

1 **Title: Multifunctional polymerization domains determine the onset of**
2 **epigenetic silencing in *Arabidopsis***

3 **Authors:** Anna Schulten¹, Geng-Jen Jang¹, Alex Payne-Dwyer^{2,3}, Marc Fiedler⁴, Mathias L.
4 Nielsen^{1,†}, Mariann Bienz⁴, Mark C. Leake^{2,3}, Caroline Dean^{1,4*}

5 **Affiliations:**

6 ¹Department of Cell and Developmental Biology, John Innes Centre; Norwich, United
7 Kingdom.

8 ²School of Physics, Engineering and Technology, University of York; York, United Kingdom.

9 ³Department of Biology, University of York; York, United Kingdom.

10 ⁴Medical Research Council Laboratory of Molecular Biology; Cambridge, United Kingdom.

11 †Present address: Department of Immunology and Regenerative Biology, Weizmann Institute
12 of Science; Rehovot, Israel.

13 *Corresponding author. Email: caroline.dean@jic.ac.uk

14 **Abstract:**

15 Cold-induced epigenetic silencing of *Arabidopsis* *FLOWERING LOCUS C* (*FLC*) requires the
16 Polycomb Repressive Complex 2 and accessory proteins VIN3 and VRN5. VIN3 and VRN5
17 interact via head-to-tail VEL polymerization domains, but how these functionally contribute to
18 the switch to an epigenetically silenced state remains poorly understood. Here, we determine
19 that VIN3 VEL polymerization involves higher order nuclear VIN3 assemblies *in vivo*, promotes
20 strong chromatin association and efficient H3K27me3 nucleation. However, we also show that
21 the polymerization domains of VIN3 and VRN5 are not equivalent: VRN5 VEL domain is not
22 required for silencing despite its role in physically connecting VIN3 with the PRC2 complex
23 and VRN5 VEL is unable to functionally replace VIN3 VEL *in vivo*. Both VIN3 and VRN5
24 homologs are present throughout angiosperm species, suggesting a functional requirement
25 for maintaining different polymerization modalities. This work reveals distinct roles for
26 multifunctional polymerization domains of Polycomb accessory proteins underpinning the
27 onset of epigenetic silencing.

28 **Introduction**

29 The activity of the Polycomb Repressive Complex 2 (PRC2) is essential for the deposition of
30 H3K27me3 as one of the hallmarks of mitotically inheritable gene silencing. Since the first
31 identification of *cis*-regulatory Polycomb Response Elements (PREs) in *Drosophila*, a complex
32 picture has emerged in which non-sequential multifactorial protein interactions with the local
33 chromatin environment, also shaped by transcriptional activity, give rise to genome-wide
34 Polycomb silencing patterns¹⁻⁴. Accessory proteins that interact with the highly conserved
35 PRC2 core complex crucially define PRC2 subcomplexes with different activities and genomic
36 enrichment sites⁵⁻¹⁰. These mediate nucleation of Polycomb complexes and are required to
37 maintain the Polycomb silenced state through cell division¹⁰⁻¹². However, it is still unclear how
38 accessory protein function facilitates the digital switch to an epigenetically stable state and
39 ensures inheritance of the silenced state to daughter cells during DNA replication.

40 In the model plant *Arabidopsis thaliana*, proteins of the VEL family (VIN3, VRN5 and VEL1)
41 have been identified as accessory proteins to a PRC2 complex with the core subunit VRN2

42 (one of three homologs of mammalian SUZ12)^{13,14}. Their genome-wide localization suggests
43 a widespread role in PRC2 silencing of many loci in the *Arabidopsis* genome¹⁴. Except for
44 VEL1, their function is essential for the epigenetic silencing of the floral repressor gene
45 *FLOWERING LOCUS C* (*FLC*) during the winter cold, a process called vernalization¹⁵⁻¹⁸. At
46 *FLC*, Polycomb silencing initiates via cold-induced nucleation of H3K27me3 over a small
47 number of nucleosomes around the first exon-intron boundary of *FLC*. This confers metastable
48 epigenetic silencing that holds the silent state for tens of cell cycles¹⁹. The metastable state is
49 converted into a long-term epigenetically silenced state through the spreading of H3K27me3
50 across the *FLC* gene body, which occurs when the plants start to grow more rapidly following
51 the return to ambient temperatures²⁰. Nucleation, which is strongly reduced in *vin3*, *vrn5* and
52 *vrn2* single mutants, can be separated from the stable spread H3K27me3 state in mutants
53 defective in one of the PRC2 methyltransferases genes *CURLY LEAF* (*CLF*), or *LIKE*
54 *HETEROCHROMATIN PROTEIN 1* required to maintain long-term silencing²¹. Studies in
55 these mutants have shown that VEL proteins promote the stochastic PRC2-mediated
56 nucleation of individual *FLC* alleles, whereby the fraction of nucleated *FLC* loci increases over
57 prolonged cold of winter²². In other words, the slow accumulation of H3K27me3 at the 3-4
58 nucleosome nucleation region is the result of a low probability digital ON/OFF switch, which
59 occurs independently at each allele^{20,23}.

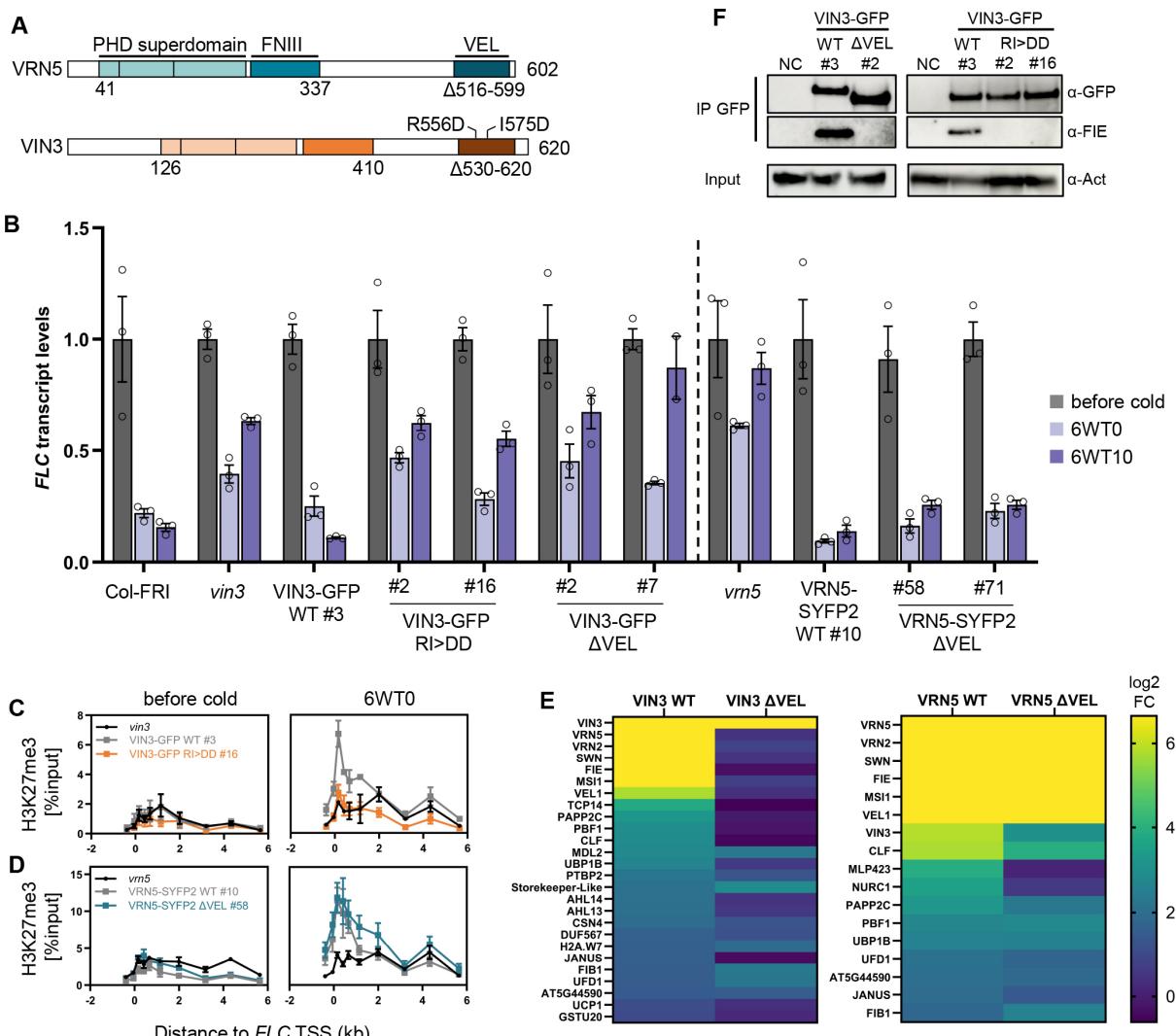
60 A key question was which features of the VEL proteins confer the ability to aid PRC2
61 engagement with these local sites, and to maintain epigenetic silencing through cell division?
62 The VEL proteins share a domain architecture consisting of a tripartite plant homeodomain
63 (PHD) superdomain, a fibronectin type III (FNIII) domain and a C-terminal VEL domain^{24,25}
64 (Fig. 1A). Early data assumed they may be functionally similar, with one protein being cold-
65 induced (*VIN3*) and the others (*VRN5*, *VEL1*) constitutively expressed¹⁵. However, recent
66 structural analysis has revealed that specifically in *VRN5* there is a close packing of the central
67 PHD superdomain and FNIII domain and this mediates its interaction with the PRC2 core
68 complex. In contrast, *VIN3* has a more open conformation of these domains and depends on
69 *VRN5* to interact with PRC2¹⁴.

70 The VEL domain mediates homo- and heterotypic interactions between the VEL proteins.
71 Structural and functional analyses of the VEL domain revealed it to be a head-to-tail
72 polymerization domain, conserved through the green lineage²⁶. It is only the third head-to-tail
73 polymerization fold described in biology to date, their discovery often hindered by the
74 insolubility of protein polymers in solution²⁷. We found that the spontaneous
75 homopolymerization of *VIN3* and *VEL1* via their VEL domains drives their assembly into
76 dynamic biomolecular condensates detected by confocal microscopy following protein
77 expression in heterologous systems²⁶. Mathematical modelling of epigenetic state switching
78 and memory at *FLC* had predicted the requirement of additional protein memory storage
79 elements that positively feedback to reinforce themselves; for example, molecular assemblies
80 that are maintained in sufficiently high numbers to overcome the nucleation threshold and that
81 may persist at the locus even through the nucleosome perturbations that occur during DNA
82 replication¹⁹. Nuclear assemblies of VEL proteins increase in stoichiometry during
83 vernalization²⁸, so that VEL-dependent protein polymerization and condensate formation
84 could provide such a mechanism. Here, we therefore experimentally tested the importance of
85 the VEL polymerization domain in the switch to the epigenetically silenced state.

86

87 **Results**

88 **Contrasting PRC2-related phenotypes in VIN3 and VRN5 VEL domain mutants**


89 We had previously shown that stable *Arabidopsis* lines expressing VIN3-GFP with single
90 amino acid polymerization blocking point mutations located in the head and tail of the VEL
91 domain (R556D/I575D [RI>DD], Fig. 1A), fail to rescue impaired *FLC* silencing in the *vin3*
92 mutant²⁶. This pointed to the importance of polymerization in *FLC* silencing. To extend these
93 findings we directly compared the effect of VIN3-GFP wild-type (WT) and RI>DD transgenes
94 when expressed at endogenous levels. Two homozygous single insertion lines with protein
95 levels equal to a single-insertion VIN3-GFP WT line were selected from a larger T2 generation,
96 all displaying the same non-complementation phenotype (Fig. S1). These VIN3-GFP RI>DD
97 lines mirrored the impaired *FLC* shutdown during cold and the post-cold *FLC* reactivation
98 observed for lines with a deletion of the entire VEL domain in VIN3-GFP (Fig. 1B and Fig. S1).
99 Besides, H3K27me3 fails to accumulate at the *FLC* nucleation region in VIN3-GFP RI>DD
100 (Fig. 1C). Because the RI>DD mutation disrupts VIN3 polymerization with minimal impact on
101 the rest of the protein, we conclude that the polymerization of the VIN3 VEL domain is required
102 to promote PRC2-mediated deposition of H3K27me3 in the *FLC* nucleation region.

103 Our prediction from the heterotypic interactions observed between VIN3 and VRN5 was that
104 the VEL domain would be required for silencing by mediating the VRN5-dependent interaction
105 between VIN3 and PRC2^{14,15}. However, independent homozygous stably transformed
106 *Arabidopsis* VRN5-SYFP2 ΔVEL lines with single transgene insertions in a *vrn5* mutant
107 background (Fig. 1A and Fig. S2) showed an unexpected result; *FLC* was fully silenced in
108 VRN5-SYFP2 ΔVEL like in a *vrn5* rescue line expressing VRN5-SYFP2 WT (Fig. 1B). In
109 agreement, the deposition of H3K27me3 at the *FLC* nucleation region was not impaired in
110 VRN5 ΔVEL plants (Fig. 1D).

111 To further understand the different phenotypes observed for the VEL domain deletions of VIN3
112 and VRN5 *in vivo*, we determined the interaction partners of VIN3 and VRN5 dependent on
113 the VEL domain. Native GFP co-immunoprecipitation (coIP) followed by mass spectrometry
114 was undertaken with respective WT and ΔVEL seedlings vernalized for six weeks. Both VIN3
115 and VRN5 WT proteins co-precipitated all components of one of the *Arabidopsis* PRC2 core
116 complexes (VRN2, FIE, MSI1, SWN and to a lesser extent CLF) as well as each other and
117 VEL1 as expected (Fig. 1E). The deletion of the VIN3 VEL domain resulted in the loss of all
118 PRC2 core subunits and VRN5/VEL1. Probing for the PRC2 subunit FIE with immunoblot
119 analysis after coIP in extracts of vernalized plants confirmed the loss of FIE interaction in both
120 VIN3 ΔVEL and VIN3 RI>DD lines (Fig. 1F). In contrast, the interaction with PRC2 was
121 maintained in VRN5 ΔVEL plants (Fig. 1E). This is in accordance with our previous results
122 from heterologous coIPs in mammalian cells which mapped the PHD superdomain and the
123 FNIII of VRN5, but not the VEL domain to the interface for PRC2 interaction¹⁴. Surprisingly,
124 the interaction of VRN5 ΔVEL with VEL1 was also maintained, whereas the co-enrichment of
125 VIN3 was strongly reduced. Although VEL1 has the same open conformation of the PHD
126 superdomain and the FNIII domain as VIN3, it does interact specifically with the PRC2 core
127 subunit MSI1 and this may explain the association with VRN5 ΔVEL¹⁴. It remains unclear
128 whether VEL1 function might also contribute to the rescue of *FLC* silencing observed in VRN5
129 ΔVEL lines.

130

Figure 1

131

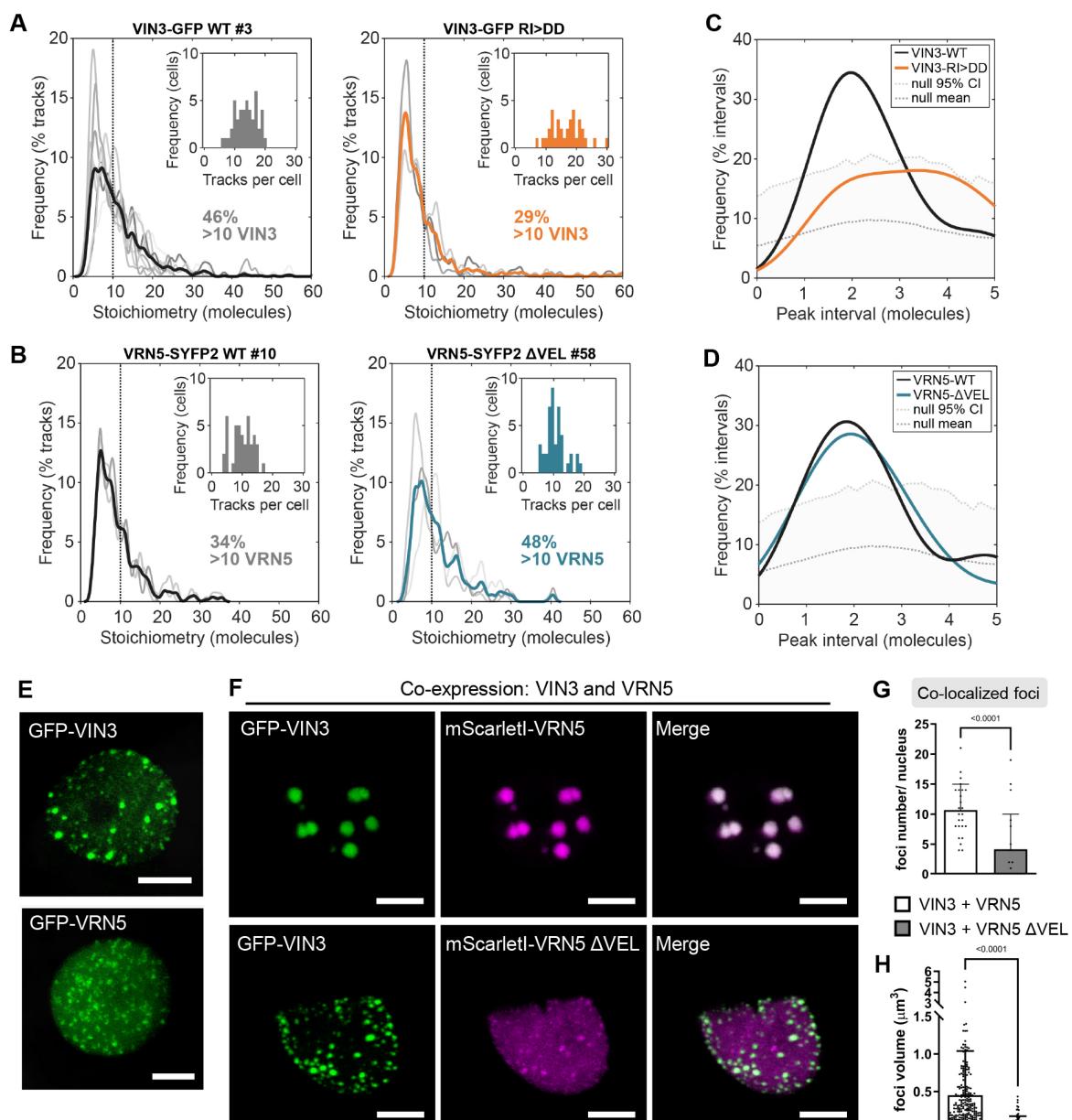
132 **Figure 1: VIN3 and VRN5 VEL domain mutant lines have contrasting phenotypes**

133 (A) Domain architecture of VEL proteins VIN3 and VRN5. Tripartite PHD superdomain: a zinc finger,
134 an atypical PHD domain and a four-helix bundle. Above: R556D and I575D indicate polymerization-
135 blocking point mutations in VIN3 VEL; below: amino acids deleted in VIN3-GFP ΔVEL and VRN5-
136 SYFP2 ΔVEL. (B) qRT-PCR assays of *FLC* transcripts during a vernalization timecourse; before cold,
137 after 6-week cold exposure (6WT0), or 10 days post-cold (6WT10). Data are relative to the geometric
138 mean of *UBC/PP2A*, normalized to *FLC* before cold. Error bars represent standard deviations ($n = 3$
139 biological replicates). (C, D) H3K27me3 ChIP across the *FLC* locus before cold and after 6-week cold,
140 relative to input, in (C) VIN3 or (D) VRN5 VEL domain mutant lines. TSS: transcriptional start site. Error
141 bars represent SEM ($n = 3$ biological replicates). (E) Heatmap from IP-MS samples showing nuclear
142 proteins co-precipitating with VIN3 and VRN5 baits in vernalized seedlings. log2 fold-change (FC) is in
143 comparison to non-transgenic Col-FRI (adj. p -value ≤ 0.05 for wild-type proteins, $n = 3$ biological
144 replicates). (F) Immunoblots of α -GFP immunoprecipitates using vernalized plants with VIN3-GFP
145 transgenes, probed with α -FIE (PRC2 core). Non-transgenic Col-FRI was used as negative control
146 (NC). Blots shown are representative of three replicates.

147 **Role of VEL domain in nuclear assembly formation of VIN3 and VRN5**

148 The protein assemblies predicted to be involved in Polycomb epigenetic switching could be
149 realised by VEL polymerization-based assemblies or by multimeric assemblies mediated by
150 other interactors such as PRC2 (or combinations thereof). We therefore used the stable
151 Arabidopsis transgenic VIN3-GFP and VRN5-SYFP2 lines to investigate the effects of VEL

152 domain disruptions on the stoichiometry of both VIN3 and VRN5 in molecular assemblies *in*
153 *vivo*. We performed single-particle tracking of the fluorescently tagged proteins with SlimVar
154 microscopy, which uses an oblique illumination for rapid, enhanced imaging contrast enabling
155 single-molecule detection sensitivity in intact root tips²⁸. Stepwise photobleaching is employed
156 as a calibration to determine the number of tagged molecules in detected fluorescent
157 particles²⁹.


158

159 In roots of seedlings vernalized for six weeks, we observed that the VIN3-GFP RI>DD
160 mutations resulted in VIN3 assemblies with lower number of molecules, only 29% of tracks
161 corresponded to assemblies larger than 10 molecules compared to 46% in VIN3-GFP WT
162 (Fig. 2A). For VRN5-SYFP2 ΔVEL, we observed an increase in stoichiometry in comparison
163 to the WT in seedlings vernalized for six weeks (Fig. 2B, for other time points see Fig. S3), in
164 contrast to the decrease expected if the assemblies were VEL-mediated. Based on the track
165 stoichiometry distribution, we calculated the periodicity, *i. e.* the intervals between nearest-
166 neighbour peaks, of VIN3 and VRN5 within the assemblies as a proxy for their internal order.
167 VIN3-GFP WT and VRN5-SYFP2 WT consistently showed dimeric units, which were disrupted
168 in VIN3-GFP RI>DD (Fig. 2C) but generally maintained for VRN5-SYFP2 ΔVEL (Fig. 2D).
169 Notably, we have previously observed VIN3 VEL domain crystals composed of protofilaments
170 with a dimeric unit; the result of a mutual domain swapping of VEL domain helices between
171 two VIN3 monomers²⁶. It remains to be determined whether PRC2 might also contribute to
172 VIN3 assembly formation during vernalization. Given the direct interaction between VRN5 and
173 PRC2, we speculate that VEL-independent dimeric periodicity of VRN5 may be a result of the
174 reported ability of PRC2 to undergo dimer formation³⁰⁻³².

175

176 Because we observed no reduction in the size of VRN5 assemblies and no effect on *FLC*
177 silencing in stable *Arabidopsis* lines carrying VRN5 ΔVEL, we questioned the properties of the
178 VRN5 VEL domain. VIN3 polymerization results in the formation of biomolecular
179 condensates²⁶, so we investigated VRN5 condensate formation after transient overexpression
180 in leaf epidermal cells of *Nicotiana benthamiana*. In comparison to the VEL- and
181 polymerization dependent discrete condensates formed by GFP-VIN3²⁶, GFP-VRN5 formed
182 much smaller condensates, with more VRN5 protein diffusely distributed throughout the
183 nucleus (Fig. 2E and Fig. S4A, B). Upon expression in HeLa cells, GFP-VRN5 previously also
184 appeared diffuse²⁶. Tagging VRN5 with mScarlet gave the same result as observed for GFP-
185 VRN5 in the *N. benthamiana* system, where the deletion of the VRN5 VEL domain abolished
186 the formation of any discrete condensates (Fig. S4C-D). These observations are consistent
187 with VRN5 having a lower propensity to concentrate into condensates in a VEL-dependent
188 manner. In agreement with our *in vivo* colP results, we observed the recruitment of mScarletI-
189 VRN5 into GFP-VIN3 to form large condensates in the *N. benthamiana* system, a co-
190 localization that was dependent on the VRN5 VEL domain (Fig. 2F-H). Thus, the VRN5 VEL
191 domain has some ability to homo- and heteropolymerize but its properties appear different to
192 the VEL domain of VIN3.

Figure 2

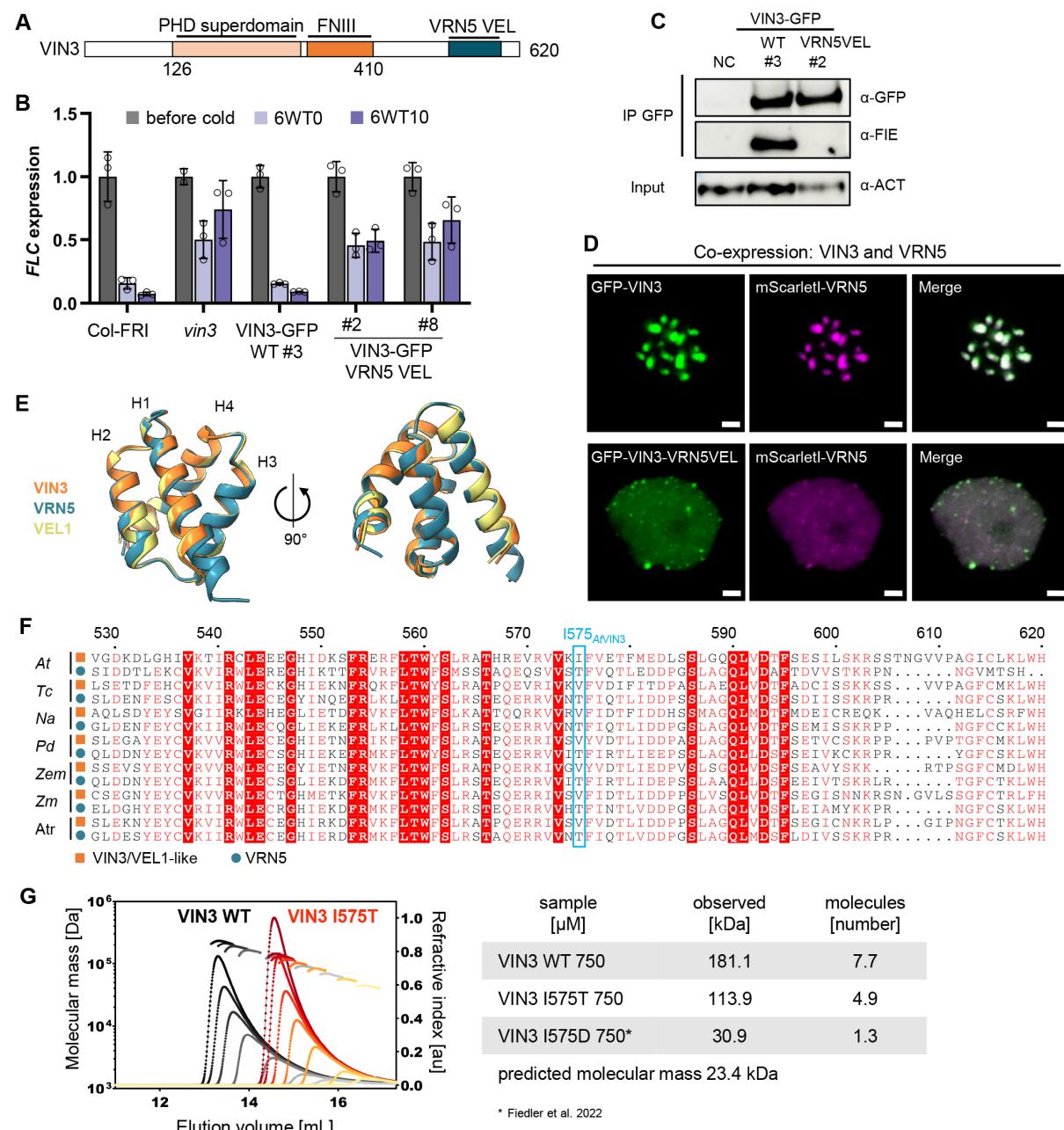


Figure 2: VEL-dependent VIN3 and VRN5 assemblies in vivo and after transient heterologous expression

(A, B) Stoichiometry (molecule number) distributions of SlimVar tracked assemblies of (A) VIN3-GFP WT and VIN3-GFP RI>DD and (B) VRN5-SYFP2 WT and VRN5-SYFP2 ΔVEL in root nuclei of seedlings vernalized for 6 weeks. Individual replicates ($n = 3-8$ experiments, with 9-18 nuclei each) in grey, coloured line indicates mean distribution. Insets show the frequency of tracks per cell, data collection statistics: Fig. S3. (C, D) Distributions of intervals between nearest neighbour stoichiometry peaks of tracked assemblies in (A, B). Upper dotted line indicates the null 95% confidence interval determined from simulations of random aperiodic stoichiometry, distributions which fall below are consistent with the null hypothesis²⁸. (E, F) Representative confocal images of epidermal leaf cell nuclei in *N. benthamiana*, (E) transiently expressing GFP-VIN3 or GFP-VRN5, and (F) transiently co-expressing GFP-VIN3 (green) and mScarlet-VRN5 (magenta) wild-type or mutant as indicated; scale bars 5 μm . (G, H) Quantification of number per nucleus (G) and volume of foci (H) observed in (F). Error bars represent standard deviation ($n = 20-25$ nuclei for (G) and $n = 266$ (VIN3 + VRN5) or 83 (VIN3 + VRN5 ΔVEL) foci for (H)).

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Figure 3

212

213 **Figure 3: VRN5 VEL cannot replace VIN3 VEL function in planta**

214 (A) VIN3-GFP VRN5 VEL chimera construct transformed into the *vin3* mutant.

215 (B) qRT-PCR assays of *FLC* transcripts during a vernalization timecourse; before cold, after 6-week

216 cold exposure (6WT0), or 10 days post-cold (6WT10). Data are relative to the geometric mean of

217 *UBC/PP2A*, normalized to *FLC* before cold. Error bars represent standard deviations ($n = 3$ biological

218 replicates). (C) Immunoblots of α -GFP immunoprecipitates from vernalized plants with indicated VIN3-

219 GFP transgenes, probed with α -FIE (PRC2 core). Non-transgenic Col-FRI was used as negative control

220 (NC). Blots shown are representative of three replicates. (D) Representative confocal images of

221 epidermal leaf cell nuclei in *N. benthamiana*, transiently co-expressing GFP-VIN3 or GFP-VIN3 VRN5

222 VEL (green) and mScarlet-VRN5 (magenta); scale bars 2 μ m. (E) Superpositions of VEL domains of

223 Arabidopsis VRN5₅₁₅₋₅₉₂ (teal), VIN3₅₂₉₋₆₀₁ (orange) and VEL1₆₁₈₋₆₉₀ (yellow) as predicted by AlphaFold.

224 VIN3 and VEL1 AF predictions superpose closely with experimentally determined structures²⁶. (F) SEC-

225 MALS of purified WT (grey to black) or I575T mutant (yellow to red) Lip-VIN3_{VEL} (residues 500–603) at

226 increasing concentrations from right (50 μ M) to left (1250 μ M); curves: elution profiles (void volume of

227 column at 8 mL); line traces: molar masses as derived from MALS; these are specified in the

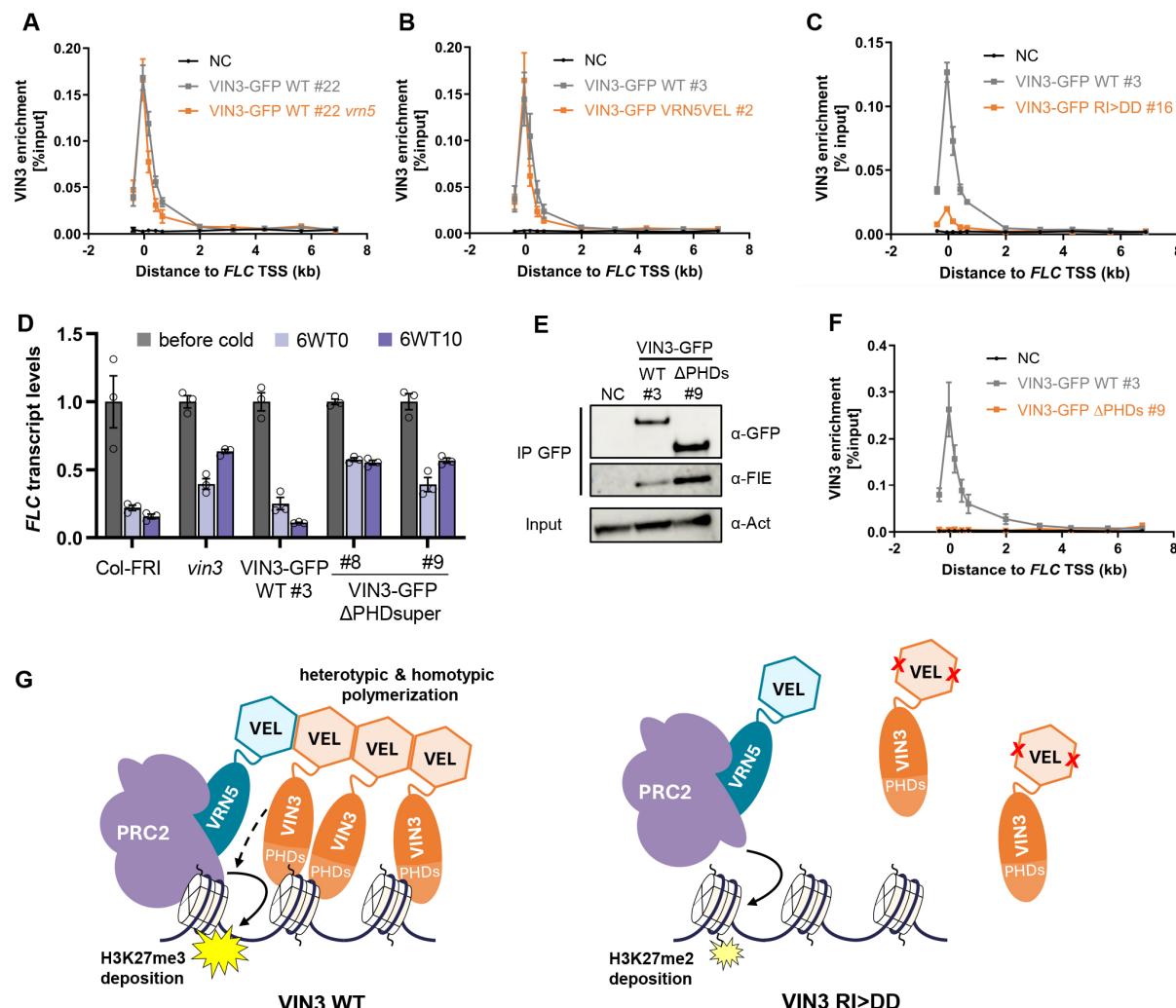
228 neighbouring table and also indicate numbers of molecules per oligomer at a concentration of 750 μ M

229 (note that data for VIN3 I575D is reproduced from²⁶). (G) Amino acid sequence conservation of VEL
230 domains of VRN5 (teal, defined by DLNxxxVPDLN motif in the linker region between the FNIII and VEL
231 domains¹⁴) and VIN3/VEL1 orthologs (orange) throughout the angiosperm lineage. Blue borders
232 highlight the amino acids at the position corresponding to I575_{VIN3}. At: *Arabidopsis thaliana*, Tc:
233 *Theobroma cacao*, Na: *Nicotiana attenuata*, Pd: *Phoenix dactylifera*, Zem: *Zea mays*, Zm: *Zostera
234 marina*, Atr: *Amborella trichopoda*.

235

236 VRN5 VEL domain is not functionally equivalent to VIN3 VEL

237 To further examine the properties of the VRN5 VEL domain, we tested whether VRN5 VEL
238 can functionally replace VIN3 VEL in *FLC* silencing. A VIN3-GFP construct, in which the VIN3
239 VEL domain was replaced with the VRN5 VEL domain (Fig. 3A), was transformed into the *vin3*
240 mutant. *FLC* silencing during vernalization remained impaired in two independent
241 homozygous lines as well as in multiple other lines tested in the T2 generation (Fig. 3B and
242 Fig. S5). This suggests that VRN5 VEL is not functionally equivalent to VIN3. With equal VIN3
243 protein expression, colP of the PRC2 subunit FIE was nearly undetectable in the VIN3-GFP
244 VRN5VEL line compared to VIN3-GFP WT (Fig. 3C), most likely caused by inefficient
245 interaction with endogenous VRN5. Equally, the heterologous co-expression of GFP-VIN3
246 VRN5VEL with mScarlet-VRN5 in these cells did not result in the formation of the large co-
247 localized condensates that are observed upon co-expression of the wildtype proteins (Fig. 3D,
248 S6). The experimentally determined structures of VIN3 and VEL1 VEL domains align closely
249 with the Alphafold (AF) structure predictions²⁶ and comparing the latter to the AF prediction for
250 the VRN5 VEL domain again shows a close superimposition (Fig. 3E). Thus, no major
251 structural differences are predicted to underpin the functional differences between the VEL
252 domains. The amino acid residue I575_{VIN3}/I664_{VEL1} in the VEL head interface engages in
253 hydrophobic or electrostatic interactions with two basic residues in the complementary tail
254 surface to mediate polymerization, blocked by the mutation I575D. A threonine in the
255 corresponding position of *Arabidopsis* VRN5 and other VRN5 orthologs throughout
256 angiosperm plants (Fig. 3F) may be functionally significant as this is a polar hydrophilic rather
257 than a hydrophobic amino acid²⁶. To investigate this, we generated the I575T mutation in
258 recombinant VIN3_{VEL}, bearing a lipooyl solubility tag and purified following expression in
259 *Escherichia coli* (Fig. S7), to conduct size-exclusion chromatography coupled with multiangle
260 light scattering (SEC-MALS). In comparison to WT VIN3_{VEL}, polymerization was attenuated by
261 I575T but not blocked (Fig. 3G, see comparison to the mutation I575D). This result suggests
262 that specific amino acid differences between VIN3 and VRN5 VEL interfaces contribute to
263 different polymerization properties, consistent with reduced VRN5 condensate formation in *N.
264 benthamiana* cells (Fig. 2E).


265

266 VEL polymerization promotes multivalent VIN3 chromatin association independent of 267 PRC2

268 To understand the specific contribution of VIN3 polymerization to *FLC* silencing, we
269 determined whether the loss of interaction between VIN3 and PRC2 observed in the stable
270 VIN3-GFP RI>DD, VIN3-GFP ΔVEL, VIN3-GFP *vrn5* as well as VIN3-GFP VRN5 VEL lines
271 (Fig. 1E-F and Fig. 3C) would affect the association of VIN3 with the *FLC* locus. ChIP-qPCR
272 experiments with vernalized seedlings revealed that VIN3-GFP *vrn5* and VIN3-GFP VRN5VEL
273 showed equally high enrichment at *FLC* as VIN3-GFP WT (Fig. 4A and B), suggesting that the
274 interaction between VIN3 and PRC2 is not *per se* required for VIN3 chromatin binding. In
275 contrast, we observed a strongly reduced association of VIN3-GFP RI>DD and VIN3-GFP
ΔVEL with the *FLC* nucleation region (Fig. 4C and S8A). The chromatin association of VRN5

276 Δ VEL at the *FLC* locus was WT-like in comparison (Fig. S8B). We also tested other VIN3
 277 targets, previously identified by ChIP-seq experiments¹⁴, and found reduced VIN3-GFP RI>DD
 278 association at several of these loci (Fig. S9). This implicates VEL-mediated polymerization in
 279 promoting and maintaining VIN3 chromatin association with *FLC* and other loci in a PRC2-
 280 independent manner.

Figure 4

281 **Figure 4: VIN3 chromatin association is promoted by VEL-mediated polymerization and**
 282 **chromatin binding of the PHD superdomain**
 283 (A-C, F) ChIP-qPCR showing enrichment of VIN3-GFP (wildtype or mutant as indicated) across the
 284 *FLC* locus in seedlings vernalized for 6 weeks. Non-transgenic Col-FRI plants were used as negative
 285 control sample (NC). Data are relative to input control, error bars represent SEM ($n = 2-4$).
 286 (D) qRT-PCR assays of *FLC* transcripts during a vernalization timecourse; before cold, after 6-week
 287 cold exposure (6WT0), or 10 days post-cold (6WT10). Data are relative to the geometric mean of
 288 *UBC/PP2A*, normalized to *FLC* before cold. Error bars represent standard deviations ($n = 3$ biological
 289 replicates). (E) Immunoblots of α -GFP immunoprecipitates from extracts of vernalized plants bearing
 290 the indicated VIN3-GFP transgenes, probed with α -FIE (PRC2 core subunit) antibody. Non-transgenic
 291 Col-FRI was used as a negative control (NC). Blots shown are a representative of three replicates.
 292 (G) Schematic model of VIN3 and VRN5 function in PRC2 silencing. Polymerization via the VEL domain
 293 promotes VIN3 chromatin association, mediated by emergent multivalent interactions between VIN3
 294 PHD superdomains and chromatin ligands. This facilitates recruitment of VRN5-PRC2 via heterotypic
 295 VEL interaction but also promotes H3K27me3 nucleation by other means (dashed arrow, see
 296 discussion). Note that VIN3/VRN5 stoichiometry drawn here is a representation of the observed
 297 differences in VEL domain properties but does not correspond directly to molecule number *in vivo*.
 298

299 An emerging paradigm for the function of head-to-tail protein polymerization is the increase in
300 local concentration of polymerizing proteins and their ligand binding sites, which enhances
301 their binding avidity for low-affinity ligands (functional affinity)²⁷. Because the head and tail
302 interfaces of the VEL domain facilitates homo- and heterotypic interactions between the VEL
303 proteins, both types of interactions can theoretically contribute to promote VIN3 chromatin
304 association in such a mechanism. We observed that VIN3-GFP VRN5VEL does not restore
305 the VRN5-dependent interaction with PRC2, yet it still binds to *FLC* efficiently; thus the
306 properties of VIN3-VRN5VEL are sufficient for some but not all outputs achieved by the VIN3
307 WT protein and its VEL domain. This highlights the complexities at play *in vivo*.

308 We decided to test whether a functionally relevant binding site - whose avidity for its chromatin
309 ligand might be enhanced by the VEL-dependent polymerization - is present in the VIN3
310 protein itself. We turned to the tripartite PHD superdomain of VIN3: although this domain is an
311 atypical PHD domain in that it exhibits no histone H3 tail binding activity, it has a weak affinity
312 for negatively charged DNA or RNA polymers *in vitro*²⁵. We generated stable transgenic
313 Arabidopsis plants carrying VIN3-GFP with a deletion of the entire PHD superdomain
314 (Δ PHDsuper) in the *vin3* mutant background. The construct did not complement the *vin3*
315 mutant in *FLC* vernalization time course experiments in two homozygous lines or in multiple
316 other lines tested in the T2 generation (Fig. 4D and Fig. S10). While VIN3 Δ PHDsuper
317 maintained its interaction with PRC2 based on FIE immunoprecipitation in vernalized
318 seedlings (Fig. 4E), chromatin association with the *FLC* nucleation region was abolished (Fig.
319 4F). This demonstrates that the VIN3 PHD superdomain is necessary for chromatin
320 association and has chromatin or chromatin-associated ligands other than histone H3 tails.
321 Interestingly, H2A was among the significant VIN3 interactors identified by native coIP-MS (Fig.
322 1E), more specifically the histone variant H2A.W which is known to associate with H3K9me2-
323 marked heterochromatin³³. For VIN3-GFP RI>DD, the binding peak at the *FLC* nucleation
324 region was much smaller than for VIN3-GFP WT but not entirely abolished (Fig. 4C). This may
325 reflect the weak chromatin affinity of VIN3 monomers, mediated by the PHD superdomain in
326 the absence of the VIN3-mediated polymerization. We previously found an interaction
327 between VIN3 and the transcriptional repressor VAL1, which serves as an assembly platform
328 for co-transcriptional repressors and chromatin regulators^{14,34}. VAL1 binds to two RY-motifs in
329 the first *FLC* intron and could thus also provide a sequence-specific link to the *FLC* locus³⁵.
330 However, while transgenic Arabidopsis plants carrying a point mutation in the first RY site
331 (*FLC*-C585T) fail to nucleate H3K27me3, they still show an accumulation of H3K27me2
332 specifically in the nucleation region, indicating that VAL1 is only one of the multifactorial
333 mechanisms that ensure targeting of VEL-PRC2 to this region^{14,35}. In agreement with this, we
334 found that VIN3-GFP is still recruited to *FLC* in the C585T background (Fig. S11).

335 Discussion

336 Polymerization is one example of mechanisms that can achieve combinatorial protein inputs
337 to promote the interaction between otherwise weakly interacting molecular components. Our
338 findings suggest that polymerization via the VEL domain results in a high local concentration
339 of VIN3, enhancing its avidity for chromatin by emergent multivalent interactions between VIN3
340 PHD superdomains and chromatin ligands (Fig. 4G). Indeed, combinatorial protein inputs
341 have emerged to be crucial to orchestrate transcriptional output in eukaryotic gene regulation
342 as a more general theme³⁶⁻³⁸, capable of buffering against noisy signals and enhancing target
343 specificity. Experiments with transcription factors (TFs) in yeast serve as an example of the
344 physiological relevance of such mechanisms: synthetic TFs with high affinity to *cis* regulatory

345 motifs imposed a fitness burden that was relieved by weakly binding TFs cooperating in
346 assemblies³⁹.

347 Here, prolonged chromatin association of VIN3 would also increase PRC2 residence time,
348 bridged by VRN5, to facilitate H3K27me3 nucleation (Fig. 4G). This is consistent with our
349 previous observation that the *vin3* mutant, unlike *vrn5*, accumulates the precursor mark
350 H3K27me2 in the nucleation region, which indicated that VIN3 is required to overcome the
351 threshold from di- to trimethylation at *FLC*¹⁴. Similarly, the accumulation of H3K27me2 at PRC2
352 target sites was observed in mammalian cell lines combining knockouts of different PRC2
353 accessory proteins⁴⁰. That the VRN5 VEL domain is not essential for H3K27me3 nucleation
354 suggests that the association of the VIN3 polymer promotes H3K27me3 nucleation by other
355 means in addition to the direct recruitment of VRN5 and PRC2, eg. by modulating chromatin
356 properties such as nucleosome dynamics or by binding other protein effectors.

357 Overall, our findings for the VEL proteins have striking resemblance to a polymerization
358 network involving multiple Polycomb Repressive Complex 1 (PRC1) subunits that engage in
359 a combination of heterotypic and homotypic interactions to promote transcriptional repression
360 in Drosophila. These interactions are mediated by the head-to-tail co-polymerization of SAM
361 domains of Polyhomeotic (Ph) and Sex combs of midleg (Scm) and are linked to the Pho-
362 repressive complex (PhoRC) subunit Sfmbt, which undergoes heterotypic SAM interactions
363 with Scm but is unable to homopolymerize⁴¹⁻⁴³. The DNA-binding activity of the PhoRC
364 complex contributes to this polymerization-mediated hub to promote the nucleation of PRC1
365 complexes at target loci. Polymerization-disrupting mutations in the SAM domain of Ph do not
366 alter Ph chromatin association at most genomic binding sites and have been predominantly
367 linked to changes in long-range chromatin interactions⁴⁴. While the relationship between VEL
368 polymerization and chromatin looping is currently still unknown, *FLC* alleles have been
369 observed to cluster during vernalization, which is impaired in *vrn2* and *vrn5* mutants⁴⁵.

370 Like the SAM domain-dependent co-polymer⁴⁶, the *in vivo* composition and dynamics of the
371 VEL co-polymer will depend on the affinities for all possible homo- and heterotypic interactions
372 between head and tail interfaces of VEL proteins. Specific amino acid residues in the
373 polymerization interface contribute to this, observed here for attenuated polymerization of
374 VIN3 when carrying I575 mutated to the threonine found at the corresponding position in the
375 VRN5 VEL domain (Fig. 3G). This could also underlie the differences between VIN3 and VRN5
376 condensation in cells. The threonine residue is widely conserved throughout angiosperm
377 VRN5 orthologs (Fig. 3F, see also Fig. S12 and Supplemental Table S1), all predicted to be
378 direct interactors of PRC2 based on the compact conformation of their PHDsuper and FNIII
379 domains¹⁴. In contrast, amino acids able to engage in hydrophobic interactions in the
380 polymerization interface are prevalent in the corresponding position of angiosperm VIN3/VEL1
381 orthologs (Fig. 3F), which are predicted to have a more open conformation of their PHD super
382 and FNIII domains unable to confer PRC2 interaction¹⁴. At least two homologs of VEL proteins,
383 from each of the VRN5 and VIN3/VEL1-like subclasses, are present in these species,
384 suggesting that the maintenance of VEL proteins with different PRC2 binding and
385 polymerization properties throughout angiosperm evolution may be functionally important.
386 Other amino acid differences in the polymerization interfaces, possibly associated with
387 different post-translational modifications *in vivo*, are likely to influence polymerization
388 behaviour to fine-tune the VEL polymerization network over evolutionary timescales and
389 remain to be investigated in the future.

390 Taken together, our work defines distinct roles for VEL polymerization in the digital switch to
391 the Polycomb silenced state and extends our mechanistic understanding of the principles not
392 only underlying Polycomb switching but eukaryotic gene regulation generally.

393 **Supplementary Materials:**

394 Figs. S1 to S12

395 Supplemental Tables S1 and S2

396

397 **References:**

398

- 399 1. Laugesen, A., Højfeldt, J.W., and Helin, K. (2019). Molecular Mechanisms Directing
400 PRC2 Recruitment and H3K27 Methylation. *Molecular Cell* 74, 8-18.
401 10.1016/j.molcel.2019.03.011.
- 402 2. Holoch, D., Wassef, M., Lökvist, C., Zielinski, D., Aflaki, S., Lombard, B., Héry, T.,
403 Loew, D., Howard, M., and Margueron, R. (2021). A cis-acting mechanism mediates
404 transcriptional memory at Polycomb target genes in mammals. *Nature Genetics* 53,
405 1686-1697. 10.1038/s41588-021-00964-2.
- 406 3. Déjardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., and
407 Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin
408 by DSP1. *Nature* 434, 533-538. 10.1038/nature03386.
- 409 4. Müller, J., and Kassis, J.A. (2006). Polycomb response elements and targeting of
410 Polycomb group proteins in Drosophila. *Current Opinion in Genetics & Development*
411 16, 476-484. 10.1016/j.gde.2006.08.005.
- 412 5. van Mierlo, G., Veenstra, G.J.C., Vermeulen, M., and Marks, H. (2019). The Complexity
413 of PRC2 Subcomplexes. *Trends in Cell Biology* 29, 660-671.
414 10.1016/j.tcb.2019.05.004.
- 415 6. Perino, M., van Mierlo, G., Loh, C., Wardle, S.M.T., Zijlmans, D.W., Marks, H., and
416 Veenstra, G.J.C. (2020). Two Functional Axes of Feedback-Enforced PRC2
417 Recruitment in Mouse Embryonic Stem Cells. *Stem Cell Reports* 15, 1287-1300.
418 10.1016/j.stemcr.2020.07.007.
- 419 7. Youmans, D.T., Gooding, A.R., Dowell, R.D., and Cech, T.R. (2021). Competition
420 between PRC2.1 and 2.2 subcomplexes regulates PRC2 chromatin occupancy in
421 human stem cells. *Molecular Cell* 81, 488-501.e489. 10.1016/j.molcel.2020.11.044.
- 422 8. Petracovici, A., and Bonasio, R. (2021). Distinct PRC2 subunits regulate maintenance
423 and establishment of Polycomb repression during differentiation. *Molecular Cell* 81,
424 2625-2639.e2625. 10.1016/j.molcel.2021.03.038.
- 425 9. Chen, S., Jiao, L., Shubbar, M., Yang, X., and Liu, X. (2018). Unique Structural
426 Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding. *Molecular
427 Cell* 69, 840-852.e845. 10.1016/j.molcel.2018.01.039.
- 428 10. Oksuz, O., Narendra, V., Lee, C.-H., Descostes, N., LeRoy, G., Raviram, R.,
429 Blumenberg, L., Karch, K., Rocha, P.P., Garcia, B.A., et al. (2018). Capturing the Onset
430 of PRC2-Mediated Repressive Domain Formation. *Molecular Cell* 70, 1149-
431 1162.e1145. 10.1016/j.molcel.2018.05.023.
- 432 11. Coleman, R.T., and Struhl, G. (2017). Causal role for inheritance of H3K27me3 in
433 maintaining the OFF state of a Drosophila HOX gene. *Science* 356, eaai8236.
434 10.1126/science.aai8236.
- 435 12. Laprell, F., Finkl, K., and Müller, J. (2017). Propagation of Polycomb-repressed
436 chromatin requires sequence-specific recruitment to DNA. *Science* 356, 85-88.
437 10.1126/science.aai8266.
- 438 13. De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., and Dean, C. (2008). A PHD-
439 polycomb repressive complex 2 triggers the epigenetic silencing of FLC during
440 vernalization. *Proc Natl Acad Sci U S A* 105, 16831-16836. 10.1073/pnas.0808687105.

441 14. Franco-Echevarría, E., Nielsen, M., Schulten, A., Cheema, J., Morgan, T.E., Bienz, M.,
442 and Dean, C. (2023). Distinct accessory roles of *Arabidopsis* VEL proteins in Polycomb
443 silencing. *Genes & Development* 37, 801-817. 10.1101/gad.350814.123.

444 15. Greb, T., Mylne, J.S., Crevillen, P., Geraldo, N., An, H., Gendall, A.R., and Dean, C.
445 (2007). The PHD Finger Protein VRN5 Functions in the Epigenetic Silencing of
446 *Arabidopsis* FLC. *Current Biology* 17, 73-78. 10.1016/j.cub.2006.11.052.

447 16. Sung, S., and Amasino, R.M. (2004). Vernalization in *Arabidopsis thaliana* is mediated
448 by the PHD finger protein VIN3. *Nature* 427, 159-164. 10.1038/nature02195.

449 17. Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2
450 Gene Mediates the Epigenetic Regulation of Vernalization in *Arabidopsis*. *Cell* 107,
451 525-535. 10.1016/S0092-8674(01)00573-6.

452 18. Kim, D.-H., and Sung, S. (2010). The Plant Homeo Domain finger protein, VIN3-LIKE
453 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor,
454 MAF5. *Proceedings of the National Academy of Sciences* 107, 17029-17034.
455 10.1073/pnas.1010834107.

456 19. Lökvist, C., Mikulski, P., Reeck, S., Hartley, M., Dean, C., and Howard, M. (2021).
457 Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic
458 switching and memory. *eLife* 10, e66454. 10.7554/eLife.66454.

459 20. Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., and Dean, C. (2017).
460 Distinct phases of Polycomb silencing to hold epigenetic memory of cold in
461 *Arabidopsis*. *Science* 357, 1142-1145. 10.1126/science.aan1121.

462 21. Mylne, J.S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y.V.,
463 Jacobsen, S.E., Fransz, P., and Dean, C. (2006). LHP1, the *Arabidopsis* homologue of
464 HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of *FLC*.
465 *Proceedings of the National Academy of Sciences* 103, 5012-5017.
466 doi:10.1073/pnas.0507427103.

467 22. Angel, A., Song, J., Yang, H., Questa, J.I., Dean, C., and Howard, M. (2015).
468 Vernalizing cold is registered digitally at *FLC*. *Proceedings of the National Academy of
469 Sciences* 112, 4146-4151. 10.1073/pnas.1503100112.

470 23. Berry, S., Dean, C., and Howard, M. (2017). Slow Chromatin Dynamics Allow
471 Polycomb Target Genes to Filter Fluctuations in Transcription Factor Activity. *Cell
472 Systems* 4, 445-457.e448. 10.1016/j.cels.2017.02.013.

473 24. Mylne, J., Greb, T., Lister, C., and Dean, C. (2004). Epigenetic Regulation in the
474 Control of Flowering. *Cold Spring Harbor Symposia on Quantitative Biology* 69, 457-
475 464. 10.1101/sqb.2004.69.457.

476 25. Franco-Echevarría, E., Rutherford, T.J., Fiedler, M., Dean, C., and Bienz, M. (2022).
477 Plant vernalization proteins contain unusual PHD superdomains without histone H3
478 binding activity. *J Biol Chem* 298, 102540. 10.1016/j.jbc.2022.102540.

479 26. Fiedler, M., Franco-Echevarría, E., Schulten, A., Nielsen, M., Rutherford, T.J., Yeates,
480 A., Ahsan, B., Dean, C., and Bienz, M. (2022). Head-to-tail polymerization by VEL
481 proteins underpins cold-induced Polycomb silencing in flowering control. *Cell Reports*
482 41. 10.1016/j.celrep.2022.111607.

483 27. Bienz, M. (2020). Head-to-Tail Polymerization in the Assembly of Biomolecular
484 Condensates. *Cell* 182, 799-811. 10.1016/j.cell.2020.07.037.

485 28. Payne-Dwyer, A.L., Jang, G.-J., Dean, C., and Leake, M.C. (2024). SlimVar: rapid *in
486 vivo* single-molecule tracking of chromatin regulators in plants. *bioRxiv*,
487 2024.2005.2017.594710. 10.1101/2024.05.17.594710.

488 29. Leake, M.C., Chandler, J.H., Wadhams, G.H., Bai, F., Berry, R.M., and Armitage, J.P.
489 (2006). Stoichiometry and turnover in single, functioning membrane protein
490 complexes. *Nature* 443, 355-358. 10.1038/nature05135.

491 30. Chen, S., Jiao, L., Liu, X., Yang, X., and Liu, X. (2020). A Dimeric Structural Scaffold
492 for PRC2-PCL Targeting to CpG Island Chromatin. *Molecular Cell* 77, 1265-
493 1278.e1267. 10.1016/j.molcel.2019.12.019.

494 31. Grau, D., Zhang, Y., Lee, C.-H., Valencia-Sánchez, M., Zhang, J., Wang, M., Holder,
495 M., Svetlov, V., Tan, D., Nudler, E., et al. (2021). Structures of monomeric and dimeric

496 PRC2:EZH1 reveal flexible modules involved in chromatin compaction. *Nature*
497 *Communications* 12, 714. 10.1038/s41467-020-20775-z.

498 32. Sauer, P.V., Pavlenko, E., Cookis, T., Zirden, L.C., Renn, J., Singhal, A., Hunold, P.,
499 Hoehne, M.N., Ray, O.v., Hänsel-Hertsch, R., et al. (2023). Activation of
500 automethylated PRC2 by dimerization on chromatin. *bioRxiv*,
501 2023.2010.2012.562141. 10.1101/2023.10.12.562141.

502 33. Lorković, Z.J., Park, C., Goiser, M., Jiang, D., Kurzbauer, M.-T., Schlägelhofer, P., and
503 Berger, F. (2017). Compartmentalization of DNA Damage Response between
504 Heterochromatin and Euchromatin Is Mediated by Distinct H2A Histone Variants.
505 *Current Biology* 27, 1192-1199. 10.1016/j.cub.2017.03.002.

506 34. Mikulski, P., Wolff, P., Lu, T., Nielsen, M., Echevarria, E.F., Zhu, D., Questa, J.I.,
507 Saalbach, G., Martins, C., and Dean, C. (2022). VAL1 acts as an assembly platform
508 co-ordinating co-transcriptional repression and chromatin regulation at *Arabidopsis*
509 FLC. *Nature Communications* 13, 5542. 10.1038/s41467-022-32897-7.

510 35. Qüesta, J.I., Song, J., Geraldo, N., An, H., and Dean, C. (2016). *Arabidopsis*
511 transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization.
512 *Science* 353, 485-488. 10.1126/science.aaf7354.

513 36. Ferrie, J.J., Karr, J.P., Graham, T.G.W., Dailey, G.M., Zhang, G., Tjian, R., and
514 Darzacq, X. (2024). p300 is an obligate integrator of combinatorial transcription factor
515 inputs. *Molecular Cell* 84, 234-243.e234. 10.1016/j.molcel.2023.12.004.

516 37. Park, P.M.C., Park, J., Brown, J., Hunkeler, M., Roy Burman, S.S., Donovan, K.A.,
517 Yoon, H., Nowak, R.P., Ślabicki, M., Ebert, B.L., and Fischer, E.S. (2024).
518 Polymerization of ZBTB transcription factors regulates chromatin occupancy.
519 *Molecular Cell* 84, 2511-2524.e2518. 10.1016/j.molcel.2024.06.010.

520 38. Green, S.M., Coyne, H.J., III, McIntosh, L.P., and Graves, B.J. (2010). DNA Binding by
521 the ETS Protein TEL (ETV6) Is Regulated by Autoinhibition and Self-association.
522 *Journal of Biological Chemistry* 285, 18496-18504. 10.1074/jbc.M109.096958.

523 39. Bragdon, M.D.J., Patel, N., Chuang, J., Levien, E., Bashor, C.J., and Khalil, A.S.
524 (2023). Cooperative assembly confers regulatory specificity and long-term genetic
525 circuit stability. *Cell* 186, 3810-3825.e3818. 10.1016/j.cell.2023.07.012.

526 40. Højfeldt, J.W., Hedehus, L., Laugesen, A., Tatar, T., Wiehle, L., and Helin, K. (2019).
527 Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site
528 Specificity. *Molecular Cell* 76, 423-436.e423. 10.1016/j.molcel.2019.07.031.

529 41. Frey, F., Sheahan, T., Finkl, K., Stoehr, G., Mann, M., Benda, C., and Müller, J. (2016).
530 Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. *Genes*
531 *Dev* 30, 1116-1127. 10.1101/gad.279141.116.

532 42. Kang, H., McElroy, K.A., Jung, Y.L., Alekseyenko, A.A., Zee, B.M., Park, P.J., and
533 Kuroda, M.I. (2015). Sex comb on midleg (Scm) is a functional link between P_cG-
534 repressive complexes in *Drosophila*. *Genes & Development* 29, 1136-1150.
535 10.1101/gad.260562.115.

536 43. Alfieri, C., Gambetta, M.C., Matos, R., Glatt, S., Sehr, P., Fraterman, S., Wilm, M.,
537 Müller, J., and Müller, C.W. (2013). Structural basis for targeting the chromatin
538 repressor Sfmbt to Polycomb response elements. *Genes Dev* 27, 2367-2379.
539 10.1101/gad.226621.113.

540 44. Wani, A.H., Boettiger, A.N., Schorderet, P., Ergun, A., Münger, C., Sadreyev, R.I.,
541 Zhuang, X., Kingston, R.E., and Francis, N.J. (2016). Chromatin topology is coupled
542 to Polycomb group protein subnuclear organization. *Nat Commun* 7, 10291.
543 10.1038/ncomms10291.

544 45. Rosa, S., De Lucia, F., Mylne, J.S., Zhu, D., Ohmido, N., Pendle, A., Kato, N., Shaw,
545 P., and Dean, C. (2013). Physical clustering of FLC alleles during Polycomb-mediated
546 epigenetic silencing in vernalization. *Genes Dev* 27, 1845-1850.
547 10.1101/gad.221713.113.

548 46. Kim, C.A., Sawaya, M.R., Cascio, D., Kim, W., and Bowie, J.U. (2005). Structural
549 Organization of a Sex-comb-on-midleg/Polyhomeotic Copolymer. *Journal of Biological*
550 *Chemistry* 280, 27769-27775. 10.1074/jbc.M503055200.

551 47. Nielsen, M., Menon, G., Zhao, Y., Mateo-Bonmati, E., Wolff, P., Zhou, S., Howard, M.,
552 and Dean, C. (2024). COOLAIR and PRC2 function in parallel to silence *FLC* during
553 vernalization. *Proceedings of the National Academy of Sciences* 121, e2311474121.
554 10.1073/pnas.2311474121.

555 48. Adler, L., Lau, C.S., Shaikh, K.M., Maldegem, K.A.v., Payne-Dwyer, A.L., Lefoulon, C.,
556 Girr, P., Atkinson, N., Barrett, J., Emrich-Mills, T.Z., et al. (2023). The role of BST4 in
557 the pyrenoid of *Chlamydomonas reinhardtii*. *bioRxiv*, 2023.2006.2015.545204.
558 10.1101/2023.06.15.545204.

559

560 **Acknowledgements:**

561 We thank Shuqin Chen and Caroline Smith for their excellent technical help. We are grateful
562 to Gerhard Saalbach and Carlo Martin from the JIC proteomics facility for performing mass
563 spectrometry analysis. We also thank all members of the Dean and Howard groups as well as
564 Elsa Franco-Echevarría for discussions.

565

566 **Funding:**

567 This work was funded by the European Research Council Advanced Grant (EPISWITCH-
568 833254), Wellcome Trust (210654/Z/18/Z), Biotechnology and Biological Sciences Research
569 Council Institute Strategic Programmes (BB/J004588/1 and BB/P013511/1), EPSRC
570 (EP/T00214X/1, EP/T002166/1 and EP/W024063/1) and a Royal Society Professorship
571 (RP\R1\180002) to CD.

572

573 **Author contributions:**

574 MB and CD conceived the study. AS, GJY, APD, MF and MLN performed the investigation and
575 analysed the data. AS and CD wrote the manuscript; all authors reviewed and edited the
576 manuscript. MCL and CD supervised the study, acquired the funding, and were the project
577 administrators.

578

579 **Competing interests:** Authors declare that they have no competing interests.

580

581 **Data and materials availability:**

582 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
583 Consortium via the PRIDE partner repository with the dataset identifier PXD048844 and doi
584 10.6019/PXD048844. SlimVar microscopy data has been deposited to the BioStudies
585 repository under the doi 10.6019/S-BIAD1233. All other microscopy data has been deposited
586 to BioStudies under the doi 10.6019/S-BIAD1249.

587

588 **Materials and methods**

589

590 Plant materials and growth conditions

591

592 Seeds were surface sterilized with chlorine gas, sown on MS media plates without glucose
593 (pH 5.7) and stratified at 4 °C in the dark for 2 days. For non-vernalized (before cold)
594 conditions, seedlings were grown for 10 days in long-day conditions (16 h light, 8 h darkness,
595 20 °C). After this pre-growth, seedlings were vernalized for 6 weeks (8 h light, 16 h darkness,
596 5 °C) (6WT0). Vernalized seedlings were returned to before-cold conditions described above
597 for 10 days (6WT10) for post-cold samples. For seed generation, seedlings were transferred
598 to soil after vernalization and cultivated in a glasshouse with controlled 22°C 16 h day and
599 20°C 8 h night conditions. *Arabidopsis* Col-FRI is Col-0 with an introgressed active Sf2
600 FRIGIDA allele (FRI) and was previously described, as were the *vin3-1* FRI (*vin3*)¹⁶ and the

601 *vrn5-8* FRI (*vrn5*) mutants¹⁴. The transgenic lines pVIN3:VIN3-eGFP/*vin3-4* FRI (VIN3-GFP
602 #22)³⁵, pVIN3:VIN3-eGFP/*vin3-4* *vrn5-8* FRI (VIN3-GFP #22 *vrn5-8*)¹⁴, pVIN3:VIN3-
603 eGFP/*vin3-1* FRI (VIN3-GFP WT #3-8) and pVIN3:VIN3-eGFP R556D/I575D *vin3-1* FRI
604 (VIN3-GFP RI>DD)²⁶ were described previously. The previously transcribed transgene *FLC*-
605 C585T³⁵ was transformed into *FLClean* FRI¹⁷ and then crossed to pVIN3:VIN3-GFP #22/*vin3-4*
606 FRI to generate VIN3-GFP *FLC-C585T* #36.

607

608 **Generation of transgenic *Arabidopsis* lines**

609

610 All primers used for cloning newly generated constructs are listed in Supplemental Table S2.
611 The genomic pENTR pVIN3::VIN3-GFP construct³⁵ was modified to make pENTR
612 pVIN3::VIN3-GFP Δ PHDsuper and pENTR pVIN3::VIN3-GFP Δ VEL by Quickchange, using
613 Phusion DNA Polymerase (Thermo Scientific). To generate pENTR pVIN3::VIN3-GFP
614 VRN5VEL, the VRN5 VEL domain was amplified from pENTR pVRN5-SYFP2 and swapped
615 into pENTR pVIN3-VIN3-GFP by restriction-free cloning.

616 To generate pENTR pVRN5::VRN5-SYFP2, the VRN5 genomic region including endogenous
617 promoter and terminator were amplified from genomic Col-0 DNA and cloned into pENTR
618 using In-Fusion cloning (Takara). SYFP2 was then inserted with In-Fusion cloning, followed
619 by the insertion of a 10 amino acid linker between VRN5 and SYFP2 with Quickchange PCR
620 using Phusion DNA Polymerase (Thermo Scientific). This wild-type construct was modified by
621 Quickchange, using Phusion DNA polymerase, to generate pENTR pVRN5::VRN5-SYFP2
622 Δ VEL. All plasmids were verified by sequencing. The pENTR-constructs were transferred to
623 the binary vector pSLJ-DEST (based on pSLJ755I6) with LR reaction (Invitrogen) and then
624 transformed into *vin3-1* FRI or *vrn5-8* FRI mutants mediated by Agrobacterium C58 using the
625 floral dip method. Transgene copy number was determined in T1 transformants by IDna
626 Genetics (Norwich Research Park).

627

628 **RNA extraction and qRT-PCR**

629

630 RNA was extracted as described³⁵, using acidic phenol followed by lithium chloride
631 precipitation. RNA was DNase treated with Turbo DNA Free DNase, then transcribed into
632 cDNA with SuperScript Reverse Transcriptase IV (both Life Technologies) with gene-specific
633 reverse primers (Supplemental Table S1). qPCR was performed using SYBRGreen Master
634 Mix II on a LightCycler 480 II (both Roche) with primer pairs listed in Supplemental Table S1.

635

636 **Co-immunoprecipitation and immunoblotting**

637

638 For co-immunoprecipitation (coIP) analysis followed by immunoblot analyses, total proteins
639 were extracted from 2-3 aliquots of 3 g frozen ground *Arabidopsis* seedling tissue with IP buffer
640 (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 1% Triton-X, EDTA-free protease
641 inhibitor cocktail [Roche]). Lysates were cleared by filtering through miracloth followed by
642 centrifugation (6,000 g, 30 min, 4°C) and then incubated with GFP-Trap (Chromotek) for 4h.
643 Immunoprecipitates were washed four times with IP buffer and eluted by boiling in 4x NuPAGE
644 LDS sample buffer for 10 min. Input and coIP fractions were separated by polyacrylamide gel
645 electrophoresis (SDS-PAGE) and blotted onto polyvinylidene difluoride (PVDF) membranes.
646 Primary antibodies anti-GFP (11814460001, Roche) and anti-FIE (AS12 2616, Agrisera) were
647 diluted 1:1000, anti-Actin was diluted 1:5000 (AS132640, Agrisera). Secondary antibodies
648 were HRP-coupled. Blots were washed with TBS containing 0.05% Tween-20 and developed
649 with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific).

650

651 **Co-immunoprecipitation and mass spectrometry**

652

653 For coIP followed by mass spectrometry, total proteins were extracted from 3 g of frozen
654 ground *Arabidopsis* seedling tissue with the IP buffer described above, with the addition of
655 PhosSTOP according to manufacturer instructions (4906845001, Roche). IP was performed

656 as described above. Immunoprecipitates were eluted by boiling for 15 min in 20 mM Tris-HCl
657 pH 8, 2% SDS. Proteins in the eluate were precipitated with chloroform/methanol (1:4) on ice
658 for 30 min, the pellet was then washed twice with methanol and once with acetone before
659 drying. Protein pellets were resuspended in 50 μ l of 1.5% sodium deoxycholate (SDC; Merck)
660 in 0.2 M EPPS-buffer (Merck), pH 8.5 and vortexed under heating. Cysteine residues were
661 reduced with dithiothreitol, alkylated with iodoacetamide, and the proteins digested with trypsin
662 in the SDC buffer according to standard procedures. After the digest, the SDC was precipitated
663 by adjusting to 0.2% trifluoroacetic acid (TFA), and the clear supernatant subjected to C18
664 SPE using home-made stage tips with C18 Reprosil_pur 120, 5 μ m (Dr Maisch, Germany).
665 Aliquots were analysed by nanoLC-MS/MS on an Orbitrap Eclipse™ Tribrid™ mass
666 spectrometer coupled to an UltiMate® 3000 RSLC nano LC system (Thermo Fisher Scientific,
667 Hemel Hempstead, UK). The samples were loaded onto a trap cartridge (PepMap™ Neo Trap
668 Cartridge, C18, 5um, 0.3x5mm, Thermo) with 0.1% TFA at 15 μ l min⁻¹ for 3 min. The trap
669 column was then switched in-line with the analytical column (Aurora Frontier TS, 60 cm
670 nanoflow UHPLC column, ID 75 μ m, reversed phase C18, 1.7 μ m, 120 Å; IonOpticks, Fitzroy,
671 Australia) for separation at 55°C using the following gradient of solvents A (water, 0.1% formic
672 acid) and B (80% acetonitrile, 0.1% formic acid) at a flow rate of 0.26 μ l min⁻¹: 0-3 min 1% B
673 (parallel to trapping); 3-10 min increase B (curve 4) to 8%; 10-102 min linear increase B to 48;
674 followed by a ramp to 99% B and re-equilibration to 0% B, for a total of 140 min runtime. Mass
675 spectrometry data were acquired with the FAIMS device set to three compensation voltages
676 (-35V, -50V, -65V) at standard resolution for 1.0 s each with the following MS settings in
677 positive ion mode: OT resolution 120K, profile mode, mass range m/z 300-1600, normalized
678 AGC target 100%, max inject time 50 ms; MS2 in IT Turbo mode: quadrupole isolation window
679 1 Da, charge states 2-5, threshold 1e⁴, HCD CE = 30, AGC target standard, max. injection
680 time dynamic, dynamic exclusion 1 count for 15 s with mass tolerance of \pm 10 ppm, one charge
681 state per precursor only.
682

683 The mass spectrometry raw data were processed and quantified in Proteome Discoverer 3.1
684 (Thermo); all mentioned tools of the following workflow are nodes of the proprietary Proteome
685 Discoverer (PD) software. The *A. thaliana* TAIR10 protein database (arabidopsis.org; 32785
686 entries) was modified by removing accessions AT4G30200.1, AT4G30200.3, and
687 AT4G30200.4 corresponding to 3 versions of the VEL1 protein. Only AT4G30200.2
688 corresponding to the canonical version of VEL1 was left in the database for clearer search
689 and quantification results. The database search including a decoy search was performed with
690 Mascot Server 2.8.3 (Matrixscience, London; in house server) with a fragment tolerance of 0.5
691 Da, enzyme trypsin with 2 missed cleavages, variable modifications were oxidation (M), Acetyl
692 (Protein N-term), phosphorylation (STY), methylation/dimethylation/trimethylation (K); fixed
693 modification carbamidomethyl (C). Validation in PD was then performed using Percolator
694 based on q-values and FDR targets 0.01 (strict) and 0.05 (relaxed). The workflow included the
695 Minora Feature Detector with min. trace length 7, S/N 3, PSM confidence high. The consensus
696 workflow in the PD software was used to evaluate the peptide identifications and to measure
697 the abundances of the peptides based on the LC-peak intensities. For identification, an FDR
698 of 0.01 was used as strict threshold, and 0.05 as relaxed threshold.
699

700 For quantification, three replicates per condition were measured. In PD3.1, the following
701 parameters were used for ratio calculation: normalisation on total peptide abundances, protein
702 abundance-based ratio calculation using the top3 most abundant peptides, missing values
703 imputation by low abundance resampling, hypothesis testing by t-test (background based),
704 adjusted p-value calculation by BH-method. The results were exported into a Microsoft Excel
705 table including data for protein abundances, ratios, p-values, number of peptides, protein
706 coverage, the search identification score and other important values.
707 Protein lists obtained for VIN3 and VRN5 wild-type proteins were filtered for interactors that
708 were positively enriched in comparison to a Col-FRI non-transgenic control sample with an
709 adjusted p-value \leq 0.05. Enrichment ratios of interactors predicted to have a nuclear
710 localization were log2-transformed for both WT and mutant samples to generate the heatmaps

711 visualising the IP-MS results. The full mass spectrometry proteomics data have been
712 deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
713 dataset identifier PXD048844 and 10.6019/PXD048844.

714

715 Chromatin immunoprecipitation (ChIP)

716

717 Histone ChIP was performed with 2 g of formaldehyde-crosslinked material as described
718 previously¹⁴ with the following modifications: after nuclei extraction with Honda buffer, nuclei
719 were layered on a Percoll density gradient (75%/40% Percoll in Honda) and extracted from
720 the interface between these layers after centrifugation (7.000 x g in a swing bucket rotor for
721 30 min at 4 °C) prior to lysis of nuclei. Immunoprecipitation was performed with antibodies α-
722 H3K27me3 (Abcam, ab192985) and α-H3 antibody (Abcam, ab1791), using 3 µg per IP
723 reaction. Non-histone ChIP (VIN3/VRN5) was performed as described for GFP/YFP-tagged
724 proteins¹⁴. For lines with endogenous level VIN3 expression, each ChIP replicate was
725 generated by pooling chromatin from three aliquots of 3 g of formaldehyde-crosslinked
726 material for IP. Immunoprecipitation was performed with α-GFP (Abcam, ab290) using 3 µg
727 per IP reaction.

728

729 Heterologous *Nicotiana benthamiana* transfections

730

731 The generation of *p35S:Ω-GFP-VIN3* was described previously²⁶. This plasmid was modified
732 with seamless megaprimer cloning to generate *p35S:Ω-GFP-VRN5* and *p35S:Ω-mScarlet-*
733 *VRN5* with the coding sequence of VRN5. Plasmids were transformed into *Agrobacterium*
734 *tumefaciens* GV3101 using electroporation. Agrobacteria containing the desired construct at
735 OD₆₀₀ 0.05 were equally co-infiltrated with the silencing suppressor P19 into three-week-
736 old *Nicotiana benthamiana* leaves. Confocal imaging of infiltrated epidermal leaf cells of *N.*
737 *benthamiana* was performed on a Leica confocal Stellaris 8 microscope using a 63x/1.2 water
738 objective and 4x zoom, excitation at 488 nm, detection at 507-542 nm for GFP and excitation
739 at 561 nm, detection at 575-625 nm for mScarlet. Images were acquired 24 hr after infiltration
740 with a laser speed of 600 Hz, a typical Z-step size of 4.7 µm and a pinhole size of 1 AU. The
741 same settings were used at all imaging sets to allow direct comparison between constructs.
742 The analysis was performed in Arivis Vision4D ver. 4.1.0. (Zeiss). Firstly, the blob finder
743 algorithm was applied to the GFP channel using a diameter value of 0.8 mm, a probability
744 threshold of 50%, and a split sensitivity of 65%. Then, the blob finder algorithm was applied to
745 the mScarlet channel using the same settings for diameter value, probability, and split
746 sensitivity. Afterwards, the intersection between the output of the two blob finder operations
747 was calculated. Finally, metrics such as volume were computed for the objects generated by
748 each of the blob finder operations, as well as for their intersection.

749

750

751 SlimVar microscopy and single-assembly analysis

752

753 The SlimVar technique detects rapidly diffusing single molecular assemblies inside root tip
754 nuclei. The microscope was employed in single-colour mode as described previously²⁸.
755 Briefly, prepared seedlings were laid on a pad of MS growth media with 1% agarose on a
756 standard slide, then coated with filtered MS media and sealed under #1.5 coverslips.

757

758 Individual nuclei within the outer three cell layers of the meristematic region of each root tip
759 were identified in brightfield using a 100x NA 1.49 objective and centred in a region of interest
760 no greater than 10 µm x 16 µm (190 x 300 pixel). Each nucleus of GFP- and SYFP2-labelled
761 lines was illuminated rapidly at 3 kW cm⁻² at an oblique angle of 60° with a collimated 488 nm
762 or 514 nm laser respectively, and detected with a high performance sCMOS camera (Teledyne
763 Prime95B) through a 500-550 nm or 525-575 nm emission filter respectively. The exposure
764 time was 10 ms per frame, at a sampling rate of ~80 fps, with the sequence length sufficient
765 to capture complete photobleaching down to single-molecule steps, typically ~1000 frames.

766 Further independent measurements were taken with at least >3 nuclei per root and >3 roots
767 per plate, for >3 independent growth and vernalization replicates (for statistics see Fig. S3C).

768
769 In post-processing analysis, also following²⁸, diffraction-limited foci were extracted from each
770 image sequence and connected into tracks that we identified with molecular assemblies. The
771 stoichiometry of each track was estimated based on its initial fluorescent intensity, compared
772 to that of the single label steps during late-stage photobleaching. Stoichiometry distributions
773 were collated from populations of tracked assemblies for each line and condition. The
774 periodicity of each stoichiometry distribution was estimated relative to a null distribution
775 collated from simulated populations of uniform, random stoichiometry, to detect the presence
776 of any regular structural subunits within assemblies^{28,48}. Noting the previous observation that
777 VRN5 assemblies above a threshold size of 10 molecules have a greater tendency to
778 colocalize at the *FLC* locus as a result of vernalization²⁸, the proportion of assemblies above
779 a stoichiometry of 10 was also determined for each population in this study.

780

781 **SEC-MALS**

782

783 Recombinant 6xHisLip-tagged VIN3_{VEL} (residues 500–603), either WT or I575T mutation were
784 expressed and purified from *E. coli* and then used for SEC-MALS as previously described²⁶,
785 with the following modification: SEC-MALS was performed using a Superose6 Increase
786 10/300 column.

787

788

789