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Abstract

Root exudate composition can influence rhizosphere microbial recruitment and is tightly
controlled by plant genetics. However, little research has profiled root exudate in vegetable crops
or determined their role in rhizosphere microbial community and metabolite composition. It is
also not well understood how root exudates and resulting rhizosphere dynamics shift across plant
trait diversity and with the development of novel crop genotypes. To address these knowledge
gaps, this study paired metabolomics and microbiome analyses to evaluate associations between
the composition of exudates, soil bacterial and fungal communities, and soil metabolites across
four genotypes of organically produced carrot of differential breeding histories, including two
experimental genotypes. Plant genotypes modified soil microbial diversity and composition, and
differentially recruited bacterial taxa with demonstrated potential for plant-growth related
functions including ammonia oxidation, nitrogen fixation, and phytohormone production.
Bacterial rhizosphere recruitment from bulk soil was genotype and root exudate-mediated, while
fungal recruitment was not. Moreover, root exudate composition was distinct in an heirloom
genotype and a novel nematode resistant genotype, compared to other genotypes tested. Root
exudate and rhizosphere metabolite composition was decoupled, and soil metabolites strongly
associated with fungal, but not bacterial communities. Taken together, the results of this study
suggest that novel crop trait diversity and breeding histories hold consequences for the functional

potential of soils through the diversification of root exudate mediated plant-microbe interactions.
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1. Introduction

Terrestrial plants evolved in close association with soil microorganisms, mediating both
positive and negative plant-microbe interactions through root growth and rhizodeposition. The
rhizosphere, defined as the narrow zone of soil in direct contact with an actively growing plant
root, is a hotspot for plant-soil substrate flow and microbial activity (Kuzyakov & Blagodatskaya
2015). It is well documented that rhizosphere microbial community composition and functions
differ from that of the bulk soil, and these differences could ultimately shape plant and soil
functional outcomes as a result of shifts in microbial metabolism, for example, by increasing soil
nutrient availability (Ling et al. 2022). While the bulk soil microbial community initially shapes
the rhizosphere as the “microbial seed bank”, observed differences in rhizosphere microbial
community composition between plant species and even genotypes during plant development
indicate a strong host plant-specific selective pressure (de Ridder-Duine et al. 2005, Micallef et
al. 2009, Aira et al. 2010). Oftentimes, the specific plant or soil-based mechanisms resulting in
these observed patterns of rhizosphere microbial community assembly remain elusive.

The flux of photosynthetically fixed carbon (C) from plant tissues to the rhizosphere
through root exudation is a potential mechanism that can modify soil microbial abundance and
activity. As a source of low-molecular weight (LMW) labile C, root exudates provide a readily
accessible energy source for microbial metabolism, which can ultimately stimulate microbial
recruitment and growth (Meier et al. 2017, Zhou et al. 2022, Liu et al. 2022). Early research on
plant root exudation provided the foundational understanding that root exudation is significantly
controlled by plant genetics (Lynch & Whipps 1983, Larsen et al. 1998, Tadano et al. 1993,

Kamilova et al. 2006). More recent applications of high-throughput metabolomics and microbial
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community analysis support the hypothesis that root exudate chemical identity regulates specific
microbial selection in the rhizosphere through preferential uptake and metabolic use (Broeckling
et al. 2008, Eilers et al. 2010, Hugoni et al. 2018, Zhalnina et al. 2018). Additionally, soil
microorganisms produce and excrete LMW metabolites that can shape the biochemical habitat
and carbon availability in the rhizosphere (Bi et al. 2020, Swenson et al. 2015, Song et al. 2020).
Despite the apparent importance of both root exudates and microbial metabolites, there is a lack
of research that has determined the influence of root exudates on soil metabolite composition or
investigated both root and soil metabolomes in tandem to differentiate their effects on
rhizosphere microbial communities. Metabolomics-based root exudate profiling to date has been
mainly applied to grasses and crops used for bioenergy such as switchgrass and sorghum, and
plants are usually grown hydroponically or in artificial soil (Miller et al. 2019, Dietz et al. 2020,
Seitz et al. 2022). There is notably little application of these methods in vegetable crops,
especially in field soil environments, significantly limiting the integration of developments in
plant-microbe interactions into food system sustainability (Neumann et al. 2014, Zhao et al.
2023).

Cultivars developed by plant breeding efforts introduce phenotypic diversity into
agricultural systems, potentially altering rhizosphere functioning through shifts in plant-microbe
interactions across plant genotypes. For example, domestication can alter root exudate profiles
and rhizosphere microbial interactions, suggesting an influence of breeding history in some crops
(lannucci et al. 2017, Yue et al. 2023). However, whether crop trait diversity affects rhizosphere
plant-microbe interactions in vegetable production systems, and if novel trait introductions can
modify these interactions, has not been determined. An increased understanding of these effects

is important, as crop trait diversity can influence soil biological health by modifying microbial
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99  diversity, activity, and associated carbon and nutrient cycles (Tiemann et al. 2015, Wood et al.
100 2015, Cortois et al. 2016, Singh et al. 2018, Zhang et al. 2021, Koyama et al. 2022). These
101  effects are likely to be especially important in agricultural systems with heightened reliance on
102  soil microbial activity for agronomic outcomes, such as organically managed soils, which is a
103 rapidly expanding land use (USDA 2021).
104 In organic agriculture, carrot (Daucus carota subsp. sativus) is one of the most highly
105  produced vegetables in the United States, spurring the establishment of breeding programs
106  prioritizing the development of cultivars that are well-adapted to organic growing conditions and
107  meet market demand (USDA 2022, Simon et al. 2016, Simon et al. 2021). Pathogenic nematode
108  resistance and enriched anthocyanin content associated with purple coloration are presently
109  being explored in experimental carrot lines. These ongoing carrot breeding efforts have
110  demonstrated potential impacts to rhizosphere functioning in climate-controlled field and
111 greenhouse settings, making carrot a suitable candidate for exploring plant-microbe interactions
112 across trait diversity in organic vegetable systems in a field setting (Keller-Pearson et al. 2020,
113 Trivifio et al. 2023). The mechanisms driving these observed shifts in plant-microbe interactions
114  across carrot cultivar development are currently unknown. Early research using carrot as a model
115  plant has suggested that root exudation mediates interactions with arbuscular mycorrhizal fungi,
116  suggesting a potential role for these compounds in rhizosphere signaling (Bécard & Piché 1989,
117 Nagahashi et al. 1999, Nagahashi et al. 2000, Nagahashi et al. 2007, Poulin et al. 1993).
118  However, root exudates have never been fully profiled in carrots and the biochemical
119  composition of root exudates in vegetables in general is severely understudied.
120 The aim of this study was to advance understanding of the mechanisms that shape

121 rhizosphere microbial communities by co-investigating the diversity of root exudate
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122 composition, soil metabolomes and rhizosphere microbial recruitment in a field setting. In this
123 way, the objectives of this study were to 1) assess root exudate and soil microbial communities
124  across genotype diversity in organically produced carrot, and 2) evaluate whether root exudate or
125  soil metabolites modulate soil microbial assembly in the rhizosphere. Related to objective 1, we
126  hypothesized that 1.1) across genotypes, plant genetic differences will lead to distinct root

127  exudate and soil microbial community composition and 1.2) rhizosphere microbial recruitment
128  will shift with genotype across the growing season. Related to objective 2, we hypothesized that
129  2.1) root exudates will modulate soil metabolite composition and 2.2) differences in root exudate
130  and soil metabolite composition across plant genotypes will account for variation in both

131  bacterial and fungal rhizosphere communities.

132 2. Methods

133 2.1 Genotype Selection

134 To determine the effect of plant trait diversity on soil microbial community assembly,
135  four genotypes of carrot were selected for a field trial based on previous research and current
136  Dbreeding efforts (Simon et al. 2016, Keller-Pearson et al. 2020, Simon et al. 2021, Trivifio et al.
137 2023). The selected genotypes are phenotypically diverse in terms of root shape, flavor, and

138  color, and include one heirloom variety (Red Core Chantenay, hereafter “H”), one hybrid variety
139  (Bolero, hereafter “Hy”’), an experimental nematode resistant line (Nb8503, hereafter “NR”), and
140  an experimental purple/orange-cored carrot (P0114, hereafter “PO”) (Table 1).

141 2.2 Field Trial

142 A randomized complete block design field trial (n=5 blocks) was conducted at West

143  Madison Agricultural Research Station on certified organic land. The soil is classified as a

144  Kegonsa silt loam and has been cultivated under a diverse organic crop rotation. Crop rotation
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145 history and manure inputs for six years are available in Table S1. Soil chemistry data from

146  annual soil tests including soil pH, organic matter (%), P (ppm) and K (ppm) is available in

147  Table S3. The experimental plots received no external fertilizer amendments the year of planting.
148  Prior to planting, the site was plowed to a depth of 15 cm and existing cover crop residue was
149  incorporated into the soil. Carrots were established from 6/20/22 to 9/26/22 in 1m? plots seeded
150 ata rate of 100 seeds/meter using methods that are common in regional production systems. Drip
151  irrigation was delivered daily. In total, 4 genotypes with 5 replicates yielded 20 experimental

152  plots.

153 2.3 Midseason and Harvest Sampling

154 To determine the effects of root exudation on soil metabolite composition and microbial
155  recruitment during organic carrot production, both root exudates and soil were collected 10

156  weeks post-planting. At this point, carrots were in a vegetative, actively growing state, while

157  exhibiting the phenotypic traits (e.g. color) of interest in this study, offering a suitable time to
158  delineate potential differences in root exudation across genotypes. At sampling, 10 carrot roots
159  were harvested from each plot. Rhizosphere soil was operationally defined as the soil attached to
160  the carrot root after 5 seconds of gently shaking in the air (Wollum, A. G, 1994). Rhizosphere
161  soil was gently removed to avoid damage to the roots and homogenized by plot. Bulk soil

162  samples were collected by taking four soil cores per plot in between carrot rows to a 15 cm depth
163 (5.7 cm diameter) and homogenizing by plot. Soil was transported to the lab on ice and roots
164  were transported from the field to the lab in paper bags to maintain dark and warm conditions.
165  Upon return to the lab, all soil samples were immediately sieved (2 mm) and a subsample was

166  frozen at —80 °C for microbial community and metabolomics analysis.
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167 To determine end-of-season impacts of carrot production on soil microbial community
168  and metabolite composition, soil samples were taken concurrently with carrot harvest. At 14

169  weeks post-planting, carrots were harvested at maturity. Rhizosphere and bulk soil samples were
170  collected and processed in an identical manner as the midseason samples.

171 2.4 Root Exudate Collection

172 Root exudates (n=20) were collected hydroponically after midseason harvest using

173 methods adapted from Williams et al. (2021). First, three roots from each plot were randomly
174  selected for exudate collection. Prior to root exudate collection, roots were gently rinsed of

175  remaining soil using autoclaved deionized water and placed into acid washed and autoclaved
176  glass beakers with 100 mL of molecular grade water as an extraction solution. Beakers were

177 covered in aluminum foil to mimic dark growing conditions. Roots were submerged to allow for
178  the diffusion of water-soluble metabolites into the water solution for 1.5 hours, which has been
179  determined to be an appropriate amount of time for sufficient exudate collection while avoiding
180  microbial turnover of exudate products (Neumann & R6hmheld, 2009). After roots were

181  removed, the exudate solutions were immediately filter-sterilized through a 0.22um filter,

182  combined by plot, and frozen at —80°C. Tubes were lyophilized and the dried product was stored
183  at—80°C prior to analysis.

184 2.5 Microbial Community Sample Preparation and Bioinformatics

185 DNA was extracted from 0.25g of rhizosphere and bulk soils collected at midseason and
186  harvest sampling times using the DNeasy PowerSoil Kit (Qiagen, Germany) following

187  manufacturer's instructions, and the resulting purified DNA was stored at —80 °C. PCR reactions
188  were performed using primer pairs that target the V4 region (~250 bp) of the 16S ribosomal

189  RNA (rRNA) (hereafter “16S”) gene for bacterial communities (5°- 3”; 515f
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190 GTGCCAGCMGCCGCGGTAA, 806r GGACTACHVGGGTWTCTAAT) as well as the

191  internal transcribed spacer region 2 (hereafter “ITS2”) (~350-500 bp) for fungal communities
192 (fITS7 GTGARTCATCGAATCTTTG, ITS4 TCCTCCGCTTATTGATATGC) (Ihrmark et al.
193 2012, White 1990, Turner et al. 1999, Kozich et al. 2013). 16S rRNA and ITS2 amplicon DNA

194  was shipped on dry ice to Michigan State University’s Genomics Core (East Lansing, MI, USA)
195  for library preparation and paired-end sequencing on a MiSeq (2 X 300 bp, Illumina, San Diego,

196 CA, USA). Demultiplexed 16S and ITS2 sequences were processed using the DADAZ pipeline
197  in R version 4.1.3 to construct amplicon sequence variants (Martin 2011, Callahan et al. 201643,
198 R Core Team 2022). Taxonomic classification was performed using the SILVA v138.1 and

199  UNITE v9.0 databases for bacterial and fungal communities, respectively (McLaren & Callahan
200 2013, Abarenkov et al. 2023). Prior to analysis, sequences were rarefied to the minimum

201  sequencing depth of 11925 and 9376 sequences per sample for 16S and ITS2 sequences,

202  respectively in phyloseq (McMurdie & Holmes 2013, Callahan et al. 2016b). One 16S sample
203  (from Block 3 H midseason rhizosphere) was removed from analysis due to poor sequencing
204  results and one 16S sample (from Block 1 NR harvest rhizosphere) was identified as an outlier

205 based on NMDS visual inspection and removed from analysis (see Supplementary Materials).

206 2.6 Root Exudate and Soil Metabolomics Data Acquisition

207 For untargeted metabolomics preparation and analysis, lyophilized root exudates and 10g of
208  frozen soil samples were sent on dry ice to Colorado State University Proteomics and

209  Metabolomics Facility (Fort Collins, CO, USA). Briefly, root exudates and soil samples were
210  treated with a 50% or 80% MeOH-H-0 solution, and then 1% formic acid was added to the soil
211 samples. Samples were dried under a N2-stream, treated with 0.05 mL of methoxyamine

212 hydrochloride in pyridine (25 mg/mL), and then treated with TMSTFA+1%TMCS for
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213  derivatization prior to analysis by gas chromatography-mass spectrometry (GC-MS; further

214  detail in Supplementary Materials).

215 Prepared samples were injected into a Trace 1310 GC coupled to a Thermo ISQ mass

216  spectrometer. Peak detection, alignment, and filling was performed using XCMS (version 4.2.2),
217  and RAMCIlustR (version 1.2.4) was used to additionally normalize, filter, and group features
218  (Smith et al. 2006, Broeckling, 2014). Feature matching was performed using the NIST 20 GC
219  Method / Retention Index Database and the MS Dial GC-MS library (Babushok et al. 2007, Lai
220 etal. 2017).

221 2.7 Univariate Data Analysis

222 Analysis of variance (ANOVA) was performed to test for significant effects and

223  interactions of experimental factors Genotype (H, Hy, NR, PO), Time (Midseason, Harvest) and
224 Soil Compartment (Bulk, Rhizosphere) on microbial richness based on the Chaol Index (Chao
225 1984). When applicable, pairwise treatment means were compared with the Fisher’s Least

226  Significant Difference (LSD; de Mendiburu 2023).

227 The package ANCOMBC (Analysis of Compositions of Microbiomes) was used to assess
228  differentially abundant bacterial and fungal taxa across bulk and rhizosphere soils at the family
229  level (Lin et al. 2020). Each genotype was analyzed at the midseason and harvest time point
230  against its own bulk soil, using the bulk soil as a reference to assess differentially abundant taxa
231  based on fold change values.

232 Metabolomics analysis was performed in Metaboanalyst 5.0 (Pang et al. 2021). To delineate
233 which root exudates and soil metabolites were differentially abundant, one-factor ANOVA, fold
234  change analysis and Wilcoxon t-tests were applied on each metabolite for every pairwise

235  comparison of experimental factors using a fold change threshold of 1.5. Metabolites with a

10
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236  log2(fold change) value of >1.5 and a False Discovery Rate-adjusted p-value of <0.10 were

237  considered significantly (<0.05) or marginally (<0.1) different.

238 2.8 Multivariate Analysis

239 To test for significant effects and interactions between carrot genotype, soil compartment,
240  and time on microbial community composition, permutational analysis of variance

241 (PERMANOVA) was performed on Bray-Curtis dissimilarities (Anderson 2001). A pairwise
242 PERMANOVA post- hoc test was applied when appropriate. Similarly, PERMANOVA was
243  used to distinguish the factors that significantly affected soil metabolome composition based on
244  Euclidean distances. Multivariate homogeneity of group dispersions (beta dispersion) was

245  similarly evaluated for microbial community compositions using the function ‘betadisper’ from
246  vegan (Oksanen et al. 2022). PERMANOVA was carried out using the ‘adonis2’ function.

247 To assess associations between microbial community and metabolome dissimilarities, Mantel
248  tests between distance matrices were performed in a pairwise manner using the ‘mantel’ function
249  from vegan (Mantel, 1967; Oksanen et al. 2022). Bray-Curtis dissimilarity and Euclidean

250 dissimilarity matrices were constructed for microbial community and metabolome datasets,

251  respectively.

252 Distance-based redundancy analysis (dbRDA) was used to assess associations between

253  metabolite concentrations and microbial community dissimilarity. To reduce data redundancy
254  and the number of explanatory variables, root exudate and soil metabolites were subjected to a
255  bottom-up clustering method wherein metabolites were clustered by similar behavior within the
256  dataset using k-means clustering, such that metabolites with highly similar concentrations across
257  all samples were reduced to a single variable. The minimum number of clusters was chosen such

258  that within sums of squares was minimized, and that the means of each metabolite which were

11
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259  significantly different from the averaged value were minimized. Root exudate and soil

260  metabolite clusters were then used as explanatory variables in dbRDA, and 16S and ITS

261  communities were modeled separately. The significance of a cluster for explaining variation in
262  microbial community dissimilarity in each doRDA was assessed with a permutation test (999
263  permutations).

264 Raw sequence fastq files will be deposited into the NCBI SRA repository upon

265  manuscript acceptance.

266 3. Results

267 3.1 Microbial Community Structure

268 Final feature tables contained 25350 (16S) and 5956 (ITS2) ASVs. The most abundant five
269  phyla across all bacterial communities, representing nearly 70% of the total community, were
270  Proteobacteria (26%), Actinobacteriota (14%), Acidobacteriota (13%), Firmicutes (9%) and
271  Bacteroidota (7%). Likewise, the top three phyla across all fungal communities, representing
272 96% of the total community, were Ascomycota (59%), Mortierellomycota (19%), and

273  Basidiomycota (18%). In total, 43 bacterial phyla and 16 fungal phyla were represented by at
274 least one taxon.

275 Soil bacterial richness varied across genotypes and this effect was dependent on soil

276 compartment (genotype x compartment, p < 0.05). Specifically, compared to their respective
277  bulk soils, richness was increased by 19% in the rhizosphere of genotype Hy, and decreased by
278  10% in genotype PO (p < 0.05, Figure 1); neither genotypes NR nor H altered bacterial richness
279  in their rhizosphere as compared to their respective bulk soils. Additionally, when comparing the
280  rhizosphere across genotypes, bacterial richness was ~15% higher in genotypes H and Hy as

281  compared to PO, and no other differences between genotypes were observed. When comparing

12
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282  the bulk soils across genotypes, bacterial richness also varied (p < 0.05). Specifically, bulk soil
283  bacterial richness from plots planted with Hy was 14% lower than that of plots planted with NR.
284  Further, the bulk soil of both Hy and NR were similar in richness to PO and H. Bacterial richness
285  did not change across the two time points in either the rhizosphere or bulk soil.

286 Fungal richness was variably affected by soil compartment, genotype, and time (genotype x
287  soil compartment, p <0.06, soil compartment x time, p < 0.05). Specifically, compared to its bulk
288  soil, genotype H increased fungal richness by 13% in the rhizosphere, and no other genotypes
289  significantly altered fungal diversity between bulk and rhizosphere soil (Figure 1). Across

290  genotypes, fungal richness was similar in the rhizosphere, however, bulk soil richness varied.

291  Specifically, bulk soil fungal richness from plots planted with genotype H was 9% lower

292  compared to other bulk soils. Fungal richness was also 9% greater in the rhizosphere compared
293  to the bulk soil at midseason, and this difference did not persist through harvest. From mid-

294  season to harvest, fungal richness declined 8% in the rhizosphere, while bulk soil richness did
295  not change overtime (Figure S1).

296 Bacterial community composition was distinct across genotypes, however, this effect was
297  only present in the rhizosphere and not the bulk soil (PERMANOVA, genotype X soil

298  compartment, p <0.10, Table 2, Figure 2). Across genotypes, bacterial communities also differed
299 in the rhizosphere as compared to their respective bulk soils (pairwise PERMANOVA, p<0.05)
300 and exhibited increased dispersion (betadisper, p<0.05). In the rhizosphere, when comparing

301  across genotypes, bacterial communities were different across genotypes Hy, PO and NR, but not
302  H, as such, H was similar to all genotypes. Across the mid-season and harvest time points,

303  bacterial community composition was distinct in both rhizosphere and bulk soils (pairwise

304 PERMANOVA, p<0.05).

13
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Fungal communities differed in the rhizosphere as compared to the bulk soil
(PERMANOVA, soil compartment, p<0.01, Table 2, Figure 2), and exhibited increased
dispersion (betadisper, p<0.05). When comparing across genotypes, independent of soil
compartment, fungal communities in plots planted with genotype NR were different from plots
planted with H (PERMANOVA, p<0.05, Table 2). Similar to that observed with the bacteria,
fungal community composition was unique in both rhizosphere and bulk soils across the mid-

season and harvest time points (PERMANOVA, soil compartment x time, p< 0.01, Figure 2).

3.2 Rhizosphere Microbial Recruitment

To determine whether root exudates selectively recruit microbial taxa in the rhizosphere, we
categorized differentially abundant microbial families as positive or negative responders to root
growth in a framework adapted from Zhalnina et al. (2018). Bacterial recruitment at the family
level was distinct across genotypes and across time, though this trend was driven by differences
in abundance of relatively few taxa (Figure 3). Specifically, Rhodocyclaceae was the only taxon
to display temporal consistency, and positively responded to genotype NR at both midseason and
harvest. Additionally, Nitrsosphaeraceae responded positively to both genotype NR and H at
midseason. At midseason, the top positive responder for each genotype was order
Kapabacteriales (family unclassified), Rhodocyclaceae, order SJA-28 (family unclassified), and
Methylophilaceae for genotypes Hy, NR, PO and H, respectively. At harvest, the top positive
responder for each genotype was Methylophilaceae, Flavobacteriaceae, Micrococcaceae, and
Sphingobacteriales, for genotypes Hy, NR, PO and H, respectively. Conversely, the top negative
responders for each genotype at midseason were Chthonomonadaceae, phylum Chlorofexi
(family unclassified), Anaeromyxobacteraceae, and phylum NB1-j (family unclassified), for

genotypes Hy, NR, PO and H, respectively. At harvest, no negative responders were identified
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for genotype Hy. Families Peptostreptococcaceae, order Polyangiales (family unclassified) and
order Bacillales (family unclassified) were top negative responders for genotypes NR, PO and H,
respectively.

Fungal recruitment was also distinct across genotypes and time (Figure 3). At midseason, the
top positive responder for each genotype was Bulleraceae, Alphamycetaceae, Entolomataceae,
and class Classiculales (family unclassified) for genotypes Hy, NR, PO and H, respectively. At
harvest, the top positive responder for each genotype was Entolomataceae for genotypes Hy and
H, Symmetrosporaceae for genotype NR, and class Agaricomycetes for genotype PO.
Orbiliaceae negatively responded to genotype NR at midseason. Basidiomycota,
Symmetrosporaceae Agaricomycetes and Entolomataceae were top negative responders at
harvest for genotypes Hy, NR, PO and H, respectively.

3.3 Root Exudate and Soil Metabolite Composition

To determine whether carrot genotypes exuded different compositions of low-molecular
weight compounds and if soil metabolites were differentially abundant between genotypes, 128
and 114 unigue compounds were annotated for the root exudate and soil metabolite extractions,
respectively. Of those, 33 root exudates and 49 soil metabolites were identified by our database
search. Notably, three unidentified root exudates (C056, C063, C115) made up roughly 50% of
the total spectral abundance of exudates across all genotypes, and 20-30% of the total spectral
abundance was composed of unidentified, low abundance compounds (see Supplemental
Materials).

No root exudates were unigque between genotypes, however, 37 compounds were
differentially abundant across genotypes. These included sucrose, citric acid, psicose, malic acid,

ketohexose, galactose, quinic acid, scyllo-inositol, methyl 2,6-dihydroxybenzoate (for simplicity,
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351 hereafter “benzoate”), alpha-(4-dimethylaminophenyl)-omega-(9-phenanthryl)octane (hereafter
352  “octane”), silane-diethylisohexyloxy(3-methylbutoxy; hereafter “silane), as well as 30

353  unidentified compounds. Of these 37 compounds, 34 were most abundant in genotype H (Figure
354  4). Conversely, genotype NR consistently had a lower abundance of most compounds compared
355  to other genotypes. Of the identified compounds, genotype Hy was more abundant in benzoate
356  and scyllo-inositol. Genotype NR had a lower abundance of all compounds except for citric acid,
357  which was lowest in genotypes H and PO. Genotype NR was relatively low in sucrose as

358  compared to other genotypes; sucrose was relatively most concentrated in genotypes PO and H
359  (Figure 4).

360 Soil metabolite composition was different in the rhizosphere compared to the bulk soil, and
361  was different across time, but did not differ between genotypes (PERMANOVA, soil

362 compartment, p<0.05, time, p<0.05). Two unidentified compounds were highly different

363  between soil compartments; specifically, compound C041 was highly abundant in the

364  rhizosphere and C076 was highly abundant in the bulk soil. More soil metabolites shifted across
365 time than in response to soil compartment, and several compounds were differentially abundant

366  at the midseason or harvest sampling point (Figure S2, Table S3).

367 3.4 Microbe-Metabolite Relationships

368 Root exudates and soil metabolites were differentially associated with fungal and

369  bacterial communities (Table 3). Specifically, bacterial, but not fungal community composition
370  was significantly associated with root exudate chemical composition (mantel test, p<0.05) and
371 was marginally associated with soil metabolite composition (p<0.1). Moreover, fungal

372 community dissimilarity was not significantly associated with the compositional dissimilarity of

373  either root exudates or soil metabolites (Table 3).

16


https://doi.org/10.1101/2024.03.12.583384
http://creativecommons.org/licenses/by-nc-nd/4.0/

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.583384; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To assess if and how root exudate and soil metabolite concentrations explained soil microbial
community composition, root exudate and soil metabolites were each first clustered into six
groups based on similarity in spectral intensity using k-means clustering. Root exudate
concentrations accounted for a significant proportion of the variation in rhizosphere bacterial
(35%), but not fungal community dissimilarity (Figure 5). Conversely, clustered soil metabolites
accounted for a significant portion of fungal (11%), but not bacterial community dissimilarity
(Figure 6). Root exudate concentrations were not significantly associated with soil metabolite
composition in the rhizosphere. Root exudate clusters, specifically cluster 2 (compounds C056,
C063, C115) and cluster 6 (oxalic acid), were significantly associated with rhizosphere bacterial
communities across genotypes (Figure 5). In the constrained ordination, cluster 2 presented a
positive association across axis 1 and 2, and was positively associated with rhizosphere microbial
community dissimilarity of genotype Hy. Oxalic acid was positively associated with axis 1 and
negatively associated with both axis 2 and rhizosphere microbial community dissimilarity of
genotype NR (Figure 5). Among soil metabolites clusters, cluster 4 and cluster 5 were
significantly associated with fungal community composition. In the constrained ordination, soil
cluster 4 was positively associated with axis 1 and 2 as well as with midseason fungal
communities, and more so of those in the rhizosphere. Soil cluster 5 had a strong positive
association with axis 2 and was positively associated with rhizosphere fungal communities at
harvest (Figure 6).

4. Discussion
Across four phenotypically diverse genotypes of carrot, we determined the influence of
novel trait breeding on root exudate, soil metabolite and soil microbial community composition.

Including two established and two novel genotypes, we tested the hypothesis that root exudation
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mediates microbial rhizosphere recruitment, and that genotype-specific shifts in root exudate
composition would alter microbial communities and soil metabolite composition. In support of
hypothesis 1.1, genotypes differentially exuded low-molecular weight compounds and hosted
compositionally different microbial communities (Figures 2, 4). In support of hypothesis 1.2,
microbial recruitment from a bulk soil to the rhizosphere soil was distinct across genotypes and
across the growing season (Figure 3). Hypothesis 2.1 was not supported, as root exudate and soil
metabolite composition were distinct and were not associated with one another (Table 3).
Finally, hypothesis 2.2 was partially supported, as root exudates were significantly associated
with bacterial and not fungal communities, while soil metabolites were only weakly associated

with fungal and bacterial communities (Figures 5, 6, Table 3).

4.1 Root exudation & soil metabolites exert a differential influence on bacterial and fungal
communities

Root exudates were significantly associated with bacterial, but not fungal communities,
suggesting that bacteria are the primary responders to compositional differences in low
molecular weight compounds from root exudates in the rhizosphere. Additionally, root exudate
chemical composition explained 35% of the variation across the rhizosphere bacterial
communities while categorical differences in genotypes only explained 4% of the variation
(Figure 5). These observations differ from previous work on carrots in a greenhouse setting with
artificial soil, where the carrot genotype accounted for 50% of bacterial variation (Trivifio 2023),
alluding to the need to better understand the mechanisms shaping rhizosphere bacterial
communities in field soil.

Our results are indicative of a shared root exudate metabolome across carrot genotypes where

differences in the concentration of individual compounds, rather than the presence of unique
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420  compounds among genotypes, ultimately shape the composition of the rhizosphere bacterial

421  community. Indeed, the compounds with the strongest associations with bacterial community
422  compositional dissimilarity were highly abundant across all genotypes. Notably, oxalic acid was
423  significantly associated with bacterial community composition and is universally recognized for
424  itsrole in plant nutrient acquisition through the solubilization of phosphorus (Bolan et al. 1994).
425  Oxalic acid was previously reported as a major organic acid in root exudates of horticultural

426  crops (Xiang et al. 2020, Ling et al. 2011, Vanc¢ura & Hovadik 1965). Additionally, the

427  correlation between oxalic acid concentration and bacterial community composition aligns with
428  previous observations that organic acids can be highly explanatory of bacterial community shifts.
429  (Ulbrich et al. 2022, Landi et al 2006, Shi et al 2011). This indicates that genotype-specific

430  differences in oxalic acid production, and other currently unidentified compounds, may affect
431  bacterial community composition in the carrot rhizosphere.

432 Soil fungal communities were more strongly associated with the soil metabolome as

433  compared to the root exudate metabolome. Fungal communities in the rhizosphere were distinct
434  from the bulk soil, though there were no effects across genotypes, and fungal communities were
435  not well-explained by root exudate composition. Based on these results, fungal recruitment may
436 be more mediated by differences in soil carbon availability than specific metabolic capabilities,
437  as compared to bacteria. Though, soil fungal communities did differ from mid-season to harvest,
438  and these changes were associated with variation in soil metabolite concentration (Figure 6),
439  suggesting that fungal metabolism is more influenced by seasonal conditions than plant

440  genotype. Some of the low molecular weight compounds identified in the soil compartment have
441  been reported to be produced by fungi, suggesting that they are of microbial and not plant-

442  derived origin. Specifically, the aromatic compound danthron can be produced by some members
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443  of the Ascomycota (Anisha et al. 2018). Further, an isolate of Fusarium has been reported to

444  produce rhein (You et al. 2013). Both of these compounds are derivatives of anthraquinone,

445  which is produced by fungi across systems and possesses pathogen suppressive qualities (Gessler
446  etal. 2013, Fouillaud et al. 2016, Masi et al. 2020). These compounds were members of soil

447  metabolite clusters four and five, which were significantly associated with fungal community
448  composition (Figure 6). This suggests certain fungi can modify the soil metabolome in

449  agricultural settings through the production of danthron, rhein, and possibly several unidentified
450  compounds. Additionally, greater soil concentrations of glucose, maltotriose and trehalose at
451  harvest suggest a shift in fungal carbohydrate metabolism throughout the growing season (Table
452  S3). To further explore this possibility, potential links between bulk soil composition, fungal

453  communities, and the soil metabolome could be more closely interrogated.

454 Interestingly, metabolite profiles from rhizosphere soil were neither significantly correlated
455  with root exudate metabolite composition nor bacterial or fungal community composition. These
456  observations are counter to the prediction that root exudate composition would directly modulate
457  metabolite presence in the rhizosphere and govern rhizosphere microbial composition (Bi et al.
458 2020, Song et al. 2020). It is possible this is because root exudates are directly and quickly

459  assimilated by rhizosphere bacteria and are not directly incorporated into the rhizosphere

460  metabolome. It has been previously observed that root exudates only diffuse into a small area,
461  with estimates of diffusion from 2 to 10 mm of soil away from the root (Sauer et al. 2006,

462  Raynaud 2010). This result is consistent with the hypothesis that root exudates are rapidly

463  utilized by microorganisms and have little influence on soil metabolomes. Unique profiles of soil
464  metabolites as compared to the plant-derived metabolites present in the root exudates in this

465  study indicates that soil metabolome composition is more greatly shaped by bulk soil
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composition and microbial production rather than direct plant inputs. Notably, there is a lack of
literature evaluating root exudates and soil metabolites in tandem as we present here, and more
research is needed to understand if there is a relationship between the two at various spatial
scales in the rhizosphere.

4.2 Root exudation is distinct across genotypes and most different between heirloom and
nematode resistant genotypes

While root exudate profiles were similar in membership overall across genotypes,
abundances of certain compounds were strikingly different among genotypes. Most notably,
genotype H, an heirloom genotype, produced greater abundances of several carbohydrates,
organic acids and numerous unidentified compounds compared to other genotypes, whereas
genotype NR produced less of these compounds as compared to other genotypes (Figure 4).
While underexplored in vegetables, domestication of other crops shifts root exudate profiles,
suggesting that differences between genotypes are a consequence of breeding history, and that
older genotypes may maintain distinct root exudation patterns as compared to more heavily bred
genotypes (Yue et al. 2023). The heirloom genotype H has been previously reported to respond
more positively to root colonization of arbuscular mycorrhizal fungi, compared to hybrid
genotypes (Pearson et al. 2020). Our results provide further evidence that breeding history could
shift plant-microbe interactions in a vegetable system.

In this study, the heirloom genotype H had higher exudation of organic acids and
carbohydrates, perhaps indicative of greater resource investment in microbial stimulation than
other genotypes. This result is consistent with the emerging hypothesis that heirloom genotypes
benefit more from plant-soil interactions than highly bred genotypes that prioritize yield (Pearson

et al. 2020). Carbohydrates are notably consequential for soil microbes, especially bacteria, in
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489  the rhizosphere due to their abundance in root exudates. Specifically, they have been associated
490  with enhanced microbial activity, and have been linked to greater phytohormone production in
491  some plant-associated bacteria as well as greater mineralization of soil organic matter when root
492  exudate-nitrogen is low, harboring potential benefits for plant growth (Lloyd et al. 2016, Seitz et
493  al. 2022).

494 Additionally, in this study, a distinct root exudate profile was observed from the nematode
495  resistant genotype NR relative to other genotypes (Figure 4). While nematode resistance was not
496  assessed in this study, relationships between these two traits should be further explored,

497  especially as nematode presence can influence microbial carbon and nitrogen cycling through
498  trophic interactions (Kane et al. 2023). Our results suggest that novel trait introduction, in

499  addition to breeding history of genotypes, might shift root exudate composition, and more

500 specific links between root exudates and traits should be investigated.

501 4.3 Bacterial recruitment in the rhizosphere is distinct across genotypes and suggests differential
502  consequences for soil biological functioning

503 Bacterial selection in the rhizosphere from a bulk soil varied across genotype, root exudate
504  composition, and time-point, providing support that microbial recruitment is associated with

505 plant developmental stage and phenotypic identity (Chaparro et al. 2018, de Ridder-Duine et al.
506 2005, Micallef et al. 2009, Aira et al. 2010). This genotype-mediated diversification of soil

507  bacterial communities through root exudation might indicate consequences for community

508 functional capacities (Figure 3). For example, Rhodocyclaceae was selectively enriched in

509 genotype NR at both midseason and harvest, and has previously been identified as a denitrifying
510 bacteria, as it contains nirS (Yu et al. 2018). Nitrsosphaeraceae was positively associated with

511  genotypes NR and H; Nitrsosphaeraceae is an ammonia oxidizing bacteria, which are considered
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indicators of soil health (Mundepi et al. 2019). These results align with observations that
genotype NR hosts distinct N-associated functions (e.g., ammonia oxidation; Trivifio et al.
2023). Genotype H was additionally enriched with members of the Chitinophagaceae, a family
identified as containing N fixing taxa, at midseason (Martin et al. 2022). Methylophilaceae, a
methylotroph, was another notable taxon that was enriched in genotype Hy at midseason and
genotype H at harvest. Methylotrophs have been previously identified to utilize root exudates in
the rhizosphere of pea and wheat (Macey, 2017). Further, they have been reported to synthesize
phytohormones including auxin and cytokinins, and their role as plant-growth promoters is being
explored for agricultural uses (Ponnusamy et al. 2017, Ivanova et al. 2001).

Genotype NR had lower abundances of most root exudates (Figure 4), and previous research
has identified this genotype as having relatively higher nitrogen use efficiency, possibly through
the selection of specific bacterial taxa. In contrast, genotype H had higher abundances of most
root exudates, suggesting a larger investment in microbial stimulation overall. These results
suggest that across genotypes, there is a general trend towards functional redundancy and
selection for N-related functions, however, the mechanisms of this selection across genotypes
may be different.

4.4 Limitations and Future Directions

While we used a GC-MS based approach for this study that is coarser in resolution than
other technologies used in metabolomics inquiries, differences between genotypes may be
discriminated more strongly by employing methods such as high-resolution accurate mass LC-
MS that could further characterize compounds that express genotype-specific patterns.
Additionally, while our results coincide with previous findings that heirloom and nematode

resistant genotypes express distinct characteristics, the inclusion of multiple genotypes of
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535  varying ancestral lineage or degrees of nematode resistance could strengthen this line of inquiry.
536  To bridge links between plant genetics and root exudation, transcriptomic evaluation of carrot
537  gene expression to characterize the functional genomics underlying exudate composition should
538 also be explored. Finally, more quantitative measures of root exudation rates and soil microbial
539  processes could provide valuable insights into genotype-mediated shifts in soil biological

540  outcomes.

541 4.5 Conclusions

542 The results of this study suggest that plant- soil microbe interactions are influenced by trait
543  breeding in organic carrot. This aligns with previous findings that carrot genotypes host distinct
544  root-associated microbiomes that potentially differ in their functionality (Trivifio et al. 2023,
545  Abdelrazek et al. 2020). Moreover, we show that root exudation patterns were distinct across
546  genotypes. We provide further evidence that selection for microbial taxa with distinct N-related
547  functions is influenced by genotype identity, and that this selection could explain previously
548  demonstrated differences in nutrient use efficiency in novel genotypes. Further, the heirloom
549  genotype potentially enriched plant-growth promoting bacterial activity in the rhizosphere

550 through exuding relatively greater levels of carbohydrate and organic acid production and

551  selecting for taxa with demonstrated potential for phytohormone production and nitrogen

552  fixation, relative to genotypes of contrasting breeding histories. These results indicate that both
553  breeding history and novel trait introduction in plant genotypes can diversify plant-microbe

554 interactions and resulting soil biological functional capacities.

555 Root exudation was significantly associated with bacterial communities, suggesting that

556  breeding for specific root exudate profiles to target and manipulate rhizosphere bacteria could be

557  astrategy for plant or soil health objectives. However, more research is needed to understand the
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558 drivers of plant-fungal relationships and potential applications for organic agriculture, especially
559 as strengthening beneficial fungal associations is a notable priority in organic agroecosystems.
560  Through the investigation of plant-microbe interactions, we show that cultivar development that
561  addresses grower needs can occur in tandem with considerations for soil biological functioning,
562  supporting a systems-based philosophy in agricultural practices.

563
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Figure 1. Boxplots demonstrate the differences in bacterial (A) and fungal (B) Chaol richness
between bulk and rhizosphere soils for each genotype. Medians are represented in the IQR region
of the box as horizontal black lines, whereas diamonds represent the mean. Letters denote
significant to marginally significant differences (p<0.1) between treatment means based on
Fischer’s LSD.
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Figure 2. Global visualization of bacterial (A, B) and fungal (C, D) p-diversity and dispersion.
Non-metric multidimensional scaling was performed on Bray-Curtis dissimilarities at three
dimensions and visualized using axes 1 and 2. Left: Bulk soils in the ordination are highlighted,
and ellipses show the 95% confidence interval for each genotype. Right: Rhizosphere soils in the
ordination are highlighted, and ellipses show the 95% confidence interval for each genotype. M,
Midseason, H, Harvest.
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979  Figure 4. Differential abundance of root exudates across genotypes. The spectral intensity of
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982  Figure was constructed in Metaboanalyst 5.0.
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community composition. Bacterial communities are colored by genotype, and polygons represent
the convex hulls of each geometric distribution of points on the ordination within a genotype.
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1046  Figure 6. Distance-based redundancy analysis of soil metabolite clusters on soil fungal
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1059

1060  Table 1. Assigned traits of each carrot genotype. Acquired from https://carrots.eorganic.info/.

Genotype Code Characteristic Trait  Color Root Shape
Red Core Chantenay H Heirloom Orange Short, cylindrical
Bolero Hy Hybrid Orange Medium, cylindrical
Nb8503 NR Nematode Resistant Orange Long, thin cylindrical
P0114 PO Purple Purple-orange ~ Medium, conical
1061
1062

1063  Table 2. Results of PERMANOVA tests of experimental factors on bacterial and fungal
1064  community composition. P-values for which post-hoc tests were performed on the associated
1065  factor or interaction are bolded. G, Genotype; SC, Soil Compartment; T, Time.

1066

Bacteria Fungi
R? P R? P
Genotype 0.040 0.043 0.043 0.047
Soil Compartment 0.029 0.002 0.056 0.001
Time 0.016 0.001 0.033 0.001
Block 0.025 0.001 0.027 0.002
G:SC 0.040 0.061 0.04 0.113
GT 0.036 0.715 0.033 0.481
SC:T 0.016 0.002 0.023 0.005
G:SC:T 0.038 0.303 0.038 0.184
1067
1068

1069  Table 3. Results of Mantel tests between soil microbial and metabolite dissimilarities.

Bacteria Fungi
Pearson Spearman Pearson Spearman
r P r P r P r P
Soil 0.1112 0.109 0.1193 0.086 0.019 0.391 0.037 0.318
Metabolome
Root 0.2409 0.043 0.236  0.037 0.010  0.47 —.0.002 0.504
Exudates
1070
1071
1072
1073
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1095  Figure S1. Fungal richness at each sampling timepoint. Boxplots demonstrate the differences in
1096  Chaol richness between bulk and rhizosphere soils. Medians are represented in the IQR region
1097  of the box as horizontal black lines, whereas diamonds represent the mean. Letters denote

1098  significant to marginally significant differences (p<0.1) between treatment means based on
1099  Fischer’s LSD. M, Midseason; H, Harvest, Blk, Bulk soil, Rh, Rhizosphere.
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Figure S2. Differential abundance of soil metabolites across sampling timepoints. See Table S3
for metabolite identities. Plot was constructed in Metaboanalyst 5.
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Nb1RhH; Nb8503 Block 1, Rhizosphere at Harvest was removed due to unusual results as
visualized in the NMDS plot).
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1172
1173  Table S1. Crop rotation history for experimental plots. Acquired from West Madison
1174  Agricultural Research Station Staff.

1175
Year Crop Inputs
2021 Sorghum Sudangrass Cover
Crop
2020 Oat grain
2019 Pepper Manure inputs: 88-232-135
2018 Soybean
2017 Oat grain + straw
2016 Grass hay
1176
1177

1178  Table S2. Soil test history for experimental plots. Acquired from West Madison Agricultural
1179  Research Station Staff.

Soil Name Kegonsa series
Soil Texture  Silt loam
Slope 4%
Test Date Plow Depth (in) Avg AvgOM AvgP AvgK
pH (%) (ppm)  (ppm)

10/22/2021 6 73 3 52 185
10/19/2020 6 7.1 34 59 145
12/11/2018 7 71 238 54 143
11/15/2017 7 7.1 23 29 94
11/22/2016 7 6.8 2.9 28 123
12/2/2015 7 74 25 59 220
12/6/2013 7 69 2.7 43 179
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1191
1192
1193  Table S3. Identified soil metabolites referenced in Figure S2.

Compound name Code Up-expression
Cyclohexasiloxane, dodecamethyl N10 Midseason
2,3-Dimethylquinizarin, bis(trimethylsilyl) ether  N20 Midseason
4-Hydroxyanthraquinone-2-carboxylic acid N33 Midseason
3-Hydroxyflavone, triethylsilyl ether N39 Midseason
Silane, diethylhexadecyloxy(2-methoxyethoxy)  N44 Midseason
Rhein N45 Midseason
D-Trehalose N1 Harvest
DL-beta-Hydroxybutyric acid N2 Harvest
Glucose_1 N3 Harvest
Maltotriose N4 Harvest
1-Isopropoxy-2-trihexylsilyloxybenzene N36 Harvest
Norleucine N38 Harvest
Methyl 2-Trimethylsiloxy-octadecanoate N48 Harvest

1194
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1212
1213  Additional Metabolomics Methodology

1214  Root exudates: Each sample in the Falcon tube (50 mL,) as provided, was treated with 1 mL 50%

1215  MeOH-Water. Vortexed thoroughly, sonicated (bath) for 30 min, centrifuged (3000 RPM, 15 min, 4°C).
1216  The supernatant was recovered into Glass vial (2 mL) and stored at -20°C overnight. The vials were

1217  centrifuged again centrifuged (3000 RPM, 15 min, 4°C). From the supernatant, 0.2 mL was taken out for
1218  GC/MS derivatization. From the supernatant, 0.04 mL aliquot were taken from each sample to generate
1219  pooled QC samples (7 x 0.2 mL).

1220  Soil: Portions of submitted soil samples were frozen (-80°C) and lyophilized. The lyophilized soil

1221  samples were then pulverized using a bullet blender. ~ 150 mg of powdered soil samples were taken in
1222  Eppendorf tubes and treated with 1 mL water. Vortexed thoroughly, sonicated (bath) for 30 min,

1223  centrifuged (10000 RPM, 15 min, 4°C). From the supernatant, 0.75 mL taken out into new Eppendorf.
1224  Vortexed thoroughly, sonicated (bath) for 30 min, centrifuged (10000 RPM, 15 min, 4°C), frozen, and
1225  lyophilized. To these lyophilized samples, 0.75 mL 80% MeOH-Water with 0.1% formic acid was added.
1226  Vortexed thoroughly, sonicated (bath) for 10 min, centrifuged (10000 RPM, 15 min, 4°C). Stored at -20C
1227  for 2 h and centrifuged again (10000 RPM, 15 min, 4°C). From the supernatant, 0.5 mL for GC. From the
1228  supernatant, 0.1 mL aliquot were taken from each sample to generate pooled QC samples (14 x 0.5 mL).

1229  Derivatization: All samples were dried under N2-stream. The dried samples were treated with 0.05 mL
1230  of methoxyamine hydrochloride in pyridine (25 mg/mL), vortexed and heated at 60°C for 45 min. The
1231  vials were then sonicated for 10 min and incubated again for another 45 min. The samples were then
1232  centrifuged at 2000 RPM for 5 min, treated with MSTFA+1%TMCS (0.05 mL), vortexed thoroughly and
1233  incubated at 60°C for 35 min. The samples were then put into inserts and analyzed by GC/MS.

1234  GC-MS Data Acquisition: Metabolites were detected using a Trace 1310 GC coupled to a Thermo I1SQ
1235  mass spectrometer. Samples (1 pL) were injected at a 10:1 split ratio to a 30 m TG-5MS column (Thermo
1236  Scientific, 0.25 mm i.d., 0.25 pm film thickness) with a 1.2 mL/min helium gas flow rate. GC inlet was
1237  held at 285°C. The oven program starts at 80°C for 30 s, followed by a ramp of 15°C/min to 330°C, and
1238  an 8 min hold. Masses between 50-650 m/z are scanned at 5 scans/sec under electron impact ionization.
1239  Transfer line and ion source are held at 300 and 260°C, respectively. QC samples were injected after
1240  every 6 experimental samples

1241  Data analysis. Peak detection, alignment, and peak filling was performed on .cdf converted files using
1242 XCMS in R version 4.2.2. Additional feature clustering was performed using RAMCIlustR version 1.2.4
1243  in was used to normalize, filter, and group features into spectra.XCMS (Smith 2006)(Tautenhahn 2008)
1244  output data was transferred to a ramclustR object using the rc.get.xcms.data function. Feature data was
1245  extracted using the xcms featureValues function. Features which failed to demonstrate signal intensity of
1246  at least 1.5 fold greater in QC samples than in blanks were removed from the feature dataset. 718 of 3117
1247  features were removed. Features with missing values were replaced with small values simulating noise.
1248  The absolute value was used as the filled value to ensure that only non-negative values carried forward.
1249  Zero values were treated as missing values. Variance in quality control samples was described using the
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1255  features, 66 were corrected for run order effects. Features were clustered using the ramclustR algorithm
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