic levels. In
that case, a scaling law between predator and prey density, where both increase in a robust
but sublinear relationship, would require a ”conspiracy” of parameters (a strong but nonlinear
covariation in how the changing environment impacts various species’ productivities and mor-
talities) for which no ecological mechanism has been proposed yet. Thus we wish to posit that

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.04.04.588057doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588057
http://creativecommons.org/licenses/by/4.0/


the observed variation of both predator and prey densities stems from the same environmental
gradient, but the scaling law between them stems from dynamical mechanisms.

A first explanation of this kind was proposed by Hatton et al. [9], suggesting that the
driving dynamical mechanism is a sublinear relationship between prey density and prey biomass
production. As we recall below, the environmental variation implied by their explanation is that
different sites must have different interaction strengths between predator and prey [9], e.g. due
to different vegetation cover.

a b

1.52±0.71

1.26±0.57

-0.26±0.30

kg
km

prey

predators

Figure 3: Predator and prey biomass densities scale differently with respect to park precip-
itation, with their ratio scaling approximatively as −1/4, suggesting that precipitation may
be a good proxy for the relevant environmental parameter responsible for the biomass density
gradient across different parks. In (a), we report predator and prey biomass density vs. park
precipitation and, in (b), their ratio, again vs. precipitation.

We focus on another ecologically-motivated assumption, proposing that the various parks
differ most importantly by their primary productivity, which is positively correlated with her-
bivore growth (secondary productivity) [14]. Annual precipitation is a good proxy for primary
productivity in African parks [15]. In Fig. 3 (a), we report predator biomass density vs. pre-
cipitation, scaling with an exponent around 5/4 and prey biomass density vs. precipitation,
scaling with an exponent close to 3/2 (consistent with Ref. [15]). This results in predator-prey
biomass ratio vs. precipitation scaling as −1/4 (Fig. 3 (b)). Within the assumption of primary
productivity as main driver for the gradient, we will show that a range of explanations are
possible, and they are all top-down, in the sense of relying on predation dynamics, and specifi-
cally on density-dependent predator interactions. Figure 2 summarizes the explanations for the
predator-prey power law we consider in this work and clarify our definition of “top-down” and
“bottom-up” mechanisms.

2 Predator-prey dynamics and macroecological patterns

We aim to compare ecosystems hosting the same predator and prey species pairs at different
stationary biomass densities. We encode the parameters responsible for the biomass gradient in
the vector ρ⃗. These parameters can represent biotic and abiotic factors affecting the population
dynamics (e.g., amount of primary resources or shelters) but also phenotypic traits, which are
sensitive to a change of environment but decoupled from the population densities. We collect
parameters of the model that are considered independent of the species’ density and do not
change across environments in the vector σ⃗. Finally, we define the species density vector B⃗: all
the model ingredients representing the dynamics in a given environment are functions of it. We
consider a two-dimensional system with one prey species whose density is denoted by B1, and
one predator species, B2, that feeds on it. This coarse-grained setting allows us to highlight
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how density dependence clearly can shape the trophic structure at different biomass densities,
even though it is not suited to describing a realistic food web in detail.

The equations describing the dynamics of the density of prey B1 and of predators B2 can
be given, with some degree of generality, by

dB1

dt
= P1(ρ⃗, σ⃗, B1)− L1(ρ⃗, σ⃗, B1)− C(ρ⃗, σ⃗, B⃗) , (1)

dB2

dt
= P2(ρ⃗, σ⃗, B⃗)− L2(ρ⃗, σ⃗, B2) , (2)

where P stands for production, L for internal losses and C for predation losses. In general,
predation losses and predator production depend on both species.

Different choices of what enters in ρ⃗ have distinct ecological meanings. A change, e.g., of
a coefficient in the interaction term could, for example, represent a different concentration of
shelter for prey [16]. Another common reason behind different biomass densities of predators and
prey in different environments is a variation in the energy influx in the system through primary
production, which can be encoded in a changing coefficient in the prey production term. The
observed gradient might not be due to variation in one parameter alone, and we must carefully
consider how covariance between the relevant parameters may affect our model predictions [17].
Consider a choice of the production and losses that correspond to the Lotka-Volterra model
with self-regulation,

dB1

dt
= rB1 − cB2

1 − qB1B2 , (3)

dB2

dt
= gqB1B2 −mB2 − aB2

2 , (4)

where r is the growth rate of the prey, q is the interaction strength, g the conversion rate, m
the death rate of the predators, and c and a the self-regulation strength of prey and predators
respectively. It is instructive to write down the stationary solution for the two species’ densities
to highlight the explicit dependence on the parameters

B∗
1 =

ar

ca+ gq2
, (5)

B∗
2 =

gqr

ca+ gq2
, (6)

where we considered negligible predator mortality, m = 0, for clarity. If the prey growth rate r
is the single most relevant environmental parameter that changes along the biomass gradient,
i.e., ρ = r and σ⃗ = (a, g, q,m), then linear scaling between predator and prey density B∗

2 ∼ B∗
1

emerges, both being linear in r. If, however, the interaction strength q is also relevant and it
co-varies with r, for example as q ∼ rk−1, with k < 1, then the observed scaling is sublinear
B∗

2 ∼ (B∗
1)

k.
In summary, the choice of the parameters that are supposed to model a biomass gradi-

ent has to be informed by observation, and different choices of parameters produce different
macroecological patterns starting from the same dynamical model. We want to explore how
dynamical, density-dependent effects can be relevant for the scaling. Therefore, we use as a
working assumption that only one parameter, possibly different in other datasets, is responsible
for the gradient.

Within this working assumption, a linear relation and, therefore, a constant average number
of prey per predator in a patch across a biomass gradient would imply that only the stationary
number of predators and prey matters, and how densely packed the two species are is irrelevant.
If species density matters [18–21], a sublinear scaling is expected when the net effect of crowding
penalizes more the standing biomass of predators than that of prey. In Fig. 4 we pictorially
summarize this observation and show examples of mechanisms that could dynamically lead
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Figure 4: Sublinear scaling reflects the relevance of density-dependent effects for the predator-
prey ratio. The figure portrays a Gedankenexperiment in which we start with a patch of an
ecosystem hosting a given number of predators and prey at stationarity. Then, we change the
environmental conditions so that the stationary number of prey is the same in the two cases,
but the number of predators scales linearly in one case and sublinearly with the one of prey
in the other. Examples of mechanisms that can lead to sublinear scaling are also portrayed,
covering bottom-up and top-down explanations. Blue disks represent prey (with small disks
representing prey offspring), orange triangles predators. In density-dependent self-regulation
(top-down), predators are shown to self-regulate their population size by direct interaction. In
predation interference (top-down), on the other hand, this happens because they interfere with
each other’s hunting. Prey saturation, shows predators unable to consume all the prey available
because some are “shielded” by the others. In sublinear prey production (bottom-up), predators
are sustained by prey offspring, and prey are shown to grow sublinearly with their density.

to sublinear scaling. The bottom-up explanation, in the sense of relying on prey dynamics
and specifically on density dependence in prey production, emerges from sublinear growth of
herbivores [9]. The main classes of mechanisms behind the top-down explanation are predator
density-dependent self-regulation, predation interference, and prey saturation.

3 Bottom-up, sublinear prey production

We summarize here the bottom-up explanation proposed in Ref. [9], which invokes sublinear
prey production to describe the observed predator-prey scaling. The model is defined as

dB1

dt
= rBk

1 − qB1B2, (7)

dB2

dt
= gqB1B2 −mB2, (8)

where r is the growth rate of the prey, q is the interaction strength, g the conversion rate, m
the death rate of the predators, and k < 1 is an exponent characterizing the density-dependent
effects on the per-capita growth rate of the prey. To be dimensionally consistent, we should
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multiply the prey production term by a factor B1−k
0 , where B0 has the dimensions of a density.

Here, and mutatis mutandis in the other sections when not otherwise stated, we consider B0 = 1
without loss of generality for the purpose of this work.

The equilibrium prey density B∗
1 and predator density B∗

2 , are respectively

B∗
1 =

m

gq
, (9)

B∗
2 =

rmk−1

gk−1qk
=

rg

m
(B∗

1)
k . (10)

Therefore rg/m has to be constant, and q has to decrease (increase) to move up (down) across
the biomass gradient in order to obtain the scaling B∗

2 ∼ (B∗
1)

k. If, instead, r is primarily
responsible for the biomass increase, this model predicts a constant prey density while the
predators grow. In terms of the general definition above, the two cases correspond, respectively,
to ρ = q, σ⃗ = (r, g,m) and ρ = r, σ⃗ = (q, g,m).

This bottom-up explanation is informed by another macroecological observation, namely the
sublinear scaling of biomass production with respect to biomass density [9, 22]. A discussion on
possible mechanistic explanations for sublinear growth can be found in Refs. [9] and [22]; it is,
however, still an open question. Sublinear production in the dynamical equation for prey does
not represent a unique possible explanation for the macroecological pattern observed across
ecosystems. However, it can be realistic and parsimonious, as discussed in depth in Ref. [22].

Support for q as the relevant parameter to move along the biomass density comes from
cross-system studies, which have shown that density increases across prey causes a decrease of
nutritional quality and edibility, which may tend, in turn, to weaken interaction strength with
consumers [9, 23–27].

4 Top-down, density-dependent predation and predator self-regulation

Here we explore how the predator-prey scaling can have a top-down origin, emerging from den-
sity dependence in predation and predator self-regulation. We consider a phenomenological
model in which density-dependent effects are important at all scales, following the conceptu-
alization of Ref. [17]. The functional form of the terms involved could, in principle, emerge
from underlying spatiotemporal details [28] and should not be necessarily rooted in mechanistic
explanations [29]. The model reads

dB1

dt
= rB1 − cB2

1 − qBα
1B

β
2 , (11)

dB2

dt
= gqBα

1B
β
2 −mB1+γ

2 , (12)

where r is the growth rate of the prey, c the strength of prey’s self-regulation emerging, e.g.,
from competition for resources [30, 31], q, g, and m are, respectively, related to the interaction
strength, conversion rate, and predator death rate (by properly accounting for dimensionality,
as in the section above). The exponent α encodes saturation, β is connected to predator
interference, and γ models the strength of predator self-regulation. The interaction term is
scale-free, in the sense that complete saturation with respect to prey density is never achieved.
However, this is not unrealistic as evidence suggests that predator feeding rates may often be
unsaturated under typical conditions [32]. It is also possible to use other models such as the
Hassell-Varley-Holling model [33–36], especially if the systems are far from complete saturation.

In this work, we are only quantitatively interested in the scaling exponents that emerge from
the dynamics. Therefore, Eqs.(12) and (11) can be reduced, through non-dimensionalization
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env. parameter

a

b c

scaling exponent

Figure 5: Predator biomass density B∗
2 scales sublinearly with prey biomass density B∗

1 for given
exponents for saturation α, interference β and self-regulation γ (a) when herbivore growth is
varied to simulate a biomass gradient, shown as a straight line on log-log axes. By solving
numerically Eqs. (13) and (14), here we show, for α = β = 1/2, γ = 1/6, σ = 1/10 and
ρ ∈ [1, 100], (b) the predator stationary biomass density against prey stationary biomass density
(k = 3/4) and (c) their ratio with respect to the environmental parameter ρ (see Eq. (13)),
which is proportional to the herbivore growth rate r.

(see SM), to the form

dB1

dt
= ρB1 −B2

1 − σBα
1B

β
2 , (13)

dB2

dt
= Bα

1B
β
2 −B1+γ

2 , (14)

where we call the remaining parameters ρ (which is responsible for the biomass gradients) and
σ. These are functions of the original parameters, with ρ ∝ r and σ independent from r. The
general stationary solution for predator biomass density as a function of prey reads

B∗
2 = (B∗

1)
k , with k = α/(1 + γ − β) , (15)

while the solution for the prey has a closed form only for specific values of the exponents (α,
β and γ) and must otherwise be solved numerically. Assuming a varying ρ, corresponding to
a variation of primary productivity, every combination of the exponents resulting in k = 3/4
predator-prey scaling across ecosystems is viable as long as it produces feasible and stable
stationary solutions.

As an example, a meta-analysis of predator-prey pairs of mammals, birds, and reptiles
suggests that total predation rates increase as the square root of the product of predator and
prey density [17], i.e., α = β = 1/2. In this case, in order to observe the k = 3/4 scaling, the
exponent associated to predator self-regulation has to be γ = 1/6. This means that per-capita

losses for predators must scale1 like B
1/6
2 . In Fig. 5 we report the predator-prey scaling for this

choice of parameters.

1This exponent, incidentally similar to scaling laws found in complex systems outside of ecology [37], suggests
that even a seemingly weak density-dependence may play a significant role in biomass patterns.
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Differences in primary productivity and herbivore growth are considered among the most
common reasons underlying differences in biomass density in otherwise similar ecosystems.
Support for considering r the relevant variable comes from data on the relation between biomass
density and precipitation in the parks (Fig. 3) and from previous studies connecting precipitation
with primary productivity and herbivore growth [14, 15]. If precipitation is associated with the
relevant variable ρ in our model (see Fig. 5 (b)), we expect the scaling in Fig. 3. To rule out
an obvious potential confounder, we show in the SM that there is no correlation between park
area and precipitation level. This evidence is insufficient to establish primary productivity as
the most relevant driver, but it indicates it as plausible.

As an additional test, we parameterize this model with realistic values for the focal species
in the African parks considered in this work. The scaling relation at stationarity considering
the full dimensional model is (see SM)

B∗
2 =

(gq
m

)k/α
B

1+k/α−k
0 (B∗

1)
k. (16)

Starting from independent estimations of the parameters g [9], q [38], m [9] and the biomass
threshold for nonlinearity B0 [22], we can estimate the coefficient predicted by our model and
confront it with the fitted coefficient from the data Cfit = 0.075, with dimensions [Cfit] =
(kg/km2)1−k and 95% confidence interval (C. I.) Cfit = 0.038, 0.15. If we assume α = 1, we get

Cest =
(gq
m

)k/α
B

1+k/α−k
0 = 0.041 (kg/km2)1−k, (17)

which is within the confidence interval of Cfit. In general k/α < 1 is favorable to improve
the fit unless B0 is large. As there is a significant margin for error in all these estimates, this
calculation is only meant as a “sanity check” to verify that our model predictions are at least
compatible with some empirical evidence.

5 Agent-based model as a proof of concept for the top-down case

Predator-prey agent-based (ABM) models [39–43] can provide a bridge between mathematical
models and more realistic behavioral rules, providing more intuition on the dynamics underlying
our patterns. We present a simple ABM that produces sublinear predator-prey scaling across
a biomass gradient through top-down effects. We focus, as an example, on density dependence
in predator self-regulation.

We consider a L×L grid on which the agents move with Moore connectivity (each site has
8 neighbors) and periodic boundary conditions. No occupancy restriction is enforced: there
is no upper bound to the number of agents a grid point can host. There are two species:
prey and predators. Agents of both species possess an internal energy that changes during the
dynamics; metabolism decreases it, feeding increases it, and during a reproduction event, the
parent donates half of its energy to the offspring. Prey move on an adjacent grid point, and
their energy changes of an amount ∆E = −µ, where µ is the metabolic rate. Then, they eat
a fraction of the resources present on the grid, R, which is converted into energy ∆E = R/N1

where N1 is the numbrer of prey present in the grid point. Finally, if their energy is E ≤ 0 they
die, otherwise, with probability P = ω1 they reproduce. Predators dynamics is slighlty more
involved. They move and their energy changes as ∆E = −µ due to metabolism. Then, with
probability P = N1/(N1 + N2) they engage a prey while with with probability 1 − P engage
a predator, where N2 is the number of predators in the grid point. In the first scenario, with
probability P = δ, they eat the prey, gaining ∆E = η, where η is the predation efficiency, and
subsequently, with probability P = ω2, they reproduce. In the case in which they do not catch
the prey, and if their energy is zero or less, they die. In the scenation in which they engeage
a predator, they kill the competitor with probability P = f . Finally, if their energy is E ≤ 0
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Figure 6: Visual description of the agent-based model. The general setting and the parameters
are defined, as well as predator and prey dynamics.
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they die of starvation. At the end of the time step the amount of resources at each grid point
increases by ρ, the resource growth rate. The functioning of the model is summarized in Fig. 6.

A biomass gradient in the model is obtained by tuning the resource growth rate ρ: the higher
ρ, the higher the biomass density at stationarity. The key element of this model is the density
dependence in the probability that a predator has of attacking and killing another predator
when encountered. We call it aggressiveness and denote it by f(N2, ξ), where ξ is a parameter
that establishes a threshold over which the attack is certain. It controls the sensitivity of this
mortality with respect to the predator density (i.e., number at a given grid point). In order to
explore more regimes, we study the form

f(N2, ξ) = min{(N2/ξ)
ν , 1} , with ν ≥ 0 , (18)

where the exponent ν modulates the dependence of the aggressiveness on predator density. We
choose for our simulations a threshold ξ = 100 that allows for a large enough range of prey
densities.

Figure 7: In the ABM, predator biomass density B∗
2 scales more and more sublinearly with re-

spect to prey biomass density B∗
1 for increasing levels of aggressiveness (encoded in the exponent

ν and described by Eq. (18)). Each point is a time average of the densities over simulations that
reached stationarity (in particular from step 50 to step 500), for each value of the aggressiveness
exponent ν the resource growth rate ρ varies between 1 and 100. The grid area is 42, the initial
density of prey and predators is 1, the aggressiveness threshold is ξ = 100, the reproduction
probabilities are ω1 = ω2 = 1/2, the catch probability is δ = 1/3, the predation efficiency is
η = 10, and the metabolic rate µ = 1. The resulting scaling exponents depend only on ν and
are robust to changes in the other parameters. The gray lines are theoretical predictions from
Eq. (19).

Figure 7 shows the equilibrium biomass density of predators B∗
2 as a function of the equi-

librium biomass density of prey B∗
1 (equivalent to the numerical density upon choosing unitary

mass for both species without loss of generality) for different values of the resource growth rate
ρ. If the aggressiveness does not depend on the number of predators in the grid point (ν = 0)
a linear scaling is observed. Any positive value of ν implies sublinear scaling. The general
asymptotic expression of the density of predators as a function of the density of prey reads (see
SM)

B∗
2 = (ξνω2δ)

k(B∗
1)

k , with k = 1/(ν + 1) , (19)
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where δ is the probability of a catch when a predator engages with a prey.
The model presented here serves as a proof of concept that density-dependent deleterious

effects for predators (in this case, self-regulation) can induce sublinear scaling across a biomass
gradient. It also shows that the scaling relationship may break even with the right ingredients.
In this case, the predator population cannot be sustained below a given resource growth rate,
a feature not uncommon in predator-prey models with explicit resource dynamics (see SM).

A comparison with the phenomenological model in Eqs. (13) and (14) is possible through
the two expressions for the scaling exponent k (Eq. (15) and Eq. (19)) and thanks to the fact
that in both models predator density depend on the environmental parameter only through prey
density. A parameterization of the phenomenological model that captures the ABM dynamics
is α = 1, β = 1 and γ = ν + 1.

6 Discussion

In this work, we showed that top-down mechanisms represent a viable explanation for the
origin of the predator-prey power law, alongside the bottom-up explanation in Ref. [9]. Under
the assumption of prey productivity as the primary driver for the biomass density gradient
across ecosystems, we demonstrated that combinations of nonlinearities in the interaction term
and predator self-regulation can produce the predator-prey power law. While there is no single
model that can characterize predator-prey interactions in general [29, 44–46], we considered
a scale-free model [17] which capture the relevant dynamical trends that could be behind the
macroecological pattern. We also devised and analyzed an agent-based model to provide an
example of how predator-prey scaling can emerge as a top-down effect starting from plausible
microscopic rules.

We are not able to rule out alternative explanations. Extensive field studies are needed
to identify the most relevant factors (and their covariance) behind differences in equilibrium
biomass density in ecosystems with similar species composition. This identification is crucial to
understand if dynamical ingredients and which ones determine the emergence of predator-prey
scaling. We hope to stimulate field work and analysis of existent data sets to test the plausibility
of the top-down explanation presented here and, possibly, identify the specific density-dependent
mechanisms behind it. Cross-systems studies on predator self-regulation analogous to the one
performed for the interaction term in Ref. [17] would be particularly valuable.

It is also possible to put to the test different models by requiring their consistency with
other macroecological patterns, such as the sublinear scaling of production with respect to
biomass density [9, 22]. The scaling exponent is approximately the same as in the predator-
prey scaling and is recovered for prey production in the bottom-up framework. The top-down
model predicts, by the equilibrium requirement on the prey (11), that prey production scales

as Bα+βk
1 for a range of densities and then as B2

1 for higher densities, depending on the value
of σ. For α = β = 1/2 and γ = 1/6 the exponent is 0.875, a bit higher than 3/4. If γ = 0, we
have the same exponent k = α/(1− β) for both patterns until production scales as B2

1 for high
enough densities. From this perspective, the bottom-up model is more appropriate to capture
the general dynamics. Production scaling with biomass density, however, is not recovered for
predators; and although available data are still fragmentary, they are indicative that the pattern
should hold at every trophic level [9, 22].

Establishing if either of these two classes of dynamical explanations for the predator-prey
power law is close to a correct description of reality, at least at large scales, may also impact how
we can act upon these ecosystems. For example, an increase in prey productivity r would have a
completely different effect on species densities in the two cases. Policies of wildlife management
based on the two different dynamical models would result in different ecological responses.

Finally, future works might benefit from the inclusion of evolution. Macroecological scaling
patterns in plankton communities can emerge from body size scaling through eco-evolutionary
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dynamics [47]. This, however, requires producer (phytoplankton) mean body size variation
with density, which is not observed in other systems, such as the mammalian herbivores and
carnivores analysed in this work.
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Data are available in the SM and at [9]. The Julia code used for analysis and simulations is
available at https://github.com/onofriomazzarisi/top-down-vs-bottom-up.
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Supplementary Material

6.1 Data on African communities

In this section, we report the details and references for the data reported in the paper relative
to African communities obtained from the meta-analysis provided in Ref. [9]. Moreover, we
present further analysis of the same data.

The data chosen as representative of predator-prey systems used to produce the Figures in
the main text are reported in Tab. 1. Table 2 associates the full park names to the park codes
reported in Tab. 1. Figure 8 reports the behavior of predator vs. prey biomass density, biomass,
number density, and number, Fig. 9 reports predator and prey biomass and number density vs.
park area, Fig. 10 reports predator and prey biomass and number density vs. precipitation and
Fig. 11 reports precipitation vs. park area.
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Table 2: Park corresponding to park codes.

Park code Park

amb Amboseli National Park, Kenya
eto Etosha National Park, Namibia
gon Gonarezhou National Park, Zimbabwe
hlu Hluhluwe iMfolozi National Park, South Africa
hwa Hwange National Park, Zimbabwe
kal Kalahari National Park, South Africa
kat Katavi National Park, Tanzania
kid Kidepo Valley National Park, Uganda
kru Kruger National Park, South Africa
man Lake Manyara National Park, Tanzania
mas Masai Mara National Reserve, Kenya
mko Mkomazi Game Reserve, Tanzania
nai Nairobi National Park, Kenya
ngo Ngorongoro Crater, Tanzania
nwa Nwaswitshaka River, Kruger NP, South Africa
oka Okavango Delta, Botswana
pil Pilanesburg National Park, South Africa
que Queen Elizabeth National Park, Uganda
sab Sabie River, Kruger NP, South Africa
sav Savuti area of Chobe National Park, Botswana
sel Selous Game Reserve, Tanzania
ser Serengeti ecosystem, Tanzania
tar Tarangire National Park, Tanzania
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a b

c d

Figure 8: Predator vs prey biomass density (a), number density (b), biomass (c) and number
(d).

a b

dc

Figure 9: Predator and prey biomass density (a) and number density (b) plotted against park
area. Their ratio is plotted again vs. park area in (c) and (d).
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c d

a b

Figure 10: Predator and prey biomass density (a) and number density (b) vs. precipitation.
Their ratio is reported in (c) and (d).

Figure 11: Park precipitation is not correlated with park area.
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6.2 Phenomenological model analysis

In this section, we provide details of the analysis of the scale-free phenomenological model
discussed in the main text to explore density-dependent effects in predation and self-regulation.

We start by rewriting the model in non-dimensional form. The model describes the dynamics
of prey biomass density (B1) and predator biomass density (B2) through the following equations

dB1

dt
= rB1 − cB2

1 − qBα
1B

β
2 , (20)

dB2

dt
= gqBα

1B
β
2 −mB1+γ

2 , (21)

where we refer to the main text for the definition of the parameters. Defining the nondimensional
quantities

x1 :=
B1

d1
, x2 :=

B2

d2
, τ :=

t

d3
, (22)

The equation above can be written as

dx1
dτ

= rd3x1 − cd3d1x
2
1 − qd3d

α−1
1 dβ2x

α
1x

β
2 , (23)

dx2
dτ

= qgd3d
α
1 d

β−1
2 xα1x

β
2 −md3d

γ
2x

1+γ
2 . (24)

If we make the choices

d3 :=

(
cαm(β−1)/γ

gq

)γ/(γ(1−α)+1−β)

, (25)

d2 := (md3)
−1/γ , (26)

d1 := (cd3)
−1 , (27)

the non-dimensional equations become

dx1
dτ

= ρx1 − x21 − σxα1x
β
2 , (28)

dx2
dτ

= xα1x
β
2 − xγ+1

2 , (29)

with
ρ := rd3 , σ := qd3d

α−1
1 dβ2 . (30)

Notice that r does not appear in the definition of d1, d2 and d3. Therefore, when varying
r, and therefore ρ as in the main text, we can be sure of the absence of spurious correlations
hidden in the redefinition of the densities and time and in the definition of σ.

6.3 Parameterization of the phenomenological model

In this section we do a sanity check on the phenomenological model with parameters extracted
from literature. Let us consider the full phenomenological model, including dimensional con-
stants we ignored in the main text

dB1

dt
= rB1 − cB2

1 − qB2−α−β
0 Bα

1B
β
2 , (31)

dB2

dt
= gqB2−α−β

0 Bα
1B

β
2 −mBγ

0B
1+γ
2 . (32)
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The scaling relation at stationarity is

B∗
2 =

(gq
m

)k/α
B

1+k/α−k
0 (B∗

1)
k, (33)

where k = α/(1 + γ − β). The fit of the data gives

B∗
2 = Cfit ∗ (B∗

1)
k ≈ 0.075(B∗

1)
0.75, (34)

where Cfit has dimensions [Cfit] = (kg/km2)1−k and 95% confidence interval (C. I.) Cfit = 0.038,
0.15. We can use independent estimates of g, q, m and B0 to estimate the coefficient and
confront it with Cfit. The dimensionality of the parameters is [g] = 1, [q] = km2/(kg day),
[m] = 1/day and [B0] = kg/km2. We estimate g = 0.0083 [9], m = 0.00023 1/day [9] and
B0 = 10 kg/km2 [22]. We can decompose the parameter q as q = s/b2, where s is the search
rate and b2 is the predator body mass. In Ref. [38], the authors find for interaction taking place
in 2 spatial dimensions the following scaling relationship

s = 0.00083 ∗ b0.682 m2/s, (35)

where the predator body mass, b2, has to be expressed in kg. By using the mean body mass
among the predators in all the parks b2 = 70 kg and expressing s in km2/day, we get a search
rate of s = 0.00129 km2/day, and therefore we can estimate q = 0.000018 km2/(kg day). Finally,
if we assume α = 1, we estimate

Cest =
(gq
m

)k/α
B

1+k/α−k
0 = 0.041 (kg/km2)1−k, (36)

which is within the confidence interval of Cfit (95% C. I. Cfit = 0.038, 0.15).

6.4 Agent-based model analysis

In this section, we derive the asymptotic expression Eq. (19) for the stationary predator density
as a function of the prey density across a biomass gradient.

In our ABM, the probability for a predator to reproduce is given by the probability of
engaging and eating a prey times the probability of giving birth. Moreover, at high densities,
predators mostly die because of attacks from other predators and not from starvation. We can,
therefore, write an equation for the evolution of the density of predator x2 valid at high densities

dx2
dt

= ω2δ
x1

x1 + x2
x2 −

(
x2
ξ

)ν x2
x1 + x2

x2 , (37)

where x1 is the prey density, ω2 is the predator reproduction probability, δ is the catch proba-
bility, ξ is the territoriality constant and ν is the aggressiveness exponent. At stationarity, we
have

0 = ω2δx
∗
1 −

(
x∗2
ξ

)ν

x∗2 , (38)

and therefore Eq. (19)
x∗2 = (ξνω2δx

∗
1)

1/(ν+1) . (39)

In Figs. 12, 13 and 14 we report the effects of changes in the parameters η µ and ω1 which
do not appear in the scaling eq. (19) on the ABM dynamics at fixed ρ.

The transition in which, under a certain resource regeneration rate, the predator population
cannot be sustained, is a common phenomenology in predator-prey models. Consider, as an
example, the system

ẋ = ρ− xy,
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Figure 12: In the ABM, decreasing the value of the predation efficiency η decreases predator
stationary density and does not affect prey stationary density. The grid area is 42, the initial
density is 1 for prey and 10 for predators, the aggressiveness threshold is ξ = 500, the reproduc-
tion probabilities are ω1 = ω2 = 1/2, the catch probability is δ = 1/3, the resource growth-rate
is ρ = 25, the metabolic rate is µ = 1 and the predation efficiency is η = 10 for blue and orange
and η = 5 for green and purple.

Figure 13: In the ABM, increasing the value of the metabolic rate µ decreases both predator and
prey stationary density. The grid area is 42, the initial density is 1 for prey and 10 for predators,
the aggressiveness threshold is ξ = 500, the reproduction probabilities are ω1 = ω2 = 1/2, the
catch probability is δ = 1/3, the resource growth-rate is ρ = 25, the predation efficiency is
η = 10 and the metabolic rate is µ = 1 for blue and orange and µ = 1.5 for green and purple.

ẏ = axy − by − cyz,

ż = dyz − ez,

where x, y and z are respectively resources, prey and predator. The stationary solution for

25

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.04.04.588057doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588057
http://creativecommons.org/licenses/by/4.0/


Figure 14: In the ABM, increasing the value of the prey reproduction probability ω1 increases
predator stationary density and does not affect prey stationary density. The grid area is 42,
the initial density is 1 for prey and 10 for predators, the aggressiveness threshold is ξ = 500,
the predator reproduction probability is ω2 = 0.5, the catch probability is δ = 1/3, the resource
growth-rate is ρ = 25, the metabolic rate is µ = 1, the predation efficiency is η = 10 and the
prey reproduction probability is ω1 = 0.5 for blue and orange and ω1 = 0.75 for green and
purple.

predators is

z = ρ
ad

ec
− b

c
,

which means that no predator population can be sustained below ρ = be/ad.
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