

1 **Compensatory Mechanisms for Preserving Speech-in-Noise**

2 **Comprehension Involve Prefrontal Cortex in Older Adults**

3

4 Zhuoran Li^{1, 2, 3, 4} †, Yi Liu⁵, †, Xinmiao Zhang^{1, 2}, Nuonan Kou⁵, Xiaoying Zhao⁵, Xiangru

5 Jiang⁵, Andreas K. Engel⁶, Dan Zhang^{1, 2, ‡}, Shuo Wang^{5, ‡}

6

7 ¹ Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China

8 ² Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China

9 ³ Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa, United States

10 ⁴ Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa,
11 United States

12 ⁵ Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Beijing Tongren
13 Hospital, Capital Medical University, Beijing, China

14 ⁶ Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-
15 Eppendorf, 20246 Hamburg, Germany

16

17

18

19 † These authors contributed equally to this work.

20 ‡ Corresponding authors:

21 Shuo Wang, shannonwsh@aliyun.com

22 Dan Zhang, dzhang@tsinghua.edu.cn

23

24

25

26 **Abstract**

27 The capacity of comprehending others amidst noise is essential for human
28 communication. However, it presents significant challenges for the elderly who often
29 face progressive declines in the peripheral auditory system and the whole brain. While
30 previous studies have suggested the existence of neural reserve and neural
31 compensation as potential mechanisms for preserving cognitive abilities in aging, the
32 specific mechanisms supporting speech-in-noise comprehension among the elderly
33 remain unclear. To address this question, the present study employs an inter-brain
34 neuroscience approach by analyzing the neural coupling between brain activities of
35 older adults and those of speakers under noisy conditions. Results showed that the
36 neural coupling encompassed more extensive brain regions of older listeners
37 compared to young listeners, with a notable engagement of the prefrontal cortex.
38 Moreover, the neural coupling from prefrontal cortex was coordinated with that from
39 classical language-related regions. More importantly, as background noise increases,
40 the older listener's speech comprehension performance was more closely associated
41 with the neural coupling from prefrontal cortex. Taken together, this study reveals the
42 compensatory recruitment of neurocognitive resources, particularly within the
43 prefrontal cortex, to facilitate speech processing in the aging brain, and further
44 highlights the critical role of prefrontal cortex in maintaining the elderly's ability to
45 comprehend others in noisy environments. It supports the neural compensation
46 hypothesis, extending the knowledge about the neural basis that underlies cognitive
47 preservation in the aging population.

48

49

50 **Introduction**

51 Understanding other people's speech, commonly taking place in environments with
52 background noise in daily life, poses a significant challenge for older adults. This
53 challenge arises from the progressive decline in the auditory system's structure and
54 function (1), as well as alterations in the perisylvian language regions that are crucial
55 for processing speech acoustics and mapping them into meaningful content (2). To
56 counteract these age-related declines and maintain the cognitive ability in older adults,
57 it is hypothesized that the aging brain may recruit additional neurocognitive resources
58 (3-5). The neural reserve hypothesis suggests that the brain's functional network
59 possesses resilience and contains redundancy of neural resources (6), which allows it
60 to maintain cognitive function despite age-related degradation or heightened demands
61 imposed by difficult cognitive tasks (3, 4). Empirical evidence in support of this
62 hypothesis includes a reserve and even upregulation of the neural activation of the
63 language-related brain regions in older adults (2, 7-9), which may serve as a
64 mechanism for preserving speech comprehension abilities. Alternatively, the neural
65 compensation hypothesis proposes that when primary cognitive networks become less
66 efficient, additional brain regions or circuits are recruited to sustain cognitive function
67 (3, 4, 10). For instance, the prefrontal cortex, which shows minimal activation in
68 younger adults (2, 4, 11, 12), has been reported to be significantly engaged during
69 older adults' speech processing. This compensation is hypothesized to be based on
70 neural plasticity and functional reorganization of the brain, suggesting a dynamic
71 adaptation to cognitive demands (10). However, despite these findings and hypotheses,
72 the precise neural mechanisms that facilitate daily-life speech comprehension in older
73 adults remain unclear.

74 A critical question concerns the extent to which various brain regions are engaged in
75 understanding other's speech in a naturalistic context. Despite significant efforts in
76 exploring this question, most existing studies have focused on reduced speech
77 conditions, using simple language materials like syllables or words. These
78 experimental setups fail to replicate the complexities of real-world speech

79 comprehension, which often involves more naturalistic speech, e.g., narratives, and is
80 frequently impeded by environmental noise (13, 14). The processing of natural speech
81 is more complex than that of simple stimuli, requiring more extensive computational
82 analysis of meaningful content and context, thus engaging a wider network of fronto-
83 parieto-temporal cortical regions (13, 14). Furthermore, adapting to background noise
84 demands additional neurocognitive resources to mitigate the interference of the
85 background noise and enhance selective processing of the target speech (15-17).
86 Consequently, previous studies may have significantly underestimated the
87 neurocognitive demands of processing natural speech in noisy conditions, resulting in
88 an incomplete understanding of the brain regions involved in speech comprehension
89 in the aging brain.

90 Another critical issue is the functional role of various brain regions in natural speech
91 comprehension among older adults. While previous studies have noted enhanced
92 activation in the prefrontal cortex and classical language regions (2, 18), the specific
93 regions most influential to speech ability in older adults remain much controversial.
94 The neural reserve hypothesis supposed that the preservation of older adult's
95 cognitive ability was achieved based on the functional reserve or reorganization
96 within the original functional network (3). Following this line, the older adult's speech
97 performance should be closely related to the neural responses within the language
98 network. In contrast, the neural compensation hypothesis emphasizes the recruitment
99 of brain regions or networks that is not typically involved in young adults, e.g.,
100 prefrontal cortex, to facilitate the cognitive maintenance (3, 19). Drawing on this, the
101 older adult's speech ability may be more closely associated with the neural responses
102 of non-language-specific regions, such as the prefrontal cortex, rather than the
103 language-related regions. Considering the limited capacity of neural reserve and the
104 overall decline of the language network within the aging brain (3, 4), we hypothesize
105 that the mechanism of the neural compensation plays a more significant role in
106 maintaining the speech performance or ability, especially under noisy conditions that
107 demand more cognitive resources. Specifically, the prefrontal cortical response may
108 be more predictive of the actual speech-in-noise performance in older adults. Notably,

109 as the prefrontal cortex may facilitate speech processing by compensating for the
110 language network rather than replacing it (20, 21), we further hypothesize an
111 enhanced functional integration between them within the aging brain (22, 23) for
112 facilitate the natural speech processing in older adults.

113 To address these questions and test our hypotheses, we conducted a study with a
114 cohort of older adults aged 59-71 years, who listened to pre-recorded narratives
115 spoken by young adults. To simulate real-life speech scenarios with environmental
116 noise, we added white noise to the narrative audios at four different levels: no noise,
117 +2 dB, -6 dB, and -9 dB. This design allowed us to explore how various brain regions
118 adapt and function under different noise conditions. Neural activities from both the
119 old adults and young speakers were recorded by functional near-infrared spectroscopy
120 (fNIRS), chosen for its motion insensitivity and low operational noise than functional
121 magnetic resonance imaging (24). To elucidate the involvement of different brain
122 regions in natural speech processing, we adopted an inter-brain neuroscience approach
123 (25-27). This approach analyzes the coupling between the neural activities of old
124 adults and those of the speakers, with the latter providing a reference for
125 understanding the neural response to speech. This method avoids the difficulty of
126 disentangling the interdependent speech features (13, 28) and captures additional
127 information beyond common speech features, such as acoustics and semantics (29-33).
128 Based on this approach, we examined the speaker-listener neural coupling from
129 various brain regions across different noise levels (14, 34, 35). Furthermore, we
130 compared the neural coupling of old listeners to a control group of young listeners (35)
131 to further highlight age-specific neural mechanisms.

132 Our findings reveal that the neural activity in the prefrontal cortex and language-
133 related regions of old listeners was significantly coupled with the speaker's brain
134 activity, regardless of the noise level. These couplings involved a wider range of brain
135 regions in old listeners compared to young listeners, suggesting both neural reserve
136 and neural compensation mechanisms within the aging brain. Notably, with the
137 increasing of background noise, the old listener's comprehension performance was
138 more closely associated with their neural coupling from the prefrontal cortex. This

139 relationship demonstrates the functional role of the prefrontal cortex in compensating
140 for reduced auditory input and to maintain speech comprehension, highlighting the
141 functional role of neural compensation in preserving the speech-in-noise
142 comprehension ability among the older adults. Moreover, the older listener's neural
143 coupling of prefrontal cortex was robustly correlated to that of the language regions
144 across noise levels, which was not observed in the young listeners. These results
145 suggest that the prefrontal cortex was closely integrated with the classical language
146 network in the aging brain. Taken together, our study elucidates the neural
147 mechanisms that support natural speech comprehension in noise among older adults.
148 It highlights the critical role of the prefrontal cortex in the cognitive preservation of
149 speech(-in-noise) comprehension ability, shedding lights on potential interventions to
150 promote successful cognitive aging.

151

152 **Results**

153 **Noise impacts old listener's perception and speech comprehension**

154 Figure 1A illustrates the experimental design of this study. A group of older adults
155 with normal or close-to-normal hearing threshold were recruited to listen to narratives
156 pre-recorded from a group of younger speakers (35). The listener's experiment was
157 conducted separately after the speaker's experiment, for the convenience of
158 controlling the speaking quality of speakers and incorporating noise into the speaker's
159 narrative audios (33, 35, 36). The neural activities from the speakers and the listeners
160 were measured by fNIRS with the same coverage of brain regions, including
161 prefrontal cortex and classical language regions (Figure 1B, see Methods for more
162 details). The listeners' subjective ratings of the narratives' clarity and intelligibility
163 and their comprehension scores were collected. Results are shown in Figure 2A. The
164 repeated-measures analysis of variance (rmANOVA) revealed that noise level
165 significantly affected the old listeners' perception and comprehension to the speech
166 (clarity: $F(3, 84) = 76.17, p < .001$, partial $\eta^2 = .73$; intelligibility: $F(3, 84) = 51.15, p$
167 $< .001$, partial $\eta^2 = .65$; comprehension: $F(3, 84) = 19.69, p < .001$, partial $\eta^2 = .41$).

168 Post hoc analysis showed that, for the clarity and the intelligibility ratings, all
169 pairwise comparisons between noise levels were significant (post hoc *t*-test, $ps < .001$,
170 corrected by false discovery rate (FDR), (37)), with a lower rating when noise
171 increased. For the comprehension score, except for the comparison between NN and 2
172 dB (post hoc *t*-test, $p > .999$), the other pairwise comparisons were significant (post
173 hoc *t*-test, $ps < .05$, FDR corrected). Notably, the comprehension scores of all the
174 listeners are substantially higher than the random level (25%) in all conditions. Even
175 in the strongest noise level (-9 dB), the average score was $65.3 \pm 2.6\%$ (mean \pm SE),
176 suggesting a pretty good preservation of speech-in-noise comprehension ability for
177 the old listeners in this study.

178 To examine the relationship between the perceptual ratings and comprehension
179 performance, the correlation coefficients were computed across these behavioral
180 measures. Results showed that the average ratings of clarity and intelligibility was
181 significantly correlated (Spearman $r = .40$, $p = .03$). In contrast, the correlation
182 between these two ratings and the comprehension score was not significant ($ps > .23$),
183 suggesting a dissociation between the old listener's subjective percept and the actual
184 comprehension of speech. Besides, no significant correlation between these
185 behavioral measures and the old listener's hearing thresholds was found ($ps > .14$).

186

187 **Old listener's neural activities are coupled to the speaker**

188 To examine how old listener's neural activities were coupled to the speaker, we
189 conducted an rmANOVA on the speaker-listener neural coupling for all four noise
190 levels and the resting-state baseline. This allowed to test for significant differences in
191 neural coupling between any of the noise levels and the baseline as well as significant
192 differences in coupling strength across different noise levels. A non-parametric
193 cluster-based method (see Methods for more details) identified 57 clusters where
194 speaker-listener neural coupling differed among the five conditions. These clusters
195 covered the bilateral superior temporal gyrus (STG), middle temporal gyrus (MTG)
196 (CH19/21/29/31) and right inferior frontal gyrus (IFG) (CH27) at the speaker's side,
197 which were likely to be speech-production-related brain regions (32, 38). At the

198 listener's side, the clusters covered an extensive range of brain regions, including the
199 wide range of the prefrontal cortex (CH2, CH5-16) and the classical language regions.
200 Based on the anatomical localization and functional organization within the language
201 network (35, 36, 39, 40), these language regions were divided into ventral language
202 regions, including right STG, MTG (CH29/31/35), bilateral inferior parietal lobe (IPL,
203 CH23/24/26/33/34/36), and dorsal language regions, including bilateral IFG
204 (CH17/27), bilateral pre- and post-central gyrus (pre-/postCG, CH18/20/22/28/30/31).
205 The channel and localization of these channel combinations are shown in Figure 3A
206 and S1A. The strength of the neural coupling for each cluster is shown in Figure S2.
207 For all these clusters, the frequency band was around 0.01-0.03 Hz, as shown in
208 Figure S1B. It was in the same frequency band as discovered in our previous studies
209 on young listeners (35, 36). The specific information of all the clusters, including the
210 channels of speaker and listener, frequency band, and cluster-level statistics, are listed
211 in Table S1.
212 Based on the brain region at the listener's side, these inter-brain clusters were grouped
213 into three patterns (Figure 3A), i.e., O-Prefrontal (prefrontal cortex, "O" refers to
214 clusters from the old listeners), O-Ventral (ventral language regions) and O-Dorsal
215 (dorsal language regions). The neural coupling for these three inter-brain patterns was
216 derived by averaging the coupling values across clusters within the same group. These
217 results at the pattern level are illustrated in Figure 3C. Post hoc analysis showed that
218 for all of these three patterns, the neural coupling at the four noise levels were
219 significantly higher than the resting-state condition (post hoc *t*-test, $ps < .05$, FDR
220 corrected), indicating that the neural activities of old listeners were significantly
221 coupled to the speaker in both quiet and noisy conditions. Besides, the neural
222 coupling of the O-Prefrontal pattern at NN is higher than -9 dB (post hoc *t*-test, p
223 = .016, FDR corrected), and marginally higher than that at 2 dB and -6 dB (post hoc *t*-
224 test, $ps = .052, .052$, FDR corrected), suggesting its sensitivity to the appearance of
225 background noise. However, no significant difference was observed between the
226 neural coupling of the O-Prefrontal pattern and that from the O-Ventral or O-Dorsal
227 patterns, even in the noisy conditions ($ps > .10$, FDR corrected).

228

229 **Distinct inter-brain neural patterns between old listeners and young listeners**

230 To explore how age influenced the neural mechanisms of speech-in-noise processing,
231 we compared the speaker-listener neural coupling of the old listeners to a group of
232 young participants (Figure 3B) who listened to the same narratives (35). As illustrated
233 in Figure 3A/B, the inter-brain neural patterns of the young listeners differed from
234 that of the old listeners. As compared to the old listeners, the inter-brain neural
235 patterns of the young listeners did not engage the prefrontal cortex, and only covered
236 a few brain regions in the ventral language regions (CH33/35/36, right MTG/IPL) and
237 the dorsal language regions (CH17, left IFG). In contrast, they covered extensive
238 brain regions at the speaker's side, involving the prefrontal cortex and a broad
239 coverage of ventral and dorsal language regions. These clusters were also grouped
240 into two patterns and named as Y-Ventral and Y-Dorsal, respectively ("Y" refers to
241 clusters from young listeners, to distinguish them from the patterns of the old
242 listeners), based on their anatomical location at the listener's side. The information of
243 the young listeners' clusters is listed in Table S2.

244 We also examined whether the neural coupling from the Y-Ventral and Y-Dorsal
245 patterns was significant in the old listeners (Figure 3C). Results showed that for the Y-
246 Ventral pattern, the neural coupling at NN and +2 dB was higher than that of the
247 resting-state (Paired samples *t*-test, $ts = 2.25, 3.48$; $ps = .032, .005$, FDR corrected;
248 Cohen's $ds = 0.42, 0.65$), -6 dB and -9 dB was marginally higher than the resting-state
249 (Paired samples *t*-test, $ts = 1.77, 1.57$; $ps = .054, .063$, FDR corrected; Cohen's $ds =$
250 $0.33, 0.29$). For the Y-Dorsal pattern, the neural coupling at NN and -9 dB was higher
251 than that of the resting-state (Paired samples *t*-test, $ts = 3.16, 3.17$; $ps = .005, .005$,
252 FDR corrected; Cohen's $ds = 0.59, 0.59$), +2 dB and -6 dB were marginally higher
253 than resting-state (Paired samples *t*-test, $ts = 1.83, 1.73$; $ps = .054, .054$, FDR
254 corrected; Cohen's $ds = 0.34, 0.32$). For the young listeners, the significance of neural
255 coupling at O-Prefrontal, O-Ventral and O-Dorsal patterns was also examined. As
256 shown in Figure S3, their neural coupling in all the four noise levels was significantly
257 higher than that of the resting-state baseline (Paired samples *t*-test, $ts > 3.00$; $ps < .05$,

258 FDR corrected; Cohen's $ds > 0.91$).

259 To examine the specificity of these neural patterns for particular listener groups, we
260 compared the strength of these inter-brain neural coupling between the old and the
261 young listeners. The coherence of the resting-state baseline was first subtracted from
262 that of the four noise levels, and then devoted to a two-way mixed-design ANOVA
263 (between-participant factor: listener group/age; within-participant factor: SNR) to
264 analyze how age impacted the neural coupling. Results showed that, for all the five
265 patterns, the main effect of listener group was significant ($Fs > 4.11$, $ps < .05$, FDR
266 corrected). For the O-Prefrontal, O-Ventral and O-Dorsal patterns, the neural coupling
267 of the old listener was significantly higher than that of young listener. In contrast, for
268 the Y-Ventral and Y-Dorsal patterns, the neural coupling of the young listener was
269 significantly higher than that of the old listener. The main effect of SNR and the
270 interaction effect between the listener group and SNR were not significant ($Fs < 1.84$,
271 $ps > .14$). The group comparisons of the neural coupling are shown in Figure S4.

272 Furthermore, we compared the inter-brain neural coupling between two types of inter-
273 brain neural patterns (O-Prefrontal/Ventral/Dorsal vs. Y-Ventral/Dorsal). A two-way
274 rmANOVA (within-participant factors: inter-brain pattern, SNR) was conducted for
275 each listener group. Results showed that the main effect of the inter-brain pattern was
276 significant for both listener groups (old listener: $F(4, 112) = 16.46$, $p < .001$; young
277 listener: $F(4, 56) = 4.51$, $p = .003$). Post hoc analysis further showed that, for the old
278 listeners, the neural coupling from the O-Prefrontal, O-Ventral and O-Dorsal patterns
279 was significantly higher than that from both the Y-Ventral and Y-Dorsal patterns (post
280 hoc t -test, $ps < .05$, FDR corrected). In contrast, for the young listeners, the neural
281 coupling from the O-Prefrontal, O-Ventral and O-Dorsal patterns was significantly
282 lower than that from the Y-Dorsal pattern (post hoc t -test, $ps = .040, .003, .007$, FDR
283 corrected), but not the Y-Ventral pattern (post hoc t -test, $ps > .05$, FDR corrected). The
284 main effect of SNR and interaction effect between inter-brain pattern and SNR were
285 not significant ($Fs < 1.56$, uncorrected $ps > .10$). These findings suggested distinct
286 inter-brain neural patterns for speech(-in-noise) processing in the old versus young
287 listeners.

288

289 **Inter-brain neural coupling from prefrontal cortex correlates with old listener's**
290 **comprehension under noisy conditions**

291 To examine the behavioral relevance of the speaker-listener neural coupling, a
292 correlation analysis was performed between the old listeners' speech comprehension
293 scores and their neural coupling. The analysis was conducted both at the cluster level
294 (Figure 4A) and at the pattern level (Figure 4B). At the cluster level, these *r*-values
295 were computed for each cluster, and then Fisher- *z* transformed. These *r*-values were
296 then devoted to a one-sample *t*-test to examine their significance in each noise level,
297 and further compared between different noise levels to examine the effects of noise.
298 At the pattern level, the correlation between the average neural coupling of all clusters
299 for one particular inter-brain neural pattern and comprehension score was computed.
300 For the O-Prefrontal pattern, significant correlation was observed in the moderate or
301 strong noise level. At the cluster level, the *r*-values were significant at -6 dB and -9
302 dB (One sample *t*-test, *ts* = 5.84, 4.14; *ps* < .001, FDR corrected; Cohen's *ds* = 1.12,
303 0.80), but not at NN and +2 dB (*ps* > .26). The pairwise *t*-test further showed that the
304 *r*-values at NN were lower than those at the other three conditions (Paired samples *t*-
305 test, *ts* < -3.21; *ps* < .05, FDR corrected; Cohen's *ds* > 0.61), and the *r*-values at +2 dB
306 were lower than those at -6 dB and -9 dB (Paired samples *t*-test, *ts* = -2.60, -2.06; *ps*
307 = .023, .059, FDR corrected; Cohen's *ds* = 0.50, 0.40). At the pattern level, the
308 correlation between the neural coupling of the O-Prefrontal pattern and the
309 comprehension score was significant at -6 dB and -9 dB (Spearman *rs* = .39, .37; *ps*
310 = .035, .047, uncorrected), but not at NN and +2 dB (*ps* > .39).

311 For the O-Ventral pattern, significant correlation results were mainly observed in the
312 moderate noise level. At the cluster level, the *r*-values were significant at -6 dB and -9
313 dB (One sample *t*-test, *ts* = 3.92, 3.89; *ps* = .001, .001, FDR corrected; Cohen's *ds* =
314 0.92, 0.91), but not at NN and +2 dB (*ps* > .13). However, no significant results were
315 found when comparing the results between any noise levels (*ps* > .07, FDR corrected).
316 At the pattern level, the correlational relationship between the average neural coupling
317 of the O-Ventral pattern and comprehension was only significant at -6 dB (Spearman *r*

318 = .49, $p = .007$, uncorrected), but not in the other three conditions ($ps > .12$).
319 For the O-Dorsal and Y-Ventral patterns, no significant results were found at the
320 cluster level ($ps > .10$, FDR corrected) or at the pattern level ($ps > .10$). For the Y-
321 Dorsal pattern, at the cluster level, the r -values at NN and -6 dB were higher than
322 those at +2 dB and -9 dB (Paired samples t -test, $ts > 2.48$; $ps < .05$, FDR corrected;
323 Cohen's $ds > 0.64$). However, these r -values were neither significant at the cluster
324 level ($ps > .07$, FDR corrected) or at the pattern level ($ps > .10$).
325 To examine the functional role of the prefrontal cortex in younger listeners, the
326 correlation between the younger listeners' neural coupling from the O-Prefrontal
327 pattern and speech comprehension scores were also analyzed (Figure 4C). At the
328 cluster level, r -values at +2 dB were higher than those at the other three conditions
329 (Paired samples t -test, $ts > -2.55$; $ps < .05$, FDR corrected; Cohen's $ds > 0.66$), and r -
330 values at NN were lower than -6 dB (Paired samples t -test, $t = -3.21$; $p = .025$, FDR
331 corrected; Cohen's $d = 0.49$). However, these correlations were neither significant at
332 the cluster level ($ps > .11$, FDR corrected) or at the pattern level ($ps > .29$). In contrast,
333 the young listener's speech comprehension score was associated with the neural
334 coupling from the Y-Dorsal at both the cluster level and the pattern level (35), as
335 shown in Figure 4C.

336

337 **Neural coupling from prefrontal cortex integrates with language regions in old 338 listener**

339 To figure out how the prefrontal cortex was functionally connected with the language
340 regions within the aging brain, the Spearman correlation between the neural coupling
341 from these regions was computed under various noise levels and for both the old
342 versus young listeners. For the old listeners, the inter-brain neural patterns of the O-
343 Prefrontal, O-Ventral and O-Dorsal patterns were interconnected. At all the four noise
344 levels, the neural coupling from the O-Prefrontal pattern was positively correlated
345 with that from the O-Ventral pattern (Spearman $rs = .45, .48, .38, .58$; ps
346 = .014, .008, .043, .001, FDR corrected), and the O-Dorsal pattern (Spearman $rs =$
347 .50, .51, .43, .38; $ps = .006, .006, .022, .042$, FDR corrected). The coupling strength

348 from the O-Ventral pattern was also positively correlated with the that from the O-
349 Dorsal pattern in all the four noise levels (Spearman $rs = .76, .69, .46, .43$; $ps < .001$,
350 $< .001, .013, .021$, FDR corrected). These results suggested a close within-network
351 connectivity of the language regions and the possible integration of the prefrontal
352 cortex into the language network in older adults (Figure 5A/B).

353 For the young listeners, the neural coupling from the O-Ventral and the O-Dorsal
354 patterns was also correlated at all the four noise levels (Spearman rs
355 $= .69, .72, .87, .61$; $ps = .006, .004, < .001, .018$, FDR corrected). However, the neural
356 coupling from the O-Prefrontal pattern was only correlated with that from the O-
357 Ventral and O-Dorsal patterns at -6 dB (Spearman $rs = .65, .87$; $ps = .005, .010$, FDR
358 corrected), but not at the other noise levels ($ps > .05$, FDR corrected). These results
359 indicated the prefrontal cortex might be less connected to the classical language
360 regions for the young listeners. Interestingly, for both the old listeners or the young
361 listeners, the correlation between the neural coupling from the Y-Ventral and the Y-
362 Dorsal patterns were not significant at any noise levels ($ps > .05$, FDR corrected).

363 Besides, we also observed some correlation across two types of inter-brain neural
364 patterns (Figure S5). For the old listeners, the neural coupling from the Y-Ventral
365 pattern was positively correlated with that from the O-Prefrontal pattern at +2 dB
366 (Spearman $r = .44$, $p = .048$, FDR corrected), and the O-Ventral pattern at NN and +2
367 dB (Spearman $rs = .37, .44$; $ps = .017, .017$, FDR corrected). The neural coupling
368 from the O-Dorsal was negatively correlated with that from the Y-Dorsal pattern
369 (Spearman $r = -.51$, $p = .006$, FDR corrected). For the young listeners, the neural
370 coupling from the Y-Ventral pattern was correlated with that from the O-Ventral
371 pattern at NN and -9 dB (Spearman $rs = .53, .54$; $ps = .045, .042$, FDR corrected), and
372 the O-Dorsal pattern at -6 dB (Spearman $r = .60$, $p = .021$, FDR corrected). The neural
373 coupling from the Y-Dorsal pattern was correlated with that from both the O-
374 Prefrontal and O-Ventral patterns at NN (Spearman $rs = .57, .54$; $ps = .030, .042$, FDR
375 corrected). These results might reflect a complex relationship between the two types
376 of the inter-brain neural patterns.

377

378 **Single-brain activation from prefrontal cortex correlates with old listener's**
379 **speech-in-noise comprehension**

380 To have a comprehensive understand the mechanism and function of the prefrontal
381 cortex and language-related regions within the aging brain, a single-brain neural
382 activation analysis was performed in addition to the inter-brain analyses. As shown in
383 Figure S6, significant activation was observed in both quiet and noisy conditions. The
384 prefrontal cortex was significantly activated at NN, +2 dB and -9 dB ($ps < .001$,
385 $< .001, = .001$, FDR corrected), and marginally significant at -6 dB ($p = .073$, FDR
386 corrected). The ventral and dorsal language regions were all significantly activated in
387 all the four noise levels ($ps < .05$, FDR corrected). No difference was found when
388 comparing the neural activations in difference noise levels ($ps > .18$). The neural
389 activation of the old listeners was further compared to that of the young listeners
390 (Figure S7). No significant result was observed in any brain regions and in any noise
391 level ($ps > .18$, FDR corrected).

392 A correlation analysis was conducted to explore the relationship between the old
393 listener's brain activation and speech comprehension performance. As shown in
394 Figure 5B, the activation of prefrontal cortex and ventral language regions were
395 positively correlated with comprehension score at -9 dB (Spearman $rs = .38, .38; ps$
396 $= .041, .045$, uncorrected). The correlations in the other noise levels and in the dorsal
397 language regions were not significant ($ps > .15$). Given that both the inter-brain neural
398 coupling and single-brain activation of prefrontal cortex correlated with the
399 comprehension performance when noise became strong (-9 dB), we analyzed their
400 correlational relationship to further examine whether a high coupling of the old
401 listeners related to a high activation within the corresponding brain region. This
402 correlation result was not significant (Spearman $r = .03, p = .86$). The correlation in
403 various noise levels and from other brain regions are further shown in Figure S8.

404

405 **Discussion**

406 This study utilized an inter-brain neuroscience approach to investigate the neural

407 mechanisms of natural speech-in-noise comprehension among the older adults.
408 Through an analysis of speaker-listener neural coupling, we discovered that the neural
409 activities of old listeners from many brain regions in the prefrontal cortex and
410 classical language networks were coupled with the neural activities of the speaker.
411 Compared to the young listeners, the neural coupling of the old listeners engaged
412 more extensive brain regions, particularly in the prefrontal cortex. Besides, the neural
413 coupling from the prefrontal cortex was reliably correlated to that from the language-
414 related regions across different noise levels, which was not observed in young
415 listeners. These results imply that older adults engage and integrate more
416 neurocognitive resources from the prefrontal cortex to facilitate their natural speech
417 processing in noisy environments. More importantly, the old listener's speech
418 comprehension performance was more closely associated with the neural coupling in
419 prefrontal cortex as background noise increased, highlighting the functional role of
420 the prefrontal cortex for older adults to maintain their speech comprehension under
421 more acoustically challenging scenarios. In conclusion, this study examined how the
422 aging brain processed natural speech in noise, and highlighted the compensatory
423 mechanism centered around the prefrontal cortex for supporting the cognitive
424 preservation of speech ability in older adults.

425 This study elucidates how different brain regions are involved during speech-in-noise
426 processing in older adults. Our findings showed that the old listeners' neural activities
427 across a wide range of brain regions and in both hemispheres were coupled to the
428 speaker. Specifically, the older listeners not only recruited brain regions within the
429 classical language networks but also additionally engaged the prefrontal cortex to
430 facilitate speech processing. Furthermore, the neural coupling in the older listeners
431 extended beyond the language-dominant hemisphere (i.e., the left hemisphere) to
432 include homologous regions in the right hemisphere (41-43). It contrasts with the
433 more localized neural coupling observed in young listeners, which only involved a
434 few critical brain hubs in the language networks (35, 36). This evidence supports both
435 the neural reserve hypothesis, which presumes the existence of resilience and resource
436 redundancy within the primary functional network to adapt to aging or pathology (3, 4,

437 6), and neural compensation hypothesis, which proposes the involvement of
438 additional brain regions or circuits for facilitating cognitive maintenance (3, 4, 10).
439 Notably, the neural coupling observed in older listeners remained robust in both quiet
440 and noisy conditions, indicating that the prefrontal cortex and language networks can
441 consistently contribute to speech processing across diverse listening environments.
442 Likewise, the older listeners in this study also exhibited a relatively stable
443 comprehension performance in noisy conditions. The stability of both the neural
444 coupling and the comprehension performance suggests that the neural mechanisms
445 supporting speech processing in the aging brain may be resilient to varying levels of
446 environmental noise.

447 More importantly, this study highlights the functional role of the prefrontal cortex in
448 older adults. Although prior studies have widely reported the activation of the
449 prefrontal cortex during speech processing in older adults (2, 11, 22, 41), its specific
450 contribution to the preservation of speech functions remains controversial. Drawing
451 on the neural compensation hypothesis, the older adult's speech performance would
452 be more closely associated with the neural response within the prefrontal cortex,
453 particularly under noisy conditions with a heightened cognitive demand (3, 4, 10).
454 Our findings provide the first empirical evidence for this hypothesis by showing that
455 the speech comprehension performance of the old listeners was more closely
456 correlated with the neural coupling from prefrontal cortex as the noise increased.
457 Meanwhile, we also observed a significant correlation between the older adults'
458 speech performance and the neural coupling from the ventral language regions.
459 However, it was only observed at moderate noise level, not at high noise level. This
460 indicates that while the language network's functionality is preserved in the aging
461 brain, its adaptability is limited (3, 4). Consequently, older adults may rely on
462 compensatory recruitment of resources beyond the language network to meet the
463 cognitive challenges of increasing age or more complex tasks, such as increasing
464 background noise intensity. Taken together, these findings highlight the importance of
465 the neural compensation based on the prefrontal cortex for older adults to adapt to
466 various noise conditions. Our results align with and extend existing theories that

467 emphasize the compensatory role of the frontal lobe in successful aging, such as the
468 Scaffolding Theory of Aging and Cognition (STAC) (44, 45) and the Posterior-
469 Anterior Shift in Aging (PASA) (46), by demonstrating the compensatory role of the
470 prefrontal cortex in natural speech(-in-noise) processing.

471 Our study also provides valuable insights into how the prefrontal cortex was
472 coordinated for compensation with the classical language regions within the aging
473 brain. By analyzing the correlation of speaker-listener neural couplings across various
474 brain regions, we found that within the language network, coupling between ventral
475 and dorsal language regions was consistently correlated across noise levels in both
476 young and older adults. Notably, a robust correlation between the prefrontal cortex
477 and the language network was observed exclusively in older adults, but not in young
478 adults, suggesting an enhanced connectivity to facilitate speech processing in the
479 aging brain. Our findings are consistent with existing discoveries of increasing global
480 connectivity in older adults (22, 47, 48), which is thought to reflect a neural
481 reorganization serving to offset the widespread neural deterioration (48-50). However,
482 there explanation for this age-related increase in connectivity between the prefrontal
483 cortex and the classical language network is controversial. The “interaction” view
484 posits that the prefrontal cortex is involved in domain-general processing, such as
485 inhibitory control and working memory, rather than language-specific functions,
486 supported by evidence that its neural activity does not encode specific language or
487 speech information (20, 21). Conversely, the “integration” perspective suggests that
488 the prefrontal cortex acts as an extension of the language network following neural
489 reorganization in the aging brain. Our study provides partial support for the
490 integration perspective by showing that neural activities from both the prefrontal
491 cortex and the language network are coupled to the same neural activities at the
492 speaker’s side. This indicates that the prefrontal cortex may be involved in similar
493 speech processing activities as the language network. Nevertheless, this debate
494 remains unresolved and requires further research.

495 Interestingly, while some existing studies have found a relationship between the old
496 listeners' speech-in-noise ability and neural responses from the dorsal language

497 regions, this relationship was not observed in our study. One possible explanation for
498 this discrepancy may lie in the more naturalistic speech material used in our study.
499 Most previous studies have used simplified language materials, such as syllables or
500 words (2, 11, 22, 41, 51), which cannot fully capture how the brain processed natural
501 speech, such as narratives or stories, in more realistic settings. In particular, the dorsal
502 language regions could facilitate the speech-in-noise processing by generating an
503 internal representation of speech (52, 53), e.g., enabling the clear phonological
504 structures of the noise-masked speech by referring to pre-acquired phonological
505 knowledge (54). Despite the essential role of dorsal language regions in identifying
506 phonological units under noisy conditions (9, 55), the comprehension of natural
507 speech is more closely associated with the processing of content and contextual
508 information, especially for the older adults with a poor hearing ability (56). In this
509 way, as found in our study, the natural speech-in-noise comprehension ability of older
510 adults may be more closely related to brain regions responsible for processing
511 meaning or content, which are predominantly located in ventral language regions as
512 well as the prefrontal cortex, rather than the dorsal language regions (57). This
513 discrepancy between our study and previous studies also highlights the importance of
514 employing more naturalistic paradigms to understand the behavior, cognition and
515 brain function of older adults in everyday settings.

516 It should be noted that neither the neural reserve nor neural compensation can fully
517 restore the cognitive ability of older adults to the levels of young adults (3, 4).
518 Actually, the additional cognitive or neural resources recruited reflect a reduced
519 computational efficiency in the aging brain (19, 58). This study provides evidence for
520 this from the inter-brain neural patterns observed on the speaker's side. While the old
521 listeners recruit a wide range of brain regions than the young listeners, their neural
522 coupling at the speaker's brain is limited to a smaller set of regions. Conversely,
523 young listeners demonstrate neural coupling with a more extensive network of regions
524 within the speaker's brain, including bilateral temporo-parietal cortex and prefrontal
525 cortex. The neural coupling between speakers and listeners from specific brain
526 regions reflects the specific speech processing (29, 59). For example, coupling from

527 the primary auditory cortex is associated with early acoustic processing (32), whereas
528 coupling from higher-level regions like the posterior temporal lobe and frontal cortex
529 is associated with more complex processes such as semantic and contextual
530 interpretation (29). Therefore, given the inter-brain neural patterns showing limited
531 coverage on the speaker's side but extensive engagement of various brain regions on
532 the listener's side, our study indicates that older adults may have a diminished
533 capacity for high-level speech processing and potentially low computational
534 efficiency in the brain.

535 In addition to examining speaker-listener neural coupling, this study also analyzed
536 neural activation in various brain regions. Both the prefrontal cortex and language-
537 related regions exhibited significant activation across different noise levels.
538 Importantly, similar to the findings from the neural coupling analysis, the neural
539 activities from the prefrontal cortex and ventral language regions were positively
540 correlated with speech comprehension performance. However, the correlation
541 between the strength of speaker-listener neural coupling and neural activation was not
542 significant, suggesting a dissociation between the specific speech processing within
543 individual brain regions and the extent of their involvement. Neural coupling and
544 neural activation capture speech-related neural responses in two different dimensions.
545 Neural coupling focuses on the temporal dynamics of the listener's neural activity,
546 using the speaker's brain as a reference, which may better capture the dynamic
547 processing of natural speech. In contrast, neural activation emphasizes the amplitude
548 of neural activity, which may reflect the engagement level of individual brain regions.
549 Therefore, the analysis of speaker-listener neural coupling and single-brain neural
550 activation can serve as complementary approaches (33). Future research could further
551 explore the relationship between these two metrics and consider combining them to
552 more fully elucidate the neural basis of speech processing in the brain.

553 In conclusion, the present study has revealed how natural speech is processed within
554 the aging brain and has highlighted the compensatory role of the prefrontal cortex in
555 preserving the speech-in-noise comprehension ability in older adults. Future studies
556 could build upon our findings in the following aspects. Firstly, this study focused

557 exclusively on healthy aging adults with normal hearing thresholds and good
558 cognitive abilities. However, the old adult population exhibits significant
559 heterogeneity across a broader age range (60, 61), regarding diverse hearing loss or
560 impairments (62, 63), varying language experience (64), education backgrounds (65)
561 and other traits. These variables can profoundly influence the structure, function, and
562 (re)organization of the aging brain. To obtain a more comprehensive understanding of
563 how the aging brain processes speech in noise, future studies could recruit different
564 groups of older adults and further compare their neural responses during speech-in-
565 noise comprehension. Secondly, this study identified and organized the speaker-
566 listener neural coupling patterns based on the anatomical structure at the listener's
567 side. The recent development of advanced mathematical methodologies, e.g., dynamic
568 inter-brain synchrony state analysis (66), offered a data-driven approach to define the
569 inter-brain neural patterns. Future studies could adopt these techniques for a
570 hypothesis-free exploration of inter-brain neural patterns (67). This could also help to
571 better understand the functional organization of these brain regions. Thirdly, future
572 studies could model speaker-listener neural coupling with multi-level features of
573 speaker's speech, e.g., acoustics and semantics, to further identify the computational
574 processes underlying these compensatory inter-brain neural mechanisms. These
575 speech features could be either modelled to the speaker's or listener's neural
576 responses (38) or directly modelled to the temporal dynamics of speaker-listener
577 neural coupling (68). This approach would provide further insights into the specific
578 computational processing behind those age-related compensatory neural coupling.
579 Lastly, while the present study indicated the compensatory role of the prefrontal
580 cortex in older adults' speech-in-noise comprehension ability, it remains to be
581 explored whether this mechanism also supports or, conversely, hinders cognitive
582 abilities in other domains. In particular, it has recently been proposed that neural
583 resources may be deployed for enhancing the cognitive function in one area, e.g., the
584 age-enhanced involvement of prefrontal cortex in speech-in-noise processing,
585 reducing their availability for other cognitive functions (69). Hence, to thoroughly
586 examine the role of the prefrontal cortex in cognitive preservation (or decline) during

587 age, future research might incorporate and analyze a broader spectrum of cognitive
588 tasks. This would enable a more nuanced view of the cognitive and neural alterations
589 in older adults.

590

591 **Methods**

592 **Participants**

593 Thirty older adults (15 males, 15 females; age 59 to 71 years old) participated in the
594 study. The sample size was determined by a prior power analysis using G*Power (70),
595 with the repeated measures *F*-test was employed (number of measurements = 4). The
596 effect size was designed at the medium level of 0.25. The significance level (alpha)
597 was set as 0.05, and the power was set as 0.9. All participants were native Chinese
598 speakers, right-handed, and had an educational level equivalent to or higher than high
599 school, ensuring basic reading proficiency. All participant passed the Chinese version
600 of the Mini-Mental State Examination (MMSE) (> 26 scores). Based on the definition
601 of hearing loss (World Report on Hearing by WHO,
602 <https://www.who.int/publications/i/item/9789240020481>), one female participant was
603 excluded due to a mild to moderate hearing loss as assessed by pure-tone audiometry
604 (34 dB hearing level, average pure tone threshold between 500 and 4000 Hz). For the
605 remaining twenty-nine participants, twenty-seven of them have a normal hearing
606 threshold (≤ 20 dB), the rest two of them have a close-to-normal hearing threshold (22,
607 23 dB). Figure 2B shows the group average and standard deviation of their hearing
608 levels.

609 The study was conducted in accordance with the Declaration of Helsinki and was
610 approved by the local Ethics Committee of Tsinghua University and the Institutional
611 Review Board of the Beijing Institute of Otolaryngology and Beijing Tongren
612 Hospital. All participants provided written informed consent prior to the experiment.

613

614 **Experimental Design**

615 The experimental design is illustrated in Figure 1A. The old listeners were instructed

616 to listen to pre-recorded narrative audios under various noise conditions. These
617 narratives were spoken by a group of young speakers, which were from our previous
618 study (35). Both the neural activities of the old listeners and the young speakers were
619 measured by fNIRS.

620

621 *Stimuli*

622 Each participant listened to sixteen narratives, with each lasting for 85 to 90 seconds.
623 These narratives were about daily topics that were adapted from the National
624 Mandarin Proficiency Test, such as favorite movies or travelling experiences. The
625 narratives were spoken by four young adults (2 males, 2 females; 21 to 25 years old),
626 all of whom were native Chinese speakers with professional training in broadcasting
627 and hosting. Two of them (one male, one female) contributed five stories each, and
628 two speakers (one male, one female) contributed three stories each. All narratives
629 were about the speaker's personal experiences, which were unfamiliar to the listeners.
630 These audios were recorded by a regular microphone at a sampling rate of 44,100 Hz
631 in a sound-attenuated room, and were then resampled to the 48,000 Hz to align with
632 the speaker's output frequency for this study.

633 Narrative audios were added with meaningless broadband white noise. For each
634 listener, they were processed into one of four noise levels: no noise (NN) level and
635 three noisy levels with the signal-to-noise ratio (SNR) of +2 dB, -6 dB, and -9 dB.
636 Each noise level included four narratives. All processed audios were normalized for
637 the average root mean square sound pressure level (SPL). For each narrative, four
638 four-choice questions regarding narrative content were prepared to evaluate the
639 listener's comprehension performance. For example, one question was, "What is the
640 relationship between the speaker and her friend? (· · 人和朋友是什 · · 系)" and
641 the four choices were 1) teacher-student, 2) cousins, 3) neighbors, and 4) roommates
642 (1. · 生 · 系, 2. 姐妹 · 系, 3. · 居 · 系, and 4. 室友 · 系).

643

644 *Experimental Procedure*

645 The listener's experiment was carried out in a sound-attenuated room. Sixteen

646 narratives are structured into sixteen trials, with one narrative in each trial. During
647 each trial, participants listened to one narrative under one of the four noise levels.
648 After listening, they rated the clarity and intelligibility of the audio using a 7-point
649 Likert scale, and completed a comprehension test based on the four choice questions.
650 The comprehension score was calculated as the accuracy of these questions. Then,
651 they could arrange a rest for a minimum of 10 seconds before proceeding to the next
652 trial. One practice trial was conducted using an additional speech audio stimulus at -2
653 dB SNR level.

654 Before the task session, there is a 3-min resting-state session. Participants were
655 instructed to get relaxed with their eyes closed. This resting-state session serves as the
656 baseline for task session.

657

658 *Neural measurement*

659 The listeners' neural activities were recorded from 36 channels using an fNIRS
660 system (NirScan Inc., HuiChuang, Beijing). The fNIRS signals were collected at a
661 sampling rate of 11 Hz, utilizing near-infrared light of two different wavelengths (730
662 and 850 nm). The concentration change of oxy-hemoglobin (HbO) and deoxy-
663 hemoglobin (HbR) for each channel was then obtained based on the modified Beer–
664 Lambert law.

665 Three sets of optode probes were positioned to cover the prefrontal cortex and
666 bilateral inferior frontal, pre- and post-central, inferior parietal, middle and superior
667 temporal gyrus, etc. As shown in Figure 1B, the positions of CH21 and CH31 were
668 aligned with T3 and T4, respectively, as per the international 10-20 system. The
669 central point of the prefrontal probe set was placed at the FPz position. To obtain a
670 probabilistic reference to specific cortical region for each fNIRS channel, the
671 topographic data was mapped onto a standardized MNI-space (Montreal Neurological
672 Institute) (71, 72) by using NIRS_SPM (73). The MNI coordinates and anatomical
673 labels for each channel are listed in Table S3.

674

675 *Neural data of speaker and young listeners*

676 The neural data of the speakers and a group of young listeners were from our previous
677 study (35). The speakers' neural activities were recorded from the same coverage of
678 brain regions, but by another fNIRS system (NirScan Inc., HuiChuang, Beijing) with
679 a sampling rate of 12 Hz and using near-infrared light at three different wavelengths
680 (785, 808, and 850 nm). These data were downsampled to 11 Hz to match the
681 sampling rate of the old listener in this study.

682 The young listeners comprised fifteen young adults (7 males, 8 females; ages 18 to 24
683 years old). Their neural signals were obtained using the same fNIRS system, with the
684 same brain coverage as the speakers. The experimental design for the young listeners
685 were the same as that for old listeners in this study. However, they listened to a larger
686 number of narratives (thirty-two narratives, with eight narratives in each noise level).
687 Only neural data from the same sixteen narratives as used in this study were selected
688 for the comparison between the young listeners versus the old listeners.

689

690 **Data analysis**

691 *Preprocessing*

692 A two-step preprocessing method based on HoMER2 software package (74) was
693 employed to remove possible motion artifacts. The first step utilized an algorithm
694 grounded in target principal component analysis (function:
695 `hmrMotionCorrectPCArecuse`; input parameters: `tMotion = 0.5`, `tMask = 1`,
696 `STDthresh = 30`, `AMPthresh = 0.5`, `nSV = 0.97`, `maxIter = 5`). This algorithm
697 discerned artifact-associated principal components and then reconstructed the cleaned
698 signals using the remaining components (75). Subsequently, the second step adopted a
699 linear interpolation method (76), which identified the motion artifacts based on a
700 predetermined threshold (function: `hmrMotionArtifactByChannel`; input parameters:
701 `tMotion = 0.5`, `tMask = 1`, `STDEVthresh = 30`, `AMPthresh = 0.5`), and then corrected
702 these artifacts through cubic spline interpolation (function `hmrMotionCorrectSpline`;
703 input parameters: `p = 0.99`). The above algorithms and parameters were all in
704 consistence with that for young listeners (35).

705

706 *Inter-brain neural coupling analysis*

707 The Wavelet Transform Coherence (WTC) was employed to analyze the relationship
708 between the speaker's and listener's neural activity. WTC allows for the assessment of
709 cross-correlation between two physiological signal series across frequency and time
710 dimensions (77). Each trial during the task sessions was initially segmented and
711 further extended to a duration of 300 seconds, which included the 90-second trial and
712 two additional 105-second periods both preceding and following the trial. This
713 extension aimed to facilitate a reliable computation of inter-brain couplings across the
714 desired frequency range. WTC was computed over the 300-second fNIRS signal
715 segments from both the listener and the corresponding speaker, resulting in a
716 coherence matrix organized across time and frequency domains. In the time domain,
717 coherence values were averaged across the entire 90-second trial and subsequently
718 converted to Fisher- z values. In the frequency domain, 75 frequency bins ranging
719 from 0.01 to 0.7 Hz were selected for subsequent analysis. Frequencies outside this
720 range were excluded to mitigate aliasing of higher-frequency physiological noise, like
721 cardiac activity (~0.8–2.5 Hz), and very-low-frequency fluctuations (78). Next,
722 coherence values from four trials under the same noise levels were averaged. The
723 coherence value for the middle 90 s of the resting-state session were calculated in the
724 same way. The above calculation was conducted for all speaker-listener channel
725 combinations, creating a total of 1296 cross-channel combinations (36 channels from
726 the speaker \times 36 channels from the listener). Consequently, each listener had
727 coherence value under five different conditions, i.e., four speech conditions vs. the
728 resting-state condition, across 1296 channel combinations and 75 frequency bins
729 (0.01-0.07 Hz).

730 At the group level, a repeated-measures analysis of variance (rmANOVA) was applied
731 to examine the modulation of speech condition on the speaker-listener neural coupling
732 for each channel combination and frequency bin. A nonparametric cluster-based
733 permutation method was utilized to address the issue of multiple comparisons (79).
734 This method grouped neighboring frequency bins with uncorrected p-values below
735 0.05 into clusters and summed the F -statistics of these bins as the cluster statistic. A

736 null distribution was generated with the maximum cluster-level statistics from 1,000
737 permutations. In each permutation, the clusters were calculated with labels of different
738 trials in five conditions shuffled within each participant. Corrected *p*-values for each
739 cluster were derived by comparing the cluster-level statistics to the null distribution. A
740 cluster was significant if the *p*-value was lower than 0.05 level. For each cluster, the
741 speaker-listener neural coupling within the corresponding frequency bins were
742 averaged and subjected to further analysis.

743

744 *Comparison between old listeners and young listeners*

745 A two-factor mixed-design ANOVA (within-subject factor: noise level; between-
746 subject factor: listener group) was used to compare the speaker-listener neural
747 coupling between the old listeners and young listeners. Post hoc analysis was further
748 performed whether the main effect of listener group or the interaction effect between
749 noise level and listener group was significant.

750 Except for the clusters obtained from the old listeners, the clusters showing significant
751 speaker-listener neural coupling in the young listeners was also included into analysis.
752 These clusters centered over the listener's left IFG (CH17), right MTG and IPL
753 (CH35-36). They covered distributed brain areas at the speaker's side, including the
754 bilateral prefrontal cortex (CH4-7/9/11-12/14-15), bilateral postCG (CH22/32) and
755 bilateral IPL (CH23-24/26/30/32-34). The brain regions of these channel
756 combinations are shown in Figure 2A. The channel combination and the frequency
757 band of these clusters are listed in Table S2.

758

759 *Analysis of behavioral relevance*

760 To assess the behavioral relevance of the speaker-listener neural coupling, the
761 Spearman correlation was calculated between the coherence values and old listeners'
762 speech comprehension performance at each noise level.

763

764 *Single-brain activation analysis*

765 To better explain the mechanism of those brain regions showing significant speaker-

766 listener neural coupling, the neural activity of the brain regions was further analyzed.
767 The preprocessed fNIRS signals were first filtered to 0.01-0.03Hz, which was
768 determined by the above speaker-listener neural coupling analysis. Next, they were
769 normalized by the mean value and standard deviation from the middle 90 s of the
770 resting-state session, and then averaged over the entire 90-s duration for each trial.
771 Then, they were averaged among trials under the same noise level, and further
772 averaged among multiple channels within the same region or network, i.e., prefrontal
773 cortex, ventral language regions or dorsal language regions. Lastly, at the group level,
774 the significance and the behavioral relevance of these neural activation were
775 respectively examined by *t*-test and Spearman correlation analysis.

776

777 **Acknowledgments**

778 **Funding:** Z.D. is supported by the National Natural Science Foundation of China
779 (T2341003, 61977041), the National Natural Science Foundation of China (NSFC)
780 and the German Research Foundation (DFG) in project Crossmodal Learning (NSFC
781 62061136001/DFG TRR169-261402652-C1), the Teaching Reform Project of the
782 Instruction Committee of Psychology in Higher Education by the Ministry of
783 Education of China (20222008), and the Education Innovation Grants, Tsinghua
784 University (DX05_02). W. S. is supported by grants from High Level Public Health
785 Technical Talent Training Plan (Discipline backbone-02-42), Capital's Funds for
786 Health Improvement and Research (2024-1-1091), the National Natural Science
787 Foundation of China (82301300). A.K.E. is supported by German Research
788 Foundation (DFG) in project Crossmodal Learning (DFG TRR169-261402652-B1).

789 **Conflict of interest:** The authors declare that they have no competing interests.

790 **Author contributions:** Conceptualization: LZR, LY, ZXM, ZD, WS; Methodology:
791 LZR, LY, ZXM, KNN, ZXY, JZR, ZD, WS; Investigation: LZR, LY, ZXM, KNN,
792 ZXY, JZR; Visualization: LZR, ZD; Supervision: AKE, ZD, WS; Writing—original
793 draft: LZR, LY, ZD, WS; Writing—review & editing: LZR, LY, ZXM, AKE, ZD, WS.

794 **Data and materials availability:** All data needed to evaluate the conclusions in the

795 paper are present in the paper and/or the Supplementary Materials. Data supporting
796 this study are available at <https://doi.org/10.5061/dryad.sf7m0cgdn>

797

798 **Reference**

799 1. J. E. Peelle, A. Wingfield, The Neural Consequences of Age-Related Hearing Loss.
800 *Trends Neurosci* **39**, 486-497 (2016).

801 2. P. Tremblay, V. Brisson, I. Deschamps, Brain aging and speech perception: Effects of
802 background noise and talker variability. *Neuroimage* **227**, (2021).

803 3. D. Barulli, Y. Stern, Efficiency, capacity, compensation, maintenance, plasticity:
804 emerging concepts in cognitive reserve. *Trends Cogn Sci* **17**, 502-509 (2013).

805 4. R. Cabeza, M. Albert, S. Belleville, F. I. M. Craik, A. Duarte, C. L. Grady, U.
806 Lindenberger, L. Nyberg, D. C. Park, P. A. Reuter-Lorenz, M. D. Rugg, J. Steffener,
807 M. N. Rajah, Maintenance, reserve and compensation: the cognitive neuroscience of
808 healthy ageing. *Nat Rev Neurosci* **19**, 701-710 (2018).

809 5. M. A. Shafto, L. K. Tyler, Language in the aging brain: The network dynamics of
810 cognitive decline and preservation. *Science* **346**, 583-587 (2014).

811 6. P. J. N. Satz, Brain reserve capacity on symptom onset after brain injury: a
812 formulation and review of evidence for threshold theory. *J*, 273 (1993).

813 7. G. M. Bidelman, M. S. Mahmud, M. Yeasin, D. W. Shen, S. R. Arnott, C. Alain, Age-
814 related hearing loss increases full-brain connectivity while reversing directed signaling
815 within the dorsal-ventral pathway for speech. *Brain Struct Funct* **224**, 2661-2676
816 (2019).

817 8. Y. Liu, S. Wang, J. Lu, J. Ding, Y. Chen, L. Yang, S. Wang, Neural processing of

818 speech comprehension in noise predicts individual age using fNIRS-based brain-
819 behavior models. *Cereb Cortex* **34**, (2024).

820 9. Y. Du, B. R. Buchsbaum, C. L. Grady, C. Alain, Increased activity in frontal motor
821 cortex compensates impaired speech perception in older adults. *Nat Commun* **7**,
822 12241 (2016).

823 10. A. M. Morcom, W. Johnson, Neural reorganization and compensation in aging. *J
824 Cogn Neurosci* **27**, 1275-1285 (2015).

825 11. P. Tremblay, A. S. Dick, S. L. Small, Functional and structural aging of the speech
826 sensorimotor neural system: functional magnetic resonance imaging evidence.
827 *Neurobiol Aging* **34**, 1935-1951 (2013).

828 12. W. Kang, J. Wang, A. Malvaso, Inhibitory Control in Aging: The Compensation-
829 Related Utilization of Neural Circuits Hypothesis. *Front Aging Neurosci* **13**, 771885
830 (2021).

831 13. L. S. Hamilton, A. G. Huth, The revolution will not be controlled: natural stimuli in
832 speech neuroscience. *Lang Cogn Neurosci* **35**, 573-582 (2020).

833 14. Z. Li, D. J. C. N. Zhang, How does the human brain process noisy speech in real life?
834 Insights from the second-person neuroscience perspective. 1-12 (2023).

835 15. B. Khalighinejad, J. L. Herrero, A. D. Mehta, N. Mesgarani, Adaptation of the human
836 auditory cortex to changing background noise. *Nat Commun* **10**, 2509 (2019).

837 16. Y. Du, B. R. Buchsbaum, C. L. Grady, C. Alain, Noise differentially impacts phoneme
838 representations in the auditory and speech motor systems. *P Natl Acad Sci USA* **111**,
839 7126-7131 (2014).

840 17. J. Gao, H. Chen, M. Fang, N. Ding, Original speech and its echo are segregated and
841 separately processed in the human brain. *PLoS Biol* **22**, e3002498 (2024).

842 18. A. Wingfield, M. Grossman, Language and the aging brain: patterns of neural
843 compensation revealed by functional brain imaging. *J Neurophysiol* **96**, 2830-2839
844 (2006).

845 19. L. Aron, J. Zullo, B. A. Yankner, The adaptive aging brain. *Curr Opin Neurobiol* **72**,
846 91-100 (2022).

847 20. I. A. Blank, E. Fedorenko, Domain-General Brain Regions Do Not Track Linguistic
848 Input as Closely as Language-Selective Regions. *J Neurosci* **37**, 9999-10011 (2017).

849 21. E. Diacheck, I. Blank, M. Siegelman, J. Affourtit, E. Fedorenko, The Domain-General
850 Multiple Demand (MD) Network Does Not Support Core Aspects of Language
851 Comprehension: A Large-Scale fMRI Investigation. *J Neurosci* **40**, 4536-4550 (2020).

852 22. A. Pistono, L. Guerrier, P. Peran, M. Rafiq, M. Gimeno, C. Bezy, J. Pariente, M. Jucla,
853 Increased functional connectivity supports language performance in healthy aging
854 despite gray matter loss. *Neurobiol Aging* **98**, 52-62 (2021).

855 23. L. Marsteller, M. Williams, A. Rich, G. Savage, H. Burianova, Aging and large-scale
856 functional networks: white matter integrity, gray matter volume, and functional
857 connectivity in the resting state. *Neuroscience* **290**, 369-378 (2015).

858 24. A. C. Dieler, S. V. Tupak, A. J. Fallgatter, Functional near-infrared spectroscopy for
859 the assessment of speech related tasks. *Brain Lang* **121**, 90-109 (2012).

860 25. L. Kingsbury, W. Hong, A Multi-Brain Framework for Social Interaction. *Trends
861 Neurosci* **43**, 651-666 (2020).

862 26. Y. Farahzadi, Z. Kekecs, Towards a multi-brain framework for hypnosis: a review of
863 quantitative methods. *Am J Clin Hypn* **63**, 389-403 (2021).

864 27. E. Redcay, L. Schilbach, Using second-person neuroscience to elucidate the
865 mechanisms of social interaction. *Nat Rev Neurosci* **20**, 495-505 (2019).

866 28. S. Sonkusare, M. Breakspear, C. Guo, Naturalistic Stimuli in Neuroscience: Critically
867 Acclaimed. *Trends Cogn Sci* **23**, 699-714 (2019).

868 29. L. Schoot, P. Hagoort, K. Segaert, What can we learn from a two-brain approach to
869 verbal interaction? *Neurosci Biobehav Rev* **68**, 454-459 (2016).

870 30. B. A. Kelsen, A. Sumich, N. Kasabov, S. H. Y. Liang, G. Y. Wang, What has social
871 neuroscience learned from hyperscanning studies of spoken communication? A
872 systematic review. *Neurosci Biobehav Rev* **132**, 1249-1262 (2022).

873 31. J. Jiang, L. Zheng, C. Lu, A hierarchical model for interpersonal verbal
874 communication. *Soc Cogn Affect Neurosci* **16**, 246-255 (2021).

875 32. G. J. Stephens, L. J. Silbert, U. Hasson, Speaker-listener neural coupling underlies
876 successful communication. *Proc Natl Acad Sci U S A* **107**, 14425-14430 (2010).

877 33. J. Li, B. Hong, G. Nolte, A. K. Engel, D. Zhang, EEG-based speaker-listener neural
878 coupling reflects speech-selective attentional mechanisms beyond the speech
879 stimulus. *Cereb Cortex* **33**, 11080-11091 (2023).

880 34. U. Hasson, C. D. Frith, Mirroring and beyond: coupled dynamics as a generalized
881 framework for modelling social interactions. *Philos Trans R Soc Lond B Biol Sci* **371**,
882 (2016).

883 35. Z. R. Li, J. W. Li, B. Hong, G. Nolte, A. K. Engel, D. Zhang, Speaker-Listener Neural

884 Coupling Reveals an Adaptive Mechanism for Speech Comprehension in a Noisy
885 Environment. *Cerebral Cortex* **31**, 4719-4729 (2021).

886 36. Z. Li, B. Hong, D. Wang, G. Nolte, A. K. Engel, D. Zhang, Speaker-listener neural
887 coupling reveals a right-lateralized mechanism for non-native speech-in-noise
888 comprehension. *Cereb Cortex* **33**, 3701-3714 (2023).

889 37. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate - a Practical and
890 Powerful Approach to Multiple Testing. *J R Stat Soc B* **57**, 289-300 (1995).

891 38. O. Abbasi, N. Steingraber, N. Chalas, D. S. Kluger, J. Gross, Spatiotemporal
892 dynamics characterise spectral connectivity profiles of continuous speaking and
893 listening. *PLoS Biol* **21**, e3002178 (2023).

894 39. B. Yuan, H. Xie, Z. Wang, Y. Xu, H. Zhang, J. Liu, L. Chen, C. Li, S. Tan, Z. Lin, X.
895 Hu, T. Gu, J. Lu, D. Liu, J. Wu, The domain-separation language network dynamics in
896 resting state support its flexible functional segregation and integration during
897 language and speech processing. *Neuroimage* **274**, 120132 (2023).

898 40. G. Hickok, D. Poeppel, The cortical organization of speech processing. *Nat Rev
899 Neurosci* **8**, 393-402 (2007).

900 41. J. Ansado, Y. Marsolais, I. Methqal, F. Alary, Y. Joanette, The adaptive aging brain:
901 evidence from the preservation of communication abilities with age. *Eur J Neurosci*
902 **37**, 1887-1895 (2013).

903 42. S. Wang, Y. Chen, Y. Liu, L. Yang, Y. Wang, X. Fu, J. Hu, E. Pugh, S. Wang, Aging
904 effects on dual-route speech processing networks during speech perception in noise.
905 *Hum Brain Mapp* **45**, e26577 (2024).

906 43. L. Yang, S. Wang, Y. Chen, Y. Liang, T. Chen, Y. Wang, X. Fu, S. Wang, Effects of
907 Age on the Auditory Cortex During Speech Perception in Noise: Evidence From
908 Functional Near-Infrared Spectroscopy. *Ear Hear.* (2024).

909 44. D. C. Park, P. Reuter-Lorenz, The Adaptive Brain: Aging and Neurocognitive
910 Scaffolding. *Annual Review of Psychology* **60**, 173-196 (2009).

911 45. P. A. Reuter-Lorenz, D. C. J. C. O. i. P. Park, Cognitive aging and the life course: A
912 new look at the Scaffolding Theory. 101781 (2023).

913 46. S. W. Davis, N. A. Dennis, S. M. Daselaar, M. S. Fleck, R. Cabeza, Que PASA? The
914 posterior-anterior shift in aging. *Cerebral Cortex* **18**, 1201-1209 (2008).

915 47. L. K. Ferreira, G. F. Busatto, Resting-state functional connectivity in normal brain
916 aging. *Neurosci Biobehav Rev* **37**, 384-400 (2013).

917 48. J. Stumme, C. Jockwitz, F. Hoffstaedter, K. Amunts, S. Caspers, Functional network
918 reorganization in older adults: Graph-theoretical analyses of age, cognition and sex.
919 *Neuroimage* **214**, 116756 (2020).

920 49. D. Meunier, E. A. Stamatakis, L. K. Tyler, Age-related functional reorganization,
921 structural changes, and preserved cognition. *Neurobiol Aging* **35**, 42-54 (2014).

922 50. R. Sala-Llonch, D. Bartres-Faz, C. Junque, Reorganization of brain networks in aging:
923 a review of functional connectivity studies. *Front Psycho/* **6**, 663 (2015).

924 51. P. C. M. Wong, M. Ettlinger, J. P. Sheppard, G. M. Gunasekera, S. Dhar,
925 Neuroanatomical Characteristics and Speech Perception in Noise in Older Adults.
926 *Ear Hearing* **31**, 471-479 (2010).

927 52. J. L. Schwartz, A. Basirat, L. Menard, M. Sato, The Perception-for-Action-Control

950 114-121 (2012).

951 60. M. Pronk, D. J. H. Deeg, J. M. Festen, J. W. Twisk, C. Smits, H. C. Comijs, S. E. Kramer, Decline in Older Persons' Ability to Recognize Speech in Noise: The Influence of Demographic, Health-Related, Environmental, and Cognitive Factors.

954 *Ear Hearing* **34**, 722-732 (2013).

955 61. X. X. Fu, R. H. Eikelboom, B. Liu, S. Wang, D. M. P. Jayakody, The longitudinal relationship between hearing loss and cognitive decline in tonal language-speaking

957 older adults in China. *Frontiers in Aging Neuroscience* **15**, (2023).

958 62. K. Slade, C. J. Plack, H. E. Nuttall, The Effects of Age-Related Hearing Loss on the

959 Brain and Cognitive Function. *Trends Neurosci* **43**, 810-821 (2020).

960 63. D. Yang, D. Zhang, X. Zhang, X. Li, Tinnitus-associated cognitive and psychological

961 impairments: a comprehensive review meta-analysis. *Front Neurosci* **18**, 1275560

962 (2024).

963 64. G. Bubbico, P. Chiacchiaretta, M. Parenti, M. di Marco, V. Panara, G. Sepede, A.

964 Ferretti, M. G. Perrucci, Effects of Second Language Learning on the Plastic Aging

965 Brain: Functional Connectivity, Cognitive Decline, and Reorganization. *Front Neurosci*

966 **13**, 423 (2019).

967 65. S. Knight, A. Heinrich, Visual Inhibition Measures Predict Speech-in-Noise Perception

968 Only in People With Low Levels of Education. *Front Psychol* **9**, 2779 (2018).

969 66. R. Li, N. Mayseless, S. Balters, A. L. Reiss, Dynamic inter-brain synchrony in real-life

970 inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning

971 study. *Neuroimage* **238**, 118263 (2021).

972 67. X. Shen, L. Tao, X. Chen, S. Song, Q. Liu, D. Zhang, Contrastive Learning of Shared
973 Spatiotemporal EEG Representations Across Individuals for Naturalistic
974 Neuroscience. *arXiv preprint* **2402.14213**, (2024).

975 68. A. Perez, M. H. Davis, Speaking and listening to inter-brain relationships. *Cortex* **159**,
976 54-63 (2023).

977 69. T. D. Griffiths, M. Lad, S. Kumar, E. Holmes, B. McMurray, E. A. Maguire, A. J. Billig,
978 W. Sedley, How Can Hearing Loss Cause Dementia? *Neuron* **108**, 401-412 (2020).

979 70. F. Faul, E. Erdfelder, A. Buchner, A. G. Lang, Statistical power analyses using
980 G*Power 3.1: tests for correlation and regression analyses. *Behav Res Methods* **41**,
981 1149-1160 (2009).

982 71. A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, I. Dan, Spatial registration of
983 multichannel multi-subject fNIRS data to MNI space without MRI. *Neuroimage* **27**,
984 842-851 (2005).

985 72. D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A.
986 Poldrack, R. M. Bilder, A. W. Toga, Construction of a 3D probabilistic atlas of human
987 cortical structures. *Neuroimage* **39**, 1064-1080 (2008).

988 73. J. C. Ye, S. Tak, K. E. Jang, J. Jung, J. Jang, NIRS-SPM: statistical parametric
989 mapping for near-infrared spectroscopy. *Neuroimage* **44**, 428-447 (2009).

990 74. T. J. Huppert, S. G. Diamond, M. A. Franceschini, D. A. Boas, HomER: a review of
991 time-series analysis methods for near-infrared spectroscopy of the brain. *Appl Opt* **48**,
992 D280-298 (2009).

993 75. M. A. Yucel, J. Selb, R. J. Cooper, D. A. Boas, Targeted Principle Component

994 Analysis: A New Motion Artifact Correction Approach for near-Infrared Spectroscopy.

995 *J Innov Opt Health Sci* **7**, (2014).

996 76. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf, How to detect and reduce

997 movement artifacts in near-infrared imaging using moving standard deviation and

998 spline interpolation. *Physiol Meas* **31**, 649-662 (2010).

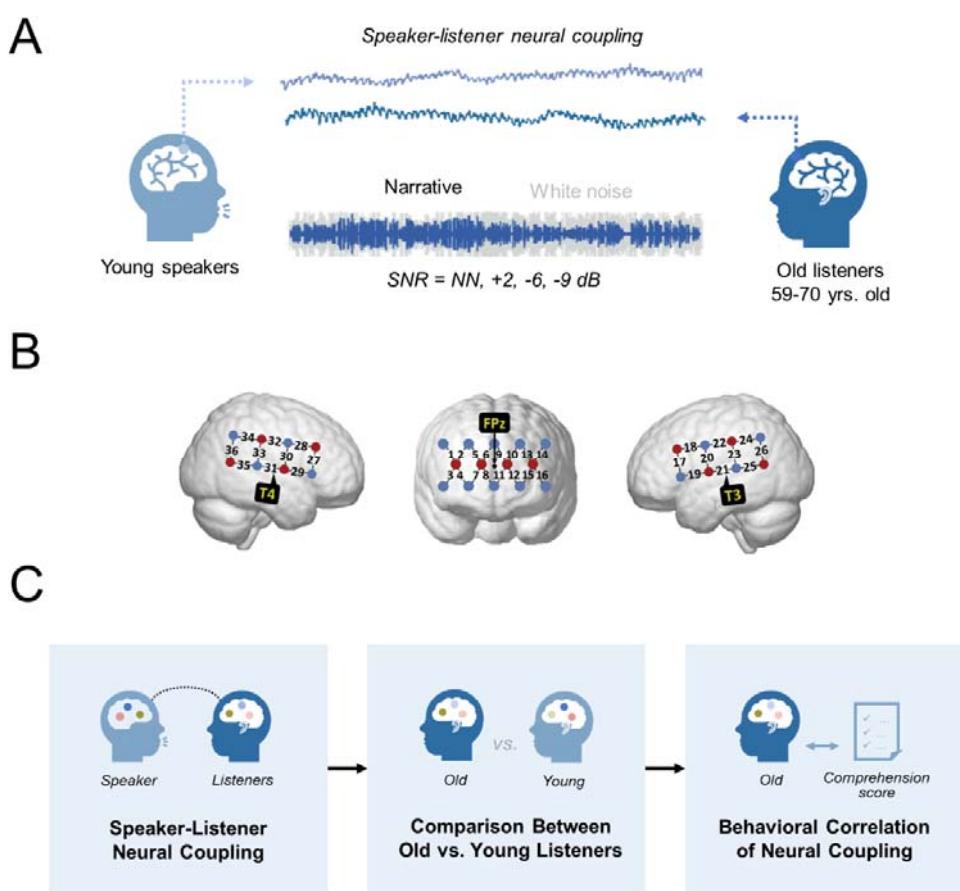
999 77. A. Grinsted, J. C. Moore, S. Jevrejeva, Application of the cross wavelet transform and

1000 wavelet coherence to geophysical time series. *Nonlinear Proc Geoph* **11**, 561-566

1001 (2004).

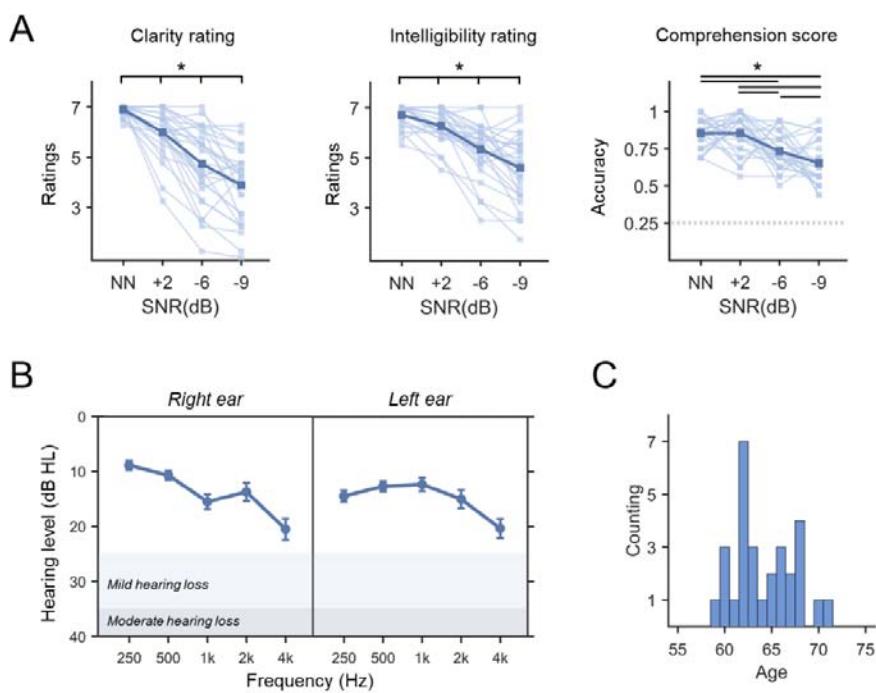
1002 78. S. Tak, J. C. Ye, Statistical analysis of fNIRS data: a comprehensive review.

1003 *Neuroimage* **85 Pt 1**, 72-91 (2014).


1004 79. E. Maris, R. Oostenveld, Nonparametric statistical testing of EEG- and MEG-data. *J*

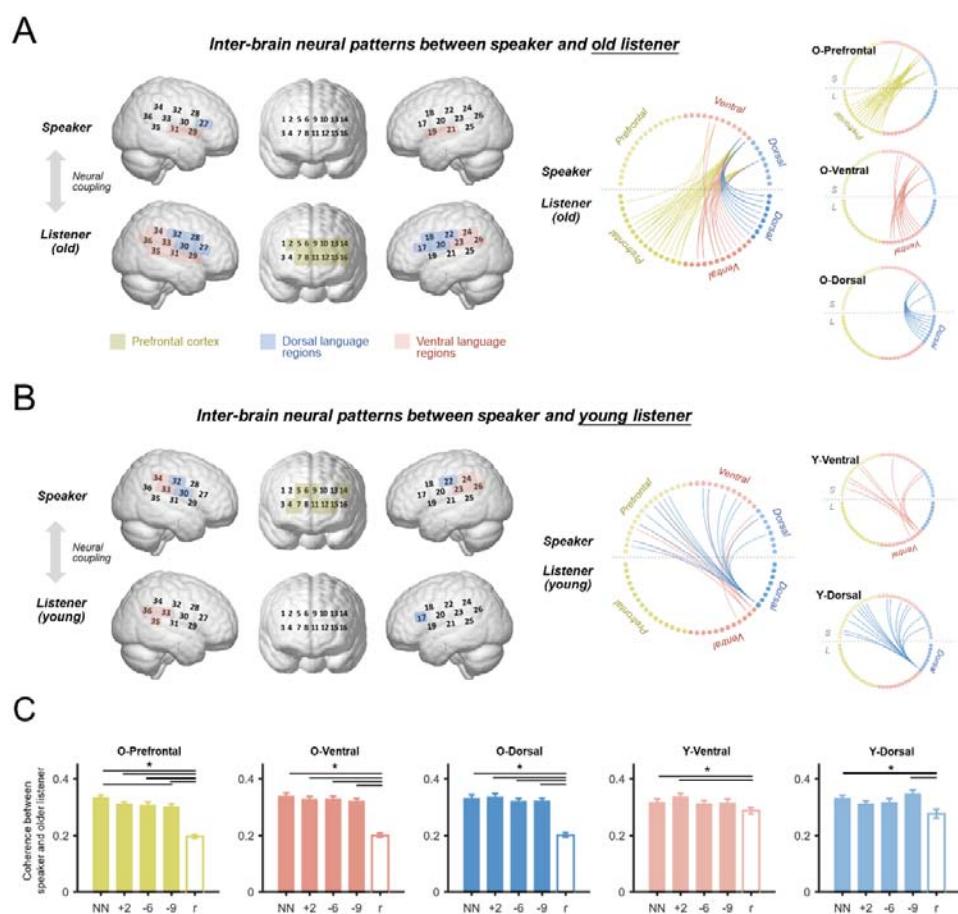
1005 *Neurosci Methods* **164**, 177-190 (2007).

1006


1007

1008 Fig. 1. Experimental design and behavioral results. (A) Overview of the experimental design.
1009 (B) The fNIRS optode probe set. The red dots represent the source optode; the blue dots
1010 represent the detection optode. Channels of 21 and 31 were placed at T3 and T4, and the
1011 center of the prefrontal probe set was placed at FPz, in accordance with the international 10-
1012 20 system. The probe set covered the prefrontal cortex and classical language-related regions
1013 in both hemispheres. (C) Overview of the analysis framework. The inter-brain neural coupling
1014 between the speaker and old listener was analyzed first. The older listener's neural coupling
1015 was then compared to that from a group of young listeners (35) to examine how different
1016 brain regions are compensatorily involved within the aging brain. Moreover, the functional
1017 role of these neural coupling was further examined by analyzing its correlational relationship
1018 to the older listener's speech comprehension performance in noisy conditions.
1019

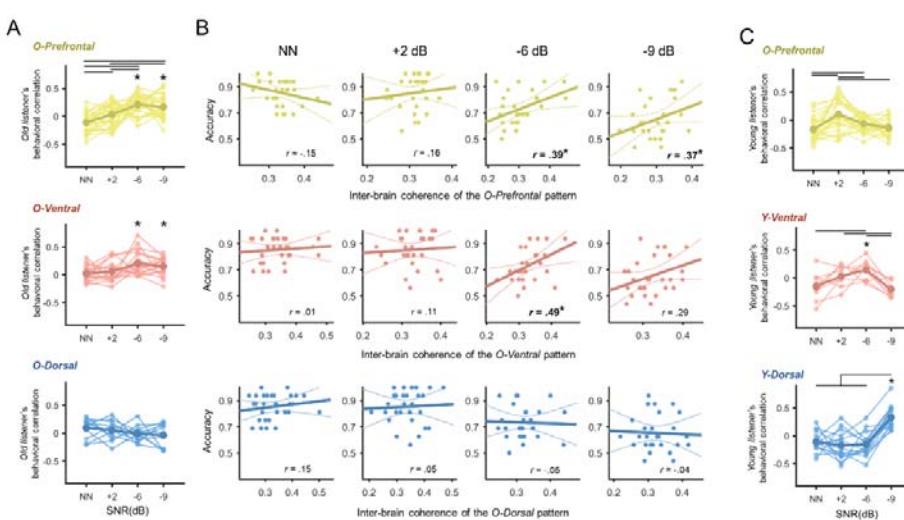
1020
1021
1022


1023 Fig. 2. (A) Behavioral performance of old listeners. Results of repeated measures ANOVA
1024 showed that the noise significantly impacted the old listener's clarity, intelligibility ratings
1025 and comprehension scores. Post hoc analysis revealed that for the clarity and intelligibility
1026 ratings all pairwise comparisons between four noise levels were significant. For the
1027 comprehension score, except for the comparison between NN and +2 dB, the other pairwise
1028 comparisons were significant. The asterisk (*) means significant result ($p < .05$, FDR
1029 corrected). (B) The average pure-tone hearing thresholds of the old listeners. The error bar
1030 means the standard error. (C) The age of the old listeners.
1031

1032
1033
1034

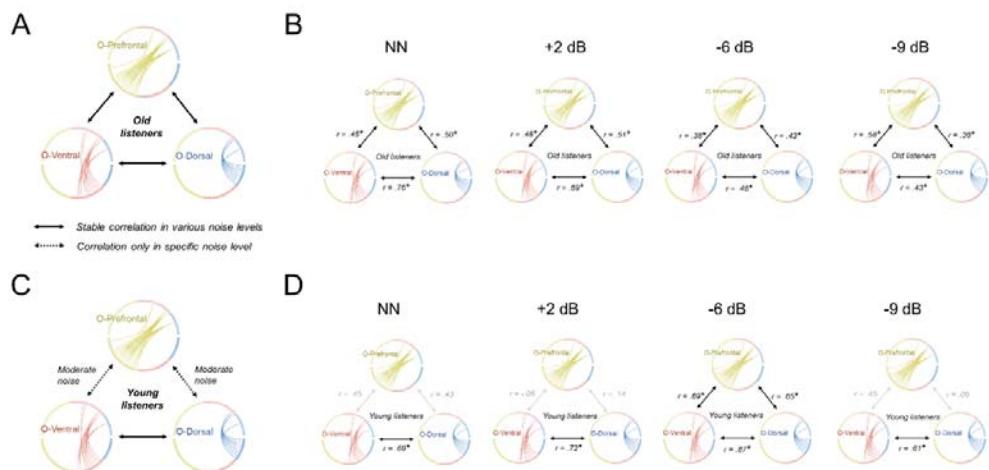
1035 Fig. 3. Speaker-listener neural coupling. (A) Significant speaker-listener neural coupling for
 1036 the old listeners. The old listener's neural activities from prefrontal cortex, bilateral ventral
 1037 and dorsal language regions were coupled to the speaker's neural activities. Different color
 1038 means different anatomical brain regions: Yellow means the prefrontal cortex; red means the
 1039 ventral language regions; blue means the dorsal language regions. Based on the brain region
 1040 at the listener's side, these inter-brain neural coupling were divided into three patterns: O-
 1041 Prefrontal, O-Ventral, and O-Dorsal. (B) The inter-brain neural patterns for the young
 1042 listeners. They were divided into two patterns: Y-Ventral, Y-Dorsal. (C) The old listener's
 1043 speaker-listener neural coupling from five inter-brain neural patterns. For O-Prefrontal, O-
 1044 Ventral and O-Dorsal, the neural coupling in all the four noise levels was higher than the
 1045 resting-state baseline. Besides, for the O-Prefrontal pattern, the coupling in NN was higher
 1046 than -9 dB. For the Y-Ventral pattern, the coupling at NN and +2 dB was higher than that at
 1047 the baseline; for the Y-Dorsal pattern, the coupling at NN and -9 dB was higher than that at
 1048 the baseline. The error bar means the standard error. The lines and asterisks (*) indicate
 1049 significant results ($p < .05$, FDR corrected).

1050

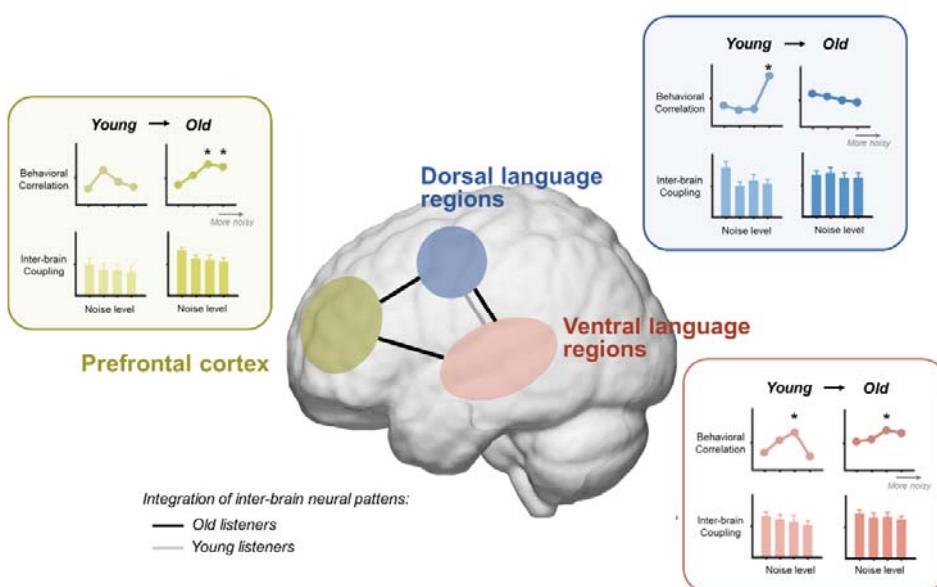


1051

1052


1053

1054 Fig. 4. Behavioral relevance of speaker-listener neural coupling. (A) Correlation between the
1055 old listener's comprehension score and the coupling from the clusters. Each line represents
1056 the correlation r-values (Fisher-z transformed) of one cluster belonging to one particular inter-
1057 brain neural pattern. The asterisk indicates significant r-values in one particular noise level;
1058 the line indicates a significant pairwise comparison between two noise levels ($p < .05$, FDR
1059 corrected). For both the O-Prefrontal and O-Ventral patterns, the r-values in -6 dB and -9 dB
1060 were significant. For the O-Prefrontal pattern, the r-values were higher when noise increased.
1061 (B) Correlation between the old listener's comprehension score and average coupling for the
1062 inter-brain neural patterns. The neural coupling of the O-Prefrontal pattern was positively
1063 correlated with the comprehension score at -6 dB and -9 dB (Spearman $rs = .39, .37$; ps
1064 = .035, .047, uncorrected); the neural coupling of the O-Ventral pattern was correlated with
1065 the comprehension score at -6 dB (Spearman $r = .49$, $p = .007$, uncorrected). The other
1066 correlations were not significant. (C) Correlation between the young listener's comprehension
1067 score and the couplings. For the O-Prefrontal pattern, the r-values under four noise levels
1068 were not significant, although significant differences existed across the different noise levels.
1069 For the Y-Ventral pattern, the r-values in -6 dB were significant ($p < .05$, FDR corrected); for
1070 the Y-Dorsal pattern, the r-values in -9 dB were significant ($p < .05$, FDR corrected).
1071


1072
1073
1074
1075

1076 Fig. 5. Integration between inter-brain neural patterns. (A/C) Summary of the integration
1077 between the inter-brain neural patterns of O-Prefrontal, O-Ventral and O-Dorsal for the old
1078 listeners (A) and the young listeners (C). (B/D) The correlation between three inter-brain
1079 neural patterns in four noise levels. Significant correlation were marked by the dark line and
1080 the asterisks ($p < .05$, FDR corrected). For old listeners, the integration between the O-Frontal
1081 pattern and the O-Ventral/O-Dorsal patterns was robust across noise levels. However, they
1082 were only observed in moderate noise level (-6 dB) for the young listeners. The O-Ventral and
1083 the O-Dorsal patterns was closely integrated in all four noise levels, for both the old listeners
1084 and the young listeners.

1085
1086
1087
1088

1089 Fig. 6. Summary of the neural mechanism for natural speech comprehension in different noise
1090 levels and age groups. In young adults, the dorsal and ventral language regions are engaged,
1091 with stable integration facilitating speech-in-noise processing. As noise intensity increases,
1092 the dorsal language regions play a more critical role, as indicated by a stronger correlation
1093 between the speech-in-noise comprehension performance and neural coupling. In contrast,
1094 older adults exhibit a compensatory recruitment of the prefrontal cortex to maintain speech
1095 comprehension abilities. This engagement is characterized by not only robust prefrontal
1096 cortex involvement across noise levels but also by an enhanced integration with language
1097 regions, a phenomenon not observed in young adults. Furthermore, the older adult's speech-
1098 in-noise comprehension is more closely associated with the prefrontal cortex, especially as
1099 noise level increases. Asterisks (*) indicate significant correlational relationship between the
1100 speech comprehension performance and the neural coupling from the particular brain regions.
1101
1102

1103
1104
1105
1106
1107