

1
2 **Root exudation and rhizosphere microbial recruitment are influenced by novel plant trait**
3 **diversity in carrot genotypes**

4
5 Hannah M. Anderson^{a*}, Grace A. Cagle^a, Erica L.-W. Majumder^b, Erin Silva^c, Julie Dawson^d,
6 Philipp Simon^{d,e}, Zachary B. Freedman^a

7 ^a Department of Soil Science, University of Wisconsin-Madison

8 ^b Department of Bacteriology, University of Wisconsin-Madison

9 ^c Department of Plant Pathology, University of Wisconsin-Madison

10 ^d Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison

11 ^e United States Department of Agriculture Vegetable Crops Research Unit

12

13 *corresponding author: Hannah M. Anderson; handerson33@wisc.edu

14

15 **Declaration of competing interest**

16 The authors declare no conflict of interest.

17

18 *Keywords: Rhizosphere, Root exudates, Metabolomics, Plant-microbe interactions, Trait*
19 *diversity*

20

21

22

23

24

25

26

27

28

29

30 **Abstract**

31 Root exudate composition can influence rhizosphere microbial recruitment and is tightly
32 controlled by plant genetics. However, little research has profiled root exudate in vegetable crops
33 or determined their role in rhizosphere microbial community and metabolite composition. It is
34 also not well understood how root exudates and resulting rhizosphere dynamics shift across plant
35 trait diversity and with the development of novel crop genotypes. To address these knowledge
36 gaps, this study paired metabolomics and microbiome analyses to evaluate associations between
37 the composition of exudates, soil bacterial and fungal communities, and soil metabolites across
38 four genotypes of organically produced carrot of differential breeding histories, including two
39 experimental genotypes. Plant genotypes modified soil microbial diversity and composition, and
40 differentially recruited bacterial taxa with demonstrated potential for plant-growth related
41 functions including ammonia oxidation, nitrogen fixation, and phytohormone production.

42 Bacterial rhizosphere recruitment from bulk soil was genotype and root exudate-mediated, while
43 fungal recruitment was not. Moreover, root exudate composition was distinct in an heirloom
44 genotype and a novel nematode resistant genotype, compared to other genotypes tested. Root
45 exudate and rhizosphere metabolite composition was decoupled, and soil metabolites strongly
46 associated with fungal, but not bacterial communities. Taken together, the results of this study
47 suggest that novel crop trait diversity and breeding histories hold consequences for the functional
48 potential of soils through the diversification of root exudate mediated plant-microbe interactions.

49

50

51

52

53

54 **1. Introduction**

55 Terrestrial plants evolved in close association with soil microorganisms, mediating both
56 positive and negative plant-microbe interactions through root growth and rhizodeposition. The
57 rhizosphere, defined as the narrow zone of soil in direct contact with an actively growing plant
58 root, is a hotspot for plant-soil substrate flow and microbial activity (Kuzyakov & Blagodatskaya
59 2015). It is well documented that rhizosphere microbial community composition and functions
60 differ from that of the bulk soil, and these differences could ultimately shape plant and soil
61 functional outcomes as a result of shifts in microbial metabolism, for example, by increasing soil
62 nutrient availability (Ling et al. 2022). While the bulk soil microbial community initially shapes
63 the rhizosphere as the “microbial seed bank”, observed differences in rhizosphere microbial
64 community composition between plant species and even genotypes during plant development
65 indicate a strong host plant-specific selective pressure (de Ridder-Duine et al. 2005, Micallef et
66 al. 2009, Aira et al. 2010). Oftentimes, the specific plant or soil-based mechanisms resulting in
67 these observed patterns of rhizosphere microbial community assembly remain elusive.

68 The flux of photosynthetically fixed carbon (C) from plant tissues to the rhizosphere
69 through root exudation is a potential mechanism that can modify soil microbial abundance and
70 activity. As a source of low-molecular weight (LMW) labile C, root exudates provide a readily
71 accessible energy source for microbial metabolism, which can ultimately stimulate microbial
72 recruitment and growth (Meier et al. 2017, Zhou et al. 2022, Liu et al. 2022). Early research on
73 plant root exudation provided the foundational understanding that root exudation is significantly
74 controlled by plant genetics (Lynch & Whipps 1983, Larsen et al. 1998, Tadano et al. 1993,
75 Kamilova et al. 2006). More recent applications of high-throughput metabolomics and microbial

76 community analysis support the hypothesis that root exudate chemical identity regulates specific
77 microbial selection in the rhizosphere through preferential uptake and metabolic use (Broeckling
78 et al. 2008, Eilers et al. 2010, Hugoni et al. 2018, Zhalnina et al. 2018). Additionally, soil
79 microorganisms produce and excrete LMW metabolites that can shape the biochemical habitat
80 and carbon availability in the rhizosphere (Bi et al. 2020, Swenson et al. 2015, Song et al. 2020).
81 Despite the apparent importance of both root exudates and microbial metabolites, there is a lack
82 of research that has determined the influence of root exudates on soil metabolite composition or
83 investigated both root and soil metabolomes in tandem to differentiate their effects on
84 rhizosphere microbial communities. Metabolomics-based root exudate profiling to date has been
85 mainly applied to grasses and crops used for bioenergy such as switchgrass and sorghum, and
86 plants are usually grown hydroponically or in artificial soil (Miller et al. 2019, Dietz et al. 2020,
87 Seitz et al. 2022). There is notably little application of these methods in vegetable crops,
88 especially in field soil environments, significantly limiting the integration of developments in
89 plant-microbe interactions into food system sustainability (Neumann et al. 2014, Zhao et al.
90 2023).

91 Cultivars developed by plant breeding efforts introduce phenotypic diversity into
92 agricultural systems, potentially altering rhizosphere functioning through shifts in plant-microbe
93 interactions across plant genotypes. For example, domestication can alter root exudate profiles
94 and rhizosphere microbial interactions, suggesting an influence of breeding history in some crops
95 (Iannucci et al. 2017, Yue et al. 2023). However, whether crop trait diversity affects rhizosphere
96 plant-microbe interactions in vegetable production systems, and if novel trait introductions can
97 modify these interactions, has not been determined. An increased understanding of these effects
98 is important, as crop trait diversity can influence soil biological health by modifying microbial

99 diversity, activity, and associated carbon and nutrient cycles (Tiemann et al. 2015, Wood et al.
100 2015, Cortois et al. 2016, Singh et al. 2018, Zhang et al. 2021, Koyama et al. 2022). These
101 effects are likely to be especially important in agricultural systems with heightened reliance on
102 soil microbial activity for agronomic outcomes, such as organically managed soils, which is a
103 rapidly expanding land use (USDA 2021).

104 In organic agriculture, carrot (*Daucus carota* subsp. *sativus*) is one of the most highly
105 produced vegetables in the United States, spurring the establishment of breeding programs
106 prioritizing the development of cultivars that are well-adapted to organic growing conditions and
107 meet market demand (USDA 2022, Simon et al. 2016, Simon et al. 2021). Pathogenic nematode
108 resistance and enriched anthocyanin content associated with purple coloration are presently
109 being explored in experimental carrot lines. These ongoing carrot breeding efforts have
110 demonstrated potential impacts to rhizosphere functioning in climate-controlled field and
111 greenhouse settings, making carrot a suitable candidate for exploring plant-microbe interactions
112 across trait diversity in organic vegetable systems in a field setting (Keller-Pearson et al. 2020,
113 Triviño et al. 2023). The mechanisms driving these observed shifts in plant-microbe interactions
114 across carrot cultivar development are currently unknown. Early research using carrot as a model
115 plant has suggested that root exudation mediates interactions with arbuscular mycorrhizal fungi,
116 suggesting a potential role for these compounds in rhizosphere signaling (Bécard & Piché 1989,
117 Nagahashi et al. 1999, Nagahashi et al. 2000, Nagahashi et al. 2007, Poulin et al. 1993).
118 However, root exudates have never been fully profiled in carrots and the biochemical
119 composition of root exudates in vegetables in general is severely understudied.

120 The aim of this study was to advance understanding of the mechanisms that shape
121 rhizosphere microbial communities by co-investigating the diversity of root exudate

122 composition, soil metabolomes and rhizosphere microbial recruitment in a field setting. In this
123 way, the objectives of this study were to 1) assess root exudate and soil microbial communities
124 across genotype diversity in organically produced carrot, and 2) evaluate whether root exudate or
125 soil metabolites modulate soil microbial assembly in the rhizosphere. Related to objective 1, we
126 hypothesized that 1.1) across genotypes, plant genetic differences will lead to distinct root
127 exudate and soil microbial community composition and 1.2) rhizosphere microbial recruitment
128 will shift with genotype across the growing season. Related to objective 2, we hypothesized that
129 2.1) root exudates will modulate soil metabolite composition and 2.2) differences in root exudate
130 and soil metabolite composition across plant genotypes will account for variation in both
131 bacterial and fungal rhizosphere communities.

132 **2. Methods**

133 *2.1 Genotype Selection*

134 To determine the effect of plant trait diversity on soil microbial community assembly,
135 four genotypes of carrot were selected for a field trial based on previous research and current
136 breeding efforts (Simon et al. 2016, Keller-Pearson et al. 2020, Simon et al. 2021, Triviño et al.
137 2023). The selected genotypes are phenotypically diverse in terms of root shape, flavor, and
138 color, and include one heirloom variety (Red Core Chantenay, hereafter “H”), one hybrid variety
139 (Bolero, hereafter “Hy”), an experimental nematode resistant line (Nb8503, hereafter “NR”), and
140 an experimental purple/orange-cored carrot (P0114, hereafter “PO”) (Table 1).

141 *2.2 Field Trial*

142 A randomized complete block design field trial (n=5 blocks) was conducted at West
143 Madison Agricultural Research Station on certified organic land. The soil is classified as a
144 Kegonsa silt loam and has been cultivated under a diverse organic crop rotation. Crop rotation

145 history and manure inputs for six years are available in Table S1. Soil chemistry data from
146 annual soil tests including soil pH, organic matter (%), P (ppm) and K (ppm) is available in
147 Table S3. The experimental plots received no external fertilizer amendments the year of planting.
148 Prior to planting, the site was plowed to a depth of 15 cm and existing cover crop residue was
149 incorporated into the soil. Carrots were established from 6/20/22 to 9/26/22 in 1m² plots seeded
150 at a rate of 100 seeds/meter using methods that are common in regional production systems. Drip
151 irrigation was delivered daily. In total, 4 genotypes with 5 replicates yielded 20 experimental
152 plots.

153 *2.3 Midseason and Harvest Sampling*

154 To determine the effects of root exudation on soil metabolite composition and microbial
155 recruitment during organic carrot production, both root exudates and soil were collected 10
156 weeks post-planting. At this point, carrots were in a vegetative, actively growing state, while
157 exhibiting the phenotypic traits (e.g. color) of interest in this study, offering a suitable time to
158 delineate potential differences in root exudation across genotypes. At sampling, 10 carrot roots
159 were harvested from each plot. Rhizosphere soil was operationally defined as the soil attached to
160 the carrot root after 5 seconds of gently shaking in the air (Wollum, A. G, 1994). Rhizosphere
161 soil was gently removed to avoid damage to the roots and homogenized by plot. Bulk soil
162 samples were collected by taking four soil cores per plot in between carrot rows to a 15 cm depth
163 (5.7 cm diameter) and homogenizing by plot. Soil was transported to the lab on ice and roots
164 were transported from the field to the lab in paper bags to maintain dark and warm conditions.
165 Upon return to the lab, all soil samples were immediately sieved (2 mm) and a subsample was
166 frozen at -80 °C for microbial community and metabolomics analysis.

167 To determine end-of-season impacts of carrot production on soil microbial community
168 and metabolite composition, soil samples were taken concurrently with carrot harvest. At 14
169 weeks post-planting, carrots were harvested at maturity. Rhizosphere and bulk soil samples were
170 collected and processed in an identical manner as the midseason samples.

171 *2.4 Root Exudate Collection*

172 Root exudates (n=20) were collected hydroponically after midseason harvest using
173 methods adapted from Williams et al. (2021). First, three roots from each plot were randomly
174 selected for exudate collection. Prior to root exudate collection, roots were gently rinsed of
175 remaining soil using autoclaved deionized water and placed into acid washed and autoclaved
176 glass beakers with 100 mL of molecular grade water as an extraction solution. Beakers were
177 covered in aluminum foil to mimic dark growing conditions. Roots were submerged to allow for
178 the diffusion of water-soluble metabolites into the water solution for 1.5 hours, which has been
179 determined to be an appropriate amount of time for sufficient exudate collection while avoiding
180 microbial turnover of exudate products (Neumann & Röhmheld, 2009). After roots were
181 removed, the exudate solutions were immediately filter-sterilized through a 0.22 μ m filter,
182 combined by plot, and frozen at -80°C. Tubes were lyophilized and the dried product was stored
183 at -80°C prior to analysis.

184 *2.5 Microbial Community Sample Preparation and Bioinformatics*

185 DNA was extracted from 0.25g of rhizosphere and bulk soils collected at midseason and
186 harvest sampling times using the DNeasy PowerSoil Kit (Qiagen, Germany) following
187 manufacturer's instructions, and the resulting purified DNA was stored at -80 °C. PCR reactions
188 were performed using primer pairs that target the V4 region (~250 bp) of the 16S ribosomal
189 RNA (rRNA) (hereafter "16S") gene for bacterial communities (5'- 3'; 515f

190 GTGCCAGCMGCCGCGTAA, 806r GGACTACHVGGGTWTCTAAT) as well as the
191 internal transcribed spacer region 2 (hereafter “ITS2”) (~350-500 bp) for fungal communities
192 (fITS7 GTGARTCATCGAATCTTG, ITS4 TCCTCCGCTTATTGATATGC) (Ihrmark et al.
193 2012, White 1990, Turner et al. 1999, Kozich et al. 2013). 16S rRNA and ITS2 amplicon DNA
194 was shipped on dry ice to Michigan State University’s Genomics Core (East Lansing, MI, USA)
195 for library preparation and paired-end sequencing on a MiSeq (2 × 300 bp, Illumina, San Diego,
196 CA, USA). Demultiplexed 16S and ITS2 sequences were processed using the DADA2 pipeline
197 in R version 4.1.3 to construct amplicon sequence variants (Martin 2011, Callahan et al. 2016a,
198 R Core Team 2022). Taxonomic classification was performed using the SILVA v138.1 and
199 UNITE v9.0 databases for bacterial and fungal communities, respectively (McLaren & Callahan
200 2013, Abarenkov et al. 2023). Prior to analysis, sequences were rarefied to the minimum
201 sequencing depth of 11925 and 9376 sequences per sample for 16S and ITS2 sequences,
202 respectively in *phyloseq* (McMurdie & Holmes 2013, Callahan et al. 2016b). One 16S sample
203 (from Block 3 H midseason rhizosphere) was removed from analysis due to poor sequencing
204 results and one 16S sample (from Block 1 NR harvest rhizosphere) was identified as an outlier
205 based on NMDS visual inspection and removed from analysis (see Supplementary Materials).

206 *2.6 Root Exudate and Soil Metabolomics Data Acquisition*

207 For untargeted metabolomics preparation and analysis, lyophilized root exudates and 10g of
208 frozen soil samples were sent on dry ice to Colorado State University Proteomics and
209 Metabolomics Facility (Fort Collins, CO, USA). Briefly, root exudates and soil samples were
210 treated with a 50% or 80% MeOH-H₂O solution, and then 1% formic acid was added to the soil
211 samples. Samples were dried under a N₂-stream, treated with 0.05 mL of methoxyamine
212 hydrochloride in pyridine (25 mg/mL), and then treated with TMSTFA+1% TMCS for

213 derivatization prior to analysis by gas chromatography-mass spectrometry (GC-MS; further
214 detail in Supplementary Materials).

215 Prepared samples were injected into a Trace 1310 GC coupled to a Thermo ISQ mass
216 spectrometer. Peak detection, alignment, and filling was performed using XCMS (version 4.2.2),
217 and RAMClustR (version 1.2.4) was used to additionally normalize, filter, and group features
218 (Smith et al. 2006, Broeckling, 2014). Feature matching was performed using the NIST 20 GC
219 Method / Retention Index Database and the MS Dial GC-MS library (Babushok et al. 2007, Lai
220 et al. 2017).

221 *2.7 Univariate Data Analysis*

222 Analysis of variance (ANOVA) was performed to test for significant effects and
223 interactions of experimental factors Genotype (H, Hy, NR, PO), Time (Midseason, Harvest) and
224 Soil Compartment (Bulk, Rhizosphere) on microbial richness based on the Chao1 Index (Chao
225 1984). When applicable, pairwise treatment means were compared with the Fisher's Least
226 Significant Difference (LSD; de Mendiburu 2023).

227 The package *ANCOMBC* (Analysis of Compositions of Microbiomes) was used to assess
228 differentially abundant bacterial and fungal taxa across bulk and rhizosphere soils at the family
229 level (Lin et al. 2020). Each genotype was analyzed at the midseason and harvest time point
230 against its own bulk soil, using the bulk soil as a reference to assess differentially abundant taxa
231 based on fold change values.

232 Metabolomics analysis was performed in Metaboanalyst 5.0 (Pang et al. 2021). To delineate
233 which root exudates and soil metabolites were differentially abundant, one-factor ANOVA, fold
234 change analysis and Wilcoxon t-tests were applied on each metabolite for every pairwise
235 comparison of experimental factors using a fold change threshold of 1.5. Metabolites with a

236 log₂(fold change) value of >1.5 and a False Discovery Rate-adjusted p-value of <0.10 were
237 considered significantly (<0.05) or marginally (<0.1) different.

238 *2.8 Multivariate Analysis*

239 To test for significant effects and interactions between carrot genotype, soil compartment,
240 and time on microbial community composition, permutational analysis of variance
241 (PERMANOVA) was performed on Bray-Curtis dissimilarities (Anderson 2001). A pairwise
242 PERMANOVA post- hoc test was applied when appropriate. Similarly, PERMANOVA was
243 used to distinguish the factors that significantly affected soil metabolome composition based on
244 Euclidean distances. Multivariate homogeneity of group dispersions (beta dispersion) was
245 similarly evaluated for microbial community compositions using the function ‘betadisper’ from
246 *vegan* (Oksanen et al. 2022). PERMANOVA was carried out using the ‘adonis2’ function.

247 To assess associations between microbial community and metabolome dissimilarities, Mantel
248 tests between distance matrices were performed in a pairwise manner using the ‘mantel’ function
249 from *vegan* (Mantel, 1967; Oksanen et al. 2022). Bray-Curtis dissimilarity and Euclidean
250 dissimilarity matrices were constructed for microbial community and metabolome datasets,
251 respectively.

252 Distance-based redundancy analysis (dbRDA) was used to assess associations between
253 metabolite concentrations and microbial community dissimilarity. To reduce data redundancy
254 and the number of explanatory variables, root exudate and soil metabolites were subjected to a
255 bottom-up clustering method wherein metabolites were clustered by similar behavior within the
256 dataset using k-means clustering, such that metabolites with highly similar concentrations across
257 all samples were reduced to a single variable. The minimum number of clusters was chosen such
258 that within sums of squares was minimized, and that the means of each metabolite which were

259 significantly different from the averaged value were minimized. Root exudate and soil
260 metabolite clusters were then used as explanatory variables in dbRDA, and 16S and ITS
261 communities were modeled separately. The significance of a cluster for explaining variation in
262 microbial community dissimilarity in each dbRDA was assessed with a permutation test (999
263 permutations).

264 Raw sequence fastq files will be deposited into the NCBI SRA repository upon
265 manuscript acceptance.

266 **3. Results**

267 *3.1 Microbial Community Structure*

268 Final feature tables contained 25350 (16S) and 5956 (ITS2) ASVs. The most abundant five
269 phyla across all bacterial communities, representing nearly 70% of the total community, were
270 Proteobacteria (26%), Actinobacteriota (14%), Acidobacteriota (13%), Firmicutes (9%) and
271 Bacteroidota (7%). Likewise, the top three phyla across all fungal communities, representing
272 96% of the total community, were Ascomycota (59%), Mortierellomycota (19%), and
273 Basidiomycota (18%). In total, 43 bacterial phyla and 16 fungal phyla were represented by at
274 least one taxon.

275 Soil bacterial richness varied across genotypes and this effect was dependent on soil
276 compartment (genotype \times compartment, $p < 0.05$). Specifically, compared to their respective
277 bulk soils, richness was increased by 19% in the rhizosphere of genotype Hy, and decreased by
278 10% in genotype PO ($p < 0.05$, Figure 1); neither genotypes NR nor H altered bacterial richness
279 in their rhizosphere as compared to their respective bulk soils. Additionally, when comparing the
280 rhizosphere across genotypes, bacterial richness was \sim 15% higher in genotypes H and Hy as
281 compared to PO, and no other differences between genotypes were observed. When comparing

282 the bulk soils across genotypes, bacterial richness also varied ($p < 0.05$). Specifically, bulk soil
283 bacterial richness from plots planted with Hy was 14% lower than that of plots planted with NR.
284 Further, the bulk soil of both Hy and NR were similar in richness to PO and H. Bacterial richness
285 did not change across the two time points in either the rhizosphere or bulk soil.

286 Fungal richness was variably affected by soil compartment, genotype, and time (genotype \times
287 soil compartment, $p < 0.06$, soil compartment \times time, $p < 0.05$). Specifically, compared to its bulk
288 soil, genotype H increased fungal richness by 13% in the rhizosphere, and no other genotypes
289 significantly altered fungal diversity between bulk and rhizosphere soil (Figure 1). Across
290 genotypes, fungal richness was similar in the rhizosphere, however, bulk soil richness varied.
291 Specifically, bulk soil fungal richness from plots planted with genotype H was 9% lower
292 compared to other bulk soils. Fungal richness was also 9% greater in the rhizosphere compared
293 to the bulk soil at midseason, and this difference did not persist through harvest. From mid-
294 season to harvest, fungal richness declined 8% in the rhizosphere, while bulk soil richness did
295 not change overtime (Figure S1).

296 Bacterial community composition was distinct across genotypes, however, this effect was
297 only present in the rhizosphere and not the bulk soil (PERMANOVA, genotype \times soil
298 compartment, $p < 0.10$, Table 2, Figure 2). Across genotypes, bacterial communities also differed
299 in the rhizosphere as compared to their respective bulk soils (pairwise PERMANOVA, $p < 0.05$)
300 and exhibited increased dispersion (betadisper, $p < 0.05$). In the rhizosphere, when comparing
301 across genotypes, bacterial communities were different across genotypes Hy, PO and NR, but not
302 H, as such, H was similar to all genotypes. Across the mid-season and harvest time points,
303 bacterial community composition was distinct in both rhizosphere and bulk soils (pairwise
304 PERMANOVA, $p < 0.05$).

305 Fungal communities differed in the rhizosphere as compared to the bulk soil
306 (PERMANOVA, soil compartment, $p < 0.01$, Table 2, Figure 2), and exhibited increased
307 dispersion (betadisper, $p < 0.05$). When comparing across genotypes, independent of soil
308 compartment, fungal communities in plots planted with genotype NR were different from plots
309 planted with H (PERMANOVA, $p < 0.05$, Table 2). Similar to that observed with the bacteria,
310 fungal community composition was unique in both rhizosphere and bulk soils across the mid-
311 season and harvest time points (PERMANOVA, soil compartment \times time, $p < 0.01$, Figure 2).

312 *3.2 Rhizosphere Microbial Recruitment*

313 To determine whether root exudates selectively recruit microbial taxa in the rhizosphere, we
314 categorized differentially abundant microbial families as positive or negative responders to root
315 growth in a framework adapted from Zhalnina et al. (2018). Bacterial recruitment at the family
316 level was distinct across genotypes and across time, though this trend was driven by differences
317 in abundance of relatively few taxa (Figure 3). Specifically, *Rhodocyclaceae* was the only taxon
318 to display temporal consistency, and positively responded to genotype NR at both midseason and
319 harvest. Additionally, *Nitrosphaeraceae* responded positively to both genotype NR and H at
320 midseason. At midseason, the top positive responder for each genotype was order
321 *Kapabacteriales* (family unclassified), *Rhodocyclaceae*, order SJA-28 (family unclassified), and
322 *Methylophilaceae* for genotypes Hy, NR, PO and H, respectively. At harvest, the top positive
323 responder for each genotype was *Methylophilaceae*, *Flavobacteriaceae*, *Micrococcaceae*, and
324 *Sphingobacteriales*, for genotypes Hy, NR, PO and H, respectively. Conversely, the top negative
325 responders for each genotype at midseason were *Chthonomonadaceae*, phylum Chlorofexi
326 (family unclassified), *Anaeromyxobacteraceae*, and phylum NB1-j (family unclassified), for
327 genotypes Hy, NR, PO and H, respectively. At harvest, no negative responders were identified

328 for genotype Hy. Families *Peptostreptococcaceae*, order *Polyangiales* (family unclassified) and
329 order *Bacillales* (family unclassified) were top negative responders for genotypes NR, PO and H,
330 respectively.

331 Fungal recruitment was also distinct across genotypes and time (Figure 3). At midseason, the
332 top positive responder for each genotype was *Bulleraceae*, *Alphamycetaceae*, *Entolomataceae*,
333 and class *Classiculales* (family unclassified) for genotypes Hy, NR, PO and H, respectively. At
334 harvest, the top positive responder for each genotype was *Entolomataceae* for genotypes Hy and
335 H, *Symmetrosporaceae* for genotype NR, and class *Agaricomycetes* for genotype PO.
336 *Orbiliaceae* negatively responded to genotype NR at midseason. *Basidiomycota*,
337 *Symmetrosporaceae* *Agaricomycetes* and *Entolomataceae* were top negative responders at
338 harvest for genotypes Hy, NR, PO and H, respectively.

339 *3.3 Root Exudate and Soil Metabolite Composition*

340 To determine whether carrot genotypes exuded different compositions of low-molecular
341 weight compounds and if soil metabolites were differentially abundant between genotypes, 128
342 and 114 unique compounds were annotated for the root exudate and soil metabolite extractions,
343 respectively. Of those, 33 root exudates and 49 soil metabolites were identified by our database
344 search. Notably, three unidentified root exudates (C056, C063, C115) made up roughly 50% of
345 the total spectral abundance of exudates across all genotypes, and 20-30% of the total spectral
346 abundance was composed of unidentified, low abundance compounds (see Supplemental
347 Materials).

348 No root exudates were unique between genotypes, however, 37 compounds were
349 differentially abundant across genotypes. These included sucrose, citric acid, psicose, malic acid,
350 ketohexose, galactose, quinic acid, scyllo-inositol, methyl 2,6-dihydroxybenzoate (for simplicity,

351 hereafter “benzoate”), alpha-(4-dimethylaminophenyl)-omega-(9-phenanthryl)octane (hereafter
352 “octane”), silane-diethylisohexyloxy(3-methylbutoxy; hereafter “silane”), as well as 30
353 unidentified compounds. Of these 37 compounds, 34 were most abundant in genotype H (Figure
354 4). Conversely, genotype NR consistently had a lower abundance of most compounds compared
355 to other genotypes. Of the identified compounds, genotype Hy was more abundant in benzoate
356 and scyllo-inositol. Genotype NR had a lower abundance of all compounds except for citric acid,
357 which was lowest in genotypes H and PO. Genotype NR was relatively low in sucrose as
358 compared to other genotypes; sucrose was relatively most concentrated in genotypes PO and H
359 (Figure 4).

360 Soil metabolite composition was different in the rhizosphere compared to the bulk soil, and
361 was different across time, but did not differ between genotypes (PERMANOVA, soil
362 compartment, $p < 0.05$, time, $p < 0.05$). Two unidentified compounds were highly different
363 between soil compartments; specifically, compound C041 was highly abundant in the
364 rhizosphere and C076 was highly abundant in the bulk soil. More soil metabolites shifted across
365 time than in response to soil compartment, and several compounds were differentially abundant
366 at the midseason or harvest sampling point (Figure S2, Table S3).

367 *3.4 Microbe-Metabolite Relationships*

368 Root exudates and soil metabolites were differentially associated with fungal and
369 bacterial communities (Table 3). Specifically, bacterial, but not fungal community composition
370 was significantly associated with root exudate chemical composition (mantel test, $p < 0.05$) and
371 was marginally associated with soil metabolite composition ($p < 0.1$). Moreover, fungal
372 community dissimilarity was not significantly associated with the compositional dissimilarity of
373 either root exudates or soil metabolites (Table 3).

374 To assess if and how root exudate and soil metabolite concentrations explained soil microbial
375 community composition, root exudate and soil metabolites were each first clustered into six
376 groups based on similarity in spectral intensity using k-means clustering. Root exudate
377 concentrations accounted for a significant proportion of the variation in rhizosphere bacterial
378 (35%), but not fungal community dissimilarity (Figure 5). Conversely, clustered soil metabolites
379 accounted for a significant portion of fungal (11%), but not bacterial community dissimilarity
380 (Figure 6). Root exudate concentrations were not significantly associated with soil metabolite
381 composition in the rhizosphere. Root exudate clusters, specifically cluster 2 (compounds C056,
382 C063, C115) and cluster 6 (oxalic acid), were significantly associated with rhizosphere bacterial
383 communities across genotypes (Figure 5). In the constrained ordination, cluster 2 presented a
384 positive association across axis 1 and 2, and was positively associated with rhizosphere microbial
385 community dissimilarity of genotype Hy. Oxalic acid was positively associated with axis 1 and
386 negatively associated with both axis 2 and rhizosphere microbial community dissimilarity of
387 genotype NR (Figure 5). Among soil metabolites clusters, cluster 4 and cluster 5 were
388 significantly associated with fungal community composition. In the constrained ordination, soil
389 cluster 4 was positively associated with axis 1 and 2 as well as with midseason fungal
390 communities, and more so of those in the rhizosphere. Soil cluster 5 had a strong positive
391 association with axis 2 and was positively associated with rhizosphere fungal communities at
392 harvest (Figure 6).

393 **4. Discussion**

394 Across four phenotypically diverse genotypes of carrot, we determined the influence of
395 novel trait breeding on root exudate, soil metabolite and soil microbial community composition.
396 Including two established and two novel genotypes, we tested the hypothesis that root exudation

397 mediates microbial rhizosphere recruitment, and that genotype-specific shifts in root exudate
398 composition would alter microbial communities and soil metabolite composition. In support of
399 hypothesis 1.1, genotypes differentially exuded low-molecular weight compounds and hosted
400 compositionally different microbial communities (Figures 2, 4). In support of hypothesis 1.2,
401 microbial recruitment from a bulk soil to the rhizosphere soil was distinct across genotypes and
402 across the growing season (Figure 3). Hypothesis 2.1 was not supported, as root exudate and soil
403 metabolite composition were distinct and were not associated with one another (Table 3).
404 Finally, hypothesis 2.2 was partially supported, as root exudates were significantly associated
405 with bacterial and not fungal communities, while soil metabolites were only weakly associated
406 with fungal and bacterial communities (Figures 5, 6, Table 3).

407 *4.1 Root exudation & soil metabolites exert a differential influence on bacterial and fungal
408 communities*

409 Root exudates were significantly associated with bacterial, but not fungal communities,
410 suggesting that bacteria are the primary responders to compositional differences in low
411 molecular weight compounds from root exudates in the rhizosphere. Additionally, root exudate
412 chemical composition explained 35% of the variation across the rhizosphere bacterial
413 communities while categorical differences in genotypes only explained 4% of the variation
414 (Figure 5). These observations differ from previous work on carrots in a greenhouse setting with
415 artificial soil, where the carrot genotype accounted for 50% of bacterial variation (Triviño 2023),
416 alluding to the need to better understand the mechanisms shaping rhizosphere bacterial
417 communities in field soil.

418 Our results are indicative of a shared root exudate metabolome across carrot genotypes where
419 differences in the concentration of individual compounds, rather than the presence of unique

420 compounds among genotypes, ultimately shape the composition of the rhizosphere bacterial
421 community. Indeed, the compounds with the strongest associations with bacterial community
422 compositional dissimilarity were highly abundant across all genotypes. Notably, oxalic acid was
423 significantly associated with bacterial community composition and is universally recognized for
424 its role in plant nutrient acquisition through the solubilization of phosphorus (Bolan et al. 1994).
425 Oxalic acid was previously reported as a major organic acid in root exudates of horticultural
426 crops (Xiang et al. 2020, Ling et al. 2011, Vančura & Hovadik 1965). Additionally, the
427 correlation between oxalic acid concentration and bacterial community composition aligns with
428 previous observations that organic acids can be highly explanatory of bacterial community shifts.
429 (Ulbrich et al. 2022, Landi et al 2006, Shi et al 2011). This indicates that genotype-specific
430 differences in oxalic acid production, and other currently unidentified compounds, may affect
431 bacterial community composition in the carrot rhizosphere.

432 Soil fungal communities were more strongly associated with the soil metabolome as
433 compared to the root exudate metabolome. Fungal communities in the rhizosphere were distinct
434 from the bulk soil, though there were no effects across genotypes, and fungal communities were
435 not well-explained by root exudate composition. Based on these results, fungal recruitment may
436 be more mediated by differences in soil carbon availability than specific metabolic capabilities,
437 as compared to bacteria. Though, soil fungal communities did differ from mid-season to harvest,
438 and these changes were associated with variation in soil metabolite concentration (Figure 6),
439 suggesting that fungal metabolism is more influenced by seasonal conditions than plant
440 genotype. Some of the low molecular weight compounds identified in the soil compartment have
441 been reported to be produced by fungi, suggesting that they are of microbial and not plant-
442 derived origin. Specifically, the aromatic compound danthon can be produced by some members

443 of the Ascomycota (Anisha et al. 2018). Further, an isolate of *Fusarium* has been reported to
444 produce rhein (You et al. 2013). Both of these compounds are derivatives of anthraquinone,
445 which is produced by fungi across systems and possesses pathogen suppressive qualities (Gessler
446 et al. 2013, Fouillaud et al. 2016, Masi et al. 2020). These compounds were members of soil
447 metabolite clusters four and five, which were significantly associated with fungal community
448 composition (Figure 6). This suggests certain fungi can modify the soil metabolome in
449 agricultural settings through the production of danthron, rhein, and possibly several unidentified
450 compounds. Additionally, greater soil concentrations of glucose, maltotriose and trehalose at
451 harvest suggest a shift in fungal carbohydrate metabolism throughout the growing season (Table
452 S3). To further explore this possibility, potential links between bulk soil composition, fungal
453 communities, and the soil metabolome could be more closely interrogated.

454 Interestingly, metabolite profiles from rhizosphere soil were neither significantly correlated
455 with root exudate metabolite composition nor bacterial or fungal community composition. These
456 observations are counter to the prediction that root exudate composition would directly modulate
457 metabolite presence in the rhizosphere and govern rhizosphere microbial composition (Bi et al.
458 2020, Song et al. 2020). It is possible this is because root exudates are directly and quickly
459 assimilated by rhizosphere bacteria and are not directly incorporated into the rhizosphere
460 metabolome. It has been previously observed that root exudates only diffuse into a small area,
461 with estimates of diffusion from 2 to 10 mm of soil away from the root (Sauer et al. 2006,
462 Raynaud 2010). This result is consistent with the hypothesis that root exudates are rapidly
463 utilized by microorganisms and have little influence on soil metabolomes. Unique profiles of soil
464 metabolites as compared to the plant-derived metabolites present in the root exudates in this
465 study indicates that soil metabolome composition is more greatly shaped by bulk soil

466 composition and microbial production rather than direct plant inputs. Notably, there is a lack of
467 literature evaluating root exudates and soil metabolites in tandem as we present here, and more
468 research is needed to understand if there is a relationship between the two at various spatial
469 scales in the rhizosphere.

470 *4.2 Root exudation is distinct across genotypes and most different between heirloom and*
471 *nematode resistant genotypes*

472 While root exudate profiles were similar in membership overall across genotypes,
473 abundances of certain compounds were strikingly different among genotypes. Most notably,
474 genotype H, an heirloom genotype, produced greater abundances of several carbohydrates,
475 organic acids and numerous unidentified compounds compared to other genotypes, whereas
476 genotype NR produced less of these compounds as compared to other genotypes (Figure 4).

477 While underexplored in vegetables, domestication of other crops shifts root exudate profiles,
478 suggesting that differences between genotypes are a consequence of breeding history, and that
479 older genotypes may maintain distinct root exudation patterns as compared to more heavily bred
480 genotypes (Yue et al. 2023). The heirloom genotype H has been previously reported to respond
481 more positively to root colonization of arbuscular mycorrhizal fungi, compared to hybrid
482 genotypes (Pearson et al. 2020). Our results provide further evidence that breeding history could
483 shift plant-microbe interactions in a vegetable system.

484 In this study, the heirloom genotype H had higher exudation of organic acids and
485 carbohydrates, perhaps indicative of greater resource investment in microbial stimulation than
486 other genotypes. This result is consistent with the emerging hypothesis that heirloom genotypes
487 benefit more from plant-soil interactions than highly bred genotypes that prioritize yield (Pearson
488 et al. 2020). Carbohydrates are notably consequential for soil microbes, especially bacteria, in

489 the rhizosphere due to their abundance in root exudates. Specifically, they have been associated
490 with enhanced microbial activity, and have been linked to greater phytohormone production in
491 some plant-associated bacteria as well as greater mineralization of soil organic matter when root
492 exudate-nitrogen is low, harboring potential benefits for plant growth (Lloyd et al. 2016, Seitz et
493 al. 2022).

494 Additionally, in this study, a distinct root exudate profile was observed from the nematode
495 resistant genotype NR relative to other genotypes (Figure 4). While nematode resistance was not
496 assessed in this study, relationships between these two traits should be further explored,
497 especially as nematode presence can influence microbial carbon and nitrogen cycling through
498 trophic interactions (Kane et al. 2023). Our results suggest that novel trait introduction, in
499 addition to breeding history of genotypes, might shift root exudate composition, and more
500 specific links between root exudates and traits should be investigated.

501 *4.3 Bacterial recruitment in the rhizosphere is distinct across genotypes and suggests differential
502 consequences for soil biological functioning*

503 Bacterial selection in the rhizosphere from a bulk soil varied across genotype, root exudate
504 composition, and time-point, providing support that microbial recruitment is associated with
505 plant developmental stage and phenotypic identity (Chaparro et al. 2018, de Ridder-Duine et al.
506 2005, Micallef et al. 2009, Aira et al. 2010). This genotype-mediated diversification of soil
507 bacterial communities through root exudation might indicate consequences for community
508 functional capacities (Figure 3). For example, *Rhodocyclaceae* was selectively enriched in
509 genotype NR at both midseason and harvest, and has previously been identified as a denitrifying
510 bacteria, as it contains *nirS* (Yu et al. 2018). *Nitrosphaeraceae* was positively associated with
511 genotypes NR and H; *Nitrosphaeraceae* is an ammonia oxidizing bacteria, which are considered

512 indicators of soil health (Mundepi et al. 2019). These results align with observations that
513 genotype NR hosts distinct N-associated functions (e.g., ammonia oxidation; Triviño et al.
514 2023). Genotype H was additionally enriched with members of the *Chitinophagaceae*, a family
515 identified as containing N fixing taxa, at midseason (Martin et al. 2022). *Methylophilaceae*, a
516 methylotroph, was another notable taxon that was enriched in genotype Hy at midseason and
517 genotype H at harvest. Methylotrophs have been previously identified to utilize root exudates in
518 the rhizosphere of pea and wheat (Macey, 2017). Further, they have been reported to synthesize
519 phytohormones including auxin and cytokinins, and their role as plant-growth promoters is being
520 explored for agricultural uses (Ponnusamy et al. 2017, Ivanova et al. 2001).

521 Genotype NR had lower abundances of most root exudates (Figure 4), and previous research
522 has identified this genotype as having relatively higher nitrogen use efficiency, possibly through
523 the selection of specific bacterial taxa. In contrast, genotype H had higher abundances of most
524 root exudates, suggesting a larger investment in microbial stimulation overall. These results
525 suggest that across genotypes, there is a general trend towards functional redundancy and
526 selection for N-related functions, however, the mechanisms of this selection across genotypes
527 may be different.

528 4.4 Limitations and Future Directions

529 While we used a GC-MS based approach for this study that is coarser in resolution than
530 other technologies used in metabolomics inquiries, differences between genotypes may be
531 discriminated more strongly by employing methods such as high-resolution accurate mass LC-
532 MS that could further characterize compounds that express genotype-specific patterns.
533 Additionally, while our results coincide with previous findings that heirloom and nematode
534 resistant genotypes express distinct characteristics, the inclusion of multiple genotypes of

535 varying ancestral lineage or degrees of nematode resistance could strengthen this line of inquiry.
536 To bridge links between plant genetics and root exudation, transcriptomic evaluation of carrot
537 gene expression to characterize the functional genomics underlying exudate composition should
538 also be explored. Finally, more quantitative measures of root exudation rates and soil microbial
539 processes could provide valuable insights into genotype-mediated shifts in soil biological
540 outcomes.

541 *4.5 Conclusions*

542 The results of this study suggest that plant- soil microbe interactions are influenced by trait
543 breeding in organic carrot. This aligns with previous findings that carrot genotypes host distinct
544 root-associated microbiomes that potentially differ in their functionality (Triviño et al. 2023,
545 Abdelrazek et al. 2020). Moreover, we show that root exudation patterns were distinct across
546 genotypes. We provide further evidence that selection for microbial taxa with distinct N-related
547 functions is influenced by genotype identity, and that this selection could explain previously
548 demonstrated differences in nutrient use efficiency in novel genotypes. Further, the heirloom
549 genotype potentially enriched plant-growth promoting bacterial activity in the rhizosphere
550 through exuding relatively greater levels of carbohydrate and organic acid production and
551 selecting for taxa with demonstrated potential for phytohormone production and nitrogen
552 fixation, relative to genotypes of contrasting breeding histories. These results indicate that both
553 breeding history and novel trait introduction in plant genotypes can diversify plant-microbe
554 interactions and resulting soil biological functional capacities.

555 Root exudation was significantly associated with bacterial communities, suggesting that
556 breeding for specific root exudate profiles to target and manipulate rhizosphere bacteria could be
557 a strategy for plant or soil health objectives. However, more research is needed to understand the

558 drivers of plant-fungal relationships and potential applications for organic agriculture, especially
559 as strengthening beneficial fungal associations is a notable priority in organic agroecosystems.
560 Through the investigation of plant-microbe interactions, we show that cultivar development that
561 addresses grower needs can occur in tandem with considerations for soil biological functioning,
562 supporting a systems-based philosophy in agricultural practices.

563

564 **Funding and Acknowledgements**

565 This material is based upon work that is supported by the National Institute of Food and
566 Agriculture, U.S. Department of Agriculture Grant No. 5090-21000-073-066-A. We gratefully
567 acknowledge the research contributions of the West Madison Agricultural Research Station
568 Staff, members of the Silva and Dawson labs, Dr. Michelle Pearson, Annalise Keaton, Gabriela
569 Martinez and Kathryn Lindeman. Thank you to the Colorado State University Analytical
570 Resources Core and the Michigan State University Genomics Research Technology Support
571 Facility with assistance with metabolomic and microbiome analysis.

572

573

574

575

576

577

578

579

580

581

582 **References**

583 Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik;
584 Kõljalg, Urmas (2022): UNITE general FASTA release for Fungi. Version 16.10.2022. UNITE
585 Community. <https://doi.org/10.15156/BIO/2483911>

586 Abdelrazek, S., Simon, P., Colley, M., Mengiste, T., & Hoagland, L. (2020). Crop management system
587 and carrot genotype affect endophyte composition and *Alternaria dauci* suppression. *PLoS One*,
588 15(6), e0233783. <https://doi.org/10.1371/journal.pone.0233783>

589 Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E., & Domínguez, J. (2010). Plant genotype strongly
590 modifies the structure and growth of maize rhizosphere microbial communities. *Soil Biology and*
591 *Biochemistry*, 42(12), 2276–2281. <https://doi.org/10.1016/j.soilbio.2010.08.029>

592 Alvey, S., Yang, C.-H., Buerkert, A., & Crowley, D. E. (2003). Cereal/legume rotation effects on
593 rhizosphere bacterial community structure in west african soils. *Biology and Fertility of Soils*,
594 37(2), 73–82. <https://doi.org/10.1007/s00374-002-0573-2>

595 Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. *Austral*
596 *Ecology* 26: 32- 46.

597 Anisha, C., Sachidanandan, P., & Radhakrishnan, E. K. (2018). Endophytic *Paraconiothyrium* sp. from
598 *Zingiber officinale* Rosc. displays broad-spectrum antimicrobial activity by production of
599 danthron. *Current microbiology*, 75, 343-352.

600 Babushok, V. I., Linstrom, P. J., Reed, J. J., Zenkevich, I. G., Brown, R. L., Mallard, W. G., & Stein, S.
601 E. (2007). Development of a database of gas chromatographic retention properties of organic
602 compounds. *Journal of Chromatography A*, 1157(1-2), 414-421.

603 Bécard, G., & Piché, Y. (1989). Fungal growth stimulation by CO₂ and root exudates in vesicular-
604 arbuscular mycorrhizal symbiosis. *Applied and environmental microbiology*, 55(9), 2320-2325.

605 Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., ... & Séjalon-Delmas,
606 N. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.
607 *PLoS biology*, 4(7), e226.

608 Bi, B., Wang, K., Zhang, H., Wang, Y., Fei, H., Pan, R., & Han, F. (2021). Plants use rhizosphere
609 metabolites to regulate soil microbial diversity. *Land Degradation & Development*, 32(18), 5267-
610 5280.

611 Bolan, N. S., Naidu, R., Mahimairaja, S., & Baskaran, S. (1994). Influence of low-molecular-weight
612 organic acids on the solubilization of phosphates. *Biology and Fertility of Soils*, 18, 311-319.

613 Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A., & Prenni, J. E. (2014). RAMClust: a novel
614 feature clustering method enables spectral-matching-based annotation for metabolomics data.
615 *Analytical chemistry*, 86(14), 6812-6817.

616 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016a).
617 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature methods*, 13(7),
618 581-583.

619 Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016b). Bioconductor
620 workflow for microbiome data analysis: from raw reads to community analyses. *F1000Research*,
621 5.

622 Chao, A. (1984). Nonparametric estimation of the number of classes in a population. *Scandinavian
623 Journal of statistics*, 265-270.

624 Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected
625 by plant development. *The ISME journal*, 8(4), 790-803.

626 Cortois, R., Schröder-Georgi, T., Weigelt, A., van der Putten, W. H., & De Deyn, G. B. (2016). Plant–soil
627 feedbacks: role of plant functional group and plant traits. *Journal of Ecology*, 104(6), 1608-1617.

628 de Ridder-Duine, A. S., Kowalchuk, G. A., Gunnewiek, P. J. K., Smant, W., van Veen, J. A., & de Boer,
629 W. (2005). Rhizosphere bacterial community composition in natural stands of *Carex arenaria*

630 (sand sedge) is determined by bulk soil community composition. *Soil Biology and Biochemistry*,
631 37(2), 349-357.

632 de Ridder-Duine, A. S., Kowalchuk, G. A., Klein Gunnewiek, P. J. A., Smant, W., van Veen, J. A., Dietz,
633 S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H., & Scheel, D. (2020). Root exudate
634 composition of grass and forb species in natural grasslands. *Scientific reports*, 10(1), 10691.

635 Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure
636 associated with inputs of low molecular weight carbon compounds to soil. *Soil Biology and*
637 *Biochemistry*, 42(6), 896–903.

638 Fouillaud, M., Venkatachalam, M., Girard-Valenciennes, E., Caro, Y., & Dufossé, L. (2016).
639 Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected
640 biological activities. *Marine drugs*, 14(4), 64

641 Gessler, N. N., Egorova, A. S., & Belozerskaya, T. A. (2013). Fungal anthraquinones. *Applied*
642 *Biochemistry and Microbiology*, 49, 85-99

643 Hugoni, M., Luis, P., Guyonnet, J., & Haichar, F. E. Z. (2018). Plant host habitat and root exudates shape
644 fungal diversity. *Mycorrhiza*, 28, 451-463

645 Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F., & Papa, R. (2017). Evolution of the crop rhizosphere:
646 impact of domestication on root exudates in tetraploid wheat (*Triticum turgidum* L.). *Frontiers in*
647 *Plant Science*, 8, 2124.

648 Ihrmark, K., Bödeker, I. T., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., ... & Lindahl, B.
649 D. (2012). New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of
650 artificial and natural communities. *FEMS microbiology ecology*, 82(3), 666-677.

651 Ivanova, E. G., Doronina, N. V., & Trotsenko, Y. A. (2001). Aerobic methylobacteria are capable of
652 synthesizing auxins. *Microbiology*, 70, 392-397.

653 Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects
654 of the TomatoPathogen *Fusarium oxysporum* f. Sp. *Radicis-lycopersici* and of the Biocontrol

655 Bacterium *Pseudomonas fluorescens* WCS365 on the Composition of Organic Acids and Sugars
656 in Tomato Root Exudate. *Molecular Plant-Microbe Interactions*®, 19(10), 1121–1126.

657 Kane, J. L., Kotcon, J. B., Freedman, Z. B., & Morrissey, E. M. (2023). Fungivorous nematodes
658 drive microbial diversity and carbon cycling in soil.

659 Keller-Pearson, M., Liu, Y., Peterson, A., Pederson, K., Willems, L., Ané, J.-M., & Silva, E. M. (2020).
660 Inoculation with arbuscular mycorrhizal fungi has a more significant positive impact on the
661 growth of open-pollinated heirloom varieties of carrots than on hybrid cultivars under organic
662 management conditions. *Agriculture, Ecosystems & Environment*, 289, 106712.
663 <https://doi.org/10.1016/j.agee.2019.106712>

664 Koyama, A., Dias, T., & Antunes, P. M. (2022). Application of plant–soil feedbacks in the selection of
665 crop rotation sequences. *Ecological Applications*, 32(2), e2501.

666 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a
667 Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data
668 on the MiSeq Illumina Sequencing Platform. *Applied and Environmental Microbiology*, 79(17),
669 5112–5120.

670 Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept &
671 review. *Soil Biology and Biochemistry*, 83, 184–199.
672 <https://doi.org/10.1016/j.soilbio.2015.01.025>

673 Lai, Z., Tsugawa, H., Wohlgemuth, G., Mehta, S., Mueller, M., Zheng, Y., ... & Fiehn, O. (2018).
674 Identifying metabolites by integrating metabolome databases with mass spectrometry
675 cheminformatics. *Nature methods*, 15(1), 53–56.

676 Landi, L., Valori, F., Ascher, J., Renella, G., Falchini, L., & Nannipieri, P. (2006). Root exudate effects
677 on the bacterial communities, CO₂ evolution, nitrogen transformations and ATP content of
678 rhizosphere and bulk soils. *Soil Biology and Biochemistry*, 38(3), 509–516.

704 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.

705 *EMBnet. journal*, 17(1), 10-12.

706 Masi, M., & Evidente, A. (2020). Fungal bioactive anthraquinones and analogues. *Toxins*, 12(11), 714.

707 McLaren, M. R., & Callahan, B. J. (2021). Silva 138.1 prokaryotic SSU taxonomic training data
708 formatted for DADA2 [Dataset]. *Zenodo, Geneva, Switzerland*.

709 McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and
710 graphics of microbiome census data. *PloS one*, 8(4), e61217.

711 Meier, I. C., Finzi, A. C., & Phillips, R. P. (2017). Root exudates increase N availability by stimulating
712 microbial turnover of fast-cycling N pools. *Soil Biology and Biochemistry*, 106, 119–128.

713 <https://doi.org/10.1016/j.soilbio.2016.12.004>

714 Micallef, S. A., Channer, S., Shiaris, M. P., & Colón-Carmona, A. (2009). Plant age and genotype impact
715 the progression of bacterial community succession in the *Arabidopsis* rhizosphere. *Plant*
716 *signaling & behavior*, 4(8), 777-780.

717 Miller, S. B., Heuberger, A. L., Broeckling, C. D., & Jahn, C. E. (2019). Non-Targeted Metabolomics
718 Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground
719 Interaction of Substrate and Sorghum Genotype. *International Journal of Molecular Sciences*,
720 20(2), Article 2. <https://doi.org/10.3390/ijms20020431>

721 Mundepi, A., Cabrera, M., Norton, J., & Habteselassie, M. (2019). Ammonia oxidizers as biological
722 health indicators of elevated Zn and Cu in poultry litter amended soil. *Water, Air, & Soil*
723 *Pollution*, 230(10), 239.

724 Nagahashi, G., & Douds, D. D. (1999). Rapid and sensitive bioassay to study signals between root
725 exudates and arbuscular mycorrhizal fungi. *Biotechnology Techniques*, 13, 893-897.

726 Nagahashi, G., & Douds, D. D. (2000). Partial separation of root exudate components and their effects
727 upon the growth of germinated spores of AM fungi. *Mycological Research*, 104(12), 1453–1464.

728 <https://doi.org/10.1017/S0953756200002860>

729 Nagahashi, G., & Douds, D. (2007). Separated components of root exudate and cytosol stimulate different
730 morphological identifiable types of branching responses by arbuscular mycorrhizal fungi.
731 *Mycological Research*, 111(4), 487–492. <https://doi.org/10.1016/j.mycre.2007.02.007>

732 Neumann, G. & Römhild, V. (2009). in The Rhizosphere (eds Pinton, R. et al.) 23–72 (CRC Press, Boca
733 Raton.)

734 Neumann, G., Bott, S., Ohler, M. A., Mock, H. P., Lippmann, R., Grosch, R., & Smalla, K. (2014). Root
735 exudation and root development of lettuce (*Lactuca sativa* L. cv. Tizian) as affected by different
736 soils. *Frontiers in microbiology*, 5, 2.

737 Oksanen J, Simpson G, Blanchet F, Kindt R Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M,
738 Szoeecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De
739 Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M,
740 Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J
741 (2022). *_vegan: Community Ecology Package_*. R package version 2.6-4, <<https://CRAN.R-project.org/package=vegan>>.

742

743 Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., ... & Xia, J. (2021).
744 MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. *Nucleic acids
745 research*, 49(W1), W388-W396.

746 Ponnusamy, V., Shanmugam, J., Gopal, M., & Sundaram, S. (2017). Perspectives of plant-methylotrophic
747 interactions in organic farming. *Microorganisms for Green Revolution: Volume 1: Microbes for
748 Sustainable Crop Production*, 167-187.

749 Poulin, M. J., Bel-Rholid, R., Piché, Y., & Chênevert, R. (1993). Flavonoids released by carrot (*Daucus
750 carota*) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the
751 presence of optimal CO₂ enrichment. *Journal of chemical ecology*, 19, 2317-2327.

752 R Core Team (2022). R: A language and environment for statistical computing. R Foundation for
753 Statistical Computing, Vienna, Austria. URL. <https://www.R-project.org/>.

754 Raynaud, X. (2010). Soil properties are key determinants for the development of exudate gradients in a
755 rhizosphere simulation model. *Soil Biology and Biochemistry*, 42(2), 210-219.

756 Sauer, D., Kuzyakov, Y., & Stahr, K. (2006). Spatial distribution of root exudates of five plant species as
757 assessed by ¹⁴C labeling. *Journal of Plant Nutrition and Soil Science*, 169(3), 360-362.

758 Seitz, V. A., McGivern, B. B., Daly, R. A., Chaparro, J. M., Borton, M. A., Sheflin, A. M., Kresovich, S.,
759 Shields, L., Schipanski, M. E., Wrighton, K. C., & Prenni, J. E. (2022). Variation in Root Exudate
760 Composition Influences Soil Microbiome Membership and Function. *Applied and Environmental
761 Microbiology*, 88(11), e00226-22. <https://doi.org/10.1128/aem.00226-22>

762 Shi, S., Richardson, A. E., O'Callaghan, M., DeAngelis, K. M., Jones, E. E., Stewart, A., ... & Condron,
763 L. M. (2011). Effects of selected root exudate components on soil bacterial communities. *FEMS
764 microbiology ecology*, 77(3), 600-610.

765 Simon, P. W., Navazio, J. P., Colley, M., McCluskey, C., Zystro, J., Hoagland, L., ... & Nunez, J. (2017).
766 The CIOA (carrot improvement for organic agriculture) project: location, cropping system and
767 genetic background influence carrot performance including top height and flavour. *Acta
768 Horticulturae*, (1153), 1-8.

769 Simon, P., Colley, M., Hoagland, L., Silva, E., Dawson, J., Dutoit, L., Water, T., Roberts, P., & Sidhu, J.
770 (2021). *Carrot Improvement For Organic Agriculture With Added Grower And Consumer Value*
771 [Conference paper]. <https://orgprints.org/id/eprint/42315/>

772 Singh, G., Bhattacharyya, R., Das, T. K., Sharma, A. R., Ghosh, A., Das, S., & Jha, P. (2018). Crop
773 rotation and residue management effects on soil enzyme activities, glomalin and aggregate
774 stability under zero tillage in the Indo-Gangetic Plains. *Soil and Tillage Research*, 184, 291–300.
775 <https://doi.org/10.1016/j.still.2018.08.006>

776 Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass
777 spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and
778 identification. *Analytical chemistry*, 78(3), 779-787.

779 Song, Y., Li, X., Yao, S., Yang, X., & Jiang, X. (2020). Correlations between soil metabolomics and
780 bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation.
781 *Science of the Total Environment*, 728, 138439.

782 Swenson, T. L., Jenkins, S., Bowen, B. P., & Northen, T. R. (2015). Untargeted soil metabolomics
783 methods for analysis of extractable organic matter. *Soil Biology and Biochemistry*, 80, 189–198.
784 <https://doi.org/10.1016/j.soilbio.2014.10.007>

785 Tadano, T., Ozawa, K., Sakai, H., Osaki, M., & Matsui, H. (1993). Secretion of acid phosphatase by the
786 roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme
787 secreted by lupin Roots. In N. J. Barrow (Ed.), *Plant Nutrition—From Genetic Engineering to*
788 *Field Practice: Proceedings of the Twelfth International Plant Nutrition Colloquium*, 21–26
789 *September 1993, Perth, Western Australia* (pp. 99–102). Springer Netherlands.
790 https://doi.org/10.1007/978-94-011-1880-4_13

791 Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high
792 resolution LC/MS. *BMC bioinformatics*, 9(1), 1-16.

793 Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marín-Spiotta, E., & McDaniel, M. D. (2015). Crop
794 rotational diversity enhances belowground communities and functions in an agroecosystem.
795 *Ecology letters*, 18(8), 761-771.

796 Triviño, N. J., Rodriguez-Sanchez, A., Filley, T., Camberato, J. J., Colley, M., Simon, P., & Hoagland, L.
797 (2023). Carrot genotypes differentially alter soil bacterial communities and decomposition of
798 plant residue in soil. *Plant and Soil*, 1-20.

799 Turner, S., Pryer, K. M., Miao, V. P., & Palmer, J. D. (1999). Investigating deep phylogenetic
800 relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. *The*
801 *Journal of Eukaryotic Microbiology*, 46(4), 327–338. <https://doi.org/10.1111/j.1550-7408.1999.tb04612.x>

803 Ulbrich, T. C., Rivas-Ubach, A., Tiemann, L. K., Friesen, M. L., & Evans, S. E. (2022). Plant root
804 exudates and rhizosphere bacterial communities shift with neighbor context. *Soil Biology and*
805 *Biochemistry*, 172, 108753.

806 US Department of Agriculture-National Agricultural Statistics Service. 2019. USDA, Washington, DC.
807 Online: www.nass.usda.gov

808 US Department of Agriculture-National Agricultural Statistics Service. 2021 Certified Organic Survey.
809 2022. USDA, Washington, DC. Online: <https://www.nass.usda.gov>

810 Vančura, V., & Hovadik, A. (1965). Root exudates of plants: II. Composition of root exudates of some
811 vegetables. *Plant and Soil*, 22, 21-32.

812 White, T. J. B. T. (1990). Analysis of phylogenetic relationships by amplification and direct
813 sequencing ribosomal RNA genes. *PCR protocols: a guide to methods and applications*, 315-
814 322.

815 Williams, A., Langridge, H., Straathof, A. L., Fox, G., Muhammadali, H., Hollywood, K. A., Xu, Y.,
816 Goodacre, R., & deVries, F. T. (2021). Comparing root exudate collection techniques: An
817 improved hybrid method. *Soil Biology and Biochemistry*, 161, 108391.
818 <https://doi.org/10.1016/j.soilbio.2021.108391>

819 Wollum, A. G. (1994). Soil sampling for microbiological analysis. *Methods of Soil Analysis: Part 2,*
820 *Microbiological and Biochemical Properties*, 5, 1-14.

821 Wood, S. A., Karp, D. S., DeClerck, F., Kremen, C., Naeem, S., & Palm, C. A. (2015). Functional traits
822 in agriculture: Agrobiodiversity and ecosystem services. *Trends in Ecology & Evolution*, 30(9),
823 531–539. <https://doi.org/10.1016/j.tree.2015.06.013>

824 Xiang, L., Chen, X. T., Yu, P. F., Li, X. H., Zhao, H. M., Feng, N. X., ... & Li, Q. X. (2020). Oxalic acid
825 in root exudates enhances accumulation of perfluorooctanoic acid in lettuce. *Environmental*
826 *Science & Technology*, 54(20), 13046-13055.

827 You, X., Feng, S., Luo, S., Cong, D., Yu, Z., Yang, Z., & Zhang, J. (2013). Studies on a rhein-producing
828 endophytic fungus isolated from *Rheum palmatum* L. *Fitoterapia*, 85, 161-168.

829 Yu, Z., Liu, J., Li, Y., Jin, J., Liu, X., & Wang, G. (2018). Impact of land use, fertilization and seasonal
830 variation on the abundance and diversity of nirS-type denitrifying bacterial communities in a
831 Mollisol in Northeast China. *European Journal of Soil Biology*, 85, 4-11.

832 Yue, H., Yue, W., Jiao, S., Kim, H., Lee, Y. H., Wei, G., ... & Shu, D. (2023). Plant domestication shapes
833 rhizosphere microbiome assembly and metabolic functions. *Microbiome*, 11(1), 1-19.

834 Zhelnina, K., Louie, K. B., Hao, Z., Mansoori, N., Da Rocha, U. N., Shi, S., ... & Brodie, E. L. (2018).
835 Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere
836 microbial community assembly. *Nature microbiology*, 3(4), 470-480.

837 Zhang, K., Maltais-Landry, G., & Liao, H.-L. (2021). How soil biota regulate C cycling and soil C pools
838 in diversified crop rotations. *Soil Biology and Biochemistry*, 156, 108219.
839 <https://doi.org/10.1016/j.soilbio.2021.108219>

840 Zhao, Y., Jin, Z., Hong, Y., Zhang, Y., Lu, Z., & Li, Y. (2023). Root Exudates Modulate Rhizosphere
841 Microbial Communities during the Interaction of *Pseudomonas chlororaphis*, β -Aminobutyric
842 Acid, and *Botrytis Cinerea* in Tomato Plants. *Journal of Plant Growth Regulation*, 1-14.

843 Zhou, J., Zhang, L., Feng, G., & George, T. S. (2022). Arbuscular mycorrhizal fungi have a greater role
844 than root hairs of maize for priming the rhizosphere microbial community and enhancing
845 rhizosphere organic P mineralization. *Soil Biology and Biochemistry*, 171, 108713.
846 <https://doi.org/10.1016/j.soilbio.2022.108713>

847

848

849

850

851

852

853

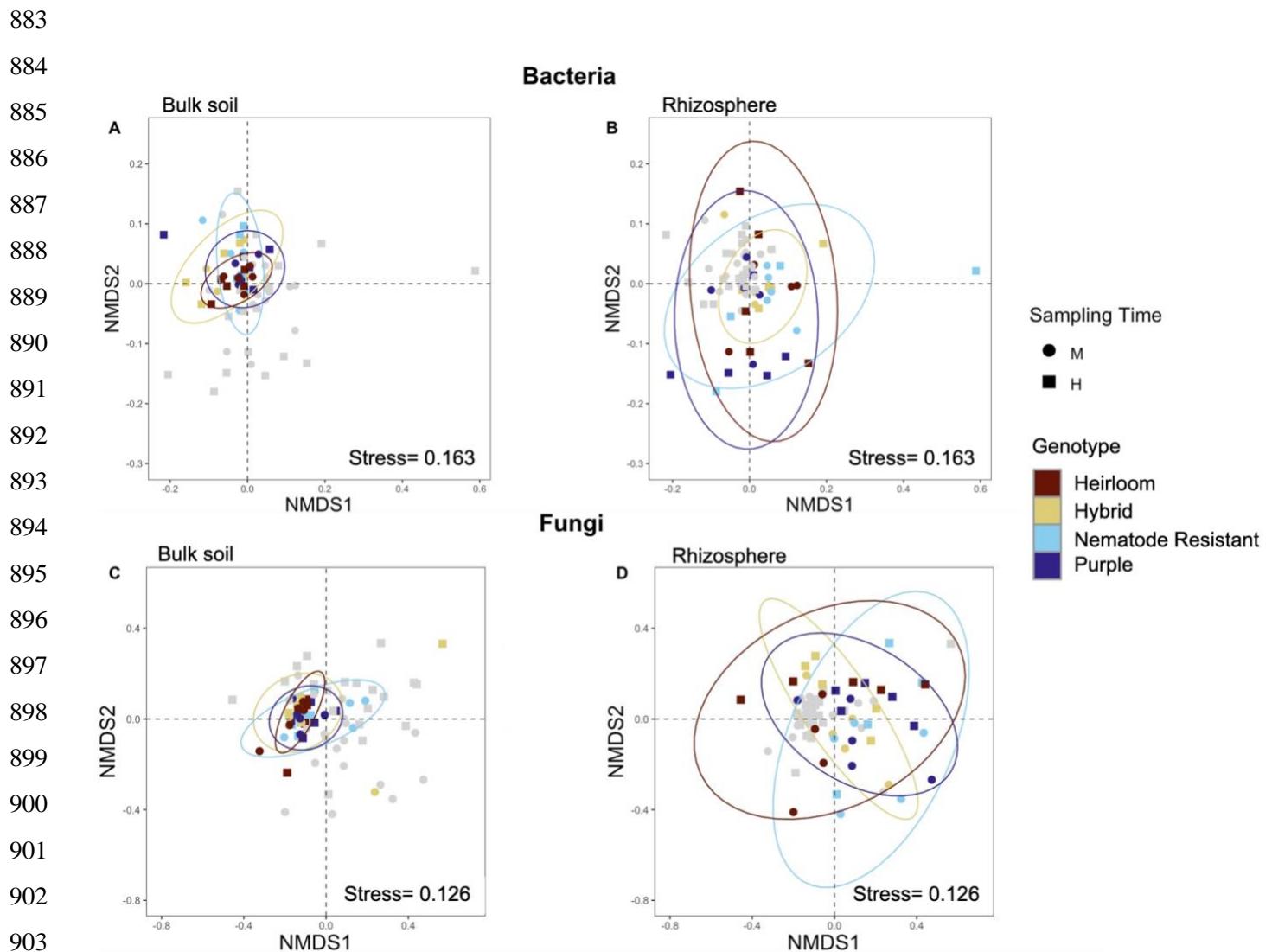
854

855 **Main Body Figures and Tables**

856

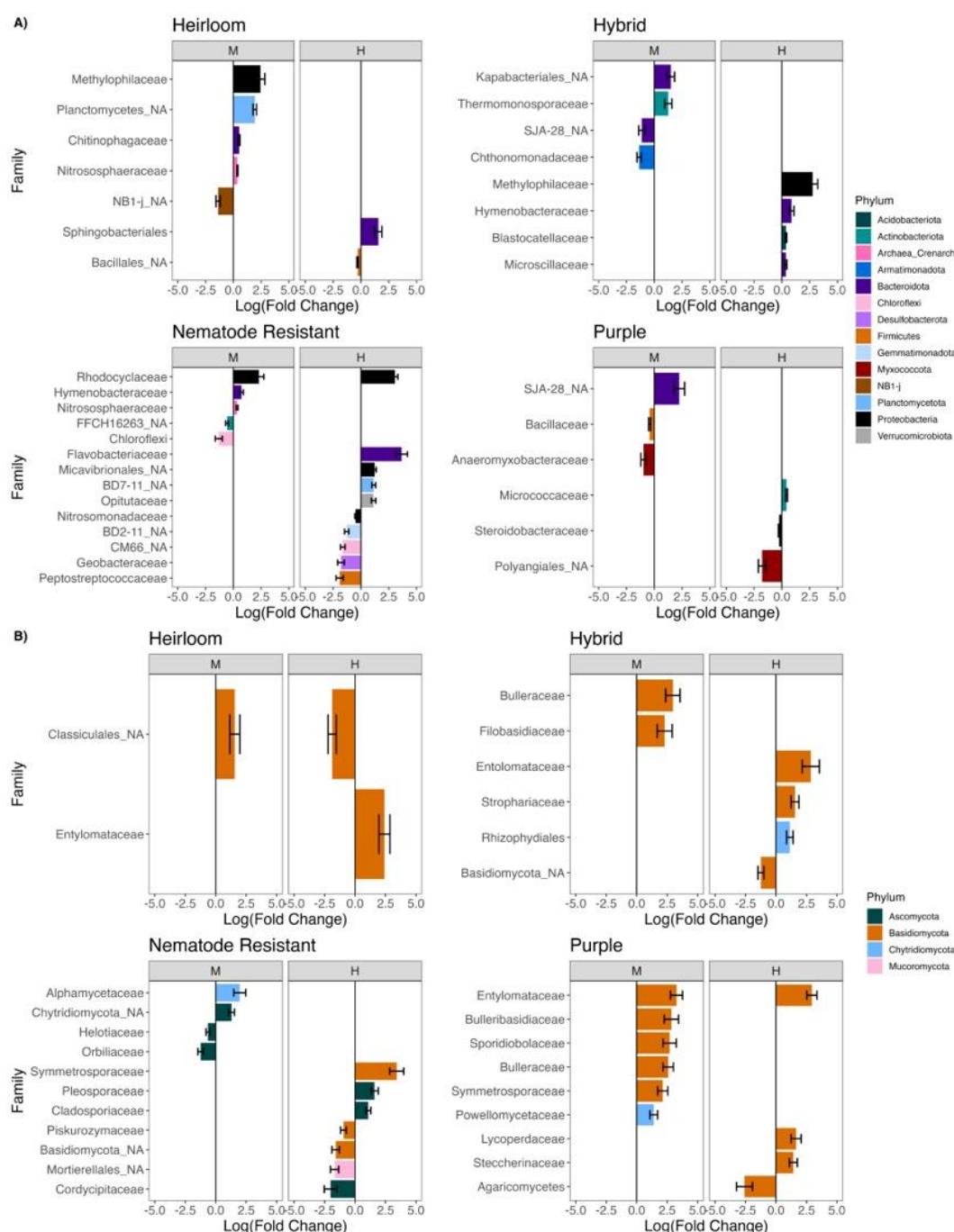
872 **Figure 1.** Boxplots demonstrate the differences in bacterial (A) and fungal (B) Chao1 richness
873 between bulk and rhizosphere soils for each genotype. Medians are represented in the IQR region
874 of the box as horizontal black lines, whereas diamonds represent the mean. Letters denote
875 significant to marginally significant differences ($p<0.1$) between treatment means based on
876 Fischer's LSD.

877


878

879

880


881

882

Figure 2. Global visualization of bacterial (A, B) and fungal (C, D) β -diversity and dispersion. Non-metric multidimensional scaling was performed on Bray-Curtis dissimilarities at three dimensions and visualized using axes 1 and 2. Left: Bulk soils in the ordination are highlighted, and ellipses show the 95% confidence interval for each genotype. Right: Rhizosphere soils in the ordination are highlighted, and ellipses show the 95% confidence interval for each genotype. M, Midseason, H, Harvest.

917

938 **Figure 3.** For each carrot genotype, positive and negative responding bacterial (A) and fungal
939 (B) recruitment in the rhizosphere are mapped across midseason (M) and harvest (H) time-points.
940 Negative log(fold change) values represent taxa of greater relative abundance in the bulk soil,
941 and positive log(fold change) values represent taxa of greater relative abundance in the
942 rhizosphere of the respective genotype. Taxa with NA in their name represent unidentified
943 family-level classification, and the next available classification level is given.
944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

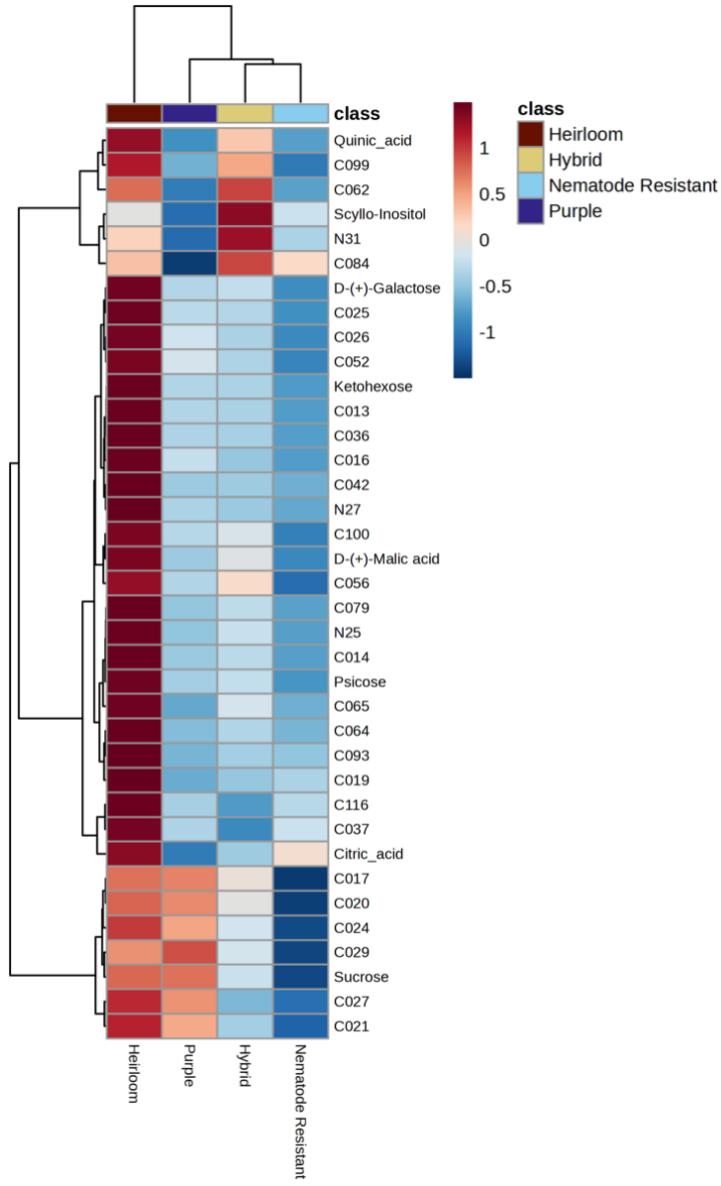
969

970

971

972

973


974

975

976

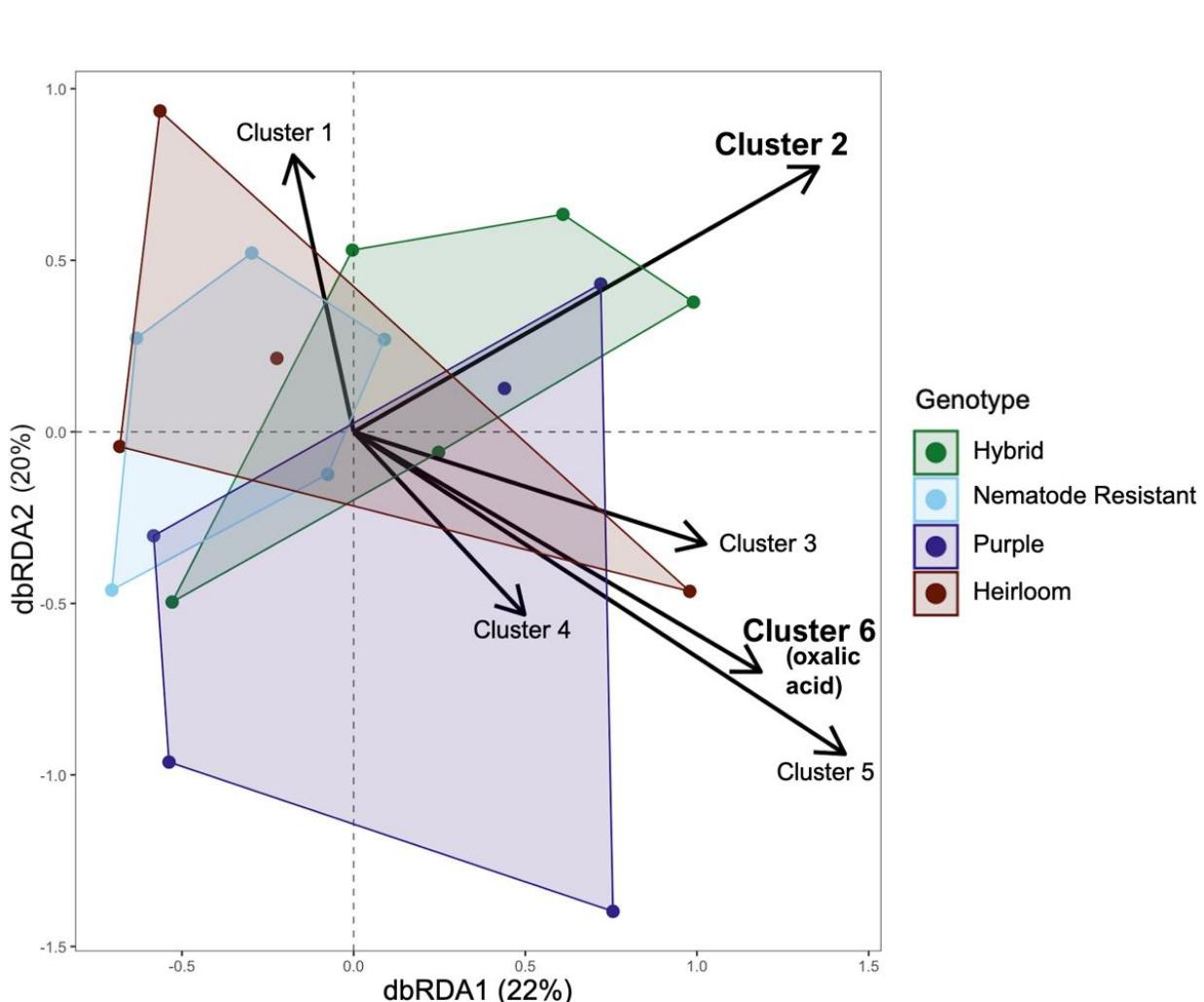
977

978

Figure 4. Differential abundance of root exudates across genotypes. The spectral intensity of compounds was scaled based on deviation from the mean using z-scores, clustered, and grouped by genotype to illustrate up or down expression. N25, “octane”; N27, “silane”; N31, “benzoate”. Figure was constructed in Metaboanalyst 5.0.

983

984


985

986

987

988

989

Figure 5. Distance-based redundancy analysis of root exudate clusters on midseason rhizosphere bacterial communities. Root exudate clusters were modeled against a Bray-Curtis dissimilarity matrix of bacterial communities. Clusters 2 and 6 (large text) significantly explained fungal community composition. Bacterial communities are colored by genotype, and polygons represent the convex hulls of each geometric distribution of points on the ordination within a genotype.

1031

1032

1033

Cluster 1

1034

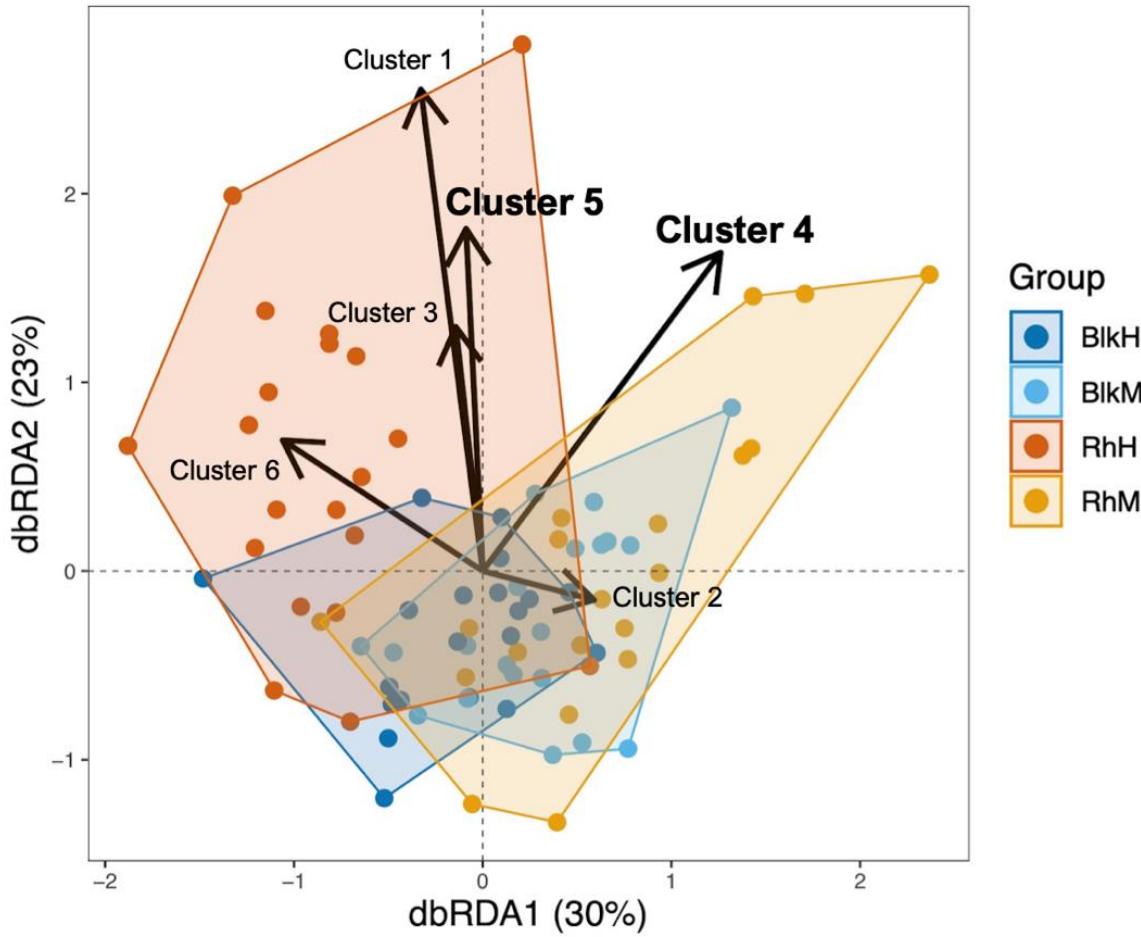
1035

1036

1037

1038

1039


1040

1041

1042

1043

1044

1045

1046

Figure 6. Distance-based redundancy analysis of soil metabolite clusters on soil fungal communities. Soil metabolite clusters were modeled against a Bray-Curtis dissimilarity matrix of fungal communities. Clusters 4 and 5 (large text) significantly explained fungal community composition. Fungal communities are colored by soil compartment and time, and polygons represent the convex hulls of each geometric distribution on the ordination of points within a group. BlkH, Bulk soil at harvest; BlkM, Bulk soil at midseason; RhH, Rhizosphere at harvest; RhM, Rhizosphere at midseason.

1053

1054

1055

1056

1057

1058

1059

1060 **Table 1.** Assigned traits of each carrot genotype. Acquired from <https://carrots.eorganic.info/>.

Genotype	Code	Characteristic Trait	Color	Root Shape
Red Core Chantenay	H	Heirloom	Orange	Short, cylindrical
Bolero	Hy	Hybrid	Orange	Medium, cylindrical
Nb8503	NR	Nematode Resistant	Orange	Long, thin cylindrical
P0114	PO	Purple	Purple-orange	Medium, conical

1061

1062

1063 **Table 2.** Results of PERMANOVA tests of experimental factors on bacterial and fungal
1064 community composition. P-values for which post-hoc tests were performed on the associated
1065 factor or interaction are bolded. G, Genotype; SC, Soil Compartment; T, Time.

1066

	Bacteria		Fungi	
	R ²	P	R ²	P
Genotype	0.040	0.043	0.043	0.047
Soil Compartment	0.029	0.002	0.056	0.001
Time	0.016	0.001	0.033	0.001
Block	0.025	0.001	0.027	0.002
G:SC	0.040	0.061	0.04	0.113
G:T	0.036	0.715	0.033	0.481
SC:T	0.016	0.002	0.023	0.005
G:SC:T	0.038	0.303	0.038	0.184

1067

1068

1069 **Table 3.** Results of Mantel tests between soil microbial and metabolite dissimilarities.

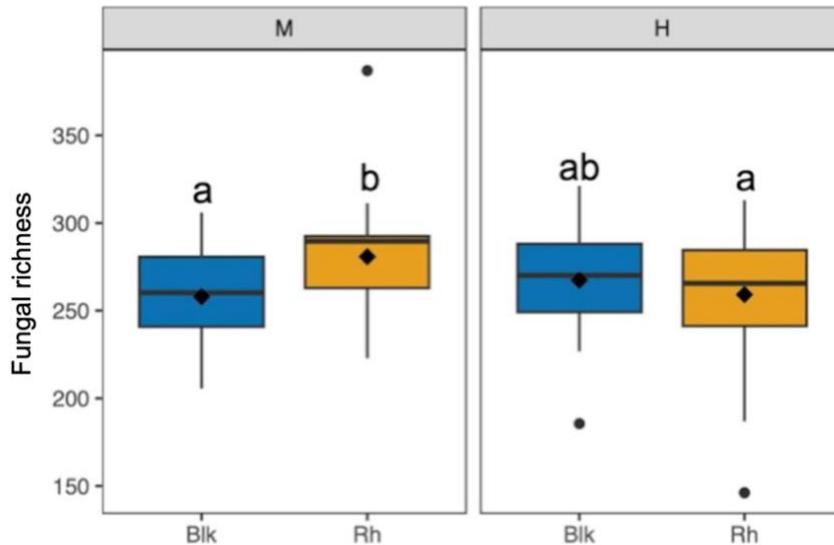
	Bacteria				Fungi			
	Pearson		Spearman		Pearson		Spearman	
	r	P	r	P	r	P	r	P
Soil Metabolome	0.1112	0.109	0.1193	0.086	0.019	0.391	0.037	0.318
Root Exudates	0.2409	0.043	0.236	0.037	0.010	0.47	-0.002	0.504

1070

1071

1072

1073


1074

1075 **Supplementary Materials**

1076

1077

1078

1094
1095 **Figure S1.** Fungal richness at each sampling timepoint. Boxplots demonstrate the differences in
1096 Chao1 richness between bulk and rhizosphere soils. Medians are represented in the IQR region
1097 of the box as horizontal black lines, whereas diamonds represent the mean. Letters denote
1098 significant to marginally significant differences ($p<0.1$) between treatment means based on
1099 Fischer's LSD. M, Midseason; H, Harvest, Blk, Bulk soil, Rh, Rhizosphere.

1100

1101

1102

1103

1104

1105

1106

1107

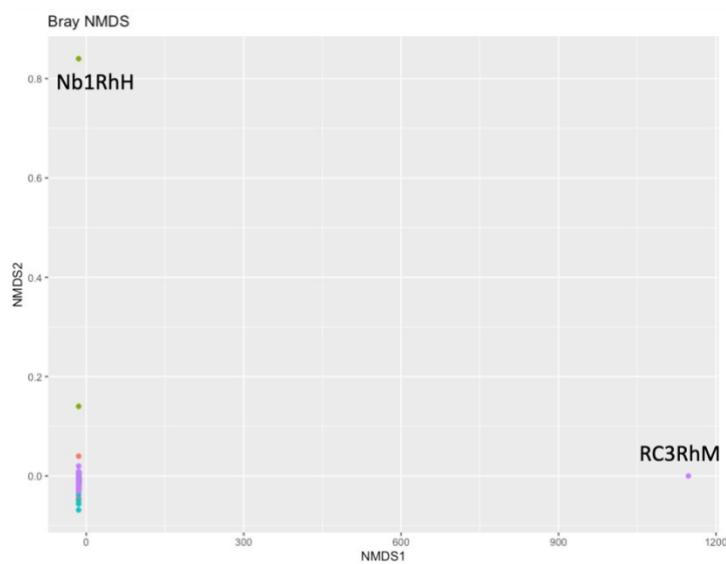
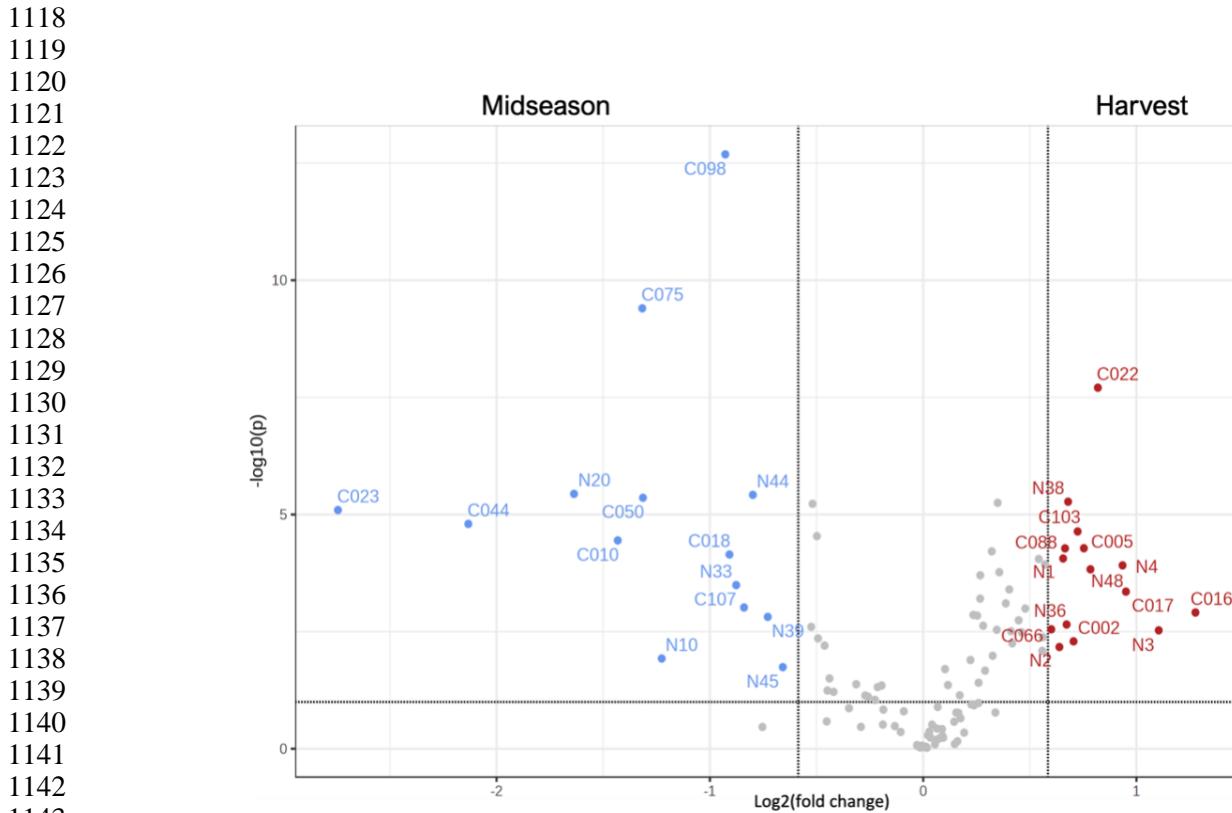
1108

1109

1110

1111

1112



1113

1114

1115

1116

1117

1172
1173
1174
1175

Table S1. Crop rotation history for experimental plots. Acquired from West Madison Agricultural Research Station Staff.

Year	Crop	Inputs
2021	Sorghum Sudangrass Cover	
	Crop	
2020	Oat grain	
2019	Pepper	Manure inputs: 88-232-135
2018	Soybean	
2017	Oat grain + straw	
2016	Grass hay	

1176

1177

1178 **Table S2.** Soil test history for experimental plots. Acquired from West Madison Agricultural
1179 Research Station Staff.

Soil Name	Kegonsa series				
Soil Texture	Silt loam				
Slope	4%				
Test Date	Plow Depth (in)	Avg pH	Avg OM (%)	Avg P (ppm)	Avg K (ppm)
10/22/2021	6	7.3	3	52	185
10/19/2020	6	7.1	3.4	59	145
12/11/2018	7	7.1	2.8	54	143
11/15/2017	7	7.1	2.3	29	94
11/22/2016	7	6.8	2.9	28	123
12/2/2015	7	7.4	2.5	59	220
12/6/2013	7	6.9	2.7	43	179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193 **Table S3.** Identified soil metabolites referenced in Figure S2.

Compound name	Code	Up-expression
Cyclohexasiloxane, dodecamethyl	N10	Midseason
2,3-Dimethylquinizarin, bis(trimethylsilyl) ether	N20	Midseason
4-Hydroxyanthraquinone-2-carboxylic acid	N33	Midseason
3-Hydroxyflavone, triethylsilyl ether	N39	Midseason
Silane, diethylhexadecyloxy(2-methoxyethoxy)	N44	Midseason
Rhein	N45	Midseason
D-Trehalose	N1	Harvest
DL-beta-Hydroxybutyric acid	N2	Harvest
Glucose_1	N3	Harvest
Maltotriose	N4	Harvest
1-Isopropoxy-2-trihexylsilyloxybenzene	N36	Harvest
Norleucine	N38	Harvest
Methyl 2-Trimethylsiloxy-octadecanoate	N48	Harvest

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213 Additional Metabolomics Methodology

1214 **Root exudates:** Each sample in the Falcon tube (50 mL,) as provided, was treated with 1 mL 50%
1215 MeOH-Water. Vortexed thoroughly, sonicated (bath) for 30 min, centrifuged (3000 RPM, 15 min, 4°C).
1216 The supernatant was recovered into Glass vial (2 mL) and stored at -20°C overnight. The vials were
1217 centrifuged again centrifuged (3000 RPM, 15 min, 4°C). From the supernatant, 0.2 mL was taken out for
1218 GC/MS derivatization. From the supernatant, 0.04 mL aliquot were taken from each sample to generate
1219 pooled QC samples (7 x 0.2 mL).

1220 **Soil:** Portions of submitted soil samples were frozen (-80°C) and lyophilized. The lyophilized soil
1221 samples were then pulverized using a bullet blender. ~ 150 mg of powdered soil samples were taken in
1222 Eppendorf tubes and treated with 1 mL water. Vortexed thoroughly, sonicated (bath) for 30 min,
1223 centrifuged (10000 RPM, 15 min, 4°C). From the supernatant, 0.75 mL taken out into new Eppendorf.
1224 Vortexed thoroughly, sonicated (bath) for 30 min, centrifuged (10000 RPM, 15 min, 4°C), frozen, and
1225 lyophilized. To these lyophilized samples, 0.75 mL 80% MeOH-Water with 0.1% formic acid was added.
1226 Vortexed thoroughly, sonicated (bath) for 10 min, centrifuged (10000 RPM, 15 min, 4°C). Stored at -20C
1227 for 2 h and centrifuged again (10000 RPM, 15 min, 4°C). From the supernatant, 0.5 mL for GC. From the
1228 supernatant, 0.1 mL aliquot were taken from each sample to generate pooled QC samples (14 x 0.5 mL).

1229 **Derivatization:** All samples were dried under N2-stream. The dried samples were treated with 0.05 mL
1230 of methoxyamine hydrochloride in pyridine (25 mg/mL), vortexed and heated at 60°C for 45 min. The
1231 vials were then sonicated for 10 min and incubated again for another 45 min. The samples were then
1232 centrifuged at 2000 RPM for 5 min, treated with MSTFA+1% TMCS (0.05 mL), vortexed thoroughly and
1233 incubated at 60°C for 35 min. The samples were then put into inserts and analyzed by GC/MS.

1234 **GC-MS Data Acquisition:** Metabolites were detected using a Trace 1310 GC coupled to a Thermo ISQ
1235 mass spectrometer. Samples (1 μ L) were injected at a 10:1 split ratio to a 30 m TG-5MS column (Thermo
1236 Scientific, 0.25 mm i.d., 0.25 μ m film thickness) with a 1.2 mL/min helium gas flow rate. GC inlet was
1237 held at 285°C. The oven program starts at 80°C for 30 s, followed by a ramp of 15°C/min to 330°C, and
1238 an 8 min hold. Masses between 50-650 m/z are scanned at 5 scans/sec under electron impact ionization.
1239 Transfer line and ion source are held at 300 and 260°C, respectively. QC samples were injected after
1240 every 6 experimental samples

1241 **Data analysis.** Peak detection, alignment, and peak filling was performed on .cdf converted files using
1242 XCMS in R version 4.2.2. Additional feature clustering was performed using RAMClustR version 1.2.4
1243 in was used to normalize, filter, and group features into spectra.XCMS (Smith 2006)(Tautenhahn 2008)
1244 output data was transferred to a ramclustR object using the rc.get.xcms.data function. Feature data was
1245 extracted using the xcms featureValues function. Features which failed to demonstrate signal intensity of
1246 at least 1.5 fold greater in QC samples than in blanks were removed from the feature dataset. 718 of 3117
1247 features were removed. Features with missing values were replaced with small values simulating noise.
1248 The absolute value was used as the filled value to ensure that only non-negative values carried forward.
1249 Zero values were treated as missing values. Variance in quality control samples was described using the
1250 rc.qc function within ramclustR. Summary statistics are provided including the relative standard deviation
1251 of QC samples to all samples in PCA space, as well as the relative standard deviation of each
1252 feature/compound in QC samples, plotted as a histogram. Features were normalized by linearly
1253 regressing run order versus qc feature intensities to account for instrument signal intensity drift. Only
1254 features with a regression pvalue less than 0.05 and an r-squared greater than 0.1 were corrected. Of 2399
1255 features, 66 were corrected for run order effects. Features were clustered using the ramclustR algorithm

1256 (Broeckling 2014). Parameter settings were as follows: st = 3, sr = 0.5, maxt = 300, deepSplit = FALSE,
1257 hmax = 0.5, minModuleSize = 2, and cor.method = pearson.

1258 Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A., & Prenni, J. E. (2014). RAMClust: a novel feature
1259 clustering method enables spectral-matching-based annotation for metabolomics data. *Analytical
1260 chemistry*, 86(14), 6812-6817.

1261 Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution
1262 LC/MS. *BMC bioinformatics*, 9(1), 1-16.

1263 Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry
1264 data for metabolite profiling using nonlinear peak alignment, matching, and identification. *Analytical
1265 chemistry*, 78(3), 779-787.

1266

1267

1268