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Abstract

A key challenge in understanding subcellular organization is quantifying interpretable measurements of
intracellular structures with complex multi-piece morphologies in an objective, robust and generalizable
manner. Here we introduce a morphology-appropriate representation learning framework that uses 3D
rotation invariant autoencoders and point clouds. This framework is used to learn representations of
complex multi-piece morphologies that are independent of orientation, compact, and easy to interpret. We
apply our framework to intracellular structures with punctate morphologies (e.g. DNA replication foci)
and polymorphic morphologies (e.g. nucleoli). We systematically compare our framework to image-based
autoencoders across several intracellular structure datasets, including a synthetic dataset with pre-defined
rules of organization. We explore the trade-offs in the performance of different models by performing
multi-metric benchmarking across efficiency, generative capability, and representation expressivity
metrics. We find that our framework, which embraces the underlying morphology of multi-piece
structures, facilitates the unsupervised discovery of sub-clusters for each structure. We show how our
approach can also be applied to phenotypic profiling using a dataset of nucleolar images following drug
perturbations. We implement and provide all representation learning models using CytoDL, a python

package for flexible and configurable deep learning experiments.

Introduction

A central goal of cell biology is to understand the spatial and dynamic organization of the components
within the cell and how their interactions contribute to cell function. Enabled by advances in imaging
methods, we are now at the dawn of the big data era for cellular imaging*, in which unprecedented
amounts of rich image datasets can enable quantitative characterization of cellular organization and its

connections with cellular phenotype.
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The term cellular organization encompasses multiple aspects of a cell’s configuration that must be
unpacked before further discussion. Here we focus on two of these aspects: spatial protein distributions
and shape of multi-piece intracellular structures. For example, the spatial pattern of fluorescently labeled
PCNA, representing the punctate morphology of DNA replication foci, changes throughout the cell cycle,
making it difficult to quantify due to its dynamic and complex nature. These types of spatial distributions
are usually analyzed via the texture patterns they represent, for example computing Haralick texture
features®. However, the biological meaning of some of these features, such as the second angular moment
of texture, is difficult to understand. Therefore, for spatial protein distributions, we face the challenge of

developing a robust and generalizable analysis workflow that facilitates biological interpretation.

On the other hand, major organelles or subcellular structures can often be analyzed by segmentation,
which separates the foreground signal from the background. Intracellular structures composed by a single
segmented piece, such as the cell itself or the nucleus, can then be studied via a range of features
including, among other methods, shape decomposition using spherical harmonic expansion®7. This
approach is, however, mainly used for cell and nuclear shapes because it is limited to continuous shapes,
and does not easily apply to complex, multi-piece structures like the Golgi apparatus, which has a
discontinuous shape. In fact, most intracellular structures exhibit a polymorphic morphology consisting of
multiple pieces, which presents an additional challenge for interpretable image analysis pipelines. While
each individual piece could be segmented and measured, the entirety of the multi-piece structure cannot

be easily represented as a whole.

To overcome these two challenges, we demonstrate the use of 3D point clouds to encode biological data
in microscopy images, combined with an unsupervised representation learning framework for single cell
feature extraction. Representation learning is a field of machine learning that has become an increasingly
popular way to extract meaningful features directly from raw data without the need for hand-engineered
features®®. These features are in the form of latent variables learned by neural networks during training,

which we refer to as representations.

An important aspect of the proposed learning framework is that it is generative, meaning we can switch
between the original point clouds and the single-cell representations learned, resulting in highly
interpretable features and addressing the first challenge described. A key contribution of this work is the
use of point clouds to incorporate intensity information present in large 3D images representing spatial
protein distribution in a segmentation-free manner. Another important contribution is the adaptation of the

point cloud-based approach to handle segmented multi-piece shapes. This is achieved using the concept
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of signed-distance field, allowing us to generalize our framework to more complex intracellular

structures, thus overcoming the second challenge described.

The representations learned by neural networks normally depend on the orientation of an object in the
image. Despite the fact that the orientation of the cells is important in many contexts, such as when cells
are subject to shear stress, during development or direct migration, it may not be of any biological
relevance in other contexts. For example, the orientation of a cell in a monolayer colony may merely
reflect the orientation of that colony relative to the microscope stage and not anything biological.
Therefore, it would be desirable to design analysis workflows where the image orientation can be factored
out of the learned representations if appropriate. We achieved this by leveraging the notion of 3D rotation
invariance to extract features that do not depend on an object’s orientation. The incorporation of
geometric information in the form of the object orientation into the representation learning process is an
example of geometric deep learning®™. By using point clouds as an unifying way of encoding image data,
we are able to overcome the challenges described above and take advantage of previous implementations

for rotation-invariant feature learning®** while extending their applications to quantitative cell biology.

Here, we first develop a rotation invariant representation learning framework that uses point clouds to
encode relevant information about the underlying biological data. We then use a synthetic dataset of
punctate structures to confirm that rotation invariant representations are not sensitive to data orientation
and are more compact when learned from point clouds compared to images. We show how 3D rotation
invariant features learned from point clouds can be used to recover unique morphological changes of
DNA replication foci across the cell cycle without supervision. We also explore the localization patterns
of multiple punctate structures and discover novel patterns of intracellular organization. Next, by adapting
our framework to handle more complex multi-piece structures, we systematically characterize sources of
shape variation of other major intracellular structures like nucleoli, Golgi, and lysosomes. Finally, we
demonstrate how the learned representations based on this framework can be used for detecting
morphological alterations in a nucleolar drug perturbation dataset, and for visualizing the average

phenotype for each drug to aid interpretability.

Results

A novel morphology-appropriate framework for learning 3D rotation invariant representations of

complex intracellular structures and holistic model evaluation
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97  The 3D rotation invariant representation learning framework has two main components. The first consists
98  of encoding the raw single-cell image data into a point cloud. This encoding process is done in a
99  morphology-appropriate manner for punctate structures and polymorphic intracellular structures, such as
100 DNA replication foci and nucleoli, respectively. The biological meaning of shape differs between these
101  two types of morphologies; we focus on representing the relative location of individual pieces in punctate
102  structures (Fig. 1a), while both relative location and shape of individual pieces are considered important
103  for polymorphic structures (Fig. 1b).
104
105  The second part of the framework consists of a neural network model that consumes the generated point
106  clouds for learning 3D rotation invariant representations of the biological data (Fig. 1c). We define
107  rotation invariance using the group of all rotations in 3D. All the neural network models are designed as
108  autoencoders®: First, an encoder network compresses the generated point clouds into vector latent
109  representations. Next, these latent representations are used by a decoder network to reconstruct the input
110  data.
111
112  To evaluate the utility of the 3D point cloud encoding, we performed benchmarking against traditional
113  methods using neural network models trained on 3D images directly. We trained classical (rotation
114  dependent) and rotation invariant versions of both image- and point cloud-based models to evaluate the
115 impact of adding the geometric constraint of rotation invariance. We expected point cloud-based models
116  to outperform image-based models for two reasons. First, point clouds are a less redundant way of
117  representing sparse multi-piece intracellular structures compared to image-based models. Second, image-
118  based autoencoders often generate blurry reconstructions that can be particularly problematic for small
119  objects'™®. More details about all models used in this paper can be found in Section 4 of Methods.
120
121 We used a multi-metric approach to evaluate our models and representations. Our goal is to increase
122  transparency behind the performance of these models, and to explore trade-offs. Importantly, we hope to
123  identify models that are quantitatively useful across a broad set of tasks to make gaining biological insight
124  from the learned representations more likely, not necessarily the model that is best for any one metric..
125  The models were evaluated with respect to their efficiency, generative capabilities and representation
126  expressivity as detailed in Figure S1 (also in Section 6 of Methods).
127
128  This multi-metric evaluation approach tested different models beyond their ability to reconstruct the
129 input, which is the primary task of autoencoders. For example, this included efficiency metrics that

130  gauged the compute resources and time required to evaluate each model, including the model size,
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131  inference time and carbon emissions. We also included generative metrics like the evolution energy
132  between two sample shapes (Fig. S1b). In addition, we also evaluated the models’ expressivity by

133  quantifying the biological information content in the learned representations. Specifically, we used
134  representations for classifying or predicting (via regression) biologically-relevant measurements in an
135  application-appropriate manner (Section 6.2 of Methods). For example, we used the representations to
136  predict volume or number of pieces of a given intracellular structure when these properties are relevant
137  for the application. Considering all these metrics together, we quantified the holistic utility of each model
138  (Fig. S1c) and the pros and cons of using each approach.

139

140  To aid reproducibility and empower researchers with the ability to independently test and apply these
141  models to their own data, we provide all the representation learning models used in this study via

142  CytoDL, a Python package for configurable 2D and 3D image-to-image deep learning transformations

143  and representation learning, available at https://github.com/AllenCellModeling/cyto-dl. CytoDL is

144  designed consistent with FAIRY practices, and is built to work for diverse use cases, thus making it

145  robust, modular, and flexible to the evolving nature of research.

146

147 3D rotation invariant point cloud models are efficient, produce low rotation invariance errors and
148  generate good reconstructions in a synthetic dataset of punctate structures

149

150  We started by evaluating the effectiveness of 3D rotation invariance and the choice of using point clouds
151  to encode punctate structures using synthetic data. We used cellPACK to create a synthetic dataset of
152  punctate structures with known rules of organization. cellPACK generates 3D models of complex

153  biological environments using novel packing algorithms8. To create the synthetic dataset, we used

154  multiple spatial rules for packing spheres in real 3D nuclear shapes based on gradient algorithms (Section
155 1.3 of Methods). These algorithms include a rotationally-dependent planar gradient where spheres are
156  packed away from a plane oriented at 0-, 45-, or 90-degrees about the z-axis, and a set of three

157  rotationally-independent gradients including a radial gradient where spheres are packed with a gradient
158  away from the centroid of the nucleus, a random gradient where spheres are packed randomly, and a
159  surface gradient where spheres are packed close to the nuclear boundary, resulting in six total packing
160  rules (Fig. 2a). We packed spheres according to each of these six rules into 254 real nuclear shapes

161  selected from the DNA replication foci dataset (Section 1.1 of Methods). Importantly, the stochastic

162  nature of the packing algorithm generates heterogeneity in the distribution of spheres across the simulated
163  nuclei, thus making the recovery of rules via unsupervised learning more challenging, and evaluating the

164  robustness of each representation learning method.


https://github.com/AllenCellModeling/cyto-dl
https://github.com/AllenCellModeling/cyto-dl
https://www.zotero.org/google-docs/?7TJhAi
https://www.zotero.org/google-docs/?pdYF11
https://doi.org/10.1101/2024.07.25.605164
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.25.605164; this version posted August 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

165

166  Since 3D rotation is an important variable associated with the planar rules, we expected 3D rotation

167 invariant models to give us the most compact representations by factoring out this variable. We

168 additionally hypothesized that point cloud models (Fig. 1a) would provide better representations than
169  image models since they better describe the punctate nature of the synthetic data represented by the

170 centroid of the packed spheres (Fig. 2a). To test this hypothesis, we trained two classical and two 3D

171  rotation invariant models using images and point clouds as input data respectively (Sections 2.1, 3.1, and
172 4 of Methods).

173

174  We found that point clouds were more efficient across all efficiency metrics (Model size, Inference time
175  and Emissions in Fig. 2b). In addition, point clouds also produced better reconstructions (‘“Reconstruction
176  error”) and had low evolution energy scores, meaning that the interpolations between two shapes are

177  smooth. Next, we tested whether the implementations of the rotation invariant models were indeed

178  generating representations that were not sensitive to orientation of the input data. We confirmed that this
179  was the case as shown by similar orientation of reconstructions in the last row of Figure S2. We found
180 thatrotation invariant representations from point clouds were more compact using the Levina-Bickel

181 intrinsic dimensionality metric (“Compactness”)™® and had much lower rotation invariance errors

182  compared to its image-based counterpart (Fig. 2b, Section 6 of Methods). All four models were able to
183  reconstruct the unique morphologies associated with each packing rule (Fig. S3). However, we found that
184  representations from both rotation invariant models were slightly worse than their classical counterparts at
185  classifying the six rules (“Rule classification” in Fig. 2b). This was an expected outcome since rotation is
186  an important distinguishing feature of the planar rules and rotation invariant representations are

187 insensitive to this feature. Overall, the 3D rotation invariant point cloud model was an efficient generative
188  model that learned compact and orientation-independent representations for synthetic punctate structures.
189

190 Having established the holistic utility of the rotation invariant point cloud model on synthetic data, we
191  next performed principal component analysis (PCA; Section 7.1 of Methods) on the learned

192  representations using this model to interpret their meaning. We performed this PCA on a version of this
193  model trained with jitter augmentations to improve reconstruction quality (Fig S4; also see jitter details in
194  Section 5.2 of Methods). By visualizing the first principal component (PC1) of the reconstructions for
195  each rule via a latent walk, we found that PC1 recovers how nuclear size affects each rule’s packing (Fig.
196  2c). Notably, the rotation invariant reconstructions for all planar rules are aligned in the same direction,
197  allowing us to focus on the subtle differences in spatial distribution between 0- and 45-degrees

198 orientation.
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199

200  Next, we performed an archetype analysis® to find extremal points in the representations of the synthetic
201  dataset (Section 7.2 of Methods). Archetypes are determined so that observations can be approximated by
202  convex combinations of the archetypes. By setting the number of archetypes to six, we found each

203  archetype represented one of the six rules used in cellPACK to generate the synthetic dataset. These

204  results show that the obtained point cloud rotation invariant representations can enable unsupervised rule
205  discovery for a synthetic dataset of punctate structures.

206

207  Rotation invariant point cloud representations recover cell cycle-dependent spatial patterns of DNA
208  replication foci

209

210  After establishing its applicability to synthetic data, we tested the representation learning framework on a
211  real single-cell image dataset of punctate structures for biological discovery and hypothesis generation.
212  The dataset contains single-cell images of DNA replication foci in hIPS cells expressing fluorescently
213  tagged PCNA (N=2,420, Section 1.1 of Methods). DNA replication foci are punctate and display a

214  continuous change in their overall localization pattern and intensity throughout cell cycle? (Fig. 3a). Due
215  totagged PCNA fluorescence intensity being an important source of variation for DNA replication foci
216  patterns, we adapted the point cloud sampling strategy so that the raw image intensity is treated as a

217  fourth coordinate, in addition to the XYZ spatial coordinates (Fig. S5a-b, and Section 3.1.2 of Methods).
218  This additional coordinate ensures that intensity information is captured in the learned representations
219  without impacting the rotation invariance of the XYZ spatial coordinates (Section 4.2 of Methods).

220

221  To test whether the representations learned with this data capture biologically relevant features about
222 DNA replication foci localization, we manually classified each single-cell image in this dataset into one
223  of eight cell-cycle stages based on the spatial pattern of PCNA (Section 1.1 of Methods). We also

224 manually labeled cells as outliers if they were dead, dying, or did not express PCNA. Next, we used the
225  representations learned by each of the four models to benchmark their performance on various tasks,

226 including classification of cell cycle stages and detection of outliers from the DNA replication foci

227  dataset.

228

229  We found that point cloud models were more efficient but not as compact as the rotation invariant image
230  model (Fig. 3b). Point cloud models also provided better overall reconstructions compared to image

231  models (compare reconstructions in Fig. S6f-h to Fig. S6b-c). Despite the poor reconstruction of both

232 image models (Fig. S6b-c), we found that the rotation invariant image model was the best at classifying
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233  cell cycle stages (“Cell cycle classification” in Fig. 3b, 81% accuracy vs 80% accuracy for the best point
234 cloud model). This result in particular demonstrates the limits of evaluating models using a single metric
235  alone. We confirmed that poor reconstructions of image models were not due to dataset size or image
236  normalization issues using an alternative approach (Fig. S6d and Section 4.1.1 of Methods). We also

237  found that point cloud models had slightly better performance detecting outliers compared to image-based
238  models (“Outlier classification” in Fig. 3b, ~100% accuracy vs 98% accuracy for the best image model).
239  Finally, we found that the rotation invariant point cloud model had lower rotation invariance error scores
240  compared to its image counterpart. Overall, the results elucidate the challenge of reconstructing sparse
241  intracellular structures using classical image autoencoders®, and highlight the good performance of the
242  rotation invariant point cloud representations across many metrics evaluated for the DNA replication foci
243  dataset.

244

245  To interpret the representations learned by the rotation invariant point cloud model per cell cycle stage,
246  we performed PCA on this dataset stratified by the manual annotations of cell cycle stages. A latent walk
247  along PC1 for each cell cycle stage revealed some overlap in the morphology and intensity of DNA

248  replication foci between neighboring cell cycle stages (earlyS 6=2 and earlyS-midS c=-2, for example).
249  This highlights the inherent uncertainty that is present in the task of manual annotation of a continuous
250  process in discrete classes.

251

252 We found that an archetype analysis with eight archetypes was able to recover expected cell cycle

253  patterns of DNA replication foci (order of archetypes in Fig. 3d resembles examples in Fig. 3¢ for 6=0).
254  The archetypes capture three main sources of variation in the dataset as expected. First, overall nuclear
255  shape which is mainly represented by archetypes displaying different elongations. In addition to nuclear
256  shape, the intensity and localization of DNA replication foci are significantly different between

257  archetypes. These two sources of variation seemed correlated as we observe in real PCNA images. Lastly,
258  the spatial pattern of PCNA changes from a dim signal uniformly distributed in the nucleus at G1 to

259  compact bright spots well localized in lateS.

260

261  Next, we asked if the learned representations could be used for interpreting the evolution of the DNA
262  replication foci spatial pattern as a function of the cell cycle stage. To test this, we binned nuclear volume
263  into five bins to create a pseudo cell cycle axis (Section 7.3 of Methods), and we averaged the rotation
264  invariant point cloud representations of all cells within each bin (Fig. 3e). We observed a continuous
265  orientation-invariant transition that recapitulates the coalescence of uniformly distributed dim DNA

266  replication foci puncta in G1 into a few bright dots in late S. This pattern is followed by signal
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267  sparsification into uniform dim punctate again in G2. We observed a moderate distinction between spatial
268  patterns in Figure 3e, which suggests that nuclear size is only a weak proxy for cell cycle stages. These
269  results demonstrate that the learned point cloud rotation invariant representations can recover the overall
270  behavior of DNA replication foci in an unsupervised manner.

271
272  Representation learning framework reveals interpretable spatial patterns for other punctate

273  structures from the WTC-11 hiPSC Single-Cell Image Dataset v1

274

275  To assess whether our approach would generalize to other intracellular structures with punctate

276  morphology, we analyzed a larger dataset of punctate structures from the WTC-11 hiPSC Single-Cell
277  Image Dataset v1 (Section 1.2 of Methods). This dataset comprises centrioles (N=7.575), peroxisomes
278  (N=1,997), endosomes (N=2,601), nuclear pores (N=17,703), nuclear speckles (N=2,980), cohesins

279  (N=2,380), and histones (N=15,875). Examples of these structures are shown in Figure 4a. Once again,
280  we trained classical and rotation invariant image- and point cloud-based models on this larger dataset (Fig
281  Sbc, Sections 2.1 and 3.1 of Methods). In addition to the usual set of evaluation metrics, we tested the
282  applicability of the learned representations for two classification tasks. The first task focused on

283  identifying the specific intracellular structure from the seven options available in the dataset. The second
284  task involved classifying cell-cycle stages (interphase or mitosis) based on the annotations provided

285  within the dataset (Section 6.2 of Methods).

286

287  Overall, we found that classical image-based models provide better reconstructions when trained with the
288  combination of these seven different punctate structures relative to what we observed for the same models
289  trained on DNA replication foci dataset alone (Fig. S7a-b). Despite this improvement in reconstruction,
290  we noticed that the classical image-based model poorly reconstructs some of these structures including
291  centrioles, peroxisomes, and endosomes (see blurry reconstructions in Fig. S7b). In addition, we found
292  that imposing rotation invariance further deteriorates reconstruction of image models across all structures
293  (Fig. S7c). Once again, an alternative approach confirmed that poor reconstruction was not due to dataset
294 issues (Fig. S7d and Section 4.1.1 of Methods).

295

296  Both classical and rotation invariant point cloud models produced more accurate and comparable

297  reconstructions, but with spatial distribution artifacts for structures with fewer training samples, like

298  endosomes and peroxisomes, similar to the classical image model (as shown by arrows in Fig. S7f-g). In
299  addition to providing improved reconstructions compared to image models, we found that the rotation

300 invariant point cloud representations performed well at both structure classification (~95% accuracy vs
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301  90% accuracy for best image model) and cell stage classification (~58% accuracy vs 57% accuracy for
302  best image model), while being more compact and orientation independent (Fig. 4b).

303

304  We then analyzed rotation invariant point cloud representations by computing the first principal

305 component (PC1) for each structure for cells in interphase. To do this, we sampled real single-cell images
306 along PC1 for each structure as shown in Figure 4c. Top and side views in Figure 4c¢ suggest the major
307  source of variation across all seven intracellular structures in this dataset appears to be aspects of cell and
308 nuclear shape like height and elongation. Next, we noticed that centrioles are localized near the nucleus at
309  one extreme of PC1 and gradually migrate towards the cell membrane at the other extreme (column

310  “Centrioles” in Fig. 4¢). Additionally, we observed nuclear speckles to be more uniformly distributed
311  within the nucleus at one extreme of PC1 and more concentrated near the nuclear shell forming a ring-like
312  pattern at the other extreme of PC1. Surprisingly, latent walks along PC1 revealed similar patterns as
313  additional sources of variation for these two structures (Fig. 4d). We found that centrioles polarize by
314  moving away from the cell center (represented by a dark cross in Fig. 4d), and nuclear speckles

315  concentrate in a ring-like pattern (last row of column “Nuclear speckles” in Fig. 4d). Overall, these results
316  highlight the ability of our rotation invariant point cloud representations to capture meaningful and

317  biologically relevant variations in the spatial pattern of multiple intracellular structures.

318

319 Rotation invariant representation learning framework generalizes to polymorphic multi-piece

320  structures

321

322  We next asked if we could adapt our approach to learn 3D rotation invariant representations for non-

323  punctate intracellular structures, such as nucleoli and Golgi apparatus. These organelles are polymorphic
324  structures where the shape of individual pieces, in addition to the location of these pieces, may be

325  important for the underlying biological process and therefore should be captured by the learned

326  representations?>?3, We combined the point cloud approach with a signed distance field (SDF12425)

327  computed from segmented images, which is a function that represents the signed distance of a position to
328  the nearest part of a shape, to incorporate the shape information of individual pieces into the

329  representation learning framework (Fig. S8 and Section 3.2 of Methods). To make this possible, a few
330  modifications had to be made to the autoencoder architecture. First, while the encoder was left

331  unchanged, its input point clouds are now sampled from segmented images instead of raw data,

332  specifically from the surfaces of each of the multi-piece substructures. Next, a second point cloud is

333  sampled from the 3D segmentation volume, and each point is assigned to its local SDF value. We

334  replaced the point cloud decoder with an implicit decoder, which takes the latent representation and
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335  spatial coordinates of each point’s location in the second point cloud as input, to reconstruct SDF values
336  ateach spatial location (Fig. 1b). Thus, both the encoder and decoder represent the 3D shape in different
337  formats, allowing the model to capture complex shape information using SDFs, while remaining less
338  sensitive to orientation changes. Additionally, for the reasons described in Section 4.2.2 of Methods, we
339  had to relax the generative requirement of the model to make the generalization to polymorphic structures
340  possible.

341

342  We applied the adapted framework to images of the granular component (GC) of nucleoli via

343  fluorescently-tagged nucleophosmin (NPM1, N=11,814, Fig. 5 and Section 1.2 of Methods) which are
344  part of the WTC-11 hiPSC Single-Cell Images Dataset v1. Nucleoli are multi-compartment condensates
345 that exhibit a broad distribution in both the number of pieces and size? and exhibit rapid rotation in 3D
346  2"28 Given these properties, we expected that 3D rotation invariant representations learned using an

347  implicit definition of the nucleolar surface via an SDF would be more interpretable than representations
348  learned by classical models directly from segmented images. To evaluate this, we trained two classical
349  image models using segmentations and SDFs, two 3D rotation invariant image models using

350  segmentations and SDFs, and one 3D rotation invariant point cloud model using SDFs (Sections 2.2, 3.2
351 of and 4 of Methods). Examples of inputs and outputs of each of these models can be seen in Figure S9.
352

353  We found that the two classical image models based on segmentations and SDFs, and the 3D rotation
354  invariant point cloud model generate similar quality reconstructions (“Reconstruction error” in Fig. 5b).
355  However, the point cloud model was less efficient in terms of emissions and inference time (Fig. 5b). We
356  also found that 3D rotation invariant image models produce lower quality reconstructions compared to
357  classical image models, as we had observed for models trained on punctate structures (see Section 6.1 of
358  Methods for details on how reconstruction error was computed for each model). The results also indicate
359  rotation invariant representations from point clouds are more orientation-independent compared to

360  representations learned from both segmentations and SDFs (“Rotation invariance error” in Fig. 5b). Next,
361  we asked which representations would capture more relevant morphological attributes of nucleoli. To
362  answer this question, we used the learned representation to classify the number of nucleolar pieces in the
363  segmented images and to predict the size, surface area and relative distance between pieces (Section 6.2 of
364  Methods). We found that rotation invariant point cloud representations performed best on all of these
365  tasks (“Classification of number of pieces”, “Average feature regression” and “Average distance

366  regression” in Fig. 5b), suggesting that these representations contain relevant biological information.

367
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368  Next, we used PCA on data grouped by number of pieces to interpret the rotation invariant point cloud
369  representations. Since we had to relax the generative capabilities of this model to achieve rotation

370 invariance, we retrieved the closest real cells while performing a latent walk of PC1 (Fig. 5¢) and PC2
371  (Fig. 5d). We found height and elongation to be the major source of variation for single piece-nucleoli
372  (~30% of the examples in the dataset; N=3,499, explained variance of PClwas 16% and PC2 was 7%).
373  This was confirmed by computing Pearson correlation with structure elongation (r=0.56 for PC1, r=0.05
374  for PC2) and height (r=0.13 for PC1, r=0.01 for PC2). In the remaining 70% of the dataset (N=8,315),
375  where nucleoli consist of multiple pieces, the predominant source of variation appears to be the distance
376  between pieces and the relative size of these pieces. For example, when considering nucleoli composed of
377  two pieces, we observe PC1 (explained variance was 19%) to represent the height of the larger piece and
378  the size of the small piece (Fig. 5¢). In addition, we found both PC1 and PC2 to correlate with the average
379  distance between pieces (r=0.42 for PC1, r=0.17 for PC2). By performing an archetype analysis with five
380 archetypes, we found that three archetypes represent nucleoli with a single piece but different elongations
381  (archetypes 1-3 in Fig 5e). Archetype four represents nucleoli with one large piece and one small piece,
382  which is a common configuration in the dataset, and archetype five represents nucleoli fragmented in
383  many small pieces.

384

385  Motivated by previous observations of cell cycle-dependent nucleolar morphology?®, we asked whether
386  rotation invariant representations would capture nucleolar changes as a function of the cell cycle. We
387  again used nuclear volume bins to create a pseudo cell cycle axis and visualized the closest real example
388  to the average representation within each bin (Section 7.3 of Methods). Consistent with previous

389  observations?®, we found that cells exiting division (small nuclear volume) have nucleoli that are

390 fragmented into multiple pieces that coalesce into a single large piece as the cells grow and progress

391  towards mitosis (Fig. 5f). Altogether, the results show that this representation learning framework can be
392  successfully adapted using SDFs to polymorphic structures and that it provides representations that

393  capture relevant aspects of the nucleolar biology.

394

395  Learned representations enable shape variation profiling on multiple polymorphic structures

396

397  We next expanded this method to profile multi-piece shape variation on the granular component (GC) of
398 nucleoli (N=11,814) and three other polymorphic structures. To do this, we analyzed a subset of

399  polymorphic structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 (Section 1.2 of Methods).
400  This subset comprised the dense fibrillar component (DFC) of nucleoli (N=9,923), lysosomes

401  (N=10,114), and Golgi (N=6,175). Representative images of each structure are shown in Fig. 6a. We
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402  applied the SDF point cloud rotation invariant representation learning framework to this dataset of four
403  different polymorphic structures, and once again benchmarked it against classical and rotation invariant
404  segmentation-based and SDF-based image models (Fig. S8). We focused here on learning scale invariant
405  representations by scaling all intracellular structures on a cell by cell basis (Section 2.2.2 of Methods).
406  While this scaling strategy prevents us from comparing sizes across different intracellular structures, it
407  helps preserve the resolution of structures occupying only a few voxels. Examples of inputs and outputs
408  of each of the models used can be seen in Figure S10.

409

410  We again observed that the rotation invariant point cloud representations continued to display the lowest
411  rotation invariance errors of any model tested (Fig. 6b). We found that all rotation invariant models were
412  more compact than their classical counterparts. We also found that both rotation invariant image models
413  were worse at reconstruction and evolution energy than their classical counterparts (Fig. 6b).

414  Interestingly, all models were able to classify structure equally well (“Structure classification” in Fig. 6b).
415  This suggests that the morphology of these structures is distinct enough to be easily discerned using

416  unsupervised learned representations, despite all being referred to as "polymorphic".

417

418  We performed PCA on rotation invariant representations learned for each of the four intracellular

419  structures and visualized the first two principal components (Fig. 6d-e). We identified features like overall
420  elongation and number of pieces as primary sources of variation for both components of nucleoli, which
421  are known to be nested via liquid-liquid phase separation®. In the case of lysosomes, we observed PC1
422  and PC2 to be related to aspects of cell shape. This was further confirmed by computing Pearson

423  correlation between PC1 (explained variance ~15%) and cell elongation (r=-0.42), and PC2 (explained
424 variance ~8%) and cell height (r=0.28). PCL1 also displayed strong correlation with the average distance
425  between lysosome pieces (r=-0.45 for PC1), suggesting that the first principal component also captures
426  information about lysosome spatial clustering. In the case of Golgi, the first two principal components
427  (explained variance ~13% for PC1 and 9% for PC2) appeared to capture aspects of elongation and

428  fragmentation. This was corroborated by computing correlations with structure elongation (r=-0.61 for
429  PC1 and r=0.06 for PC2), the average distance between Golgi pieces (r=-0.55 for PC1 and r=0.27 for
430  PC2), and number of pieces (r=0.14 for PC1 and r=0.05 for PC2). An archetype analysis with four

431  archetypes retrieved two granular component (GC) nucleolar morphologies that represent aspects of
432  elongation (Archetype 1) and number of pieces (Archetype 2). The other two archetypes were examples
433  of the dense fibrillar component (DFC; Archetype 3) of nucleoli and the Golgi (Archetype 4).

434
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435  Overall, representations from all SDF-based models were able to regress information about distances
436  between pieces better than segmentation-based models, whereas the rotation invariant representations
437  were able to regress information about volume and area of pieces better than classical models. While the
438  point cloud rotation invariant model performed well in generation and representation expressivity metrics,
439  no single model excelled across all metrics. This observation suggests that application-appropriate model
440  selection is key for achieving optimal results. For example, if the goal of an analysis is to learn

441  representations that are not sensitive to rotations, then the rotation invariant point cloud approach would
442  be most appropriate, but if the goal is to learn a model that reconstructs the data well, then a classical
443  segmentation model would be most appropriate in this case.

444

445  Evaluating drug effects on nucleolar morphology using unsupervised representation learning

446

447  We then proceeded to test the applicability of the representation learning approach to a perturbation

448  detection task using a drug screening dataset. We imaged WTC-11 hiPS cells expressing an

449  endogenously, fluorescently tagged nucleophosmin, representing the granular component of nucleoli.
450  Cells were treated with 16 different drugs at relatively low concentration to induce subtle phenotypic
451  alterations (Section 1.4 of Methods). Analysis was conducted on cells imaged two hours after treatment.
452

453  We used the representation learning framework to extract unsupervised representations for cells in the
454  dataset (N=1,025). To do so, we fine-tuned the models trained on the dataset of nucleolar (GC) single-cell
455  images described in the section “Rotation invariant representation learning framework generalizes to
456  polymorphic multi-piece structures”. We followed the methods described in Chandrasekaran et al.? to
457  evaluate the performance of these fine-tuned models. To do so, we computed the mean average precision
458  to measure how distinguishable different single cells of a drug-treated set are from untreated cells

459  (DMSO; N=140), and a g-value statistic based on permutation testing.

460

461  The results are summarized in Figure 7a, where we plot the g-value per drug for each model. Drugs with
462  g-value under the significance threshold of 0.05 are considered by that model as causing significant

463  alterations in nucleolar morphology. Aside from the first two drugs, we found a significant difference in
464  the behavior of segmentation- and SDF-based models. Therefore, we sorted the x-axis from low to high
465  average g-value based on all SDF models. Consequently, drugs on the left side of the plot induce a

466  stronger phenotypic change compared to drugs on the right side. Figure 7b shows a table with more

467 details about each drug, such as name, concentration, molecular target or mechanism of action, effect
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468  based on literature review and effect observed on nucleoli based on visual inspection of this drug dataset.
469  Representative examples of the range of phenotype of each drug are shown in Figure 7c.

470

471  The first drug to appear on the x-axis of Figure 7a is Actinomycin D, indicating that this drug is the one
472  with the strongest effect on nucleolar morphology. This drug works as a control in this analysis since it is
473  the only well characterized drug in this study that is known to target the DNA and cause significant

474 alteration in nucleolar size, as described in Figure 7b and shown in Figure 7c. Next, we found

475  Staurosporine to have the second strongest effect. A visual inspection of images of cells treated with this
476  drug reveal the presence of many dead cells where nucleoli display very abnormal morphology (Fig 7c).
477  Both Actinomycin D and Staurasporineno were identified as being distinguishable from the control

478  (below g=0.05 threshold) by all models.

479

480  No other drug was identified by either the classical or rotation invariant image-based segmentation

481  models. On the other hand, the SDF based models identified several other drugs that could be associated
482  with off-target effects. Starting from the left side of the plot in Figure 7a, these models next identified
483  Paclitaxel and Nocodazole, which were associated with cell death 24 hours after treatment, while also
484  locking cells in mitosis (Fig. 7b-c). SDF-based models also detected Jasplakinolide which is known to
485  promote actin polymerization and is associated with higher nuclear volumes®!. Visual inspection of the
486  image data did not reveal any apparent nucleolar alteration (Fig. 7c) or change in cell health within 24
487  hours after treatment, suggesting that the effect of this drug is subtle. Next, Torin was detected by all SDF
488  models, which was observed by visual inspection to induce cell death, like Staurosporine. Lastly,

489  Rascovitine at 10uM was detected only by the SDF rotation invariant models. While there was no visible
490  alteration of nucleoli morphology in this dataset at this concentration, Roscovitine at 10uM caused cell
491  death at 4 hours in images of a different dataset of H2B-tagged cells (Histones, data not shown), and is
492  known to cause nucleolar segregation®23 at higher concentrations. These results suggest that our

493  representation learning framework captures subtle concentration-dependent phenotypes that are not

494  visible by eye. Overall, we observed three different categories of drugs that were retrieved using different
495  models; “sledgehammer” phenotypes that were detected by all models, subtle off-target effects that were
496  detected by SDF models, and subtle concentration-dependent phenotypes that were detected only by the
497  rotation invariant SDF models. The remaining nine drugs in the dataset did not induce visible alterations
498  to nucleolar morphology, although four of them induced cell death at later time points, including H89,
499  Chloroquine, Rotenone and Brefeldin.

500
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501  Visualization of the closest real example to the average representation using the point cloud model

502  emphasized that Actinomycin D, Staurosporine and Torin-treated nucleoli were visually distinct from the
503  control, confirming that nucleolar morphology is strongly affected by these drugs (Fig. 7d). These results
504  illustrate that our 3D representation learning approach can enable perturbation detection and phenotype
505  profiling, and indicate the need for follow up experiments to confirm the impact of some of these drugs,

506 like Jasplakinolide, on nucleolar morphology.

507 Discussion

508 In this paper, we developed a morphology-appropriate 3D rotation invariant representation learning

509  framework for multi-piece intracellular structures using point clouds. We benchmarked this framework
510  against classical and rotation invariant image-based models using a novel multi-metric evaluation

511  criterion that focuses not only on traditional reconstruction quality but also on measurements that can be
512  important for downstream analysis and biological discovery. We found that our morphology-appropriate
513  approach can be more efficient, can produce meaningful reconstructions, and can learn more compact and
514  expressive representations across a range of tasks than classical image and point cloud models. We

515  applied this framework to synthetic and real single-cell image datasets for punctate structures, like DNA
516  replication foci, and polymorphic structures, such as nucleoli. Our results reveal that geometry-aware
517  choices of encodings and neural network architectures can enable unsupervised discovery and

518 interpretation of variability in the morphology of several multi-piece intracellular structures.

519

520  We first demonstrated this principle by recovering the rules used to create a synthetic dataset of punctate
521 structures using cellPACK in a fully unsupervised way. We then recovered expected morphological

522 patterns for different intracellular structures using unsupervised methods, such as archetype analysis and
523  PCA, and by identifying biologically interpretable localization patterns for structures, like DNA

524  replication foci and centrioles. Interestingly, the good performance achieved by different models in

525  classifying cell cycle stages using PCNA suggests that manual annotation of this information can be
526  replaced or assisted by unsupervised representation learning. In addition, the learned representations for
527  centriole capture its repositioning from the cell center towards the periphery, a behavior which is known
528  to be mediated by the microtubule network®*3%. The learned representations also recapitulate a known axis
529  of morphological change of nuclear speckles, which goes from many, small, irregularly shaped speckles
530 to larger, rounder shaped speckles. This is known to occur when transcription is inhibited in cells and is
531 also the primary axis of variability between cell types®®.

532
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533  We further showed how the framework can be extended to polymorphic structures and characterized the
534  full complexity of nucleolar shape variation as an example. When applied to a larger dataset of

535  polymorphic structures, the unsupervised representation learning revealed interesting spatial organization
536  aspects of these structures. For example, Golgi fragmentation captured by the first two principal

537  components of rotation invariant representations is often described as an important morphological feature
538  under both normal and physiological conditions, and has connections with different signaling pathwaysZ.
539  However, we observed a trade-off when using the rotation invariant point cloud model where the model
540  produced good reconstructions and learned expressive representations, but was inefficient compared to
541  image models, potentially limiting its ability to scale to much larger datasets and its utility to users with
542  limited computational resources.

543

544  Finally, we evaluated the utility of our approach on phenotypic profiling of a nucleoli perturbed image
545  dataset and demonstrated the interpretability of the learned representations. In general, we noticed that
546  segmentation-based models were not able to detect drugs like Torin-2 that caused clear alterations on
547  nucleolar morphology as a result of cell death. This result suggests that SDF encodes information relevant
548  for perturbation detection. It is important to note that our assessment of cell health based on the number of
549  dead cells in the FOV does not distinguish between different processes by which cells can die. This could
550  be a possible explanation for why some drugs that induce death were detected as being distinguishable
551  from the control, while others were not. A larger drug screening single-cell image dataset is necessary to
552  comprehensively validate our findings and evaluate the robustness of our approach.

553

554  In this work, we focused the experiments on 3D confocal images of intracellular structures in the hiPS
555  cell, but our framework is general and can be applied to other cell types and imaging modalities. For

556  example, single-molecule localization microscopy (SMLM) naturally generates large 3D point cloud data
557  for single molecule interaction at the 10-20 nm resolution range®. Similarly, imaging-based spatial

558 transcriptomics methods that measure a small subset of genes using single-molecule fluorescence in-situ
559  hybridization (smFISH) technologies typically generate point locations of RNA localization®, and

560 antibody-based immunofluorescence imaging methods generate protein localization maps in 3D systems
561  such as organoids®*#°, These datasets are often quantified using point cloud clustering analysis and could
562  benefit from unsupervised representation learning frameworks such as the one proposed here.

563

564  Many current techniques for analyzing single-molecule localization microscopy operate in two

565  dimensions, forcing researchers to project their 3D data into 2D for analysis purposes*+42, This trend is

566  prevalent in cell biology and medicine, where numerous publicly accessible datasets are predominantly in
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567  2D?%3%3, The development of 3D analysis frameworks combined with availability of 3D data, can mitigate
568  barriers to conducting comprehensive 3D analyses across diverse imaging modalities. This, in turn,

569  reduces the risk of artifacts and allows analysis to be centered on the native data formats.

570

571  Previous studies have introduced unsupervised representation learning approaches for cell images using
572  autoencoders with geometric deep learning*#5. Our work complements these approaches in three ways:
573  first, by incorporating the notion of orientation invariance into our intracellular structure morphology-
574  dependent framework for representation learning; second, by providing a systematic multi-task

575  benchmark to evaluate the utility of each model that goes well beyond traditionally assessed

576  reconstruction quality; third, by focusing our analysis on 3D multi-piece intracellular structures with

577  complex morphology and spatial distribution. Our approach was tested across datasets of different sizes
578  commonly obtained in typical single cell imaging studies, ranging from a few hundred to tens of

579  thousands samples, thus providing a guideline for the quality of unsupervised representations in different
580  cases. For instance, we observed poor image-based reconstructions on small datasets like the DNA

581  replication foci dataset. This observation might be closely related to our deliberate choice of using vanilla
582  autoencoders throughout our analysis, and many modifications of autoencoders have been shown to

583  improve different aspects of reconstruction*®#, disentanglement**#349 causal inference>°%, and

584  dynamics®?%3,

585

586  Our framework can be further improved in multiple ways. For example, our results indicate cell and

587  nuclear shape are major sources of variation because that information was not factored out of our learning
588  framework and therefore, become confounding variables. While this reflects a true coupling between cell
589 and nuclear shape and structure localization, alternative approaches may offer a way to decouple these
590 confounding variables from learned representations. For instance, one could incorporate reference

591  information about other intracellular structures for answering questions about intracellular structure co-
592  localization®. Another possibility for improving our framework could be adding mutual exclusivity rules
593 to further constrain the models and move towards a better understanding of compartmentalization®®.

594  Finally, given the limited ability to simultaneously tag and visualize multiple structures®®6, extending our
595  framework to predict spatial patterns of a set of structures given the representation from another set could
596  help build a holistic description of intracellular organization. The morphology-appropriate representation
597  learning using point clouds and SDFs that we have described here is flexible and can be modified to

598 incorporate several such improvements.

599
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600 Insummary, we have begun to develop a computational analysis pipeline for interpretable representation
601 learning of complex multi-piece intracellular structures. An important goal of this work is to make the
602  data, models and analysis tools freely available to the community, so that it can serve as a benchmark for
603  further methods development for 3D analysis. We hope that this work can spur the interest of the cell

604  biology community into new ways of analyzing and interpreting complex intracellular organization.
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629 Methods

630 1. single-cell Image Datasets

631 1.1 DNA replication foci dataset

632  Spinning-disk confocal 3D images taken of a fluorescently tagged cell line that targets proliferating cell
633  nuclear antigen (PCNA) labeling DNA replication foci with mEGFP were processed to create the DNA
634  replication foci dataset®’. Fluorescent cell-membrane and DNA dyes tagged the cell boundary and

635  nucleus, respectively. Nuclear segmentations were obtained using the protocol described in Viana et al. ?,
636  with the only difference being that nucBlue dye was replaced with nucViolet dye. Segmentations of DNA
637  replication foci were generated for each FOV, using three different segmentation workflows created using
638  the Allen Cell & Structure Segmenter®® to segment specific DNA replication foci morphologies. Next, we
639  visually identified which segmentation workflow was best for each cell and saved the result in an empty
640  FOV at that cell’s correct location. More details about the dataset and images are available here

641  https://open.quiltdata.com/b/allencell/packages/aics/nuclear_project dataset 4.

642

643  Cells in interphase were labeled by an expert as belonging to one of nine classes - G1, earlyS, early-midS,

644 midS, midS-lateS, lateS, lateS-G2, G2, and unclear. Unclear labels were dropped during analysis. About
645 3% of cells were labeled as outliers based on bad segmentations of DNA replication foci, cells appearing
646  dead or dying, no EGFP fluorescence, and bad segmentations of cells and nuclei. Dead cells and no

647  fluorescence were used for the outlier detection task, accounting for 16 cells out of a total of 2,420 cells.
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648 1.2 WTC-11 hiPSC Single-Cell Image Dataset v1

649  Spinning-disk confocal 3D images taken from 25 endogenously tagged hIPS cell lines were processed to
650  create the WTC-11 hiPSC Single-Cell Image Dataset v1*. Fluorescent cell-membrane and DNA dyes
651  tagged the cell boundary and nucleus, respectively. Cell, nuclear and structure segmentations were used
652  as provided in the dataset release available here

653  https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell image_dataset.

654

655  We performed analysis on histones via H2B (N=15,875) , nuclear pores via Nup153 (N=17,703),

656  peroxisomes via PMP34 (N=1,997), endosomes via Rab-5A (N=2,601), centrioles via centrin-2

657  (N=7,575), cohesins via SMC1A (N=2,380) and nuclear speckles via SON (N=2,980) as selected punctate
658  structures from this dataset. We selected nucleoli (DFC) via fibrillarin (N=9,923), nucleoli (GC) via
659  nucleophosmin (N=11,814) , lysosomes via LAMP-1 (N=10,114), and Golgi via sialyltransferase

660  (N=6,175) as polymorphic structures. While we used all single-cell images for training our models, we

661  limited our analysis to interphase cells.

662 1.3 cellPACK synthetic single-cell dataset

663  We used cellPACK to create synthetic point clouds within real nuclear shapes®®. cellPACK provides an
664  algorithm to create high-resolution 3D representations of the biological mesoscale based on specified
665  rules. Segmentation of 254 randomly chosen nuclei from the DNA replication foci dataset were converted
666 into a triangulated mesh and used as input to cellPACK. cellPACK then packed 256 spheres with a radius
667  of 1 voxel within these meshes based on four distinct rules. Random: points were generated uniformly at

668  random inside the nucleus; Planar gradient rule: points were generated inside the nucleus with a bias
669  away from a plane. The plane contains the centroid of the nucleus, and its orientation is specified by
670  anormal vector. We used normal vectors with three different orientations: i) 6=0, the normal vector
671  points along the z-axis (0x + Oy + 1z) where the longest axis of the nucleus is the y-axis. ii) 6=45°,
672  the normal vector is (0x + 1/V2y + 1/V2z). iii) 8=90°, the normal vector points along the y-axis;

673  Surface gradient rule: points were generated with a strong bias towards the nuclear surface Radial
674  Gradient: points were generated with a bias towards the centroid of the nucleus. For each rule, cellPACK
675  generated a point cloud with 256 points for each nucleus shape. This dataset is available for download at

676 https://open.quiltdata.com/b/allencell/tree/aics/morphology appropriate representation learning/cellPAC

677 K single cell punctate structure/
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678 1.4 Drug dataset

679 A collection of well-characterized drugs was used to perturb the Allen Institute for Cell Science cell line
680  AICS-50 (WTC-11 hiPSC endogenously tagged for mEGFP-NPM1, tagging nucleoli (GC)). Drugs and
681  concentrations were selected because cell treatment with each of them induced a well-characterized effect
682  on one major cellular structure morphology that could be visually observed within 24 hours of treatment
683  (Table 1) and was not associated with massive cell death within the first two hours of treatment, except
684  for Jasplakinolide. Cells were seeded on a 96-well glass bottom plate using the protocol described in

685  Gregor et al.>°. Four days post seeding 2D brightfield low magnification well overviews were acquired
686  and used for position selection following the same criteria as described in Viana et al.%. Following

687  position selection cells were washed once with pre-warm phenol red-free mTeSR then media was

688  replaced with drug-containing phenol red-free mTeSR media at the indicated concentration (Supp table
689  X). The cells were then placed back on the spinning-disk confocal microscope stage where they were
690  maintained at 37°C with 5% CO2 for two hours before the start of imaging at high magnification (120X).
691  Images were acquired with three identical ZEISS spinning-disk confocal microscopes with 10X/0.45 NA
692  Plan-Apochromat (for well overview and position selection) and 100X/0.8 NA Plan-Apochromat (Zeiss)
693  (for high-resolution imaging) and ZEN 2.3 software (blue edition; ZEISS). The spinning-disk confocal
694  microscopes were equipped with a 1.2X tube lens adapter for a final magnification of 12X or 120X,

695  respectively, a CSU-X1 spinning-disk scan head (Yokogawa) and two Orca Flash 4.0 cameras

696  (Hamamatsu). 3D FOV image stack acquisition was performed with two cameras allowing for

697  simultaneous acquisitions of a brightfield and an mEGFP (excited with 4.6mW of a 488nm laser) channel.
698  Exposure time was 100ms. The resulting images were of 16 bits and 924x624 pixels? in xy dimension
699  after 2x2 binning. FOVs had a final xy pixel size of 0.108 um and z-stacks composed of 100 z-slices (to
700  encompass the full height of the cells within an FOV) acquired at a z interval of 0.29um. Transmitted
701  light (bright-field) images were acquired using a red LED light source with a narrow range peak emission
702  of 740 nm and a BP filter of 706/95 nm for bright-field light collection. A Prior NanoScan Z 100 mm
703  piezo z stage (ZEISS) was used for fast acquisition. Optical control images of field of ring (Argolight)
704  and dark current were acquired daily at the start of each data acquisition to monitor microscope

705  performance. Laser power was measured monthly and the corresponding percentage was adjusted to

706  consistently expose the sample to the same laser power. This dataset is available for download at

707 https://open.quiltdata.com/b/allencell/tree/aics/NPM1 single cell drug perturbations/

708

Drug Manufacturer 1D Concentration(s)

IActinomycin D ISeIIeckchem ‘58964 |0.5ug/mL
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709
710
711
712
713
714
715
716

BIX 01294
Bafilomycin A
Brefeldin
Chloroquine
H89
Jasplakinolide
Latrunculin Al
Monensin A
Nocodazole
Paclitaxel
Rapamycin
Roscovitine
Rotenone
Staurosporine

Torin-2

available under aCC-BY 4.0 International license.

Selleckchem
Millipore Sigma
Selleckchem
Medchemexpress
Selleckchem
Millipore Sigma
Millipore Sigma
Medchemexpress
Medchemexpress
Selleckchem
Selleckchem
Selleckchem
Medchemexpress
Selleckchem

Selleckchem

S8006

SML1661

S7046

HY-17589A

51582

420127

428026

HY-N0150

HY-13520

S1150

$1039

S1153

HY-B1756

S1421

S2817

1uM
0.1pM
5uM
40pM
10uM
50nM
0.1pM
1.1pM
0.1uM
5uM
1uM
5uM and 10pM
0.5pM
1uM

1uM

Table 1 - List of drugs and concentrations used in the perturbed nucleolar GC dataset

1.4.1 Cell health assessment: We assessed cell health at 4 and 24 hours after drug treatment using for
each drug both the AICS-57 (WTC-11 hiPSC endogenously tagged for mMEGFP-NMP1) and AICS-61
(WTC-11 hiPSC endogenously tagged for mEGFP-HIST1H2BJ) cell lines. FOVs of this cell line were
visually inspected to determine the extent of cell death induced by each drug. If cell death at either 4 or 24

hours was approximately 50% more prevalent than compared to the control, then cells were classified as

unhealthy after 2 hours. Otherwise cells were classified as healthy. Results from this assessment are

summarized in the last column of the table shown in Figure 7b.
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717 2. Input Data Preprocessing for Image Models

718 2.1 Punctate structures

719  2.1.1 cellPACK synthetic dataset: Packing results were voxelized into images of size 238x472x472
720  voxels. The z-coordinate of these images was padded with zeros to be the same size as X and Y, and the
721 resulting images were downsampled to 118x118x118 voxels via block reduce operation with block size of

722  4x4x4 voxels and then used as input for image-based models.

723  2.1.2 DNA replication foci dataset: 3D raw fluorescence intensity single-cell images of DNA replication
724  foci were masked, centered, and aligned by the corresponding nuclear segmentation dilated by 8x8x8
725  voxels. Images were cropped and then padded to the largest nuclear bounding box in the dataset. Images
726  were then padded and resized to 118x118x118 voxels. Images were globally contrast adjusted to be

727  within the intensity range 0 to 6000, which was empirically determined to remove dead pixels present in a
728  few images and scaled per image using monai.transforms.Scalelntensity® to be in the range (0,1).

729

730  2.1.3 Expanded dataset of punctate structures: Similar preprocessing was applied to a subset of

731  punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v1!, including DNA replication
732 foci, histones, nuclear pores, nuclear speckles, cohesins, peroxisomes, endosomes and centrioles.

733 However, the images of cytoplasmic structures (peroxisomes, endosomes, and centrioles), were masked
734 by the cell membrane segmentation, instead of nuclear segmentation. Images were contrast adjusted using
735  structure-specific intensity ranges reported int. Images were finally scaled per image using

736  monai.transforms.Scalelntensity® to be in the range (0,1). The preprocessing code used to generate this
737  dataset is available at

738 https://github.com/AllenCell/benchmarking representations/tree/main/br/data/preprocessing/image prepr

739 ocessing.

740 2.2 Polymorphic structures

741  2.2.1 Nucleoli (GC) dataset: Segmentations of nucleoli (GC) available in the WTC-11 hiPSC Single-
742  Cell Image Dataset v1! were masked by corresponding nuclear segmentations. We used a hole filling

743  algorithm to fill in holes in the segmented images that were then converted into 3D meshes for subsequent
744  preprocessing. Meshes were downscaled to fit within a cube of size 32x32x32 voxels using a global

745  scaling factor to preserve the relative scale of nucleoli in learned representations. For segmentation

746  models the downscaled meshes were voxelized to create binary images. For SDF models the downscaled

747  meshes were used to compute signed distance field images that were clipped to be in the range (-2,2).
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748  2.2.2. Expanded dataset of polymorphic structures: Segmentation of the nucleolar GC, nucleolar DFC,
749  Golgi and lysosomes (available in the WTC-11 hiPSC Single-Cell Image Dataset v1) were masked by
750 either nucleus or cell mask if the structure localizes to nucleus (nucleoli) or cytoplasm (Golgi and

751  lysosomes). Subsequent preprocessing followed Section 2.2.2, except 3D meshes were downscaled on a
752  per cell basis based on the cell’s intracellular structure bounding box. This downscaling avoids losing
753  small nuclear structures given the large bounding box of cytoplasmic structures.

754  2.2.3 Perturbed nucleoli (GC) dataset: We used the Allen Cell & Structure Segmenter®® to segment raw
755  fluorescence intensity fields of view (FOVs) of perturbed nucleoli (GC) (section 1.4). Nuclear

756  segmentations for each FOV were produced by applying a UNet model trained on the WTC-11 hiPSC
757  Single-Cell Image Dataset v1! to predict 3D nuclear segmentations from brightfield images. We manually
758  selected nuclear segmentations in each FOV that covered the corresponding the entirety of the nucleoli
759  signal. The selected masks were used to generate single-cell images and they were processed as described
760  in Section 2.2.1.

761 3. Input Data Preprocessing for Point Cloud Models

762 3.1 Punctate structures

763  3.1.1 cellPACK synthetic dataset: The list of N=256 centroids of spheres packed by cellPACK was
764  extended to 2,048 points by adding a small jitter to each input point cloud 8 times. This jitter was clipped
765  atavalue of 0.2, and the typical range of XYZ coordinates was -10 to 10. This was then used as the 3D
766  point cloud input. To improve reconstruction quality, this augmentation process was repeated 10 times for
767  each input. Details regarding the jitter augmentation are described in section 5.2.

768  3.1.2 DNA replication foci dataset: We started by applying the same preprocessing used in the DNA
769  replication foci dataset described above for image-based models, except for the last linear scaling step.
770  Instead, we used an exponential function eA(skewness « intensity) \yhere the skewness is a statistic that
771  indicates the deviation of a distribution from a normal distribution. The scaled images were then

772  normalized to obtain a probability density. The coefficient A is an intracellular-specific scale factor that
773  was empirically determined based on the visualization of sampled points from random images for each
774  intracellular structure. We used A = 100 for DNA replication foci images. The resulting probability

775  density was used to sample a point cloud with N=20,480 4D (XY Z+intensity) points. Sparse point cloud
776  versions with N=2,048 points were sampled from the original point cloud during training. Point clouds
777  were centered according to the nuclear mask and the intensity coordinate was scaled using by 0.1 to

778  match the magnitude of the spatial coordinates.
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779  3.1.3 Expanded dataset of punctate structures: We started by applying the same preprocessing used in
780  the expanded dataset of punctate structures described above for image-based models, except the last linear
781  scaling step. We again used an exponential function e#A(skewness xintensity) yyith 1 = 100 for nuclear

782  structures, and A = 500 for cytoplasmic punctate structures. The scaled images were then normalized to
783  obtain a probability density. We followed the same procedure described above for DNA replication foci
784  to sample point clouds for each of these punctate structures. The intensity co-ordinate was then

785  normalized using structure specific contrast ranges.

786 3.2 Polymorphic structures datasets:

787  3.2.1 Nucleoli (GC) dataset: For each single-cell nucleoli (GC) image, we started by sampling a point
788  cloud of N=8,192 points from its corresponding 3D mesh generated as described in section 2.2.1. A

789  second point cloud with N=20K points is sampled during training from the corresponding SDF volume,
790  vyielding a 4D point cloud consisting of SDF value + XYZ coordinates.

791  3.2.2. Expanded dataset of polymorphic structures: Each single polymorphic structure image

792  underwent a similar process. First, a point cloud of 8,192 points was sampled from the corresponding 3D
793  mesh (see section 2.2.2). During training, an additional 20K points were sampled from the SDF volume,
794  producing a 4D point cloud (SDF value + XYZ coordinates).

795  3.2.3 Perturbed nucleoli (GC) dataset: The perturbed nucleoli (GC) dataset followed the same sampling
796  strategy. For each single-cell nucleoli (GC) image, an initial 8,192 point cloud was sampled from the 3D
797  mesh generated as described in section 2.2.3. During training, another point cloud containing 20K points

798  was drawn from the SDF volume, yielding a 4D point cloud (SDF value + XYZ coordinates).

799 4. Model Background

800  Deep learning for feature extraction has been shown to be powerful in the context of cell biology, in

801 particular, for analyzing images in 2D®-%3, Despite its success, feature interpretability and generalizability
802  to unseen image data continues to be a major challenge® . To alleviate some of these problems, it has
803  been shown that imposing additional constraints corresponding to prior biological knowledge to models
804  helps to reduce the space of admissible solutions and improve the likelihood that the learned features can
805  be useful for scientific discovery®®.

806

807  One approach for imposing extra constraints informed by prior knowledge is the integration of known
808  symmetries into the learning process. This has been the guiding principle for the field of geometric deep
809 learning, a subset of machine learning that aims to exploit geometric principles and avoid the curse of

810  dimensionality associated with learning generic functions in high-dimensional spaces'®. While identifying
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811  symmetries in real-life datasets is not always straightforward, enforcing that learned representations are
812  invariant or equivariant under simple Euclidean geometric transformations of the input data has been
813  shown to improve data efficiency and generalization in fields like protein structure prediction ¢7, medical
814  image analysis %, and cell biology **. The distinction between invariant and equivariant representations is
815  of note. While the first type of representation stays the same when the input data is subject to some

816  transformation, the second changes predictably and equivalently. Rotation is a natural choice of

817  geometrical transformation to extract features that do not depend on the object’s orientation.

818 4.1 Image Models

819  To implement 3D rotation invariant image autoencoders, we used image encoders equivariant to the

820  group of 3D rotations (SO3 group) using R® steerable kernels as described in Weiler et al.®® and

821  implemented in the escnn library . Compared to conventional convolutions, R® steerable kernels are
822  equivariant under rotations in R®. We used scalar fields to learn invariant scalar features in R®, and vector
823 fields to learn equivariant vector features in R®. We used vector features to reconstruct the 3D rotation
824  matrix as described in Deng et al.}* and Winter et al.””.

825

826  We used seven layers of steerable kernels with an equal number of hidden scalar fields using trivial

827  representations and vector fields using irreducible representations. Using a (filter, stride, kernel size)

828  convention, the convolutions were (8, 1, 3), (16, 1, 3), (32, 2, 3), (64, 2, 3), (128, 2, 3), (512, 2, 3), (N, 1,
829 1), where N was the size of the latent dimension. In the final layer we used N scalar fields and 2 vector
830 fields. Each convolutional block also included a batchnorm and ReLU activation’. We used average

831  pooling in the last 5 layers and checked that this did not break equivariance (Fig. S2). We spatially pooled
832  the scalar embedding in the final layer to get the final N dimensional rotation invariant latent embedding.
833  We used a bottleneck size of 512 for polymorphic structures and 256 for punctate structures.

834

835  The decoding function was a conventional CNN decoder with 6 layers of convolutions. We used

836  upsampling blocks with a scale factor of 2 in between convolutions. Using a (filter, stride, kernel size)
837  convention, the convolutions were (512, 1, 3), (256, 1, 3), (128, 1, 3), (64, 1, 3), (32, 1, 3), (16, 1, 3). We
838  rotated the canonical reconstruction with the rotation matrix computed from the vector representation. We
839  used a cylinder mask using escnn.nn.modules.masking_module.build_mask to mask reconstructions and
840  reduce interpolation artifacts. We set the background value to 0 for segmentations, and 2 for clipped SDF
841  images where the maximum value was 2 and positive values were located outside the object. We used the
842  same settings with classical autoencoders by swapping out equivariant convolutions with regular

843  convolutions and keeping other details the same.
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844

845  4.1.1: Masked autoencoders using vision transformers: We also trained masked autoencoders (MAE)
846  using vision transformers’ in two stages as an alternative to the vanilla autoencoders described above.
847  We performed this training in two stages. First, we pretrained a MAE" using a ZY X patch size of (2,2,2),
848  amask ratio of 0.75, and learnable positional embeddings. The encoder was made up of 8 identical

849  transformer blocks, each with 4 heads and an embedding dimension of 256. The decoder had 2 layers

850  with 8 heads and an embedding dimension of 192. We then employed a second phase of training with a
851  mask ratio of O (i.e. all image patches are visible to the encoder) where we froze the MAE-trained encoder
852  and trained a freshly initialized decoder to reconstruct the input image. We trained all models with a mean
853  squared error (MSE) loss.

854 4.2 Point cloud models

855  Toimplement 3D rotation invariant point cloud autoencoders, we used a 3D rotation equivariant point
856  cloud encoder using vector neurons (VN), which lifts classical neurons to 3D vectors resulting in 3D
857  vector representations. VN layers are equivariant to rotations by construction, and have been shown to
858  outperform other equivariant architectures for tasks like classification, segmentation, and reconstruction.
859  We incorporate VN layers into a Dynamic Graph CNN (DGCNN)™ backbone for point cloud encoding.
860 DGCNN uses network modules called EdgeConvs to perform CNN-like local neighborhood feature

861  extraction. These EdgeConvs can be stacked to extract global features’. Dynamic graphs are computed
862 by constructing k-nearest neighbor graphs on points. We used k=20 based on previous works as a balance
863  between computational complexity and local structure information*. We concatenated the cross-product
864  of the neighbor features and input points as well as the input points themselves to the hidden

865  representation. As described in section 3, we included raw image intensity in addition to XYZ coordinates
866  in some cases to generate 4D point clouds. This coordinate was included with the same vector orientation
867  asthe XYZ coordinates, and thus remains equivariant under rotations in R®. For the cellPACK dataset, we
868  used a 3D point cloud as input. We used 6 convolutional blocks where each block comprises a VN Linear
869 layerand a VN Leaky ReLU layer. We collated intermediate outputs before a final 1D convolution. We
870  took the norm of the final vector embedding to get a rotation invariant representation. We also trained
871  classical point cloud autoencoders with DGCNN encoders as described in Vries et al. *, where VNLinear
872  and VN LeakyReL U layers are replaced with edge convolutions and ReL U layers.

873

874  4.2.1 Decoder for punctate structures: We reconstructed the rotation invariant representation for

875  punctate structures using a folding net decoder™. This decoder concatenates the latent embedding with

876  source points sampled from a template shape, and then applies two folding operations with ReLU
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877  activations interleaved in between to reconstruct a point cloud. We used a 2D plane as a template in all
878  cases except for the cellPACK synthetic dataset, where a sphere was used as a template. Next, we used
879  the learned rotation matrix from the vector embedding to re-orient the canonical reconstruction. We

880  optimized the model using an earth mover's distance’.

881

882  4.2.2 Decoder for polymorphic structures: We reconstructed the rotation equivariant representation
883  computed using vector neurons via an inner product decoder!! to get signed distance function values at
884  query points. These query points correspond to the points of the second point cloud sampled from the
885  SDF volume as described in section 3.2. The model is optimized using an L1 loss on the SDF values. We
886  took the norm of the embeddings after training to compute a rotation invariant representation. This relaxes
887  the generative nature of the model as we are no longer able to obtain a rotation invariant reconstruction.
888  This trades off the ability to generate rotation-invariant predictions with reconstruction quality, deemed
889  necessary for the more complex shapes of the polymorphic structures. Instead, we visualize the closest

890 real examples to different map points in representation space (Fig. 5, 6).

891 5. Model Training

892  5.1. Train, validation and test splits

893  We used a train/valid/test split ratio of 70%, 15%, 15% respectively across all datasets. For the expanded
894  polymorphic dataset, we stratified the split using the structure class. For the perturbed nucleoli (GC)

895  dataset, we stratified the split by drug.

896 5.2 Jitter augmentation

897  We trained the rotation invariant point cloud models with an augmented version of the DNA replication
898  foci dataset (N=2,420) and the synthetic dataset from cellPACK (N=254) because of the small size of
899  these datasets. This augmentation was done by adding jitter to each input point cloud (with 2,048 points)
900 10 times during training. The jitter was added via Gaussian noise with a standard deviation of 0.1. The
901  noise was clipped at a value of 0.2. The typical range of XYZ coordinates was -10 to 10. Adding

902  augmentations helped improve the quality of reconstructions (Fig. S4).

903 6. Multi-metric Model Benchmarking

904  We computed three sets of metrics to quantitatively benchmark our trained models (Fig. S1a-b).

905  Efficiency metrics including model size, inference time, and emissions to assess ease of inference and
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906 training. Generative metrics included reconstruction error and evolution energy’ to assess the quality of
907  generated shapes. Finally, representation expressivity metrics evaluated classification/regression scores
908 for biologically-relevant features, rotation invariance error, and interpolation distances in embedding
909  space.

910

911  Efficiency: Model size is the number of parameters in the model, inference time is the time to run GPU
912  inference on a single input, and carbon emissions is an estimate of hardware electricity power

913  consumption in KWh. All measurements use a single A100 GPU.

914  Generative capacity: Reconstruction error is the average test set reconstruction error using the Jaccard
915  similarity score for images and Chamfer distance for point clouds, respectively. More details on

916 classification and regression calculations can be found in section 6.1. Evolution energy is the normalized
917  energy of deformation from one shape to another averaged across many random test set pairs in a dataset
918  (Fig. S1b). Here, the normalized energy of deformation is computed as the sum of the reconstruction error
919  between an interpolated shape reconstruction and initial and final reconstructions, divided by the

920  reconstruction error between initial and final reconstructions. This energy is computed across 10

921  interpolations between two given shapes.

922  Expressivity: Rotation invariance error is computed as the norm of the Euclidean distance between the
923  embedding of a test set shape and its rotated version, divided by the sum of the norms of the two

924  embeddings. The metric aims to quantify how much the embeddings change in representation space with

925  rotation, while accounting for the size of the embedding space itself via

926 error = M, where 0 is the rotation angle
l1zgl + 12l

927 By dividing by the sum of the norms of the two embeddings, we establish their size relative to the origin.
928  We computed this metric for four 90 degree rotations of the input in the XY plane. This is then averaged
929  across many test set examples. Average interpolation distance is computed as the distance to the closest
930 real example in representation space for interpolations between random test set examples (Fig. S). We did
931 this for 10 interpolations between randomly sampled pairs of test set examples and report the average
932  across pairs and interpolations. Compactness is an intrinsic dimensionality measure calculated using the
933  Levina-Bickel score®®. All metrics were z-scored across models for polar plot visualization. The sign of
934  all metrics except for classification and regression scores were flipped to ensure that a higher value

935 indicates better performance. Classification and regression scores are the respective cross-validated test
936  setaccuracies and R? values for selected features. More details on classification and regression

937 calculations can be found in section 6.2.
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938 6.1 Reconstruction error

939  Punctate structures: We used the Chamfer loss to compute the reconstruction error of image- and point
940 cloud-based models. Because this loss is normally applied to point clouds, we convert inputs and

941  respective reconstructions from image models into point clouds by sampling points using the exponential
942  sampling function described in section 3.1.

943  Polymorphic structures: We used the Jaccard similarity score on binary masks to compute the

944  reconstruction error of image- (segmentation and SDF) and point cloud-based models. For segmentation
945  models, we used Otsu thresholding to binarize each reconstruction and extracted a mesh using marching
946  cubes. Next, we upscaled the mesh and voxelized it into a 3D binary mask. To generate a binary mask for
947  SDF images used as input for SDF models and their reconstructions, we first used the marching cubes
948  algorithm to extract a zero-level set mesh. Then we upscaled the mesh and voxelized it to create a 3D
949  binary mask. For SDF point cloud models, we used vertices of a 32x32x32 grid as XY Z query points to
950  perform inference along with ground truth surface point clouds to obtain SDF reconstruction images. We
951  then used the marching cubes algorithm to extract a zero-level set mesh from each SDF image, upscaled

952  the mesh, and voxelized it into a 3D binary mask.

953 6.2 Classification and Regression Scores

954  We normalized embeddings using StandardScaler from scikit-learn’”. For classification accuracies, we
955  used a logistic regression classifier with class weights and reported test set classification accuracies with
956  stratified k-fold cross-validation with five splits. For regression scores, we used a linear regression model
957  and reported test set R? with repeated k-fold cross validation with five splits and 20 repeats.

958

959  Classification and regression targets were designed appropriately. For the cellPACK synthetic dataset, we
960  reported cross-validated accuracy for classifying the six packing rules. For the DNA replication foci

961  dataset, we reported cross-validated top 2 classification accuracy for 8 interphase cell cycle stages and
962  cross-validated accuracy for manually annotated outlier labels including dead cells and cells with no

963  fluorescence. For punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v1, we reported
964  cross-validated structure classification accuracy for 7 structures and cross-validated classification

965  accuracy for cell cycle stages including interphase, prophase, early prometaphase,

966  prometaphase/metaphase and anaphase/telophase. For the nucleoli (GC) dataset, we reported cross-

967  validated classification accuracy of thresholded number of pieces of nucleoli present in the segmentation,
968 including 1, 2, 3, 4 and >=5 piece nucleoli. For this dataset, we also reported an average test set R? for
969  regression of mean and standard deviation of piece volume and area, and an average test set R2 for

970  regression of mean and standard deviation of centroid-centroid distances between pieces. For the
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971  polymorphic structure dataset including nucleoli (GC and DFC), lysosomes and Golgi, we reported cross
972  validated classification accuracy for structures, and regression scores for volume and area of pieces, and

973  distance between pieces similar to the nucleoli (GC) dataset.

974 7. Data Analysis

975 7.1 Principal component analysis (PCA)

976  We fit PCA to the learned rotation invariant representations using sklearn.decomposition.PCA with

977  “auto” SVD solver and the number of components equal to the size of the embedding space. We then
978  performed inverse PCA on different map points (-2c, 0, 20) for different principal components (PCs). We
979  used the inverse PCA reconstruction as input to the decoder of the representation learning model to

980  visualize the reconstructed image/point cloud.

981 7.2 Archetype analysis

982  Archetype analysis approximates the convex hull of data points by identifying extremal points®. We used
983  animplementation of the Frank-Wolfe algorithm for archetype analysis’®. The number of archetypes for

984  each dataset was chosen based on an expected number of clusters in each application.

985 7.3 Nuclear volume binning for nucleoli (GC) and DNA replication foci dataset

986  We clipped the nuclear volume distribution to be within the 2.5% and 97.5% range for both DNA

987  replication foci and nucleolar GC datasets. Next, we binned the data into equal sized bins of 121 um?. The
988  bins were <390 um?3, 390-533 pm?, 533-676 um?q, 676-818 pm?, and >818 um?.

989

990 8. Data Availability

991  The WTC-11 hiPSC single cell image dataset v1 analyzed in this study is available online at
992 https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single cell image dataset. The DNA

993  replication foci dataset analyzed in this study is available online at

994 https://open.quiltdata.com/b/allencell/packages/aics/nuclear project dataset 4. The WTC-11 hiPSC

995  nucleoli (NPM1) perturbation single cell image dataset analyzed in this study is available online at
996  https://open.quiltdata.com/b/allencell/tree/aics/NPM1_single_cell_drug_perturbations/. The synthetic

997  dataset of punctate structures generated using cellPACK and analyzed in this study is available online at

998 https://open.quiltdata.com/b/allencell/tree/aics/morphology appropriate representation learning/cellPAC
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999  K_single_cell punctate structure/. The landing page of the GitHub repository associated with this

1000  manuscript (https://github.com/AllenCell/benchmarking_representations) has additional information for

1001  accessing and processing these datasets.

1002 8. Code Availability

1003  Code for all our representation learning models is available at
1004  https://github.com/AllenCellModeling/cyto-dl/blob/br_release/.

1005  Config files associated with our models, training scripts, and code for multi-metric benchmarking are

1006  available at https://github.com/AllenCell/benchmarking_representations. Our code was all developed in

1007  Python. A full list of dependencies is available at https://github.com/AllenCellModeling/cyto-

1008 dl/tree/br _release/requirements and

1009 https://github.com/AllenCell/benchmarking representations/blob/main/pyproject.toml. We have released
1010 the code with the Allen Institute Software License.
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1180
1181  Figure 1 - Application-appropriate representation learning framework for complex intracellular

1182  structure morphologies. a) Example of a punctate structure using DNA replication foci. Shown are
1183  single-cell segmentations for the nucleus and cell membrane, and raw intensities for DNA replication foci
1184  (via PCNA). 4D (XYZ + intensity) point clouds are sampled from the intensity images by converting
1185 intensities to probabilities. The intensity co-ordinate is scaled to ensure that the range of intensity values
1186  issimilar to the range of XYZ coordinate values. This 4D point cloud is then used as input to the

1187  representation learning algorithm. b) Example of a polymorphic structure using granular component (GC)
1188  nucleoli (via nucleophosmin). Shown are single-cell segmentations for nucleus, cell membrane, and

1189  nucleoli (GC). Nucleoli segmentation from single-cell data is used to generate a 3D mesh. A surface point
1190 cloud is sampled from the nucleolar mesh. Another point cloud is sampled from the 3D bounding box

1191  volume and its points are assigned local signed distance field (SDF) values relative to the surface of the
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1192  nucleolar mesh. These two point clouds are used by the representation learning algorithm. ¢) 3D rotation
1193  invariant representation learning framework using autoencoders. Rotations of the same shape are

1194  projected into vector representations using a 3D rotation equivariant encoder. This vector representation is
1195 then used to reconstruct the original shape. We take the horm of the vector representation to compute a
1196  rotation invariant representation. We do this during training for punctate structures, and after training for
1197  polymorphic structures (Section 4.2 of Methods).
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1216  Figure 2 - 3D rotation invariant point cloud models are efficient, produce low rotation invariance
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1217  errors and generate good reconstructions in a synthetic dataset of punctate structures a) Dataset of
1218  synthetic punctate structures generated using cellPACK. A 3D nuclear shape is packed with 6 different
1219  rules. This includes Planar 0, Planar 45, Planar 90, Radial, Random, and Surface. Planar rules pack
1220  spheres with a gradient away from a plane indicated in red. Radial rule packs spheres close to the

1221  centroid. Random rule packs spheres randomly across the 3D nuclear volume. Surface rule packs spheres
1222  close to the nuclear boundary. Each rule is used to pack 254 different nuclear shapes. b) Benchmarking
1223  unsupervised representations across different models and metrics. (Left) Polar plot showing performance
1224  of classical and rotation invariant image and point cloud models across efficiency metrics (model size,
1225  inference time, emissions), generative metrics (reconstruction, evolution energy), and representation
1226  expressivity metrics (compactness, classification of rules, rotation invariance error, average interpolate
1227  distance). Metrics are z-scored and scaled such that larger is better (Right) Bar plots showing raw metric
1228  values across models for each metric. Error bars are standard deviations. Best model for each metric is
1229  indicated. c) 1st principal component for each rule using the rotation invariant point cloud model trained
1230  with jitter augmentations. PCA is fit to representations of each rule separately. Shown are normalized PCs
1231  (standard deviation (s.d.), o, units) sampled at 3 map points (-26 to 20 in steps of ). d) 6 archetypes

1232  computed from the rotation invariant point cloud representations. Each archetype corresponds to one of
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1233  the 6 rules. All reconstructions shown are cut at mid-plane. Color associated with each point is the
1234  distance from the mid-plane in Z.
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1241
1242  Figure 3 - Rotation invariant point cloud representations recover cell cycle-dependent spatial

1243  pattern of DNA replication foci. a) Dataset of DNA replication foci in hIPS cells expressing mEGFP-
1244  tagged PCNA. DNA replication foci have a stereotypical cell cycle dependent localization pattern. Shown
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are examples of image and sampled point cloud center slices with adjusted contrast for eight expert-
annotated cell cycle stages. The scale bar is 5 um. b) Benchmarking unsupervised representations across
different models and metrics. (Left) Polar plot showing performance of classical and rotation invariant
image and point cloud models across efficiency metrics (model size, inference time, emissions),
generative metrics (reconstruction, evolution energy), representation expressivity metrics (compactness,
classification of cell cycle via top-2 classification accuracy, rotation invariance error, average interpolate
distance). Metrics are z-scored and scaled such that larger is better (Right) Bar plots showing raw metric
values across models for each metric. Error bars are standard deviations. Best model for each metric is
indicated. ¢) 8 archetypes identified using rotation invariant point cloud representations. Each archetype
corresponds to one of the 8 expert-annotated cell cycle stages. d) 1st principal component for each cell
cycle stage using rotation invariant point cloud model. PCA is fit to representations of each cell cycle
stage separately. Shown are normalized PCs (standard deviation (s.d.), o, units) sampled at 3 map points
(-20 to 20 in steps of 6). €) Average canonical reconstructions across five bins of nuclear volume (Section

7.3 of Methods). All reconstructions shown are center slices.
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a) Punctate structures from WTC-11 hIPSC Single-Cell Image Dataset v1
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1263  Figure 4 -Representation learning framework reveals interpretable spatial patterns for other

1264  punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 a) Dataset of punctate
1265  structures in hiPS cells from the WTC-11 hiPSC Single-Cell Image Dataset v1 including nuclear pores,
1266  nuclear speckles, cohesins, histones, centrioles, peroxisomes, and endosomes (Viana 2023). Show are
1267  examples of images and sampled point cloud center-slices of the FP-tagged protein. The scale bar is 5
1268  um. b) Benchmarking unsupervised representations across classical and rotation invariant image and
1269  point cloud models across efficiency metrics (model size, inference time, emissions), generative metrics
1270  (reconstruction, evolution energy), and representation expressivity metrics (compactness, classification,
1271  rotation invariance error, average interpolate distance). Classification tasks included classifying 7

1272  different structures, and 6 different interphase/mitotic stages (Section 6.2 of Methods). (Left) Polar plot
1273  showing performance across models where metrics are z-scored and scaled such that larger is better
1274  (Right) Bar plots showing raw metric values across models for each metric. Error bars are standard

1275  deviations. Best model for each metric is indicated. c) Real examples per map point of PC1 computed
1276  using PCA fit to representations of each structure separately using the rotation invariant point cloud
1277  model. Only cells in interphase were included. Shown are XY and XZ views. The structure channel is
1278  shown as center slices across the nuclear centroid for nuclear pores, cohesins and histones, or as max
1279  projections for nuclear speckles, centrioles, endosomes, and peroxisomes. d) Latent walk for PC1. Shown
1280  are normalized PCs (standard deviation (s.d.), 6, units) sampled at 3 map points (-26 to 2¢ in steps of 6).
1281  Reconstructions shown are cut at mid-plane. Membrane centroids are marked for centrioles. Only cells in
1282  interphase were considered for this analysis. Centriole reconstructions were rotated to be aligned to the X
1283  axis.
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1289  Figure 5 - Rotation invariant representation learning framework generalizes to polymorphic multi-
1290  piece structures. a) Dataset of nucleoli (GC) from the WTC-11 hiPSC Single-Cell Image Dataset v1

>4 pieces 4 pieces
>4 pieces 4 pleoes

1291  (Viana 2023), stratified by number of pieces. Shown are example max intensity projections and

1292  corresponding 3D meshes. b) Benchmarking unsupervised representations across different models and
1293  metrics. (Left) Polar plot showing performance of all models across efficiency metrics (model size,
1294  inference time, emissions), generative metrics (reconstruction, evolution energy), representation

1295  expressivity metrics (compactness, classification of number of pieces, shape features regression, distance

1296  features regression, rotation invariance error, average interpolation distance). Metrics are z-scored and
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1297  scaled such that larger is better (Right) Bar plots showing raw metric values across models for each
1298  metric. Error bars are standard deviations. Best model for each metric is indicated. ¢) 1st principal

1299  component for 1 piece, 2 pieces, 3 pieces, 4 pieces, and 5+ pieces examples using rotation invariant point
1300 cloud model. PCA is fit to representations of different numbers of pieces separately. Shown are closest
1301  real examples to normalized PCs (standard deviation (s.d.), o, units) sampled at 3 map points (-26 to 26 in
1302  steps of 6). d) 2nd principal component for 1 piece, 2 pieces, 3 pieces, 4 pieces, and 5+ pieces examples
1303  using rotation invariant point cloud model. Shown are closest real examples to normalized PCs (standard
1304  deviation (s.d.), o, units) sampled at 3 map points (-20 to 26 in steps of 6). €) 5 archetypes identified
1305 using rotation invariant point cloud model. f) Closest real example to average representations of five
1306  equal sized bins of nuclear volume (Section 7.3 of Methods).
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a) Polymorphic structures from the WTC-11 b) Benchmarking results across different models and metrics
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1321  Figure 6 - Learned representations enable shape variation profiling on multiple polymorphic
1322  structures. a) Dataset of nucleoli GC, nucleoli DFC, lysosomes, and Golgi from the WTC-11 hiPSC
1323  Single-Cell Image Dataset v1 (Viana 2023). Shown are example max intensity projections and

1324  corresponding 3D meshes. b) Benchmarking unsupervised representations across different models and
1325  metrics. (Left) Polar plot showing performance for all models across efficiency metrics (model size,
1326  inference time, emissions), generative metrics (reconstruction, evolution energy), representation

1327  expressivity metrics (compactness, classification of number of pieces, shape features regression, distance
1328  features regression, rotation invariance error, average interpolation distance). Metrics are z-scored and
1329  scaled such that larger is better (Right) Bar plots showing raw metric values across models for each
1330  metric. Error bars are standard deviations. Best model for each metric is indicated. c) 1st principal

1331  component for each structure using rotation invariant point cloud model. PCA is fit to representations of
1332  each structure separately. Shown are closest real examples to normalized PCs (standard deviation (s.d.),

1333 o, units) sampled at 3 map points (-2¢ to 20 in steps of o). d) 2nd principal component for each structure
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1334  using rotation invariant point cloud model. Shown are closest real examples to normalized PCs (standard
1335  deviation (s.d.), o, units) sampled at 3 map points (-26 to 2c in steps of ). €) 4 archetypes identified
1336  using rotation invariant point cloud representations.
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Figure 7 - Learned representations allow for morphological profiling of nucleoli under different
perturbations. a) Q-value statistics? per drug (Section 1.4 of Methods) and per model indicating the

confidence of each model distinguishing a given drug from control. b) Table listing molecular target or
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1373 mechanism of action, effects reported in the literature, effects observed on the mEGFP-NPML1 cell line at
1374 2 hours post treatment, and cell health assessment between 4 and 24 hours after treatment for each drug.
1375  c) Three representative examples of nucleoli (GC) for the control (DMSO) and each of the 16 drugs used
1376  inthis study. d) Closest real sample to the average representation for the seven drugs that fall below the g-
1377  threshold using the rotation invariant point cloud model.
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1391  Supplemental figures

a) _ Evaluation metrics C) Holistic evaluation of metrics
Efficiency of the learning framework

Model size: number of model parameters.
Inference time: time to run GPU inference on a single batch.
Carbon emissions: estimate of hardware electricity power consumption (GPU+CPU+RAM) in kWh.

Generative ability
Reconstruction: Chamfer loss for punctate structures or Jaccard similarity score for polymorphic structures.
Evolution energy: average normalized energy of deformation from one shape to another (see panel (b))
input output
Rotation invariance: how sensitive are representations to rotations of input data. 2
Interpolation distance: average distance between interpolated representation and nearest real instance
latent representation

representation (see panel (c)).
Feature regression: cross validated coefficient of determination.
Classification accuracy: cross validated classification accuracy.
Compactness: Levina-Bickel instrinsic dimensionality of representation.

b) Workflow for interpolation distance and evolution energy calculation
representations representations -5 Energy of deformation
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1393  Figure S1 - Evaluation metrics for representation learning models a) Overview of different

1394  evaluation metrics for quantifying the utility of each representation learning framework. Efficiency

1395 metrics include model size, inference time, and carbon emissions. Generative ability metrics include
1396  reconstruction error and evolution energy. Representation expressivity metrics include rotation invariance
1397  error, interpolation distance, feature regression, classification accuracy, and compactness. b) Workflow
1398 for interpolation distance and evolution energy calculation. Two samples are drawn from the population
1399 randomly, and a linear interpolation is performed on the representations of the two samples. The

1400 euclidean distance between an interpolation and the nearest real representation is the interpolation

1401  distance. The interpolation distance is averaged across many interpolations to compute the average

1402  interpolation distance. Each interpolation is reconstructed using the decoder to obtain a reconstruction.
1403  The sum of the reconstruction error between the interpolated reconstruction and the reconstructions of the
1404 initial and final shapes normalized by the reconstruction error between the initial and final shape is the
1405  energy of deformation’. The energy of deformation is averaged across many interpolations to compute the
1406  evolution energy. Both evolution energy and average interpolation distance are averaged across many
1407  random pairs of samples from the test set. ¢) Holistic evaluation of metrics. Metrics are z-scored across
1408  models per metric. Z-scored metrics are visualized using a polar plot by flipping the sign for metrics

1409  where lower is better (indicated by a negative sign).
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1410
a) Image models reconstructions across rotations b) Point cloud models reconstructions across rotations
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1412  Figure S2 - Testing orientation invariance for image and point cloud models for the cellPACK
1413  synthetic dataset a) (Top row) Example image input for the planar 45 rule is rotated by four 90 degree
1414  rotations. (Middle row) Reconstructions using the classical image model (upper) and rotation invariant
1415  image model (lower) for each rotated input. The reconstructions using the rotation invariant model are
1416  pose-corrected using the learned rotation angles. (Bottom row) Rotation invariant reconstructions using
1417  the rotation invariant image model for each rotated input. b) (Top row) Example point cloud input for the
1418  planar 45 rule is rotated by four 90 degree rotations. (Middle row) Reconstructions using the classical
1419  point cloud model (upper) and rotation invariant point cloud model (lower) for each rotated input. The
1420  reconstructions using the rotation invariant model are pose-corrected using the learned rotation angles.
1421  (Bottom row) Rotation invariant reconstructions using the rotation invariant point cloud model for each
1422  rotated input. All reconstructions shown are max projections in Z.
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Radial Random
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generated using cellPACK. Test set center slice inputs (a, d) and reconstructions using b) classical

image model, c) rotation invariant image model, e) classical point cloud model, and f) rotation invariant

point cloud model for each of the 6 packing rules. Both pose-corrected and rotation invariant

reconstructions are shown for the rotation invariant models.
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1432
1433  Figure S4 - Jitter augmentations slightly improve point cloud model reconstructions for synthetic

1434  punctate structures generated using cellPACK. Test set center slice reconstructions using rotation

1435 invariant point cloud model with jitter augmentations for each of the 6 packing rules.
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1436

1437  Figure S5 - 3D image preprocessing into application appropriate inputs for punctate structures.
1438  Workflow for generating 4D point clouds from 3D intensity images. a) single-cell intensity images are
1439  obtained by masking via a dilated nuclear mask (for nuclear structures), followed by alignment to the
1440  longest axis of the nuclear mask. Intensities were then scaled using an exponential function and then
1441  converted to probabilities. These probabilities were then used to sample a dense 4D point cloud with
1442 20480 points and XYZ + intensity coordinates. During training, a sparse point cloud with 2048 points was
1443  sampled from this dense point cloud using the intensities as probabilities. The intensity coordinate was
1444  scaled using a scale factor of 0.1 to ensure that intensity values were in the same range as XY Z coordinate
1445  values. b) Examples of dense sample and sparse sample for each cell cycle stage for PCNA dataset.

1446  Shown are center-slice of raw intensity image, center-slice of raw intensity image overlaid with dense
1447  sample, and center-slice of raw intensity image overlaid with sparse training sample. ¢) Examples of

1448  dense sample and sparse sample for each punctate structure from the WTC-11 hiPSC Single-Cell Image
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1449 Dataset v1. Structures include histones, nuclear envelope, cohesins, nuclear speckles, endosomes,
1450  peroxisomes, and centrioles.
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1460  Figure S6 - Evaluation of test set model reconstructions for the DNA replication foci dataset.
1461  Test set center slice inputs (a, e, g) and reconstructions using b) classical image model, c) rotation
1462  invariant image model, d) an alternative classical image model via a masked autoencoder with a vision
1463  transformer as an encoder (MAE-VIT), f) classical point cloud model, and h) rotation invariant point
1464  cloud model for samples from each of the 8 cell cycle stages. Both pose-corrected and rotation invariant
1465  reconstructions are shown for the rotation invariant models.
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Figure S7 - Evaluation of test set model reconstructions for punctate structures from the WTC-11
hiPSC Single-Cell Image Dataset v1. Visualization of test set reconstructions for sampled histones
(Cellld 721646), nuclear pores (Cellld 873680), cohesins (Cellld 994027), nuclear speckles (Cellld
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1474  490385), centrioles (Cellld 451974), endosomes (Cellld 811336), peroxisomes (Cellld 835431). Shown
1475  are test set inputs (a, e, g) and reconstructions using b) classical image model, c) rotation invariant image
1476  model, d) an alternative classical image model via a masked autoencoder with a vision transformer as an
1477  encoder (MAE-VIT), f) classical point cloud model, and h) rotation invariant point cloud model for each
1478  structure. Both pose-corrected and rotation invariant reconstructions are shown for the rotation invariant
1479 models. Reconstructions for nuclear pores, cohesins, and histones are center slices, whereas

1480  reconstructions for nuclear speckles, centrioles, endosomes, and peroxisomes are max projections. Spatial
1481  distribution artifacts in reconstructions for endosomes and peroxisomes are highlighted with blue arrows.
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1490  Figure S8- 3D image preprocessing into application appropriate inputs for polymorphic structures
1491  a) Workflow for computing signed distance function (SDF) images from segmentations. single-cell

1492  structure segmentations are masked by nuclear segmentation (for nuclear structures), followed by

1493  meshing, centering, and hole filling. The mesh is then rescaled to 32*2 cube resolution and then processed
1494  to get a signed distance function. Alternatively, the rescaled mesh is voxelized to get a segmentation. SDF
1495  isclipped to (-2, 2) range for training image models to focus models on the zero level set. Example shown
1496 s for nucleoli (GC). b). Visualization of rescaled segmentation and SDF for examples with different
1497  numbers of pieces of granular component (GC) of nucleoli. Shown are center-slices of raw intensity
1498  images, max projection of the structure segmentation, max projection of the voxelized rescaled

1499  segmentation, and center slice of the rescaled mesh SDF. ¢) Visualization of rescaled segmentation and
1500  SDF for other polymorphic structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 including

1501 lysosomes, Golgi, GC nucleoli, and dense fibrillar component (DFC) nucleoli.
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1506  Figure S9 - Examples of model inputs and outputs for nucleolar GC dataset. Test set reconstructions
1507  across all models for sampled 1 piece (Cellld 964798), 2 pieces (Cellld 661110), 3 pieces (Cellld
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644401), 4 pieces (Cellld 967887) and 5+ pieces (Cellld 703621) examples. Max projections of original
structure segmentations overlaid with nuclear and membrane segmentations are shown. Max projections

are shown for segmentations, whereas middle slices are shown for SDFs.
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Figure S10 - Evaluation of model reconstructions for polymorphic structures from the WTC-11
hiPSC Single-Cell Image Dataset v1. A) Test set reconstructions across all models for sampled nucleoli
(GC) (Cellld 691110), nucleoli (DFC) (Cellld 723687), lysosome (Cellld 816468), and Golgi (Cellld
800894) examples. Max projections of original structure segmentations overlaid with nuclear and
membrane segmentations are shown. Max projections are shown for segmentations, whereas middle slices

are shown for SDFs.
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