

1 **Modular organization of synapses within a neuromere for distinct axial**
2 **locomotion in *Drosophila* larvae**

3

4 **Kazushi Fukumasu^{a, d}, Akinao Nose^{a,b}, and Hiroshi Kohsaka^{b,c*}**

5

6 ^a Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1
7 Hongo, Bunkyo-ku, 133-0033 Tokyo, Japan

8 ^b Department of Complexity Science and Engineering, Graduate School of Frontier Science,
9 the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561 Chiba, Japan

10 ^c Graduate School of Informatics and Engineering, the University of Electro-
11 Communications, 1-5-1, Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan

12 ^d Present address: Department of Psychiatry, The University of Texas Southwestern
13 Medical Center, Dallas, TX, 75390, USA

14

15 * For correspondence: kohsaka@edu.k.u-tokyo.ac.jp; +81-42-443-5528

16

17 **Abstract**

18 The ability to generate diverse patterns of behavior is advantageous for animal
19 survival. However, it is still unclear how interneurons in a single nervous system are
20 organized to exhibit distinct motions by coordinating the same set of motor neurons. In this
21 study, we analyze the populational dynamics of synaptic activity when fly larvae exhibit two
22 distinct fictive locomotion, forward and backward waves. Based on neurotransmitter
23 phenotypes, the hemi-neuromere is demarcated into ten domains. Calcium imaging
24 analysis shows that one pair of the domains exhibits a consistent recruitment order in
25 synaptic activity in forward and backward waves, while most other domains show the
26 opposite orders in the distinct fictive locomotion. Connectomics-based mapping indicates
27 that these two domains contain pre- and post-synaptic terminals of interneurons involved in
28 motor control. These results suggest that the identified domains serve as a convergence
29 region of forward and backward crawling programs.

30

31

32 **Introduction**

33 Generating multiple patterns of behavior is critical for animal survival. How multiple
34 motor programs are implemented in a single central nervous system (CNS) is a
35 fundamental problem in behavioral neuroscience. Both dedicated and multi-functional
36 neurons have been identified to be involved in distinct motor functions (1–8). However, how
37 dedicated and multi-functional motor circuits are organized remains still unclear.

38 Drosophila larval locomotion provides an ideal model system to study multi-
39 functional motor circuits (9–12). Fly larvae show forward crawling by sequential contraction
40 of the segments from posterior to anterior. By propagating the contraction in the opposite
41 direction, larvae crawl backward. Connectomics research and genetic analyses have
42 identified key interneurons that regulate forward and backward crawling (10,12). However,
43 the mesoscopic picture of how dedicated and multi-functional interneurons for forward and

44 backward locomotion are deployed in the CNS is still unclear.

45 In this study, we identify intrasegmental synapse structures in the CNS. First, we
46 develop a template coordinate to map synapse data into a standardized framework. Then,
47 we analyze the distribution of neurotransmitters in the VNC and find two types of geometric
48 structures: stripes and blobs. We notice that the neuromere can be demarcated into 10
49 domains. To understand the functional significance of the domains, we conducted calcium
50 imaging of the nervous system. We find one pair of the domains exhibits consistent
51 recruitment order between forward and backward fictive locomotion while the other pairs do
52 not. Connectomics-based analysis reveals interneurons involved in the two domains, PI
53 and Alc, and these neurons include premotor neurons reported previously to be involved in
54 motor control. These results indicate the PI domain is a convergence region of distinct
55 motor programs in larval locomotion.

56

57

58 **Results**

59

60 **Building a template VNC coordinate for synapse registration**

61 To map synapse configurations obtained from distinct immunostained samples into
62 a common framework, a template coordinate system was generated. We labeled 60 VNCs
63 with an antibody staining against cell adhesion protein Fasciclin2, which sparsely marks
64 axon bundles and allows us to define reliable landmarks within the neuropil (13) (Figure 1A).
65 We manually labeled 48 landmarks in each of the 60 VNC confocal images (Figure S1).
66 These 3D images were matched by a rigid transformation (i.e., translation and rotation) to
67 minimize the distance between the same landmarks in the 60 images. After the
68 transformation, the coordinates of a landmark in all the images were averaged to obtain the
69 coordinates of the landmark in the template VNC (Figure 1B; see Methods for detailed
70 procedure.) Among the Fasciclin2-immunoreactive axon bundles, Transverse Projection 1

71 (TP1) sends dorsoventral projection at the midline between the posterior commissure at a
72 neuromere and the anterior commissure at the next posterior neuromere (13). In this study,
73 the location of TP1 was used as an anatomical segment boundary of the neuropil, as
74 previously reported (13). Based on this definition, our template covered six abdominal
75 neuromeres, A1 to A6 (Figure 1C). The template coordinates were used to register images
76 of the following anatomical and activity data into the common coordinate space.

77

78 **Expression patterns of neurotransmitter markers in the larval VNC**

79 To analyze the spatial organization of synapses in the motor circuits, we examined
80 the distribution of markers for fast-acting neurotransmitters. The fly nervous system uses
81 three neurotransmitters for fast synaptic transmission: acetylcholine, glutamate, or gamma-
82 aminobutyric acid (GABA) (14). We labelled these synapses with antibodies against
83 neurotransmitter-specific proteins. Choline acetyltransferase (ChAT) encodes an enzyme to
84 produce acetylcholine. Vesicular glutamate transporter (VGluT) and vesicular GABA
85 transporter (VGAT) encode transporters required for pumping glutamate and GABA into the
86 lumen of synaptic vesicles, respectively (15,16). Confocal images of VNCs immunostained
87 with each of these antibodies were registered into the template VNC (Figure 2A-2E). We
88 noticed a difference in the use of neurotransmitters between the dorsal and ventral regions
89 of the VNC. In the ventral region, the vast majority of synapses are GABAergic (Figure 2B-
90 2C). In contrast, the three neurotransmitters are used in the dorsal region in similar
91 amounts. Previous observations show that the mechanosensory and nociceptive neurons
92 send projections to the ventral region, suggesting that the ventral region operates sensory
93 processing (17,18). On the other hand, motor neuron dendrites and proprioceptive sensory
94 axons target the dorsal region, which indicates that the dorsal region possesses motor
95 control circuits (17,18). Our observation of the dorsoventral difference in the use of
96 neurotransmitters suggests that the sensory processing is conducted mainly by GABAergic
97 transmission, whereas the motor control circuits capitalize on the three fast-acting

98 neurotransmitters.

99 To reveal synaptic organization in the motor circuits, we analyzed the distribution of
100 neurotransmitters in the dorsal region of the VNC. We noticed two morphological patterns
101 in the synapse distribution: strips and blobs (Figure 2D-2E). In the strips, synapses of the
102 same neurotransmitters are stretched along the body axis in several locations. In the blobs,
103 the same neurotransmitter markers are clustered with a diameter of half of the width of a
104 neuromere. While the strips of distinct neurotransmitters are intermingled, the blobs of
105 distinct neurotransmitters are located at different regions in the VNC (See circles in Figure
106 2A, 2D and 2E). This observation implies that the scale of these blobs could be a unit for
107 motor control (Figure 2F). In addition, in the frontal view, we noticed that the anterior
108 intermediate part of a hemi-neuromere includes a stripe where the cholinergic marker
109 dominates (Figure 2Fii). To analyze the structural and functional significance of these
110 partitions, we demarcated a hemi-neuromere into ten intrasegmental domains (AC, AM, Ald,
111 Alc, Alv, AL, PC, PM, PI and PL) (Figure 2G) and analyzed the properties of these domains
112 below.

113

114 **Correspondence between the intrasegmental domains and the myotopic map**

115 First, to reveal the domains involved in the motor output, we mapped the dendrites
116 of motor neurons onto the template VNC based on connectomics data established from
117 transmission electron microscopic images of a serial sectioned larval CNS (19,20). We
118 manually located the landmarks for the VNC registration in the electron microscope images
119 and mapped the skeleton data of neurons by non-linear transformation (See Methods
120 section for detailed procedure). It should be noted that while we used the third instar larvae
121 in this study, the connectomics data was generated from a first-instar larva. Although the
122 size of the CNS in the third instar is larger than that in the first instar, the connectivity
123 topography in a circuit is conserved across larval development (21). Accordingly, the
124 connectomics data of neurons in the first instar was used to study the domains defined in

125 the third instar.

126 The dendrites of larval motoneurons form the myotopic map, where the location of
127 motoneuronal dendrites is partitioned based on the target muscles (18). This myotopic map
128 is observed in the template VNC (Figure 3). Three classes of motor neurons (ISN, ISNb,
129 and ISNd motor neurons), which innervate longitudinal muscles (13,22), form dendrites
130 centered around the posterior-intermediate (PI) region. The other two motor neuron classes
131 (SNa and SNC motor neurons), which target transverse muscles (13,22), extend the
132 dendrites around the anterior-lateral (AL) region. This observation implies that the scale of
133 the intrasegmental domain based on the neurotransmitter expression (Figure 2F) could
134 serve as a unit for motor control. The layout of motor neurons innervating a single body wall
135 segment is parasegmental: the body wall muscles in a segment are targeted either by SNa
136 and SNC motor neurons in the same VNC segment or by ISN, ISNb, and ISNd motor
137 neurons in the segment next anterior (18). This property is observed in the template VNC
138 data (Figure 3C-3D). These observations suggest that four intrasegmental domains in the
139 n-1th segment (PC_n-1, PM_n-1, PI_n-1, and PL_n-1) and six domains in the nth segment
140 (AC_n, AM_n, Ald_n, Alc_n, Alv_n and AL_n) could be grouped as a segmental unit for
141 controlling body wall muscles in a single hemi-segment. Furthermore, connectomics data
142 suggest that the PI and AL domains comprise most of the dendrites of motor neurons
143 (Figure 3E).

144

145 **One domain pair shows a fixed order in activity recruitment in both forward and
146 backward waves**

147 Next, to examine the functional significance of the intrasegmental domains, we
148 analyzed synaptic activity within the segmental units defined above (Figure 3E). To this aim,
149 we conducted calcium imaging of the isolated VNC, which shows fictive locomotion (23,24).
150 We expressed a membrane-bound form calcium indicator in all neurons, recorded
151 fluorescence signals with an EMCCD camera, and extracted calcium signals from bouton-

152 like structures (25). After the calcium imaging, the samples were fixed and immunostained
153 with the antibody against Fasciclin2 and an antibody against GFP and scanned by a
154 confocal microscope. The calcium imaging data were mapped into the template VNC
155 coordinate with manually labeled landmarks (See “Spatial matching of calcium imaging to
156 immunostaining data (GFP matching)” in Methods for detailed procedure) (Figure S2).
157 Corresponding to forward and backward crawling, the isolated larval VNC exhibits the
158 propagation of synaptic activity from posterior to anterior and from anterior to posterior,
159 respectively.

160 We compared the activity timings of the domains between forward and backward
161 waves. In forward waves, the activities among domains are not synchronized but have a
162 delay (Figure 4A). The similar tendency is observed in backward waves, but the order of
163 activity recruitment depends on the pairs (Figure 4B-4C). To analyze the recruitment order
164 between domains, we plotted the delays in forward and backward waves for each pair
165 (Figure 4D). The plot shows that while most pairs exhibit the opposite order between
166 forward and backward waves, two pairs of domains within the segmental unit show the
167 same recruitment order: PI_{n-1} and PL_{n-1} are followed by Alc_n in both forward and
168 backward waves. Especially, the delay from PI_{n-1} to Alc_n does not significantly differ
169 between forward and backward, unlike PL_{n-1} to Alc_n, which indicates that the activity
170 propagation of PI_{n-1} and Alc_n is consistent between the two motor patterns (Figure 4E;
171 Alc_n – PI_{n-1}: 0.35 ± 0.43 s for forward, 0.55 ± 0.31 s for backward (mean \pm std.)). As
172 shown above (Figure 3C), the PI domain is the primary region that generates output for
173 motor neurons that innervate longitudinal muscles. These observations suggest that the PI
174 domain, which is involved in driving forces for propulsion, and the Alc domain show the
175 fixed sequence of activity in the waves in both directions.

176

177 **Interneurons that form presynaptic terminals in the PI and Alc domains**

178 To identify interneurons involved in the activity of the PI and Alc domains, we

179 searched for interneurons that have pre- and post-synaptic terminals in these domains
180 (Figure 5). The PI domain consists of the presynaptic terminals of A23a and A31k
181 GABAergic neurons (26) (Figure 5A). These neurons should be the origin of GABAergic
182 blobs observed in immunostaining (Figure 2F). The immunostaining data show that the PI
183 domain also possesses cholinergic and glutamatergic neurons (Figure S3). Consistent with
184 this, the connectomics data indicate that A03 (20), A08 (27), and A18 lineages (28) include
185 cholinergic neurons targeting the PI domain, and glutamatergic neurons targeting the PI
186 domain includes A02e (26,29) (Figure 5B). Although the origin of ChAT positive signal in
187 the Alc domain remains unclear, the Alc domain includes postsynaptic terminals of
188 cholinergic neurons A01c and A01ci (26) (Figure 5C). This observation suggests that the PI
189 and Alc domains form functional units for controlling larval crawling behavior.

190

191

192 **Discussion**

193

194 **Synapse organization for multi-functional larval locomotion**

195 In this study, we analyzed the anatomical and functional organization of synapses
196 for fly larval locomotion. The motor circuits consist of the three fast-acting neurotransmitters
197 in similar amounts in contrast to GABA-dominant sensory circuits. The hemi-neuromere of
198 the motor circuit was partitioned into ten domains based on the distribution of the
199 neurotransmitter markers. Calcium imaging analysis shows that one pair of the ten domains,
200 the posterior-intermediate domain at the n th segment (PI _{n}) and the central anterior-
201 intermediate domain at the $n-1$ th segment (Alc _{$n-1$}), have a consistent order in the activity
202 recruitment in forward and backward waves whereas the other pairs are not.

203 The property of the recruitment order in PI _{n} and Alc _{$n-1$} activity being
204 independent of wave direction (forward vs backward) may underlie the multi-functionality of
205 larval locomotion. There are about thirty body wall muscles in a hemisegment (18,22), and

206 the sequence of contraction of individual muscles within a segment is similar between
207 forward and backward (9) while some muscles show distinct contraction timing depending
208 on the crawling direction (11). Accordingly, there should be direction-independent circuits to
209 generate forward and backward crawling. Consistent with this notion, the PI_n domain
210 contains presynaptic terminals of interneurons that have been reported as being involved in
211 motor control (Figure 5A-5B). In contrast, we could not find domains recruited earlier than
212 PI_n consistently in both forward and backward waves. These observations imply that PI_n
213 is a convergence domain of forward and backward-engaging circuits, and the two distinct
214 behaviors, forward and backward crawling, capitalize on the shared circuits formed in PI_n.
215 Further analysis of upstream neurons to PI_n will provide a novel insight into how the
216 distinct motor programs converge in neural circuits.

217

218 **The function of the domains exhibiting direction-independent recruitment activity**

219 One of the direction-independent domains, the PI domain, has a blob of GABAergic
220 terminals (Figure 2F) and presynapses of Glu and ACh (Figure S3). The existence of
221 GABAergic clusters in the PI domain, where motor neuronal dendrites accumulate, implies
222 two non-exclusive possibilities: (1) The GABAergic terminals are involved in the
223 cooperative suppression of motor output. Blocking excessive contraction is critical for larval
224 motor control (30). Coordinated activation of the GABAergic terminals may be involved in
225 the well-timed motor suppression. (2) The GABAergic terminals trigger the excitation of
226 motor neurons by post-inhibitory rebound. Larval motor neurons have the property to show
227 excitation after hyperpolarization (31). Coordinated activity of the three fast-acting
228 neurotransmitters would drive the contraction and relaxation of longitudinal muscles.

229 The other domain, A1c, contains the postsynaptic terminals of A01c and A01ci.
230 These cholinergic neurons are upstream of transverse muscles (26). Accordingly, the A1c
231 domain, which is recruited after PI in the segment next anterior, may be involved in the
232 contraction of transverse muscles. Since transverse muscles contract after longitudinal

233 muscles in an experimental condition (9), the direction-independent sequential activation of
234 PI_n-1 to Alc_n would be involved in intrasegmental coordination of muscle contraction. In
235 contrast, anatomical analysis shows the dendrites of motor neurons for transverse muscles
236 (SNa and SNC) locate mainly in the AL domains (Figure 3D-3E). Calcium imaging assay
237 demonstrates that the AL domains do not exhibit direction-independent activity recruitment
238 with the PI domains (Figure 4A-4B). Since the contraction of transverse muscles during
239 crawling depends on experimental conditions (32), the function of Alc activity is still unclear.
240 Further connectomics and functional analysis of the PI and Alc domains will clarify the roles
241 of direction-independent domains in motor control.

242

243 **Methods**

244 ***Drosophila melanogaster* strains**

245 All animals were raised on standard cornmeal-based food. For pan-neuronal
246 calcium imaging, we used a fruit fly line of genotype *UAS-CD4::GCaMP6f* (26); nSyb-Gal4
247 (nSyb-Gal4: Bloomington #58763). For targeting specific neurons, we used the following
248 drivers. Gal4 drivers (33,34): NP6051-Gal4 (Kyoto stock center #NP6051), R36G02-Gal410
249 (Bloomington #49939), and R75H04-Gal4 (Bloomington #39909).

250

251 **Calcium imaging**

252 The CNS of third-instar fruit fly larvae was isolated by dissecting the animals with
253 microscissors (29) was mounted on an adhesive slide glass (MAS-coated slide glass
254 S9215, Matsunami Glass, Japan) and soaked in an insect saline (TES buffer: TES 5 mM,
255 NaCL 135 mM, KCl 5 mM, CaCl₂ 2 mM, MgCl₂ 4 mM, sucrose 36 mM; pH = 7.15).
256 Fluorescence signals from the specimens were recorded by an EMCCD camera (iXon+
257 DU-897E-CS0-#BV, Andor, UK; 63x, 0.27 μm/px, exposure = 30 ms, EM gain = 144, data
258 depth = 14 bit) with attached spinning disk confocal unit (CSU21, YOKOGAWA, Japan).
259 The specimens were illuminated by a blue laser (CSU-LS2WF, Solution Systems, Japan;

260 power = 300 to 500 μ W, wavelength = 488 nm) through a water immersion objective lens
261 (ACROPLAN 63X, Zeiss, Germany). During recordings, we scanned the dorsal-half VNC
262 neuropil by quick vibration of the objective lens. The vibration was controlled by a
263 piezoelectric device (P-725.2CL, PI, Germany). For each recording, five parallel focal
264 planes with 5 μ m intervals were alternately focused, where frames were snapped by 3 Hz
265 for each plane.

266

267 **Bouton extraction from calcium imaging data**

268 To analyze population dynamics in the neuropil, we extracted bouton-like regions in
269 calcium imaging data. For bouton extraction, we designed an algorithm to decompose
270 neuropil imaging data into bouton-sized pixel clusters (PQ-based clustering (25)). In brief,
271 the algorithm searches the optimal configuration of pixel clusters in which pixels show
272 relatively similar activity traces. For this purpose, the similarity network among pixels is
273 used to calculate an expanded version of modularity (35), which is defined in graph theory.
274 Modularity is a function of clustering configuration, and the better clustering configuration is
275 supposed to provide a larger quantity of modularity. Modularity is maximized by the
276 simulated annealing method, in which the temperature of the system is gradually reduced
277 during thermal fluctuation of system states depending on energy function as modularity \times (-
278 1).

279

280 **Immunohistochemistry**

281 Immunohistochemistry was performed on isolated CNSs of third-instar larvae.
282 Samples were fixed with 3.7 % formaldehyde for 30 min at room temperature, washed with
283 0.2 % Triton X-100 in PBS for 30 min at room temperature, and blocked with normal goat
284 serum for 30 min at room temperature. The processed samples were incubated at 4 °C for
285 at least two days in each primary and secondary antibody solution. Primary antibodies:
286 rabbit anti-GFP (Frontier science #Af2020, 1:1000), rabbit anti-HA (Cell Signaling

287 Technology #C29F4, 1:1000), rabbit anti-VGAT (16) (1:300), rabbit anti-VGluT (15)
288 (1:1000), mouse anti-ChAT (DSHB #4B1, 1:50), and mouse anti-Fas2 (36) (DSHB #1D4,
289 1:300). Secondary antibodies: Alexa-Fluor 488-conjugated goat anti-rabbit IgG (A-11034,
290 1:300) and Alexa-Fluor 555-conjugated goat anti-mouse IgG (A-21424, 1:300). The stained
291 samples were recorded with a confocal microscopy (BX61WI + FluoView FW1000,
292 Olympus, Japan) and an oil immersion objective lens (Plan-APOCHROMAT 63X, Zeiss,
293 Germany).

294

295 **Spatial matching**

296 Spatial matching was performed between multiple types of datasets recording the
297 VNC neuropil. We started the process with manual labeling of reference points at the same
298 locations in the query and target dataset and then generated coordinate transforms in
299 which every labeled point in the query dataset was mapped onto each corresponding point
300 in the target, where the transforms were provided by thin-plate spline (TPS) method (37,38).
301 Since TPS defines smooth and natural one-to-one mapping between the query and target
302 coordinate systems, any locations in the query data could be assigned to coordinates in the
303 target. TPS was calculated by an open-source Python library (<https://github.com/tzing/tps-deformation>). To enhance the precision of point labeling, we designed a GUI platform for
304 viewing arbitrary sections of three-dimensional images. The platform provided an intuitive
305 user interface to manipulate the position of a plane to display a section and label points on
306 the section with three-dimensional coordinates. The software is released online with a brief
307 installation guideline (<https://github.com/Fukumasu/SectionViewer>).
308

309

310 **Spatial matching of calcium imaging to immunostaining data (GFP matching)**

311 Calcium imaging data and immunostaining data of the same sample were spatially
312 matched to precisely identify the location of calcium imaging frames in the VNC neuropil.
313 Since the data were acquired from identical samples, it was possible to locate multiple pairs

314 (15–40 pairs per sample) of corresponding points between imaging and staining data by
315 manually comparing those spatial patterns of GCaMP and anti-GFP fluorescence signals,
316 respectively. To test the accuracy of the transforms calculated by TPS with the reference
317 points, we applied leave-one-out cross-validation to the point sets. The mean error distance
318 was 1.8 ± 1.2 (mean \pm std., $n = 121$ from five samples) μm , which indicated that the
319 accuracy of transforms reached the level of bouton size ($\sim 2 \mu\text{m}$).

320

321 **Spatial matching of immunostaining to template coordinate system (Fas2 matching)**

322 To align the immunostaining data of distinct samples, a template coordinate system
323 was created, and the samples were spatially matched to the template. To label common
324 points among the samples, we referred to the configuration of Fas2 bundles in the neuropil.
325 We labeled reference points on longitudinal projections of the Fas2 bundles (DL, VL, DM
326 and VM). For DL and VL, reference points were taken as intersections of these longitudinal
327 bundles and planes defined by left and right TP2. For DM and VM, intersections of these
328 bundles and planes defined by left and right TP1 and TP3 were used as reference points.
329 The reference points were taken from six segments (A1–6) and left and right hemi-
330 segments. In total, 4 (DL, VL, DM and VM) \times 6 (A1–6) $\times 2$ (left and right) = 48 points were
331 labeled in each sample. By processing the coordinates of reference points from 60 samples,
332 we defined a template set of 48 reference points. To make the template set of points
333 symmetric according to the median plane, we generated an additional 60 sets of points by
334 duplicating and mirroring the original 60 samples. The 120 sets of points in total were
335 moved and rotated in three-dimensional ways to overlap with each other as closely as
336 possible, and those coordinates were averaged. Since it was difficult to find the optimal
337 positions of the point sets at once, the optimization was conducted iteratively. First, the
338 mean coordinates (x, y, and z) of the point sets were calculated (mean point set). Then,
339 each point set was rotated to match the mean point set as closely as possible, and mean
340 coordinates were calculated again from the updated point sets. By repeating these steps,

341 the point sets gradually approached a common configuration. After three iterations, the
342 coordinate variation of the point sets was sufficiently converged, and we defined the final
343 mean point set as the template. Transforms from immunostaining samples to the template
344 coordinate system were calculated by TPS between reference points of the samples and
345 the template. Leave-one-out cross-validation was applied to test the accuracy, and the
346 error was 1.7 ± 1.1 (mean \pm std., $n = 2,880$) μm , indicating that the matching was
347 sufficiently accurate to compare samples in the resolution of bouton-size ($\sim 2 \mu\text{m}$).

348

349 **Spatial matching of ssTEM dataset to template coordinate system**

350 Reconstructed skeletons of neurons in the ssTEM dataset were spatially matched
351 to the template coordinate system. Acquisition and analysis of the ssTEM data have been
352 reported (19,20,27,39). Whereas calcium imaging in the current study revealed the
353 spatiotemporal structure of the A3 segment in third-instar larvae most clearly, neuronal
354 reconstruction in the ssTEM data of a first-instar larva has been concentrated on the A1
355 segment. To spatially align segments from these frameworks in the best combination, we
356 matched the A1 segment in the ssTEM data and the A3 segment in the template coordinate
357 system based on the observation that the configuration of neurons in the neuropil is
358 robustly conserved among distinct stages of larvae and also among segments A1–7. For
359 reference points to calculate TPS, we manually labeled corresponding 38 locations on
360 skeletons in the ssTEM data (A01ci, A02e, A23a, A27h, A27k, and A31k) in the A1
361 segment and the same neurons in the A3 segment mapped onto the template coordinate
362 system by Fas2 matching. The mean error of the matching calculated by leave-one-out
363 cross-validation was 4.0 ± 1.8 (mean \pm std., $n = 38$) μm , which indicated sufficient accuracy
364 to compare branches in reconstructed skeletons and the intra-segmental domains.

365

366 **Temporal matching of bouton activities**

367 Temporal matching was applied to activity profiles of boutons to temporally merge

368 distinct events and samples. Temporal matching was first performed among FW or BW
369 events of the same sample, and then the averaged events of multiple samples were
370 temporally aligned. For both cases, the speed of wave propagation was normalized based
371 on linear regression of recruitment timing and AP position in the template space of boutons,
372 and new activity traces were generated by interpolation based on the discrete Fourier
373 transform. Recruitment timing was defined as the time point of the maximum slope in each
374 activity trace (40). Timing of the maximum slope was estimated as the inflection point of the
375 cubic function passing through four data points around the maximum slope.

376

377

378 **Acknowledgment**

379 We thank Bloomington Drosophila Stock Center and KYOTO Drosophila Stock
380 Center for the fly lines. We thank Developmental Studies Hybridoma Bank, Dr. Hermann
381 Aberle and Dr. David Krantz for the antibodies. We thank Dr. Albert Cardona for continued
382 access to the L1 EM dataset. This work was supported by MEXT/JSPS KAKENHI grants
383 (17K19439, 19H04742, 20H05048, 21H02576 21H05675, 22K19479, 22H05487,
384 23H04213, 24H01225, 24K02117 to A.N. and 17K07042, 20K06908, 21H05301 and
385 23K05959 to H.K.).

386

387 **Competing interests**

388 We have no conflicts of interest with respect to the work.

389

390 **References**

- 391 1. Zhen M, Samuel ADT. *C. elegans* locomotion: Small circuits, complex functions.
392 *Curr Opin Neurobiol* [Internet]. 2015;33:117–26. Available from:
393 <http://dx.doi.org/10.1016/j.conb.2015.03.009>
- 394 2. Byrd DT, Jin Y. Wired for insight—recent advances in *Caenorhabditis elegans*

395 neural circuits. *Curr Opin Neurobiol* [Internet]. 2021;69:159–69. Available from:
396 <https://doi.org/10.1016/j.conb.2021.02.009>

397 3. Briggman KL, Kristan WB. Multifunctional pattern-generating circuits. *Annu Rev*
398 *Neurosci*. 2008;31:271–94.

399 4. Berkowitz A, Roberts A, Soffe SR. Roles for multifunctional and specialized spinal
400 interneurons during motor pattern generation in tadpoles, zebrafish larvae, and
401 turtles. *Front Behav Neurosci*. 2010;4(JUN):1–18.

402 5. Stein PSG. Central pattern generators in the turtle spinal cord: Selection among the
403 forms of motor behaviors. *J Neurophysiol*. 2018;119(2):422–40.

404 6. Kiehn O. Decoding the organization of spinal circuits that control locomotion. *Nature*
405 Publishing Group [Internet]. 2016;17(4):224–38. Available from:
406 <http://dx.doi.org/10.1038/nrn.2016.9>

407 7. El Manira A. Modular circuit organization for speed control of locomotor movements.
408 *Curr Opin Neurobiol* [Internet]. 2023;82(Figure 1):102760. Available from:
409 <https://doi.org/10.1016/j.conb.2023.102760>

410 8. Bargmann CI, Marder E. From the connectome to brain function. *Nat Methods*.
411 2013;10(6):483–90.

412 9. Heckscher ES, Lockery SR, Doe CQ. Characterization of *Drosophila* larval crawling
413 at the level of organism, segment, and somatic body wall musculature. *Journal of*
414 *Neuroscience*. 2012;32(36):12460–71.

415 10. Clark MQ, Zarin AA, Carreira-Rosario A, Doe CQ. Neural circuits driving larval
416 locomotion in *Drosophila*. *Neural Dev*. 2018;13(1):1–10.

417 11. Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A multilayer circuit
418 architecture for the generation of distinct locomotor behaviors in *Drosophila*. *Elife*.
419 2019;8:1–34.

420 12. Kohsaka H. Linking neural circuits to the mechanics of animal behavior in
421 *Drosophila* larval locomotion. *Front Neural Circuits*. 2023;17(August).

422 13. Landgraf M, Sánchez-Soriano N, Technau GM, Urban J, Prokop A. Charting the
423 Drosophila neuropile: A strategy for the standardised characterisation of genetically
424 amenable neurites. *Dev Biol.* 2003;260(1):207–25.

425 14. Lacin H, Chen HM, Long X, Singer RH, Lee T, Truman JW. Neurotransmitter identity
426 is acquired in a lineage-restricted manner in the Drosophila CNS. *Elife.* 2019;8:1–26.

427 15. Daniels RW, Gelfand M V., Collins CA, DiAntonio A. Visualizing glutamatergic cell
428 bodies and synapses in Drosophila larval and adult CNS. *Journal of Comparative
429 Neurology.* 2008;508(1):131–52.

430 16. Fei H, Chow DM, Chen A, Romero-Calderón R, Ong WS, Ackerson LC, et al.
431 Mutation of the drosophila vesicular GABA transporter disrupts visual figure
432 detection. *Journal of Experimental Biology.* 2010;213(10):1717–30.

433 17. Zlatic M, Li F, Strigini M, Grueber W, Bate M. Positional cues in the Drosophila
434 nerve cord: Semaphorins pattern the dorso-ventral axis. *PLoS Biol.* 2009;7(6).

435 18. Landgraf M, Jeffrey V, Fujioka M, Jaynes JB, Bate M. Embryonic origins of a motor
436 system: Motor dendrites form a myotopic map in Drosophila. *PLoS Biol.* 2003;1(2).

437 19. Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-
438 Alba M, et al. A multilevel multimodal circuit enhances action selection in Drosophila.
439 *Nature.* 2015;520(7549):633–9.

440 20. Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, et al.
441 Quantitative neuroanatomy for connectomics in Drosophila. *Elife.*
442 2016;5(MARCH2016):1–36.

443 21. Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell CM. Conserved
444 neural circuit structure across drosophila larval development revealed by
445 comparative connectomics. *Elife.* 2017;6:1–17.

446 22. Keshishian H, Broadie K, Chiba A, Bate M. The Drosophila neuromuscular junction:
447 A model system for studying synaptic development and function. *Annu Rev Neurosci.*
448 1996;19:545–75.

449 23. Pulver SR, Bayley TG, Taylor AL, Berni J, Bate M, Hedwig B. Imaging fictive
450 locomotor patterns in larval *Drosophila*. *J Neurophysiol*. 2015;114(5):2564–77.

451 24. Lemon WC, Pulver SR, Höckendorf B, McDole K, Branson K, Freeman J, et al.
452 Whole-central nervous system functional imaging in larval *Drosophila*. *Nat Commun*.
453 2015;6(May).

454 25. Fukumasu K, Nose A, Kohsaka H. Extraction of bouton-like structures from neuropil
455 calcium imaging data. *Neural Networks* [Internet]. 2022;156:218–38. Available from:
456 <https://doi.org/10.1016/j.neunet.2022.09.033>

457 26. Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, et al.
458 Regulation of forward and backward locomotion through intersegmental feedback
459 circuits in *Drosophila* larvae. *Nat Commun* [Internet]. 2019;10(1):1–11. Available
460 from: <http://dx.doi.org/10.1038/s41467-019-10695-y>

461 27. Heckscher ES, Zarin AA, Faumont S, Cardona A, Lockery SR, Doe CQ. of a
462 Sensorimotor Circuit that Maintains Left-Right Article Even-Skipped + Interneurons
463 Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric
464 Muscle Contraction Amplitude. *Neuron* [Internet]. 2015;88(2):314–29. Available
465 from: <http://dx.doi.org/10.1016/j.neuron.2015.09.009>

466 28. Hasegawa E, Truman JW, Nose A. Identification of excitatory premotor interneurons
467 which regulate local muscle contraction during *Drosophila* larval locomotion. *Sci Rep*
468 [Internet]. 2016;6(March):1–13. Available from: <http://dx.doi.org/10.1038/srep30806>

469 29. Kohsaka H, Takasu E, Morimoto T, Nose A. A group of segmental premotor
470 interneurons regulates the speed of axial locomotion in *Drosophila* larvae. *Current
471 Biology* [Internet]. 2014;24(22):2632–42. Available from:
472 <http://dx.doi.org/10.1016/j.cub.2014.09.026>

473 30. Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, et al. Regulation
474 of coordinated muscular relaxation in *Drosophila* larvae by a pattern-regulating
475 intersegmental circuit. *Nat Commun* [Internet]. 2021;12(1):1–14. Available from:

476 http://dx.doi.org/10.1038/s41467-021-23273-y

477 31. Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A. Optical dissection of neural
478 circuits responsible for drosophila larval locomotion with Halorhodopsin. *PLoS One*.
479 2011;6(12):22–3.

480 32. Liu Y, Hasegawa E, Nose A, Zwart MF, Kohsaka H. Synchronous multi-segmental
481 activity between metachronal waves controls locomotion speed in *Drosophila* larvae.
482 *Elife*. 2023;12:1–26.

483 33. Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, et al. A GAL4
484 driver resource for developmental and behavioral studies on the larval CNS of
485 *Drosophila*. *Cell Rep* [Internet]. 2014;8(3):897–908. Available from:
486 <http://dx.doi.org/10.1016/j.celrep.2014.06.065>

487 34. Hayashi S, Ito K, Sado Y, Taniguchi M, Akimoto A, Takeuchi H, et al. GETDB, a
488 database compiling expression patterns and molecular locations of a collection of
489 Gal4 enhancer traps. *Genesis (United States)*. 2002;34(1–2):58–61.

490 35. Humphries MD. Spike-train communities: Finding groups of similar spike trains.
491 *Journal of Neuroscience*. 2011;31(6):2321–36.

492 36. Van Vactor D, Sink H, Fambrough D, Tsou R, Goodman CS. Genes that control
493 neuromuscular specificity in *Drosophila*. *Cell*. 1993;73(6):1137–53.

494 37. Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, et al. BrainAligner: 3D
495 registration atlases of *Drosophila* brains. *Nat Methods*. 2011;8(6):493–8.

496 38. Bookstein FL. Principal Warps: Thin-Plate Splines and the Decomposition of
497 Deformations. Vol. 11, *IEEE Transactions on Pattern Analysis and Machine
498 Intelligence*. 1989. p. 567–85.

499 39. Zwart MF, Pulver SR, Truman JW, Fushiki A, Fetter RD, Cardona A, et al. Selective
500 Inhibition Mediates the Sequential Recruitment of Motor Pools. *Neuron* [Internet].
501 2016;91(3):615–28. Available from: <http://dx.doi.org/10.1016/j.neuron.2016.06.031>

502 40. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al.

503 Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature*.
504 2013;499(7458):295–300.

505

506

507 **Figure 1. Construction of a spatial framework template based on Fasciclin 2 (Fas2)**
508 **landmarks.**

509 (A) Three example samples of anti-Fas2 staining data. Black dots show 48 landmarks
510 labeled manually for each sample. (B) Fas2 landmarks (black dots) in the template
511 framework which were obtained by aligning and averaging the coordinates of the labeled
512 landmarks in 60 samples. (C) The template framework covers six abdominal neuromeres
513 (A1-A6). Black arrowheads indicate transverse projection 1 (TP1) of Fas2-positive bundles.

514 AC: anterior commissure, PC: posterior commissure. Arrows indicate the midline.

515

516 **Figure 2. Distribution of fast-acting neurotransmitters in the neuropil.**

517 (A) Five views of a staining image in the template framework. Three distinct confocal
518 images, anti-ChAT, anti-vGat, and anti-vGluT, are mapped onto the template coordinate
519 and merged. 1, 2: dorsal sections, 3: sagittal section, 4, 5: frontal sections. Arrows indicate
520 the midline. (B-E) Immunostaining images showing the areas indicated by squares in (A),
521 with splitting the channels (i: ACh, ii: GABA, iii: Glu). (B, C) Dotted lines indicate GABA-rich
522 ventral regions. (D, E) Black arrowheads indicate strips, while dotted circles indicate blobs.
523 Blue arrows indicate the midline. (F) Spatial pattern of the neurotransmitters was
524 subdivided into grid-wise areas. i: a dorsal section, ii: the frontal section centering the
525 anterior half of the A4 neuromere, and iii: the frontal section centering the posterior half of
526 the A4 neuromere. (G) Schematic diagram of 10 domains in the neuropil. Each hemi-
527 neuromere is divided into anterior and posterior halves in the AP direction, and commissure,
528 medial, intermediate, and lateral areas in the ML direction. Antero-intermediate regions are
529 further subdivided into dorsal, central, and ventral areas in the DV direction.

530

531 **Figure 3. Relationship between postsynaptic terminals of motor neurons from**
532 **connectomics data and the intrasegmental domains.**

533 (A and B) Postsynaptic terminals of ISN, ISNb, and ISNd motor neurons (A) or SNa and
534 SNC motor neurons (B) are mapped onto the template framework in the dorsal view. Solid
535 and dotted lines indicate neurotransmitter domains defined in Figure 2F. (C and D)
536 Postsynaptic terminals of ISN, ISNb, and ISNd motor neurons (C) or SNa and SNC (D) in
537 the posterior half of the A3 neuromere (top) and the anterior half of A4 neuromere (bottom)
538 are shown in frontal view. (E) Distribution of postsynaptic sites in the neurotransmitter
539 domains for each motor neuron group. Percentage indicates the number of postsynaptic
540 terminals in a domain normalized by the total for each motor neuron group.

541

542 **Figure 4. PI and Alc domains show consistent activity delay in forward and backward**
543 **waves.**

544 (A and B) Activity peak timings of extracted boutons in each domain during an event-
545 averaged forward wave (A) or backward wave (B). (C) Scatter plot showing median peak
546 timings of domains (A) and (B). Horizontal and vertical axes indicate median peak timings
547 during forward and backward waves, respectively. (D) Scatter plot showing time lags
548 (difference of median peak timings) for every pair of domains in the parasegmental section.
549 Horizontal and vertical axes indicate time lags during forward and backward waves,
550 respectively. Two pairs of domains explicit activity lag in the same direction for forward and
551 backward waves (black arrowheads). (E) Activity delays of the two domain pairs indicated
552 by black arrowheads in (D) are compared. Gray dots indicate time lags of median peak
553 timing in domain pairs (PI_{n-1} to Alc_n, or PL_{n-1} to Alc_n) for every ipsilateral
554 combination from every sample. Red and blue dots are the median of gray dots. **: p <
555 0.01 (Wilcoxon rank sum test).

556

557 **Figure 5. Pre- and post-synaptic terminals of interneurons involved in motor
558 coordination are consistently distributed with the neurotransmitter domains.**

559 Interneurons reconstructed from the connectomics data are mapped onto the template
560 framework. Red and cyan dots indicate pre- and post-synaptic terminals, respectively. (A)
561 A23a and A31k neurons. (B) A03d/e, A08e3, A18a, A18b, and A02e neurons. (C) A01c and
562 A01ci neurons. Arrows indicate the midline.

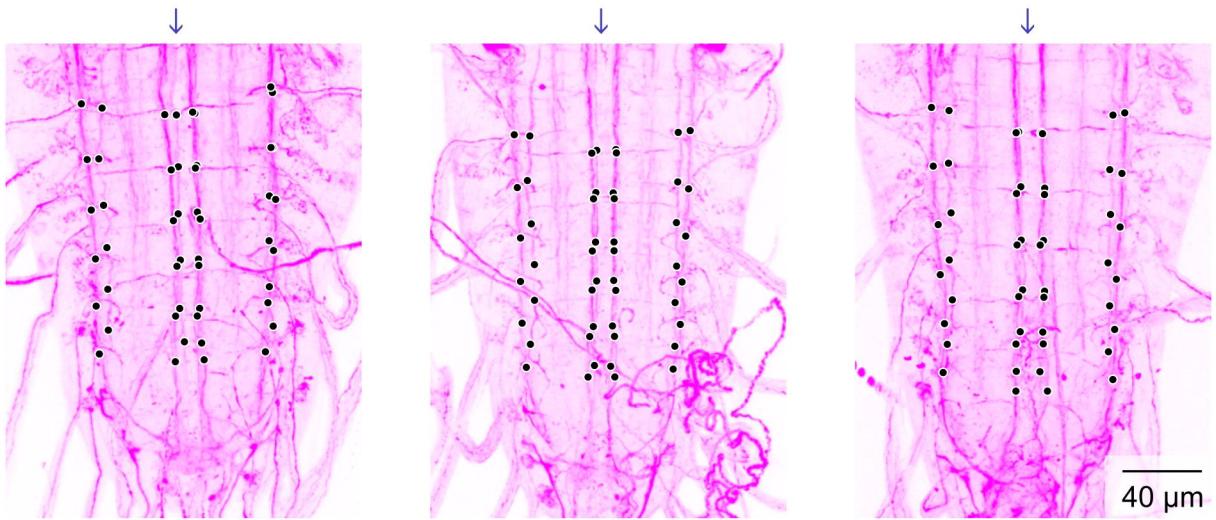
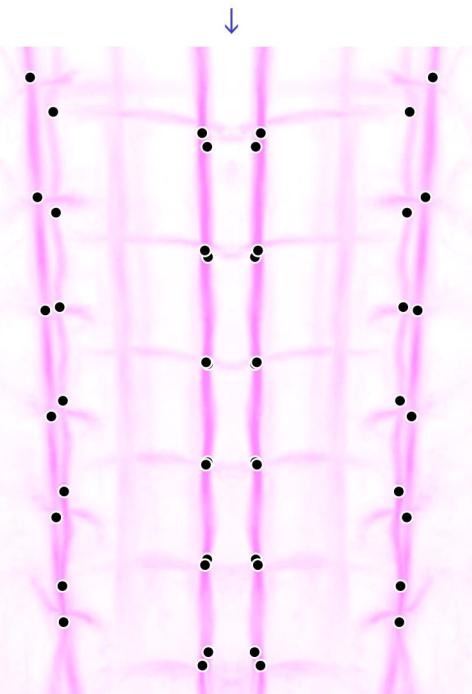
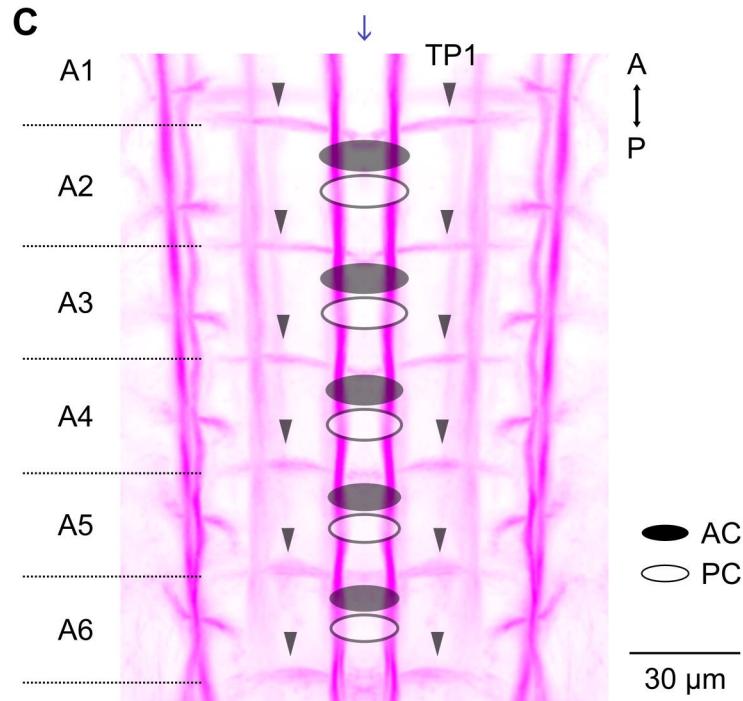
563

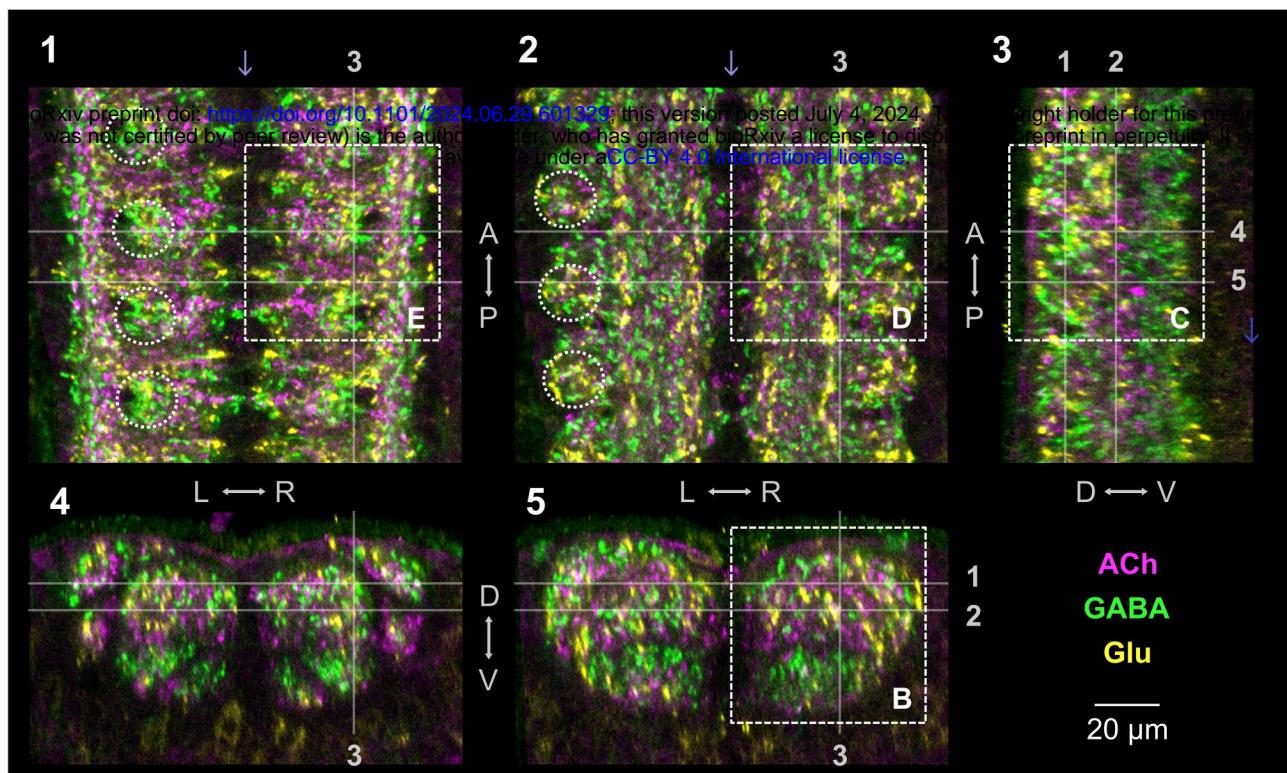
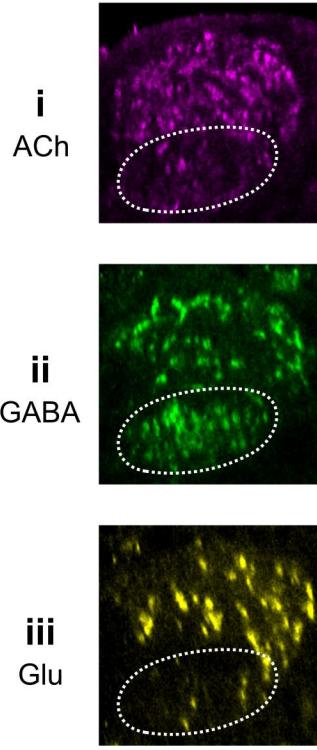
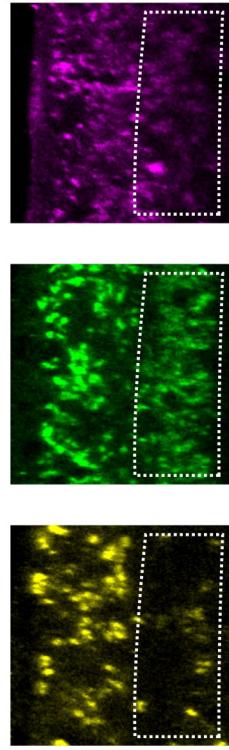
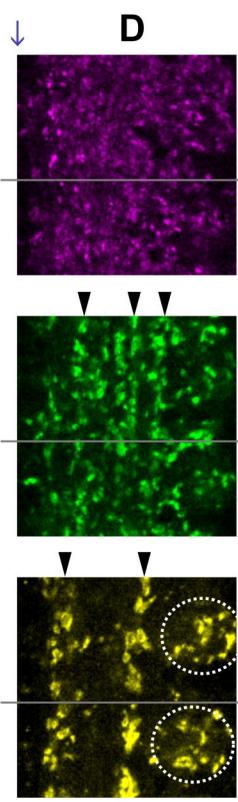
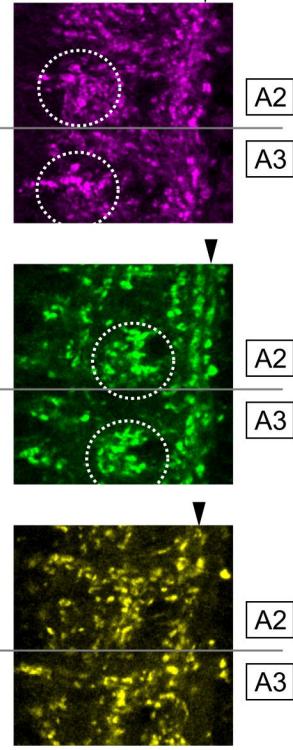
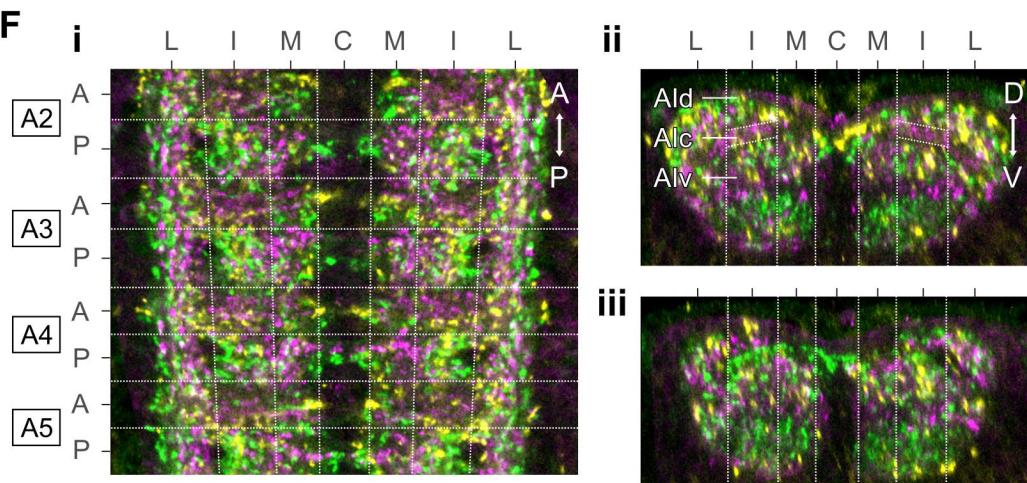
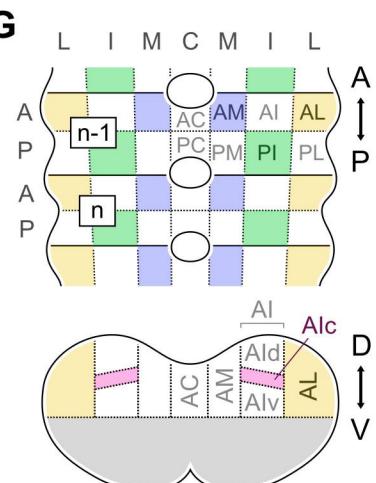
564 **Figure S1. Fas2 bundles and spatial landmarks.**

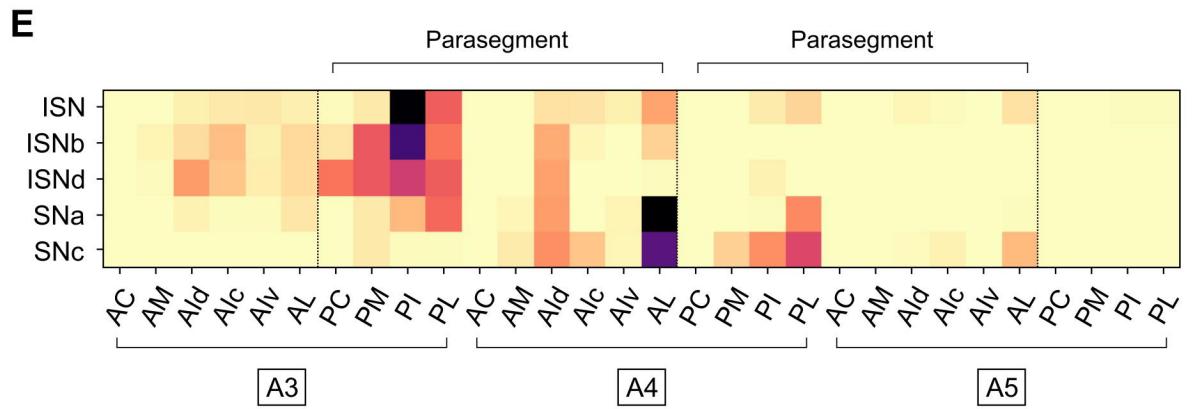
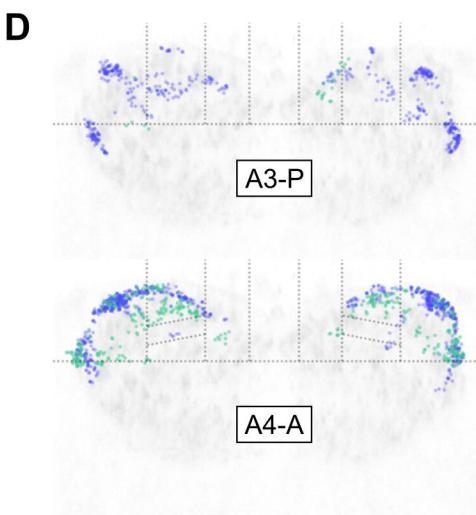
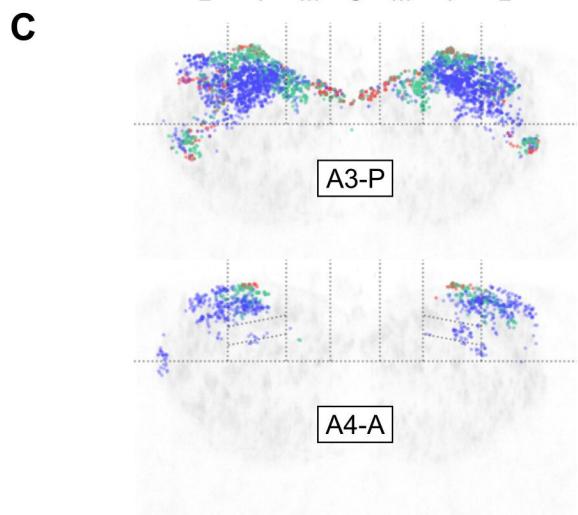
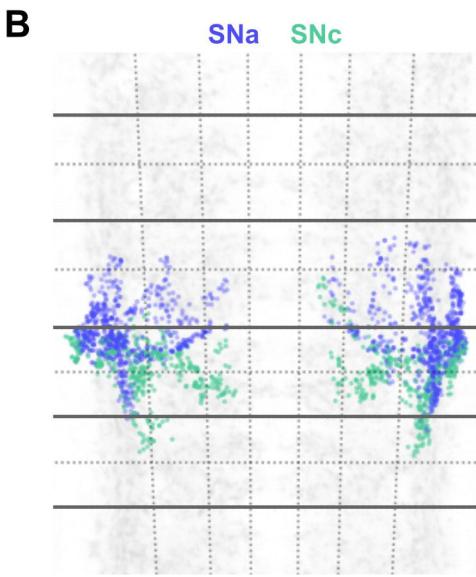
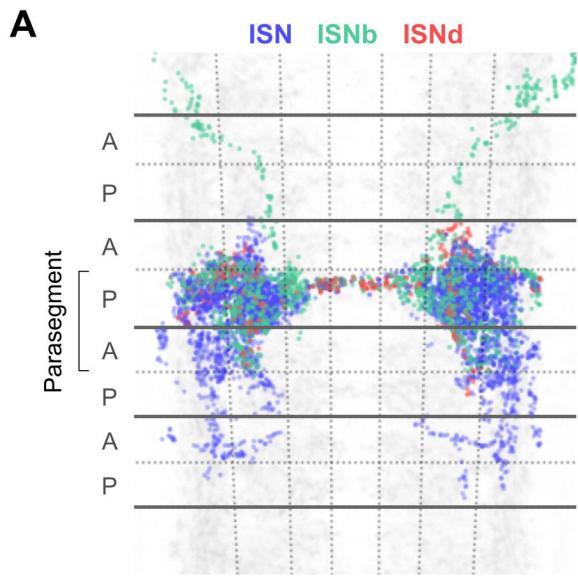
565 (A, B, and C) Magenta lines indicate Fas2 bundles, while blue dots indicate spatial
566 reference points. DL: dorsolateral, DM: dorsomedial, VL: ventrolateral, VM: ventromedial,
567 TP: transverse projection. (A) Frontal view. (B) Lateral view. (C) Dorsal view. (D) Definition
568 of reference points. Reference points were taken at intersections of the plane defined by
569 left and right TP2 and longitudinal projections DL and VL (top) or intersections of the plane
570 defined by TP1 and 3 and longitudinal projections DM and VM (bottom).

571

572 **Figure S2. Common spatial landmarks in calcium imaging and immunostaining data.**

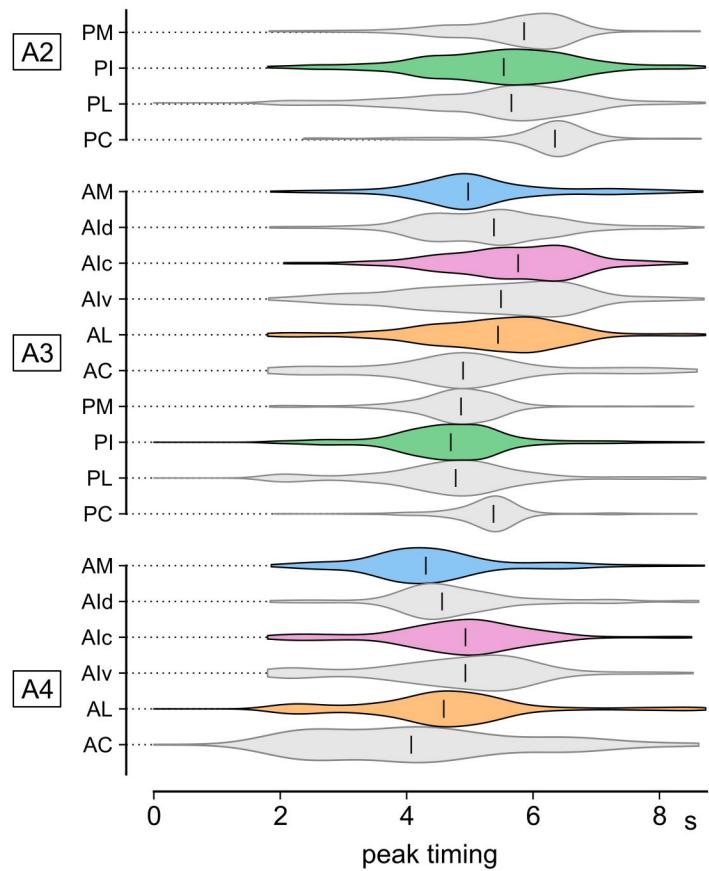



573 (Left) Baseline GCaMP signal pattern of pan-synaptic calcium imaging. (Right) Anti-GFP
574 staining of the same sample as the one shown in the left panel. The position of the section
575 plane of the immunostaining data is manually adjusted so that the signal spatial pattern is
576 close to that of the calcium image. Blue arrows indicate the midline.








577

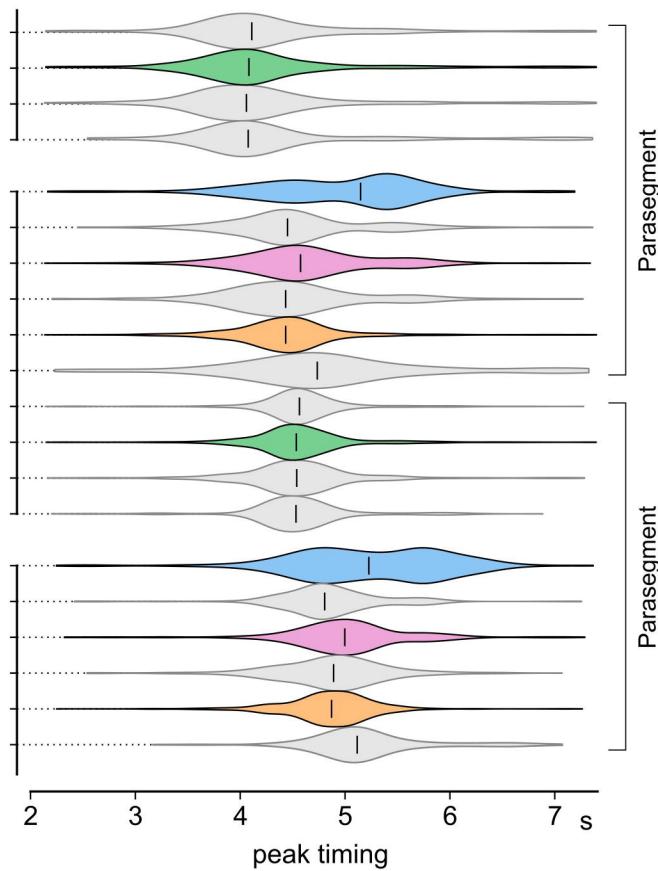





578 **Figure S3. Immunostaining with GABA, ACh, and Glu markers mapped onto the
579 template framework.**

580 Circles indicate the PI domains, showing that not only GABA but also ACh and Glu
581 presynaptic sites exist within the domains.

582

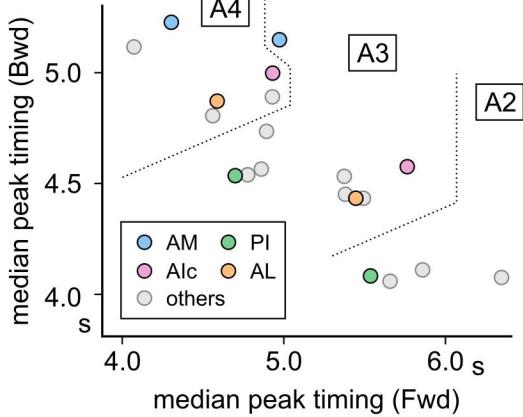
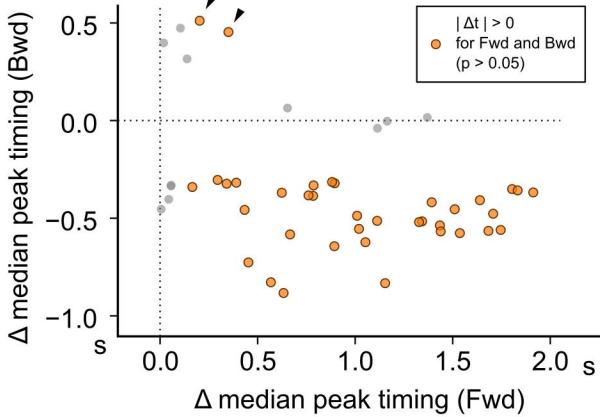
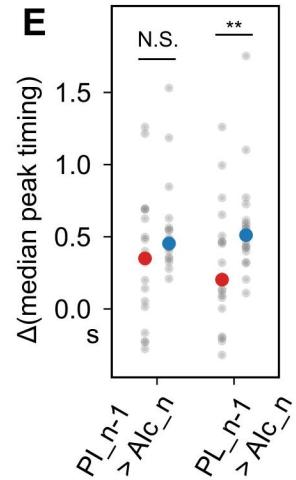

A**B****C**

A**B****C****D****E****F****G**

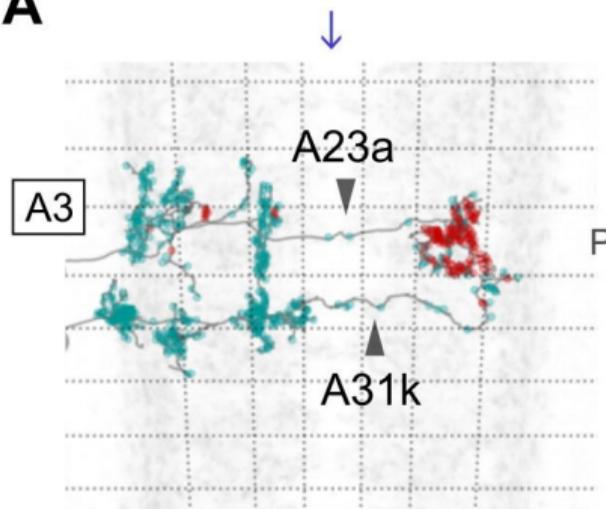
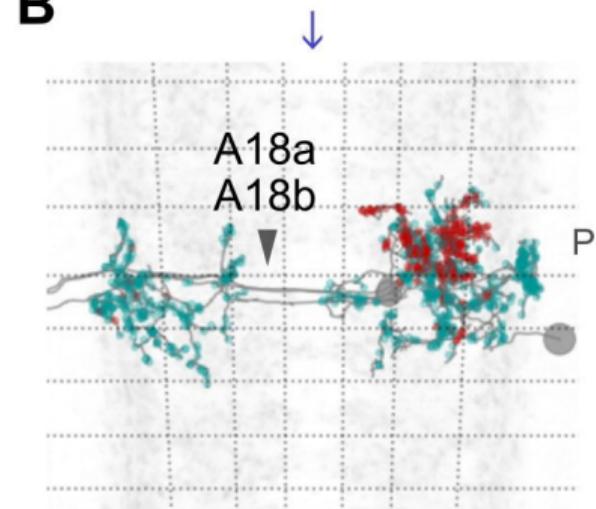
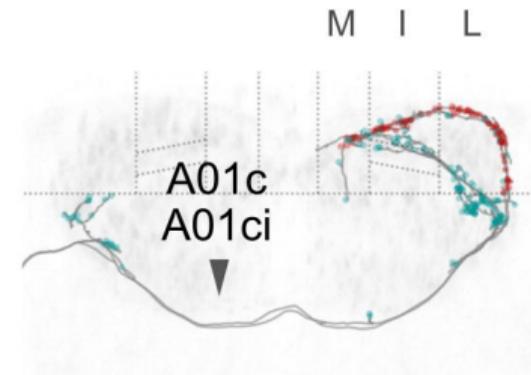
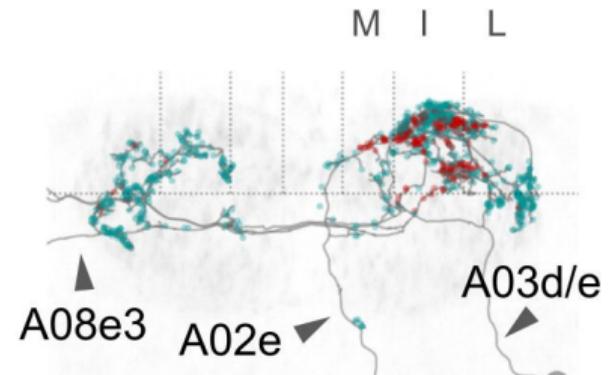
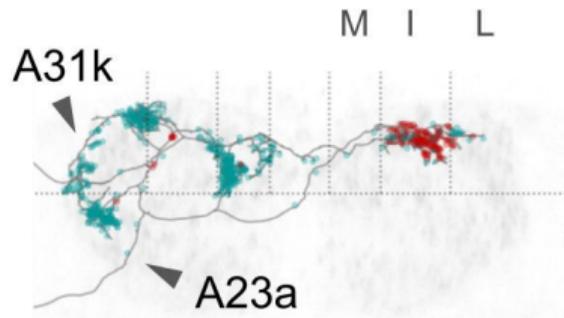
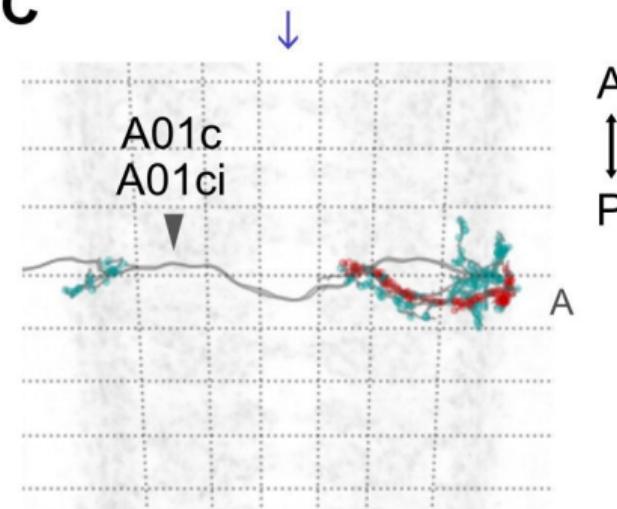


A

Forward




B

Backward







Parasegment

Parasegment

C**D****E**

N.S.

**

A**B****C**