
An interpretable integration model improving disease-free survival 

prediction for gastric cancer based on CT images and clinical parameters 

Xiaoping Cen1,3,4,6, Can Hu2, Li Yuan2, Xiangdong Cheng2, Wei Dong3,9, Run Zhou3,4, Yuanmei 

Wang1,3,4, Jiansheng Zou3,7, Tianyu Lu1,3,4, Huanming Yang1,3,5,8,*, Yahan Tong2,* 
1 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 
2 Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 
Hangzhou 310022, China 
3 HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 
Zhejiang Cancer Hospital, Hangzhou 310022, China  
4 BGI Research, Shenzhen 518083, China 
5 BGI, Shenzhen 518083, China 
6 Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, 
Guangzhou 510005, China 
7 College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China 
8 James D. Watson Institute of Genome Sciences, Hangzhou 310029, China 
9 Clin Lab, BGI Genomics, Beijing 100000, China 
 

*Correspondence should be addressed to Huanming Yang: yanghm@genomics.cn; Yahan 

Tong: tongyh2590@zjcc.org.cn. 

 

Key Points: 

� An integration model combining deep features, radiomics features and clinical 
parameters improved disease-free-survival prediction of gastric cancer by 3%-5% 
C-index. 

� Embedding radiomics and clinical features into deep learning model through 
concatenation and loss design improved feature extraction ability of deep 
network. 

� The model revealed disease progression trajectory and tumor heterogeneity. 
 

Abstracts 

Preoperative prediction of disease-free survival of gastric cancer is significantly 
important in clinical practice. Existing studies showed the potentials of CT images in 
identifying predicting the disease-free survival of gastric cancer. However, no studies 
to date have combined deep features with radiomics features and clinical features. In 
this study, we proposed a model which embedded radiomics features and clinical 
features into deep learning model for improving the prediction performance. Our 
models showed a 3%-5% C-index improvement and 10% AUC improvement in 
predicting DFS and disease event. Interpretation analysis including T-SNE 
visualization and Grad-CAM visualization revealed that the model extract 
biologically meaning features, which are potentially useful in predicting disease 
trajectory and reveal tumor heterogeneity. The embedding of radiomics features and 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.04.01.587508doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587508
http://creativecommons.org/licenses/by-nd/4.0/


clinical features into deep learning model could guide the deep learning to learn 
biologically meaningful information and further improve the performance on the DFS 
prediction of gastric cancer. The proposed model would be extendable to related 
problems, at least in few-shot medical image learning. 

 
Keywords: Deep learning; Radiomics; Interpretable analysis; Integration model; 
Disease-free survival 

Introduction 

Gastric cancer (GC) is the fifth most common malignant cancer worldwide and 
the fourth leading cause of global cancer deaths [1]. GC patients are usually 
diagnosed at an advanced stage with poor prognoses. The 5-year overall survival rate 
of GC is 30−40% after curative resection, whereas metastasis-related or 
relapse-related death remain a challenge for curative treatment [2]. Therefore, 
preoperative prediction of the disease-free survival (DFS) of gastric cancer is 
remarkably important for evaluating patient progression before treatment.  

Efforts have been made on predicting the DFS of gastric cancer based on clinical 
reports and CT image-based radiomics. Discovered risk factors include age, tumor 
size, tumor stage, tumor location, and Lauren type. While some of these factors are 
determined postoperatively and are limited to precisely determine the disease 
progression of GC patients, some studies focused on the utility of preoperative CT 
images. Meanwhile, the development of radiomics enabled the extraction of rich 
information from images, showing considerable performance in many image-based 
prediction tasks. Radiomics features extracted from CT images suggested higher 
performance than clinical parameters in predicting DFS of gastric cancer, which can 
also predict chemotherapeutic benefits for stage II/III patients [3]. Multidetector-row 
computed tomography (MDCT)-based radiomics nomogram suggested that the 
integration of radiomics nomogram with clinical parameters improved the prediction 
performance in DFS prediction of GC [4]. Li et al. focused on stage II/III patients and 
developed a radiomics nomogram which integrated both intratumor and peritumor 
information for DFS and chemotherapy response prediction of GC [5]. However, as 
the author suggested, their model is limited to single-vendor CT scanners (GE). 

Moreover, due to the high tumor heterogeneity, radiomics features are not 
enough to extract complex information from images. Deep learning has been widely 
applied in medical image analysis and cancer studies, showing considerable 
performance in gastric cancer prediction tasks [6, 7], also including a multi-task 
prediction of the DFS and peritoneal recurrence of GC on multi-institution data [8]. In 
order to further improve the performance, some studies have evaluated the 
performance of integrating deep learning features with radiomics features or clinical 
parameters [9-12]. However, linear regression models are usually applied, and the 
deep features are extracted offline, which limited the capability of deep 
learning-based feature extraction and lacks of flexibility and generalizability. 

Some end-to-end integration methods were widely applied in multi-source data 
integration for medical image analysis. The common way is to train different 
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networks for each source of data and then combine features from different sources at 
the last layer. In order to provide more intuitive integration, we proposed that the loss 
for each sub-networks would provide supervision on the main network, based on the 
principle of deeply supervised nets [13]. Therefore, we developed an interpretable 
framework for the integration of radiomics, clinical and deep features, and we 
hypothesized that radiomics features and clinical features as a kind of prior 
knowledge [14, 15], would provide supervision to the feature extraction, whereas 
deep learning could also correct the misinformation caused by the prior knowledge.  

Similar methods were developed in previous studies. Wei et al proposed a 
strategy by first mapping radiomics features, clinical features into common feature 
space using variational autoencoder, and then integrate them with deep features, 
which showed improvement of performance in predicting the overall survival of 
hepatocellular carcinoma [16]. Zhou et al applied deeply supervised multi-modal 
integration scheme to predict the microvascular invasion using multi-phase 
contrast-enhanced MRI images [17]. However, the investigation on gastric cancer has 
not been performed. 

In this study, we aim to evaluate the performance of integrating clinical 
parameters, deep learning features, and radiomics features in an end-to-end deep 
learning framework on gastric cancer DFS prediction. Besides, interpretation analyses 
are performed to reveal the biopathology mechanism revealed by the model.  

 

Material and Methods 

Dataset and Preprocessing 

Study Population 
The study obtained approval from the local institutional review board, and the 
requirement for patients’ informed consent was waived. All patients underwent 
surgical treatment within one month of contrast-enhanced abdominal CT examination. 

There were primarily 1001 patients diagnosed as GC. We applied the inclusion 
criteria followed to identify required patient samples: (1) postoperative pathologically 
confirmed gastric adenocarcinoma; (2) patients who underwent surgical treatment; (3) 
patients who underwent contrast-enhanced CT of the whole abdomen or the upper 
abdomen within one month before surgery; (3) no distant metastases prior to surgery. 
The exclusion criteria were as follows: (1) incomplete clinical or pathological 
information; (2) treatment was performed before surgery; (3) poor CT image quality 
or unrecognizable lesion; and (4) other concurrent malignancies. Finally, 214 patients 
were enrolled for this study. 
 
CT image acquisition  
All patients underwent contrast-enhanced abdominal CT using the multidetector row 
CT systems: BrightSpeed, Optima CT680 Series (GE Medical Systems); Siemens 
Somatom definition AS 64, Perspective (Siemens Medical Systems). The acquisition 
parameters were the following: detector configuration 128 × 0.6 mm; tube voltage, 
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120-130 kV; tube current, 150-300 mAs; reconstructed axial-section thickness 5 mm, 
slice interval 5 mm, pitch 0.6. The contrast agents were Ultravist (Bayer Schering 
Pharma, Berlin, Germany), Optiray (Liebel-Flarsheim Canada Inc., Kirkland, Quebec, 
Canada), and Iohexol (Beijing North Road Pharmaceutical Co. Ltd., Beijing, China). 
A contrast medium of 1.5 ml/kg was injected through the antecubital vein. The portal 
venous phase was performed at 50-60 s after injection of the contrast medium. 
 
Tumor segmentation 
The CT images of portal vein phase were exported in digital imaging and 
communications in medicine (DICOM) format from image storage and 
communication systems. Lesions were segmented using ITK-SNAP (version 3.8.0, 
http://www.itksnap.org). Two radiologists with over five years of experience in 
diagnosing abdominal diseases observed each CT image of the patient and performed 
delineation on the largest layer of the tumor. Here only 2D tumor region was 
delineated, as previous study suggested that 2D radiomic features revealed 
comparable performances with 3D features in characterizing GC [18], while one-slice 
2D annotation saves time instead of whole-volume 3D annotation.  
 
Radiomics feature extraction 
A total of 944 radiomics features were extracted from the delineated ROI regions, 
including 2D shape, firstorder, glcm, glrlm, glszm, gldm, ngtdm features with original 
image or images after log and wavelet filtering [19]. Lasso cox regression model with 
10-fold cross validation was applied to determine useful features for DFS prediction. 
The pyradiomics package [20] in Python 3.7.3 and glmnet package [21] in R were 
utilized for radiomics feature extraction and feature selection, respectively. 

The Proposed Method 

The Overview of the Proposed Framework 
The proposed framework was summarized in Fig.1. 

 
Figure 1 The proposed framework for integrating deep features, radiomics features and 

clinical features in a deep learning network 
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Descriptions and the Implementation 
Images were resized into 28*28 as input of convolutional neural network (CNN). A 
ResNet50 model with pre-trained ImageNet weights for all convolutional layers was 
utilized to extract deep features. The ResNet50 model consists of 49 convolutional 
layers, followed by a fully connected layer. We added a fully connected layer into two 
layers to reduce the dimension of features into 256 dimensions, and the output 1000 
dimension was changed into one dimension referring to the risk score predicted by the 
model. In order to embed the radiomics features and clinical parameters into the 
model, we first normalized the two sets of features, and then passed them into the 
deep network. A FCN layer was then utilized to embed the features into 250 and 6 
dimensions, respectively. The three kinds of features, were then concatenated and 
formed 512 dimensions. Then, another FCN layer was then applied to predict risk 
score based on the features. We applied two kinds of strategies for calculating the loss 
value of the network: 1) simply using the loss value of the final 512 dimension 
features, named CON model; 2) combine the individual loss with the concatenated 
loss based on the design of deeply supervised nets [13], named DSN model. The 
DeepSurv [22] was used as loss function for cox regression. The DSN loss was 
defined as follows: 

���� � ������� � ������	 � �
������ � ����
���             (1) 
All experiments were implemented using the PyTorch machine learning library. 

The learning rate was set as 0.0001 and Adam optimizer was used to finetune all the 
model parameters. To alleviate the effect of overfitting problem to the model 
performance, we applied early stopping strategy to stop the iterations before the 
overfitting occurred [23].  

Interpretability Analysis 

To assess whether the proposed models captured more information, we performed 
T-SNE analysis on both feature-level and sample-level using the Rtsne package [24, 
25]. We utilized Grad-CAM visualization method [26] to visualize the area which the 
model has focused on. 

Statistical Analysis 

The data set was randomly split into the training set (160 GCs) and validation set 
(54 GCs). Five-fold cross-validation was performed on the training set to determine 
the model parameters, and then the model was utilized for independent testing on the 
validation set. For each deep learning model, we performed five times training and 
testing to assess the stability of the models, and the final performances were 
calculated using mean ± sd. Once the predictions were made, Kaplan-Meier curve was 
plotted using the median value of the predicted risk score as cutoffs. 

 

Results 

Statistical description of clinical parameters 

Table 1 presented the statistical description of clinical parameters among training set 
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and validation set. Among the 214 GCs, there are 163 GCs obtaining relapse or 
metastasis after surgery. The DFS ranges from 7 to 177 months, with a medium value 
of 26 months. 

Table 1 Statistical description of clinical parameters in training and validation set* 

 Training Set(160) Validation Set(54) 

Age(y) 58 (29-84) 58(28-73) 

Gender Male 117 41 

Female 43 13 

Tumor size(cm) 5(1-15) 4.9(1.5-16) 

AFP(ng/ml) 3.02(0.69- 513.46) 2.84(1.2-958.7) 

CEA(ng/ml) 2.95(0.5-278.18) 2.57(0.62-253.82) 

CA125(ng/ml) 11.6(2.8- 217.6) 11.4(3.5- 100.4) 

CA199(ng/ml) 14.72(1.9-10567.9) 13.73(2.08-1271.41) 

CA242(ng/ml) 6(0.5-991.5) 5.63(0.9-73.23) 

CA724(ng/ml) 3.18(0.49-130.9) 3.48(0.77-107) 

DFS(months) 26 (7-177) 25.5(7-142) 

Event Relapse or metastasis 126 37 

No relapse or metastasis 34 17 

*Numerical variables were presented using median values and value range. 

 

Model performance 

We systematically compared the proposed framework with baseline models in Table 2. 
Radiomics model showed slightly better performance among the three baseline 
models. Lasso-based integration models did not improve the performance, while the 
proposed integration models showed improved C-index performance of 3%-5% in 
predicting DFS. Using the predicted score and the event label, we found that the DSN 
and CON model improved AUC of 10% in predicting event occurrence. However, 
while integrating multi-source information should lead to better performance, we 
found when integrating deep features, radiomics features with clinical features, the 
model did not obviously yield better performance than the model integrating only 
deep features and radiomics features. The result may be attributed to the fact that the 
clinical features are of low dimension, and that some measurements are imputed by 
mean values, which introduce significant noise into the model, overshadowing the 
valuable information it should capture.   

Table 2 Performance comparison between different models 

Model C-index Prediction of event occurrence: AUC(%) 

Baseline model 

Radiomics 57.49 60.41 
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Clinical† 
55.05 55.64 

CNN 
57.35±1.84 

56.44 

Lasso-based integration models 

Lasso-deep+radiomics 57.65 56.44 

Lasso-deep+radiomics+clinical 57.77 56.60 

Lasso-clinical+radiomics 57.33 61.21 

Proposed integration models 

CON-2m* 
61.26±2.87 

70.11 

CON-3m* 
62.07±1.63 

68.90 

DSN-2m 
62.57±2.64 

71.70 

DSN-3m 
62.35±2.63 

66.45 

*CON-2m refers to CON model combining radiomics and deep features, while CON-3m 

refers to CON model combining radiomics, clinical and deep features together. Similar 

meanings are applicable in DSN-2m and DSN-3m. 

†Clinical features with missing values were imputed using the mean values. 

 
In order to identify the time-dependent property of the models, we performed 

time-dependent ROC analysis for each model. According to Fig.2 and Table3, the 
proposed CON or DSN models present higher AUC among different time points for 
relapse prediction, and especially when the time is 21 months (1.75 year), the two 
models could perform significantly better than radiomics model. Besides, we found 
DSN model could predict patient relapse at eight-month period, which indicates DSN 
model could identify particularly aggressive gastric cancer that are not suitable for 
proposed treatment. 
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Figure 2. Time dependent ROC curves for different models 

 
Table3 Comparison between time dependent AUC for different models 

Time(m) radio vs dsn radio vs con cnn vs con cnn vs dsn con vs dsn 

t=8 <0.001 0.653 0.519 <0.0001 0.019 

t=8.3 0.045 0.385 0.179 0.025 0.159 

t=21.85 0.026 0.040 0.127 0.057 0.689 

 
Kaplan-Meier curves (Fig.3) also proved that the proposed DSN and CON 

models showed good differentiation ability for high-risk and low-risk patients, while 
the radiomics and CNN model showed no statistical significance in differentiating 
high-risk and low-risk patients. 
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Figure 3. The comparion of KM curves for different models: (a) KM curve for radiomics model; (b) 

KM curves for baseline CNN model; (c) KM curves for CON-2m model; (d) KM curves for DSN-2m 

model. 

 

Interpretation analysis 

Figure 4 present the TSNE visualization plot from feature-level (a-b) and patient-level 
(c-f). Compared with CNN-based deep features (Fig.4a), CON-based deep features 
(Fig.4b) distribute more densely and show higher accordance with radiomics feature 
space. While radiomics features distributed in a continuous way, deeply-learned 
features present different clusters far from each other, indicating that deep network 
potentially extracts discriminative features from tumor images. Fig.4c showed that the 
radiomics model split the patients into two groups, while the two groups showed no 
distinction between DFS time. Different from radiomics model, CNN, CON and DSN 
model showed significant trends from high DFS to low DFS (Fig.4d-f). However, the 
patient distributions are very dense in CNN and CON model while the DSN model 
explicitly separate different patients. 
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Figure 4. (a) TSNE plot comparing deep features with radiomics features; (b) TSNE plot comparing 

CON features with radiomics features; (c) TSNE for radiomics model; (d) TSNE for CNN model; (e) 

TSNE for CON model; (f) TSNE for DSN model 

 

We performed visualization on the last layer of deep networks to reveal what 
properties have been learned. Grad-CAM visualization on one case with 23 months of 
DFS showed that, CNN model focused more on the background, while the CON-2m 
model and DSN-2m model focused more on the tumor lesion (Fig.5). Besides, 
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DSN-2m focused a large part of the tumor while CON-2m focused only a small part 
of the tumor. This indicated that radiomics-based knowledge guided deep learning to 
focus more information on tumor lesion, and combining radiomics loss with deep 
learning loss could further update the model weights to extract more meaningful deep 
features.  

 
Figure 5. Grad-CAM visualization of the last layer features learned by the deep networks. (a) 

Grad- CAM plot of baseline CNN; (b) Grad-CAM plot of CON model; (c) Grad-CAM plot of 

DSN model. 

 

Discussion 

In this study, we developed an integration model which intuitively embedded 
radiomics features and clinical features into deep learning model to predict the DFS of 
gastric cancer. We found our proposed model obtained an improvement of C-index of 
3%-5%. Interpretation analysis revealed the addition of radiomics features helps deep 
learning extract useful information to predict disease progression. Our proposed 
models fully leverage the features extracted from clinical reports and single-phase CT 
image, which potentially revealed inter-tumor heterogeneity of patients with GC. 
 

Our studies identified new radiomics biomarkers for preoperative DFS prediction. 
From Supplementary Table S1, tumor size and age are previously reported a 
biomarker for patient prognosis, and in our clinical model, the features were selected 
though with no statistical significance. In the model combining radiomics features 
with clinical features, only one clinical variable (age) was selected. Nine radiomics 
features were selected in radiomics model, whereas the “ratio” feature was involved. 
Though the “ratio” feature was roughly calculated by dividing the two-dimension 
image size, the feature potentially represents the morphology and structure of the 
tumor. As reported in previous studies, the morphology of cancer is related to the 
tumor growth patterns and is related to patient prognosis [27, 28]. Our study 
preliminarily implies the morphology indicated by CT image would be an important 
factor to DFS prediction of GC patients. However, when integrating deep features 
with radiomics features, the ‘ratio’ feature has not been selected. This may be due to 
the rough definition of the morphology. Further investigation is required in the future 
works.  
 

The deep learning-based integration framework proposed presented several 
advantages. Firstly, the model can improve the feature extraction ability of deep 
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learning and alleviate the few-shot learning problem. The Grad-CAM visualization 
plot and T-SNE plot at feature level indicated that the knowledge-guided deep 
learning model improved the feature extraction ability. Secondly, the model can 
potentially identify tumor heterogeneity and infer disease progression trajectory. 
T-SNE plot at sample level showed that the capability of deep learning-based model 
in identifying disease progression trajectory. While the DSN model also presented 
disease progression trajectory, the deep features could also extract the difference 
between different GCs, showing its potentials in identifying inter-tumor heterogeneity. 
Thirdly, the model is flexible and can integrate different knowledge. The proposed 
model is an extendable and flexible model which could be fitted to many different 
scenarios. 
  

Some previous studies have developed and applied similar methods in medical 
image analysis, including Wei et al [16]. The model proposed by Wei et al is based on 
variational autoencoder. Variational autoencoder (VAE) [29] could learn the 
distribution of data, and has been widely applied in many scenarios in recent years 
including multi-modal learning. However, the data distribution would not be properly 
learned by the basic VAE in few-shot scenarios, and would induce variations and bias 
during the model training. Compared to the work, we proposed a CNN-based 
framework to extract deep features and used fully connected layers to learn the 
association between radiomics/clinical features with the outcome target, which 
maximally remains original information of radiomics/clinical features. Moreover, our 
study provided independent validation of the model, which was not involved in the 
study mentioned above.  

 
Deep learning possesses the capability of automatic feature extraction, while 

lacking of interpretability. When dealing with biomedical scenarios, the biology or 
pathology mechanism revealed behind the model is especially important. In recent 
years, there is a growing trend of developing biological interpretable models. For 
image-based modelling, Jiang et al. [30] has established a multi-task deep learning 
model which predict both the DFS and tumor microenvironment (TME) information 
for GC. Through the guidance of TME knowledge, the model learned interpretable 
image features revealing potential biological mechanism for GC prognosis. In our 
study, the proposed model intuitively incorporate expert-designed radiomics and 
clinical knowledge into deep network, which would also suggest a future direction on 
exploring the biological interpretability of deep learning-based medical image 
analysis. 
 

Beyond the discoveries made, our study has some limitations. Firstly, the 
samples included were limited, which greatly affect the generalization of deep 
learning model. Secondly, only tumor region was delineated for each image, while the 
peritumoral region was also important as it presents the tumor microenvironment [5]. 
Finally, although we performed interpretation on the meaning of the deep features 
learned by proposed model, we did not consider more in-depth investigation on how 
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these deep features could be related to biological processes. Our future works will 
focus on interpreting these imaging-based deep features using paired RNA-seq data 
with images. 

 
Overall, our study suggests that the integration of clinical parameters, deep 

learning features, and radiomics features in a deep learning framework could guide 
deep learning to learn biologically meaningful features and extract the high-level 
tumor heterogeneity, which finally promote the DFS prediction of gastric cancer. 
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