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Abstract

A common problem when analyzing ancient DNA (aDNA) data is to identify the species
which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy
sequence similarity based tools such as BLAST. However, as aDNA reads may frequently
either stem from unsampled taxa due to extinction, it is likely that there is no exact match in
any database. As a consequence, these tools may not be able to accurately place such reads
in a phylogenetic context. Phylogenetic placement is a technique where a read is placed
onto a specific branch of a phylogenetic reference tree, which allows for a substantially finer
resolution when identifying reads. Prior applications of phylogenetic placement has deployed
only on data from extant sources. Therefore, it is unclear how the aDNA damage affects
phylogenetic placement’s applicability to aDNA data. To investigate how aDNA damage
affects placement accuracy, we re-implemented a statistical model of aDNA damage. We
deploy this model, along with a modified version of the existing assessment pipeline PEWO,
to 7 empirical datasets with 4 leading tools: APPLES, EPA-NG, pplacer, and RAPPAS.
We explore the aDNA damage parameter space via a grid search in order to identify the
aDNA damage factors that exhibit the largest impact on placement accuracy. We find that
the frequency of DNA backbone nicks (and consequently read length) has the by far largest
impact on aDNA read placement accuracy, and that other factors, such as misincorporations,
have a negligible effect on overall placement accuracy.

1 Introduction

The analysis of DNA obtained from archaeological sites as well as paleontological and sediment
samples has changed our understanding of life in the past (Haile et all, 2009; Pedersen et al,
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2015; Der Sarkissian et all, 2017). However, the characteristics of ancient DNA (aDNA) samples
differ substantially from those of contemporary samples. Due to several degradation processes
(including deamination and fragmentation), analyzing aDNA data exhibits more challenges than
analyzing DNA obtained from contemporary sources. The DNA repair mechanisms which guar-
antee that a sample is of high quality become inactive when an organism dies, which allows the
DNA to accumulate damage. This accumulated damage often yields poor quality samples.

The damage accumulation rate depends on time, temperature, acidity, and other environ-
mental factors (Sawyer et al), 2012) which complicate the prediction of the post-mortem damage
level for a given sample. Nonetheless, the damage itself can be described via a straight-forward
model, originally proposed by Briggs et al. (Briggs et all, 2007). Of the possible damage types
DNA accumulates as it ages, the Briggs model of aDNA damage (hereafter, simply the Briggs
model) incorporates two major damage types: nicks to the DNA backbone, which shred the
DNA into shorter fragments; and point errors caused by cytosine (C) deamination. When cy-
tosine demanites it transforms into uracil (U) and is subsequently read as thymine (T) instead
of cytosine (C) during DNA sequencing. This process is commonly known as C to T damage,
which we denote as C — T. This damage is observed at the 5’ end of the ancient sequence reads
of double-stranded libraries, as well as at both the 5 and 3’ ends of single-stranded libraries.
There exists an analogous G to A damage (which we denote as G — A) that is only observed at
the 3’ read ends of double-stranded libraries. This is induced by the genomic library preparation
in the wet lab, due to DNA complementarity.

Under the Briggs model, the deamination rate is controlled by the location of the respective
base in relation to an overhang. An overhang is a section of the sequence where the complimentary
strand has been separated. The bases of the primary strand have therefore been exposed to the
environment without the stabilizing presence of the complimentary strand. These overhangs
produce so-called single strand regions (in contrast to double strand regions), which exhibit
substantially higher rates of deamination due to their unprotected exposure to environmental
conditions. For example, Briggs et. al found deamination rates in the single strand region to be
an order of magnitude higher than in the double strand region. As overhangs necessarily occur at
strand ends, the vast majority of C to T damage (and consequently also G to A damage) occurs
at the beginning and the end of a read. For an example read of 100 bases, the overhang only needs
to be &~ 3 bases long to exhibit more expected errors than the double stranded region. Many
reads are substantially shorter, often only comprising 30 base pairs due to filtering steps after
the sequencing process. Hence, due to the short length with respect to the overhang size, most
damage occurs at read ends. This induces a characteristic “U” shaped curve of misincorporated
point differences as shown in (Briggs et all, 2007; Sawyer et all, 2012).

One major challenge in aDNA data analysis is molecular identification, that is, assigning a
DNA read to a taxon. In addition to the processes described above, aDNA samples are also
likely to be contaminated by exogenous sources. Determining the organism a read originally
belonged to allows researchers to make inferences based on the read context. for example by
refining the range, both spatial and temporal, of extinct species (Haile et all, 2009) or uncovering
admixture events in archaic hominins, for instance (Slatkin and Racimd, 2016). However, aDNA
degradation results in both, small DNA fragments, and erroneous point differences, yielding
identification challenging.

Prior data analyses have attempted to assign aDNA reads via tools such as BLAST (Haile
et all, 2009) or Kraken (Wood and Salzberg, 2014). These tools match a short (a)DNA query
sequence or read against a (possibly large) database of known sequences. However, sequence
similarity based methods only match against known sequences, or equivalently, sequences located
at the tips of a corresponding phylogenetic tree. However, if the query sequence is sampled from
a heretofore unknown, extinct, or hypothetical species, a similarity-based taxonomic assignment
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will be imprecise. These methods will indicate a single clade, and possibly a confidence associated
with the assignment to that clade. Yet, if multiple clades contain a closely matching reference
sequence, similarity-based methods will typically only assign the read to a single clade.

An alternative method for taxonomic identifications is to deploy phylogenetic placement, as
implemented in EPA-NG, APPLES, pplacer, or RAPPAS (Matsen et al|, 2010; Barbera et all,
2019; Linard et al|, 2019; Balaban et all, 2020). Phylogenetic placement methods place query
sequences into a phylogenetic reference tree. Phylogenetic placement is a technique which places
unknown, sampled sequences, called query sequences, into a known reference tree inferred from
known/named sequences, called reference sequences. By using a phylogeny, placement is able
to match query sequences against hypothetical and unsampled species (i.e., an evolutionary
history), as well as against known species. Therefore, placement-based taxonomic assignment is
often more specific and accurate than a mere assignment to a potentially taxon-rich clade (Berger
et al), 2011)). This is because phylogenetic placement will assign the query sequence to a specific
branch of the phylogenetic reference tree. For a comprehensive review of phylogenetic placement
methods that also includes a plethora of references to empirical data analyses on contemporary
DNA data please refer to (Czech et all, 2022).

A recent publication raised the question if phylogenetic placement, which was originally
devised for analyzing contemporary DNA sequences, can adequately identify aDNA sequences
due to their short read length and characteristic damage (Martiniano et al), 2022). However,
a systematic investigation of the effects of aDNA damage on phylogenetic placement accuracy
has yet to be conducted. In the following, we therefore systematically investigate the impact of
aDNA damage on placement accuracy.

To this end, we have modified the existing phylogenetic placement benchmark pipeline PEWO
(Linard et al), 2021) by including a step for injecting aDNA damage into the query sequences.
Using this modified pipeline we conduct appropriate accuracy tests using the following placement
tools: EPA-NG (Barbera et all, 2019), APPLES (Balaban et all, 2020), pplacer (Matsen et al,
2010), RAPPAS (Linard et al), 2019).

2 Methods

To evaluate the effects of aDNA damage on phylogenetic placement accuracy, we initially re-
implemented the popular aDNA damage simulator Gargammel (Renaud et all, 2017), as an
open source Python program which we call PyGargammel (available at https://github.com/
computations/pygargammel). This re-implementation is required to better control the partic-
ular type and magnitude of aDNA damage (specifically the parameters of the Briggs Model
(Briggs et all, 2007) that is implemented in Gargammel and PyGargammel), as this is difficult or
impossible in Gargammel. For both simulators, the input is a FASTA file containing one or more
sequences. Gargammel simulates reads, and therefore outputs the results as FASTQ files, which
need to subsequently be assembled and aligned (output as BAM) in order to be suitable for use
in PEWO. However, as we intend to isolate the effects of aDNA damage exclusively on placement
results, our damage simulator implementation allows to skip these potentially confounding steps.
To this end, PyGargammel outputs its results as sequences in FASTA format, with an option to
preserve alignment with the original, undamaged, sequence. We discuss PyGargammel in more
detail in Section R.3|.

To facilitate running multiple phylogenetic placement programs on alignments with simulated
damage from PyGargammel, we used the placement accuracy assessment pipeline PEWO (Linard
et all, 2021). However, executing PEWO with PyGargammel, required several modifications to
PEWO which we detail in Section @
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Dataset | Taxa | Sites | GC % Source Reference
ds01 141 | 16354 | 39 % Aurochs (Gurke et all, 2021))
ds02 7 932 | 26 % Land Snails (Psonis et all, 20224))
ds03 36 | 1784 | 43 % Hippos (Psonis et al). 2022D)
ds04 30 | 16025 | 38 % Elephant (Psonis et all, 2020)
ds05 512 4686 17 % Soil (Mahé et al), 2017)
ds06 3748 | 33714 | 22 % Ocean | (Sunagawa et al|, 2015)
ds07 797 | 2763 | 25 % | Vaginal Swabs | (Srinivasan et al), 2012)

Table 1: Table of empirical datasets used for experiments. Source is a short description of either
the environment the sample was collected from, or the taxonomic clade the samples represent.
GC % is the average GC content for all sequences in the alignment.

Finally, several damage simulation parameters needed to be chosen for this application. In-
stead of selecting single parameters or sampling the parameter space uniformly, we chose to
perform a %d search over possible damage parameter configurations. These choices are detailed
in Section

2.1 Data

We investigated the effects of aDNA damage on placement accuracy using seven empirical
datasets. The dataset properties, such as taxon number and site count, are provided in Ta-
ble [ll. We sought to include a wide range of datasets, including standard phylogenetic placement
applications for environmental DNA (Srinivasan et al), 2012; Sunagawa et all, 2015; Mahé et all,
2017), but also datasets from prior aDNA studies. These datasets comprise for the most part
larger animals, such as the Aurochs (Gurke et all, 2021), Land Snails (Psonis et al), 20224),
Hippos (Psonis et al), 2022h), and Elephants (Psonis et al|, 2020). These datasets therefore
represent a broad spectrum of aDNA identification tasks. We chose to use seven datasets in
order to focus on parameter exploration, rather than expending a large number of resources on
a shallow exploration of many datasets. Nonetheless, we have sought to include diverse enough
datasets so that many typical aDNA data applications are well represented by our results.

In addition to 7 empirical datasets, we also investigated the impact of GC content on place-
ment accuracy in the presence of aDNA damage using 9 simulated datasets. The description of
how these datasets were generated, as well as the results from these datasets are described in
the Supplemental Material.

2.2 The PEWO Pipeline

Instead of re-implementing an evaluation pipeline for analyzing phylogenetic placement accuracy,
we appropriately modified the existing PEWO pipeline (Linard et al), 2021) to also support dam-
age simulation. Therefore, we enhanced PEWO by directly integrating simulation of damaged
sequences via a damage simulator we call PyGargammel. The details of PyGargammel and how
it simulates damage are found in Section @

Given a multiple sequence alignment (MSA) and an associated phylogeny, PEWO performs
analysis by

Pruning Pruning the taxa contained in a randomly selected subtree, as well as removing and
fragmenting the sequences contained in this subtree from the MSA,
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Alignment Realigning the pruned and shortened sequences all at once with HMMER, (Eddy,
2011),

Placement Running various placement programs to place the pruned sequences back on the
reference tree,

Assessment and Computing and summarizing the placement error with regards to the ground
truth placement.

PEWO is designed to investigate the accuracy of phlyogentic placement tools when given
somewhat realistic data. To this end, it will fragment the pruned portion of the input MSA
into multiple parts. However, the behavior of aDNA fragmentation is very different from how
sequence fragmentation is implemented in PEWO. Therefore, we implement our own fragmenting
method (detailed in Section R.3), and disable the sequence fragmentation in PEWO.

2.3 Simulating Ancient DNA Damage

To simulate the characteristic post-mortem damage that DNA undergoes as it ages, we imple-
mented the Briggs Model of DNA damage (Briggs et al), 2007) in a tool we call PyGargammel.
The primary use case of PyGargammel is to take a FASTA file with sequences and insert aDNA
typical damage. This model has four parameters which control the effects and magnitude of
aDNA-like sequence damage. Using the same notation as Briggs et al] (2007), the parameters
are:

e The probability of nicks 0 < A <1,

o the parameter for the geometric distribution from which the overhang length is drawn
0<r<l,

« the probability of deamination in single stranded regions 0 < 55 < 1,

e and the probability of deamination in double stranded regions 0 < d4, < 1.

The first mechanism in the model determines the probability of breaking (nicking) A, for
each base. These reads then have an overhang with a length that is drawn from geometric
distribution with success probability v. Which side of the reads (5’ or 3’) the overhang is located
on depends on numerous factors which occur during sequencing. However, for the purpose of
damage simulation, it is essential that the overhang is present only on the 5’ or the 3’ side of
the read. Therefore, when simulating the overhang, we randomly generate an overhang on the
5 side for 50% of reads, and generate an overhang on the 3’ side for the remaining 50% of the
reads. Then, deamination damage is applied with a probability that depends on whether the
base is in a single or double stranded region. If the base is in the overhang region, then the single
stranded deamination rate J,s is used to determine the deamination probability. If the base is
not located in an overhang region, then the double stranded deamination rate d45 applies.

Note that there are two distinct types of possible deamination damage, C — T and G — A.
C — T damage is the direct result of a cytosine being deaminated (this is to say, losing a part
of its chemical structure) which results in the base being misincorporated as a T. However,
G — A damage is not a direct result of deamination. Instead, it is a consequence of the genomic
library preparation for the sequencing process. More specifically, when the sample is prepared for
sequencing, overhangs are repaired, which transforms the G — A damage into C — T damage
on the complimentary strand. In this case, the overhang is repaired with an A instead of a G, as
G is the complimentary base to a deaminated C. If the sequence is read from left to right, then
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only C — T damage can occur in the read if the overhang is on the left side, and only G — A
damage occurs if the overhang is on the right side.

PyGargammel relies on this model and implements it as follows: It starts by reading a FASTA
file and iterates over each sequence in the file by performing the following steps:

1. Iterate through bases and mark nicks with probability .

2. Break the sequence into reads at the nick points.

3. Compute overhang lengths on both ends with distribution Geom(p = v).
4. Perform deaminations (C — T and G — A damage)

o If the read has an overhang (with a possible length of zero) on the 5’ end, and the
base is in the overhang region, apply C — T damage with probability dss. If the base
is not in the overhang region, apply C — T damage with probability d4s.

o Likewise, if the read has an overhang (with a possible length of zero) on the 3’ end,
and the base is in the overhang region, apply G — A damage with probability . If
the base is not in the overhang region, apply damage with probability dgs.

5. (Optional) Position the read such that it is aligned with its original position in the original
sequence.

6. (Optional) Filter sequences that are too short if a minimum read length was supplied.

7. (Optional) If a minimum read count threshold was specified, repeat the process from step
1 accumulating additional reads until the threshold has been achieved.

8. (Optional) If a maximum number of reads was specified, and too many reads were gener-
ated, downsample uniformly at random to the provided threshold.

It is important to discuss how PyGargammel handles ambiguous characters and missing data,
as empirical MSAs often have ambiguous characters which can affect the results of downstream
analysis. As PyGargammel is designed to also operate on already aligned data, there might be
gaps present in the sequences to be damaged. The resulting reads need to be still in alignment
after processing, so gaps and ambiguous characters are retained as the respective sequence is
being processed. This means that gap characters will appear in the resulting damaged reads,
and gaps will also affect the damage distribution, as gap characters cannot undergo either C — T
or G — A damage. However, PyGargammel will completely remove reads entirely consisting of
either fully ambiguous or gap characters. In addition, when a minimum read length is specified,
only non-gap sites are counted to determine read length.

Finally, if a reference alignment is provided, PyGargammel will reject reads which have no
non-gap characters in common, a technique known as premasking. We believe this choice is
justified, as such a reads would be difficult to align, and therefore difficult to classify by any
method.

2.4 Modifications to the PEWO Pipeline

We modified PEWO by inserting PyGargammel both before and after the alignment step. In-
jecting aDNA sequence damage before alignment is more realistic as aligning reads is a necessary
step prior to placement for empirical sequences. However, we also inject aDNA damage after the
alignment stage, so as to isolate the effects of aDNA damage on placement accuracy, without any
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Figure 1: Diagram of the modified PEWO pipeline. The steps “Pruning”, “Alignment”, “Dam-
age”, “Placement”, and “Assessment” are described in Section R.3.

confounding alignment error. Unless otherwise stated, we report placement accuracy for damage
injection after alignment. We did conduct some exploratory experiments with damage inserted
before alignment, however a thorough investigation of the joint alignment and placement error
is beyond the scope of this paper. Specifically, we wish to investigate the case when alignment
error is negligible to determine the baseline effectiveness of placement algorithms.

Therefore, the operation order for our analysis pipeline is (unless otherwise stated).

Pruning Pruning the taxa associated with a random subtree, as well as removing the sequences
from the MSA,

Alignment Realigning the pruned sequences all together with respect to the remaining reference
MSA,

Damage Fragmenting and deaminating the aligned sequences,
Placement Running various placement programs on the pruned sequences,

Assessment and Computing and summarizing the placement error.

We have also prepared a graphical depiction of these steps which is presented in Figure m
The full pipeline can be found on GitHub at https://github.com/computations/PEW0

2.5 Pipeline Parameters

In order to fully investigate aDNA damage impact on phylogenetic placement accuracy, we
perform a grid search over the damage simulation parameter configurations. We based the
endpoints of this grid search for each parameter on the estimated values from Briggs et all
(2007). The specific values that were tested are provided in Table R.§. If we increase the number
of investigated values per parameter equally, then the number of evaluated points grows with
An*). This means that the number of points to be evaluated quickly becomes too large to
be computed in reasonable time. We can be more efficient if we investigate the behavior and
impact of a single parameter at a time while keeping the remaining parameters fixed. An initial
parameter space exploration with a single dataset showed that the nick frequency is the most
important factor (w.r.t. its impact on placement accuracy). Hence, we thoroughly investigate
the effects of the nick frequency parameter, only. To this end, we sample A values ranging from
0.0 to 0.03. The value of 0.03 slightly exceeds the value estimated in Briggs et al) (2007), which
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Parameter Values

A 0.0000, 0.0001, 0.0005, 0.0010, 0.0050,
0.0100, 0.0200, 0.0250, 0.030

v 0.15, 0.30, 0.35, 0.40, 0.75, 1.00

Oss 0.00, 0.65

Ods 0.000, 0.015, 0.100

Table 2: Table containing the parameter values used in our experiments. End points for each
parameter are based on the values estimated in Briggs et all (2007).

was found to be A = 0.024 for Neanderthal samples. Overall, we assessed nine \ values, with a
higher density near 0.0, as that is where placement accuracy is most sensitive to small changes
in A. In Table B we show both the theoretical and the actual median read length for each value
of A in order to better illustrate the impact of changes in A on read length. Noticeably, the
largest reductions in both, estimated, and actual median read length stem from values near 0.0.
The values differ between the estimated values and the actual values due to finite data, as the
maximum length of any read is limited by the original sequence length. Furthermore, we also
exclude reads with less than 15 base pairs, which further skews the actual values.

Beyond A, we experimentally determined that the overhang parameter v is the second most
important parameter, again with respect to its impact on placement accuracy. As before, we
base the endpoints of grid values on those listed in Briggs et al) (2007). Since overhangs are
modeled as iteratively "growing” with probability v of the process terminating at the current
overhang length, the parameter value associated with no damage is 1.0. This is when the process
terminates immediately, resulting in a zero length overhang. Correspondingly, the overhang
lengths increase as the parameter value decreases. We tested six values with the most extreme
damage being 0.15, which is slightly more extreme than the value estimated in Briggs et al.
(2007).

The deamination rates d55; and d4s were both found to have a minor damage effect during
initial experiments, therefore we only consider two values for ¢, and three values for d4s in our
grid. For dss the upper endpoint follows, again, Briggs et ali (2007). On the other hand, the
upper d4¢ value is a very extreme value of 0.1, which is far greater than the value found in Briggs
et al] (2007). We included this extreme value because we intend to investigate the effects of
high levels of C — T and G — A damage on placement accuracy, as this is the unique feature
that yields aDNA damage being different from “just” very short reads. In particular, we explore
placement accuracy for damage rates that are substantially higher than expected in order to
investigate the maximal effect of misincorperation on placement accuracy.

Finally, we implemented two additional constraints on the simulated reads. The first is that
a minimum of 10 reads per selected sequence from the reference MSA is generated. This ensures
that we have a sufficient number of reads to compute proper summary statistics. The second is
a minimum read length of 15 base pairs. This mimics representative analyses of aDNA samples,
where reads under a certain length (typically 30 base pairs) are excluded in a prefiltering step.

2.6 Analysis

We ran PEWO with the following placement tools: RAPPAS(Linard et al!, 2019), EPA-NG(Barbera
et all, 2019), pplacer(Matsen et al|, 2010), and APPLES(Balaban et al), 2020). We do not ex-
plore different placement program options (e.g., various heuristics) because initial experiments
did not exhibit substantial placement accuracy differences as a function of these options. There-
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Tool Options and Heuristics
RAPPAS k = 7, omega = 2.0, reduction = 0.99
EPA-NG hil, g = 0.99999
pplacer | max-strikes = 6, strike-box = 3, max-pitches = 40
APPLES OLS, MLSE

Table 3: Tool option and heuristics used for all datasets and parameter values.

fore, in order to also economize on computational resources, we elected to use one set of placement
program options for all runs. These options are described in Table B.

Experiments were performed on a server with 40 x86 CPUH cores and 754 GiB of memory.
The number of independent subtree prunings and accuracy evaluations (denoted as a “pruning”
in PEWO) was set to 10 for all datasets. This is to say, that 10 separate experiments were
conducted for each set of parameters on each reference MSA and the results were aggregated.
PEWO was run with 40 cores.

To better visualize our experimental results, we fit a linear model augmented with cubic
splines for each parameter against the expected node distance (eND). The expected node distance
is computed as LWR(p) x d(p) where, LWR(p) is the likelihood weight ratio of the placement, and
d(p) is the node distance between the estimated placement and the true placement. We use eND
as it better accounts for uncertainty in the specific placement location. We added splines to the
model in order to capture the decreasing marginal impact of the damage model parameters. The
regression was performed using R, with the command geom_smooth(method="1m", formula =
y ~ splines::ns(x, k)) where k is the number of splines used for the regression on the specific
parameter. We used k := 3 for the regression on A and v, k := 2 for the regression on d45, and
k =1 for the regression on §s;. We vary the number of splines because the number of parameter
values sampled varies between parameters.

3 Results

The regressions describing placement accuracy as a function of different simulation parameter
values are displayed in Figure . Additionally, the R? for each regression is shown in Table .
We found that the primary factor affecting placement accuracy is the nick frequency parameter
A. As seen in Figure ] and in Table i, the only parameter which consistently impacts placement
accuracy (as measured by expected node distance) is A. For all regressions, the variance explained
due to variations in A exceeded that of all other parameters by at least one order of magnitude.

The parameter 45 had the second most substantial impact on placement accuracy. Nonethe-
less, it is almost negligible compared to the impact of X. For all datasets, the R? for the regression
with 645 was at least 1 order of magnitude smaller than the R? for the regression with .

The remaining parameters had a negligible effect on placement accuracy. The R2 for all
models was at least two orders of magnitude smaller for all datasets. To further investigate
this, we computed the error rate for generated reads. In Figure f we show the error rate as a
histogram for datasets with A = 0.025,v = 0.15, §,s = 0.65 and d4s = 0.015. Most reads exhibit
a relatively small number of errors, with a median error rate of 4%.

To better illustrate the effect of a high nick rate on placement accuracy we plotted a histogram
of eND normalized by tip count in Figures P and
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Histogram of normalized effective node distances for datasets ds01, ds02, ds03, and

ds04. In addition, each subfigure has been faceted by the respective placement software being
used. Top plots (A and B) have nicks enabled (A = 0.025), and bottom plots (C and D) have
Plots on the left (A and C) have other forms of damage enabled
Plots on the right (B and D) have other forms of damage

nicks disabled (A = 0.0).
(v = 0.15,055 = 0.65,045 = 0.015).
disabled (v = 1.0, dss = d4s = 0.0). All plots share the same scale for the x-axis.

R2
Dataset A v ‘ Oss ‘ Ods
ds01 0.0805 | 1.388 x 1074 | 9.199 x 1076 | 2.125 x 103
ds02 | 0.1415 | 1.687 x 107> | 1.896 x 10~° | 3.590 x 10—+
ds03 0.1925 | 1.557 x 104 | 2.973 x 10~° | 1.358 x 103
ds04 | 0.1996 | 4.426 x 10~°| 1.896 x 10~° | 1.020 x 10~°
ds05 0.1498 | 1.099 x 107° | 3.374 x 1076 | 2.613 x 10~3
ds06 0.2006 | 1.101 x 1075 | 3.147 x 107° | 1.648 x 10~*
ds07 | 0.1007 | 5.732 x 107> | 1.132 x 10~*| 5.227 x 10~3
All 0.0610 | 5.408 x 1075 | 2.230 x 10~7 | 2.537 x 10~*

Table 4: Table of R? values for the regressions in Figure H Additionally shown is the R? for the

regression with all datasets included. Values were computed with Im(e_nd ~ splines:

:ns(p,

k)) where p is one of the parameters, and k is the number of splines used for that parameter’s
model. We used k := 3 for A and v, k := 2 for §4,, and k := 1 for .
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Figure 3: Histogram of normalized effective node distances for datasets ds05, ds06, and ds07. In
addition, each subfigure has been faceted by the placement software used. Top plots (A and B)
have nicks enabled (A = 0.025), and bottom plots (C and D) have nicks disabled (A = 0.0). Plots
on the left (A and C) have other forms of damage enabled (v = 0.15,dss = 0.65,d4s = 0.015).
Plots on the right (B and D) have other forms of damage disabled (v = 1.0,05s = d4s = 0.0). All
plots share the same scale for the x-axis.

Median Read Length

A Estimated Actual
0.0000 00 3409
0.0001 6931 3388
0.0005 1385 1309
0.001 692 736
0.005 138 165
0.01 68 91
0.02 34 53
0.025 27 45
0.03 22 40

Table 5: Table of estimated and actual read lengths based on the Briggs model. The median is
computed for each dataset. Discrepancy between the estimated median and the actual median
is due to: the finite length of the data; and the minimum read length specified as part of the
pipeline.
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Figure 4:  Plot of regressions against parameters for each dataset. Please note that the y
scale varies for each dataset. Each regression is against the expected node distance (eND). The
subfigures A, B, C, and D plot A\, v, dssm and d45 against eND, respectively. Plot generated
using ggplot2 with geom_smooth(method="1m", sd=TRUE, formula = y ~ splines::ns(x,
k)), where k varies with the dataset. £ = 3 for plots A and B, k = 2 for plot D, and &k = 1 for
plot C.
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Figure 5: Histogram of percent of error sites per read for reads generated under the model
parameters A = 0.025, v = 0.15, d55 = 0.65 and dgs = 0.015. An error site is a site which has
either experienced C — T or G — A damage. A vertical line is drawn at the median, where
1.4% of sites are errors. The max percent error for all reads is 47%

4 Discussion

Based on our analysis, the primary factor influencing aDNA placement accuracy is the nick
frequency, or equivalently the read length. In Figureng and B, for example, we can see a clear
shift to the left between the top and bottom (that is, the plots with A = 0.025 vs the plots
with A = 0.0). This shift to the left indicates an average improvement in placement accuracy.
In contrast, we do not observe a similar shift between the left (other damage types enabled)
and right (other damage types disabled) plots. This indicates, again, that the primary driver
of placement accuracy is nick frequency, and that the effects of deamination errors are minor,
confirming our repeated empirical observations that likelihood-based models as implemented in
EPA-NG are generally robust with respect to noise and sequencing error.

One way to ameliorate the placement error from aDNA damage is to incorporate the aging
process as an additional model process. Currently, none of the placement tools tested here do
this. However, the largest contributor to placement error when analysing aDNA data is the
amount of information available in the sequence to be placed. More simply, read length is the
primary driver of error for aDNA reads. When reads become shorter, the probability of correctly
placing the reads decreases (e.g. Fig H) The reason for this becomes clear if we examine the
distribution of read lengths as shown in Table j. Both the estimated and actual median read
lengths rapidly decrease as X increases. This reflects the increase in placement error shown in
Figure A with increasing nick frequency.

In contrast, the total amount of deamination events (that is, C — T and G — A damage)
is not as important for placement accuracy. As we have shown in Figure f, the rate of site
errors is relatively low compared to the length of the read, even for higher damage rates. This
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is expected, as only two bases (C and G) are available to being misincorporated. On a typical
“random” sequence, only 50% of sites will be eligible to be damaged. Furthermore, in practice
GC content is often below Of course, the so-called GC-content varies among species and genomic
regions. Hence we would expect that sequences will be more difficult to place correctly as a
function of their GC-content. However, we investigated the effect of increasing amounts of GC-
content on placement accuracy in the presence of aDNA damage using simulated data, and found
no major differences between high and and low GC-content datasets. Details of this analysis are
described in the Supplemental Material.

While we based our investigation around parameters found in Briggs et al| (2007), which
is based on reads obtained from Neanderthal samples, the parameter values tested also cover
other data sources, such as molluscs (Pedersen et all, 2015). Additionally, further investigation
into some of the parameters is unlikely to clarify the issue any further, especially for the nick
frequency A. At the maximum value of X in this study, many of the reads generated were filtered
by the already permissive (w.r.t. to current practice in aDNA studies) minimum read length
cutoff at 15 sites. Further increases in A would only marginally decrease the realized read lengths,
as most reads would be filtered by the minimum read length.

All of this together indicates that phylogenetic placement is an appropriate tool for analysing
aDNA sequence. While the frequency of nicks strongly affects the probability of accurately
placing reads, this is predominantly due to length of the reads to be placed, and not to other
damage types. Importantly, all methods to identify aDNA reads will experience difficulties
with extremely short reads, as the amount of information contained within a read is directly
proportional to its length. Furthermore, placement seems to be robust to other forms of aDNA
damage, even when reads are short (see Figures f and jB.)

There are some limitations to this work. First, we did not examine the case where C — T
damage occurs in both overhangs instead of G — A in the second overhang, as is the case
in single stranded libraries. However, we do not expect this to have any effect on the results
presented here, as it is likely the number of misincorporations that matters, and not the type.
Additionally, we did not thoroughly examine the effects of alignment on placement accuracy, even
though we might expect alignment to strongly affect results. In particular, we used the multiple
sequence aligner HMMER, (Eddy, 2011), which aligns all sequences simultaneously. Another
method, which we did not explore, is to conduct the simpler step of single sequence alignment,
where only one read is aligned to the reference MSA at a time. In contrast to multiple sequence
alignment, single sequence alignment does not change the reference alignment, and so it might
be more robust to mis-aligning common errors like C — T or G — A damage.

Finally, our work indicates that a dedicated aDNA damage-aware phylogenetic placement
model is unlikely to substantially improve results.

Data Availability

The modified PEWO pipeline is availible at github.com/computations/PEW0. Datasets, result
files, plotting scripts, and utility scripts used can be found
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