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Key Points:

® An integration model combining deep features, radiomics features and clinical
parameters improved disease-free-survival prediction of gastric cancer by 3%-5%
C-index.

® Embedding radiomics and clinical features into deep learning model through
concatenation and loss design improved feature extraction ability of deep
network.

® The model revealed disease progression trajectory and tumor heterogeneity.

Abstracts

Preoperative prediction of disease-free survival of gastric cancer is significantly
important in clinical practice. Existing studies showed the potentials of CT images in
identifying predicting the disease-free survival of gastric cancer. However, no studies
to date have combined deep features with radiomics features and clinical features. In
this study, we proposed a model which embedded radiomics features and clinical
features into deep learning model for improving the prediction performance. Our
models showed a 3%-5% C-index improvement and 10% AUC improvement in
predicting DFS and disease event. Interpretation analysis including T-SNE
visualization and Grad-CAM visualization revealed that the model extract
biologically meaning features, which are potentially useful in predicting disease
trajectory and reveal tumor heterogeneity. The embedding of radiomics features and
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clinical features into deep learning model could guide the deep learning to learn
biologically meaningful information and further improve the performance on the DFS
prediction of gastric cancer. The proposed model would be extendable to related
problems, at least in few-shot medical image learning.

Keywords: Deep learning; Radiomics; Interpretable analysis; Integration model,
Disease-free survival

Introduction

Gastric cancer (GC) is the fifth most common malignant cancer worldwide and
the fourth leading cause of global cancer deaths [1]. GC patients are usually
diagnosed at an advanced stage with poor prognoses. The 5-year overall survival rate
of GC is 30-40% after curative resection, whereas metastasis-related or
relapse-related death remain a challenge for curative treatment [2]. Therefore,
preoperative prediction of the disease-free survival (DFS) of gastric cancer is
remarkably important for evaluating patient progression before treatment.

Efforts have been made on predicting the DFS of gastric cancer based on clinical
reports and CT image-based radiomics. Discovered risk factors include age, tumor
size, tumor stage, tumor location, and Lauren type. While some of these factors are
determined postoperatively and are limited to precisely determine the disease
progression of GC patients, some studies focused on the utility of preoperative CT
images. Meanwhile, the development of radiomics enabled the extraction of rich
information from images, showing considerable performance in many image-based
prediction tasks. Radiomics features extracted from CT images suggested higher
performance than clinical parameters in predicting DFS of gastric cancer, which can
also predict chemotherapeutic benefits for stage II/111 patients [3]. Multidetector-row
computed tomography (MDCT)-based radiomics nomogram suggested that the
integration of radiomics nomogram with clinical parameters improved the prediction
performance in DFS prediction of GC [4]. Li et al. focused on stage II/I1l patients and
developed a radiomics nomogram which integrated both intratumor and peritumor
information for DFS and chemotherapy response prediction of GC [5]. However, as
the author suggested, their model is limited to single-vendor CT scanners (GE).

Moreover, due to the high tumor heterogeneity, radiomics features are not
enough to extract complex information from images. Deep learning has been widely
applied in medical image analysis and cancer studies, showing considerable
performance in gastric cancer prediction tasks [6, 7], also including a multi-task
prediction of the DFS and peritoneal recurrence of GC on multi-institution data [8]. In
order to further improve the performance, some studies have evaluated the
performance of integrating deep learning features with radiomics features or clinical
parameters [9-12]. However, linear regression models are usually applied, and the
deep features are extracted offline, which limited the capability of deep
learning-based feature extraction and lacks of flexibility and generalizability.

Some end-to-end integration methods were widely applied in multi-source data
integration for medical image analysis. The common way is to train different
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networks for each source of data and then combine features from different sources at
the last layer. In order to provide more intuitive integration, we proposed that the loss
for each sub-networks would provide supervision on the main network, based on the
principle of deeply supervised nets [13]. Therefore, we developed an interpretable
framework for the integration of radiomics, clinical and deep features, and we
hypothesized that radiomics features and clinical features as a kind of prior
knowledge [14, 15], would provide supervision to the feature extraction, whereas
deep learning could also correct the misinformation caused by the prior knowledge.

Similar methods were developed in previous studies. Wei et al proposed a
strategy by first mapping radiomics features, clinical features into common feature
space using variational autoencoder, and then integrate them with deep features,
which showed improvement of performance in predicting the overall survival of
hepatocellular carcinoma [16]. Zhou et al applied deeply supervised multi-modal
integration scheme to predict the microvascular invasion using multi-phase
contrast-enhanced MRI images [17]. However, the investigation on gastric cancer has
not been performed.

In this study, we aim to evaluate the performance of integrating clinical
parameters, deep learning features, and radiomics features in an end-to-end deep
learning framework on gastric cancer DFS prediction. Besides, interpretation analyses
are performed to reveal the biopathology mechanism revealed by the model.

Material and Methods

Dataset and Preprocessing

Study Population
The study obtained approval from the local institutional review board, and the
requirement for patients’ informed consent was waived. All patients underwent
surgical treatment within one month of contrast-enhanced abdominal CT examination.
There were primarily 1001 patients diagnosed as GC. We applied the inclusion
criteria followed to identify required patient samples: (1) postoperative pathologically
confirmed gastric adenocarcinoma; (2) patients who underwent surgical treatment; (3)
patients who underwent contrast-enhanced CT of the whole abdomen or the upper
abdomen within one month before surgery; (3) no distant metastases prior to surgery.
The exclusion criteria were as follows: (1) incomplete clinical or pathological
information; (2) treatment was performed before surgery; (3) poor CT image quality
or unrecognizable lesion; and (4) other concurrent malignancies. Finally, 214 patients
were enrolled for this study.

CT image acquisition

All patients underwent contrast-enhanced abdominal CT using the multidetector row
CT systems: BrightSpeed, Optima CT680 Series (GE Medical Systems); Siemens
Somatom definition AS 64, Perspective (Siemens Medical Systems). The acquisition
parameters were the following: detector configuration 128 x 0.6 mm; tube voltage,
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120-130 kV; tube current, 150-300 mAs; reconstructed axial-section thickness 5 mm,
slice interval 5 mm, pitch 0.6. The contrast agents were Ultravist (Bayer Schering
Pharma, Berlin, Germany), Optiray (Liebel-Flarsheim Canada Inc., Kirkland, Quebec,
Canada), and lohexol (Beijing North Road Pharmaceutical Co. Ltd., Beijing, China).
A contrast medium of 1.5 ml/kg was injected through the antecubital vein. The portal
venous phase was performed at 50-60 s after injection of the contrast medium.

Tumor segmentation

The CT images of portal vein phase were exported in digital imaging and
communications in  medicine (DICOM) format from image storage and
communication systems. Lesions were segmented using ITK-SNAP (version 3.8.0,
http://www.itksnap.org). Two radiologists with over five years of experience in
diagnosing abdominal diseases observed each CT image of the patient and performed
delineation on the largest layer of the tumor. Here only 2D tumor region was
delineated, as previous study suggested that 2D radiomic features revealed
comparable performances with 3D features in characterizing GC [18], while one-slice
2D annotation saves time instead of whole-volume 3D annotation.

Radiomicsfeature extraction

A total of 944 radiomics features were extracted from the delineated ROI regions,
including 2D shape, firstorder, glcm, glrlm, glszm, gldm, ngtdm features with original
image or images after log and wavelet filtering [19]. Lasso cox regression model with
10-fold cross validation was applied to determine useful features for DFS prediction.
The pyradiomics package [20] in Python 3.7.3 and glmnet package [21] in R were
utilized for radiomics feature extraction and feature selection, respectively.

The Proposed Method

The Overview of the Proposed Framework
The proposed framework was summarized in Fig.1.

Radiomics
feature extraction

& — preprocessing
 —

Fislow up tima

Figure 1 The proposed framework for integrating deep features, radiomics features and
clinical features in a deep learning network
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Descriptions and the Implementation
Images were resized into 28*28 as input of convolutional neural network (CNN). A
ResNet50 model with pre-trained ImageNet weights for all convolutional layers was
utilized to extract deep features. The ResNet50 model consists of 49 convolutional
layers, followed by a fully connected layer. We added a fully connected layer into two
layers to reduce the dimension of features into 256 dimensions, and the output 1000
dimension was changed into one dimension referring to the risk score predicted by the
model. In order to embed the radiomics features and clinical parameters into the
model, we first normalized the two sets of features, and then passed them into the
deep network. A FCN layer was then utilized to embed the features into 250 and 6
dimensions, respectively. The three kinds of features, were then concatenated and
formed 512 dimensions. Then, another FCN layer was then applied to predict risk
score based on the features. We applied two kinds of strategies for calculating the loss
value of the network: 1) simply using the loss value of the final 512 dimension
features, named CON model; 2) combine the individual loss with the concatenated
loss based on the design of deeply supervised nets [13], named DSN model. The
DeepSurv [22] was used as loss function for cox regression. The DSN loss was
defined as follows:
Ldsn = Lconcat + WaLdeep + Weradio + Wchlini (1)

All experiments were implemented using the PyTorch machine learning library.
The learning rate was set as 0.0001 and Adam optimizer was used to finetune all the
model parameters. To alleviate the effect of overfitting problem to the model
performance, we applied early stopping strategy to stop the iterations before the
overfitting occurred [23].

Interpretability Analysis

To assess whether the proposed models captured more information, we performed
T-SNE analysis on both feature-level and sample-level using the Rtsne package [24,
25]. We utilized Grad-CAM visualization method [26] to visualize the area which the
model has focused on.

Satistical Analysis

The data set was randomly split into the training set (160 GCs) and validation set
(54 GCs). Five-fold cross-validation was performed on the training set to determine
the model parameters, and then the model was utilized for independent testing on the
validation set. For each deep learning model, we performed five times training and
testing to assess the stability of the models, and the final performances were
calculated using mean * sd. Once the predictions were made, Kaplan-Meier curve was
plotted using the median value of the predicted risk score as cutoffs.

Results

Satistical description of clinical parameters

Table 1 presented the statistical description of clinical parameters among training set
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and validation set. Among the 214 GCs, there are 163 GCs obtaining relapse or
metastasis after surgery. The DFS ranges from 7 to 177 months, with a medium value

of 26 months.

Table 1 Statistical description of clinical parameters in training and validation set*

Training Set(160)

Validation Set(54)

Age(y) 58 (29-84) 58(28-73)
Gender Male 117 41

Female 43 13
Tumor size(cm) 5(1-15) 4.9(1.5-16)

AFP(ng/ml) 3.02(0.69- 513.46) 2.84(1.2-958.7)
CEA(ng/ml) 2.95(0.5-278.18) 2.57(0.62-253.82)
CA125(ng/ml) 11.6(2.8- 217.6) 11.4(3.5- 100.4)
CA199(ng/ml) 14.72(1.9-10567.9) 13.73(2.08-1271.41)
CA242(ng/ml) 6(0.5-991.5) 5.63(0.9-73.23)
CA724(ng/ml) 3.18(0.49-130.9) 3.48(0.77-107)
DFS(months) 26 (7-177) 25.5(7-142)
Event  Relapse or metastasis 126 37

No relapse or metastasis 34 17

*Numerical variables were presented using median values and value range.

Model performance

We systematically compared the proposed framework with baseline models in Table 2.
Radiomics model showed slightly better performance among the three baseline
models. Lasso-based integration models did not improve the performance, while the
proposed integration models showed improved C-index performance of 3%-5% in
predicting DFS. Using the predicted score and the event label, we found that the DSN
and CON model improved AUC of 10% in predicting event occurrence. However,
while integrating multi-source information should lead to better performance, we
found when integrating deep features, radiomics features with clinical features, the
model did not obviously yield better performance than the model integrating only
deep features and radiomics features. The result may be attributed to the fact that the
clinical features are of low dimension, and that some measurements are imputed by
mean values, which introduce significant noise into the model, overshadowing the
valuable information it should capture.

Table 2 Performance comparison between different models

M odel C-index Prediction of event occurrence: AUC(%)
Baseline model
Radiomics 57.49 60.41
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. 55.05 55.64
Clinicalt
CNN 56.44
57.35+1.84
L asso-based integration models
L asso-deep+radiomics 57.65 56.44
L asso-deep+r adiomicstclinical 57.77 56.60
L asso-clinical +radiomics 57.33 61.21
Proposed integration models
CON-2m* 70.11
61.26+2.87
CON-3m* 68.90
62.07+1.63
DSN-2m 71.70
62.57+2.64
DSN-3m 66.45
62.35+2.63

*CON-2m refers to CON model combining radiomics and deep features, while CON-3m
refers to CON model combining radiomics, clinical and deep features together. Similar
meanings are applicable in DSN-2m and DSN-3m.

tClinical features with missing values were imputed using the mean values.

In order to identify the time-dependent property of the models, we performed
time-dependent ROC analysis for each model. According to Fig.2 and Table3, the
proposed CON or DSN models present higher AUC among different time points for
relapse prediction, and especially when the time is 21 months (1.75 year), the two
models could perform significantly better than radiomics model. Besides, we found
DSN model could predict patient relapse at eight-month period, which indicates DSN
model could identify particularly aggressive gastric cancer that are not suitable for
proposed treatment.
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Figure 2. Time dependent ROC curves for different models

Table3 Comparison between time dependent AUC for different models
Time(m) radiovsdsn radiovscon cnnvscon cnnvsdsn con vsdsn

t=8 <0.001 0.653 0.519 <0.0001 0.019
t=8.3 0.045 0.385 0.179 0.025 0.159
t=21.85 0.026 0.040 0.127 0.057 0.689

Kaplan-Meier curves (Fig.3) also proved that the proposed DSN and CON
models showed good differentiation ability for high-risk and low-risk patients, while
the radiomics and CNN model showed no statistical significance in differentiating
high-risk and low-risk patients.
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Figure 3. The comparion of KM curves for different models: (a) KM curve for radiomics model; (b)
KM curves for baseline CNN model; (c) KM curves for CON-2m model; (d) KM curves for DSN-2m
model.

Interpretation analysis

Figure 4 present the TSNE visualization plot from feature-level (a-b) and patient-level
(c-f). Compared with CNN-based deep features (Fig.4a), CON-based deep features
(Fig.4b) distribute more densely and show higher accordance with radiomics feature
space. While radiomics features distributed in a continuous way, deeply-learned
features present different clusters far from each other, indicating that deep network
potentially extracts discriminative features from tumor images. Fig.4c showed that the
radiomics model split the patients into two groups, while the two groups showed no
distinction between DFS time. Different from radiomics model, CNN, CON and DSN
model showed significant trends from high DFS to low DFS (Fig.4d-f). However, the
patient distributions are very dense in CNN and CON model while the DSN model
explicitly separate different patients.
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Figure 4. (a) TSNE plot comparing deep features with radiomics features; (b) TSNE plot comparing
CON features with radiomics features; (c) TSNE for radiomics model; (d) TSNE for CNN model; ()
TSNE for CON model; (f) TSNE for DSN model

We performed visualization on the last layer of deep networks to reveal what
properties have been learned. Grad-CAM visualization on one case with 23 months of
DFS showed that, CNN model focused more on the background, while the CON-2m
model and DSN-2m model focused more on the tumor lesion (Fig.5). Besides,
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DSN-2m focused a large part of the tumor while CON-2m focused only a small part
of the tumor. This indicated that radiomics-based knowledge guided deep learning to
focus more information on tumor lesion, and combining radiomics loss with deep
learning loss could further update the model weights to extract more meaningful deep
features.

Figureb5. Grad-CAM visualization of the last layer features learned by the deep networks. (a)
Grad- CAM plot of baseline CNN; (b) Grad-CAM plot of CON model; (c) Grad-CAM plot of
DSN model.

a

Discussion

In this study, we developed an integration model which intuitively embedded
radiomics features and clinical features into deep learning model to predict the DFS of
gastric cancer. We found our proposed model obtained an improvement of C-index of
3%-5%. Interpretation analysis revealed the addition of radiomics features helps deep
learning extract useful information to predict disease progression. Our proposed
models fully leverage the features extracted from clinical reports and single-phase CT
image, which potentially revealed inter-tumor heterogeneity of patients with GC.

Our studies identified new radiomics biomarkers for preoperative DFS prediction.
From Supplementary Table S1, tumor size and age are previously reported a
biomarker for patient prognosis, and in our clinical model, the features were selected
though with no statistical significance. In the model combining radiomics features
with clinical features, only one clinical variable (age) was selected. Nine radiomics
features were selected in radiomics model, whereas the “ratio” feature was involved.
Though the “ratio” feature was roughly calculated by dividing the two-dimension
image size, the feature potentially represents the morphology and structure of the
tumor. As reported in previous studies, the morphology of cancer is related to the
tumor growth patterns and is related to patient prognosis [27, 28]. Our study
preliminarily implies the morphology indicated by CT image would be an important
factor to DFS prediction of GC patients. However, when integrating deep features
with radiomics features, the ‘ratio’ feature has not been selected. This may be due to
the rough definition of the morphology. Further investigation is required in the future
works.

The deep learning-based integration framework proposed presented several
advantages. Firstly, the model can improve the feature extraction ability of deep
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learning and alleviate the few-shot learning problem. The Grad-CAM visualization
plot and T-SNE plot at feature level indicated that the knowledge-guided deep
learning model improved the feature extraction ability. Secondly, the model can
potentially identify tumor heterogeneity and infer disease progression trajectory.
T-SNE plot at sample level showed that the capability of deep learning-based model
in identifying disease progression trajectory. While the DSN model also presented
disease progression trajectory, the deep features could also extract the difference
between different GCs, showing its potentials in identifying inter-tumor heterogeneity.
Thirdly, the model is flexible and can integrate different knowledge. The proposed
model is an extendable and flexible model which could be fitted to many different
scenarios.

Some previous studies have developed and applied similar methods in medical
image analysis, including Wei et al [16]. The model proposed by Wei et al is based on
variational autoencoder. Variational autoencoder (VAE) [29] could learn the
distribution of data, and has been widely applied in many scenarios in recent years
including multi-modal learning. However, the data distribution would not be properly
learned by the basic VAE in few-shot scenarios, and would induce variations and bias
during the model training. Compared to the work, we proposed a CNN-based
framework to extract deep features and used fully connected layers to learn the
association between radiomics/clinical features with the outcome target, which
maximally remains original information of radiomics/clinical features. Moreover, our
study provided independent validation of the model, which was not involved in the
study mentioned above.

Deep learning possesses the capability of automatic feature extraction, while
lacking of interpretability. When dealing with biomedical scenarios, the biology or
pathology mechanism revealed behind the model is especially important. In recent
years, there is a growing trend of developing biological interpretable models. For
image-based modelling, Jiang et al. [30] has established a multi-task deep learning
model which predict both the DFS and tumor microenvironment (TME) information
for GC. Through the guidance of TME knowledge, the model learned interpretable
image features revealing potential biological mechanism for GC prognosis. In our
study, the proposed model intuitively incorporate expert-designed radiomics and
clinical knowledge into deep network, which would also suggest a future direction on
exploring the biological interpretability of deep learning-based medical image
analysis.

Beyond the discoveries made, our study has some limitations. Firstly, the
samples included were limited, which greatly affect the generalization of deep
learning model. Secondly, only tumor region was delineated for each image, while the
peritumoral region was also important as it presents the tumor microenvironment [5].
Finally, although we performed interpretation on the meaning of the deep features
learned by proposed model, we did not consider more in-depth investigation on how
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these deep features could be related to biological processes. Our future works will
focus on interpreting these imaging-based deep features using paired RNA-seq data
with images.

Overall, our study suggests that the integration of clinical parameters, deep
learning features, and radiomics features in a deep learning framework could guide
deep learning to learn biologically meaningful features and extract the high-level
tumor heterogeneity, which finally promote the DFS prediction of gastric cancer.
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