

1 **A random mutagenesis screen enriched for missense mutations in bacterial effector  
2 proteins.**

3

4 Malene L. Urbanus<sup>1</sup>, Thomas M. Zheng<sup>1</sup>, Anna N. Khusnudinova<sup>2,6</sup>, Doreen Banh<sup>1</sup>, Harley  
5 O'Connor Mount<sup>3</sup>, Alind Gupta<sup>3</sup>, Peter J. Stoigos<sup>2</sup>, Alexei Savchenko<sup>2,4</sup>, Ralph R. Isberg<sup>5</sup>,  
6 Alexander F. Yakunin<sup>2,6</sup>, and Alexander W. Ensminger<sup>1,3\*</sup>

7

8 **Affiliations**

9 <sup>1</sup>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.

10 <sup>2</sup>Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,  
11 Canada.

12 <sup>3</sup>Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.

13 <sup>4</sup>Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation  
14 Centre, University of Calgary, AB, Canada.

15 <sup>5</sup>Department of Molecular Biology and Microbiology, Tufts University School of Medicine,  
16 Boston, MA, USA

17 <sup>6</sup>Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University,  
18 Bangor, UK.

19

20 \*Corresponding author:

21 Email: [alex.ensminger@utoronto.ca](mailto:alex.ensminger@utoronto.ca)

22

23 **Abstract**

24 To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of  
25 proteins (effectors) that are delivered to the host cell using dedicated translocation machinery.  
26 Effectors hold significant insight into the biology of both the pathogens that encode for them and  
27 the host pathways that they manipulate. One of the most powerful systems biology tools for  
28 studying effectors is the model organism, *Saccharomyces cerevisiae*. For many pathogens, the  
29 heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher  
30 than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins.  
31 Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector  
32 activity, host targets, and functional residues and domains within effector proteins. We present  
33 here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool  
34 of random effector mutants. We benchmark this approach against three effectors from *Legionella*  
35 *pneumophila*, an intracellular bacterial pathogen that injects a staggering >330 effectors into the  
36 host cell. For each protein, we show how *in silico* protein modeling (AlphaFold2) and missense-  
37 directed mutagenesis can be combined to reveal important structural features within effectors.  
38 We identify known active site residues within the metalloprotease RavK, highly conserved  
39 residues in SdbB, and previously unidentified functional motifs within the C-terminal domain of  
40 SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits  
41 *in vitro* activity consistent with this predicted function.

42

43 **Introduction**

44 For many bacterial pathogens, host manipulation derives from the collective activity of large  
45 numbers of translocated proteins (“effectors”) that are injected into the host cell using dedicated

46 secretion machinery. A striking example is the gram-negative bacterium, *Legionella*  
47 *pneumophila*, the causative agent of Legionnaires' disease, an often-fatal severe pneumonia that  
48 naturally replicates in freshwater protozoa. *L. pneumophila* encodes for the largest effector  
49 arsenal described to date (>330 effectors per isolate, or roughly 10% of the proteome) (Burstein  
50 *et al.* 2009; Huang *et al.* 2011; Zhu *et al.* 2011), which is injected into the host cell using the  
51 Dot/Icm type IVB secretion system (Segal *et al.* 1998; Vogel *et al.* 1998). *L. pneumophila*  
52 effectors modulate host vesicle trafficking, post-translational modification, protein translation,  
53 autophagy, vacuolar function, and the cytoskeleton to avoid lysosomal fusion and to establish a  
54 replicative, neutral pH vacuole (Isberg *et al.* 2009; Escoll *et al.* 2013; Sherwood and Roy 2016;  
55 Qiu and Luo 2017). While over 50 effectors have been studied, the majority of these remain  
56 uncharacterized (Finsel and Hilbi 2015).

57 Determining the function of the >330 effectors and the role they play in establishing the  
58 *Legionella*-containing vacuole is complicated by extensive genetic redundancy within the  
59 effector arsenal (O'Connor *et al.* 2011) and the lack of predicted conserved domains or functions  
60 for many substrates (Gomez-Valero *et al.* 2011, 2014; Burstein *et al.* 2016). In a study  
61 comparing genomes from 38 *Legionella* species, only half of the predicted effectors contained  
62 conserved domains and many of these are of uncharacterized function (Burstein *et al.* 2016).  
63 Although the amino acid sequence of many effectors may not yield obvious clues to their  
64 function, some effectors have structural homology to characterized proteins or domains, along  
65 with conserved active site motifs or other signature motifs (Toulabi *et al.* 2013; Morar *et al.*  
66 2015; Wong *et al.* 2015; Urbanus *et al.* 2016; Pinotsis and Waksman 2017; Kozlov *et al.* 2018).  
67 Looking beyond *L. pneumophila*, over 18,000 effector genes have been predicted across the

68 entire *Legionella* genus (Burstein *et al.* 2016; Gomez-Valero *et al.* 2019). This number suggests  
69 both a wealth of novel effector activities and host biology waiting to be discovered.

70 We set out to develop a method to efficiently identify important motifs or amino acid  
71 residues in uncharacterized *Legionella* effectors by random mutagenesis and selection for loss-  
72 of-function mutations to facilitate the prediction of mechanism and function. Approximately  
73 10% of the effectors severely inhibit yeast growth when overexpressed (Campodonico *et al.*  
74 2005; Felipe *et al.* 2008; Heidtman *et al.* 2009; Shen *et al.* 2009; Guo *et al.* 2014; Urbanus *et al.*  
75 2016), such that loss-of-function by random mutagenesis can be selected for as an alleviation of  
76 the yeast growth defect. However, a random mutant pool contains a multitude of mutations that  
77 can potentially cause a loss-of-function phenotype, such as frameshift, nonsense and missense  
78 mutations in the effector or regulatory elements such as the promoter region. Most of these  
79 mutations are uninformative as only missense loss-of-function mutations in the effector are  
80 relevant. To enrich for full-length missense clones, we used a C-terminal in-frame His3 fusion  
81 and selected for histidine prototrophic yeast requiring the presence of a full-length protein. A  
82 similar strategy (C-terminal His3 fusions) was previously shown to enrich for in-frame human  
83 open reading frames amongst a randomly primed pool of cDNAs cloned into a yeast expression  
84 vector (Holz *et al.* 2001). Here, we benchmark this in-frame mutagenesis approach against three  
85 *L. pneumophila* effectors previously shown to inhibit yeast growth: SdbA and SdbB, whose  
86 functions remain uncharacterized and RavK, a previously described metalloprotease. We show  
87 our approach identifies active site residues within RavK (Liu *et al.* 2017) highly conserved  
88 residues in SdbB, and previously unidentified functional motifs in the C-terminal domain of  
89 SdbA. These motifs are part of the donor and acceptor binding regions of glycosyltransferases,

90 which we show the C-terminal domain of SdbA shares homology with. Finally, we show that a  
91 C-terminal fragment exhibits *in vitro* activity consistent with this predicted function.

92 **Results**

93 **A random mutagenesis screen to identify regions important for bacterial effector function**

94 To efficiently screen for randomly generated mutations in *Legionella* effectors that cause a loss-  
95 of-function phenotype and represent full-length protein rather than frameshift or nonsense  
96 mutations, we applied the method of Holz and colleagues to select for expression of full-length  
97 proteins in yeast (Holz *et al.* 2001). We cloned the yeast *HIS3* gene in frame behind yeast-  
98 cytotoxic *Legionella* effectors on a high-copy galactose-inducible yeast expression plasmid.  
99 After confirming that the His3 fusion does not interfere with the yeast-cytotoxic phenotype, and  
100 therefore likely does not interfere with effector function, we generated a pool of random mutants  
101 using the *E. coli* mutator strain XL1-Red. We then transformed this mutant plasmid pool to yeast  
102 and monitored growth on different media types to assess the number of transformable plasmids (-  
103 ura/glucose) and the efficiency of the random mutagenesis step (-ura/galactose) selecting all  
104 mutations that caused a loss of function (Fig 1). To specifically select for full-length missense  
105 loss-of-function mutants, we grew the transformed pool on medium with galactose and lacking  
106 uracil and histidine (-ura-his/galactose), which requires the production of full-length effector-  
107 His3 fusion protein and mutations in the effector that disrupt its activity.

108

109 **Missense loss-of-function screen identifies conserved SdbB amino acid residues**

110 As a proof of principle, we looked at SdbB which severely inhibits yeast growth (Fig 2A)  
111 (Heidtman *et al.* 2009) and is part of the SidB paralog family, whose members are predicted to  
112 be lipases from the  $\alpha/\beta$  hydrolase enzyme family (Luo and Isberg 2004). After verifying that the  
113 SdbB-His3 fusion was still capable of inhibiting yeast growth (Fig 2A) we created a random  
114 mutagenesis pool of SdbB-His3 and quantified the number of colony-forming units (CFUs) on

115 the different selection media. While 1.89% of the transformable plasmids carried a mutation that  
116 allowed for growth on SD-ura/galactose medium indicating some type of loss-of-function  
117 mutation (Fig 2B), only 0.03% of the transformable plasmids carried a mutation allowing growth  
118 on SD-ura/-his/galactose medium which requires the expression of full-length fusion protein.  
119 The efficiency of the histidine selection step was verified by sequencing 20 clones from each  
120 condition. The loss-of-function clones selected on –ura/galactose consisted of 16 frameshift  
121 mutations, 2 nonsense mutations, 1 combination of a missense and frameshift mutation and 1  
122 missense mutation in the *sdbB* gene (Fig 2C). In contrast, the loss-of-function clones selected on  
123 –ura/-his/galactose only contained missense mutations (Fig 2D,F). For both conditions a number  
124 of mutations were recovered several times suggesting that the mutational screen is reaching  
125 saturation. To confirm that the identified mutations indeed rescued SdbB toxicity in yeast, we  
126 compared the fitness of mutants to an empty vector control in a liquid growth curve assay (see  
127 Experimental methods). The wild-type and His3-fused SdbB almost completely inhibited yeast  
128 growth, while the SdbB mutants showed a fitness of 60-90% compared to an empty vector  
129 control (Fig 2E and 2G).

130 The positions of the frameshift and nonsense mutations in SdbB (Fig 2D) indicate that a  
131 large part of the protein is required for function, as even a nonsense mutation at S365, 84 amino  
132 acid residues from the C-terminus, almost completely rescued activity. The missense loss-of-  
133 function mutations (Fig 2D and 2F) target four amino acid residues (G116, G189, D273 and  
134 H351) that are invariant in SdbB orthologs from *Legionella pneumophila* and other *Legionella*  
135 species (Burstein *et al.* 2016) (Fig S1), suggesting they are essential for function or structure.  
136 The G198E mutation is part of the GXS/CXG motif that is invariant across the SdbB orthologs  
137 and is predicted to align with the so-called nucleophile elbow of the nucleophile-acid-base triad

138 of the  $\alpha/\beta$  hydrolase active site (Brenner 1988; Ollis *et al.* 1992; Schrag and Cygler 1997;  
139 Marchler-Bauer *et al.* 2017) (Fig S2). When the mutations are mapped onto the SdbB  
140 AlphaFold2 model (Jumper *et al.* 2021; Varadi *et al.* 2021) the majority localize in the pocket  
141 with the putative catalytic cysteine (C187), including the invariant D273 and H351 residues  
142 captured in the screen suggesting they are the remaining residues of the catalytic triad (Fig 2H).

143 Thus, the SdbB example demonstrates that functionally important amino acid residues  
144 can be identified using the random mutagenesis method in conjunction with the histidine  
145 selection for full-length protein. Importantly, this approach significantly reduces the number of  
146 sequenced clones required to identify amino acid residues or regions of interest, by  
147 approximately 60-fold in the case of SdbB.

148

149 **Missense loss-of-function screen identifies the active site of the characterized effector RavK**  
150 To benchmark the missense loss-of-function screen on a characterized effector, we looked at  
151 RavK which also severely inhibits yeast growth (Heidtman *et al.* 2009). RavK was recently  
152 shown to be a small, soluble metalloprotease that specifically cleaves host actin, and mutation of  
153 the active site motif HExxH abolishes all activity and yeast toxicity (Liu *et al.* 2017). The RavK-  
154 His3 fusion was still able to inhibit yeast growth (Fig 3B) and subjected to random mutagenesis  
155 and selection for loss-of-function mutants on medium lacking histidine. Of the 14 loss-of-  
156 function clones we sequenced, one clone contained a large, in-frame deletion from amino acid  
157 residue 70 to residue 166, which was unexpected but confirms the strength of the histidine  
158 selection for full-length protein. All other loss-of-function clones were caused by single point  
159 mutations resulting in missense mutations (Fig 3A). In the fitness assay, wild-type and His3-  
160 fused RavK almost completely inhibited yeast growth, while the RavK mutants displayed a

161 fitness of 70-90% compared to the empty vector control. The loss-of-function mutations all map  
162 to the first half of RavK, suggesting that the N-terminal half of RavK is essential for RavK  
163 function. This is in agreement with Liu and colleagues (Liu *et al.* 2017), who identified the  
164 active site motif (95HExxH99) in the N-terminal half of the protein and found that the 50 C-  
165 terminal residues of RavK can be deleted without any effect on its activity on actin.

166 Four of the loss-of-function mutations targeted the active site motif H<sub>95</sub>ExxH<sub>99</sub>, three of  
167 which are mutations to E<sub>96</sub>. Our screen also identified several residues outside of this motif that  
168 are critical for RavK function. To investigate why these might be functionally important, we  
169 performed an HHpred analysis which looks for structural homologs of proteins (Zimmermann *et*  
170 *al.* 2018). HHpred identified many hits with homology to the HExxH metalloprotease motif.  
171 Among the top five HHpred hits are three small soluble metalloproteases or minigluzincins,  
172 anthrax lethal factor and a zinc dependent peptidase from the M48 family (Dalkas *et al.* 2010;  
173 López-Pelegrín *et al.* 2013; López-Pelegrín *et al.* 2014) (Fig S3). Notably, some of the other  
174 loss-of-function mutations occur in areas that have homology with structural elements in the  
175 minigluzincins that contribute to the active site cleft (López-Pelegrín *et al.* 2013) (Fig S3).  
176 Indeed, when the missense mutations are mapped on the RavK AlphaFold2 model (Jumper *et al.*  
177 2021; Varadi *et al.* 2021) (Fig 3C) they cluster around the active site HExxH including the top  
178 rim of the active site cleft.

179

## 180 **The C-terminal domain of SdbA is a putative glycosyltransferase**

181 SdbA is a member of the SidB paralog family (Luo and Isberg 2004). While the function of  
182 SdbA remains undefined, experimental evolution of *Legionella* in mouse macrophages selected  
183 for parallel SdbA nonsense and frameshift mutations in three out of four independent lineages

184 (Ensminger *et al.* 2012), suggesting that its normal function partially restricts growth in this  
185 accidental host. While the N-terminal domain of SdbA has homology with SidB (Luo and Isberg  
186 2004), the additional C-terminal domain does not have significant sequence homology to other  
187 known proteins (data not shown). SdbA completely inhibits yeast growth when heterologously  
188 expressed (Heidtman *et al.* 2009), making the missense loss-of-function screen an informative  
189 tool by which to identify functional residues that might suggest a specific activity inside the  
190 eukaryotic cell.

191 The missense loss-of-function screen identified 19 mutations in 24 sequenced clones  
192 targeting 17 amino acid residues in SdbA (Fig 4A). In contrast to the smaller proteins SdbB and  
193 RavK, the SdbA results included several double mutants. In some cases, it is not clear how much  
194 each mutation contributes to the phenotype, considering that the fitness of the double mutants is  
195 not dramatically different from the single loss-of-function mutations (Fig 4B). However, all the  
196 single mutations that lead to a loss-of-function phenotype fall in the C-terminal domain and  
197 mainly concentrate in two regions:  $_{541}\text{GGTGHIS}_{547}$  and  $_{957}\text{GGLSVME}_{963}$ . An HHpred homology  
198 search (Zimmermann *et al.* 2018) predicted with high confidence that the C-terminal domain is a  
199 glycosyltransferase of the GT-B fold. When comparing the SdbA C-terminal domain with the  
200 sequence of *E. coli* MurG, a well-studied member of the GT-B fold glycosyltransferase family,  
201 the two mutated regions align with the G-loop 1 and a consensus region in GT-B fold  
202 superfamily involved in binding the donor molecule (Ha *et al.* 2000; Hu *et al.* 2003; Crouvoisier  
203 *et al.* 2007) (Fig 4C). Glycosyltransferases hydrolyze UDP-sugar donor molecules and transfer  
204 the sugar to the acceptor molecule – which can be a variety of molecules such as small  
205 molecules, lipid or proteins (Lairson *et al.* 2008). In MurG amino acid residues A263, L264,  
206 L265, E268, Q287 and Q288 contact the donor molecule UDP-GlcNAc (Hu *et al.* 2003) (Fig4C)

207 while the G-loop 1 is thought to be involved in acceptor molecule binding (Ha *et al.* 2000).  
208 Notably, mutations in these motifs abrogate MurG enzymatic activity, including mutation of the  
209 residues H18 and E268 (Hu *et al.* 2003; Crouvoisier *et al.* 2007), whose corresponding residues  
210 in SdbA (H545 and E963) were found to be mutated in our screen. Fig 4D shows the single  
211 missense mutants abrogating SdbA activity mapped onto the AlphaFold2 model (Jumper *et al.*  
212 2021; Varadi *et al.* 2021) of a C-terminal fragment (amino acid residues 510-1050) with the  
213 residues H545 and E963 highlighted in yellow (43)

214 To test whether the C-terminal domain of SdbA is indeed a glycosyltransferase, we  
215 purified the C-terminal fragment 510-1050 and the equivalent of the MurG E268A inactive  
216 mutant in SdbA (E963A) and tested several UDP-sugars as substrate using the UDP-Glo assay  
217 (Fig 4E). Glycosyltransferases can hydrolyze UDP-sugars in the absence of an acceptor molecule  
218 (with water acting as an acceptor in the reaction) (Sheikh *et al.* 2017; Vicente *et al.* 2023). Indeed  
219 wild-type SdbA 510-1050 hydrolyzes the UDP-GlcNAc donor while the E963A mutant cannot  
220 (Fig 4E), confirming that SdbA is a glycosyltransferase with specificity for UDP-GlcNAc and  
221 that a mutation in the E963 residue identified by the missense loss-of-function screen abrogates  
222 that activity. Using the same assay, we determined the kinetic parameters of UDP-GlcNAc  
223 hydrolysis by SdbA (Fig 4F), which revealed high affinity (low micromolar Km) of this enzyme  
224 to UDP-GlcNAc suggesting efficient glycosylation activity *in vivo*.

225 Taken together, the missense loss-of-function screen identified critical residues in the C-  
226 terminal domain of SdbA, which together with HHpred analysis predict that SdbA contains a  
227 glycosyltransferase domain. The discovery and confirmation of the C-terminal  
228 glycosyltransferase domain allows for targeted follow-up experiments to elucidate the action and  
229 target of SdbA on eukaryotic host cells.

230

231 **Discussion**

232 Our observations demonstrate that the combination of a random mutagenesis loss-of-function  
233 screen with a selection for full-length protein is very effective in specifically selecting loss-of-  
234 function missense clones. In fact, all but one of the clones recovered in our assay contained  
235 missense mutations, while the remaining one contained an in-frame deletion which included the  
236 active site of RavK. The screens correctly identified the previously described active site of  
237 RavK, and the predicted active site nucleophile motif and the remaining residues of the catalytic  
238 triad of SdbB. Surprisingly, the N-terminal  $\alpha/\beta$  hydrolase domain of SdbA did not accumulate  
239 loss-of-function mutations, but the C-terminal domain appears to be crucial for the function of  
240 SdbA. The prediction that the C-terminal domain of SdbA is a glycosyltransferase was supported  
241 by *in vitro* activity towards UDP-GlcNAc and provides a way forward to study this *Legionella*  
242 effector.

243 To effectively apply the random mutagenesis missense enrichment selection or to extend  
244 this approach to bacteria and mammalian cells, a number of considerations need to be taken into  
245 account. First, the protein of interest must have a selectable loss-of-function phenotype such as  
246 alleviation of growth inhibition. Growth fitness is a universal phenotype that is easy to measure  
247 in bacteria, yeasts and mammalian cell lines. Second, the C-terminal fusion of a selection marker  
248 must not interfere with protein function. If the function of protein of interest is inhibited by the  
249 C-terminal fusion, it could potentially be overcome by introducing linker regions of varying  
250 length and flexibility (Chen *et al.* 2013) or by using a cleavable linker such as the ubiquitin K0  
251 mutant that is processed by cytosolic deubiquitinases in eukaryotic cells (Bachran *et al.* 2013).  
252 Similarly, the C-terminal selection marker must be able to function as a fusion protein or be  
253 liberated by an *in vivo* cleavable linker.

254 To extend the random mutagenesis missense enrichment selection to bacteria, the  
255 chloramphenicol acetyltransferase (CAT) gene which confers resistance to chloramphenicol  
256 could be a good candidate as a C-terminal fusion partner. CAT has been successfully used in  
257 protein fusions where it conferred chloramphenicol resistance during colony selection as a C-  
258 terminal fusion partner, with increased selection efficiency when mutant fusion proteins are  
259 soluble (Maxwell *et al.* 1999). In mammalian cell lines, a positive selection marker such as  
260 blasticidin S deamidase could be used as a C-terminal fusion partner. Blasticidin S deamidase is  
261 functional as a C-terminally fused protein (Suarez and McElwain 2009) and confers resistance  
262 against blasticidin, which rapidly inhibits mammalian cell growth at a low dose (Kimura *et al.*  
263 1994). An alternative, if no positive selection marker is available, is GFP, which has been used  
264 extensively as a fused localization marker for various cellular compartments and organisms  
265 (Margolin 2000; Roessel and Brand 2002; Huh *et al.* 2003). After a standard number of  
266 generation doublings, GFP-positive cells, indicative of the presence of full-length protein, can be  
267 selected by flow cytometry and cell sorting or by screening for GFP positive colonies in bacteria  
268 and yeast. However, these approaches would reduce the screening throughput and/or require  
269 specialized equipment.

270 Our initial results suggest that missense-directed mutagenesis will be a useful tool to help  
271 identify potential functions for other bacterial effector proteins, many of which have low  
272 sequence homology to characterized proteins (Gomez-Valero *et al.* 2011; Burstein *et al.* 2016).  
273 Rather than being replaced by *in silico* protein modeling, we show how the two methodologies  
274 complement one another and can be used to identify structural features essential for activity  
275 against the eukaryotic cell. In *Legionella pneumophila* alone 10% of the translocated effectors  
276 (Campodonico *et al.* 2005; Felipe *et al.* 2008; Heidtman *et al.* 2009; Shen *et al.* 2009; Guo *et al.*

277 2014; Urbanus *et al.* 2016), severely inhibit yeast growth and are possible candidates for the  
278 random mutagenesis missense enrichment screen. Identifying functional residues within  
279 uncharacterized effectors is a logical first step towards validating *in silico* protein models,  
280 predicting effector activity, and designing protein-protein interaction studies.

281 **Experimental methods**

282 **In frame effector-His3 fusion by yeast recombinational cloning**

283 The *S. cerevisiae* BY4742 (*MATa*, *his3Δ1*, *leu2Δ0*, *met15Δ0*, *ura3Δ0*; (Brachmann *et al.* 1998))

284 strains overexpressing *lpg0275*, *lpg0969* and *lpg2482* (*sdbA*, *ravK*, and *sdbB* respectively) from

285 the high-copy vector pYES2 NT/A (Life Technologies, GAL 1 promoter, N-terminal 6X

286 HIS/Xpress tag and URA3 selectable marker) (Heidtman *et al.* 2009) were used to create the

287 effector-His3 fusion mutants by yeast recombinational cloning. The *S. cerevisiae* *HIS3* gene was

288 PCR amplified from pAG423GAL-ccdB (Alberti *et al.* 2007) using an effector specific forward

289 primer containing the last 50-60 nucleotides of the effector (minus the stop codon) followed by

290 the first 20-30 nucleotides of the *HIS3* sequence and the pYES-HIS3 reverse primer (Table S1).

291 The resulting PCR products were transformed together with XbaI/PmeI digested pYES2 NT/A

292 *lpg0275*, *lpg0969* or *lpg2482* to BY4742 using the high-efficiency LiOAC/PEG method (Gietz

293 and Schiestl 2007) and plated onto SD-uracil with 2% glucose. The resulting transformants were

294 screened by PCR and sequence verified. To confirm that the His3 fusion does not interfere with

295 effector function, the ability of the effector-HIS3 fusion to inhibit yeast growth was tested by

296 comparing the growth BY4742 with empty vector control, the wild-type effector and the

297 effector-HIS3 fusion in a yeast spot dilution assay as described previously (Urbanus *et al.* 2016).

298

299 **Selection of loss-of-function mutations**

300 The effector-HIS3 fusion vectors were mutagenized in XL1-red (Agilent) as per manufacturer's

301 instructions. XL1-red transformants were washed off the transformation plate, grown overnight

302 in 50 ml LB with ampicillin and the resulting mutant plasmid pool was purified by midiprep

303 (Promega). The mutant plasmid pool was transformed to BY4742 using the high-efficiency

304 LiOAC/PEG method (Gietz and Schiestl 2007). Four transformation reactions were performed  
305 per screen, each using 1 µg of plasmid pool per reaction. One reaction was split in three parts  
306 and plated onto different media types to quantify the transformable plasmids (SD- uracil + 2%  
307 glucose), loss-of-function mutants (SD- uracil +2% galactose), and missense loss-of-function  
308 mutants (SD-uracil/histidine + 2% galactose) and incubated for 2-4 days at 30°C. The remaining  
309 transformation reactions were plated onto 150 mm SD-uracil/histidine + 2% galactose plates and  
310 allowed to grow until colonies appeared (3-4 days). Plasmids were rescued from missense loss-  
311 of-function mutants and transformed to the *E. coli* Top10 strain before sequencing using primers  
312 in the vector and effector, if required (Table S1). Details of the sequenced mutants are shown in  
313 Table S2.

314

### 315 **Analysis of mutant fitness**

316 Liquid growth assays were used to assess the effect of missense loss-of-function mutations on  
317 yeast fitness as described (Urbanus *et al.* 2016) with the following modifications. Overnight  
318 cultures of freshly transformed BY4742 with empty vector control, pYES2 NT/A effector-HIS3  
319 wild-type and mutants were diluted 100-fold into 100 µl of SD-ura/2% galactose and grown with  
320 Breathe-Easy adhesive seals (EK scientific) in a CellGrower robot (S&P robotics) at 30°C with  
321 intermittent shaking. Yeast growth was monitored for 30 h by measuring the OD<sub>620</sub> every 15  
322 min. Growth fitness was calculated as the ratio of the area under the curve (AUC) of a effector-  
323 expressing strain over an empty vector control after 30 h using the R package GrowthCurver  
324 (Sprouffske and Wagner 2016). The average AUC ratio and standard deviation was calculated  
325 from three technical replicates.

326

327 **HHpred analysis and sequence alignments**

328 The amino acid sequence of RavK and SdbA (amino acid residues 528-1116) were submitted to  
329 the HHpred server (<https://toolkit.tuebingen.mpg.de/#/>) (Zimmermann *et al.* 2018) analyzed  
330 using MSA generation HHblits Uniclust20\_2017\_07 and Uniprot20\_2016\_02, respectively and  
331 otherwise default parameters. The resulting alignments were visualized using Boxshade  
332 ([https://embnet.vital-it.ch/software/BOX\\_form.html](https://embnet.vital-it.ch/software/BOX_form.html)). Amino acid sequence alignments of SdbB  
333 with its orthologs or with SidB were generated using T-coffee (Tommaso *et al.* 2011) and  
334 visualized using Jalview (Waterhouse *et al.* 2009) or Boxshade.

335

336 **Nucleotide sugar donor specificity of the SdbA C-terminal domain**

337 The gene fragment corresponding to SdbA (Lpg0275) residues 510-1050 was PCR amplified  
338 from *Legionella pneumophila* str Philadelphia-1 genomic DNA and inserted into the pMCSG53  
339 plasmid (Eschenfeldt *et al.* 2013) by ligation independent cloning, providing an N-terminal  
340 6xHIS-TEV tag. The point mutant E963A was prepared by site-directed mutagenesis using  
341 QuikChange™ site-directed mutagenesis kit (Stratagene) according to the manufacturer's  
342 protocol. Plasmids were sequenced and transformed to the *E. coli* BL21 DE Gold strain for  
343 purification. Recombinant proteins were purified to near homogeneity (>95%) using Ni-chelate  
344 affinity chromatography on Ni-NTA Superflow resin (Qiagen) using standard protocols. Cultures  
345 were grown in TB and expression was induced at an OD<sub>595</sub> of 0.8 with 0.4 mM IPTG overnight  
346 at 16 °C. Cells were harvested by centrifugation at 9,300× g, resuspended in 50 mM HEPES pH  
347 7.5, 400 mM NaCl, 5% glycerol, 5 mM imidazole, and lysed by sonication. Lysates were  
348 clarified by centrifugation at 21,000× g at 4°C and loaded onto gravity flow Ni-NTA agarose  
349 columns (Qiagen), followed by washing with 50 mM HEPES pH 7.5, 400 mM NaCl, 5%

350 glycerol, 30 mM imidazole. Proteins were eluted using 50 mM HEPES pH 7.5, 400 mM NaCl,  
351 5% glycerol, 250 mM imidazole and flash-frozen in liquid nitrogen for storage at -80°C. The  
352 purity of the protein samples was assessed by SDS-PAGE and visualized by Coomassie Brilliant  
353 Blue R.

354 The nucleotide sugar donor specificity of SdbA 510-1050 was assayed using the UDP-  
355 Glo Glycosyltransferase Assay (Promega) according to manufacturer's protocol. Briefly, 0.09  
356  $\mu$ M of purified wild-type and E963A mutant SdbA 510-1050 protein was incubated with 100  $\mu$ M  
357 UDP-glucose, UDP-glcNAc, UDP-glucuron, UDP-galactose or UDP-galNAc for 1h at 30°C in  
358 50 mM HEPES, pH 7.5, 100 mM KCl, 2 mM MgCl<sub>2</sub>, 1 mM MnCl<sub>2</sub>. The hydrolase activity of the  
359 UDP-substrate was detected as the release of UDP by the UDP-Glo assay (Promega) after 20  
360 min of incubation with UDP-Glo detection reagent. Luminescence was measured using a  
361 SpectraMax M2 plate reader. Three technical repeats were performed per reaction.

362 The  $V_{max}$ ,  $K_m$  and  $k_{cat}$  for wild-type SdbA 510-1050 with UDP-glcNAc was determined  
363 by incubating 0.16  $\mu$ M SdbA 510-1050 with UDP-glcNAc concentration range of 0.0039 – 2  
364 mM for 1h at 30°C in 50 mM HEPES, pH 7.5, 100 mM KCl, 2 mM MgCl<sub>2</sub>, 1 mM MnCl<sub>2</sub>. Three  
365 technical repeats were performed per reaction. Kinetic parameters were determined by non-linear  
366 curve fitting from the Michaelis Menten plot using GraphPad Prism (version 5.00 for Windows,  
367 GraphPad Software).

368

### 369 **Acknowledgments**

370 We thank Beth Nicholson, Morgan Petersen and John McPherson, for their suggestions and  
371 careful reading of the manuscript and Kamran Rizzolo for help with cloning. This work was

372 supported by a Project Grant (AWE) from the Canadian Institutes of Health Research (PJT-  
373 162256).

374 **Figure legends**

375 **Figure 1: A method to enrich full-length missense mutants in a random mutagenesis screen.**

376 *Legionella* effectors with a severe growth phenotype in yeast are fused in frame with the yeast  
377 *HIS3* gene in a high-copy yeast expression vector with galactose-inducible expression and an  
378 uracil selection marker. The plasmid is randomly mutated in a *E. coli* mutator strain, such as  
379 XL1-red. The resulting mutant pool contains a variety of mutants; sense, nonsense, missense and  
380 frameshifts, of which the latter three can cause loss-of-function phenotypes. The plasmid pool is  
381 transformed to *S. cerevisiae* strain BY4742 and grown under conditions that select all  
382 transformable plasmids (-ura/glucose), all loss-of-function mutations (-ura with galactose  
383 induction) and only full-length proteins containing missense loss-of-function mutations (-ura-his  
384 with galactose induction).

385

386 **Figure 2: The full-length ORF enriched random mutagenesis screen identifies missense**  
387 **mutations in the putative active site pocket. A** SdbB (lpg2482) and SdbB in-frame fusion with  
388 His3 show a severe growth defect in a yeast spot dilution assay. **B** The percentage of loss-of-  
389 function mutation in the pool of transformable plasmids selected on medium lacking uracil (-ura,  
390 grey) and lacking uracil and histidine (-ura-his, black) with galactose induction. The average and  
391 standard deviation of three independent replicates are shown. **C** Occurrence of frameshift,  
392 nonsense and missense mutations in 20 sequenced clones selected on -ura and -ura-his with  
393 galactose induction. **D** A schematic representation of loss-of-function clones selected on -ura  
394 with galactose induction. Mutations recovered from the same clone are shown in black,  
395 connected by a line while single mutations are shown in red. Mutation type is indicated as a  
396 closed triangle (frameshift), open hexagon (nonsense) or closed circle (missense), and the

397 number of symbols reflects the occurrence of the mutation in the dataset. **E** The fitness of wild-  
398 type SdbB, His3 fusion and loss-of-function mutations (selected on -ura/galactose) compared to  
399 empty vector controls in liquid growth assays confirms the loss-of-function phenotype for the  
400 SdbB random mutagenesis clones. The average and standard deviation of three technical  
401 replicates are shown. **F** A schematic representation of SdbB loss-of-function clones selected on -  
402 ura-his/galactose. Missense loss-of-function mutations are shown in red with a closed circle, the  
403 number of symbols reflects the occurrence of the mutation in the dataset. Amino acid residues  
404 shown for presentation purposes are shown in grey. **G** The fitness of wild-type SdbB, His3  
405 fusion and loss-of-function mutations (selected on -ura,-his/galactose) compared to empty vector  
406 controls in liquid growth assays confirms the loss-of-function phenotype for the SdbB random  
407 mutagenesis clones. The average and standard deviation of three technical replicates are shown.  
408 **H** The missense mutations identified by the random mutagenesis screen (D,F) are shown in  
409 orange on an Alphafold2 model of SdbB (AF-Q5ZSN5-F1-model\_v4), and residues from the  
410 putative active site 185-GxCxG189 not captured by the screen are shown in magenta. Putative  
411 catalytic triad C187-D273-H351 residues are shown with sticks and the box shows the  
412 enlargement of the putative catalytic site. The AlphaFold2 model was visualized using Pymol 2.2  
413 (Schrödinger).

414

415 **Figure 3: RavK random mutagenesis captures residues lining the active site cleft. A** A  
416 schematic representation of the mutations causing a RavK loss-of-function phenotype when  
417 expressed in yeast. Mutated residues are shown in red, amino acid residues shown for  
418 presentation purposes are in grey and the number of symbols reflects the occurrence of the  
419 mutation in the dataset. **B** The growth fitness of wild-type RavK, RavK-His3 and loss-of-

420 function mutants normalized to empty vector controls (see Methods) confirms the loss-of-  
421 function phenotype for the RavK random mutagenesis clones. The average and standard  
422 deviation of three technical replicates are shown. **C** The Alphafold2 model of RavK (AF-  
423 Q5ZWW5-F1-model\_v4.pdb) with missense mutations shown in orange. The histidine residues  
424 of the active site motive  $_{95}\text{HExxH}_{99}$  (Liu *et al.* 2017) not captured by the screen are shown in red.  
425 The residues in the active site cleft are shown as sticks. The AlphaFold2 model was visualized  
426 using Pymol 2.2 (Schrödinger).

427

428 **Figure 4: The C-terminal domain of SdbA is a putative glycosyltransferase domain.**  
429 **A** A schematic representation of the mutations causing a SdbA loss-of-function phenotype when  
430 expressed in yeast. Mutations recovered from the same clone are shown in black, connected by a  
431 line and single mutations alleviating a SdbA induced growth defect are shown in red. Amino acid  
432 residues shown for presentation purposes are shown in grey. Black and red closed circles  
433 indicate the number of times the mutation was identified. **B** The growth fitness of wild-type  
434 SdbA and loss-of-function mutants normalized to empty vector controls (see Methods for  
435 details). SdbA and SdbA-His3 display a severe growth defect, while the loss-of-function  
436 mutations rescue growth up to 50% of the empty vector control. The average and standard  
437 deviation of three technical replicates are shown. **C** HHpred alignment of SdbA with 1F0K (Ha  
438 *et al.* 2000) (*E. coli* MurG). The G-loop 1 and consensus sequence are shown with identical  
439 residues (black) and similar residues (grey) highlighted. SdbA amino acid residues that when  
440 mutated abrogate activity are indicated by a red closed circle. Amino acid residues in the MurG  
441 consensus sequence contacting UDP-GlcNac are indicated by a black star and a red start if  
442 mutations abrogate MurG activity. **D** The Alphafold2 model of SdbA (AF-Q5ZYT6-F1-

443 model\_v4.pdb) with missense mutations shown in orange. Residues H545 and E963,  
444 corresponding to residues H18 and E268 in MurG, are shown in yellow (43). The AlphaFold2  
445 model was visualized using Pymol 2.2 (Schrödinger). **E** The SdbA glycosyltransferase domain  
446 uses GlcNac as a donor substrate. Donor substrate specificity was tested by incubating 0.09  $\mu$ M  
447 of purified fragment (residues 510-1050) of wild-type SdbA or an inactive mutant (E963A) with  
448 100  $\mu$ M UDP-glucose, UDP-glcNAc, UDP-glucuron, UDP-galactose or UDP-galNAc for 1h at  
449 30°C. The hydrolase activity of the UDP-substrate was detected as the release of UDP by the  
450 UDP-Glo assay (Promega) after 20 min of incubation with UDP-Glo detection reagent.  
451 Luminescence was measured using a SpectraMax M2 platereader. Three technical repeats were  
452 performed per reaction. **F** Determination of the kinetic parameters for GlcNac hydrolysis by  
453 SdbA. Reactions with 0.16  $\mu$ g purified wild-type C-terminal domain of SdbA (residues 510-  
454 1050) and a range of 0.0039 – 2 mM GlcNac and were incubated for 1 h at 30°C. GlcNac  
455 hydrolysis was measured using the UDP-Glo glycosyltransferase assay as described above; three  
456 technical replicates were performed per reaction. Kinetic parameters were determined by non-  
457 linear curve fitting from the Michaelis-Menten plot.  
458  
459

460 **References**

461 Alberti, S., A. D. Gitler, and S. Lindquist, 2007 A suite of Gateway® cloning vectors for  
462 high-throughput genetic analysis in *Saccharomyces cerevisiae*. *Yeast* 24: 913–919.

463 Bachran, C., T. Morley, S. Abdelazim, R. J. Fattah, S. Liu *et al.*, 2013 Anthrax Toxin-Mediated  
464 Delivery of the *Pseudomonas* Exotoxin A Enzymatic Domain to the Cytosol of Tumor Cells  
465 via Cleavable Ubiquitin Fusions. *Mbio* 4: e00201-13.

466 Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li *et al.*, 1998 Designer deletion strains  
467 derived from *Saccharomyces cerevisiae* S288C: A useful set of strains and plasmids for  
468 PCR-mediated gene disruption and other applications. *Yeast* 14: 115–132.

469 Brenner, S., 1988 The molecular evolution of genes and proteins: a tale of two serines. *Nature*  
470 334: 528–530.

471 Burstein, D., F. Amaro, T. Zusman, Z. Lifshitz, O. Cohen *et al.*, 2016 Genomic analysis of 38  
472 *Legionella* species identifies large and diverse effector repertoires. *Nat Genet* 48: 167–175.

473 Burstein, D., T. Zusman, E. Degtyar, R. Viner, G. Segal *et al.*, 2009 Genome-Scale Identification  
474 of *Legionella pneumophila* Effectors Using a Machine Learning Approach. *Plos Pathog* 5:  
475 e1000508.

476 Campodonico, E. M., L. Chesnel, and C. R. Roy, 2005 A yeast genetic system for the  
477 identification and characterization of substrate proteins transferred into host cells by the  
478 *Legionella pneumophila* Dot/Icm system. *Mol Microbiol* 56: 918–933.

479 Chen, X., J. L. Zaro, and W.-C. Shen, 2013 Fusion protein linkers: Property, design and  
480 functionality. *Adv Drug Deliver Rev* 65: 1357–1369.

481 Crouvoisier, M., G. Auger, D. Blanot, and D. Mengin-Lecreulx, 2007 Role of the amino acid  
482 invariants in the active site of MurG as evaluated by site-directed mutagenesis. *Biochimie* 89:  
483 1498–1508.

484 Dalkas, G. A., C. T. Chasapis, P. V. Gkazonis, D. Bentrop, and G. A. Spyroulias, 2010  
485 Conformational Dynamics of the Anthrax Lethal Factor Catalytic Center. *Biochemistry* 49:  
486 10767–10769.

487 Ensminger, A. W., Y. Yassin, A. Miron, and R. R. Isberg, 2012 Experimental Evolution of  
488 *Legionella pneumophila* in Mouse Macrophages Leads to Strains with Altered Determinants  
489 of Environmental Survival. *Plos Pathog* 8: e1002731.

490 Eschenfeldt, W. H., M. Makowska-Grzyska, L. Stols, M. I. Donnelly, R. Jedrzejczak *et al.*, 2013  
491 New LIC vectors for production of proteins from genes containing rare codons. *J. Struct.  
492 Funct. Genom.* 14: 135–144.

493 Escoll, P., M. Rolando, L. Gomez-Valero, and C. Buchrieser, 2013 Molecular Mechanisms in  
494 Legionella Pathogenesis. *Curr Top Microbiol* 376: 1–34.

495 Felipe, K. S. de, R. T. Glover, X. Charpentier, O. R. Anderson, M. Reyes *et al.*, 2008 Legionella  
496 Eukaryotic-Like Type IV Substrates Interfere with Organelle Trafficking. *Plos Pathog* 4:  
497 e1000117.

498 Finsel, I., and H. Hilbi, 2015 Formation of a pathogen vacuole according to Legionella  
499 pneumophila: how to kill one bird with many stones. *Cell Microbiol* 17: 935–950.

500 Gietz, R. D., and R. H. Schiestl, 2007 High-efficiency yeast transformation using the LiAc/SS  
501 carrier DNA/PEG method. *Nat Protoc* 2: 31–34.

502 Gomez-Valero, L., C. Rusniok, D. Carson, S. Mondino, A. E. Pérez-Cobas *et al.*, 2019 More  
503 than 18,000 effectors in the Legionella genus genome provide multiple, independent  
504 combinations for replication in human cells. *Proc National Acad Sci* 116: 201808016.

505 Gomez-Valero, L., C. Rusniok, C. Cazalet, and C. Buchrieser, 2011 Comparative and Functional  
506 Genomics of Legionella Identified Eukaryotic Like Proteins as Key Players in Host–Pathogen  
507 Interactions. *Front Microbiol* 2: 208.

508 Gomez-Valero, L., C. Rusniok, M. Rolando, M. Neou, D. Dervins-Ravault *et al.*, 2014  
509 Comparative analyses of Legionella species identifies genetic features of strains causing  
510 Legionnaires' disease. *Genome Biol* 15: 505.

511 Guo, Z., R. Stephenson, J. Qiu, S. Zheng, and Z.-Q. Luo, 2014 A Legionella effector modulates  
512 host cytoskeletal structure by inhibiting actin polymerization. *Microbes Infect* 16: 225–236.

513 Ha, S., D. Walker, Y. Shi, and S. Walker, 2000 The 1.9 Å crystal structure of *Escherichia coli*  
514 MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis.  
515 *Protein Sci* 9: 1045–1052.

516 Heidtman, M., E. J. Chen, M. Moy, and R. R. Isberg, 2009 Large-scale identification of  
517 Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking  
518 pathways. *Cell Microbiol* 11: 230–248.

519 Holz, C., A. Lueking, L. Bovekamp, C. Gutjahr, N. Bolotina *et al.*, 2001 A Human cDNA  
520 Expression Library in Yeast Enriched for Open Reading Frames. *Genome Res* 11: 1730–  
521 1735.

522 Hu, Y., L. Chen, S. Ha, B. Gross, B. Falcone *et al.*, 2003 Crystal structure of the MurG:UDP-  
523 GlcNAc complex reveals common structural principles of a superfamily of  
524 glycosyltransferases. *Proc National Acad Sci* 100: 845–849.

525 Huang, L., D. Boyd, W. M. Amyot, A. D. Hempstead, Z. Luo *et al.*, 2011 The E Block motif is  
526 associated with Legionella pneumophila translocated substrates. *Cell Microbiol* 13: 227–245.

527 Huh, W.-K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson *et al.*, 2003 Global analysis  
528 of protein localization in budding yeast. *Nature* 425: 686–691.

529 Isberg, R. R., T. J. O'Connor, and M. Heidtman, 2009 The *Legionella pneumophila* replication  
530 vacuole: making a cosy niche inside host cells. *Nat Rev Microbiol* 7: 13–24.

531 Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov *et al.*, 2021 Highly accurate protein  
532 structure prediction with AlphaFold. *Nature* 1–11.

533 Kimura, M., A. Takatsuki, and I. Yamaguchi, 1994 Blasticidin S deaminase gene from  
534 *Aspergillus terreus* (BSD): a new drug resistance gene for transfection of mammalian cells.  
535 *Biochim. Biophys. Acta (BBA) - Gene Struct. Expr.* 1219: 653–659.

536 Kozlov, G., K. Wong, and K. Gehring, 2018 Crystal structure of the *Legionella* effector Lem22.  
537 *Proteins Struct Funct Bioinform* 86: 263–267.

538 Lairson, L. L., B. Henrissat, G. J. Davies, and S. G. Withers, 2008 Glycosyltransferases:  
539 Structures, Functions, and Mechanisms. *Annu Rev Biochem* 77: 521–555.

540 Liu, Y., W. Zhu, Y. Tan, E. S. Nakayasu, C. J. Staiger *et al.*, 2017 A *Legionella* Effector  
541 Disrupts Host Cytoskeletal Structure by Cleaving Actin. *Plos Pathog* 13: e1006186.

542 López-Pelegrín, M., N. Cerdà-Costa, A. Cintas-Pedrola, F. Herranz-Trillo, P. Bernadó *et al.*,  
543 2014 Multiple Stable Conformations Account for Reversible Concentration-Dependent  
544 Oligomerization and Autoinhibition of a Metamorphic Metallopeptidase. *Angewandte  
545 Chemie Int Ed* 53: 10624–10630.

546 López-Pelegrín, M., N. Cerdà-Costa, F. Martínez-Jiménez, A. Cintas-Pedrola, A. Canals *et al.*,  
547 2013 A Novel Family of Soluble Minimal Scaffolds Provides Structural Insight into the  
548 Catalytic Domains of Integral Membrane Metallopeptidases\*. *J Biol Chem* 288: 21279–  
549 21294.

550 Luo, Z.-Q., and R. R. Isberg, 2004 Multiple substrates of the *Legionella pneumophila* Dot/Icm  
551 system identified by interbacterial protein transfer. *P Natl Acad Sci Usa* 101: 841–846.

552 Marchler-Bauer, A., Y. Bo, L. Han, J. He, C. J. Lanczycki *et al.*, 2017 CDD/SPARCLE:  
553 functional classification of proteins via subfamily domain architectures. *Nucleic Acids Res  
554* 45: D200–D203.

555 Margolin, W., 2000 Green Fluorescent Protein as a Reporter for Macromolecular Localization in  
556 Bacterial Cells. *Methods* 20: 62–72.

557 Maxwell, K. L., A. K. Mittermaier, J. D. Forman-Kay, and A. R. Davidson, 1999 A simple in  
558 vivo assay for increased protein solubility. *Protein Sci* 8: 1908–1911.

559 Morar, M., E. Evdokimova, C. Chang, A. W. Ensminger, and A. Savchenko, 2015 Crystal  
560 structure of the *Legionella pneumophila* lem10 effector reveals a new member of the HD  
561 protein superfamily. *Proteins Struct Funct Bioinform* 83: 2319–2325.

562 O'Connor, T. J., Y. Adepoju, D. Boyd, and R. R. Isberg, 2011 Minimization of the *Legionella*  
563 *pneumophila* genome reveals chromosomal regions involved in host range expansion. *Proc*  
564 *National Acad Sci* 108: 14733–14740.

565 Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolov *et al.*, 1992 The  $\alpha$  /  $\beta$  hydrolase fold.  
566 *Protein Eng Des Sel* 5: 197–211.

567 Pinotsis, N., and G. Waksman, 2017 Structure of the WipA protein reveals a novel tyrosine  
568 protein phosphatase effector from *Legionella pneumophila*. *J Biol Chem* 292: 9240–9251.

569 Qiu, J., and Z.-Q. Luo, 2017 *Legionella* and *Coxiella* effectors: strength in diversity and activity.  
570 *Nat Rev Microbiol* 15: 591–605.

571 Roessel, P. van, and A. H. Brand, 2002 Imaging into the future: visualizing gene expression and  
572 protein interactions with fluorescent proteins. *Nat. Cell Biol.* 4: E15–E20.

573 Schrag, J. D., and M. Cygler, 1997 [4] Lipases and  $\alpha\beta$  hydrolase fold. *Methods Enzymol* 284:  
574 85–107.

575 Schrödinger, L. The PyMOL Molecular Graphics System, Version~2.2.

576 Segal, G., M. Purcell, and H. A. Shuman, 1998 Host cell killing and bacterial conjugation require  
577 overlapping sets of genes within a 22-kb region of the *Legionella pneumophila* genome. *Proc*  
578 *National Acad Sci* 95: 1669–1674.

579 Sheikh, M. O., S. M. Halmo, S. Patel, D. Middleton, H. Takeuchi *et al.*, 2017 Rapid screening of  
580 sugar-nucleotide donor specificities of putative glycosyltransferases. *Glycobiology* 27: 206–  
581 212.

582 Shen, X., S. Banga, Y. Liu, L. Xu, P. Gao *et al.*, 2009 Targeting eEF1A by a *Legionella*  
583 *pneumophila* effector leads to inhibition of protein synthesis and induction of host stress  
584 response. *Cell Microbiol* 11: 911–926.

585 Sherwood, R. K., and C. R. Roy, 2016 Autophagy Evasion and Endoplasmic Reticulum  
586 Subversion: The Yin and Yang of *Legionella* Intracellular Infection. *Annu Rev Microbiol* 70:  
587 413–433.

588 Sprouffske, K., and A. Wagner, 2016 Growthcurver: an R package for obtaining interpretable  
589 metrics from microbial growth curves. *Bmc Bioinformatics* 17: 172.

590 Suarez, C. E., and T. F. McElwain, 2009 Stable expression of a GFP-BSD fusion protein in  
591 *Babesia bovis* merozoites. *Int J Parasitol* 39: 289–297.

592 Tommaso, D. P., S. Moretti, and X.-I. acids ..., 2011 T-Coffee: a web server for the multiple  
593 sequence alignment of protein and RNA sequences using structural information and  
594 homology extension.

595 Toulabi, L., X. Wu, Y. Cheng, and Y. Mao, 2013 Identification and Structural Characterization  
596 of a *Legionella* Phosphoinositide Phosphatase\*. *J Biol Chem* 288: 24518–24527.

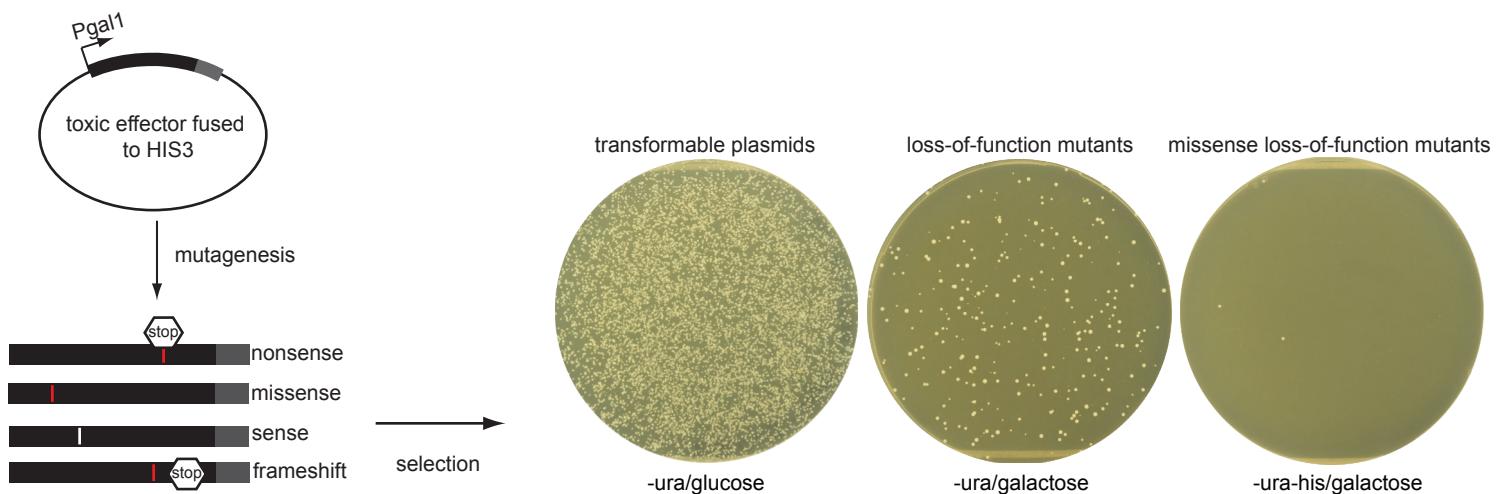
597 Urbanus, M. L., A. T. Quaile, P. J. Stogios, M. Morar, C. Rao *et al.*, 2016 Diverse mechanisms  
598 of metaeffectector activity in an intracellular bacterial pathogen, *Legionella pneumophila*. *Mol*  
599 *Syst Biol* 12: 893.

600 Varadi, M., S. Anyango, M. Deshpande, S. Nair, C. Natassia *et al.*, 2021 AlphaFold Protein  
601 Structure Database: massively expanding the structural coverage of protein-sequence space  
602 with high-accuracy models. *Nucleic Acids Res.* 50: D439–D444.

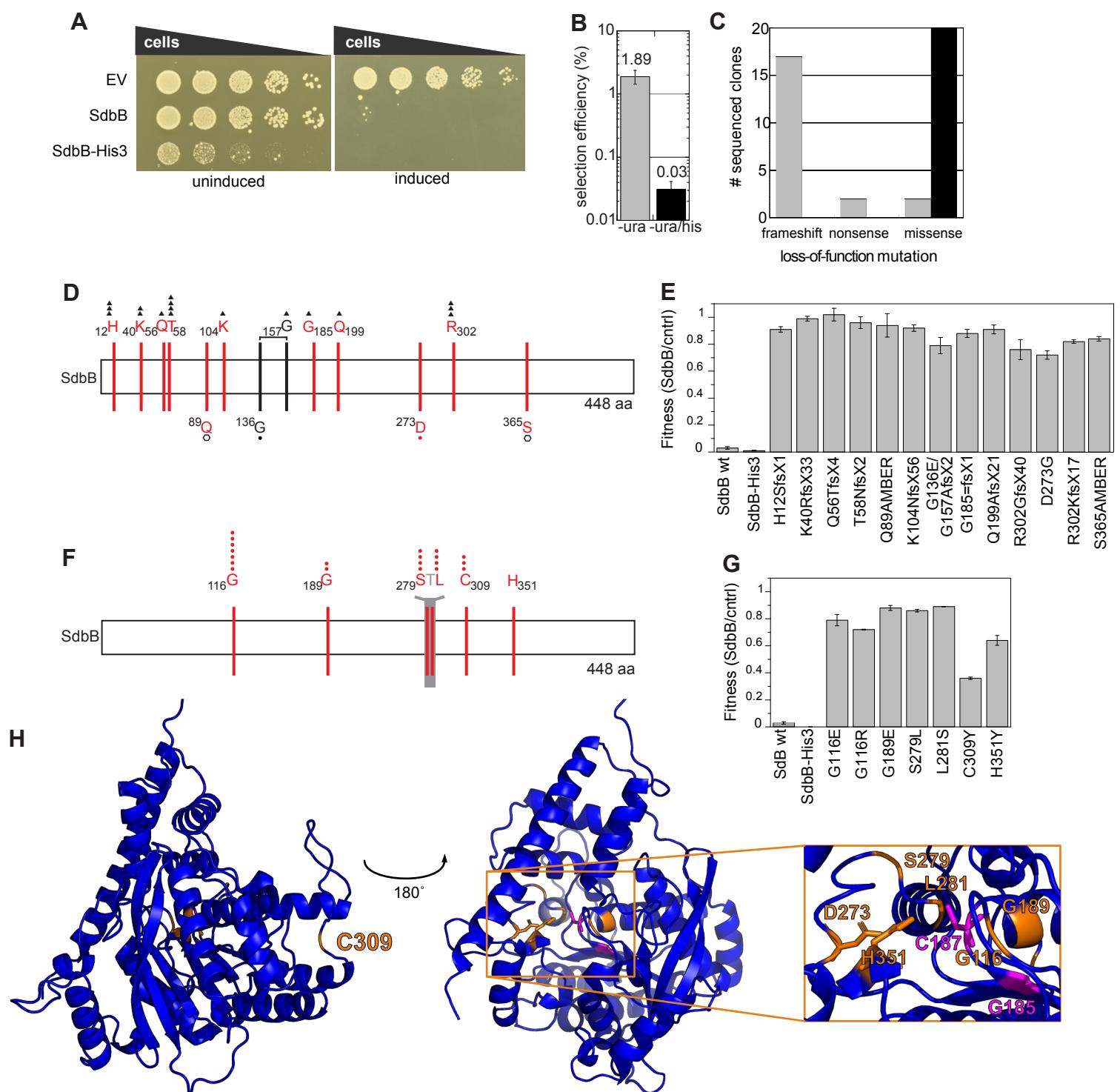
603 Vicente, J. B., A. C. L. Guerreiro, B. Felgueiras, D. Chapla, D. Tehrani *et al.*, 2023  
604 Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) is a UDP-dependent  
605 galactosyltransferase. *Sci. Rep.* 13: 21684.

606 Vogel, Joseph. P., H. L. Andrews, S. K. Wong, and R. R. Isberg, 1998 Conjugative Transfer by  
607 the Virulence System of *Legionella pneumophila*. *Science* 279: 873–876.

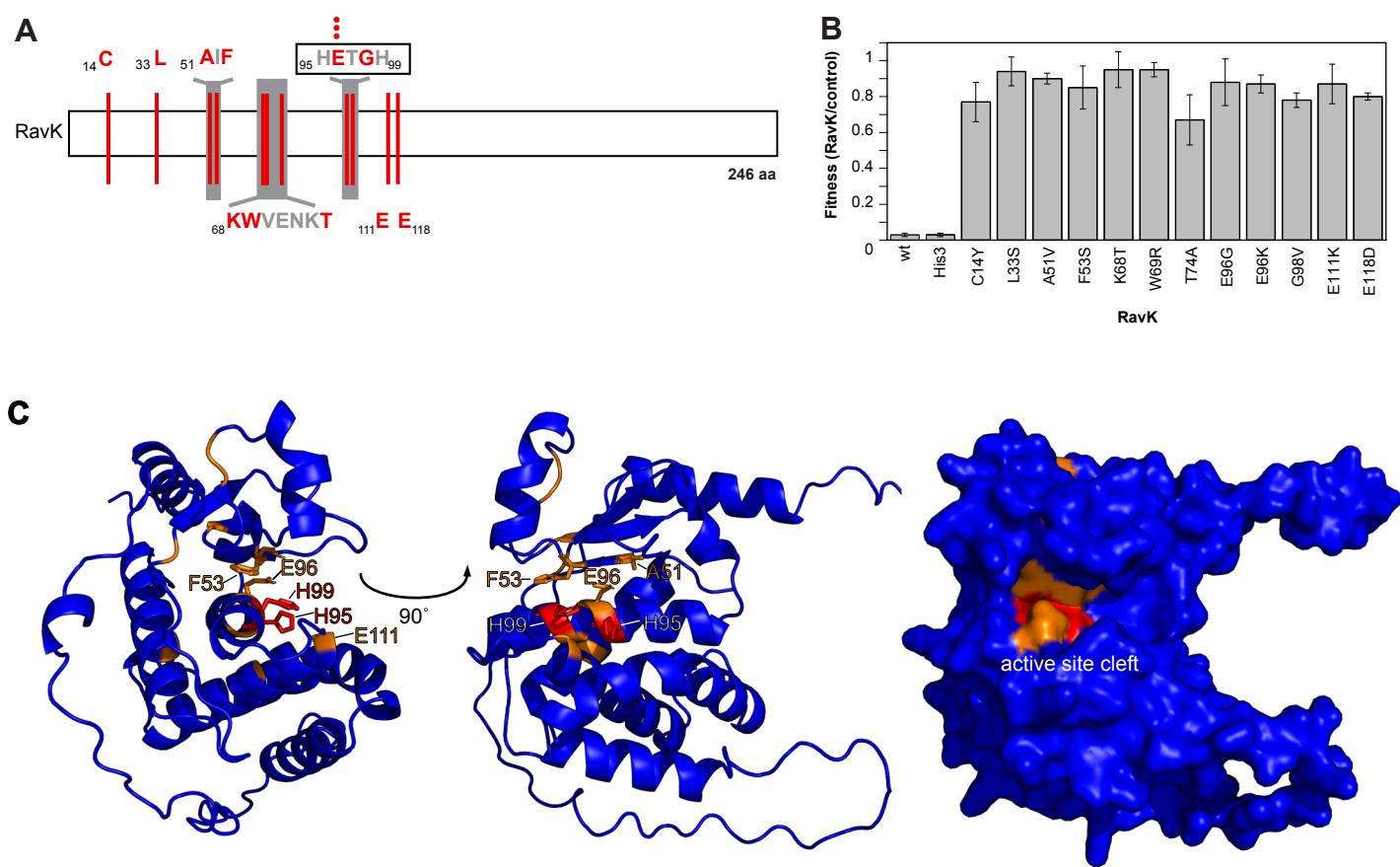
608 Waterhouse, A. M., J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, 2009 Jalview  
609 Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25:  
610 1189–1191.


611 Wong, K., G. Kozlov, Y. Zhang, and K. Gehring, 2015 Structure of the *Legionella* Effector,  
612 lpg1496, Suggests a Role in Nucleotide Metabolism\*. *J Biol Chem* 290: 24727–24737.

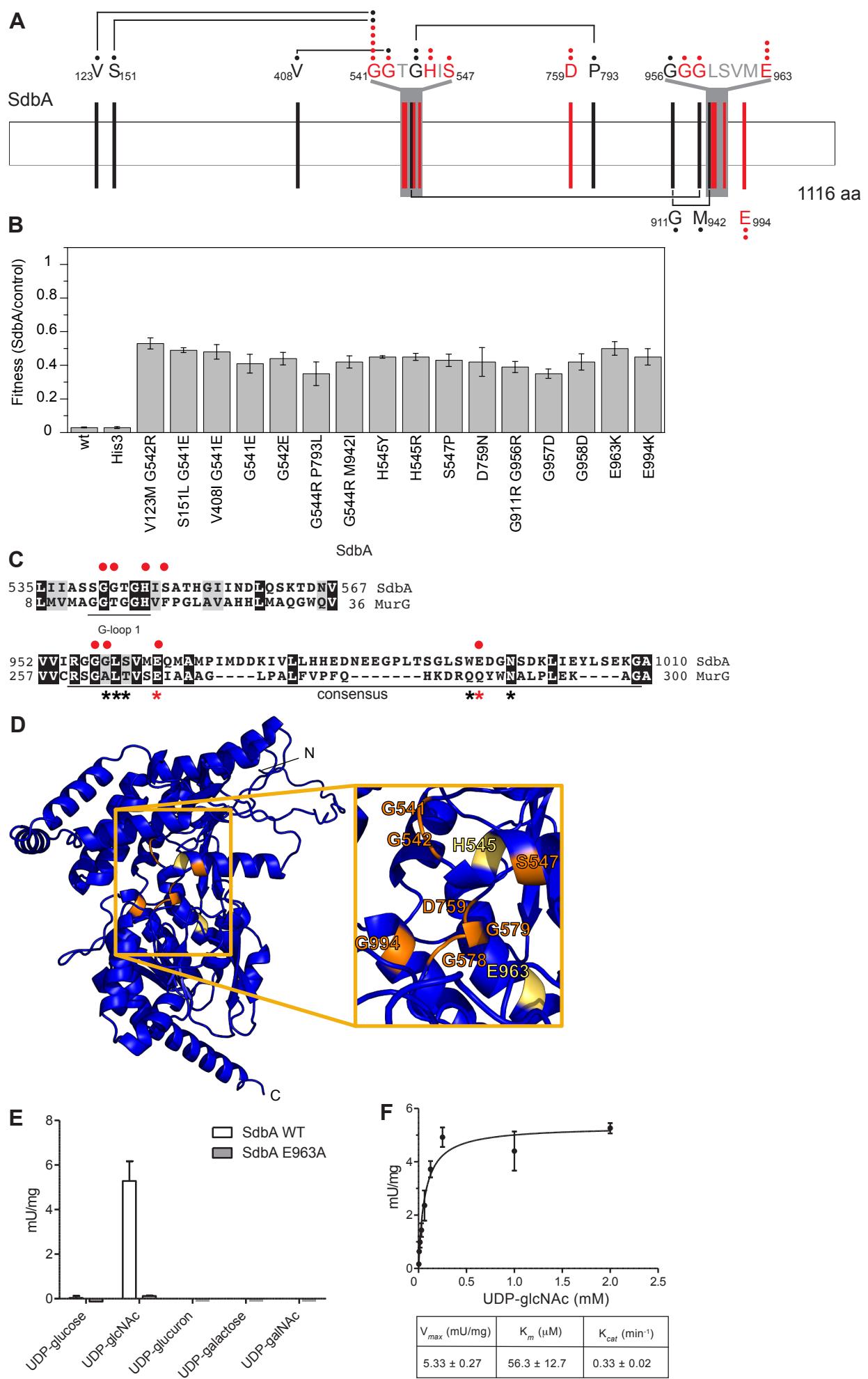
613 Zhu, W., S. Banga, Y. Tan, C. Zheng, R. Stephenson *et al.*, 2011 Comprehensive Identification  
614 of Protein Substrates of the Dot/Icm Type IV Transporter of *Legionella pneumophila*. *Plos*  
615 *One* 6: e17638.

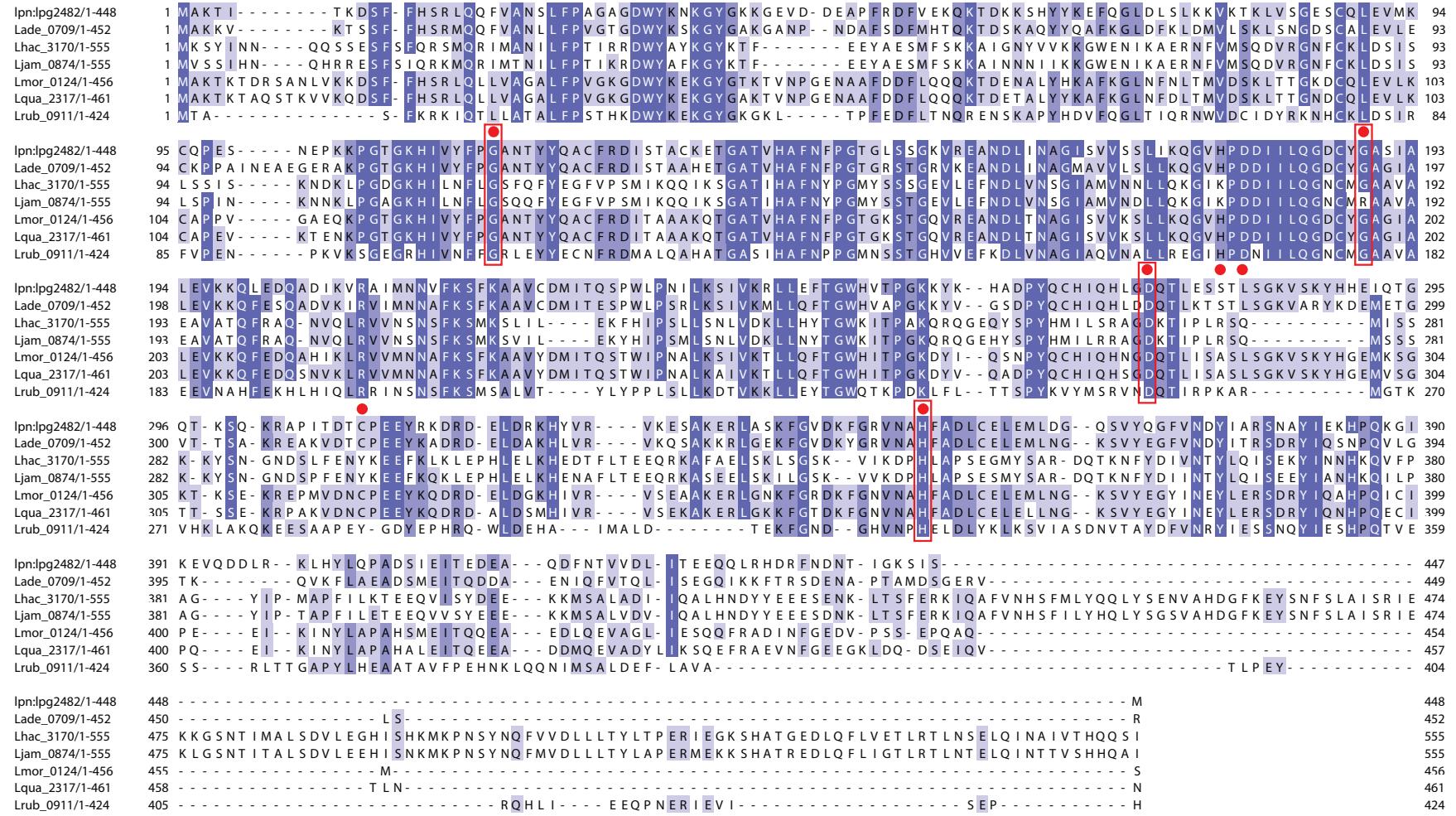

616 Zimmermann, L., A. Stephens, S.-Z. Nam, D. Rau, J. Kübler *et al.*, 2018 A Completely  
617 Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. *J Mol*  
618 *Biol* 430: 2237–2243.

619


**Figure 1: A method to enrich full-length missense mutants in a random mutagenesis screen**




**Figure 2: Random mutagenesis screen identifies missense mutations in amino acid residues of the putative active site pocket**




### Figure 3 - RavK random mutagenesis captures residues lining the active site cleft



**Figure 4: The C-terminal domain of SdbA is a putative glycosyltransferase domain**





**Figure S1: Random mutagenesis targets conserved residues in SdbB orthologs from seven *Legionella* species.** The sequences of SdbB orthologs identified by Burstein et al (Nat Genet 48(2): 167-175, 2016) were aligned using T-coffee, visualized with Jalview and coloured by % identity. The missense mutations identified by the random mutagenesis screen are indicated with a red closed circle above the SdbB (lpg2482) sequence. Four of the seven mutations target invariant residues; G116, G189, D273 and H351 shown in red boxes.

SidB 1 MAKIYNAPKPKYS<sub>G</sub>WEWF<sub>K</sub>FI<sub>A</sub>IRTV<sub>F</sub>PPV<sub>L</sub>W<sub>D</sub>LIKIGAN<sub>K</sub>LL<sub>G</sub>E<sub>W</sub>V<sub>S</sub>GLV<sub>L</sub>PAQ<sub>N</sub>EN<sub>F</sub>  
SdbB 1 MAK<sub>T</sub>ITKDSFFH<sub>S</sub>R<sub>L</sub>Q<sub>--Q</sub>FVA-NSLFPAG-----AGDWYKNKG<sub>Y</sub>GKK<sub>G</sub>E-V

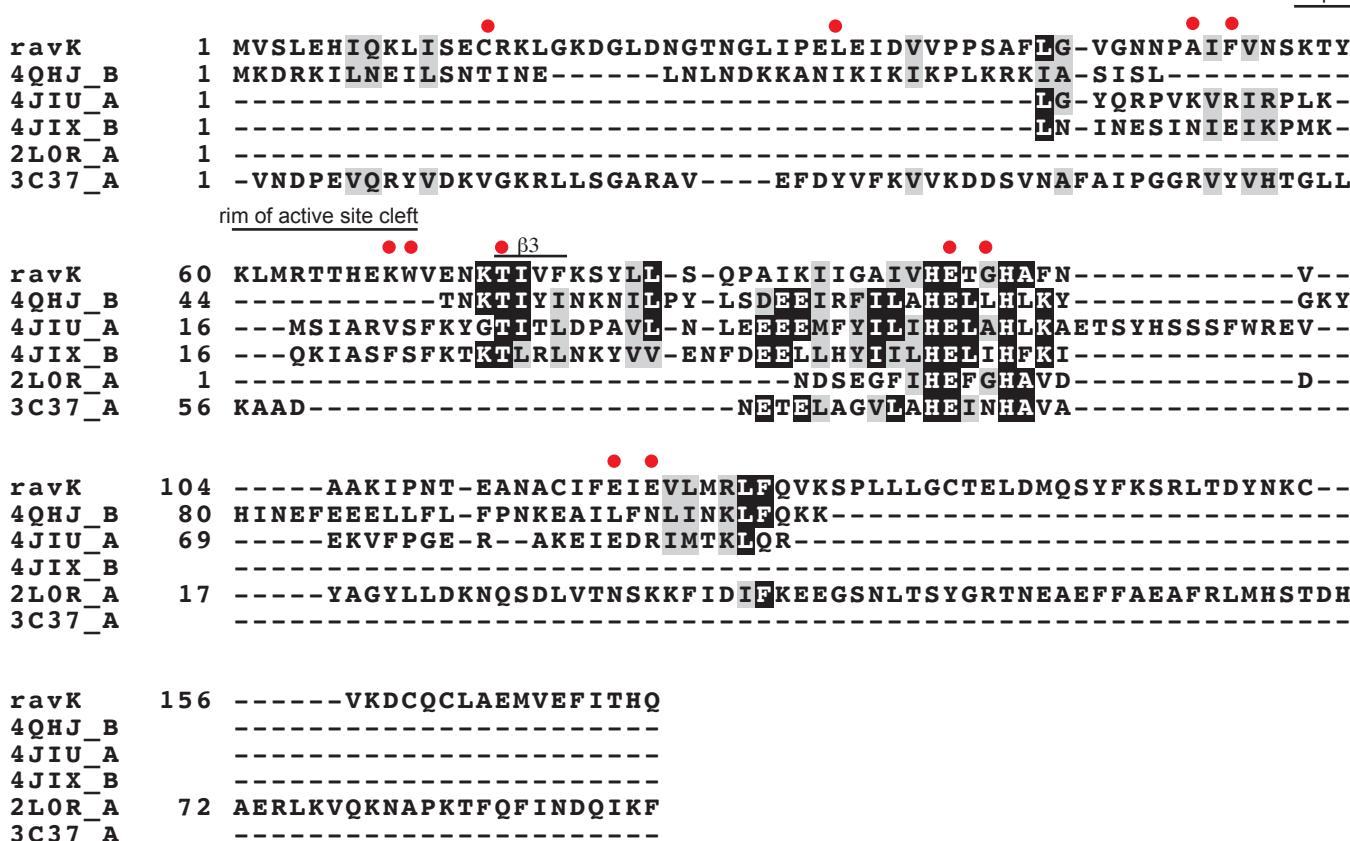
SidB 61 DDLAIS<sub>DD</sub>TVSNYNED-----D--LICEKHDVITHDGAHLD<sub>T</sub>FEVRHRSQESI  
SdbB 44 DDEAPFRDFVEKQKT<sub>DK</sub>KSHYYKEFQGLDLSLKKV<sub>K</sub>TKLVSGES<sub>C</sub>OLEVMKCQ<sub>P</sub>E<sub>S</sub>NEPK

SidB 107 DPKYOKY<sub>I</sub>INLV<sub>G</sub>NGMC<sub>Y</sub>EHIID<sub>D</sub>IKEDSKALKAN<sub>V</sub>IGF<sub>N</sub>LRGV<sub>G</sub>OST<sub>T</sub>G<sub>K</sub>AKS<sub>S</sub>EDLVAD  
SdbB 104 KPGTGKHIVYFPGANTYYQACFRD<sub>I</sub>STACKETGATV<sub>H</sub>AFNFP<sub>G</sub>TGLSSGK<sub>V</sub>REANDLINA

GxS/CxG

SidB 167 GIAQVQRL<sub>D</sub>QGVSPQNITLK<sub>G</sub>HSL<sub>C</sub>AGVASLVAQHFHQLGQ-P<sub>I</sub>NLFNSRS<sub>F</sub>STITNFL  
SdbB 164 GISVVS<sub>S</sub>SLIKQGVHPDD<sub>I</sub>LQ<sub>G</sub>D<sub>C</sub>Y<sub>G</sub>ASIALEVK<sub>K</sub>QLEDQ<sub>A</sub>DI<sub>K</sub>VRAIMNNVE<sub>K</sub>S<sub>F</sub>KA<sub>A</sub>V

SidB 226 VGHMRLERDEIGRAIGHKDS<sub>H</sub>VG<sub>T</sub>IL<sub>G</sub>WLAKPF<sub>I</sub>KFGVALAK<sub>W</sub>E<sub>I</sub>AGSAFK<sub>S</sub>VPEAYKD  
SdbB 224 C-----DMI<sub>H</sub>QSPWLPN<sub>I</sub>LKSIV<sub>K</sub>R<sub>L</sub>LEFTGWHVTPGKKY<sub>K</sub>HA-D<sub>P</sub>Y<sub>Q</sub>C


SidB 286 Y<sub>I</sub>IVVRSRKE<sub>I</sub>RGERIDDAV<sub>I</sub>PHYAST<sub>H</sub>KELASERHK<sub>K</sub>KAET<sub>I</sub>DEE<sub>I</sub>ANLDD<sub>I</sub>IRKAD<sub>P</sub>IAK  
SdbB 267 H<sub>I</sub>QHLDQ<sub>T</sub>LES<sub>S</sub>TL<sub>G</sub>KV<sub>S</sub>KYH<sub>H</sub>E<sub>I</sub>QT--G<sub>Q</sub>T<sub>K</sub>S<sub>Q</sub>K<sub>R</sub>AP<sub>I</sub>T<sub>D</sub>TC--PEEYRKDR<sub>D</sub>ELDR

SidB 346 PGLANARDALVQARE<sub>K</sub>IKSDRK<sub>M</sub>ETDVQYANGHNS<sub>D</sub>WN<sub>A</sub>I<sub>H</sub>NRS<sub>G</sub>K<sub>S</sub>A-Q<sub>T</sub>FFREFVQRT  
SdbB 323 KHYVRVKE---SAKERL<sub>A</sub>SKFGVD-K<sub>F</sub>GRVNAH<sub>F</sub>ADLCE<sub>E</sub>MLDG<sub>S</sub>VYQ<sub>G</sub>FVNDYIARS

SidB 405 EA---D<sub>H</sub>A<sub>V</sub>K<sub>S</sub>I<sub>P</sub>E<sub>I</sub>N-----  
SdbB 379 NAYIEKHPQKG<sub>I</sub>KEVQDDL<sub>R</sub>KLH<sub>Y</sub>LQ<sub>P</sub>ADS<sub>I</sub>E<sub>I</sub>TEDEA<sub>Q</sub>DFNTVV<sub>D</sub>LITEE<sub>Q</sub>QLR<sub>H</sub>DRFN

SidB -----  
SdbB 439 DNTIGKSISM

**Figure S2: SidB and SdbB amino acid sequence alignment.** The SidB (lpg1642) and SdbB (lpg2482) were aligned with T-coffee and visualized with Boxshade, where identical residues are shown in black and similar residues in grey. The active site motif GxS/CxG predicted by NCBI conserved domain search (Marchler-Bauer A et al., 2017, Nucleic Acids Res.45(D)200-3.) for SidB is indicated, suggesting that SdbB C187 is part of the active site catalytic triad.



| Table S1: Primers used for yeast recombinational cloning and sequencing. In the yeast recombinational cloning primers the effector sequence is underlined, the HIS3 sequence in bold and the pYES2 vector sequence unchanged. |                                                                                                                                                                   |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Primer                                                                                                                                                                                                                        | Sequence (5'-3')                                                                                                                                                  | Use                                                                  |
| lpg0275-HIS3 FW                                                                                                                                                                                                               | <u>AAGGAAGATT</u> ACATCATAATGAGCTTCCAGTCAA <u>AGTTGGTTAGTGTCA</u> GTGCTGGTat <u>gacagacaga</u> aggcc <u>taa</u> aggct                                             | yeast recombinational cloning                                        |
| lpg0969-HIS3 FW                                                                                                                                                                                                               | TGGITAAAGAGCATTTCAT <u>CTCC</u> GAACAGAGATAAA <u>GCTT</u> GATATA <u>atgacagacaga</u> aggcc <u>taa</u> aggct                                                       | yeast recombinational cloning                                        |
| lpg2482-HIS3 FW                                                                                                                                                                                                               | GAACAA <u>CAACTAAGG</u> CATGAT <u>CGATT</u> CAACGATA <u>ATACAA</u> ATAG <u>GTAAAAGC</u> ATC <u>CTATG</u> at <u>gacagacaga</u> aggcc <u>taa</u> aggct              | yeast recombinational cloning                                        |
| pYES2-HIS3 rv                                                                                                                                                                                                                 | CGTGAATGTAAGCGTGACATA <u>ACTAATT</u> ACATGAT <u>GC</u> GGCC <u>CT</u> AGGAT <u>CA</u> GGG <u>TT</u> ct <u>acataa</u> gaac <u>ac</u> ctt <u>gg</u> gg <u>aa</u> ac | yeast recombinational cloning                                        |
| scHIS3_seqF                                                                                                                                                                                                                   | GCTCTGGCAAGCATTCC                                                                                                                                                 | verification of his3 fusion                                          |
| scHIS3_seqR                                                                                                                                                                                                                   | TTCAGTGGTGTGATGGTGT                                                                                                                                               | verification of his3 fusion , sdbB and ravK random mutant sequencing |
| Gal1 fw                                                                                                                                                                                                                       | AATATA <u>CTCTATA</u> ACTTTAACGTC                                                                                                                                 | sdbB and ravK random mutant sequencing                               |
| lpg0969seqF                                                                                                                                                                                                                   | GCTGCCAA <u>AAATT</u> CCCAATAC                                                                                                                                    | ravK random mutant sequencing                                        |
| lpg0969seqR                                                                                                                                                                                                                   | CCAGTCCGTACACCC <u>TAGC</u>                                                                                                                                       | ravK random mutant sequencing                                        |
| lpg0275_467F                                                                                                                                                                                                                  | AGGGAT <u>GGAG</u> TTCC <u>CTGGAC</u>                                                                                                                             | sdbA random mutant sequencing                                        |
| lpg0275_637R                                                                                                                                                                                                                  | CGTCTCAC <u>CTGT</u> AA <u>TTGCAC</u>                                                                                                                             | sdbA random mutant sequencing                                        |
| lpg0275_942F                                                                                                                                                                                                                  | TGAGAAGGG <u>CATGAAAGTCA</u>                                                                                                                                      | sdbA random mutant sequencing                                        |
| lpg0275_1417F                                                                                                                                                                                                                 | TCCCGAC <u>AAAGATTTGGT</u> AGC                                                                                                                                    | sdbA random mutant sequencing                                        |
| lpg0275_1920F                                                                                                                                                                                                                 | CAGAAC <u>CCGT</u> CTTAT <u>GTGG</u>                                                                                                                              | sdbA random mutant sequencing                                        |
| lpg0275_2435F                                                                                                                                                                                                                 | ACCCAC <u>CGCAATAACCC</u> TATG                                                                                                                                    | sdbA random mutant sequencing                                        |
| lpg0275_2825F                                                                                                                                                                                                                 | TGGCACCA <u>ATAATGACCA</u> GA                                                                                                                                     | sdbA random mutant sequencing                                        |

**Table S2.** Random mutagenesis mutants for RavK, SdbA and SdbB. Mutants suppressing the growth defect of RavK, SdbA and SdbB in yeast were selected on SD-gal-ura (induced expression and plasmid selection) or SD-gal-ura-his (induced expression, plasmid selection and full-length fusion protein selection respectively). This table summarizes the identified mutations, the type of mutation and the consequences of the mutation.

| Mutant no | Locus no | Gene name | Selection       | Nucleotide mutation | Type of mutation        | Amino acid mutation(s) | 1st mutation | 2nd mutation |
|-----------|----------|-----------|-----------------|---------------------|-------------------------|------------------------|--------------|--------------|
| 1         | lpg0275  | sdbA      | + gal, -ura-his | 367G>A, 1624G>A     | amino acid substitution | V123M, G542R           | 123          | 542          |
| 2         | lpg0275  | sdbA      | + gal, -ura-his | 1622G>A, 452C>T     | amino acid substitution | S151L, G541E           | 151          | 541          |
| 3         | lpg0275  | sdbA      | + gal, -ura-his | 1222G>A, 1622G>A    | amino acid substitution | V408I, G541E           | 408          | 541          |
| 4         | lpg0275  | sdbA      | + gal, -ura-his | 1622G>A             | amino acid substitution | G541E                  | 541          |              |
| 5         | lpg0275  | sdbA      | + gal, -ura-his | 1621G>A             | amino acid substitution | G541E                  | 541          |              |
| 6         | lpg0275  | sdbA      | + gal, -ura-his | 1622G>A             | amino acid substitution | G541E                  | 541          |              |
| 7         | lpg0275  | sdbA      | + gal, -ura-his | 1622G>A             | amino acid substitution | G541E                  | 541          |              |
| 8         | lpg0275  | sdbA      | + gal, -ura-his | 1622G>A             | amino acid substitution | G541E                  | 541          |              |
| 9         | lpg0275  | sdbA      | + gal, -ura-his | 1625G>A             | amino acid substitution | G542E                  | 542          |              |
| 10        | lpg0275  | sdbA      | + gal, -ura-his | 1630G>A, 2378C>T    | amino acid substitution | G544R, P793L           | 544          | 793          |
| 11        | lpg0275  | sdbA      | + gal, -ura-his | 1630G>A, 2826G>A    | amino acid substitution | G544R, M942I           | 544          | 942          |
| 12        | lpg0275  | sdbA      | + gal, -ura-his | 1634A>G             | amino acid substitution | H545R                  | 545          |              |
| 13        | lpg0275  | sdbA      | + gal, -ura-his | 1633C>T             | amino acid substitution | H545Y                  | 545          |              |
| 14        | lpg0275  | sdbA      | + gal, -ura-his | 1639T>C             | amino acid substitution | S547P                  | 547          |              |
| 15        | lpg0275  | sdbA      | + gal, -ura-his | 2275G>A             | amino acid substitution | D759N                  | 759          |              |
| 16        | lpg0275  | sdbA      | + gal, -ura-his | 2275G>A             | amino acid substitution | D759N                  | 759          |              |
| 17        | lpg0275  | sdbA      | + gal, -ura-his | 2731C>A, 2866G>A    | amino acid substitution | G911R, G956R           | 911          | 956          |
| 18        | lpg0275  | sdbA      | + gal, -ura-his | 2870G>A             | amino acid substitution | G957D                  | 957          |              |
| 19        | lpg0275  | sdbA      | + gal, -ura-his | 2873G>A             | amino acid substitution | G958D                  | 958          |              |
| 20        | lpg0275  | sdbA      | + gal, -ura-his | 2887G>A             | amino acid substitution | E963K                  | 963          |              |
| 21        | lpg0275  | sdbA      | + gal, -ura-his | 2887G>A             | amino acid substitution | E963K                  | 963          |              |
| 22        | lpg0275  | sdbA      | + gal, -ura-his | 2887G>A             | amino acid substitution | E963K                  | 963          |              |
| 23        | lpg0275  | sdbA      | + gal, -ura-his | 2980G>A             | amino acid substitution | E994K                  | 994          |              |
| 24        | lpg0275  | sdbA      | + gal, -ura-his | 2980G>A             | amino acid substitution | E994K                  | 994          |              |
| 25        | lpg0969  | ravK      | + gal, -ura-his | 41G>A               | amino acid substitution | C14Y                   | 14           |              |
| 26        | lpg0969  | ravK      | + gal, -ura-his | 98T>C               | amino acid substitution | L33S                   | 33           |              |
| 27        | lpg0969  | ravK      | + gal, -ura-his | 152C>T              | amino acid substitution | A51V                   | 51           |              |
| 28        | lpg0969  | ravK      | + gal, -ura-his | 158T>C              | amino acid substitution | F53S                   | 53           |              |
| 29        | lpg0969  | ravK      | + gal, -ura-his | 203A>C              | amino acid substitution | K68T                   | 68           |              |
| 30        | lpg0969  | ravK      | + gal, -ura-his | 205T>A              | amino acid substitution | W69R                   | 69           |              |
| 31        | lpg0969  | ravK      | + gal, -ura-his | 220A>G              | amino acid substitution | T74A                   | 74           |              |
| 32        | lpg0969  | ravK      | + gal, -ura-his | 286G>A              | amino acid substitution | E96K                   | 96           |              |
| 33        | lpg0969  | ravK      | + gal, -ura-his | 286G>A              | amino acid substitution | E96K                   | 96           |              |
| 34        | lpg0969  | ravK      | + gal, -ura-his | 287A>G              | amino acid substitution | E96G                   | 96           |              |
| 35        | lpg0969  | ravK      | + gal, -ura-his | 293G>T              | amino acid substitution | G98V                   | 98           |              |
| 36        | lpg0969  | ravK      | + gal, -ura-his | 331G>A              | amino acid substitution | E111K                  | 111          |              |
| 37        | lpg0969  | ravK      | + gal, -ura-his | 354A>C              | amino acid substitution | E118D                  | 118          |              |
| 38        | lpg2482  | sdbB      | +gal,-ura       | 33_34insT           | frameshift              | H12SfsX1               | 12           |              |
| 39        | lpg2482  | sdbB      | +gal,-ura       | 33_34insT           | frameshift              | H12SfsX1               | 12           |              |
| 40        | lpg2482  | sdbB      | +gal,-ura       | 33_34insT           | frameshift              | H12SfsX1               | 12           |              |
| 41        | lpg2482  | sdbB      | +gal,-ura       | 119delA             | frameshift              | K40RfsX33              | 39           |              |
| 42        | lpg2482  | sdbB      | +gal,-ura       | 119delA             | frameshift              | K40RfsX33              | 39           |              |

|    |         |      |                 |                     |                                        |                  |     |     |
|----|---------|------|-----------------|---------------------|----------------------------------------|------------------|-----|-----|
| 43 | lpg2482 | sdbB | +gal,-ura       | 166_167insA         | frameshift                             | Q56TfsX4         | 56  |     |
| 44 | lpg2482 | sdbB | +gal,-ura       | 172_173insA         | frameshift                             | T58NfsX2         | 58  |     |
| 45 | lpg2482 | sdbB | +gal,-ura       | 172_173insA         | frameshift                             | T58NfsX2         | 58  |     |
| 46 | lpg2482 | sdbB | +gal,-ura       | 172_173insA         | frameshift                             | T58NfsX2         | 58  |     |
| 47 | lpg2482 | sdbB | +gal,-ura       | 172delA             | frameshift                             | T58PfsX15        | 58  |     |
| 48 | lpg2482 | sdbB | +gal,-ura       | 265C>T              | premature stop codon                   | Q89AMBER         | 89  |     |
| 49 | lpg2482 | sdbB | +gal,-ura       | 312delA             | frameshift                             | K104NfsX56       | 104 |     |
| 50 | lpg2482 | sdbB | +gal,-ura       | 407G>A, 469_470insG | amino acid substitution and frameshift | G136E, G157AfsX2 | 136 | 157 |
| 51 | lpg2482 | sdbB | +gal,-ura       | 555_556insG         | frameshift                             | G185=fsX1        | 185 |     |
| 52 | lpg2482 | sdbB | +gal,-ura       | 594_595insA         | frameshift                             | Q199AfsX21       | 199 |     |
| 53 | lpg2482 | sdbB | +gal,-ura       | 818A>G              | amino acid substitution                | D273G            | 273 |     |
| 54 | lpg2482 | sdbB | +gal,-ura       | 905_906insA         | frameshift                             | R302KfsX17       | 302 |     |
| 55 | lpg2482 | sdbB | +gal,-ura       | 905_906insA         | frameshift                             | R302KfsX17       | 302 |     |
| 56 | lpg2482 | sdbB | +gal,-ura       | 905delA             | frameshift                             | R302GfsX40       | 302 |     |
| 57 | lpg2482 | sdbB | +gal,-ura       | 1094C>A             | premature stop codon                   | S365AMBER        | 365 |     |
| 58 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 59 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 60 | lpg2482 | sdbB | + gal, -ura-his | 346G>A              | amino acid substitution                | G116R            | 116 |     |
| 61 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 62 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 63 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 64 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 65 | lpg2482 | sdbB | + gal, -ura-his | 347G>A              | amino acid substitution                | G116E            | 116 |     |
| 66 | lpg2482 | sdbB | + gal, -ura-his | 566G>A              | amino acid substitution                | G189E            | 189 |     |
| 67 | lpg2482 | sdbB | + gal, -ura-his | 566G>A              | amino acid substitution                | G189E            | 189 |     |
| 68 | lpg2482 | sdbB | + gal, -ura-his | 836C>T              | amino acid substitution                | S279L            | 279 |     |
| 69 | lpg2482 | sdbB | + gal, -ura-his | 836C>T              | amino acid substitution                | S279L            | 279 |     |
| 70 | lpg2482 | sdbB | + gal, -ura-his | 836C>T              | amino acid substitution                | S279L            | 279 |     |
| 71 | lpg2482 | sdbB | + gal, -ura-his | 842T>C              | amino acid substitution                | L281S            | 281 |     |
| 72 | lpg2482 | sdbB | + gal, -ura-his | 842T>C              | amino acid substitution                | L281S            | 281 |     |
| 73 | lpg2482 | sdbB | + gal, -ura-his | 842T>C              | amino acid substitution                | L281S            | 281 |     |
| 74 | lpg2482 | sdbB | + gal, -ura-his | 926G>A              | amino acid substitution                | C309Y            | 309 |     |
| 75 | lpg2482 | sdbB | + gal, -ura-his | 926G>A              | amino acid substitution                | C309Y            | 309 |     |
| 76 | lpg2482 | sdbB | + gal, -ura-his | 926G>A              | amino acid substitution                | C309Y            | 309 |     |
| 77 | lpg2482 | sdbB | + gal, -ura-his | 1051C>T             | amino acid substitution                | H351Y            | 351 |     |