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Abstract 9 

A key challenge in understanding subcellular organization is quantifying interpretable measurements of 10 

intracellular structures with complex multi-piece morphologies in an objective, robust and generalizable 11 

manner. Here we introduce a morphology-appropriate representation learning framework that uses 3D 12 

rotation invariant autoencoders and point clouds. This framework is used to learn representations of 13 

complex multi-piece morphologies that are independent of orientation, compact, and easy to interpret. We 14 

apply our framework to intracellular structures with punctate morphologies (e.g. DNA replication foci) 15 

and polymorphic morphologies (e.g. nucleoli). We systematically compare our framework to image-based 16 

autoencoders across several intracellular structure datasets, including a synthetic dataset with pre-defined 17 

rules of organization. We explore the trade-offs in the performance of different models by performing 18 

multi-metric benchmarking across efficiency, generative capability, and representation expressivity 19 

metrics. We find that our framework, which embraces the underlying morphology of multi-piece 20 

structures, facilitates the unsupervised discovery of sub-clusters for each structure. We show how our 21 

approach can also be applied to phenotypic profiling using a dataset of nucleolar images following drug 22 

perturbations. We implement and provide all representation learning models using CytoDL, a python 23 

package for flexible and configurable deep learning experiments.  24 

Introduction 25 

A central goal of cell biology is to understand the spatial and dynamic organization of the components 26 

within the cell and how their interactions contribute to cell function. Enabled by advances in imaging 27 

methods, we are now at the dawn of the big data era for cellular imaging1–4, in which unprecedented 28 

amounts of rich image datasets can enable quantitative characterization of cellular organization and its 29 

connections with cellular phenotype. 30 
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The term cellular organization encompasses multiple aspects of a cell’s configuration that must be 31 

unpacked before further discussion. Here we focus on two of these aspects: spatial protein distributions 32 

and shape of multi-piece intracellular structures. For example, the spatial pattern of fluorescently labeled 33 

PCNA, representing the punctate morphology of DNA replication foci, changes throughout the cell cycle, 34 

making it difficult to quantify due to its dynamic and complex nature. These types of spatial distributions 35 

are usually analyzed via the texture patterns they represent, for example computing Haralick texture 36 

features5. However, the biological meaning of some of these features, such as the second angular moment 37 

of texture, is difficult to understand. Therefore, for spatial protein distributions, we face the challenge of 38 

developing a robust and generalizable analysis workflow that facilitates biological interpretation. 39 

 40 

On the other hand, major organelles or subcellular structures can often be analyzed by segmentation, 41 

which separates the foreground signal from the background. Intracellular structures composed by a single 42 

segmented piece, such as the cell itself or the nucleus, can then be studied via a range of features 43 

including, among other methods, shape decomposition using spherical harmonic expansion1,6,7. This 44 

approach is, however, mainly used for cell and nuclear shapes because it is limited to continuous shapes, 45 

and does not easily apply to complex, multi-piece structures like the Golgi apparatus, which has a 46 

discontinuous shape. In fact, most intracellular structures exhibit a polymorphic morphology consisting of 47 

multiple pieces, which presents an additional challenge for interpretable image analysis pipelines. While 48 

each individual piece could be segmented and measured, the entirety of the multi-piece structure cannot 49 

be easily represented as a whole. 50 

 51 

To overcome these two challenges, we demonstrate the use of 3D point clouds to encode biological data 52 

in microscopy images, combined with an unsupervised representation learning framework for single cell 53 

feature extraction. Representation learning is a field of machine learning that has become an increasingly 54 

popular way to extract meaningful features directly from raw data without the need for hand-engineered 55 

features8,9. These features are in the form of latent variables learned by neural networks during training, 56 

which we refer to as representations. 57 

 58 

An important aspect of the proposed learning framework is that it is generative, meaning we can switch 59 

between the original point clouds and the single-cell representations learned, resulting in highly 60 

interpretable features and addressing the first challenge described. A key contribution of this work is the 61 

use of point clouds to incorporate intensity information present in large 3D images representing spatial 62 

protein distribution in a segmentation-free manner. Another important contribution is the adaptation of the 63 

point cloud-based approach to handle segmented multi-piece shapes. This is achieved using the concept 64 
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of signed-distance field, allowing us to generalize our framework to more complex intracellular 65 

structures, thus overcoming the second challenge described. 66 

 67 

The representations learned by neural networks normally depend on the orientation of an object in the 68 

image. Despite the fact that the orientation of the cells is important in many contexts, such as when cells 69 

are subject to shear stress, during development or direct migration, it may not be of any biological 70 

relevance in other contexts. For example, the orientation of a cell in a monolayer colony may merely 71 

reflect the orientation of that colony relative to the microscope stage and not anything biological. 72 

Therefore, it would be desirable to design analysis workflows where the image orientation can be factored 73 

out of the learned representations if appropriate. We achieved this by leveraging the notion of 3D rotation 74 

invariance to extract features that do not depend on an object’s orientation. The incorporation of 75 

geometric information in the form of the object orientation into the representation learning process is an 76 

example of geometric deep learning10. By using point clouds as an unifying way of encoding image data, 77 

we are able to overcome the challenges described above and take advantage of previous implementations 78 

for rotation-invariant feature learning11–13 while extending their applications to quantitative cell biology. 79 

 80 

Here, we first develop a rotation invariant representation learning framework that uses point clouds to 81 

encode relevant information about the underlying biological data. We then use a synthetic dataset of 82 

punctate structures to confirm that rotation invariant representations are not sensitive to data orientation 83 

and are more compact when learned from point clouds compared to images. We show how 3D rotation 84 

invariant features learned from point clouds can be used to recover unique morphological changes of 85 

DNA replication foci across the cell cycle without supervision. We also explore the localization patterns 86 

of multiple punctate structures and discover novel patterns of intracellular organization. Next, by adapting 87 

our framework to handle more complex multi-piece structures, we systematically characterize sources of 88 

shape variation of other major intracellular structures like nucleoli, Golgi, and lysosomes. Finally, we 89 

demonstrate how the learned representations based on this framework can be used for detecting 90 

morphological alterations in a nucleolar drug perturbation dataset, and for visualizing the average 91 

phenotype for each drug to aid interpretability. 92 

Results 93 

A novel morphology-appropriate framework for learning 3D rotation invariant representations of 94 

complex intracellular structures and holistic model evaluation 95 

 96 
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The 3D rotation invariant representation learning framework has two main components. The first consists 97 

of encoding the raw single-cell image data into a point cloud. This encoding process is done in a 98 

morphology-appropriate manner for punctate structures and polymorphic intracellular structures, such as 99 

DNA replication foci and nucleoli, respectively. The biological meaning of shape differs between these 100 

two types of morphologies; we focus on representing the relative location of individual pieces in punctate 101 

structures (Fig. 1a), while both relative location and shape of individual pieces are considered important 102 

for polymorphic structures (Fig. 1b). 103 

 104 

The second part of the framework consists of a neural network model that consumes the generated point 105 

clouds for learning 3D rotation invariant representations of the biological data (Fig. 1c). We define 106 

rotation invariance using the group of all rotations in 3D. All the neural network models are designed as 107 

autoencoders14: First, an encoder network compresses the generated point clouds into vector latent 108 

representations. Next, these latent representations are used by a decoder network to reconstruct the input 109 

data. 110 

 111 

To evaluate the utility of the 3D point cloud encoding, we performed benchmarking against traditional 112 

methods using neural network models trained on 3D images directly. We trained classical (rotation 113 

dependent) and rotation invariant versions of both image- and point cloud-based models to evaluate the 114 

impact of adding the geometric constraint of rotation invariance. We expected point cloud-based models 115 

to outperform image-based models for two reasons. First, point clouds are a less redundant way of 116 

representing sparse multi-piece intracellular structures compared to image-based models. Second, image-117 

based autoencoders often generate blurry reconstructions that can be particularly problematic for small 118 

objects15,16. More details about all models used in this paper can be found in Section 4 of Methods. 119 

 120 

We used a multi-metric approach to evaluate our models and representations. Our goal is to increase 121 

transparency behind the performance of these models, and to explore trade-offs. Importantly, we hope to 122 

identify models that are quantitatively useful across a broad set of tasks to make gaining biological insight 123 

from the learned representations more likely, not necessarily the model that is best for any one metric.. 124 

The models were evaluated with respect to their efficiency, generative capabilities and representation 125 

expressivity as detailed in Figure S1 (also in Section 6 of Methods). 126 

 127 

This multi-metric evaluation approach tested different models beyond their ability to reconstruct the 128 

input, which is the primary task of autoencoders. For example, this included efficiency metrics that 129 

gauged the compute resources and time required to evaluate each model, including the model size, 130 
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inference time and carbon emissions. We also included generative metrics like the evolution energy 131 

between two sample shapes (Fig. S1b). In addition, we also evaluated the models’ expressivity by 132 

quantifying the biological information content in the learned representations. Specifically, we used 133 

representations for classifying or predicting (via regression) biologically-relevant measurements in an 134 

application-appropriate manner (Section 6.2 of Methods). For example, we used the representations to 135 

predict volume or number of pieces of a given intracellular structure when these properties are relevant 136 

for the application. Considering all these metrics together, we quantified the holistic utility of each model 137 

(Fig. S1c) and the pros and cons of using each approach. 138 

 139 

To aid reproducibility and empower researchers with the ability to independently test and apply these 140 

models to their own data, we provide all the representation learning models used in this study via 141 

CytoDL, a Python package for configurable 2D and 3D image-to-image deep learning transformations 142 

and representation learning, available at https://github.com/AllenCellModeling/cyto-dl. CytoDL is 143 

designed consistent with FAIR17 practices, and is built to work for diverse use cases, thus making it 144 

robust, modular, and flexible to the evolving nature of research.  145 

 146 

3D rotation invariant point cloud models are efficient, produce low rotation invariance errors and 147 

generate good reconstructions in a synthetic dataset of punctate structures 148 

 149 

We started by evaluating the effectiveness of 3D rotation invariance and the choice of using point clouds 150 

to encode punctate structures using synthetic data. We used cellPACK to create a synthetic dataset of 151 

punctate structures with known rules of organization. cellPACK generates 3D models of complex 152 

biological environments using novel packing algorithms18. To create the synthetic dataset, we used 153 

multiple spatial rules for packing spheres in real 3D nuclear shapes based on gradient algorithms (Section 154 

1.3 of Methods). These algorithms include a rotationally-dependent planar gradient where spheres are 155 

packed away from a plane oriented at 0-, 45-, or 90-degrees about the z-axis, and a set of three 156 

rotationally-independent gradients including a radial gradient where spheres are packed with a gradient 157 

away from the centroid of the nucleus, a random gradient where spheres are packed randomly, and a 158 

surface gradient where spheres are packed close to the nuclear boundary, resulting in six total packing 159 

rules (Fig. 2a). We packed spheres according to each of these six rules into 254 real nuclear shapes 160 

selected from the DNA replication foci dataset (Section 1.1 of Methods). Importantly, the stochastic 161 

nature of the packing algorithm generates heterogeneity in the distribution of spheres across the simulated 162 

nuclei, thus making the recovery of rules via unsupervised learning more challenging, and evaluating the 163 

robustness of each representation learning method. 164 
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 165 

Since 3D rotation is an important variable associated with the planar rules, we expected 3D rotation 166 

invariant models to give us the most compact representations by factoring out this variable. We 167 

additionally hypothesized that point cloud models (Fig. 1a) would provide better representations than 168 

image models since they better describe the punctate nature of the synthetic data represented by the 169 

centroid of the packed spheres (Fig. 2a). To test this hypothesis, we trained two classical and two 3D 170 

rotation invariant models using images and point clouds as input data respectively (Sections 2.1, 3.1, and 171 

4 of Methods).  172 

 173 

We found that point clouds were more efficient across all efficiency metrics (Model size, Inference time 174 

and Emissions in Fig. 2b). In addition, point clouds also produced better reconstructions (“Reconstruction 175 

error”) and had low evolution energy scores, meaning that the interpolations between two shapes are 176 

smooth. Next, we tested whether the implementations of the rotation invariant models were indeed 177 

generating representations that were not sensitive to orientation of the input data. We confirmed that this 178 

was the case as shown by similar orientation of reconstructions in the last row of Figure S2. We found 179 

that rotation invariant representations from point clouds were more compact using the Levina-Bickel 180 

intrinsic dimensionality metric (“Compactness”)19 and had much lower rotation invariance errors 181 

compared to its image-based counterpart (Fig. 2b, Section 6 of Methods). All four models were able to 182 

reconstruct the unique morphologies associated with each packing rule (Fig. S3). However, we found that 183 

representations from both rotation invariant models were slightly worse than their classical counterparts at 184 

classifying the six rules (“Rule classification” in Fig. 2b). This was an expected outcome since rotation is 185 

an important distinguishing feature of the planar rules and rotation invariant representations are 186 

insensitive to this feature. Overall, the 3D rotation invariant point cloud model was an efficient generative 187 

model that learned compact and orientation-independent representations for synthetic punctate structures. 188 

 189 

Having established the holistic utility of the rotation invariant point cloud model on synthetic data, we 190 

next performed principal component analysis (PCA; Section 7.1 of Methods) on the learned 191 

representations using this model to interpret their meaning. We performed this PCA on a version of this 192 

model trained with jitter augmentations to improve reconstruction quality (Fig S4; also see jitter details in 193 

Section 5.2 of Methods). By visualizing the first principal component (PC1) of the reconstructions for 194 

each rule via a latent walk, we found that PC1 recovers how nuclear size affects each rule’s packing (Fig. 195 

2c). Notably, the rotation invariant reconstructions for all planar rules are aligned in the same direction, 196 

allowing us to focus on the subtle differences in spatial distribution between 0- and 45-degrees 197 

orientation. 198 
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 199 

Next, we performed an archetype analysis20 to find extremal points in the representations of the synthetic 200 

dataset (Section 7.2 of Methods). Archetypes are determined so that observations can be approximated by 201 

convex combinations of the archetypes. By setting the number of archetypes to six, we found each 202 

archetype represented one of the six rules used in cellPACK to generate the synthetic dataset. These 203 

results show that the obtained point cloud rotation invariant representations can enable unsupervised rule 204 

discovery for a synthetic dataset of punctate structures. 205 

 206 

Rotation invariant point cloud representations recover cell cycle-dependent spatial patterns of DNA 207 

replication foci 208 

 209 

After establishing its applicability to synthetic data, we tested the representation learning framework on a 210 

real single-cell image dataset of punctate structures for biological discovery and hypothesis generation. 211 

The dataset contains single-cell images of DNA replication foci in hIPS cells expressing fluorescently 212 

tagged PCNA (N=2,420, Section 1.1 of Methods). DNA replication foci are punctate and display a 213 

continuous change in their overall localization pattern and intensity throughout cell cycle21 (Fig. 3a). Due 214 

to tagged PCNA fluorescence intensity being an important source of variation for DNA replication foci 215 

patterns, we adapted the point cloud sampling strategy so that the raw image intensity is treated as a 216 

fourth coordinate, in addition to the XYZ spatial coordinates (Fig. S5a-b, and Section 3.1.2 of Methods). 217 

This additional coordinate ensures that intensity information is captured in the learned representations 218 

without impacting the rotation invariance of the XYZ spatial coordinates (Section 4.2 of Methods). 219 

 220 

To test whether the representations learned with this data capture biologically relevant features about 221 

DNA replication foci localization, we manually classified each single-cell image in this dataset into one 222 

of eight cell-cycle stages based on the spatial pattern of PCNA (Section 1.1 of Methods). We also 223 

manually labeled cells as outliers if they were dead, dying, or did not express PCNA. Next, we used the 224 

representations learned by each of the four models to benchmark their performance on various tasks, 225 

including classification of cell cycle stages and detection of outliers from the DNA replication foci 226 

dataset. 227 

 228 

We found that point cloud models were more efficient but not as compact as the rotation invariant image 229 

model (Fig. 3b). Point cloud models also provided better overall reconstructions compared to image 230 

models (compare reconstructions in Fig. S6f-h to Fig. S6b-c). Despite the poor reconstruction of both 231 

image models (Fig. S6b-c), we found that the rotation invariant image model was the best at classifying 232 
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cell cycle stages (“Cell cycle classification” in Fig. 3b, 81% accuracy vs 80% accuracy for the best point 233 

cloud model). This result in particular demonstrates the limits of evaluating models using a single metric 234 

alone. We confirmed that poor reconstructions of image models were not due to dataset size or image 235 

normalization issues using an alternative approach (Fig. S6d and Section 4.1.1 of Methods). We also 236 

found that point cloud models had slightly better performance detecting outliers compared to image-based 237 

models (“Outlier classification” in Fig. 3b, ~100% accuracy vs 98% accuracy for the best image model). 238 

Finally, we found that the rotation invariant point cloud model had lower rotation invariance error scores 239 

compared to its image counterpart. Overall, the results elucidate the challenge of reconstructing sparse 240 

intracellular structures using classical image autoencoders24, and highlight the good performance of the 241 

rotation invariant point cloud representations across many metrics evaluated for the DNA replication foci 242 

dataset. 243 

 244 

To interpret the representations learned by the rotation invariant point cloud model per cell cycle stage, 245 

we performed PCA on this dataset stratified by the manual annotations of cell cycle stages. A latent walk 246 

along PC1 for each cell cycle stage revealed some overlap in the morphology and intensity of DNA 247 

replication foci between neighboring cell cycle stages (earlyS σ=2 and earlyS-midS σ=-2, for example). 248 

This highlights the inherent uncertainty that is present in the task of manual annotation of a continuous 249 

process in discrete classes. 250 

 251 

We found that an archetype analysis with eight archetypes was able to recover expected cell cycle 252 

patterns of DNA replication foci (order of archetypes in Fig. 3d resembles examples in Fig. 3c for σ=0). 253 

The archetypes capture three main sources of variation in the dataset as expected. First, overall nuclear 254 

shape which is mainly represented by archetypes displaying different elongations. In addition to nuclear 255 

shape, the intensity and localization of DNA replication foci are significantly different between 256 

archetypes. These two sources of variation seemed correlated as we observe in real PCNA images. Lastly, 257 

the spatial pattern of PCNA changes from a dim signal uniformly distributed in the nucleus at G1 to 258 

compact bright spots well localized in lateS. 259 

 260 

Next, we asked if the learned representations could be used for interpreting the evolution of the DNA 261 

replication foci spatial pattern as a function of the cell cycle stage. To test this, we binned nuclear volume 262 

into five bins to create a pseudo cell cycle axis (Section 7.3 of Methods), and we averaged the rotation 263 

invariant point cloud representations of all cells within each bin (Fig. 3e). We observed a continuous 264 

orientation-invariant transition that recapitulates the coalescence of uniformly distributed dim DNA 265 

replication foci puncta in G1 into a few bright dots in late S. This pattern is followed by signal 266 
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sparsification into uniform dim punctate again in G2. We observed a moderate distinction between spatial 267 

patterns in Figure 3e, which suggests that nuclear size is only a weak proxy for cell cycle stages. These 268 

results demonstrate that the learned point cloud rotation invariant representations can recover the overall 269 

behavior of DNA replication foci in an unsupervised manner. 270 

 271 

Representation learning framework reveals interpretable spatial patterns for other punctate 272 

structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 273 

 274 

To assess whether our approach would generalize to other intracellular structures with punctate 275 

morphology, we analyzed a larger dataset of punctate structures from the WTC-11 hiPSC Single-Cell 276 

Image Dataset v1 (Section 1.2 of Methods).  This dataset comprises centrioles (N=7.575), peroxisomes 277 

(N=1,997), endosomes (N=2,601), nuclear pores (N=17,703), nuclear speckles (N=2,980), cohesins 278 

(N=2,380), and histones (N=15,875). Examples of these structures are shown in Figure 4a. Once again, 279 

we trained classical and rotation invariant image- and point cloud-based models on this larger dataset (Fig 280 

S5c, Sections 2.1 and 3.1 of Methods). In addition to the usual set of evaluation metrics, we tested the 281 

applicability of the learned representations for two classification tasks. The first task focused on 282 

identifying the specific intracellular structure from the seven options available in the dataset. The second 283 

task involved classifying cell-cycle stages (interphase or mitosis) based on the annotations provided 284 

within the dataset (Section 6.2 of Methods). 285 

 286 

Overall, we found that classical image-based models provide better reconstructions when trained with the 287 

combination of these seven different punctate structures relative to what we observed for the same models 288 

trained on DNA replication foci dataset alone (Fig. S7a-b). Despite this improvement in reconstruction, 289 

we noticed that the classical image-based model poorly reconstructs some of these structures including 290 

centrioles, peroxisomes, and endosomes (see blurry reconstructions in Fig. S7b). In addition, we found 291 

that imposing rotation invariance further deteriorates reconstruction of image models across all structures 292 

(Fig. S7c). Once again, an alternative approach confirmed that poor reconstruction was not due to dataset 293 

issues (Fig. S7d and Section 4.1.1 of Methods). 294 

 295 

Both classical and rotation invariant point cloud models produced more accurate and comparable 296 

reconstructions, but with spatial distribution artifacts for structures with fewer training samples, like 297 

endosomes and peroxisomes, similar to the classical image model (as shown by arrows in Fig. S7f-g). In 298 

addition to providing improved reconstructions compared to image models, we found that the rotation 299 

invariant point cloud representations performed well at both structure classification (~95% accuracy vs 300 
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90% accuracy for best image model) and cell stage classification (~58% accuracy vs 57% accuracy for 301 

best image model), while being more compact and orientation independent (Fig. 4b).  302 

 303 

We then analyzed rotation invariant point cloud representations by computing the first principal 304 

component (PC1) for each structure for cells in interphase. To do this, we sampled real single-cell images 305 

along PC1 for each structure as shown in Figure 4c. Top and side views in Figure 4c suggest the major 306 

source of variation across all seven intracellular structures in this dataset appears to be aspects of cell and 307 

nuclear shape like height and elongation. Next, we noticed that centrioles are localized near the nucleus at 308 

one extreme of PC1 and gradually migrate towards the cell membrane at the other extreme (column 309 

“Centrioles” in Fig. 4c). Additionally, we observed nuclear speckles to be more uniformly distributed 310 

within the nucleus at one extreme of PC1 and more concentrated near the nuclear shell forming a ring-like 311 

pattern at the other extreme of PC1. Surprisingly, latent walks along PC1 revealed similar patterns as 312 

additional sources of variation for these two structures (Fig. 4d). We found that centrioles polarize by 313 

moving away from the cell center (represented by a dark cross in Fig. 4d), and nuclear speckles 314 

concentrate in a ring-like pattern (last row of column “Nuclear speckles” in Fig. 4d). Overall, these results 315 

highlight the ability of our rotation invariant point cloud representations to capture meaningful and 316 

biologically relevant variations in the spatial pattern of multiple intracellular structures. 317 

 318 

Rotation invariant representation learning framework generalizes to polymorphic multi-piece 319 

structures  320 

 321 

We next asked if we could adapt our approach to learn 3D rotation invariant representations for non-322 

punctate intracellular structures, such as nucleoli and Golgi apparatus. These organelles are polymorphic 323 

structures where the shape of individual pieces, in addition to the location of these pieces, may be 324 

important for the underlying biological process and therefore should be captured by the learned 325 

representations22,23. We combined the point cloud approach with a signed distance field (SDF11,24,25) 326 

computed from segmented images, which is a function that represents the signed distance of a position to 327 

the nearest part of a shape, to incorporate the shape information of individual pieces into the 328 

representation learning framework (Fig. S8 and Section 3.2 of Methods). To make this possible, a few 329 

modifications had to be made to the autoencoder architecture. First, while the encoder was left 330 

unchanged, its input point clouds are now sampled from segmented images instead of raw data, 331 

specifically from the surfaces of each of the multi-piece substructures. Next, a second point cloud is 332 

sampled from the 3D segmentation volume, and each point is assigned to its local SDF value. We 333 

replaced the point cloud decoder with an implicit decoder, which takes the latent representation and 334 
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spatial coordinates of each point’s location in the second point cloud as input, to reconstruct SDF values 335 

at each spatial location (Fig. 1b). Thus, both the encoder and decoder represent the 3D shape in different 336 

formats, allowing the model to capture complex shape information using SDFs, while remaining less 337 

sensitive to orientation changes. Additionally, for the reasons described in Section 4.2.2 of Methods, we 338 

had to relax the generative requirement of the model to make the generalization to polymorphic structures 339 

possible. 340 

 341 

We applied the adapted framework to images of the granular component (GC) of nucleoli via 342 

fluorescently-tagged nucleophosmin (NPM1, N=11,814, Fig. 5 and Section 1.2 of Methods) which are 343 

part of the WTC-11 hiPSC Single-Cell Images Dataset v11. Nucleoli are multi-compartment condensates 344 

that exhibit a broad distribution in both the number of pieces and size26 and exhibit rapid rotation in 3D 345 

27,28. Given these properties, we expected that 3D rotation invariant representations learned using an 346 

implicit definition of the nucleolar surface via an SDF would be more interpretable than representations 347 

learned by classical models directly from segmented images. To evaluate this, we trained two classical 348 

image models using segmentations and SDFs, two 3D rotation invariant image models using 349 

segmentations and SDFs, and one 3D rotation invariant point cloud model using SDFs (Sections 2.2, 3.2 350 

of and 4 of Methods). Examples of inputs and outputs of each of these models can be seen in Figure S9. 351 

 352 

We found that the two classical image models based on segmentations and SDFs, and the 3D rotation 353 

invariant  point cloud model generate similar quality reconstructions (“Reconstruction error” in Fig. 5b). 354 

However, the point cloud model was less efficient in terms of emissions and inference time (Fig. 5b). We 355 

also found that 3D rotation invariant image models produce lower quality reconstructions compared to 356 

classical image models, as we had observed for models trained on punctate structures (see Section 6.1 of 357 

Methods for details on how reconstruction error was computed for each model). The results also indicate 358 

rotation invariant representations from point clouds are more orientation-independent compared to 359 

representations learned from both segmentations and SDFs (“Rotation invariance error” in Fig. 5b). Next, 360 

we asked which representations would capture more relevant morphological attributes of nucleoli. To 361 

answer this question, we used the learned representation to classify the number of nucleolar pieces in the 362 

segmented images and to predict the size, surface area and relative distance between pieces (Section 6.2 of 363 

Methods). We found that rotation invariant point cloud representations performed best on all of these 364 

tasks (“Classification of number of pieces”, “Average feature regression” and “Average distance 365 

regression” in Fig. 5b), suggesting that these representations contain relevant biological information. 366 

 367 
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Next, we used PCA on data grouped by number of pieces to interpret the rotation invariant point cloud 368 

representations. Since we had to relax the generative capabilities of this model to achieve rotation 369 

invariance, we retrieved the closest real cells while performing a latent walk of PC1 (Fig. 5c) and PC2 370 

(Fig. 5d). We found height and elongation to be the major source of variation for single piece-nucleoli 371 

(~30% of the examples in the dataset; N=3,499, explained variance of PC1was 16% and PC2 was 7%). 372 

This was confirmed by computing Pearson correlation with structure elongation (r=0.56 for PC1, r=0.05 373 

for PC2) and height (r=0.13 for PC1, r=0.01 for PC2). In the remaining 70% of the dataset (N=8,315), 374 

where nucleoli consist of multiple pieces, the predominant source of variation appears to be the distance 375 

between pieces and the relative size of these pieces. For example, when considering nucleoli composed of 376 

two pieces, we observe PC1 (explained variance was 19%) to represent the height of the larger piece and 377 

the size of the small piece (Fig. 5c). In addition, we found both PC1 and PC2 to correlate with the average 378 

distance between pieces (r=0.42 for PC1, r=0.17 for PC2). By performing an archetype analysis with five 379 

archetypes, we found that three archetypes represent nucleoli with a single piece but different elongations 380 

(archetypes 1-3 in Fig 5e). Archetype four represents nucleoli with one large piece and one small piece, 381 

which is a common configuration in the dataset, and archetype five represents nucleoli fragmented in 382 

many small pieces. 383 

 384 

Motivated by previous observations of cell cycle-dependent nucleolar morphology29, we asked whether 385 

rotation invariant representations would capture nucleolar changes as a function of the cell cycle. We 386 

again used nuclear volume bins to create a pseudo cell cycle axis and visualized the closest real example 387 

to the average representation within each bin (Section 7.3 of Methods). Consistent with previous 388 

observations29, we found that cells exiting division (small nuclear volume) have nucleoli that are 389 

fragmented into multiple pieces that coalesce into a single large piece as the cells grow and progress 390 

towards mitosis (Fig. 5f). Altogether, the results show that this representation learning framework can be 391 

successfully adapted using SDFs to polymorphic structures and that it provides representations that 392 

capture relevant aspects of the nucleolar biology. 393 

 394 

Learned representations enable shape variation profiling on multiple polymorphic structures 395 

 396 

We next expanded this method to profile multi-piece shape variation on the granular component (GC) of 397 

nucleoli (N=11,814) and three other polymorphic structures. To do this, we analyzed a subset of 398 

polymorphic structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 (Section 1.2 of Methods). 399 

This subset comprised the dense fibrillar component (DFC) of nucleoli (N=9,923), lysosomes 400 

(N=10,114), and Golgi (N=6,175). Representative images of each structure are shown in Fig. 6a. We 401 
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applied the SDF point cloud rotation invariant representation learning framework to this dataset of four 402 

different polymorphic structures, and once again benchmarked it against classical and rotation invariant 403 

segmentation-based and SDF-based image models (Fig. S8). We focused here on learning scale invariant 404 

representations by scaling all intracellular structures on a cell by cell basis (Section 2.2.2 of Methods). 405 

While this scaling strategy prevents us from comparing sizes across different intracellular structures, it 406 

helps preserve the resolution of structures occupying only a few voxels. Examples of inputs and outputs 407 

of each of the models used can be seen in Figure S10. 408 

 409 

We again observed that the rotation invariant point cloud representations continued to display the lowest 410 

rotation invariance errors of any model tested (Fig. 6b). We found that all rotation invariant models were 411 

more compact than their classical counterparts. We also found that both rotation invariant image models 412 

were worse at reconstruction and evolution energy than their classical counterparts (Fig. 6b). 413 

Interestingly, all models were able to classify structure equally well (“Structure classification” in Fig. 6b). 414 

This suggests that the morphology of these structures is distinct enough to be easily discerned using 415 

unsupervised learned representations, despite all being referred to as "polymorphic". 416 

 417 

We performed PCA on rotation invariant representations learned for each of the four intracellular 418 

structures and visualized the first two principal components (Fig. 6d-e). We identified features like overall 419 

elongation and number of pieces as primary sources of variation for both components of nucleoli, which 420 

are known to be nested via liquid-liquid phase separation30. In the case of lysosomes, we observed PC1 421 

and PC2 to be related to aspects of cell shape. This was further confirmed by computing Pearson 422 

correlation between PC1 (explained variance ~15%) and cell elongation (r=-0.42), and PC2 (explained 423 

variance ~8%) and cell height (r=0.28). PC1 also displayed strong correlation with the average distance 424 

between lysosome pieces (r=-0.45 for PC1), suggesting that the first principal component also captures 425 

information about lysosome spatial clustering. In the case of Golgi, the first two principal components 426 

(explained variance ~13% for PC1 and 9% for PC2) appeared to capture aspects of elongation and 427 

fragmentation. This was corroborated by computing correlations with structure elongation (r=-0.61 for 428 

PC1 and r=0.06 for PC2), the average distance between Golgi pieces (r=-0.55 for PC1 and r=0.27 for 429 

PC2), and number of pieces (r=0.14 for PC1 and r=0.05 for PC2). An archetype analysis with four 430 

archetypes retrieved two granular component (GC) nucleolar morphologies that represent aspects of 431 

elongation (Archetype 1) and number of pieces (Archetype 2). The other two archetypes were examples 432 

of the dense fibrillar component (DFC; Archetype 3) of nucleoli and the Golgi (Archetype 4).  433 

 434 
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Overall, representations from all SDF-based models were able to regress information about distances 435 

between pieces better than segmentation-based models, whereas the rotation invariant representations 436 

were able to regress information about volume and area of pieces better than classical models. While the 437 

point cloud rotation invariant model performed well in generation and representation expressivity metrics, 438 

no single model excelled across all metrics. This observation suggests that application-appropriate model 439 

selection is key for achieving optimal results. For example, if the goal of an analysis is to learn 440 

representations that are not sensitive to rotations, then the rotation invariant point cloud approach would 441 

be most appropriate, but if the goal is to learn a model that reconstructs the data well, then a classical 442 

segmentation model would be most appropriate in this case. 443 

 444 

Evaluating drug effects on nucleolar morphology using unsupervised representation learning 445 

 446 

We then proceeded to test the applicability of the representation learning approach to a perturbation 447 

detection task using a drug screening dataset. We imaged WTC-11 hiPS cells expressing an 448 

endogenously, fluorescently tagged nucleophosmin, representing the granular component of nucleoli. 449 

Cells were treated with 16 different drugs at relatively low concentration to induce subtle phenotypic 450 

alterations (Section 1.4 of Methods). Analysis was conducted on cells imaged two hours after treatment. 451 

 452 

We used the representation learning framework to extract unsupervised representations for cells in the 453 

dataset (N=1,025). To do so, we fine-tuned the models trained on the dataset of nucleolar (GC) single-cell 454 

images described in the section “Rotation invariant representation learning framework generalizes to 455 

polymorphic multi-piece structures”. We followed the methods described in Chandrasekaran et al.2 to 456 

evaluate the performance of these fine-tuned models. To do so, we computed the mean average precision 457 

to measure how distinguishable different single cells of a drug-treated set are from untreated cells 458 

(DMSO; N=140), and a q-value statistic based on permutation testing. 459 

 460 

The results are summarized in Figure 7a, where we plot the q-value per drug for each model. Drugs with 461 

q-value under the significance threshold of 0.05 are considered by that model as causing significant 462 

alterations in nucleolar morphology. Aside from the first two drugs, we found a significant difference in 463 

the behavior of segmentation- and SDF-based models. Therefore, we sorted the x-axis from low to high 464 

average q-value based on all SDF models. Consequently, drugs on the left side of the plot induce a 465 

stronger phenotypic change compared to drugs on the right side. Figure 7b shows a table with more 466 

details about each drug, such as name, concentration, molecular target or mechanism of action, effect 467 
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based on literature review and effect observed on nucleoli based on visual inspection of this drug dataset. 468 

Representative examples of the range of phenotype of each drug are shown in Figure 7c.  469 

 470 

The first drug to appear on the x-axis of Figure 7a is Actinomycin D, indicating that this drug is the one 471 

with the strongest effect on nucleolar morphology. This drug works as a control in this analysis since it is 472 

the only well characterized drug in this study that is known to target the DNA and cause significant 473 

alteration in nucleolar size, as described in Figure 7b and shown in Figure 7c. Next, we found 474 

Staurosporine to have the second strongest effect. A visual inspection of images of cells treated with this 475 

drug reveal the presence of many dead cells where nucleoli display very abnormal morphology (Fig 7c). 476 

Both Actinomycin D and Staurasporineno were identified as being distinguishable from the control 477 

(below q=0.05 threshold) by all models. 478 

 479 

No other drug was identified by either the classical or rotation invariant image-based segmentation 480 

models. On the other hand, the SDF based models identified several other drugs that could be associated 481 

with off-target effects. Starting from the left side of the plot in Figure 7a, these models next identified 482 

Paclitaxel and Nocodazole, which were associated with cell death 24 hours after treatment, while also 483 

locking cells in mitosis (Fig. 7b-c). SDF-based models also detected Jasplakinolide which is known to 484 

promote actin polymerization and is associated with higher nuclear volumes31. Visual inspection of the 485 

image data did not reveal any apparent nucleolar alteration (Fig. 7c) or change in cell health within 24 486 

hours after treatment, suggesting that the effect of this drug is subtle. Next, Torin was detected by all SDF 487 

models, which was observed by visual inspection to induce cell death, like Staurosporine. Lastly, 488 

Rascovitine at 10µM was detected only by the SDF rotation invariant models. While there was no visible 489 

alteration of nucleoli morphology in this dataset at this concentration, Roscovitine at 10µM caused cell 490 

death at 4 hours in images of a different dataset of H2B-tagged cells (Histones, data not shown), and is 491 

known to cause nucleolar segregation32,33 at higher concentrations. These results suggest that our 492 

representation learning framework captures subtle concentration-dependent phenotypes that are not 493 

visible by eye. Overall, we observed three different categories of drugs that were retrieved using different 494 

models; “sledgehammer” phenotypes that were detected by all models, subtle off-target effects that were 495 

detected by SDF models, and subtle concentration-dependent phenotypes that were detected only by the 496 

rotation invariant SDF models. The remaining nine drugs in the dataset did not induce visible alterations 497 

to nucleolar morphology, although four of them induced cell death at later time points, including H89, 498 

Chloroquine, Rotenone and Brefeldin. 499 

 500 
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Visualization of the closest real example to the average representation using the point cloud model 501 

emphasized that Actinomycin D, Staurosporine and Torin-treated nucleoli were visually distinct from the 502 

control, confirming that nucleolar morphology is strongly affected by these drugs (Fig. 7d). These results 503 

illustrate that our 3D representation learning approach can enable perturbation detection and phenotype 504 

profiling, and indicate the need for follow up experiments to confirm the impact of some of these drugs, 505 

like Jasplakinolide, on nucleolar morphology. 506 

Discussion 507 

In this paper, we developed a morphology-appropriate 3D rotation invariant representation learning 508 

framework for multi-piece intracellular structures using point clouds. We benchmarked this framework 509 

against classical and rotation invariant image-based models using a novel multi-metric evaluation 510 

criterion that focuses not only on traditional reconstruction quality but also on measurements that can be 511 

important for downstream analysis and biological discovery. We found that our morphology-appropriate 512 

approach can be more efficient, can produce meaningful reconstructions, and can learn more compact and 513 

expressive representations across a range of tasks than classical image and point cloud models. We 514 

applied this framework to synthetic and real single-cell image datasets for punctate structures, like DNA 515 

replication foci, and polymorphic structures, such as nucleoli. Our results reveal that geometry-aware 516 

choices of encodings and neural network architectures can enable unsupervised discovery and 517 

interpretation of variability in the morphology of several multi-piece intracellular structures.  518 

 519 

We first demonstrated this principle by recovering the rules used to create a synthetic dataset of punctate 520 

structures using cellPACK in a fully unsupervised way. We then recovered expected morphological 521 

patterns for different intracellular structures using unsupervised methods, such as archetype analysis and 522 

PCA, and by identifying biologically interpretable localization patterns for structures, like DNA 523 

replication foci and centrioles. Interestingly, the good performance achieved by different models in 524 

classifying cell cycle stages using PCNA suggests that manual annotation of this information can be 525 

replaced or assisted by unsupervised representation learning. In addition, the learned representations for 526 

centriole capture its repositioning from the cell center towards the periphery, a behavior which is known 527 

to be mediated by the microtubule network34,35. The learned representations also recapitulate a known axis 528 

of morphological change of nuclear speckles, which goes from many, small, irregularly shaped speckles 529 

to larger, rounder shaped speckles. This is known to occur when transcription is inhibited in cells and is 530 

also the primary axis of variability between cell types36.  531 

 532 
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We further showed how the framework can be extended to polymorphic structures and characterized the 533 

full complexity of nucleolar shape variation as an example. When applied to a larger dataset of 534 

polymorphic structures, the unsupervised representation learning revealed interesting spatial organization 535 

aspects of these structures. For example, Golgi fragmentation captured by the first two principal 536 

components of rotation invariant representations is often described as an important morphological feature 537 

under both normal and physiological conditions, and has connections with different signaling pathways23. 538 

However, we observed a trade-off when using the rotation invariant point cloud model where the model 539 

produced good reconstructions and learned expressive representations, but was inefficient compared to 540 

image models, potentially limiting its ability to scale to much larger datasets and its utility to users with 541 

limited computational resources. 542 

 543 

Finally, we evaluated the utility of our approach on phenotypic profiling of a nucleoli perturbed image 544 

dataset and demonstrated the interpretability of the learned representations. In general, we noticed that 545 

segmentation-based models were not able to detect drugs like Torin-2 that caused clear alterations on 546 

nucleolar morphology as a result of cell death. This result suggests that SDF encodes information relevant 547 

for perturbation detection. It is important to note that our assessment of cell health based on the number of 548 

dead cells in the FOV does not distinguish between different processes by which cells can die. This could 549 

be a possible explanation for why some drugs that induce death were detected as being distinguishable 550 

from the control, while others were not. A larger drug screening single-cell image dataset is necessary to 551 

comprehensively validate our findings and evaluate the robustness of our approach. 552 

 553 

In this work, we focused the experiments on 3D confocal images of intracellular structures in the hiPS 554 

cell, but our framework is general and can be applied to other cell types and imaging modalities. For 555 

example, single-molecule localization microscopy (SMLM) naturally generates large 3D point cloud data 556 

for single molecule interaction at the 10-20 nm resolution range37. Similarly, imaging-based spatial 557 

transcriptomics methods that measure a small subset of genes using single-molecule fluorescence in-situ 558 

hybridization (smFISH) technologies typically generate point locations of RNA localization38, and 559 

antibody-based immunofluorescence imaging methods generate protein localization maps in 3D systems 560 

such as organoids39,40. These datasets are often quantified using point cloud clustering analysis and could 561 

benefit from unsupervised representation learning frameworks such as the one proposed here.  562 

 563 

Many current techniques for analyzing single-molecule localization microscopy operate in two 564 

dimensions, forcing researchers to project their 3D data into 2D for analysis purposes41,42. This trend is 565 

prevalent in cell biology and medicine, where numerous publicly accessible datasets are predominantly in 566 
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2D2,3,43. The development of 3D analysis frameworks combined with availability of 3D data, can mitigate 567 

barriers to conducting comprehensive 3D analyses across diverse imaging modalities. This, in turn, 568 

reduces the risk of artifacts and allows analysis to be centered on the native data formats. 569 

 570 

Previous studies have introduced unsupervised representation learning approaches for cell images using 571 

autoencoders with geometric deep learning44,45. Our work complements these approaches in three ways: 572 

first, by incorporating the notion of orientation invariance into our intracellular structure morphology-573 

dependent framework for representation learning; second, by providing a systematic multi-task 574 

benchmark to evaluate the utility of each model that goes well beyond traditionally assessed 575 

reconstruction quality; third, by focusing our analysis on 3D multi-piece intracellular structures with 576 

complex morphology and spatial distribution. Our approach was tested across datasets of different sizes 577 

commonly obtained in typical single cell imaging studies, ranging from a few hundred to tens of 578 

thousands samples, thus providing a guideline for the quality of unsupervised representations in different 579 

cases. For instance, we observed poor image-based reconstructions on small datasets like the DNA 580 

replication foci dataset. This observation might be closely related to our deliberate choice of using vanilla 581 

autoencoders throughout our analysis, and many modifications of autoencoders have been shown to 582 

improve different aspects of reconstruction46,47, disentanglement44,48,49, causal inference50,51, and 583 

dynamics52,53. 584 

 585 

Our framework can be further improved in multiple ways. For example, our results indicate cell and 586 

nuclear shape are major sources of variation because that information was not factored out of our learning 587 

framework and therefore, become confounding variables. While this reflects a true coupling between cell 588 

and nuclear shape and structure localization, alternative approaches may offer a way to decouple these 589 

confounding variables from learned representations. For instance, one could incorporate reference 590 

information about other intracellular structures for answering questions about intracellular structure co-591 

localization54. Another possibility for improving our framework could be adding mutual exclusivity rules 592 

to further constrain the models and move towards a better understanding of compartmentalization15. 593 

Finally, given the limited ability to simultaneously tag and visualize multiple structures55,56, extending our 594 

framework to predict spatial patterns of a set of structures given the representation from another set could 595 

help build a holistic description of intracellular organization. The morphology-appropriate representation 596 

learning using point clouds and SDFs that we have described here is flexible and can be modified to 597 

incorporate several such improvements. 598 

 599 
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In summary, we have begun to develop a computational analysis pipeline for interpretable representation 600 

learning of complex multi-piece intracellular structures. An important goal of this work is to make the 601 

data, models and analysis tools freely available to the community, so that it can serve as a benchmark for 602 

further methods development for 3D analysis. We hope that this work can spur the interest of the cell 603 

biology community into new ways of analyzing and interpreting complex intracellular organization. 604 

Acknowledgments 605 

We thank Aditya Nath, Ben Gregor, Calysta Yang, Derek Thirstrup, Joyce Tang, Mackenzie Coston, 606 

Melissa Hendershott and Winnie Leung for collecting the perturbation dataset used in this paper. We 607 

thank Megan Riel-Mehan, Ruge Li and Graham Johnson for developing cellPACK. We thank Clare 608 

Gamlin, Erin Angelini and Serge E. Parent for editing suggestions to the text. The WTC line that we used 609 

to create our gene-edited cell lines was provided by the Bruce R. Conklin Laboratory at the Gladstone 610 

Institute and UCSF. S.M.R. and C.L.F. were supported for some of this work by the National Human 611 

Genome Research Institute of the National Institutes under Award Number UM1HG011593. The content 612 

is solely the responsibility of the authors and does not necessarily represent the official views of the 613 

National Institutes of Health. This article is subject to HHMI’s Open Access to Publications policy. 614 

HHMI laboratory heads have previously granted a nonexclusive CC BY 4.0 license to the public and a 615 

sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-accepted 616 

manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon 617 

publication. We wish to thank Allen Institute founders, Jody Allen & Paul G. Allen, for their vision, 618 

encouragement, and support. 619 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.07.25.605164doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605164
http://creativecommons.org/licenses/by/4.0/


20 

Author contributions 620 

Conceptualization, R.V., A.F. ,G.G.P., S.M.R., J.A.T., M.V.P.; Data Curation, R.V., A.F., A.B., C.L.F., 621 

N.G. ,S.S.M.; Formal Analysis, R.V., A.F.; Investigation, R.V., A.F., A.B., N.G., S.S.M., S.M.R., J.A.T., 622 

M.V.P.; Methodology, R.V., A.F., J.A.T.; Project Administration, R.V., M.V.P.; Resources, R.V., A.F., 623 

B.M.; Software, R.V., A.F., B.M.; Supervision, S.M.R., J.A.T., M.V.P.; Validation, R.V., A.F., A.B.; 624 

Visualization, R.V., A.F.; Writing of the original draft, R.V., M.V.P.; Writing review and editing, R.V., 625 

A.F., A.B., G.G.P., S.M.R., J.A.T., M.V.P. 626 

Declaration of interests 627 

The authors declare no competing interests. 628 

Methods 629 

1. single-cell Image Datasets 630 

1.1 DNA replication foci dataset 631 

Spinning-disk confocal 3D images taken of a fluorescently tagged cell line that targets proliferating cell 632 

nuclear antigen (PCNA) labeling DNA replication foci with mEGFP were processed to create the DNA 633 

replication foci dataset57. Fluorescent cell-membrane and DNA dyes tagged the cell boundary and 634 

nucleus, respectively. Nuclear segmentations were obtained using the protocol described in Viana et al. 1, 635 

with the only difference being that nucBlue dye was replaced with nucViolet dye. Segmentations of DNA 636 

replication foci were generated for each FOV, using three different segmentation workflows created using 637 

the Allen Cell & Structure Segmenter58 to segment specific DNA replication foci morphologies. Next, we 638 

visually identified which segmentation workflow was best for each cell and saved the result in an empty 639 

FOV at that cell’s correct location. More details about the dataset and images are available here 640 

https://open.quiltdata.com/b/allencell/packages/aics/nuclear_project_dataset_4. 641 

 642 

Cells in interphase were labeled by an expert as belonging to one of nine classes - G1, earlyS, early-midS, 643 

midS, midS-lateS, lateS, lateS-G2, G2, and unclear. Unclear labels were dropped during analysis. About 644 

3% of cells were labeled as outliers based on bad segmentations of DNA replication foci, cells appearing 645 

dead or dying, no EGFP fluorescence, and bad segmentations of cells and nuclei. Dead cells and no 646 

fluorescence were used for the outlier detection task, accounting for 16 cells out of a total of 2,420 cells. 647 
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1.2 WTC-11 hiPSC Single-Cell Image Dataset v1 648 

Spinning-disk confocal 3D images taken from 25 endogenously tagged hIPS cell lines were processed to 649 

create the WTC-11 hiPSC Single-Cell Image Dataset v11. Fluorescent cell-membrane and DNA dyes 650 

tagged the cell boundary and nucleus, respectively. Cell, nuclear and structure segmentations were used 651 

as provided in the dataset release available here 652 

https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset. 653 

 654 

We performed analysis on histones via H2B (N=15,875) , nuclear pores via Nup153 (N=17,703), 655 

peroxisomes via PMP34 (N=1,997), endosomes via Rab-5A (N=2,601), centrioles via centrin-2 656 

(N=7,575), cohesins via SMC1A (N=2,380) and nuclear speckles via SON (N=2,980) as selected punctate 657 

structures from this dataset. We selected nucleoli (DFC) via fibrillarin (N=9,923), nucleoli (GC) via 658 

nucleophosmin (N=11,814) , lysosomes via LAMP-1 (N=10,114), and Golgi via sialyltransferase 659 

(N=6,175) as polymorphic structures. While we used all single-cell images for training our models, we 660 

limited our analysis to interphase cells. 661 

1.3 cellPACK synthetic single-cell dataset 662 

We used cellPACK to create synthetic point clouds within real nuclear shapes18. cellPACK provides an 663 

algorithm to create high-resolution 3D representations of the biological mesoscale based on specified 664 

rules. Segmentation of 254 randomly chosen nuclei from the DNA replication foci dataset were converted 665 

into a triangulated mesh and used as input to cellPACK. cellPACK then packed 256 spheres with a radius 666 

of 1 voxel within these meshes based on four distinct rules. Random: points were generated uniformly at 667 

random inside the nucleus; Planar gradient rule: points were generated inside the nucleus with a bias 668 

away from a plane. The plane contains the centroid of the nucleus, and its orientation is specified by 669 

a normal vector. We used normal vectors with three different orientations: i) θ=0, the normal vector 670 

points along the z-axis (0x + 0y + 1z) where the longest axis of the nucleus is the y-axis. ii) θ=45°, 671 

the normal vector is (0x + 1/√2y + 1/√2z). iii) θ=90°, the normal vector points along the y-axis; 672 

Surface gradient rule: points were generated with a strong bias towards the nuclear surface Radial 673 

Gradient: points were generated with a bias towards the centroid of the nucleus. For each rule, cellPACK 674 

generated a point cloud with 256 points for each nucleus shape. This dataset is available for download at 675 

https://open.quiltdata.com/b/allencell/tree/aics/morphology_appropriate_representation_learning/cellPAC676 

K_single_cell_punctate_structure/ 677 
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1.4 Drug dataset 678 

A collection of well-characterized drugs was used to perturb the Allen Institute for Cell Science cell line 679 

AICS-50 (WTC-11 hiPSC endogenously tagged for mEGFP-NPM1, tagging nucleoli (GC)). Drugs and 680 

concentrations were selected because cell treatment with each of them induced a well-characterized effect 681 

on one major cellular structure morphology that could be visually observed within 24 hours of treatment 682 

(Table 1) and was not associated with massive cell death within the first two hours of treatment, except 683 

for Jasplakinolide. Cells were seeded on a 96-well glass bottom plate using the protocol described in 684 

Gregor et al.59. Four days post seeding 2D brightfield low magnification well overviews were acquired 685 

and used for position selection following the same criteria as described in Viana et al.1. Following 686 

position selection cells were washed once with pre-warm phenol red-free mTeSR then media was 687 

replaced with drug-containing phenol red-free mTeSR media at the indicated concentration (Supp table 688 

X). The cells were then placed back on the spinning-disk confocal microscope stage where they were 689 

maintained at 37°C with 5% CO2 for two hours before the start of imaging at high magnification (120X). 690 

Images were acquired with three identical ZEISS spinning-disk confocal microscopes with 10X/0.45 NA 691 

Plan-Apochromat (for well overview and position selection) and 100X/0.8 NA Plan-Apochromat (Zeiss) 692 

(for high-resolution imaging) and ZEN 2.3 software (blue edition; ZEISS). The spinning-disk confocal 693 

microscopes were equipped with a 1.2X tube lens adapter for a final magnification of 12X or 120X, 694 

respectively, a CSU-X1 spinning-disk scan head (Yokogawa) and two Orca Flash 4.0 cameras 695 

(Hamamatsu). 3D FOV image stack acquisition was performed with two cameras allowing for 696 

simultaneous acquisitions of a brightfield and an mEGFP (excited with 4.6mW of a 488nm laser) channel. 697 

Exposure time was 100ms. The resulting images were of 16 bits and 924x624 pixels2 in xy dimension 698 

after 2x2 binning. FOVs had a final xy pixel size of 0.108 μm and z-stacks composed of 100 z-slices (to 699 

encompass the full height of the cells within an FOV) acquired at a z interval of 0.29μm. Transmitted 700 

light (bright-field) images were acquired using a red LED light source with a narrow range peak emission 701 

of 740 nm and a BP filter of 706/95 nm for bright-field light collection. A Prior NanoScan Z 100 mm 702 

piezo z stage (ZEISS) was used for fast acquisition. Optical control images of field of ring (Argolight) 703 

and dark current were acquired daily at the start of each data acquisition to monitor microscope 704 

performance. Laser power was measured monthly and the corresponding percentage was adjusted to 705 

consistently expose the sample to the same laser power. This dataset is available for download at 706 

https://open.quiltdata.com/b/allencell/tree/aics/NPM1_single_cell_drug_perturbations/ 707 

 708 

Drug Manufacturer ID Concentration(s) 

Actinomycin D Selleckchem S8964 0.5µg/mL 
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BIX 01294 Selleckchem S8006 1µM 

Bafilomycin A Millipore Sigma SML1661 0.1µM 

Brefeldin Selleckchem S7046 5µM 

Chloroquine Medchemexpress HY-17589A 40µM 

H89 Selleckchem S1582 10µM 

Jasplakinolide Millipore Sigma 420127 50nM 

Latrunculin A1 Millipore Sigma 428026 0.1µM 

Monensin A Medchemexpress HY-N0150 1.1µM 

Nocodazole Medchemexpress HY-13520 0.1µM 

Paclitaxel Selleckchem S1150 5µM 

Rapamycin Selleckchem S1039 1µM 

Roscovitine Selleckchem S1153 5µM and 10µM 

Rotenone Medchemexpress HY-B1756 0.5µM 

Staurosporine Selleckchem S1421 1µM 

Torin-2 Selleckchem S2817 1µM 

Table 1 - List of drugs and concentrations used in the perturbed nucleolar GC dataset 709 

1.4.1 Cell health assessment: We assessed cell health at 4 and 24 hours after drug treatment using for 710 

each drug both the AICS-57 (WTC-11 hiPSC endogenously tagged for mEGFP-NMP1) and AICS-61 711 

(WTC-11 hiPSC endogenously tagged for mEGFP-HIST1H2BJ) cell lines. FOVs of this cell line were 712 

visually inspected to determine the extent of cell death induced by each drug. If cell death at either 4 or 24 713 

hours was approximately 50% more prevalent than compared to the control, then cells were classified as 714 

unhealthy after 2 hours. Otherwise cells were classified as healthy. Results from this assessment are 715 

summarized in the last column of the table shown in Figure 7b. 716 
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2. Input Data Preprocessing for Image Models 717 

2.1 Punctate structures 718 

2.1.1 cellPACK synthetic dataset: Packing results were voxelized into images of size 238x472x472 719 

voxels. The z-coordinate of these images was padded with zeros to be the same size as X and Y, and the 720 

resulting images were downsampled to 118x118x118 voxels via block reduce operation with block size of 721 

4x4x4 voxels and then used as input for image-based models.  722 

2.1.2 DNA replication foci dataset: 3D raw fluorescence intensity single-cell images of DNA replication 723 

foci were masked, centered, and aligned by the corresponding nuclear segmentation dilated by 8x8x8 724 

voxels. Images were cropped and then padded to the largest nuclear bounding box in the dataset. Images 725 

were then padded and resized to 118x118x118 voxels. Images were globally contrast adjusted to be 726 

within the intensity range 0 to 6000, which was empirically determined to remove dead pixels present in a 727 

few images and scaled per image using monai.transforms.ScaleIntensity60 to be in the range (0,1).  728 

 729 

2.1.3 Expanded dataset of punctate structures: Similar preprocessing was applied to a subset of 730 

punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v11, including DNA replication 731 

foci, histones, nuclear pores, nuclear speckles, cohesins, peroxisomes, endosomes and centrioles. 732 

However, the images of cytoplasmic structures (peroxisomes, endosomes, and centrioles), were masked 733 

by the cell membrane segmentation, instead of nuclear segmentation. Images were contrast adjusted using 734 

structure-specific intensity ranges reported in1. Images were finally scaled per image using 735 

monai.transforms.ScaleIntensity60 to be in the range (0,1). The preprocessing code used to generate this 736 

dataset is available at 737 

https://github.com/AllenCell/benchmarking_representations/tree/main/br/data/preprocessing/image_prepr738 

ocessing. 739 

2.2 Polymorphic structures 740 

2.2.1 Nucleoli (GC) dataset: Segmentations of nucleoli (GC) available in the WTC-11 hiPSC Single-741 

Cell Image Dataset v11 were masked by corresponding nuclear segmentations. We used a hole filling 742 

algorithm to fill in holes in the segmented images that were then converted into 3D meshes for subsequent 743 

preprocessing. Meshes were downscaled to fit within a cube of size 32x32x32 voxels using a global 744 

scaling factor to preserve the relative scale of nucleoli in learned representations. For segmentation 745 

models the downscaled meshes were voxelized to create binary images. For SDF models the downscaled 746 

meshes were used to compute signed distance field images that were clipped to be in the range (-2,2). 747 
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2.2.2. Expanded dataset of polymorphic structures: Segmentation of the nucleolar GC, nucleolar DFC, 748 

Golgi and lysosomes (available in the WTC-11 hiPSC Single-Cell Image Dataset v1) were masked by 749 

either nucleus or cell mask if the structure localizes to nucleus (nucleoli) or cytoplasm (Golgi and 750 

lysosomes). Subsequent preprocessing followed Section 2.2.2, except 3D meshes were downscaled on a 751 

per cell basis based on the cell’s intracellular structure bounding box. This downscaling avoids losing 752 

small nuclear structures given the large bounding box of cytoplasmic structures. 753 

2.2.3 Perturbed nucleoli (GC) dataset: We used the Allen Cell & Structure Segmenter58 to segment raw 754 

fluorescence intensity fields of view (FOVs) of perturbed nucleoli (GC) (section 1.4). Nuclear 755 

segmentations for each FOV were produced by applying a UNet model trained on the WTC-11 hiPSC 756 

Single-Cell Image Dataset v11 to predict 3D nuclear segmentations from brightfield images. We manually 757 

selected nuclear segmentations in each FOV that covered the corresponding the entirety of the nucleoli 758 

signal. The selected masks were used to generate single-cell images and they were processed as described 759 

in Section 2.2.1.  760 

3. Input Data Preprocessing for Point Cloud Models 761 

3.1 Punctate structures 762 

3.1.1 cellPACK synthetic dataset: The list of N=256 centroids of spheres packed by cellPACK was 763 

extended to 2,048 points by adding a small jitter to each input point cloud 8 times. This jitter was clipped 764 

at a value of 0.2, and the typical range of XYZ coordinates was -10 to 10. This was then used as the 3D 765 

point cloud input. To improve reconstruction quality, this augmentation process was repeated 10 times for 766 

each input. Details regarding the jitter augmentation are described in section 5.2. 767 

3.1.2 DNA replication foci dataset: We started by applying the same preprocessing used in the DNA 768 

replication foci dataset described above for image-based models, except for the last linear scaling step. 769 

Instead, we used an exponential function 𝑒𝜆(𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), where the skewness is a statistic that 770 

indicates the deviation of a distribution from a normal distribution. The scaled images were then 771 

normalized to obtain a probability density. The coefficient 𝜆 is an intracellular-specific scale factor that 772 

was empirically determined based on the visualization of sampled points from random images for each 773 

intracellular structure. We used 𝜆 = 100 for DNA replication foci images. The resulting probability 774 

density was used to sample a point cloud with N=20,480 4D (XYZ+intensity) points. Sparse point cloud 775 

versions with N=2,048 points were sampled from the original point cloud during training. Point clouds 776 

were centered according to the nuclear mask and the intensity coordinate was scaled using by 0.1 to 777 

match the magnitude of the spatial coordinates. 778 
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3.1.3 Expanded dataset of punctate structures: We started by applying the same preprocessing used in 779 

the expanded dataset of punctate structures described above for image-based models, except the last linear 780 

scaling step. We again used an exponential function 𝑒𝜆(𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), with 𝜆 = 100 for nuclear 781 

structures, and 𝜆 = 500 for cytoplasmic punctate structures. The scaled images were then normalized to 782 

obtain a probability density. We followed the same procedure described above for DNA replication foci 783 

to sample point clouds for each of these punctate structures. The intensity co-ordinate was then 784 

normalized using structure specific contrast ranges. 785 

3.2 Polymorphic structures datasets: 786 

3.2.1 Nucleoli (GC) dataset:  For each single-cell nucleoli (GC) image, we started by sampling a point 787 

cloud of N=8,192 points from its corresponding 3D mesh generated as described in section 2.2.1. A 788 

second point cloud with N=20K points is sampled during training from the corresponding SDF volume, 789 

yielding a 4D point cloud consisting of SDF value + XYZ coordinates. 790 

3.2.2. Expanded dataset of polymorphic structures: Each single polymorphic structure image 791 

underwent a similar process. First, a point cloud of 8,192 points was sampled from the corresponding 3D 792 

mesh (see section 2.2.2). During training, an additional 20K points were sampled from the SDF volume, 793 

producing a 4D point cloud (SDF value + XYZ coordinates). 794 

3.2.3 Perturbed nucleoli (GC) dataset: The perturbed nucleoli (GC) dataset followed the same sampling 795 

strategy. For each single-cell nucleoli (GC) image, an initial 8,192 point cloud was sampled from the 3D 796 

mesh generated as described in section 2.2.3. During training, another point cloud containing 20K points 797 

was drawn from the SDF volume, yielding a 4D point cloud (SDF value + XYZ coordinates). 798 

4. Model Background 799 

Deep learning for feature extraction has been shown to be powerful in the context of cell biology, in 800 

particular, for analyzing images in 2D61–63. Despite its success, feature interpretability and generalizability 801 

to unseen image data continues to be a major challenge64,65. To alleviate some of these problems, it has 802 

been shown that imposing additional constraints corresponding to prior biological knowledge to models 803 

helps to reduce the space of admissible solutions and improve the likelihood that the learned features can 804 

be useful for scientific discovery66.  805 

 806 

One approach for imposing extra constraints informed by prior knowledge is the integration of known 807 

symmetries into the learning process. This has been the guiding principle for the field of geometric deep 808 

learning, a subset of machine learning that aims to exploit geometric principles and avoid the curse of 809 

dimensionality associated with learning generic functions in high-dimensional spaces10. While identifying 810 
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symmetries in real-life datasets is not always straightforward, enforcing that learned representations are 811 

invariant or equivariant under simple Euclidean geometric transformations of the input data has been 812 

shown to improve data efficiency and generalization in fields like protein structure prediction 67, medical 813 

image analysis 68, and cell biology 44. The distinction between invariant and equivariant representations is 814 

of note. While the first type of representation stays the same when the input data is subject to some 815 

transformation, the second changes predictably and equivalently. Rotation is a natural choice of 816 

geometrical transformation to extract features that do not depend on the object’s orientation. 817 

4.1 Image Models 818 

To implement 3D rotation invariant image autoencoders, we used image encoders equivariant to the 819 

group of 3D rotations (SO3 group) using R3 steerable kernels as described in Weiler et al.69 and 820 

implemented in the escnn library 70. Compared to conventional convolutions, R3 steerable kernels are 821 

equivariant under rotations in R3. We used scalar fields to learn invariant scalar features in R3, and vector 822 

fields to learn equivariant vector features in R3. We used vector features to reconstruct the 3D rotation 823 

matrix as described in Deng et al.14 and Winter et al.77. 824 

 825 

We used seven layers of steerable kernels with an equal number of hidden scalar fields using trivial 826 

representations and vector fields using irreducible representations. Using a (filter, stride, kernel size) 827 

convention, the convolutions were (8, 1, 3), (16, 1, 3), (32, 2, 3), (64, 2, 3), (128, 2, 3), (512, 2, 3), (N, 1, 828 

1), where N was the size of the latent dimension. In the final layer we used N scalar fields and 2 vector 829 

fields. Each convolutional block also included a batchnorm and ReLU activation71. We used average 830 

pooling in the last 5 layers and checked that this did not break equivariance (Fig. S2). We spatially pooled 831 

the scalar embedding in the final layer to get the final N dimensional rotation invariant latent embedding. 832 

We used a bottleneck size of 512 for polymorphic structures and 256 for punctate structures.  833 

 834 

The decoding function was a conventional CNN decoder with 6 layers of convolutions. We used 835 

upsampling blocks with a scale factor of 2 in between convolutions. Using a (filter, stride, kernel size) 836 

convention, the convolutions were (512, 1, 3), (256, 1, 3), (128, 1, 3), (64, 1, 3), (32, 1, 3), (16, 1, 3). We 837 

rotated the canonical reconstruction with the rotation matrix computed from the vector representation. We 838 

used a cylinder mask using escnn.nn.modules.masking_module.build_mask to mask reconstructions and 839 

reduce interpolation artifacts. We set the background value to 0 for segmentations, and 2 for clipped SDF 840 

images where the maximum value was 2 and positive values were located outside the object. We used the 841 

same settings with classical autoencoders by swapping out equivariant convolutions with regular 842 

convolutions and keeping other details the same. 843 
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 844 

4.1.1: Masked autoencoders using vision transformers: We also trained masked autoencoders (MAE) 845 

using vision transformers72 in two stages as an alternative to the vanilla autoencoders described above. 846 

We performed this training in two stages. First, we pretrained a MAE73 using a ZYX patch size of (2,2,2), 847 

a mask ratio of 0.75, and learnable positional embeddings. The encoder was made up of 8 identical 848 

transformer blocks, each with 4 heads and an embedding dimension of 256. The decoder had 2 layers 849 

with 8 heads and an embedding dimension of 192. We then employed a second phase of training with a 850 

mask ratio of 0 (i.e. all image patches are visible to the encoder) where we froze the MAE-trained encoder 851 

and trained a freshly initialized decoder to reconstruct the input image. We trained all models with a mean 852 

squared error (MSE) loss.  853 

4.2 Point cloud models 854 

To implement 3D rotation invariant point cloud autoencoders, we used a 3D rotation equivariant point 855 

cloud encoder using vector neurons (VN11), which lifts classical neurons to 3D vectors resulting in 3D 856 

vector representations. VN layers are equivariant to rotations by construction, and have been shown to 857 

outperform other equivariant architectures for tasks like classification, segmentation, and reconstruction. 858 

We incorporate VN layers into a Dynamic Graph CNN (DGCNN)74 backbone for point cloud encoding. 859 

DGCNN uses network modules called EdgeConvs to perform CNN-like local neighborhood feature 860 

extraction. These EdgeConvs can be stacked to extract global features74. Dynamic graphs are computed 861 

by constructing k-nearest neighbor graphs on points. We used k=20 based on previous works as a balance 862 

between computational complexity and local structure information45. We concatenated the cross-product 863 

of the neighbor features and input points as well as the input points themselves to the hidden 864 

representation. As described in section 3, we included raw image intensity in addition to XYZ coordinates 865 

in some cases to generate 4D point clouds. This coordinate was included with the same vector orientation 866 

as the XYZ coordinates, and thus remains equivariant under rotations in R3. For the cellPACK dataset, we 867 

used a 3D point cloud as input. We used 6 convolutional blocks where each block comprises a VN Linear 868 

layer and a VN Leaky ReLU layer. We collated intermediate outputs before a final 1D convolution. We 869 

took the norm of the final vector embedding to get a rotation invariant representation. We also trained 870 

classical point cloud autoencoders with DGCNN encoders as described in Vries et al. 45, where VNLinear 871 

and VN LeakyReLU layers are replaced with edge convolutions and ReLU layers. 872 

 873 

4.2.1 Decoder for punctate structures: We reconstructed the rotation invariant representation for 874 

punctate structures using a folding net decoder75. This decoder concatenates the latent embedding with 875 

source points sampled from a template shape, and then applies two folding operations with ReLU 876 
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activations interleaved in between to reconstruct a point cloud. We used a 2D plane as a template in all 877 

cases except for the cellPACK synthetic dataset, where a sphere was used as a template. Next, we used 878 

the learned rotation matrix from the vector embedding to re-orient the canonical reconstruction. We 879 

optimized the model using an earth mover's distance76. 880 

 881 

4.2.2 Decoder for polymorphic structures: We reconstructed the rotation equivariant representation 882 

computed using vector neurons via an inner product decoder11 to get signed distance function values at 883 

query points. These query points correspond to the points of the second point cloud sampled from the 884 

SDF volume as described in section 3.2. The model is optimized using an L1 loss on the SDF values. We 885 

took the norm of the embeddings after training to compute a rotation invariant representation. This relaxes 886 

the generative nature of the model as we are no longer able to obtain a rotation invariant reconstruction. 887 

This trades off the ability to generate rotation-invariant predictions with reconstruction quality, deemed 888 

necessary for the more complex shapes of the polymorphic structures. Instead, we visualize the closest 889 

real examples to different map points in representation space (Fig. 5, 6).  890 

5. Model Training 891 

5.1. Train, validation and test splits 892 

We used a train/valid/test split ratio of 70%, 15%, 15% respectively across all datasets. For the expanded 893 

polymorphic dataset, we stratified the split using the structure class. For the perturbed nucleoli (GC) 894 

dataset, we stratified the split by drug. 895 

5.2 Jitter augmentation 896 

We trained the rotation invariant point cloud models with an augmented version of the DNA replication 897 

foci dataset (N=2,420) and the synthetic dataset from cellPACK (N=254) because of the small size of 898 

these datasets. This augmentation was done by adding jitter to each input point cloud (with 2,048 points) 899 

10 times during training. The jitter was added via Gaussian noise with a standard deviation of 0.1. The 900 

noise was clipped at a value of 0.2. The typical range of XYZ coordinates was -10 to 10. Adding 901 

augmentations helped improve the quality of reconstructions (Fig. S4).  902 

6. Multi-metric Model Benchmarking 903 

We computed three sets of metrics to quantitatively benchmark our trained models (Fig. S1a-b). 904 

Efficiency metrics including model size, inference time, and emissions to assess ease of inference and 905 
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training. Generative metrics included reconstruction error and evolution energy7 to assess the quality of 906 

generated shapes. Finally, representation expressivity metrics evaluated classification/regression scores 907 

for biologically-relevant features, rotation invariance error, and interpolation distances in embedding 908 

space. 909 

 910 

Efficiency: Model size is the number of parameters in the model, inference time is the time to run GPU 911 

inference on a single input, and carbon emissions is an estimate of hardware electricity power 912 

consumption in kWh. All measurements use a single A100 GPU. 913 

Generative capacity: Reconstruction error is the average test set reconstruction error using the Jaccard 914 

similarity score for images and Chamfer distance for point clouds, respectively. More details on 915 

classification and regression calculations can be found in section 6.1. Evolution energy is the normalized 916 

energy of deformation from one shape to another averaged across many random test set pairs in a dataset 917 

(Fig. S1b). Here, the normalized energy of deformation is computed as the sum of the reconstruction error 918 

between an interpolated shape reconstruction and initial and final reconstructions, divided by the 919 

reconstruction error between initial and final reconstructions. This energy is computed across 10 920 

interpolations between two given shapes.  921 

Expressivity: Rotation invariance error is computed as the norm of the Euclidean distance between the 922 

embedding of a test set shape and its rotated version, divided by the sum of the norms of the two 923 

embeddings. The metric aims to quantify how much the embeddings change in representation space with 924 

rotation, while accounting for the size of the embedding space itself via  925 

𝑒𝑟𝑟𝑜𝑟 =
|𝑧𝜃 − 𝑧0|

||𝑧𝜃| + |𝑧0||
, where θ is the rotation angle 926 

By dividing by the sum of the norms of the two embeddings, we establish their size relative to the origin. 927 

We computed this metric for four 90 degree rotations of the input in the XY plane. This is then averaged 928 

across many test set examples. Average interpolation distance is computed as the distance to the closest 929 

real example in representation space for interpolations between random test set examples (Fig. S). We did 930 

this for 10 interpolations between randomly sampled pairs of test set examples and report the average 931 

across pairs and interpolations. Compactness is an intrinsic dimensionality measure calculated using the 932 

Levina-Bickel score19. All metrics were z-scored across models for polar plot visualization. The sign of 933 

all metrics except for classification and regression scores were flipped to ensure that a higher value 934 

indicates better performance. Classification and regression scores are the respective cross-validated test 935 

set accuracies and R2 values for selected features. More details on classification and regression 936 

calculations can be found in section 6.2. 937 
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6.1 Reconstruction error 938 

Punctate structures: We used the Chamfer loss to compute the reconstruction error of image- and point 939 

cloud-based models. Because this loss is normally applied to point clouds, we convert inputs and 940 

respective reconstructions from image models into point clouds by sampling points using the exponential 941 

sampling function described in section 3.1. 942 

Polymorphic structures: We used the Jaccard similarity score on binary masks to compute the 943 

reconstruction error of image- (segmentation and SDF) and point cloud-based models. For segmentation 944 

models, we used Otsu thresholding to binarize each reconstruction and extracted a mesh using marching 945 

cubes. Next, we upscaled the mesh and voxelized it into a 3D binary mask. To generate a binary mask for 946 

SDF images used as input for SDF models and their reconstructions, we first used the marching cubes 947 

algorithm to extract a zero-level set mesh. Then we upscaled the mesh and voxelized it to create a 3D 948 

binary mask. For SDF point cloud models, we used vertices of a 32x32x32 grid as XYZ query points to 949 

perform inference along with ground truth surface point clouds to obtain SDF reconstruction images. We 950 

then used the marching cubes algorithm to extract a zero-level set mesh from each SDF image, upscaled 951 

the mesh, and voxelized it into a 3D binary mask. 952 

6.2 Classification and Regression Scores 953 

We normalized embeddings using StandardScaler from scikit-learn77. For classification accuracies, we 954 

used a logistic regression classifier with class weights and reported test set classification accuracies with 955 

stratified k-fold cross-validation with five splits. For regression scores, we used a linear regression model 956 

and reported test set R2 with repeated k-fold cross validation with five splits and 20 repeats.  957 

 958 

Classification and regression targets were designed appropriately. For the cellPACK synthetic dataset, we 959 

reported cross-validated accuracy for classifying the six packing rules. For the DNA replication foci 960 

dataset, we reported cross-validated top 2 classification accuracy for 8 interphase cell cycle stages and 961 

cross-validated accuracy for manually annotated outlier labels including dead cells and cells with no 962 

fluorescence. For punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v1, we reported 963 

cross-validated structure classification accuracy for 7 structures and cross-validated classification 964 

accuracy for cell cycle stages including interphase, prophase, early prometaphase, 965 

prometaphase/metaphase and anaphase/telophase. For the nucleoli (GC) dataset, we reported cross-966 

validated classification accuracy of thresholded number of pieces of nucleoli present in the segmentation, 967 

including 1, 2, 3, 4 and >=5 piece nucleoli. For this dataset, we also reported an average test set R2 for 968 

regression of mean and standard deviation of piece volume and area, and an average test set R2 for 969 

regression of mean and standard deviation of centroid-centroid distances between pieces. For the 970 
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polymorphic structure dataset including nucleoli (GC and DFC), lysosomes and Golgi, we reported cross 971 

validated classification accuracy for structures, and regression scores for volume and area of pieces, and 972 

distance between pieces similar to the nucleoli (GC) dataset.  973 

7. Data Analysis 974 

7.1 Principal component analysis (PCA) 975 

We fit PCA to the learned rotation invariant representations using sklearn.decomposition.PCA with 976 

“auto” SVD solver and the number of components equal to the size of the embedding space. We then 977 

performed inverse PCA on different map points (-2σ, 0, 2σ) for different principal components (PCs). We 978 

used the inverse PCA reconstruction as input to the decoder of the representation learning model to 979 

visualize the reconstructed image/point cloud.  980 

7.2 Archetype analysis 981 

Archetype analysis approximates the convex hull of data points by identifying extremal points20. We used 982 

an implementation of the Frank-Wolfe algorithm for archetype analysis78. The number of archetypes for 983 

each dataset was chosen based on an expected number of clusters in each application.  984 

7.3 Nuclear volume binning for nucleoli (GC) and DNA replication foci dataset 985 

We clipped the nuclear volume distribution to be within the 2.5% and 97.5% range for both DNA 986 

replication foci and nucleolar GC datasets. Next, we binned the data into equal sized bins of 121 µm3. The 987 

bins were <390 µm3, 390-533 µm3, 533-676 µm3, 676-818 µm3, and >818 µm3. 988 

 989 

8. Data Availability 990 

The WTC-11 hiPSC single cell image dataset v1 analyzed in this study is available online at 991 

https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset. The DNA 992 

replication foci dataset analyzed in this study is available online at 993 

https://open.quiltdata.com/b/allencell/packages/aics/nuclear_project_dataset_4. The WTC-11 hiPSC 994 

nucleoli (NPM1) perturbation single cell image dataset analyzed in this study is available online at  995 

https://open.quiltdata.com/b/allencell/tree/aics/NPM1_single_cell_drug_perturbations/. The synthetic 996 

dataset of punctate structures generated using cellPACK and analyzed in this study is available online at 997 

https://open.quiltdata.com/b/allencell/tree/aics/morphology_appropriate_representation_learning/cellPAC998 
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K_single_cell_punctate_structure/. The landing page of the GitHub repository associated with this 999 

manuscript (https://github.com/AllenCell/benchmarking_representations) has additional information for 1000 

accessing and processing these datasets.  1001 

8. Code Availability 1002 

Code for all our representation learning models is available at 1003 

https://github.com/AllenCellModeling/cyto-dl/blob/br_release/. 1004 

Config files associated with our models, training scripts, and code for multi-metric benchmarking are 1005 

available at https://github.com/AllenCell/benchmarking_representations. Our code was all developed in 1006 

Python. A full list of dependencies is available at https://github.com/AllenCellModeling/cyto-1007 

dl/tree/br_release/requirements and 1008 

https://github.com/AllenCell/benchmarking_representations/blob/main/pyproject.toml. We have released 1009 

the code with the Allen Institute Software License.  1010 
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Figures 1179 

 1180 

Figure 1 - Application-appropriate representation learning framework for complex intracellular 1181 

structure morphologies. a)  Example of a punctate structure using DNA replication foci. Shown are 1182 

single-cell segmentations for the nucleus and cell membrane, and raw intensities for DNA replication foci 1183 

(via PCNA). 4D (XYZ + intensity) point clouds are sampled from the intensity images by converting 1184 

intensities to probabilities. The intensity co-ordinate is scaled to ensure that the range of intensity values 1185 

is similar to the range of XYZ coordinate values. This 4D point cloud is then used as input to the 1186 

representation learning algorithm. b) Example of a polymorphic structure using granular component (GC) 1187 

nucleoli (via nucleophosmin). Shown are single-cell segmentations for nucleus, cell membrane, and 1188 

nucleoli (GC). Nucleoli segmentation from single-cell data is used to generate a 3D mesh. A surface point 1189 

cloud is sampled from the nucleolar mesh. Another point cloud is sampled from the 3D bounding box 1190 

volume and its points are assigned local signed distance field (SDF) values relative to the surface of the 1191 
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nucleolar mesh. These two point clouds are used by the representation learning algorithm. c) 3D rotation 1192 

invariant representation learning framework using autoencoders. Rotations of the same shape are 1193 

projected into vector representations using a 3D rotation equivariant encoder. This vector representation is 1194 

then used to reconstruct the original shape. We take the norm of the vector representation to compute a 1195 

rotation invariant representation. We do this during training for punctate structures, and after training for 1196 

polymorphic structures (Section 4.2 of Methods). 1197 

 1198 
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 1215 

Figure 2 - 3D rotation invariant point cloud models are efficient, produce low rotation invariance 1216 

errors and generate good reconstructions in a synthetic dataset of punctate structures a) Dataset of 1217 

synthetic punctate structures generated using cellPACK. A 3D nuclear shape is packed with 6 different 1218 

rules. This includes Planar 0, Planar 45, Planar 90, Radial, Random, and Surface. Planar rules pack 1219 

spheres with a gradient away from a plane indicated in red. Radial rule packs spheres close to the 1220 

centroid. Random rule packs spheres randomly across the 3D nuclear volume. Surface rule packs spheres 1221 

close to the nuclear boundary. Each rule is used to pack 254 different nuclear shapes. b) Benchmarking 1222 

unsupervised representations across different models and metrics. (Left) Polar plot showing performance 1223 

of classical and rotation invariant image and point cloud models across efficiency metrics (model size, 1224 

inference time, emissions), generative metrics (reconstruction, evolution energy), and representation 1225 

expressivity metrics (compactness, classification of rules, rotation invariance error, average interpolate 1226 

distance). Metrics are z-scored and scaled such that larger is better (Right) Bar plots showing raw metric 1227 

values across models for each metric. Error bars are standard deviations. Best model for each metric is 1228 

indicated. c) 1st principal component for each rule using the rotation invariant point cloud model trained 1229 

with jitter augmentations. PCA is fit to representations of each rule separately. Shown are normalized PCs 1230 

(standard deviation (s.d.), σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). d) 6 archetypes 1231 

computed from the rotation invariant point cloud representations. Each archetype corresponds to one of 1232 
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the 6 rules. All reconstructions shown are cut at mid-plane. Color associated with each point is the 1233 

distance from the mid-plane in Z. 1234 

 1235 
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 1238 

 1239 
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 1241 

Figure 3 - Rotation invariant point cloud representations recover cell cycle-dependent spatial 1242 

pattern of DNA replication foci. a) Dataset of DNA replication foci in hIPS cells expressing mEGFP-1243 

tagged PCNA. DNA replication foci have a stereotypical cell cycle dependent localization pattern. Shown 1244 
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are examples of image and sampled point cloud center slices with adjusted contrast for eight expert-1245 

annotated cell cycle stages.  The scale bar is 5 μm. b) Benchmarking unsupervised representations across 1246 

different models and metrics. (Left) Polar plot showing performance of classical and rotation invariant 1247 

image and point cloud models across efficiency metrics (model size, inference time, emissions), 1248 

generative metrics (reconstruction, evolution energy), representation expressivity metrics (compactness, 1249 

classification of cell cycle via top-2 classification accuracy, rotation invariance error, average interpolate 1250 

distance). Metrics are z-scored and scaled such that larger is better (Right) Bar plots showing raw metric 1251 

values across models for each metric. Error bars are standard deviations. Best model for each metric is 1252 

indicated. c) 8 archetypes identified using rotation invariant point cloud representations. Each archetype 1253 

corresponds to one of the 8 expert-annotated cell cycle stages. d) 1st principal component for each cell 1254 

cycle stage using rotation invariant point cloud model. PCA is fit to representations of each cell cycle 1255 

stage separately. Shown are normalized PCs (standard deviation (s.d.), σ, units) sampled at 3 map points 1256 

(-2σ to 2σ in steps of σ). e) Average canonical reconstructions across five bins of nuclear volume (Section 1257 

7.3 of Methods). All reconstructions shown are center slices.  1258 
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Figure 4 -Representation learning framework reveals interpretable spatial patterns for other 1263 

punctate structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 a) Dataset of punctate 1264 

structures in hiPS cells from the WTC-11 hiPSC Single-Cell Image Dataset v1 including nuclear pores, 1265 

nuclear speckles, cohesins, histones, centrioles, peroxisomes, and endosomes (Viana 2023). Show are 1266 

examples of images and sampled point cloud center-slices of the FP-tagged protein. The scale bar is 5 1267 

μm. b) Benchmarking unsupervised representations across classical and rotation invariant image and 1268 

point cloud models across efficiency metrics (model size, inference time, emissions), generative metrics 1269 

(reconstruction, evolution energy), and representation expressivity metrics (compactness, classification, 1270 

rotation invariance error, average interpolate distance). Classification tasks included classifying 7 1271 

different structures, and 6 different interphase/mitotic stages (Section 6.2 of Methods). (Left) Polar plot 1272 

showing performance across models where metrics are z-scored and scaled such that larger is better 1273 

(Right) Bar plots showing raw metric values across models for each metric. Error bars are standard 1274 

deviations. Best model for each metric is indicated. c) Real examples per map point of PC1 computed 1275 

using PCA fit to representations of each structure separately using the rotation invariant point cloud 1276 

model. Only cells in interphase were included. Shown are XY and XZ views. The structure channel is 1277 

shown as center slices across the nuclear centroid for nuclear pores, cohesins and histones, or as max 1278 

projections for nuclear speckles, centrioles, endosomes, and peroxisomes. d) Latent walk for PC1. Shown 1279 

are normalized PCs (standard deviation (s.d.), σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). 1280 

Reconstructions shown are cut at mid-plane. Membrane centroids are marked for centrioles. Only cells in 1281 

interphase were considered for this analysis. Centriole reconstructions were rotated to be aligned to the X 1282 

axis. 1283 
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 1288 

Figure 5 - Rotation invariant representation learning framework generalizes to polymorphic multi-1289 

piece structures. a) Dataset of nucleoli (GC) from the WTC-11 hiPSC Single-Cell Image Dataset v1 1290 

(Viana 2023), stratified by number of pieces. Shown are example max intensity projections and 1291 

corresponding 3D meshes. b) Benchmarking unsupervised representations across different models and 1292 

metrics. (Left) Polar plot showing performance of all models across efficiency metrics (model size, 1293 

inference time, emissions), generative metrics (reconstruction, evolution energy), representation 1294 

expressivity metrics (compactness, classification of number of pieces, shape features regression, distance 1295 

features regression, rotation invariance error, average interpolation distance). Metrics are z-scored and 1296 
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scaled such that larger is better (Right) Bar plots showing raw metric values across models for each 1297 

metric. Error bars are standard deviations. Best model for each metric is indicated. c) 1st principal 1298 

component for 1 piece, 2 pieces, 3 pieces, 4 pieces, and 5+ pieces examples using rotation invariant point 1299 

cloud model. PCA is fit to representations of different numbers of pieces separately. Shown are closest 1300 

real examples to normalized PCs (standard deviation (s.d.), σ, units) sampled at 3 map points (-2σ to 2σ in 1301 

steps of σ). d) 2nd principal component for 1 piece, 2 pieces, 3 pieces, 4 pieces, and 5+ pieces examples 1302 

using rotation invariant point cloud model. Shown are closest real examples to normalized PCs (standard 1303 

deviation (s.d.), σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). e) 5 archetypes identified 1304 

using rotation invariant point cloud model. f) Closest real example to average representations of five 1305 

equal sized bins of nuclear volume (Section 7.3 of Methods). 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

 1315 

 1316 

 1317 

 1318 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.07.25.605164doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605164
http://creativecommons.org/licenses/by/4.0/


50 

 1319 

 1320 

Figure 6 - Learned representations enable shape variation profiling on multiple polymorphic 1321 

structures. a) Dataset of nucleoli GC, nucleoli DFC, lysosomes, and Golgi from the WTC-11 hiPSC 1322 

Single-Cell Image Dataset v1 (Viana 2023). Shown are example max intensity projections and 1323 

corresponding 3D meshes. b) Benchmarking unsupervised representations across different models and 1324 

metrics. (Left) Polar plot showing performance for all models across efficiency metrics (model size, 1325 

inference time, emissions), generative metrics (reconstruction, evolution energy), representation 1326 

expressivity metrics (compactness, classification of number of pieces, shape features regression, distance 1327 

features regression, rotation invariance error, average interpolation distance). Metrics are z-scored and 1328 

scaled such that larger is better (Right) Bar plots showing raw metric values across models for each 1329 

metric. Error bars are standard deviations. Best model for each metric is indicated. c) 1st principal 1330 

component for each structure using rotation invariant point cloud model. PCA is fit to representations of 1331 

each structure separately. Shown are closest real examples to normalized PCs (standard deviation (s.d.), 1332 

σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). d) 2nd principal component for each structure 1333 
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using rotation invariant point cloud model. Shown are closest real examples to normalized PCs (standard 1334 

deviation (s.d.), σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). e) 4 archetypes identified 1335 

using rotation invariant point cloud representations.  1336 
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 1368 

 1369 

Figure 7 - Learned representations allow for morphological profiling of nucleoli under different 1370 

perturbations. a) Q-value statistics2 per drug (Section 1.4 of Methods) and per model indicating the 1371 

confidence of each model distinguishing a given drug from control. b) Table listing molecular target or 1372 
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mechanism of action, effects reported in the literature, effects observed on the mEGFP-NPM1 cell line at 1373 

2 hours post treatment, and cell health assessment between 4 and 24 hours after treatment for each drug. 1374 

c) Three representative examples of nucleoli (GC) for the control (DMSO) and each of the 16 drugs used 1375 

in this study. d) Closest real sample to the average representation for the seven drugs that fall below the q-1376 

threshold using the rotation invariant point cloud model.  1377 
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Supplemental figures 1391 

 1392 

Figure S1 - Evaluation metrics for representation learning models a) Overview of different 1393 

evaluation metrics for quantifying the utility of each representation learning framework. Efficiency 1394 

metrics include model size, inference time, and carbon emissions. Generative ability metrics include 1395 

reconstruction error and evolution energy. Representation expressivity metrics include rotation invariance 1396 

error, interpolation distance, feature regression, classification accuracy, and compactness. b) Workflow 1397 

for interpolation distance and evolution energy calculation. Two samples are drawn from the population 1398 

randomly, and a linear interpolation is performed on the representations of the two samples. The 1399 

euclidean distance between an interpolation and the nearest real representation is the interpolation 1400 

distance. The interpolation distance is averaged across many interpolations to compute the average 1401 

interpolation distance. Each interpolation is reconstructed using the decoder to obtain a reconstruction. 1402 

The sum of the reconstruction error between the interpolated reconstruction and the reconstructions of the 1403 

initial and final shapes normalized by the reconstruction error between the initial and final shape is the 1404 

energy of deformation7. The energy of deformation is averaged across many interpolations to compute the 1405 

evolution energy. Both evolution energy and average interpolation distance are averaged across many 1406 

random pairs of samples from the test set. c) Holistic evaluation of metrics. Metrics are z-scored across 1407 

models per metric. Z-scored metrics are visualized using a polar plot by flipping the sign for metrics 1408 

where lower is better (indicated by a negative sign).  1409 
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 1410 

 1411 

Figure S2 - Testing orientation invariance for image and point cloud models for the cellPACK 1412 

synthetic dataset a) (Top row) Example image input for the planar 45 rule is rotated by four 90 degree 1413 

rotations. (Middle row) Reconstructions using the classical image model (upper) and rotation invariant 1414 

image model (lower) for each rotated input. The reconstructions using the rotation invariant model are 1415 

pose-corrected using the learned rotation angles. (Bottom row) Rotation invariant reconstructions using 1416 

the rotation invariant image model for each rotated input. b) (Top row) Example point cloud input for the 1417 

planar 45 rule is rotated by four 90 degree rotations. (Middle row) Reconstructions using the classical 1418 

point cloud model (upper) and rotation invariant point cloud model (lower) for each rotated input. The 1419 

reconstructions using the rotation invariant model are pose-corrected using the learned rotation angles. 1420 

(Bottom row) Rotation invariant reconstructions using the rotation invariant point cloud model for each 1421 

rotated input. All reconstructions shown are max projections in Z. 1422 
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 1424 

 1425 

Supp Fig. 3 - Evaluation of test set model reconstructions for synthetic punctate structures 1426 

generated using cellPACK. Test set center slice inputs (a, d) and reconstructions using b) classical 1427 

image model, c) rotation invariant image model, e) classical point cloud model, and f) rotation invariant 1428 

point cloud model for each of the 6 packing rules. Both pose-corrected and rotation invariant 1429 

reconstructions are shown for the rotation invariant models.  1430 
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 1432 

Figure S4 - Jitter augmentations slightly improve point cloud model reconstructions for synthetic 1433 

punctate structures generated using cellPACK. Test set center slice reconstructions using rotation 1434 

invariant point cloud model with jitter augmentations for each of the 6 packing rules.  1435 
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 1436 

Figure S5 - 3D image preprocessing into application appropriate inputs for punctate structures. 1437 

Workflow for generating 4D point clouds from 3D intensity images. a) single-cell intensity images are 1438 

obtained by masking via a dilated nuclear mask (for nuclear structures), followed by alignment to the 1439 

longest axis of the nuclear mask. Intensities were then scaled using an exponential function and then 1440 

converted to probabilities. These probabilities were then used to sample a dense 4D point cloud with 1441 

20480 points and XYZ + intensity coordinates. During training, a sparse point cloud with 2048 points was 1442 

sampled from this dense point cloud using the intensities as probabilities. The intensity coordinate was 1443 

scaled using a scale factor of 0.1 to ensure that intensity values were in the same range as XYZ coordinate 1444 

values. b) Examples of dense sample and sparse sample for each cell cycle stage for PCNA dataset. 1445 

Shown are center-slice of raw intensity image, center-slice of raw intensity image overlaid with dense 1446 

sample, and center-slice of raw intensity image overlaid with sparse training sample. c) Examples of 1447 

dense sample and sparse sample for each punctate structure from the WTC-11 hiPSC Single-Cell Image 1448 
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Dataset v1. Structures include histones, nuclear envelope, cohesins, nuclear speckles, endosomes, 1449 

peroxisomes, and centrioles.  1450 

 1451 
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Figure S6 - Evaluation of test set model reconstructions for the DNA replication foci dataset.  1460 

Test set center slice inputs (a, e, g) and reconstructions using b) classical image model, c) rotation 1461 

invariant image model, d) an alternative classical image model via a masked autoencoder with a vision 1462 

transformer as an encoder (MAE-ViT), f) classical point cloud model, and h) rotation invariant point 1463 

cloud model for samples from each of the 8 cell cycle stages. Both pose-corrected and rotation invariant 1464 

reconstructions are shown for the rotation invariant models.  1465 

 1466 
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 1469 

 1470 

Figure S7 - Evaluation of test set model reconstructions for punctate structures from the WTC-11 1471 

hiPSC Single-Cell Image Dataset v1. Visualization of test set reconstructions for sampled histones 1472 

(CellId 721646), nuclear pores (CellId 873680), cohesins (CellId 994027), nuclear speckles (CellId 1473 
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490385), centrioles (CellId 451974), endosomes (CellId 811336), peroxisomes (CellId 835431). Shown 1474 

are test set inputs (a, e, g) and reconstructions using b) classical image model, c) rotation invariant image 1475 

model, d) an alternative classical image model via a masked autoencoder with a vision transformer as an 1476 

encoder (MAE-ViT), f) classical point cloud model, and h) rotation invariant point cloud model for each 1477 

structure. Both pose-corrected and rotation invariant reconstructions are shown for the rotation invariant 1478 

models. Reconstructions for nuclear pores, cohesins, and histones are center slices, whereas 1479 

reconstructions for nuclear speckles, centrioles, endosomes, and peroxisomes are max projections. Spatial 1480 

distribution artifacts in reconstructions for endosomes and peroxisomes are highlighted with blue arrows.  1481 
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Figure S8- 3D image preprocessing into application appropriate inputs for polymorphic structures 1490 

a) Workflow for computing signed distance function (SDF) images from segmentations. single-cell 1491 

structure segmentations are masked by nuclear segmentation (for nuclear structures), followed by 1492 

meshing, centering, and hole filling. The mesh is then rescaled to 32*3 cube resolution and then processed 1493 

to get a signed distance function. Alternatively, the rescaled mesh is voxelized to get a segmentation. SDF 1494 

is clipped to (-2, 2) range for training image models to focus models on the zero level set. Example shown 1495 

is for nucleoli (GC). b). Visualization of rescaled segmentation and SDF for examples with different 1496 

numbers of pieces of granular component (GC) of nucleoli. Shown are center-slices of raw intensity 1497 

images, max projection of the structure segmentation, max projection of the voxelized rescaled 1498 

segmentation, and center slice of the rescaled mesh SDF. c) Visualization of rescaled segmentation and 1499 

SDF for other polymorphic structures from the WTC-11 hiPSC Single-Cell Image Dataset v1 including 1500 

lysosomes, Golgi, GC nucleoli, and dense fibrillar component (DFC) nucleoli.   1501 

 1502 

 1503 

 1504 

 1505 

Figure S9 - Examples of model inputs and outputs for nucleolar GC dataset. Test set reconstructions 1506 

across all models for sampled 1 piece (CellId 964798), 2 pieces (CellId 661110), 3 pieces (CellId 1507 
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644401), 4 pieces (CellId 967887) and 5+ pieces (CellId 703621) examples. Max projections of original 1508 

structure segmentations overlaid with nuclear and membrane segmentations are shown. Max projections 1509 

are shown for segmentations, whereas middle slices are shown for SDFs. 1510 

 1511 

 1512 

Figure S10 - Evaluation of model reconstructions for polymorphic structures from the WTC-11 1513 

hiPSC Single-Cell Image Dataset v1. A) Test set reconstructions across all models for sampled nucleoli 1514 

(GC) (CellId 691110), nucleoli (DFC) (CellId 723687), lysosome (CellId 816468), and Golgi (CellId 1515 

800894) examples. Max projections of original structure segmentations overlaid with nuclear and 1516 

membrane segmentations are shown. Max projections are shown for segmentations, whereas middle slices 1517 

are shown for SDFs. 1518 
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