

1 Development of AI-assisted microscopy frameworks through 2 realistic simulation in pySTED

3 Anthony Bilodeau^{1,2}, Albert Michaud-Gagnon^{1,2}, Julia Chabbert¹, Benoit Turcotte^{1,2}, Jörn
4 Heine³, Audrey Durand^{2,4,5,6}, and Flavie Lavoie-Cardinal^{1,2,6,*}

5 ¹CERVO Brain research center, Québec (QC), Canada

6 ²Institute for Intelligence and Data, Québec (QC), Canada

7 ³Abberior Instruments GmbH, Göttingen, Germany

8 ⁴Department of Computer Science and Software Engineering, Université Laval, Québec
9 (QC), Canada

10 ⁵Department of Electrical and Computer Engineering, Université Laval, Québec (QC),
11 Canada

12 ⁶Canada CIFAR AI chair, Mila, Canada

13 ⁷Department of Psychiatry and Neuroscience, Université Laval, Québec (QC), Canada

14 *corresponding author: flavie.lavoie-cardinal@cervo.ulaval.ca

15 Abstract

16 The integration of artificial intelligence (AI) into microscopy systems significantly enhances performance,
17 optimizing both the image acquisition and analysis phases. Development of AI-assisted super-
18 resolution microscopy is often limited by the access to large biological datasets, as well as by the difficulties to
19 benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of
20 a realistic STED simulation platform, pySTED, for the development and deployment of AI-strategies for
21 super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation
22 of data for the training of deep neural networks, the development of online optimization strategies, and
23 the training of reinforcement learning models, that can be deployed successfully on a real microscope.

24 1 Introduction

25 Super-resolution microscopy has played a pivotal role in life sciences by allowing the investigation of the
26 nano-organization of biological samples to a few tens of nanometers [1]. STimulated Emission Depletion
27 (STED) [2], a point scanning based super-resolution microscopy fluorescence modality, routinely allows
28 resolution down to 30-80 nm to be reached in fixed and live samples [1]. One drawback of STED microscopy
29 is the photobleaching of the fluorophores associated with the increased light exposure at the sample [1, 3],
30 [4]. Photobleaching results in a decrease in fluorescence, limiting the ability to capture multiple consecutive
31 images of a particular area and may also increase phototoxicity in living samples [4, 5]. In an imaging
32 experiment, photobleaching and phototoxicity need to be minimized by careful modulation of the imaging
33 parameters [5, 6] or by adopting smart-scanning schemes [7, 9]. Integration of AI-assisted smart-modules to
34 bioimaging acquisition protocols has been proposed to guide and control microscopy experiments [6, 7, 10,
35 [11]. However, Machine Learning (ML) and Deep Learning (DL) algorithms generally require a large amount
36 of annotated data to be trained, which can be difficult to obtain when working with biological samples.
37 Diversity in curated training datasets also enhances the model's robustness [12, 13]. While large annotated
38 datasets of diffraction-limited optical microscopy have been published in recent years [14, 15], access to such
39 datasets for super-resolution microscopy is still limited, in part due to the complexity of data acquisition
40 and annotation as well as a limited access to imaging resources. Similarly, the development of reinforcement
41 learning (RL) methods adapted to the control of complex systems on a wide variety of tasks in games,

42 robotics, or even in microscopy imaging, are strongly dependent on the availability of large training datasets,
43 generally relying on the development of accessible, realistic, and modular simulation environments [11, 16–20].
44 To circumvent this limitation, simulation strategies have been employed for high-end microscopy techniques.
45 For instance, in Fluorescence Lifetime Imaging Microscopy (FLIM), it is common practice to use simulation
46 software to generate synthetic measurements to train ML/DL models [21]. The models can be completely
47 trained in simulation or with few real measurements. Researchers in Single Molecule Localization Mi-
48 croscopy (SMLM) have also adopted simulation tools in their image analysis pipelines to benchmark their
49 algorithms [22–24]. Nehme *et al.* [25] could train a DL model with simulated ground truth detections and few
50 experimental images which was then deployed on real images. In STED microscopy, simulation software are
51 also available. However, they are limited to theoretical models of the point spread function (PSF) [26, 27] or
52 effective PSF (E-PSF) [8, 28], without reproducing realistic experimental settings influencing the design of
53 STED acquisitions (e.g. photobleaching, structures of interest, scanning schemes). This limits the generation
54 of simulated STED datasets and associated training of ML/DL models for smart STED microscopy modules.
55 We created a simulation platform, pySTED, that emulates an *in-silico* STED microscope with the aim to
56 assist the development of AI methods. pySTED is founded on theoretical and empirically validated models
57 that encompass the generation of the E-PSF in STED microscopy, as well as a photobleaching model [3, 19,
58 26, 29]. Additionally, it implements realistic point-scanning dynamics in the simulation process, allowing
59 adaptive scanning schemes and non-uniform photobleaching effects to be mimicked. Realistic samples are
60 simulated in pySTED by using a DL model that predicts the underlying structure (datamaps) of real images.
61 pySTED can benefit the STED and machine learning communities by facilitating the development and deploy-
62 ment of AI-assisted super-resolution microscopy approaches (Extended Fig. 1). It is implemented in a *Google*
63 *Colab* notebook to help trainees develop their intuition regarding STED microscopy on a simulated system
64 (Extended Fig. 1). We demonstrate how the performance of a DL model trained on a semantic segmentation
65 task of nanostructures can be increased using synthetic images from pySTED (Extended Fig. 1i). A second
66 experiment shows how our simulation environment can be leveraged to thoroughly validate the develop-
67 ment of AI methods and challenge their robustness before deploying them in a real-life scenario (Extended
68 Fig. 1ii). Lastly, we show that pySTED enables the training of a RL agent that can learn by interacting with
69 the realistic STED environment, which would not be possible on a real system due to data constraints [30].
70 The resulting trained agent can be deployed in real experimental conditions to resolve nanostructures and
71 recover biologically relevant features by bridging the reality gap (Extended Fig. 1v).

72 2 Results

73 2.1 STED simulation with pySTED

74 We have built a realistic, open-sourced¹ STED simulation platform within the Python environment, namely
75 pySTED. pySTED breaks down a STED acquisition into its main constituents: wavelength dependent focusing
76 properties of the objective lens, fluorophore excitation and depletion, and fluorescence detection. Each
77 step of the acquisition process corresponds to an independent component of the pipeline and is created
78 with its own parameters (Supplementary Tables 1–4) that users can modify according to their experimental
79 requirements (Figure 1a) [26]. Generating a synthetic image with the pySTED simulator requires to provide
80 a map of the emitters in the field of view and to specify the photophysical properties of the fluorophore
81 (Figure 1a and Supplementary Table 5). The map of fluorophores, referred to as datemap, can consist of
82 automatically generated simple patterns (e.g. beads, fibers) or more complex structures generated from real
83 images (Methods). The emission and photobleaching properties of the fluorophores that are implemented in
84 pySTED are inspired from previous theoretical and experimental models [3, 29]. As in a real experiment, the
85 datemap is continuously being updated during the simulation process to realistically simulate point-scanning
86 acquisition schemes (Figure 1a–e, Methods).

87 **Realistic datemap generation** Datamaps that can reproduce diverse biological structures of interest
88 are required for the development of a simulation platform that enables the generation of realistic-*synthetic*

¹<https://github.com/FLClab/pySTED>

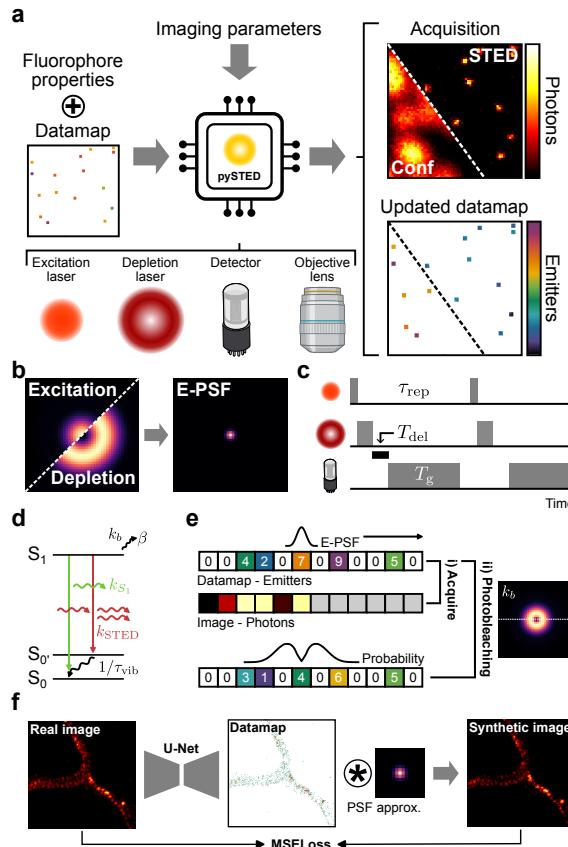


Figure 1 : Caption is on the next page

89 STED images. Combining primary object shapes such as points, fibers, or polygonal structures is efficient
90 and simple for some use-cases but is not sufficient to represent more complex and diverse structures that
91 can be found in real biological samples [22–24, 31]. It is essential to reduce the gap between simulation and
92 reality for microscopist trainees or to train artificial intelligence models on synthetic samples prior to the
93 deployment on real tasks [32, 33].

94 We sought to generate realistic datamaps by training a DL model to predict the underlying structures from
95 real STED images which can then be used in synthetic pySTED acquisition. We chose the U-Net architecture,
96 U-Net_{datemap} as it has been shown to perform well on various microscopy datasets of limited size [34, 35]
97 (Figure 1f). We adapted a previously established approach in which a low-resolution image is mapped
98 to a resolution-enhanced image [36, 37]. Once convolved with an equivalent optical transfer function the
99 resolution-enhanced synthetic image is compared with the original image.

100 Here, we trained the U-Net_{datemap} on STED images of proteins in cultured hippocampal neurons (Methods,
101 Supplementary Fig. 1, and Supplementary Tab. 7). During the training process, the model aims at
102 predicting the underlying structure (datemap) such that the convolution of the approximated PSF of the
103 STED microscope (full-width at half maximum (FWHM): ~ 50 nm, measured from FWHM of real STED
104 images) minimizes the mean quadratic error with the real image (Figure 1f). After training, given a real
105 image, the U-Net_{datemap} generates the underlying structure (Supplementary Fig. 1). From this datemap, a
106 synthetic pySTED image can be simulated with different imaging parameters (low or high resolution). Qualitative
107 comparison of the synthetic images acquired in pySTED with the real STED images (Supplementary
108 Fig. 1) shows similar super-resolved structures for different neuronal proteins confirming the capability of
109 the U-Net_{datemap} to predict a realistic datemap. We also evaluated the quality of images resulting from
110 datamaps generated with the U-Net_{datemap} or a conventional Richardson-Lucy deconvolution (Methods,
111 Supplementary Fig. 2). As highlighted in Supplementary Fig. 2b,c, the use of the U-Net_{datemap} instead of

Figure 1: `pySTED` simulation platform. a) Schematic of the `pySTED` microscopy simulation platform. The user specifies the fluorophore properties (e.g. brightness and photobleaching) and the positions of the emitters in the datamap. A simulation is built from several components (excitation and depletion lasers, detector, and objective lens) that can be configured by the user according to their experimental settings. A low-resolution (Conf) or high-resolution (STED) image of an underlying datamap is simulated using the provided imaging parameters. The number of fluorophores on each pixel in the original datamap is updated according to their photophysical properties and associated photobleaching effects. b) Modulating the excitation with the depletion beam impacts the effective point spread function (E-PSF) of the microscope. The E-PSF is convolved on the datamap to calculate the number of photons. c) A time-gating module is implemented in `pySTED`. The temporal acquisition scheme of the simulation can be modulated by the user. It affects the lasers and the detection unit. The time-gating parameters of the simulation (gating delay: T_{del} and gating time: T_g) as well as the repetition rate of the lasers (τ_{rep}) are presented. A grey box is used to indicate when a component is active. d) A two state Jablonski diagram (ground state: S_0 and excited state: S_1) presents the transitions that are included in the fluorescence (spontaneous decay: k_{S_1} and stimulated emission decay: k_{STED}) and photobleaching dynamics (photobleaching rate: k_b and photobleached state: β) of `pySTED`. The vibrational relaxation rate ($1/\tau_{\text{vib}}$) affects the effective saturation factor in STED. e) An image acquisition is simulated as a two-step process where for each position in the datamap we do the following : i, Acquire) The convolution of the E-PSF with the number of emitters in the datamap (Datamap - Emitters) is calculated to obtain the signal intensity and is reported in the image (Image - Photons). ii, Photobleaching) The number of emitters at each position in the datamap is updated according to the photobleaching probability (line profile from k_b , compare top and bottom line). The same colormaps used in a are also employed for both the datamap and image in e and f. f) Realistic datamaps are generated from real images. A U-Net model is trained to predict the underlying structure from a real STED image. Convolving the predicted datamap with the approximated PSF results in a realistic synthetic image. During training the mean squared error loss (MSELoss) is calculated between the real and synthetic image. Once trained, the convolution step can be replaced by `pySTED`.

112 Richardson-Lucy deconvolution to generate datamaps in `pySTED` results in improved synthetic images.

113 **Validation of `pySTED` with a real STED microscope** We characterized the capacities of `pySTED` to simulate 114 realistic fluorophore properties by comparing the synthetic `pySTED` images with real STED microscopy 115 acquisitions. We acquired STED images of the protein bassoon, which had been immunostained with the 116 fluorophore ATTO-647N in dissociated cultured hippocampal neurons. We compared the effect of varying 117 the imaging parameters on the `pySTED` simulation environment and on the real microscope (Supplementary 118 Fig. 35). For `pySTED` we used the photophysical properties of the fluorophore ATTO-647N from the liter- 119 ature (Supplementary Tab. 5) [3, 38]. The photobleaching constants (k_1 and b) were estimated from the 120 experimental data by using a least-squares fitting method (Methods). Synthetic datamaps were generated 121 with the U-Net_{datamap} to facilitate the comparison between simulation and reality.

122 We first compared how the imaging parameters on the real microscopes and in the `pySTED` simulations (pixel 123 dwelltime, excitation and depletion powers) influenced the image properties by measuring the resolution [39] 124 and the signal ratio [6] (Methods and Supplementary Fig. 3a). As expected, modulating the STED laser 125 power influences the spatial resolution in real experiments and in `pySTED` simulations. Examples of acquired 126 and synthetic images are displayed in Supplementary Fig. 3b for visual comparison with different parameter 127 combinations (Supplementary Fig. 3a). The impact of the imaging parameters in the resolution and signal 128 ratio metrics in `pySTED` agree with the measurements that were performed on a real microscope. The small 129 deviations can be explained by the variability that is typically observed in the determination of absolute 130 values of fluorophore properties [40].

131 Next, we validated the photobleaching model that is implemented within `pySTED`. We calculated the photo- 132 bleaching by comparing the fluorescence signal in a low-resolution image acquired before (CONF1) and 133 after (CONF2) the high-resolution acquisition [6] (Methods). For the pixel dwelltime and the excitation 134 power we measured similar trends between real and synthetic image acquisitions (Supplementary Fig. 4a). 135 For a confocal acquisition, the photobleaching in `pySTED` is assumed to be 0 (Supplementary Fig. 4a) as it 136 is generally negligible in a real confocal acquisition. Considering the flexibility of `pySTED`, different photo- 137 bleaching dynamics specifically tailored for any particular experiment can be implemented and added in the 138 simulation platform. Examples of sequential acquisition (10 images) are presented in Supplementary Fig. 4b

139 to demonstrate the effect of the imaging parameters on the photobleaching of the sample. pySTED also in-
 140 tegrates background effects that can influence the quality of the acquired images as in real experiments [41],
 141 [42] (Supplementary Fig. 4c,d).

142 2.2 pySTED as a development platform for AI-assisted microscopy

143 2.2.1 Dataset augmentation for training deep learning models

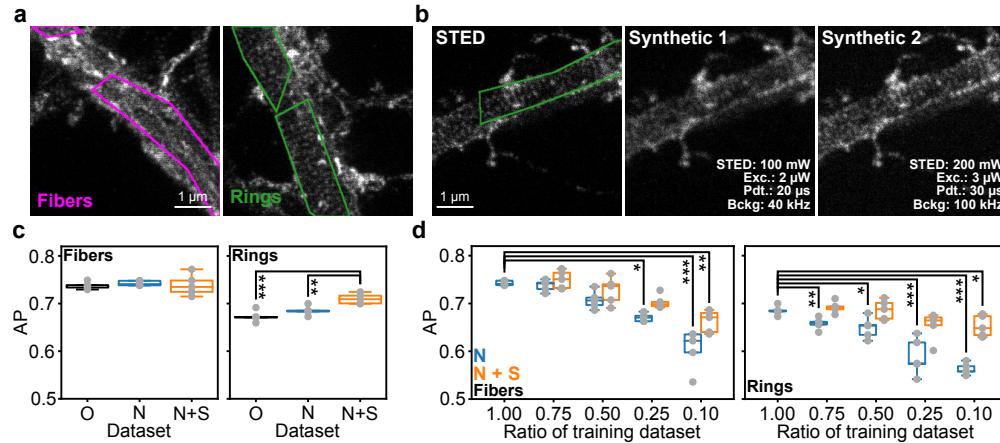


Figure 2: pySTED is used to artificially augment the training dataset of a DL model. a) We tackle the segmentation task that was used in Lavoie-Cardinal *et al.* [43] where the annotations consist in polygonal bounding boxes around F-actin fibers (magenta) and rings (green). b) pySTED is used to augment the training dataset by generating synthetic versions of a STED image. c) Average Precision (AP) of the model for the segmentation of F-actin fibers (magenta) and rings (green). The model was trained on the original dataset from Lavoie-Cardinal *et al.* [43] (O), and on the same dataset with updated normalization (N) and additional synthetic images (N+S). No significant changes in AP are measured for F-actin fibers but a significant increase is measured for N+S over O and N for F-actin rings (p-values in Supplementary Fig. 6). d) Images were progressively removed from the dataset (100%: 42 images, 75%: 31 images, 50%: 21 images, 25%: 10 images, and 10%: 4 images). Removing more than 50% of the dataset negatively impacts the models whereas removing 25% of the dataset negatively impacts the segmentation of rings (N; p-values in Supplementary Fig. 6). Adding synthetic images from pySTED during training allows 75% of the original training dataset to be removed without affecting the performance for both structures (N + S, p-values in Supplementary Fig. 6). Only the significant changes from the complete dataset are highlighted. The complete statistical analysis is provided in Supplementary Fig. 6

144 DL models are powerful tools to rapidly and efficiently analyse large databanks of images and perform various
 145 tasks such as cell segmentation [35, 44]. When no pretrained models are readily available online to solve the
 146 task [45], finetuning or training a DL model from scratch requires the tedious process of annotating a dataset.
 147 We herein aim to reduce the required number of distinct images for training by using pySTED as an additional
 148 data augmentation step. As a benchmark, we used the F-actin segmentation task from Lavoie-Cardinal *et al.*
 149 [43], where the goal is to segment dendritic F-actin fibers or rings using a small dataset (42 images) of STED
 150 images (Figure 2a, Methods). pySTED was used first as a form of data augmentation to increase the number
 151 of images in the training dataset without requiring new annotations. Using U-Net_{datamap} we generated F-
 152 actin datamaps and a series of synthetic images in pySTED with various simulation parameters (Figure 2b,
 153 Supplementary Tab. 8).

154 We compared the segmentation performance by using the average precision (AP, Methods) of a DL model
 155 trained on the original dataset (O [43]) or with different image normalization and increased data augmentation
 156 (N). The segmentation performance was not impacted by increasing the amount of data augmentation
 157 (O vs. N, Figure 2c). Adding synthetic images from pySTED (N+S) into the training dataset to improve the
 158 diversity of the dataset significantly increases the performance of F-actin rings segmentation compared to O
 159 and N and maintains the performance for the F-actin fibers segmentation (Figure 2c). In biological exper-
 160 iments, where each image is costly to acquire, reducing the size of the training dataset results in a higher

161 number of images for the post-hoc analysis. Hence, we sought to measure the impact of reducing the number
 162 of real images in the training dataset by training on subsets of images that are augmented using pySTED
 163 (Supplementary Fig. 7). We measure a significant decrease of the AP for F-actin fibers when the model is
 164 trained on less than 50% of the images. Removing 25% of the dataset negatively impacts the segmentation
 165 performance of F-actin rings (Figure 2d, *p*-values in Supplementary Fig. 6). However, adding synthetic
 166 images from pySTED during training allows the segmentation performance of the model to be maintained by
 167 training with only 25% of the original dataset (Figure 2d, *p*-values in Supplementary Fig. 6).

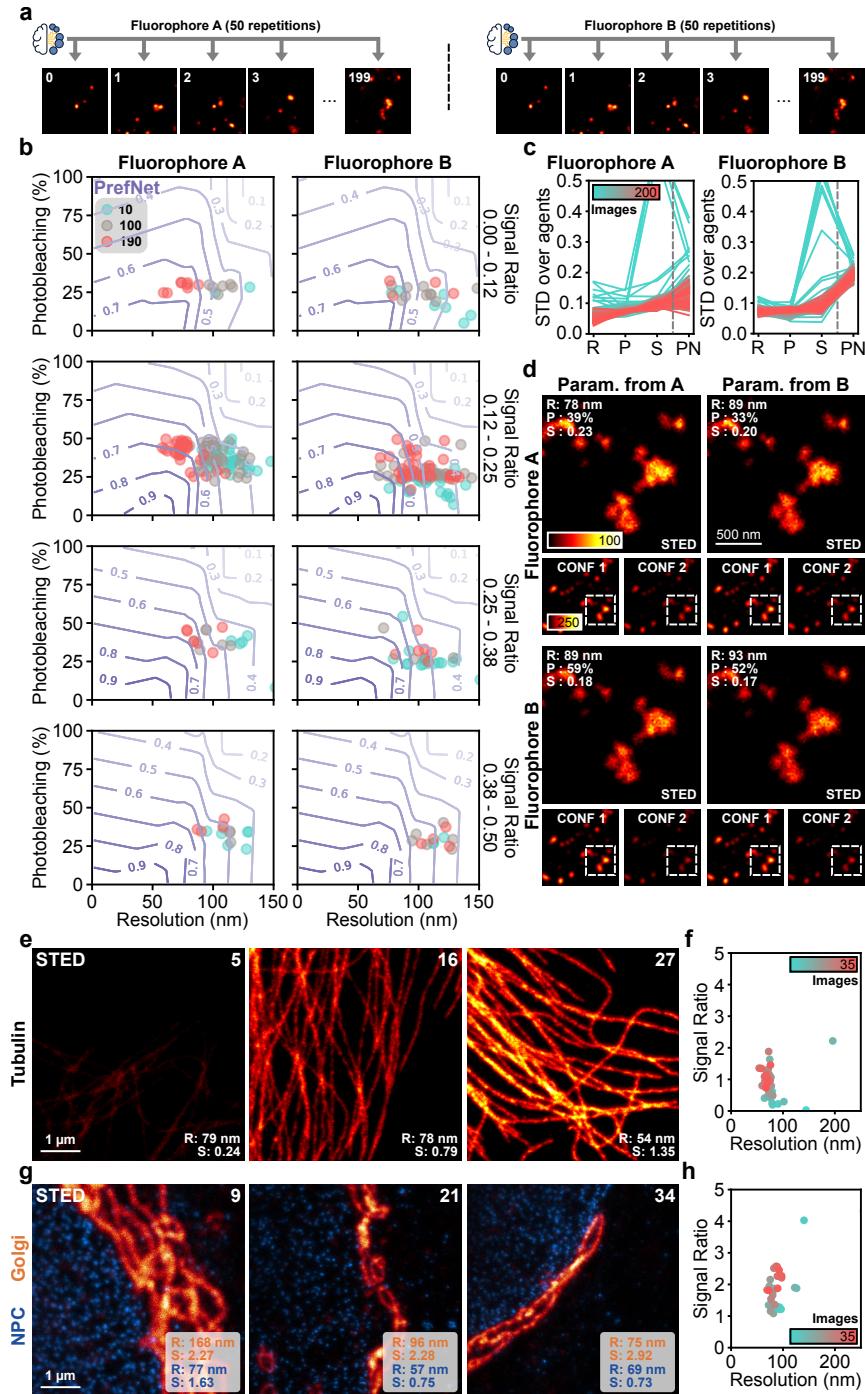


Figure 3 : Caption is on the next page

Figure 3: Validation of AI-assisted algorithms with pySTED for STED microscopy parameter optimization. a) pySTED is used to confirm the robustness of a model to the random initialization by repeatedly optimizing (50 repetitions) the imaging parameters on the same sequence of datamaps (200 images). Two fluorophores are considered for demonstration purposes (Supplementary Tab. 9). b) Resulting imaging optimization objectives from LinTSDiag at 3 different timesteps (10 - cyan, 100 - grey, and 190 - red) for 50 independent models which are presented for increasing signal ratio (top to bottom). With time, LinTSDiag acquires images that have a higher preference score for both fluorophores (purple contour lines) and converges into a similar imaging optimization objective space (red points). c) The standard deviation (STD) of the imaging optimization objectives and of the preference scores decreases during the optimization (cyan to red) supporting the convergence of LinTSDiag in a specific region of the imaging optimization objective space for both fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution, P: Photobleaching, and S: Signal ratio) from the preference network (PN). d) Typical pySTED simulations on two different fluorophores (top/bottom) using the optimized parameters on fluorophore A (left) or B (right). Parameters that were optimized for fluorophore A (top-left) result in higher photobleaching with maintaining a similar resolution and signal ratio on fluorophore B (bottom-left) compared to parameters that were optimized for fluorophore B (bottom-right). See Supplementary Tab. 9 for imaging parameters. e) Example acquisition of LinTSDiag on a Tubulin in kidney epithelial cells (Vero cells) stained with STAR RED in the beginning (left) and at the end of the optimization (right). f) Over time, LinTSDiag manages to increase both the resolution and the signal ratio of the acquired images (35 images, cyan to red). g) LinTSDiag allows multi-color imaging due to its high dimensional parameter space capability. LinTSDiag optimizes the averaged resolution and signal ratio from both channels in dual-color images acquired of Golgi (STAR ORANGE) and Nuclear Pore Complex (STAR RED) in Vero cells. h) LinTSDiag can maximize the signal ratio in the images while maintaining the resolution of the images (35 images, cyan to red).

168 2.2.2 Validation of AI methods

169 Benchmarking AI models for automating microscopy tasks on biological samples is challenging due to bio-
170 logical variability and the difficulty of comparing imaging strategies on the same region of interest [6, 22,
171 46]. Assessing and comparing AI models requires multiple attempts in similar, yet different experimental
172 conditions to limit the impact of biological variability. This inevitably increases the number of biological
173 samples and the time required to develop robust AI-assisted adaptive microscopy strategies that can be
174 deployed on a variety of samples and imaging conditions. pySTED allows the simulation of multiple versions
175 of the same images as if the structure had been imaged with different experimental settings. We herein
176 showcase the capability of pySTED in thoroughly validating ML approaches for the optimization of STED
177 imaging parameters in a simulated controlled environment, enabling more robust performance assessments
178 and comparisons.

179 We first demonstrate how pySTED can be used to characterize the performance of a multi-armed bandit
180 optimization framework that uses Thompson Sampling (TS) for exploration, Kernel-TS. The application
181 of Kernel-TS for the optimization of STED imaging parameters was demonstrated previously, but com-
182 parison between different experiments was challenging due to local variations in the size, brightness, and
183 photostability of the fluorescently tagged neuronal structures [6]. Using synthetic images generated with
184 pySTED allows the performance of Kernel-TS to be evaluated on the same image sequence (50 repetitions,
185 Methods) and with controlled photophysical properties of fluorophores (Extended Fig. 2 and Supplementary
186 Tab. 14). For experimental settings such as multi-channel imaging or adaptive scanning, Kernel-TS is limited
187 by the number of parameters that can be simultaneously optimized (~4) in an online setting [6]. We thus
188 turned to a neural network implementation of Thompson Sampling which was recently developed to solve
189 the multi-armed bandit framework, LinTSDiag [47].

190 Using pySTED we could characterize the performance of LinTSDiag on a microscopy optimization task on
191 synthetic images without requiring real biological samples. As described above, LinTSDiag was trained on
192 the same sequence (50 repetitions, Methods) using two different fluorophores (Figure 3a and Supplementary
193 Tab. 14). In a simple 3-parameters optimization setting, LinTSDiag allows a robust optimization of the
194 signal ratio, photobleaching and spatial resolution for fluorophores with distinct photophysical properties
195 (Figure 3b). We evaluate the performance of LinTSDiag using the preference score, which is obtained from
196 a network that was trained to predict the preferences of an expert in the imaging optimization objective

197 space (PrefNet, see Methods) [6]. The convergence of the agent in the imaging optimization objective space
198 is supported by the smaller standard deviation measured in the last iterations of the imaging session (red
199 lines, Figure 3c). pySTED enables the comparison of the optimized parameters for different fluorophores on
200 the same datemap. This experiment confirms that optimal parameters vary depending on the photophysical
201 properties (Figure 3i).

202 LinTSDiag was then deployed on a real microscopy system to simultaneously optimize 4 parameters (Excitation
203 power, STED power, pixel dwelltime, and linesteps) for the imaging of Tubulin stained with STAR
204 RED in kidney epithelial cells (Vero cell line). The model was able to optimize the imaging optimization
205 objectives, improving the resolution and signal ratio, while maintaining a low level of photobleaching over
206 the course of the optimization (Figure 3e,f and Supplementary Tab. 14). Then we sought to increase the
207 number of parameters by tackling a dual-color imaging scheme (6 parameters, Excitation power, STED
208 power, and linesteps for both channels) for STED imaging of Golgi stained with STAR-ORANGE and nu-
209 clear pore complex (NPC) stained with STAR RED in Vero cells (Figure 3g,h and Supplementary Tab. 14).
210 The optimization framework allows 4 imaging optimization objectives to be simultaneously optimized (e.g.
211 resolution and signal ratio for both colors). As the visual selection of the trade-off in a 4-dimensional space
212 is challenging for the user in an online setting, we decided to optimize the combined resolution and signal
213 ratio of both fluorophores (average of the imaging optimization objectives), allowing the users to indicate
214 their preference in a two-dimensional optimization objective space. Online 6-parameters optimization of
215 LinTSDiag increases the signal ratio while maintaining a good image resolution for both imaging channels
216 (Figure 3i) enabling to resolve both structures with sub-100 nm resolution.

217 Next, we developed a model that leverages prior information (context) to solve a task with a high-dimensional
218 action space. This is the case for DyMIN microscopy which requires parameter selection to be adapted, in
219 particular multiple illumination thresholds, to the current region of interest [8] (Figure 4a,b). We previously
220 showed that contextual-bandit algorithms can use the confocal image as a context to improve DyMIN
221 thresholds optimization in a two parameters setting [48]. In this work we aim to increase the number of pa-
222 rameters (7 parameters) that can be simultaneously optimized and validate the robustness of LinTSDiag [47]
223 (Figure 4b). We repeatedly trained LinTSDiag on the same datemap sequence using the confocal image as
224 prior information (50 repetitions). The parameter selection was compared by measuring whether the action
225 selection correlated over time between the models (Figure 4c, Supplementary Fig. 8, Supplementary Tab. 14,
226 and Methods). For instance, the correlation matrix from the last 10 images shows clusters of similar pa-
227 rameters that are better defined than for the first 10 images (Figure 4c). This is confirmed by the 90th and
228 10th quantile difference in the correlation matrix which rapidly increases with time (Figure 4d). As expected
229 with clustered policies, the average standard deviation of the action selection for each cluster reduces over
230 time implying similar parameter selection by the models (Figure 4e). We also assessed whether the models
231 would adapt their policies to different fluorophores (light/dark purple, Figure 4c,f). As shown in Figure 4f,
232 there are specific policies for each fluorophore (e.g. fluorophore A: 0, 3; fluorophore B: 5) demonstrating
233 the capability of the models in adapting their parameter selections to the experimental condition. While
234 the policy of the models are different, the measured imaging optimization objectives are similar for all clus-
235 ters (Figure 4g) which suggests that different policies can solve this task unveiling the delicate intricacies
236 of DyMIN microscopy. More importantly this shows that the model can learn one of the many possible
237 solutions to optimize the imaging task.

238 The LinTSDiag optimization strategy was deployed in a real life experiment for the 7 parameter optimization
239 of DyMIN3D imaging of the post-synaptic protein PSD95 in dissociated primary hippocampal neurons
240 stained with STAR-635P. Early in the optimization, the selected parameters produced images with poor
241 resolution or missing structures (artefacts) (Figure 4h and Supplementary Tab. 14). The final images were
242 of higher quality (right, Figure 4h) with fewer artefacts and high resolution. The parameter selection of the
243 model converged in a region of the parameter space that could improve all imaging optimization objectives
244 over the course of optimization (Figure 4i,j). Parameters optimized with LinTSDiag allowed a significant
245 improvement of DyMIN3D imaging of PSD95 compared to conventional 3D STED imaging (Supplementary
246 Fig. 9). pySTED allowed us to validate the robustness of the model in a simulated environment prior to its
247 deployment in a real experimental setting. This should benefit the ML community by allowing the validation
248 of new online ML optimization algorithms on realistic tasks.

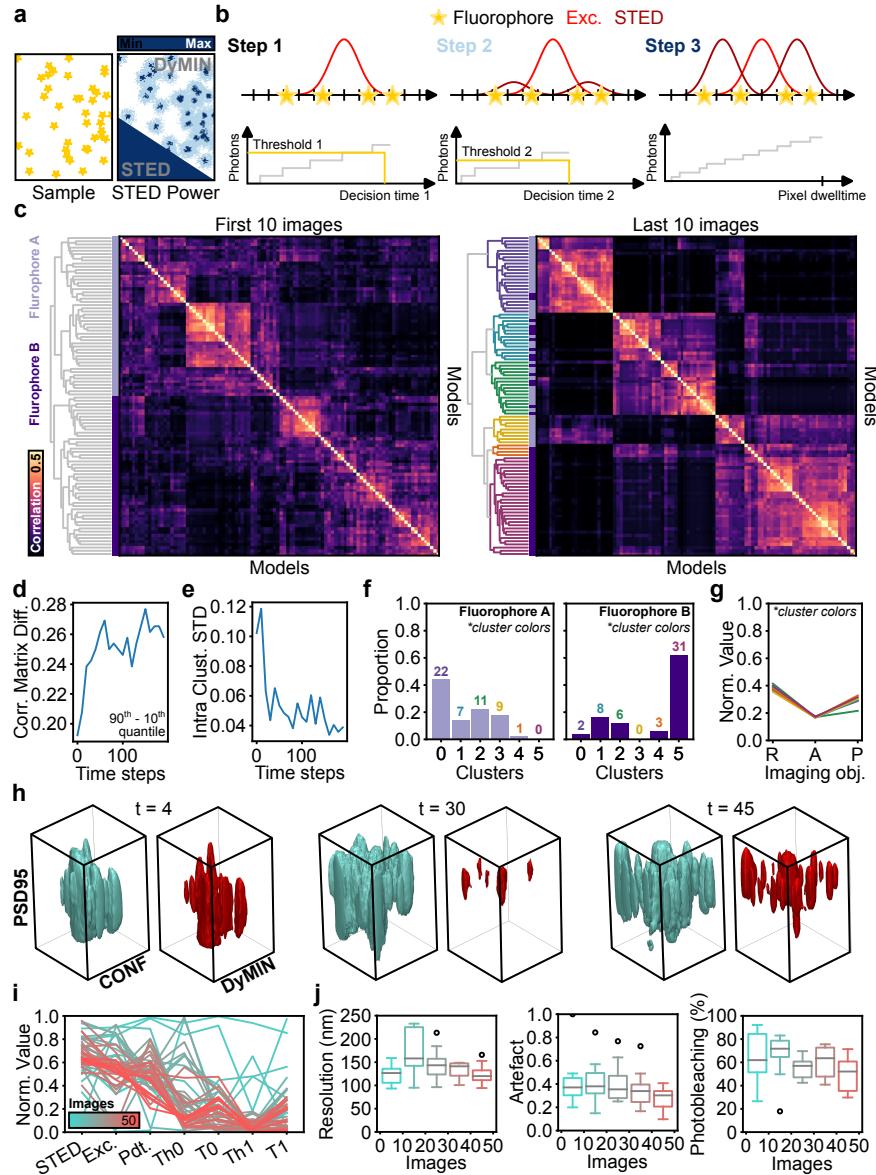


Figure 4 : Caption is on the next page

2.3 Learning through interactions with the system

Online optimization strategies such as Kernel-TS and LinTSDiag were trained from scratch on a new sample, implying a learning phase in which only a fraction of the images will meet minimal image quality requirements. For costly biological samples, there is a need to deploy algorithms that can make decisions based on the environment with a reduced initial exploration phase. Control tasks and sequential planning are particularly well suited for a RL framework where an agent (e.g. replacing the microscopist) learns to make decisions by interacting with the environment (e.g. select imaging parameters on a microscope) with the aim of maximizing a reward signal (e.g. light exposure, signal ratio, resolution) over the course of an episode (e.g. imaging session) [49]. Deep RL agents are (unfortunately) famously data-intensive, sometimes requiring millions of examples to learn a single task [17, 30]. This makes them less attractive to be trained on real-world tasks where each sample can be laborious to obtain (e.g. biological samples) or when unsuitable actions can lead to permanent damage (e.g. overexposure of the photon detector). Simulation platforms are thus essential in RL to provide environments in which an agent can be trained at low cost to then be deployed in

Figure 4: Validation of contextual-bandit algorithms with pySTED in a high-dimensional parameter space. a) DyMIN microscopy uses thresholds to turn off the high-intensity STED laser when no structures are within the vicinity of the donut beam (white regions). Thus limiting the light doses at the sample compared to conventional STED. b) Typically DyMIN uses a 3 step process at each pixel. In the first step, only the excitation (Exc.) laser is used and the signal is measured. If the measured signal is higher than the predefined threshold (Threshold 1) after the decision time (Decision Time 1) then the depletion power (STED) is slightly increased and the signal is measured again (Threshold 2 and Decision time 2). Otherwise the acquisition is stopped until the next pixel. The final step (Step 3) consists in a normal STED acquisition. c) pySTED was used to characterize LinTSdiag models that can simultaneously optimize 7 parameters (STED and excitation powers, pixel dwelltime, threshold 1 & 2, and decision time 1 & 2) with prior information about the task (confocal image). The convergence of the models to similar parameter combinations is evaluated by measuring the correlation in the action selection (50 models) over time (See Supplementary Fig. 8). Clustering of the correlation matrix reveals clusters of policies that are better defined later in the optimization process (right dendrogram, color-coded). The shades of purple on the left of the correlation matrix represent two different fluorophores (light: A, dark: B). d) The difference between the 90th and 10th quantile of the correlation matrix increases with time implying better defined clusters of policies. e) The intra cluster standard deviation (STD) of the parameter selection decreases during the optimization showing that the policy of the models converges in all defined clusters. f) The proportion of models per cluster for fluorophore A or B (light and dark respectively) shows that there are different modes of attraction in the parameter space for fluorophores with distinct photophysical properties (color-code from c). g) While models converged in different regions of the parameter space, the measured imaging optimization objectives (R: Resolution, A: Artefact, P: Photobleaching) are similar for each cluster (color-code from c). h) Example acquisition with LinTSdiag optimization on a real acquisition task for DyMIN3D of the synaptic protein PSD95 in cultured hippocampal neurons. The volume size is 2.88 $\mu\text{m} \times 2.88 \mu\text{m} \times 2 \mu\text{m}$. Confocal (left) and DyMIN (right) acquisitions are displayed. i) A convergence of the parameter selection in the 7-parameter space is observed (cyan to red, STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime, Th1-2: First and second DyMIN threshold, and T1-2: First and second DyMIN decision time). j) LinTSdiag optimization reduces the variability of all imaging optimization objectives during the optimization (50 images). Boxplot shows the distribution in bins of 10 images.

262 a real-life scenario [50], which is referred to as simulation to reality (Sim2Real) in robotics. While Sim2Real
263 is widely studied in robotics and autonomous driving, its success for new fields of application is generally
264 dependant on the gap between simulation and reality [51].

265 Here, pySTED is used as a simulation software to train RL agents. We implemented pySTED in an OpenAI
266 Gym environment (gym-STED) to facilitate the deployment and development of RL strategies for STED
267 microscopy [19, 52]. To highlight the potential of gym-STED to train a RL agent, we crafted the task of
268 resolving nanostructures in simulated datamaps of various neuronal structures (Figure 5a). In gym-STED
269 an episode unfolds as follows. At each timestep the agent observes the state of the sample: a visual input
270 (image) and the current history (Methods, Figure 5b). The agent then performs an action (adjusting pixel
271 dwelltime, excitation and depletion powers), receives a reward based on the imaging optimization objectives
272 and transitions into the next state. A single value reward is calculated using a preference network that was
273 trained to rank the imaging optimization objectives (resolution, photobleaching and signal ratio) according
274 to expert preferences [6] (Methods). A negative reward is obtained when the selected parameters lead to
275 a high photon count that would be detrimental to the detector in real experimental settings (e.g. non-
276 linear detection of photon counts). This sequence is repeated until the end of the episode, 30 timesteps. In
277 each episode, the goal of the agent is to balance between detecting the current sample configuration and
278 acquiring high-quality images to maximize it's reward (Figure 5a). We trained a proximal policy optimization
279 (PPO) [53] agent and evaluate its performance on diverse fluorophores (Methods). Domain randomization
280 is used heavily within the simulation platform to cover a wide variety of fluorophores and structures and
281 thus increase the generalization properties of the agent [54]. In Figure 5c-f (Supplementary Tab. 15), we
282 report the performance of the agent on a fluorophore with simulated photophysical properties that would
283 result in high brightness (high signal ratio) and high photostability (low photobleaching) in real experiments.
284 The results of the agent on other simulated fluorophore properties are reported in supplementary material
285 (Supplementary Tab. 10 and Supplementary Fig. 10). Over the course of training, the agent adapts its policy
286 to optimize the imaging optimization objectives (100k and 12M training steps, Figure 5c). As expected from
287 RL training, the reward of an agent during an episode is greater at the end of training compared to the

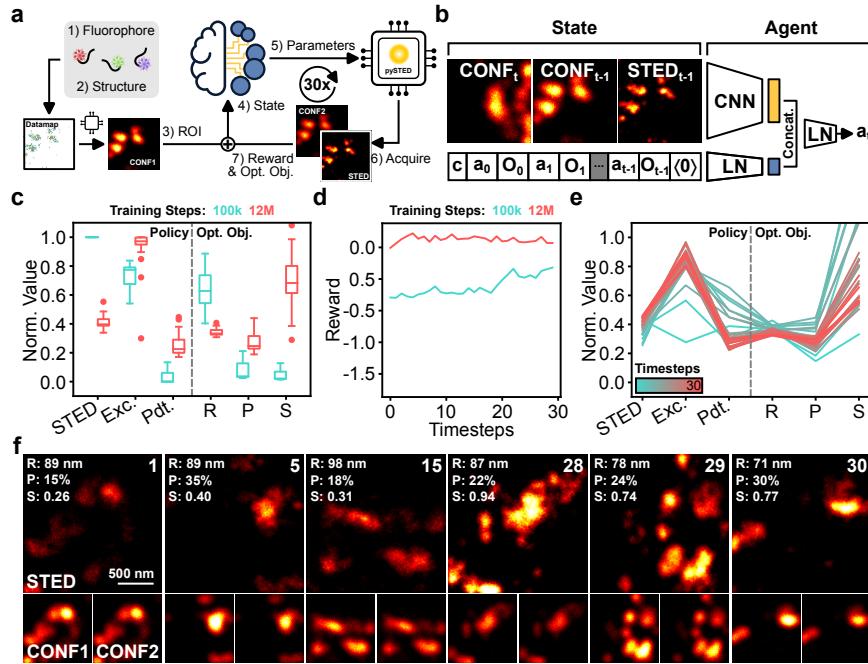


Figure 5: A RL agent is trained to optimize the STED imaging parameters in simulation with pySTED. a) Schematic of the RL training loop in simulation. Each episode starts by sampling a set of photophysical properties representing a fluorophore (1) and the selection of a structural protein from the databank (2). At each timestep a region of interest (ROI) is selected: a datemap is created and a confocal image is generated with pySTED (3). The confocal image is used in the state of the agent (4) which then selects an action, *i.e.* the next imaging parameters (5). A STED image and a second confocal image are generated in pySTED (6). The imaging optimization objectives and the reward are calculated (7). On the next timestep, the agent sees a new ROI, the previously simulated images and the history of the episode. b) The state of the agent includes a visual input (the images) and the history. The visual input of the agent is the current confocal (CONF_t) and the previous confocal/STED images (CONF_{t-1} and STED_{t-1}). The state of the agent also incorporates the laser excitation power at which the confocal image was acquired (c), the history of selected actions (a_t) and the calculated imaging optimization objectives (O_t). The history vector is zero-padded to a fixed length ((0)). The agent encodes the visual information using a convolutional neural network (CNN) and the history using a fully connected linear layer (LN). Both encoding are concatenated and fed to a LN model which predicts the next action. c) Evolution of the policy (left, STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and imaging optimization objectives (right, R: Resolution, P: Photobleaching, S: Signal ratio) for a fluorophore with high-signal and low-photobleaching properties during training at the beginning (cyan, 100k timesteps) and at the end (red, 12M timesteps) of the training process. A boxplot shows the distribution of the average value from the last 10 images of an episode (30 repetitions). d) Evolution of the reward during an episode at the beginning (cyan, 100k timesteps) and at the end of training (red, 12M timesteps) for the same fluorophore properties as in c). e) Evolution of the policy (left) and imaging optimization objectives (right) after training (12M timesteps) during an episode for a fluorophore with the same photophysical properties as in c). f) Typical examples of images acquired during an episode. The image index is shown in the top right corner and the calculated imaging optimization objectives in the top left corner. The STED image and second confocal (CONF2) image are normalized to their respective first confocal (CONF1) images.

beginning (red vs. cyan, Figure 5d). When evaluated on a new sequence, the agent trained over 12M steps rapidly adapts its parameter selection during the episode to acquire images with high resolution and signal ratio, while minimizing photobleaching (Figure 5e,f). The agent shows a similar behavior for various simulated fluorophores (Supplementary Fig. 10). We compared the number of good images acquired by the RL agent with that of bandit optimization for the first 30 images of the optimization. In similar experimental conditions, with the same fluorophore and parameter search space, the average number of good images were (18±3) and (5±3) for the RL agent and bandit respectively (50 repetitions). This almost four-fold increase in the number of high quality images, highlights the improved efficiency of the RL agent at suggesting optimal imaging parameters.

297 Given the capability of the agent in acquiring images for a wide variety of synthetic imaging sequences,
298 we evaluated if the agent could be deployed in a real experimental setting. The experimental conditions
299 chosen for the simulations were based on the parameter range available on the real microscope. Dissociated
300 primary hippocampal neurons were stained for various neuronal proteins (Figure 6, Extended Fig. 3, and
301 Supplementary Tab. 15) and imaged on a STED microscope with the RL agent assistance for parameter
302 choice. First, we evaluated the performance of our approach for *Sim2Real* on *in distribution* images from
303 F-actin and CaMKII- β in fixed neurons. While simulated images of both structures were available within
304 the training environment we wanted to evaluate if the agents could adapt to the real life imaging settings
305 (Supplementary Fig. 1). As shown in Figure 6a and Extended Figure 3, the agent resolves the nano-
306 organization of both proteins (Supplementary Fig. 11). We sought to confirm whether the quality of the
307 images was sufficient to extract biologically relevant features (Methods). For both proteins, the measured
308 quantitative features matched with values previously reported in the literature, enabling the resolution of the
309 190 nm periodicity of the F-actin lattice in axons, and the size distribution of CaMKII- β nanoclusters [55,
310 56, 58] (Figure 6a and Extended Figure 3). Next, we wanted to validate that the agent would adapt its
311 parameter selection to structures, fluorophores properties or imaging conditions that were not included in
312 the training set. We first observed that the agent could adapt to a very bright fluorescent signal and adjust
313 the parameters to limit the photon counts on the detector (Extended Fig. 3). The morphology of the imaged
314 PSD95 nano-cluster was in agreement with the values reported by Nair *et al.* [59] (Extended Fig. 3). We
315 deployed the RL-based optimization scheme for the imaging of the mitochondrial protein TOM20 to evaluate
316 the ability of the agent to adapt to *out-of-distribution* structures (Figure 6b). The nano-organization and
317 morphology previously described by Wurm *et al.* [57] of TOM20 in punctate structures is revealed using
318 the provided imaging parameters in all acquired images (Figure 6b and Supplementary Fig. 11). Next, we
319 evaluated the generalizability of the approach to a new imaging context, which is live-cell imaging. We
320 used the optimization strategy for the imaging of the F-actin periodic lattice in living neurons (Figure 6c).
321 The quality of the acquired images are confirmed by the quantitative measurement of the periodicity which
322 matches the previously reported values of 190 nm from the literature [55, 56]. Finally, we verified the
323 generalizability of our approach by deploying our RL-assisted strategy on a new microscope and samples
324 (Figure 6d-e, Extended Fig. 4, and Supplementary Tab. 15). We evaluated the performance of the RL agent
325 for the imaging in fixed Vero cells of tubulin stained with STAR-RED and Actin stained with STAR-GREEN.
326 The agent successfully adapted to the new imaging conditions, rapidly acquiring high quality images, even
327 in challenging photobleaching conditions such as with STED microscopy of the green emitting fluorophore
328 STAR-GREEN. Using the pySTED simulation environment we could successfully train RL agents that can
329 be deployed in a variety of real experimental settings to tackle STED imaging parameter optimization tasks.
330 To our knowledge, this is the first application of RL agents to an online image acquisition task in optical
331 microscopy.

3 Discussion

332 We built pySTED, an *in-silico* super-resolution STED environment, which can be used to develop and bench-
333 mark AI-assisted STED microscopy. Throughout synthetic and real experiments, we have demonstrated that
334 it can be used for the development and benchmarking of AI approaches in optical microscopy. The *Google*
335 *Colab* notebook that was created as part of this work can be used by microscopist trainees to develop their
336 skills and intuition for STED microscopy before using the microscope for the first time. The optimal set of
337 parameters defined in pySTED for a specific fluorophore can guide the parameter choice on a real microscope,
338 but should not replace optimization in real experimental settings to account for environmental effects and
339 biological variability.

340 The simulation platform was built to be versatile and modular. This allows the users to create and test the
341 efficiency of AI-strategies and adaptive imaging scheme before deploying them on a real microscope. For
342 instance, both DyMIN [8] and RESCue [60] microscopy are readily available to the users. Additionally, the
343 community can contribute open-source modules that would meet their experimental settings.

344 Smart-microscopy requires the development of tools and modules to increase the capabilities of the micro-
345 scopes [10, 61] which can be challenging when working on a real microscopy system. The development of

347 simulation software is one way to mitigate the difficulty of building an AI-assisted microscopy setup. We
348 mainly focused on the selection of imaging parameters which is one branch of AI-assisted microscopy but
349 also showed that pySTED can be successfully applied to data augmentation in supervised learning settings. A
350 recent trend in microscopy focuses on the implementation of *data-driven* microscopy systems. For example,
351 systems are built to automatically select informative regions or improve the quality of the acquired images [62],
352 [63]. The development and validation of such *data-driven* systems could be achieved with pySTED. An interesting
353 avenue to pursue for *data-driven* systems could rely on generative models to create diverse datamaps
354 on-the-fly instead of relying on existing databanks of STED microscopy images, which could be integrated to
355 the modular structure of the pySTED simulation environment. Online ML optimization strategies tested in
356 the pySTED environment showed similar performances when transferred to the real microscopy environment,
357 opening new possibilities to characterize and benchmark novel *data-driven* microscopy approaches in pySTED
358 prior to their deployment on real biological samples.

359 We also tackle the training of an RL agent, the first for optical microscopy, which would be impossible
360 without the access to a large databank of simulated data. The RL agent enables a full automatization of the
361 imaging parameter selection on a real system when deployed from gym-STED, an OpenAI gym environment
362 built around pySTED [52]. Domain randomization was used heavily within the simulation platform [54] which
363 resulted in a RL agent that could adapt its parameter selection to a wide variety of experimental conditions,
364 even in living samples. Such strategies could be transformative to democratize STED microscopy to a larger
365 diversity of experimental settings and allow non-expert users to acquire high-quality images on a new sample
366 without previous optimization sessions.

367 While RL agents can represent a powerful tool to automatize microscopy setups, they must be trained on
368 a very large number of examples (e.g. 12M steps in this work) [17], [30], which would be infeasible on a real
369 microscopy setup. The pySTED simulation environment allowed the RL agent to bridge the gap between
370 simulation and reality without requiring any fine-tuning. This makes pySTED an appealing platform for
371 RL development as it is particularly well suited for complex control tasks requiring temporally distinct
372 trade-offs to be made [20]. In this work, the model relied on a constant preference function to convert
373 the multi-objective optimization into a single reward function. This preference function is ultimately user-
374 dependant. This could be complemented in the future by incorporating RL from human-feedback in the
375 training of the RL model [64], [65]. In future work, temporal dynamics could also be implemented in pySTED
376 to open new possibilities to fully automatize the selection of informative regions and of imaging parameters
377 in an evolving environment.

378 Acknowledgments

379 Sarah Pensivy and Tommy Roy from the Neuronal Cell Culture Platform of the CERVO Brain Research Cen-
380 ter for the preparation of the dissociated hippocampal cultures. Valérie Clavet-Fournier for immunostainings
381 of neuronal proteins. Mélissa Bilodeau for the help with the pySTED logo. Funding was provided by grants
382 from the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-06704-2019 to
383 F.L.C.), Fonds de Recherche Nature et Technologie (FRQNT) Team Grant (2021-PR-284335 to F.L.C and
384 A.D.), the Canadian Institute for Health Research (CIHR) (F.L.C.), and the Neuronex Initiative (National
385 Science Foundation 2014862, Fonds de recherche du Québec - Santé 295824) (F.L.C.). A.D. is a CIFAR
386 Canada AI Chair and F.L.C. is a Canada Research Chair Tier II. A.B. was supported by a scholarship
387 from NSERC. A.B. and A.M.G. were awarded an excellence scholarship from the FRQNT strategic cluster
388 UNIQUE.

389 Author contributions

390 A.B., A.D. and F.L.C. designed the study. A.B., A.M.G., B.T., A.D. and F.L.C. developed the pySTED
391 simulation platform. A.B. performed the DL and RL experiments and evaluated their performance. A.B.
392 and A.M.G. evaluated the performance of the pySTED platform and designed the ML experiments. A.B.,
393 J.C. and J.H. performed the live-cell and two-color experiments. A.B. evaluated the deployment of the ML
394 and RL strategies in real experimental settings. A.B. and F.L.C. wrote the manuscript.

395 Competing interests

396 The authors declare the following competing interests. J.H. is an employee of Abberior Instruments a
397 company manufacturing STED microscopes.

398 Data availability

399 All the datasets used to train the models and the corresponding acquired images are available for download
400 at <https://s3.valeria.science/flclab-pysted/index.html>.

401 Code availability

402 All code used in this manuscript are open source. Code for the STED simulation platform, pySTED, is avail-
403 able from <https://github.com/FLClab/pySTED>. The bandit algorithms and training procedures are avail-
404 able from <https://github.com/FLClab/optim-sted>. The gym-STED environment and training routines are
405 available from <https://github.com/FLClab/gym-sted> and <https://github.com/FLClab/gym-sted-pfrl>
406 respectively.

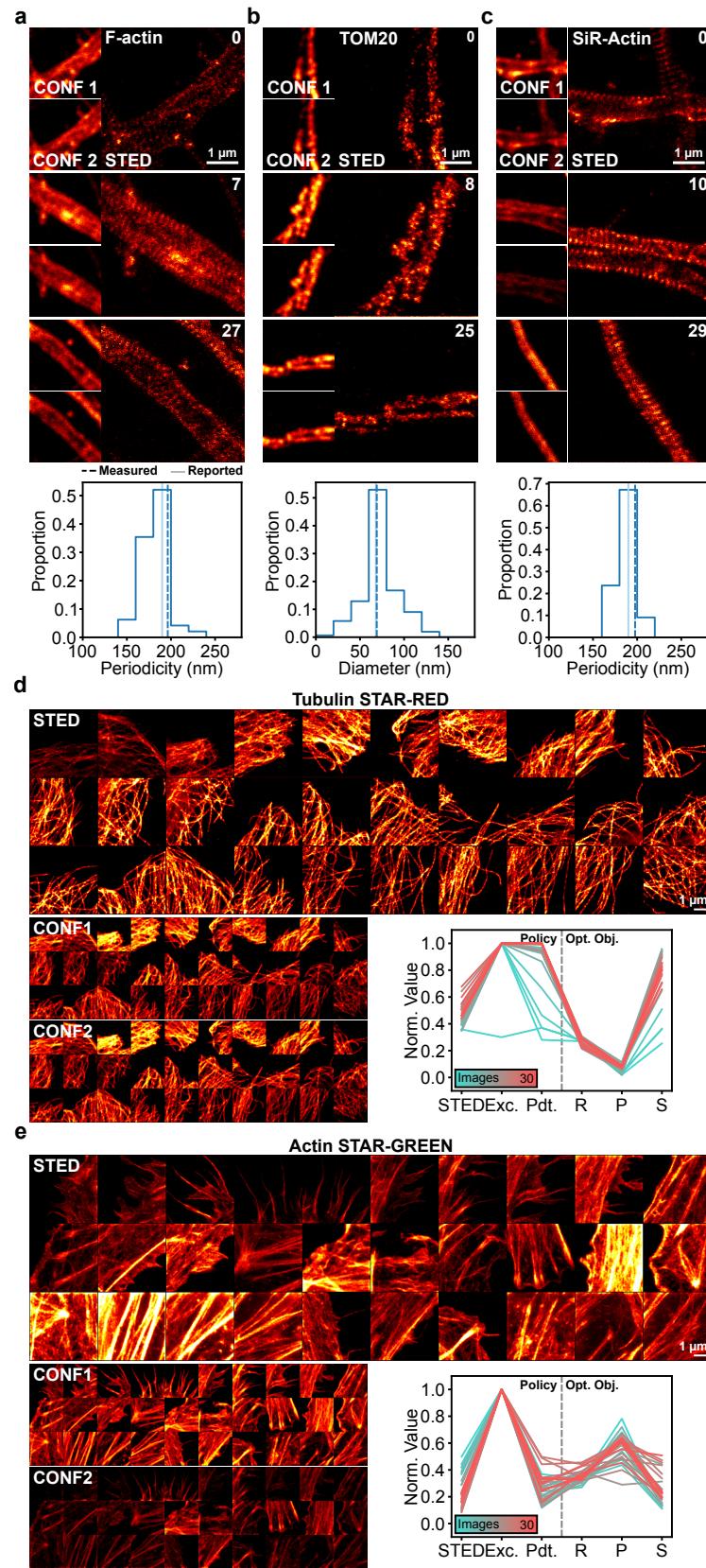


Figure 6 : Caption is on the next page

Figure 6: Bridging the reality gap between simulation and reality in RL by pretraining with pySTED. For all real microscopy experiments, the deployed agent was trained over 12M steps in simulation. The agent was deployed on a real STED microscope for the imaging of diverse proteins in dissociated neuronal cultures and cultivated Vero cells. a) *Top*: Simulated images of F-actin in fixed neurons were used during the training process. Deploying the RL agent to acquire an image of this *in distribution* structure in a real experiment allows the periodic lattice of F-actin tagged with Phalloidin-STAR635 to be revealed in all acquired images. *Bottom*: Structural parameters are extracted from the acquired images (the dashed vertical line represents the median of the distribution) and compared to the values that were previously reported in the literature (solid vertical line). The agent has learned to adjust the imaging parameters to resolve the 190 nm periodicity of the F-actin periodic lattice [55, 56]. b) *Top*: The trained agent is tested on the protein TOM20, a structure that was never seen during training (*out of distribution*). The nano-organization of TOM20 is revealed in all acquired images. *Bottom*: The measured average cluster diameter of TOM20 concords with the averaged reported values from Wurm *et al.* [57]. c) *Top*: Live-cell imaging of SiR-Actin shows the capacity of the model in adapting to different experimental conditions (*out of distribution*). *Bottom*: The periodicity of the F-actin lattice is measured from each acquired images and compared with the literature. See Material and Methods for the quantification. The STED images are normalized to their respective confocal image (CONF1). The second confocal image (CONF2) uses the same colorscale as CONF1 to reveal photobleaching effects. d,e) Images acquired by the RL agent in a real experiment on a different microscope. Tubulin was stained with the STAR-RED fluorophore (d) and Actin was stained with STAR-GREEN (e) in fixed Vero cells. The sequence of acquired images goes from top left to bottom right. The confocal images before (CONF1) and after (CONF2) are presented for photobleaching comparison. The CONF1 image is normalized to the CONF2 image. The STED images are normalized to the 99th percentile of the intensity of the CONF1 image. Images are 5.12 $\mu\text{m} \times 5.12 \mu\text{m}$. The evolution of the parameter selection (left; STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and imaging optimization objectives (right; R: Resolution, P: Photobleaching, S: Signal ratio) are presented, showing that optimal parameters and optimized objectives for STAR-RED (d) and STAR-GREEN (e) can differ greatly.

407 References

- 408 1. Schermelleh, L. *et al.* Super-Resolution Microscopy Demystified. *Nature Cell Biology* **21**, 72–84 (Jan. 409 2019).
- 410 2. Hell, S. W. & Wichmann, J. Breaking the Diffraction Resolution Limit by Stimulated Emission: 411 Stimulated-Emission-Depletion Fluorescence Microscopy. *Optics Letters* **19**, 780–782 (June 1994).
- 412 3. Oracz, J., Westphal, V., Radzewicz, C., Sahl, S. J. & Hell, S. W. Photobleaching in STED Nanoscopy 413 and Its Dependence on the Photon Flux Applied for Reversible Silencing of the Fluorophore. *Scientific 414 Reports* **7**, 11354 (Sept. 2017).
- 415 4. Tosheva, K. L., Yuan, Y., Pereira, P. M., Culley, S. & Henriques, R. Between Life and Death: Strategies 416 to Reduce Phototoxicity in Super-Resolution Microscopy. *Journal of Physics D: Applied Physics* **53**, 417 163001 (Feb. 2020).
- 418 5. Boudreau, C. *et al.* Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity. 419 *Scientific Reports* **6**, 1–12 (Aug. 2016).
- 420 6. Durand, A. *et al.* A Machine Learning Approach for Online Automated Optimization of Super-Resolution 421 Optical Microscopy. *Nature Communications* **9**, 5247 (Dec. 2018).
- 422 7. Dreier, J. *et al.* Smart Scanning for Low-Illumination and Fast RESOLFT Nanoscopy in Vivo. *Nature 423 Communications* **10**, 1–11 (Feb. 2019).
- 424 8. Heine, J. *et al.* Adaptive-Illumination STED Nanoscopy. *Proceedings of the National Academy of 425 Sciences* **114**, 9797–9802 (Sept. 2017).
- 426 9. Vinçon, B., Geisler, C., Egner, A. & Egner, A. Pixel Hopping Enables Fast STED Nanoscopy at Low 427 Light Dose. *Optics Express* **28**, 4516–4528 (Feb. 2020).
- 428 10. Scherf, N. & Huisken, J. The Smart and Gentle Microscope. *Nature Biotechnology* **33**, 815–818 (Aug. 429 2015).
- 430 11. Krull, A., Hirsch, P., Rother, C., Schiffrin, A. & Krull, C. Artificial-Intelligence-Driven Scanning Probe 431 Microscopy. *Communications Physics* **3**, 1–8 (Mar. 2020).
- 432 12. Moen, E. *et al.* Deep Learning for Cellular Image Analysis. *Nature Methods* **16**, 1233–1246. (2023) 433 (Dec. 2019).
- 434 13. von Chamier, L. *et al.* Democratising Deep Learning for Microscopy with ZeroCostDL4Mic. *Nature 435 Communications* **12**, 2276. (2023) (Apr. 2021).
- 436 14. Maška, M. *et al.* The Cell Tracking Challenge: 10 Years of Objective Benchmarking. *Nature Methods* 437 **20**, 1010–1020. (2024) (July 2023).
- 438 15. Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated High-Throughput Microscopy Image Sets 439 for Validation. *Nature Methods* **9**, 637–637. (2024) (July 2012).
- 440 16. Vinyals, O. *et al.* Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning. *Nature 441* **575**, 350–354 (Nov. 2019).
- 442 17. Levine, S., Pastor, P., Krizhevsky, A. & Quillen, D. Learning Hand-Eye Coordination for Robotic 443 Grasping with Deep Learning and Large-Scale Data Collection. *arXiv:1603.02199 [cs]* (Aug. 2016).
- 444 18. Chaware, A., Cooke, C. L., Kim, K. & Horstmeyer, R. *Towards an Intelligent Microscope: Adaptively 445 Learned Illumination for Optimal Sample Classification* in *ICASSP 2020 - 2020 IEEE International 446 Conference on Acoustics, Speech and Signal Processing (ICASSP)* (May 2020), 9284–9288.
- 447 19. Turcotte, B., Bilodeau, A., Lavoie-Cardinal, F. & Durand, A. pySTED : A STED Microscopy Simulation 448 Tool for Machine Learning Training. *Association for the Advancement of Artificial Intelligence – AAAI 449 Workshop on AI to Accelerate Science and Engineering*, 4 (2022).
- 450 20. Kalinin, S. V. *et al.* Probe Microscopy Is All You Need*. *Machine Learning: Science and Technology* 451 **4**, 023001. (2024) (May 2023).
- 452 21. Adhikari, M., Houhou, R., Hniopek, J. & Bocklitz, T. Review of Fluorescence Lifetime Imaging Microscopy (FLIM) Data Analysis Using Machine Learning. *Journal of Experimental and Theoretical 453 Analyses* **1**, 44–63. (2023) (Sept. 2023).
- 454 22. Sage, D. *et al.* Super-Resolution Fight Club: Assessment of 2D and 3D Single-Molecule Localization 455 Microscopy Software. *Nature Methods* **16**, 387–395 (May 2019).
- 456 23. Lagardère, M., Chamma, I., Bouilhol, E., Nikolski, M. & Thoumine, O. FluoSim: Simulator of Single 457 Molecule Dynamics for Fluorescence Live-Cell and Super-Resolution Imaging of Membrane Proteins. 458 *Scientific Reports* **10**, 19954 (Nov. 2020).

460 24. Novák, T., Gajdos, T., Sinkó, J., Szabó, G. & Erdélyi, M. TestSTORM: Versatile Simulator Software
461 for Multimodal Super-Resolution Localization Fluorescence Microscopy. *Scientific Reports* **7**, 951 (Apr.
462 2017).

463 25. Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: Super-Resolution Single-
464 Molecule Microscopy by Deep Learning. *Optica* **5**, 458–464 (Apr. 2018).

465 26. Xie, H., Liu, Y., Jin, D., Santangelo, P. J. & Xi, P. Analytical Description of High-Aperture STED
466 Resolution with $0-2\pi$ Vortex Phase Modulation. *JOSA A* **30**, 1640–1645 (Aug. 2013).

467 27. Caprile, F., Masullo, L. A. & Stefani, F. D. PyFocus – A Python Package for Vectorial Calculations
468 of Focused Optical Fields under Realistic Conditions. Application to Toroidal Foci. *Computer Physics
469 Communications* **275**, 108315 (June 2022).

470 28. Sarmento, M. J. *et al.* Exploiting the Tunability of Stimulated Emission Depletion Microscopy for
471 Super-Resolution Imaging of Nuclear Structures. *Nature Communications* **9**, 1–11 (Aug. 2018).

472 29. Leutenegger, M., Eggeling, C. & Hell, S. W. Analytical Description of STED Microscopy Performance.
473 *Optics Express* **18**, 26417–26429 (Dec. 2010).

474 30. Mnih, V. *et al.* Human-Level Control through Deep Reinforcement Learning. *Nature* **518**, 529–533
475 (Feb. 2015).

476 31. Sekh, A. A. *et al.* Physics-Based Machine Learning for Subcellular Segmentation in Living Cells. *Nature
477 Machine Intelligence* **3**, 1071–1080 (Dec. 2021).

478 32. Bolaños, L. A. *et al.* A Three-Dimensional Virtual Mouse Generates Synthetic Training Data for Be-
479 havioral Analysis. *Nature Methods* **18**, 378–381 (Apr. 2021).

480 33. Zhang, Y. *et al.* Rapid Detection of Neurons in Widefield Calcium Imaging Datasets after Training
481 with Synthetic Data. *Nature Methods* **20**, 747–754. (2024) (May 2023).

482 34. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmen-
483 tation. *arXiv:1505.04597 [cs]* (May 2015).

484 35. Falk, T. *et al.* U-Net: Deep Learning for Cell Counting, Detection, and Morphometry. *Nature Methods*
485 **16**, 67 (Jan. 2019).

486 36. He, Y. *et al.* Surpassing the Resolution Limitation of Structured Illumination Microscopy by an Un-
487 trained Neural Network. *Biomedical Optics Express* **14**, 106 (Jan. 2023).

488 37. Qiao, C. *et al.* Rationalized Deep Learning Super-Resolution Microscopy for Sustained Live Imaging of
489 Rapid Subcellular Processes. *Nature Biotechnology*, 1–11 (Oct. 2022).

490 38. ATTO 647N <https://www.atto-tec.com/ATTO-647N.html?language=en> (2023).

491 39. Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-Free Image Resolution Estimation Based
492 on Decorrelation Analysis. *Nature Methods* **16**, 918–924 (Sept. 2019).

493 40. Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-Photon Absorption
494 Properties of Fluorescent Proteins. *Nature Methods* **8**, 393–399. (2024) (May 2011).

495 41. Faklaris, O. *et al.* Quality Assessment in Light Microscopy for Routine Use through Simple Tools and
496 Robust Metrics. *Journal of Cell Biology* **221**, e202107093 (Sept. 2022).

497 42. Jahr, W., Velicky, P. & Danzl, J. G. Strategies to Maximize Performance in STimulated Emission
498 Depletion (STED) Nanoscopy of Biological Specimens. *Methods (San Diego, Calif.)* **174**, 27–41 (July
499 2019).

500 43. Lavoie-Cardinal, F. *et al.* Neuronal Activity Remodels the F-actin Based Submembrane Lattice in
501 Dendrites but Not Axons of Hippocampal Neurons. *Scientific Reports* **10**, 11960 (July 2020).

502 44. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: A Generalist Algorithm for Cellular
503 Segmentation. *Nature Methods* **18**, 100–106 (Jan. 2021).

504 45. Ouyang, W. *et al.* BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning
505 in BioImage Analysis June 2022.

506 46. Lamiable, A. *et al.* Revealing Invisible Cell Phenotypes with Conditional Generative Modeling. *Nature
507 Communications* **14**, 6386. (2023) (Oct. 2023).

508 47. Zhang, W., Zhou, D., Li, L. & Gu, Q. Neural Thompson Sampling. *arXiv:2010.00827 [cs, stat]*. (2021)
509 (Oct. 2020).

510 48. Bilodeau, A., Bernatchez, R., Michaud-Gagnon, A., Lavoie-Cardinal, F. & Durand, A. Contextual Band-
511 Optimizer of Super-Resolution Microscopy. *Proceedings of the Canadian Conference on Artificial
512 Intelligence.* (2022) (May 2022).

513 49. Sutton, R. S. & Barto, A. G. *Reinforcement Learning: An Introduction* Second Edition (The MIT Press, 2015).

514 50. Zhao, W., Queralta, J. P. & Westerlund, T. *Sim-to-Real Transfer in Deep Reinforcement Learning for*
515 *Robotics: A Survey* in 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (Dec. 2020),
516 737–744.

517 51. Miao, Q., Lv, Y., Huang, M., Wang, X. & Wang, F.-Y. Parallel Learning: Overview and Perspective
518 for Computational Learning Across Syn2Real and Sim2Real. *IEEE/CAA Journal of Automatica Sinica*
519 **10**, 603–631. (2024) (Mar. 2023).

520 52. Brockman, G. *et al. OpenAI Gym* June 2016.

521 53. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy Optimization Algo-
522 rithms. *arXiv:1707.06347 [cs]* (Aug. 2017).

523 54. Risi, S. & Togelius, J. Increasing Generality in Machine Learning through Procedural Content Gener-
524 ation. *Nature Machine Intelligence* **2**, 428–436. (2023) (Aug. 2020).

525 55. Xu, K., Zhong, G. & Zhuang, X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal
526 Structure in Axons. *Science* **339**, 452–456. (2013) (Jan. 2013).

527 56. D’Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S. W. STED Nanoscopy Reveals the Ubiquity
528 of Subcortical Cytoskeleton Periodicity in Living Neurons. *Cell Reports* **10**, 1246–1251 (Mar. 2015).

529 57. Wurm, C. A. *et al. Nanoscale Distribution of Mitochondrial Import Receptor Tom20 Is Adjusted to*
530 *Cellular Conditions and Exhibits an Inner-Cellular Gradient. Proceedings of the National Academy of*
531 *Sciences of the United States of America* **108**, 13546–13551. (2023) (Aug. 2011).

532 58. Ferreira, J. S. *et al. Distance-Dependent Regulation of NMDAR Nanoscale Organization along Hip-*
533 *povalcampal Neuron Dendrites. Proceedings of the National Academy of Sciences of the United States of*
534 *America* **117**, 24526–24533. (2023) (Sept. 2020).

535 59. Nair, D. *et al. Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dy-*
536 *namically Organized in Nanodomains Regulated by PSD95. Journal of Neuroscience* **33**, 13204–13224.
537 (2023) (Aug. 2013).

538 60. Staudt, T. M. *Strategies to Reduce Photobleaching, Dark State Transitions and Phototoxicity in Subd-*
539 *iffraction Optical Microscopy* PhD thesis (Universität Heidelberg, 2009).

540 61. Shroff, H., Testa, I., Jug, F. & Manley, S. Live-cell imaging powered by computation. *Nature Reviews*
541 *Molecular Cell Biology*, 1–21 (2024).

542 62. Bouchard, C. *et al. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image*
543 *analysis and acquisition. Nature Machine Intelligence* **5**, 830–844 (2023).

544 63. Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered STED imaging. *Nature Methods* **19**,
545 1268–1275 (2022).

546 64. Christiano, P. F. *et al. Deep Reinforcement Learning from Human Preferences in Advances in Neural*
547 *Information Processing Systems* **30** (Curran Associates, Inc., 2017). (2024).

548 65. Rafailov, R. *et al. Direct Preference Optimization: Your Language Model Is Secretly a Reward Model*
549 Dec. 2023. (2024).

550

551 4 Methods

552 4.1 pySTED simulation platform

553 Two main software implementations are incorporated within the pySTED simulation platform: i) point spread
554 functions (PSF) calculation, and ii) emitter-light interactions.

555 **PSF calculation** PSF calculation in pySTED is inspired by previous theoretical work from Leutenegger
556 *et al.* [1] and Xie *et al.* [2] (Figure 1b). As in Xie *et al.* [2], we calculate the excitation and depletion PSF by
557 using the electric field (Figure 1b). The Effective PSF (E-PSF) is calculated by combining the excitation,
558 depletion and detection PSFs using

$$559 \text{E-PSF}(\vec{r}) = \text{PSF}_{\text{Exc}}(\vec{r}) \exp [-\text{PSF}_{\text{STED}}(\vec{r})\zeta] [\text{PSF}_{\text{det}}(\vec{r}) \otimes \text{circ}(R)], \quad (1)$$

560 where R is the radius of the imaged aperture [3] and ζ is the saturation factor of the depletion defined
561 as $\zeta = \frac{I_{\text{STED}}}{I_s}$ with I_s being the saturation intensity [1]. The left-hand side of equation 1 represents the
562 probability that an emitter at position \vec{r} contributes to the signal [4] and is calculated in pySTED using ηp_{exc}
563 with

$$564 p_{\text{exc}} = q_{\text{fl}}(1 - \exp(-\sigma_{\text{abs}}\Phi_{\text{exc}}\tau_{\text{STED}})), \quad (2)$$

565 where q_{fl} is the quantum yield of the fluorophore, σ_{abs} the absorption cross-section, Φ_{exc} the photon flux
566 from the excitation laser and τ_{STED} the period of the STED laser. The η parameter allows the excitation
567 probability to be modulated with the depletion laser or allows time-gating to be considered during the
568 acquisition [5]. Time-gating consists in activating the detector within a small window of time (T_g , typically
569 8 ns) after the excitation pulse (T_{del} , typically 750 ps) to prominently detect photons coming from spontaneous
570 emission. The simulations performed with pySTED follow the scheme of pulsed-STED microscopy in which
571 time-gating mostly reduces correlated background [5]. Following the derivation from Leutenegger *et al.* [1]
572 and assuming that $T_g \geq \tau_{\text{STED}}$, the emission probability of a fluorophore is described as

$$573 F(\gamma) = \exp(-k_{\text{S1}}\gamma t_{\text{STED}}) (\exp(-k_{\text{S1}}T_{\text{del}}) - \exp(-k_{\text{S1}}(T_{\text{del}} + T_g))), \quad (3)$$

574 where k_{S1} is the spontaneous decay rate, γ is the effective saturation factor $\gamma = \frac{\zeta k_{\text{vib}}}{(\zeta k_{\text{S1}} + k_{\text{vib}})}$ with k_{vib} the
575 vibrational relaxation state of S_0' and t_{STED} is the STED pulse width (Figure 1c,d). In the confocal case
576 ($I_{\text{STED}} = 0$), the emission probability simply reduces to

$$577 F(0) = (1 - \exp(-k_{\text{S1}}T)), \quad (4)$$

578 where T is the period between each STED pulses. This allows the probability of spontaneous decay η to be
579 calculated using $F(\gamma)/F(0)$. The calculated E-PSF is convolved on the datemap to simulate the photons
580 that are emitted and the one measured by the detector.

581 In real experiments, the number of detected photons is affected by several factors (e.g. photon detection and
582 collection efficiency of the detector, the detection PSF, the fluorophore brightness, etc.), which were also
583 integrated in the pySTED simulation environment (Supplementary Tab 1[5]). We also included the possibility
584 to add typical sources of noise that occur in a targeted microscopy experiment such as shot noise, dark noise,
585 and background noise which are all modeled by Poisson processes (Supplementary Tab. 3).

586 **Emitter-light interactions** In a real microscopy experiment, the emitters can be degraded as they inter-
587 act with the excitation or depletion light. Photobleaching is the process by which an emitter becomes
588 inactive following light exposure [6]. In STED microscopy, this process is mainly caused by the combination
589 of the excitation and depletion laser beam [6]. Reducing photobleaching is an optimization objective that the
590 microscopist has to target during an imaging session and that must be minimized to preserve sample health
591 and sufficient imaging contrast. Hence, we implemented a realistic photobleaching model within the pySTED
592 simulation software. The photobleaching model is based on the derivations from Oracz *et al.* [6] which were
593 validated on real samples. Figure 1d presents the energy states, the decay rates, and the photobleaching
594 state β that are used within the photobleaching model.

591 As in Oracz *et al.* [6], we define the photobleaching rate as

$$k_\beta(I_{\text{STED}}) = k_0 \left(\frac{I_{\text{STED}}}{1 \text{ W/m}^2} \right) + k_1 \left(\frac{I_{\text{STED}}}{1 \text{ W/m}^2} \right)^b, \quad (5)$$

592 where k_0 , k_1 and b are dependant on the fluorophore and have to be determined experimentally. In the default
593 parameters of pySTED we assume that the linear photobleaching term is null ($k_0=0$) and that photobleaching
594 occurs only from S1 during the STED pulse. Other photobleaching parameters could be easily integrated
595 considering the modular structure of pySTED. We define the effective photobleaching rate k_b as the number
596 of emitters transitioning from the S1 state to the photobleached state (P_β) over the course of a laser period
597 T

$$k_b = \frac{P_\beta}{T} \quad (6)$$

598 with

$$P_\beta = P_{\text{S1}}(t=0)k_\beta(I_{\text{STED}}) \frac{1 - \exp(-k_{\text{S1}}t_{\text{STED}}(1 + \gamma))}{k_{\text{S1}}(1 + \gamma)}. \quad (7)$$

599 In pySTED the number of emitters N in a pixel is updated by calculating their survival probability $p =$
600 $\exp(-k_b t)$ from a Binomial distribution for a given dwelltime t (Figure 1e). While most parameters can
601 be obtained from the literature for a specific fluorophore, some parameters such as k_1 and b need to be
602 determined experimentally [6]. Given some experimental data (or *a priori* about the expected photobleaching
603 of a sample) we can estimate the photobleaching properties (k_1 and b) of a fluorophore with

$$\text{Photobleaching} = 1 - \exp(-k_b t) \quad (8)$$

604 by using non-linear least-squares methods. We can also apply a similar process to estimate the absorption
605 cross-section (σ_{abs}) of a fluorophore to optimize the confocal signal intensity to an expected value Oracz
606 *et al.* [6].

607 4.2 Realistic datamaps

608 A realistic datemap, that can be used in pySTED, is generated by predicting the position of emitters in a real
609 super-resolved image. A U-Net model (U-Net_{datemap}, implemented in PyTorch [7]) is trained to predict the
610 underlying structure of a super-resolved image (Supplementary Tab. 18). A single U-Net_{datemap} was trained
611 in this manuscript with images of different sub-cellular structures (F-actin, Tubulin, PSD95, α CaMKII, and
612 LifeAct) and was used to generate all datamaps to train and validate the ML, DL, and RL models presented
613 in this study. U-Net_{datemap} has a depth of 4 with 64 filters in the first double convolution layer. Padding
614 was used for each convolution layer to keep the same image size. As in the seminal implementation of the
615 U-Net [8], maxpool with a kernel and stride of 2 was used. The number of filters in the double convolution
616 layers doubled at each depth. In the encoder part of the model, each convolution is followed by batch
617 normalization and a Rectified Linear Unit (ReLU). Upsampling is performed using transposed convolution.
618 The decoder part of the model uses double convolution layers as in the encoder part of the model. At each
619 depth of the model, features from the encoder are propagated using skipping links and concatenated with
620 the features obtained following the upsampling layer. A last convolution layer is used to obtain a single
621 image followed by a sigmoid layer.

622 As previously mentioned, the goal of the U-Net is to predict the underlying structure of super-resolved images.
623 Training U-Net_{datemap} in a fully-supervised manner requires a training dataset of associated super-resolved
624 images and underlying structures. However, such a dataset does not currently exist. Mathematically, a
625 microscopy image is obtained from the convolution of the microscope E-PSF with the position of fluorophores
626 at the sample. In the images from Durand *et al.* [9], the E-PSF of the microscope can be approximated by
627 a Gaussian function with a full width at half maximum of ~ 50 nm. Hence, U-Net_{datemap} can be trained
628 to predict the datemap that once convolved with the E-PSF will be similar to the input image (Figure 1f).
629 The L_2 error is calculated between the Gaussian convolved datemap and the original input image as the loss
630 function to minimize.

631 To train the model we used good quality STED images of diverse neuronal proteins from an existing dataset [9]
632 (quality > 0.7). In Durand *et al.* [9], the quality score of an image was obtained by asking an expert to rate
633 the image based on a qualitative assessment of the resolution of the structure of interests and the signal to
634 noise ratio on a scale from 0 to 1. The quality scores from the original dataset were used to train a deep
635 learning model to automatically rate the quality of an image. Supplementary Tab. 7 presents the proteins
636 imaged and the number of images that were used for training. Each 224×224 pixels image is augmented
637 with three (3) 90° rotations. The Adam optimizer was used with default parameters using a learning rate
638 of 1×10^{-4} . The model was trained for 1000 epochs with a batch size of 32. We selected the model with
639 the best generalization properties on the validation set, obtained from the mean squared error between the
640 input image and the datemap after applying the Gaussian convolution.

641 By default, the predicted datemap reconstructs the background noise from the image. Filtering can be
642 applied on the predicted datemap to reduce the impact of noise. The number of emitters can be adapted
643 to the experimental context which is then converted into an integer value. U-Net_{datemap} was trained with
644 224×224 pixels images but images of arbitrary size can be processed at inference time.

645 **Datamaps from deconvolution** Datamaps were generated using the Richardson-Lucy deconvolution im-
646 plementation from van der Walt *et al.* [10]. The E-PSF of the input image were approximated by a Gaussian
647 function with a full width at half maximum of ~ 50 nm. 30 iterations were used for the deconvolution
648 algorithm.

649 4.3 Imaging optimization objectives

650 **Resolution** We calculated the resolution of the images by using the parameter-free image resolution es-
651 timation based on decorrelation analysis that was developed by Descloux *et al.* [11]. Decorrelation analysis
652 was used due to its simplicity in transferring from simulation to real imaging conditions.

653 **Photobleaching** In all experiments involving the photobleaching as one of the imaging optimization ob-
654 jective, we measured the loss of the fluorescence signal between a low-resolution image that is acquired
655 before (Confocal 1) and after (Confocal 2) the high-resolution (STED) acquisition [9]. The photobleaching
656 is defined as

$$657 \text{Photobleaching} = \frac{\overline{\text{Confocal1}_{\text{fg}}} - \overline{\text{Confocal2}_{\text{fg}}}}{\overline{\text{Confocal1}_{\text{fg}}}}, \quad (9)$$

658 where $\overline{\text{ConfocalX}_{\text{fg}}}$ is the average signal on the foreground of the first confocal image (Confocal1). The
659 foreground mask is determined using an Otsu threshold on the Confocal1.

660 **Signal Ratio** We calculate the signal ratio as the ratio between the intensity in the high-resolution image
661 and the respective confocal image using the following equation

$$662 \text{Signal Ratio} = \frac{\overline{\text{STED}_{\text{fg}}^{75}} - \overline{\text{STED}_{\text{bckg}}}}{\overline{\text{Confocal1}_{\text{fg}}^{75}}}. \quad (10)$$

663 The foreground mask of the STED and confocal images are determined using the Otsu method. The fore-
664 ground signal in the mask is calculated as the 75th percentile of the image (STED or Confocal1). $\overline{\text{STED}_{\text{bckg}}}$
665 represents the mean signal of the background signal in the STED image.

666 **Artifact** We measured imaging artefacts with a metric inspired by SQUIRREL [12] and MASK-SSIM
667 approaches [13]. Specifically, we map the super-resolution image (SR) to a low-resolution image using a
668 similar procedure to SQUIRREL but compare structures only within a foreground mask. This foreground
669 mask is obtained using the Otsu method. The average structural similarity index (SSIM) on the foreground
670 between the low-resolution and the optimized SR image is reported as the metric. The value of the artefact
671 metric that is reported in the paper is

$$672 \text{Artifact} = 1 - \text{SSIM}_{\text{fg}} \quad (11)$$

670 4.4 Comparison of pySTED simulations with real acquisitions

671 We compared pySTED simulated images with images acquired on a real STED microscope with similar
672 imaging parameters. To evaluate the reliability of the simulations, we acquired 10 images using a different
673 combination of parameters. We varied each imaging parameter over a range that is commonly used for
674 routine STED experiments and that would not damage the microscope (e.g. detectors, see parameters in
675 Supplementary Tab. 6). We used a sample of immunostained cultured hippocampal neurons of the neuronal
676 protein Bassoon tagged with the fluorophore ATTO-647N. The small clusters formed by Bassoon are well
677 suited for measurements of resolution. The same parameter combination is used in pySTED and on the
678 microscope for fair comparison.

679 We optimized the photobleaching constants (k_1 and b) and the STED cross-section (σ_{STED}) of the fluo-
680 rophore to match the measured photobleaching and resolution values using a least-squares method (data
681 from Supplementary Fig. 4a, right). It is implemented iteratively, with the optimization of photobleach-
682 ing and resolution done sequentially and repeated 15 times, since the optimization of σ_{STED} also affects
683 photobleaching.

684 For each acquired real STED images, a datemap is predicted with the U-Net_{datemap}. The number of emitters
685 per pixel is obtained by multiplying the datemap with a correction factor f to match the fluorescence signal
686 in the real images. This correction factor f can be obtained by fitting the intensity value obtained at pixel
687 (x, y) to the real intensity of the acquired confocal image ($I_{\text{CONF}}(x, y)$). The intensity value of the synthetic
688 image is approximated as the product between the E-PSF and the datemap (D)

$$I_{\text{CONF}}(x, y) = f \sum_{ij} D_{ij}(x, y) \text{E-PSF}_{ij}. \quad (12)$$

689 4.5 Weakly supervised learning for the segmentation of F-actin nanostructures

690 We compared three training schemes (5 random initializations per scheme) to train a U-Net model to segment
691 two F-actin nanostructures (Fibers and Rings): i) original model from Lavoie-Cardinal *et al.* 14 (O), ii) a
692 model that uses a quantile normalization of the large image (min/max normalization using the 1st and 99th
693 quantile) and increased data augmentation during training (N, see below), iii) and a model trained as in
694 ii) with synthetic images (N+S). In all conditions, the same architecture, training procedure, and dataset
695 are used following the methods from Lavoie-Cardinal *et al.* 14. A model is trained for 700 epochs and the
696 best model on the validation dataset is kept for testing. To compare only the impact of the training, the
697 validation dataset is kept constant in all training instances.

698 In all training schemes, an augmentation has a 50% probability of being selected. For the training scheme
699 O 14, the augmentations consisted of horizontal/vertical flips, intensity scale, and gamma adaptation. For
700 the approaches using an increased data augmentation scheme (N and N+S), the augmentations from O are
701 combined with random 90° rotations, crop normalization (1st and 99th percentile) and more intensity scale
702 and gamma adaptation operations.

703 **Synthetic F-actin images** The U-Net_{datemap} model (Figure 2) was used to extract the datamaps of
704 all valid crops in the training dataset (contains >10% of dendrite, 256 × 256 pixels, 25% overlap). Five
705 synthetic images with different resolution and noise properties were simulated for each crops with pySTED
706 using a parameters combination that would minimally allow to resolve the F-actin nanostructures (Figure 2b
707 and Supplementary Tab. 8).

708 **Generation of subsets** Models (with constant parameter initialization) were trained on subsets of the
709 original dataset, to evaluate if pySTED can help reduce the number of original images in the training dataset.
710 Five subsets with 0.75, 0.5, 0.25, 0.1, 0.05, 0.025 ratios were used for training. A ratio of 0.025 corresponds to
711 training on a single image (42 images in training dataset). When an image is discarded from a subset, its
712 corresponding crops (synthetic included) are also removed from training (Supplementary Fig. 7).

⁷¹³ **Performance evaluation** The average precision (AP) is used for performance evaluation. The AP is
⁷¹⁴ obtained from the *precision* and *recall* measured by the predicted segmentation compared to the ground
⁷¹⁵ truth manual annotations. The AP corresponds to the area under the $p_*(r)$ curve. $p_*(r)$ is given by the
⁷¹⁶ maximum precision value that can be attained at any recall r_i greater than recall r , *i.e.*

$$p_*(r) = \max_{r_i \geq r} p(r_i). \quad (13)$$

⁷¹⁷ The AP is calculated as

$$AP = \int_0^1 p_*(r) dr. \quad (14)$$

⁷¹⁸ 4.6 Multi-objective bandit optimization

⁷¹⁹ The multi-objective bandit optimization aims at finding a set of imaging parameters that simultaneously
⁷²⁰ optimizes all imaging optimization objectives. Such a multi-objective problem is ill-defined as there exists
⁷²¹ a set of Pareto optimal objectives that could be used to solve the task. Hence, an external input, *e.g.* a
⁷²² microscopist, is required to make the necessary trade-offs over the course of the optimization session.

⁷²³ 4.6.1 Algorithms

⁷²⁴ The goal of the algorithm is to learn the mapping between the imaging parameters (*e.g.* laser power, pixel
⁷²⁵ dwelltime) and the imaging optimization objective (*e.g.* resolution, photobleaching, artefact or signal ratio)
⁷²⁶ by exploring the parameter space while exploiting its current knowledge of the parameter space to acquire
⁷²⁷ high-quality images. A single model is built for each optimization objective as in Durand *et al.* [9]. The
⁷²⁸ exploration/exploitation trade-off is achieved via Thompson Sampling (TS) [15]. At each time step of the
⁷²⁹ optimization, a function is sampled from the posterior of each model. The expected imaging optimization
⁷³⁰ objective associated with each imaging parameters options are combined. The preferred combination is
⁷³¹ selected and an image is acquired with the associated parameters. The imaging optimization objectives are
⁷³² calculated from the resulting image and used to update each model.

⁷³³ The range of imaging parameters was normalized in $[-1, 1]$ using a min-max normalization. The min-max
⁷³⁴ values were given from the pre-defined range of a parameter. All models are trained from scratch. At the
⁷³⁵ start of each optimization session, 3 images are acquired with parameter combinations obtained from expert
⁷³⁶ knowledge allowing the models to gain insights about the imaging task. For further implementations, these
⁷³⁷ parameter combinations could be obtained from i) a previous imaging session, ii) different fluorophore, or
⁷³⁸ iii) publications from the field.

⁷³⁹ **Kernel-TS** Kernel-TS is implemented by following the procedure from Durand *et al.* [9]. The regression
⁷⁴⁰ model that maps the imaging parameters to the imaging optimization objectives is a non-parametric Gaussian
⁷⁴¹ Process. All of the parameters of the method (*e.g.* the kernel bandwidth or bounds on noise) were based on
⁷⁴² the recommendations from the original manuscript [9]. Kernel-TS works on a discrete parameter space of
⁷⁴³ 10 points for each optimized parameters. The values of imaging optimization objectives are rescaled using a
⁷⁴⁴ whitening transformation.

⁷⁴⁵ **LinTSDiag** LinTSDiag is a neural network implementation of TS [16]. LinTSDiag was previously imple-
⁷⁴⁶ mented to solve a 2 parameter DyMIN task [17] (Supplementary Tab. 19). In this implementation, the neural
⁷⁴⁷ network is a fully connected network with 2 layers of hidden sizes of 32. After each layer ReLU activation
⁷⁴⁸ is used and followed by a dropout layer (probability of 0.2). The last layer of the model projects to a single
⁷⁴⁹ imaging optimization objective value. The model is implemented in PyTorch [7] and relies on the seminal
⁷⁵⁰ implementation from Zhang *et al.* [16]. The loss of the model is the mean squared error and is optimized
⁷⁵¹ using stochastic gradient descent with a learning rate of 1×10^{-3} . After each acquisition, the weights of
⁷⁵² the model are updated until the error is $< 1 \times 10^{-3}$ or 1000 updates have been done. During training, the
⁷⁵³ imaging optimization objectives are rescaled into a $[0, 1]$ range.

⁷⁵⁴ Two parameters (ν and λ , see Zhang *et al.* [16]) control the exploration of the model. Increasing their values
⁷⁵⁵ results in more exploration. In all experiments using LinTSDiag $\lambda = 0.1$ is used. The parameter ν varied

756 depending on the task: i) in simulation $\nu = 0.01$ (Figure 3a-c), ii) in 4 parameter optimization $\nu = 0.1$
757 (Figure 3e-f), and iii) in 6 parameter optimization $\nu = 0.25$ (Figure 3g-h).

758 LinTSDiag handles continuous parameter space. Hence, it is not possible to display all of the possible
759 trade-offs. To reduce the number of possibilities, only the Pareto optimal combination of optimization
760 objectives are displayed (Pareto front). The Pareto optimal options are extracted using NSGA-II [18] with
761 the implementation from the DEAP python library [19]. Since computing the Pareto front is computationally
762 expensive, a stopping criterion is used to reduce the calculations as previously reported by Roudenko &
763 Schoenauer [20]. The stopping criterion is based on the rolling standard deviation of the maximum crowding
764 distance (window size of 10) during the NSGA-II search. The search is stopped when the standard deviation
765 is lower than $\sqrt{2} \times 10^{-4} \cdot n$, where n is the number optimization objectives [20]. In theory, the NSGA-II
766 search should restart from scratch after each acquisition. However, given the high dimensionality of the
767 parameter space, this may lead to high variability in the proposed parameter combination. To reduce this
768 variability, Deb *et al.* [21] proposed to keep a fraction of the previous options as a warm start of the NSGA-II
769 search. In this work, 30% of the previous options are randomly sampled and used as starting points for
770 the next NSGA-II search. The resulting Pareto front of imaging optimization objectives is shown to the
771 preference articulation method.

772 **Contextual LinTSDiag** The contextual version of LinTSDiag heavily relies on the implementation of
773 LinTSDiag described above (Supplementary Tab. 20). In this work, the contextual information was used
774 to solve a DyMIN microscopy task. As previously mentioned the confocal image serves as contextual infor-
775 mation, but any other contextual information pertinent to the task could be provided to the model. The
776 confocal image is encoded with a 2 layers convolutional neural network. A first convolution layer with 8
777 filters, kernel size of 3 and padding of 1 is followed by a batch normalization layer, maxpooling layer (size 4;
778 stride 4) and ReLU activation. A second convolution layer of 16 filters is followed by a batch normalization
779 layer. Global average pooling is used to generate a vector embedding. This is followed by a ReLU activa-
780 tion and dropout layer with a probability of 0.2. The embedding is projected to 32 features using a fully
781 connected layer and is followed by a ReLU activation and a dropout layer with a probability of 0.2. The
782 contextual features are concatenated with the parameter features (described in LinTSDiag). A single-layer
783 fully-connected model with a hidden size of 64 is used to predict the imaging optimization objectives. ReLU
784 activation is used at the hidden layer. A single contextual encoder is created and shared between the imaging
785 optimization objectives. The same training procedure and NSGA-II search are used as in LinTSDiag.

786 The exploration parameters $\lambda = 0.1$ and $\nu = 0.25$ were used in simulation (Figure 4c-g) and in 3D DyMIN
787 optimization (Figure 4h-j).

788 4.6.2 Preference articulation

789 The optimization algorithms output possible trade-offs between the imaging optimization objectives. The
790 preference articulation step consists in selecting the trade-off that is the most relevant for the task. Two
791 preference articulation methods were used in the bandit optimization: manual selection and automatic
792 selection [9].

793 **Manual selection** This method requests a manual input from the microscopist at each image acquisition.
794 The microscopist is asked to select the trade-off that is inline with their own preferences from the available
795 options (point cloud). This method was used in all experiments on the real microscope using the bandit
796 optimization scheme (Figure 3e-h and Figure 4h-j).

797 **Automatic selection** This method aims at reducing the number of interventions from the microscopist
798 in the optimization loop by learning their preferences prior to the optimization session. In Durand *et al.* [9],
799 the neural network implementation PrefNet was used to learn the preferences from an Expert. In the current
800 work, two PrefNet models were trained from the preferences of an Expert. The same model architecture and
801 training procedure were used as in Durand *et al.* [9]. A first model is trained for the STED optimization
802 to select from the resolution, photobleaching, and signal ratio imaging optimization objectives. A second
803 model is trained for the DyMIN optimization to select the trade-off between resolution, photobleaching,

804 and artefact. The PrefNet model is used to repeatedly make the trade-offs in multiple optimizations in the
 805 simulation environment (Figure 3b-d and Figure 4c-g).

806 4.7 Reinforcement learning experiments

807 A RL agent interacts with an environment by sequentially making decisions based on its observations. The
 808 goal of the agent is to maximize its reward signal over the course of an episode.

809 **RL formulation** The general problem in RL is formalized by a discrete-time stochastic control process,
 810 *i.e.* it satisfies a Markov Decision Process (MDP). An agent starts in a given state $s_t \in \mathcal{S}$ and gathers some
 811 partial observations $o_t \in \mathcal{O}$. In an MDP, the state is fully observable, that is the agent has access to a
 812 complete observation of a state s_t . At each time step t , the agent performs an action $a_t \in \mathcal{A}$ given some
 813 internal policy π after which the agent receives a reward $r_t \in \mathcal{R}$ and transitions to a state $s_{t+1} \in \mathcal{S}$ with a
 814 state transition function $\mathcal{T}(s_{t+1}|s_t, a_t)$. Following the state transition, a reward signal $r_t = R(s_t, a_t, s_{t+1})$
 815 is provided to the agent as feedback. The goal of the agent is to maximize the cumulative reward over the
 816 trajectory $\tau = (s_t, a_t, s_{t+1}, a_{t+1}, \dots)$. Formally, the cumulative reward may be written in the form of

$$R(\tau) = \sum_{t=0}^T \gamma^t r_t \quad (15)$$

817 where γ is a discount factor in the range $[0, 1]$ to temporally weight the reward. Intuitively, using a discount
 818 factor close to 1 implies that the credit assignment of the current action is important for future reward, which
 819 is the case for long planning horizon, while a discount factor close to 0 reduces the impact of temporally
 820 distant rewards [22].

821 **Reward function** The optimization of super-resolution STED microscopy is a multi-objective problem
 822 (e.g. Resolution, Signal Ratio, and Photobleaching). However, the conventional RL settings and algo-
 823 rithms assume the access to a reward function that is single-valued, in other words a single-objective op-
 824 timization [22]. Several methods were introduced to solve the multi-objective RL setting, for instance by
 825 simultaneously learning multiple policies or by using a scalarisation function (see Hayes *et al.* [23] for a
 826 comprehensive review). The scalarisation function is simple to implement and allows all of the algorithms
 827 that were developed for RL to be used, but assumes that the preference from the user are known a priori.
 828 In this work, the multi-objective RL setting was transformed into a single scalar reward by using the neural
 829 network model, PrefNet [9], that was developed in the bandit experiments. Indeed, the PrefNet model was
 830 trained to reproduce the trade-off that an expert is willing to make into the imaging optimization objective
 831 space. The PrefNet model does so by assigning a value to a combination of imaging optimization objectives.
 832 The values predicted by the model for a combination of optimization objectives are arbitrary but the ranking
 833 of these values is accurate. Hence, the values from the PrefNet model is proportional to the image quality.
 834 The reward of the agent can then be defined using equation 16. For safety precautions when deploying the
 835 agent on a real microscopy system, the agent incurs a reward of -10 when the frequency of photons on the
 836 detector is higher than 20 MHz.

$$r_t = \begin{cases} -10 & \text{when } f_{\text{photons}} > 20 \text{ MHz} \\ \text{PrefNet}(R, P, S) & \text{otherwise} \end{cases} \quad (16)$$

837 While the negative reward can be used to limit the selection of actions that could damage the microscope,
 838 it is not required. For instance, the results showed in Figure 6d-e and Extended Fig. 4 used a version of the
 839 reward function that did not include the negative reward. It is worth noting that in these cases, the range
 840 of parameters should be carefully selected to avoid damages to the microscope.

841 **Agent** The Proximal Policy Optimization (PPO) model [24] was used for all RL experiments. PPO is
 842 considered state-of-the-art for many control tasks, and is widely used in robotics [25]. PPO allows continuous
 843 action space making it suitable for the task of microscopy parameter tuning. It is an on-policy algorithm

844 meaning that the same policy is used during the data collection and the updating phases. The model uses a
845 deep neural network to map the state to the actions. Since PPO is an actor-critic method, it simultaneously
846 learns a policy function and a value function that measures the quality of a selected action (Supplementary
847 Tab. 21 and 22). Both functions use the same model architecture. A convolutional neural network (CNN)
848 extracts information from the visual inputs and a linear neural network (LN) extracts information from the
849 history of the episode. The CNN encoder is similar to the one used in Mnih *et al.* 26. The encoder is
850 composed of 3 layers of convolutions each followed by a leaky ReLU activation. The kernel size of each
851 layer is 8, 4, 3 with a stride of 4, 2, 1. This allows the spatial size of the state space to be reduced. The LN
852 model contains 2 linear layers projecting to sizes 16, 4. The information from both layers is concatenated
853 and mapped to the action space using a LN layer.

854 During training, the Adam optimizer is used with default parameters and a learning rate of 1×10^{-4} . The
855 batch size of the model is set at 64. Each 512 steps in the environment, the model is trained for 10 batches
856 which are randomly sampled from the previous 512 steps. A maximal gradient of 1.0 during backpropagation
857 is used to stabilize training.

858 **Synthetic Datamaps** A bank of datamaps was generated using U-Net_{datomap}. Supplementary Tab. 11
859 presents the number of images per structures that were available during training. Datamaps were randomly
860 cropped to 96×96 pixels with a higher probability of being sampled within the foreground of the datomap.
861 Random data augmentation is performed online with a 50% probability: random [1, 3] 90° rotations, up-
862 down flips, and left-right flips. The resultant cropped datomap is multiplied by a value that is sampled from
863 $\mathcal{N}(\mu = 40, \sigma = 4)$ and turned into an integer array using the floor operation.

864 **Synthetic Fluorophores** Synthetic fluorophore properties are generated on-the-fly during training by
865 uniform sampling. Supplementary Tab. 12 displays the range of possible fluorophore properties. The
866 parameters k_1 , b , and σ_{abs} are optimized using the procedure described in section 4.4. During the optimization
867 it is assumed that the maximal number of emitters is 40. A scaling factor that is dependant on the type
868 of structure is used during the optimization (Supplementary Tab. 13). At each iteration, the fluorophore
869 parameters from the previous iterations are used as a starting point. The initial conditions of parameters
870 are $k_1 = 2.9 \times 10^{-16}$, $b = 1.66$, and $\sigma_{\text{abs}} = 3.2 \times 10^{-21} \text{ m}^2$.

871 4.8 STED microscopy experiments

872 4.8.1 STED-imaging

873 Super-resolution imaging of neuronal proteins was performed on an Abberior Expert-Line STED system
874 (Abberior Instruments GmbH, Germany) equipped with a 100x 1.4NA, oil objective lens (Olympus, UP-
875 LSAP0100XO), motorized stage and auto-focus unit. Far-red dyes were imaged using a 640 nm pulsed
876 diode (40 MHz), a 775 nm depletion laser (40 MHz) and a ET685/70 (Chroma, USA) fluorescence filter.
877 Fluorescence was detected on an avalanche photodiode detectors (APD) with approximately 1 Airy unit
878 detection pinhole. Images were processed using FIJI (ImageJ) software. Single- and two-channel imaging of
879 tubulin, NPC, and Golgi in Vero cells was performed on an Infinity line microscope (Abberior Instruments
880 GmbH, Germany) using imaging settings as described in Heine *et al.* 27.

881 Prior to the optimization, the excitation power of the confocal acquisition needed to be set to acquire < 200
882 photons in 10 μs . To do so, the excitation power was first set to 10 μW and was halved until this criterion
883 was met. This value is used by the model to incorporate knowledge about the brightness of the sample.

884 4.8.2 Kidney epithelial cell culture

885 Vero B4 cells were obtained from the DSMZ-German Collection of Microorganisms and Cell Cultures were
886 maintained in DMEM (Gibco) supplemented with GlutaMAX (Thermo Fisher Scientific), 10% FBS (Sigma-
887 Aldrich), 1 mM sodium pyruvate (Thermo Fisher Scientific), and Penicillin-Streptomycin (100 $\mu\text{l}/\text{ml}$ and 0.1
888 mg/ml; Sigma-Aldrich) at 37°C with 5% CO₂.

889 **Sample preparation and staining procedures** For indirect immunostaining, cells were fixed in 8%
890 paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and permeabilized with 0.5% Triton X-100/PBS
891 for Nuclear Pore Complex (NPC) proteins (Mab414, 1:200; abcam, code: ab24609) and Golgi (Giantin, 1:200;
892 abcam, code: ab80864) staining. Methanol was used as a fixative for Tubulin staining (1:500; abcam, code:
893 ab18251).

894 After blocking with 2% BSA/0.1% Tween20/PBS, cells were incubated with the primary antibody for 1 hour
895 at the specified dilutions. Detection of primary antibodies was achieved using secondary STAR RED goat
896 anti-mouse IgG (1:200, abberior GmbH, code: STRED-1001-500UG) and STAR ORANGE goat anti-rabbit
897 IgG (1:200, abberior GmbH, code: STORANGE-1002-500UG) for double staining of the NPC and Golgi.
898 Tubulin was labeled with STAR RED goat anti-rabbit IgG (1:200, abberior GmbH, code: STRED-1002-
899 500UG). Secondary antibodies were also incubated for 1 hour.

900 After stringent washing with PBS, cells were mounted in MOUNT SOLID ANTIADE (abberior GmbH,
901 code: MM-2013-2X15ML). Protocol was adapted from Wurm *et al.* [28].

902 4.8.3 Neuronal cell culture

903 Neuronal cultures from the hippocampus were obtained using neonatal Sprague Dawley rats, adhering to the
904 animal care guidelines set by Université Laval. The rats, aged P0-P1, were sacrificed through decapitation
905 before the hippocampi were dissected. The cells were then seeded onto 12 and 18 mm coverslips coated with
906 poly-d-lysine and laminin, for fixed (12 mm, 40,000/coverslip) and live-cell (18 mm, 100,000 cells/coverslip)
907 STED imaging. Neurons were cultivated in a growth medium composed of Neurobasal and B27 (in a
908 50:1 ratio), enriched with penicillin/streptomycin (25 U/mL; 25 µg/mL) and 0.5 mM L-GlutaMAX (by
909 Invitrogen). Ara-C (5 µM; from Sigma-Aldrich) was added into the medium after five days to limit the
910 proliferation of non-neuronal cells. Twice a week, ~50% of the growth medium was replaced with serum-
911 and Ara-C-free medium. Cells were used between *Days In Vitro* (DIV) 12-16 for experiments.

912 **Sample preparation and staining procedures** Fixation was performed for 10 minutes in 4% PFA so-
913 lution (PFA 4%, Sucrose 4%, Phosphate Buffer 100mM, Na-EGTA 2mM). Neurons were permeabilized with
914 0.1% Triton X-100 and aspecific binding sites were blocked for 30 min with 2% goat serum in PBS 20 mM.
915 Primary and secondary antibodies were successively incubated for 2h and 1h respectively. Phalloidin was
916 incubated for 1h. All incubations were done at room temperature, in the blocking solution. Immunostained
917 coverslips were mounted in Mowiol-DABCO for imaging. F-actin was stained with phalloidin-STAR635
918 (Sigma Aldrich, cat. 30972-20µg, 1:50 dilution). All antibodies used in this study with associated concen-
919 trations are provided in Supplementary Tab. 16 & 17

920 For the live experiment (Figure 6d), the neurons were incubated for 8 min with SiR-actin (0.8 µM, Cy-
921 toskeleton, cat. CY-SC001) diluted in HEPES buffered artificial cerebrospinal fluid (aCSF, in mM: NaCl 98,
922 KCl 5, HEPES 10, glucose 10, CaCl₂ 0.6, MgCl₂ 5). For live-cell STED microscopy, coverslips were mounted
923 on a QR chamber (Wagner Instruments, cat. 61-1944) and imaged in HEPES buffered aCSF 5 mM Mg²⁺ /
924 0.6 mM Ca²⁺ using a gravity perfusion system.

925 4.8.4 Quantification of biological structures

926 **F-actin** Line profiles of ~1 µm were manually extracted from each image. A linewidth of 3 pixels was used
927 to average the profile values. The autocorrelation function (`statsmodels` library [29]) was calculated from
928 the intensity profile. The length of periodicity of the signal was determined from the first peak maxima.

929 **CaMKII-β and PSD95** We segmented clusters using a wavelet segmentation using the implementation
930 from Wiesner *et al.* [30]. The scales used were (1, 2) for STED and (3, 4) for confocal segmentation. A
931 threshold of 200 was used. Small segmentation objects (<3 pixels) were removed and small holes (<6
932 pixels) were filled. In the STED image segmentation, only the objects part of the confocal foreground were
933 considered. For STED segmentation, watershed was used to split merged segmented objects. The local peak
934 maximum were used as initial seeds. Small segmentation objects (<3 pixels) resulting from the watershed

935 split were filtered out. The properties of each segmented object was extracted using `regionprops` from the
936 `scikit-image` python library [10].

937 **TOM20** A similar approach to the one in Wurm *et al.* [31] was used. Briefly, the confocal foreground
938 of each mitochondrion was extracted using the same wavelet segmentation procedure as for CaMKII- β and
939 PSD95. The 2D autocorrelation on square crops of 320 nm x 320 nm centered on each mitochondrion were
940 calculated. The diameter of TOM20 cluster is defined as the standard deviation obtained from a 2D Gaussian
941 curve fit of the autocorrelation profile.

942 References

- 943 1. Leutenegger, M., Eggeling, C. & Hell, S. W. Analytical Description of STED Microscopy Performance. *Optics Express* **18**, 26417–26429 (Dec. 2010).
- 944 2. Xie, H., Liu, Y., Jin, D., Santangelo, P. J. & Xi, P. Analytical Description of High-Aperture STED
945 Resolution with 0-2 π Vortex Phase Modulation. *JOSA A* **30**, 1640–1645 (Aug. 2013).
- 946 3. Willig, K. I., Keller, J., Bossi, M. & Hell, S. W. STED Microscopy Resolves Nanoparticle Assemblies. *New Journal of Physics* **8**, 106–106 (June 2006).
- 947 4. Hoeller, M. *Advanced Fluorescence Fluctuation Spectroscopy with Pulsed Interleaved Excitation* PhD
948 thesis (Ludwig-Maximilians-Universität München, 2011).
- 949 5. Vicedomini, G. *et al.* STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental
950 Aspects. *PLOS ONE* **8**, e54421 (Jan. 2013).
- 951 6. Oracz, J., Westphal, V., Radzewicz, C., Sahl, S. J. & Hell, S. W. Photobleaching in STED Nanoscopy
952 and Its Dependence on the Photon Flux Applied for Reversible Silencing of the Fluorophore. *Scientific
953 Reports* **7**, 11354 (Sept. 2017).
- 954 7. Paszke, A. *et al.* *PyTorch: An Imperative Style, High-Performance Deep Learning Library* Dec. 2019.
- 955 8. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmen-
956 tation. *arXiv:1505.04597 [cs]* (May 2015).
- 957 9. Durand, A. *et al.* A Machine Learning Approach for Online Automated Optimization of Super-Resolution
958 Optical Microscopy. *Nature Communications* **9**, 5247 (Dec. 2018).
- 959 10. Van der Walt, S. *et al.* Scikit-Image: Image Processing in Python. *PeerJ* **2**, e453 (June 2014).
- 960 11. Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-Free Image Resolution Estimation Based
961 on Decorrelation Analysis. *Nature Methods* **16**, 918–924 (Sept. 2019).
- 962 12. Culley, S. *et al.* Quantitative Mapping and Minimization of Super-Resolution Optical Imaging Artifacts.
963 *Nature Methods* **15**, 263–266. (2021) (Apr. 2018).
- 964 13. Gao, S. *et al.* DETECTOR: Structural Information Guided Artifact Detection for Super-Resolution
965 Fluorescence Microscopy Image. *Biomedical Optics Express* **12**, 5751–5769. (2021) (Sept. 2021).
- 966 14. Lavoie-Cardinal, F. *et al.* Neuronal Activity Remodels the F-actin Based Submembrane Lattice in
967 Dendrites but Not Axons of Hippocampal Neurons. *Scientific Reports* **10**, 11960 (July 2020).
- 968 15. THOMPSON, W. R. ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS
969 ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES. *Biometrika* **25**, 285–294. (2021)
970 (Dec. 1933).
- 971 16. Zhang, W., Zhou, D., Li, L. & Gu, Q. Neural Thompson Sampling. *arXiv:2010.00827 [cs, stat]*. (2021)
972 (Oct. 2020).
- 973 17. Bilodeau, A., Bernatchez, R., Michaud-Gagnon, A., Lavoie-Cardinal, F. & Durand, A. Contextual Band-
974 it Optimization of Super-Resolution Microscopy. *Proceedings of the Canadian Conference on Artificial
975 Intelligence*. (2022) (May 2022).
- 976 18. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm:
977 NSGA-II. *IEEE Transactions on Evolutionary Computation* **6**, 182–197 (Apr. 2002).
- 978 19. Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M. & Gagné, C. DEAP: Evolutionary
979 Algorithms Made Easy. *Journal of Machine Learning Research* **13**, 2171–2175. (2012) (2012).
- 980 20. Roudenko, O. & Schoenauer, M. A Steady Performance Stopping Criterion for Pareto-based Evolution-
981 ary Algorithms in 6th International Multi-Objective Programming and Goal Programming Conference
982 (Apr. 2004). (2024).

985 21. Deb, K., Rao N., U. B. & Karthik, S. in *Evolutionary Multi-Criterion Optimization* (eds Obayashi, S.,
986 Deb, K., Poloni, C., Hiroyasu, T. & Murata, T.) 803–817 (Springer Berlin Heidelberg, Berlin, Heidelberg,
987 2007). (2022).

988 22. Sutton, R. S. & Barto, A. G. *Reinforcement Learning: An Introduction* Second Edition (The MIT Press,
989 2015).

990 23. Hayes, C. F. *et al.* A Practical Guide to Multi-Objective Reinforcement Learning and Planning. *Autonomous Agents and Multi-Agent Systems* **36**, 26. (2022) (Apr. 2022).

991 24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy Optimization Algorithms.
992 *arXiv:1707.06347 [cs]* (Aug. 2017).

993 25. Zhao, W., Queralta, J. P. & Westerlund, T. *Sim-to-Real Transfer in Deep Reinforcement Learning for*
994 *Robotics: A Survey* in *2020 IEEE Symposium Series on Computational Intelligence (SSCI)* (Dec. 2020),
995 737–744.

996 26. Mnih, V. *et al.* Human-Level Control through Deep Reinforcement Learning. *Nature* **518**, 529–533
997 (Feb. 2015).

998 27. Heine, J. *et al.* Adaptive-Illumination STED Nanoscopy. *Proceedings of the National Academy of Sci-
999 ences* **114**, 9797–9802 (Sept. 2017).

1000 28. Wurm, C. A., Neumann, D., Schmidt, R., Egner, A. & Jakobs, S. Sample preparation for STED mi-
1001 croscopy. *Live Cell Imaging: Methods and Protocols*, 185–199 (2010).

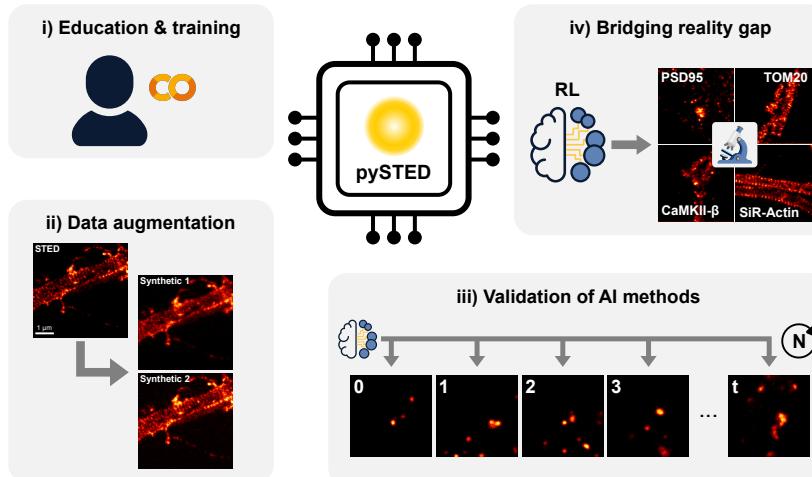
1002 29. Seabold, S. & Perktold, J. *statsmodels: Econometric and statistical modeling with python* in *9th Python
1003 in Science Conference* (2010).

1004 30. Wiesner, T. *et al.* Activity-Dependent Remodelling of Synaptic Protein Organization Revealed by High
1005 Throughput Analysis of STED Nanoscopy Images. *Frontiers in Neural Circuits* **14**. (2020) (2020).

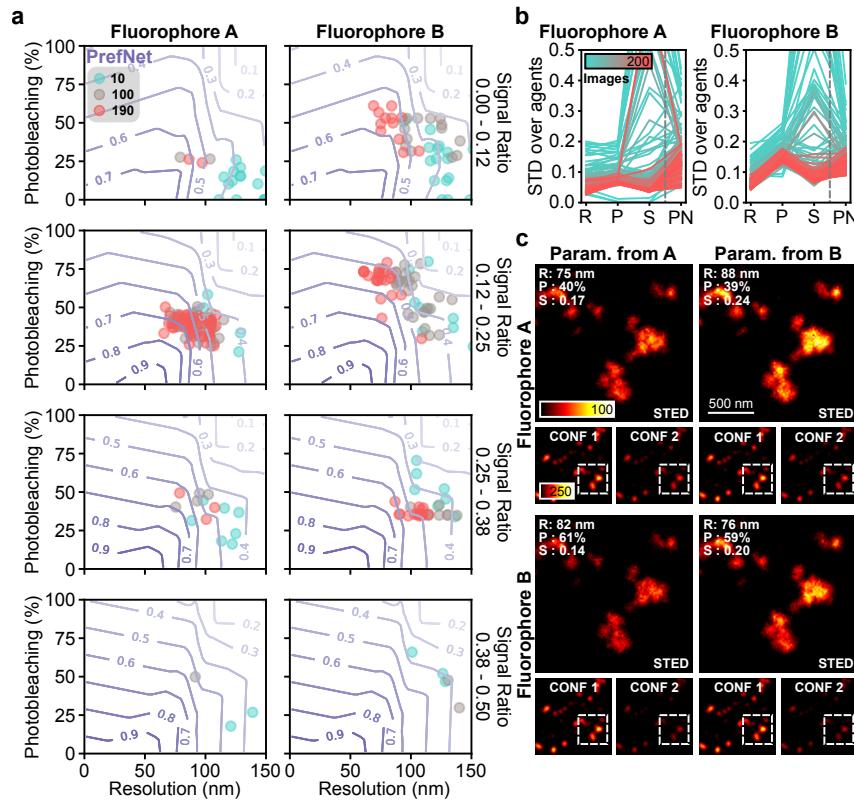
1006 31. Wurm, C. A. *et al.* Nanoscale Distribution of Mitochondrial Import Receptor Tom20 Is Adjusted to
1007 Cellular Conditions and Exhibits an Inner-Cellular Gradient. *Proceedings of the National Academy of
1008 Sciences of the United States of America* **108**, 13546–13551. (2023) (Aug. 2011).

1009

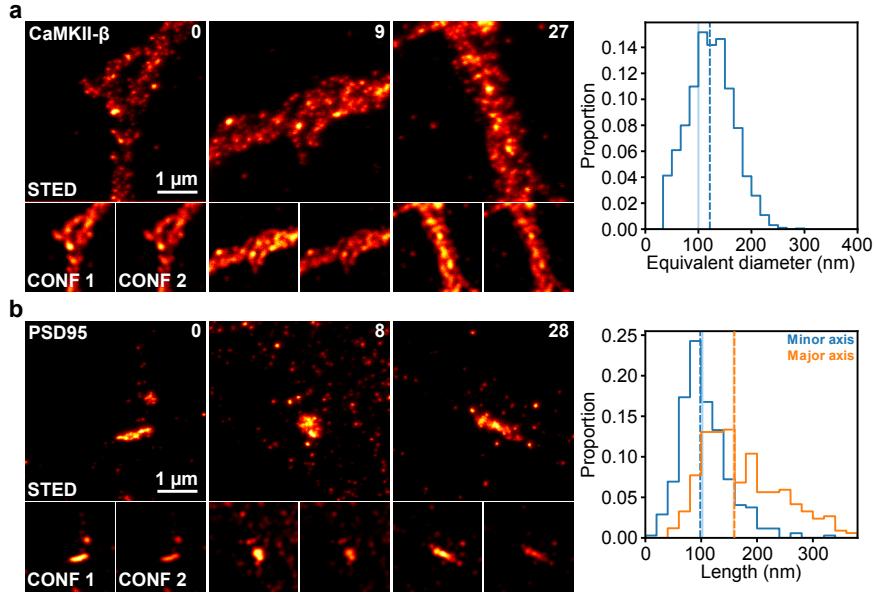
1010 Extended Figures



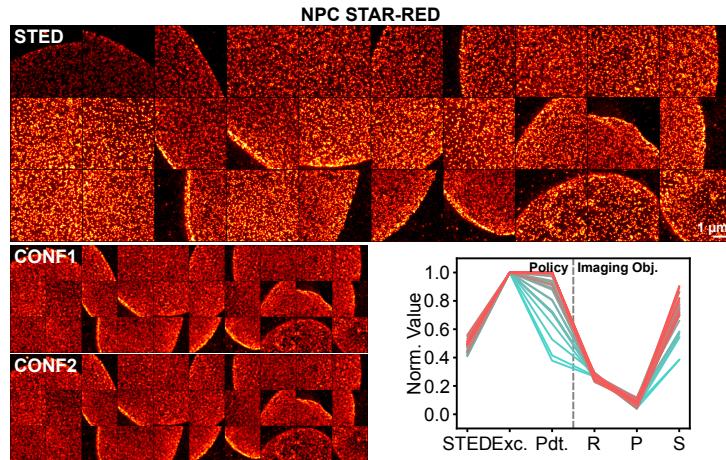
Extended Fig. 1: pySTED can benefit common microscopy tasks, *i.e.* image analysis and acquisition. i) A Google Colab notebook implementing pySTED is created for trainees to develop their knowledge and intuition about STED microscopy. ii) pySTED can be leveraged in deep learning-related microscopy tasks to artificially augment the training datasets. iii) pySTED can be used to develop and thoroughly validate AI methods by limiting the impact of biological variability on the measurements and reducing the biological footprint. iv) pySTED reduces the reality gap between simulation and reality by training RL models that learn through interactions with the system. The trained models are then deployed in a wide range of real experimental conditions.



Extended Fig. 2: a) Resulting imaging optimization objectives from Kernel-TS at 3 different timesteps (10 - cyan, 100 - grey, and 190 - red) for 50 independent models are presented for increasing signal ratio (top to bottom). With time, Kernel-TS acquires images that have a higher preference score for both fluorophores (purple contour lines) and converges into a similar imaging optimization objective space (red points). b) The standard deviation (STD) of the imaging optimization objectives and of the preference scores decreases during the optimization (cyan to red) supporting the convergence of Kernel-TS in a specific region of the imaging optimization objective space for both fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution, P: Photobleaching, and S: Signal ratio) from the preference network (PN). c) Typical pySTED simulations on two different fluorophores (top/bottom) using the optimized parameters on fluorophore A (top) or B (bottom). See Supplementary Tab. 9 for imaging parameters.



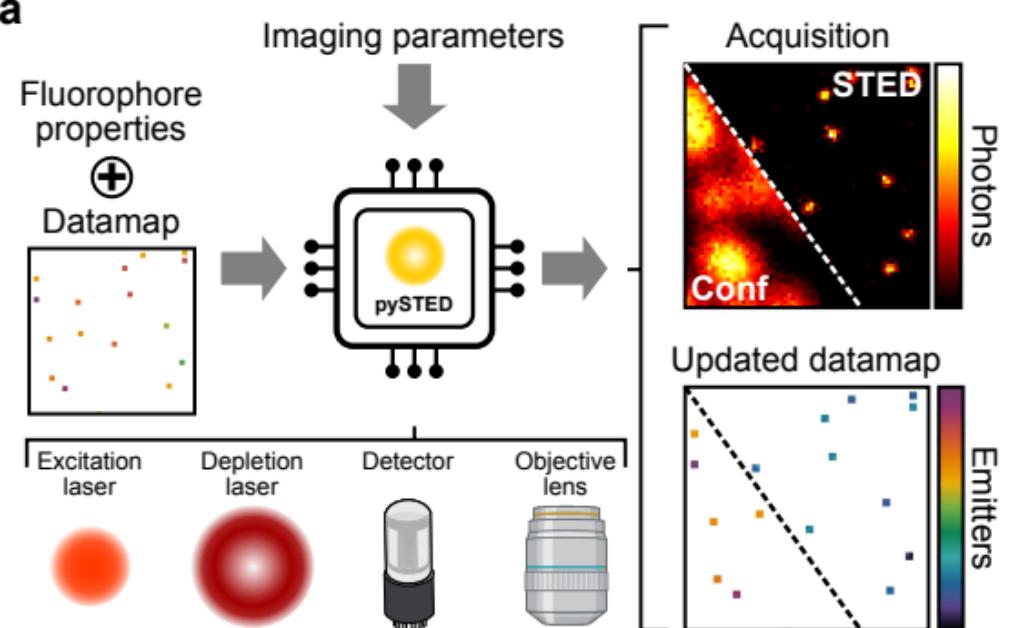
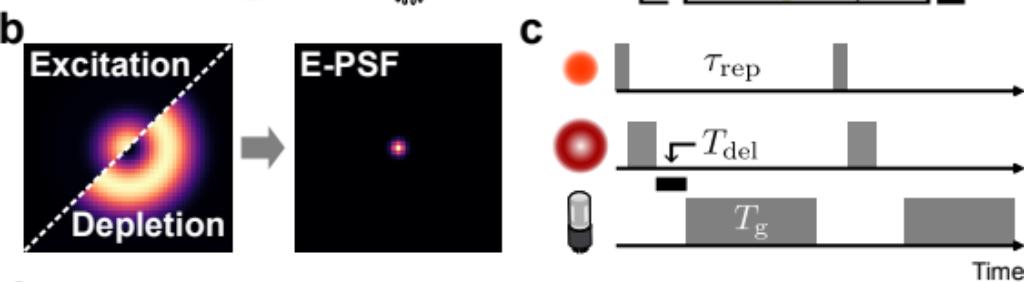
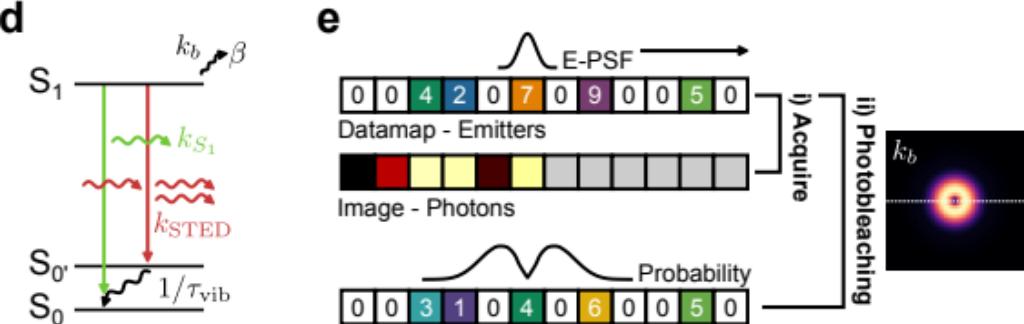
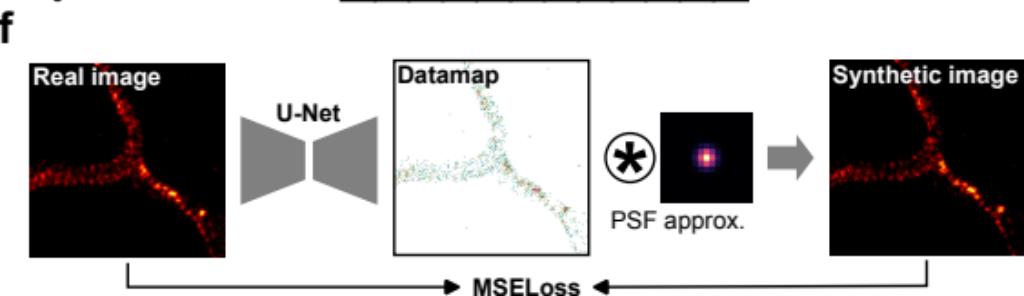
Extended Fig. 3: The agent was deployed on a real STED microscope for the imaging of diverse neuronal proteins in dissociated hippocampal cultures. **In distribution** a) (left) The clusters of CaMKII- β are revealed in all acquired images. (right) The size of the clusters are extracted from the acquired images (dashed vertical line represents the median of the distribution) and compared to the values that were previously reported in Ferreira *et al.* [1] (solid vertical line). **Out of distribution** b) A bright fluorophore of PSD95 is simulated experimentally (Methods). The STED images reveal the presence of nano-clusters. The minor (blue) and major (orange) axis length of the nano-clusters are measured and compared with the values reported in Nair *et al.* [2].

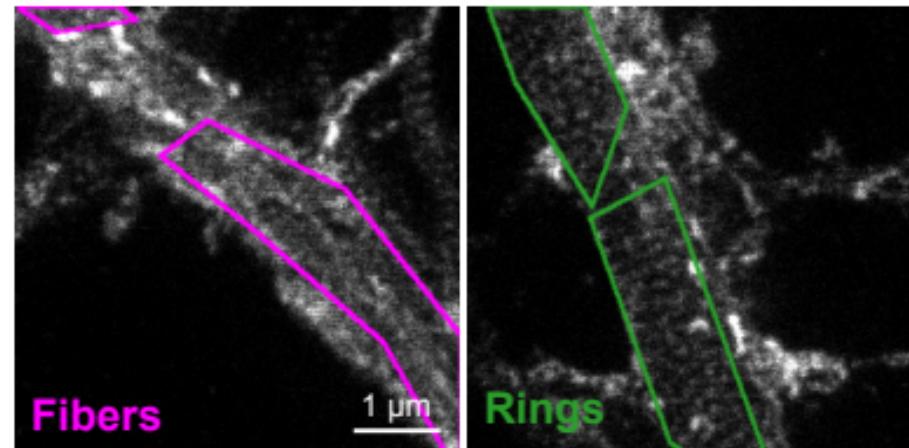
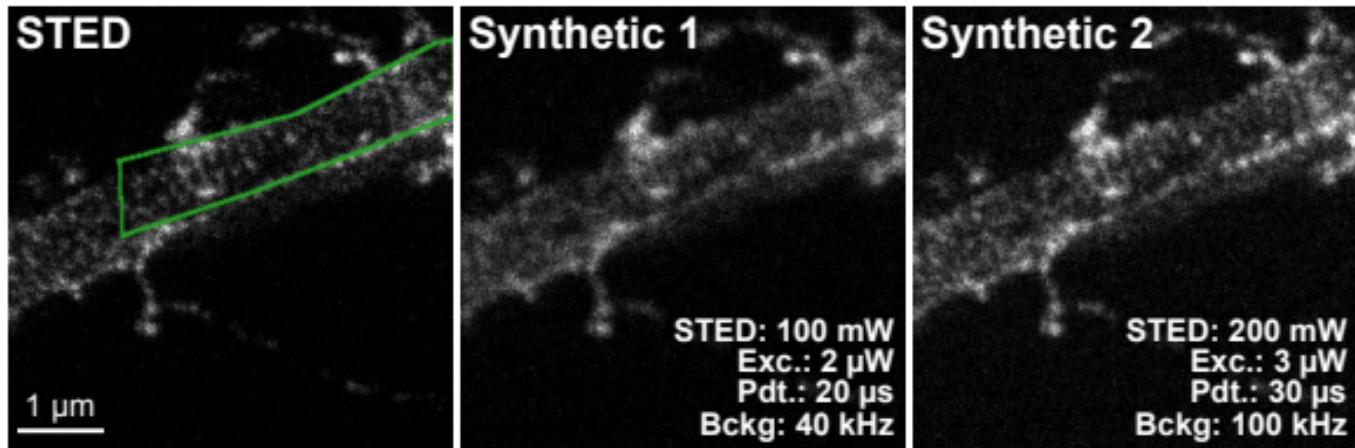
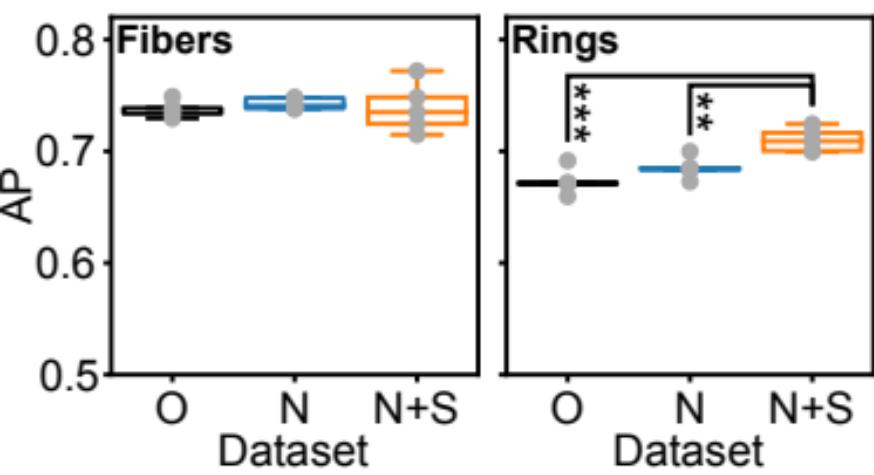
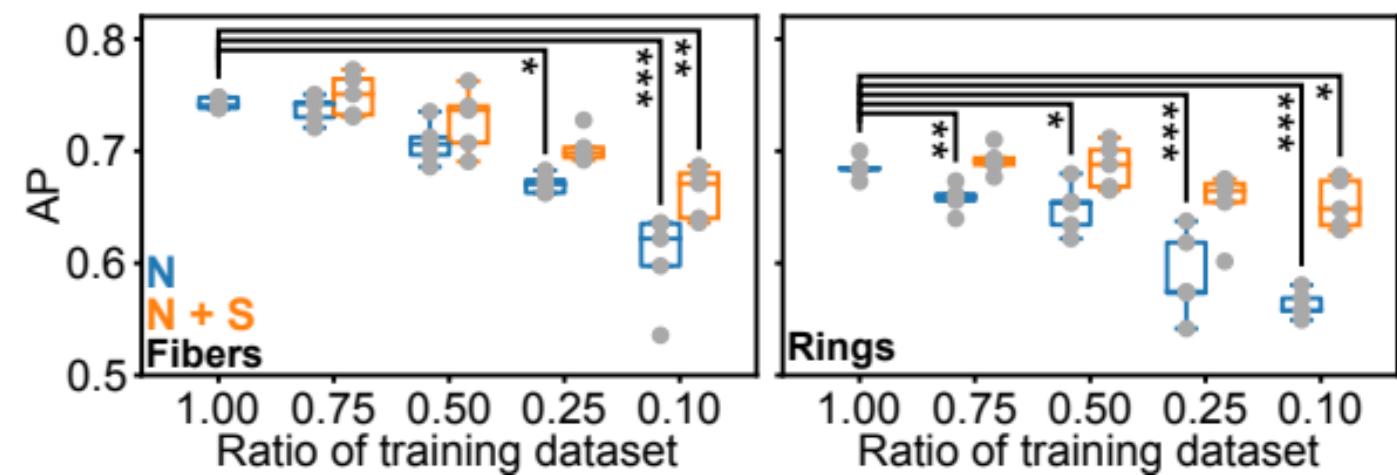


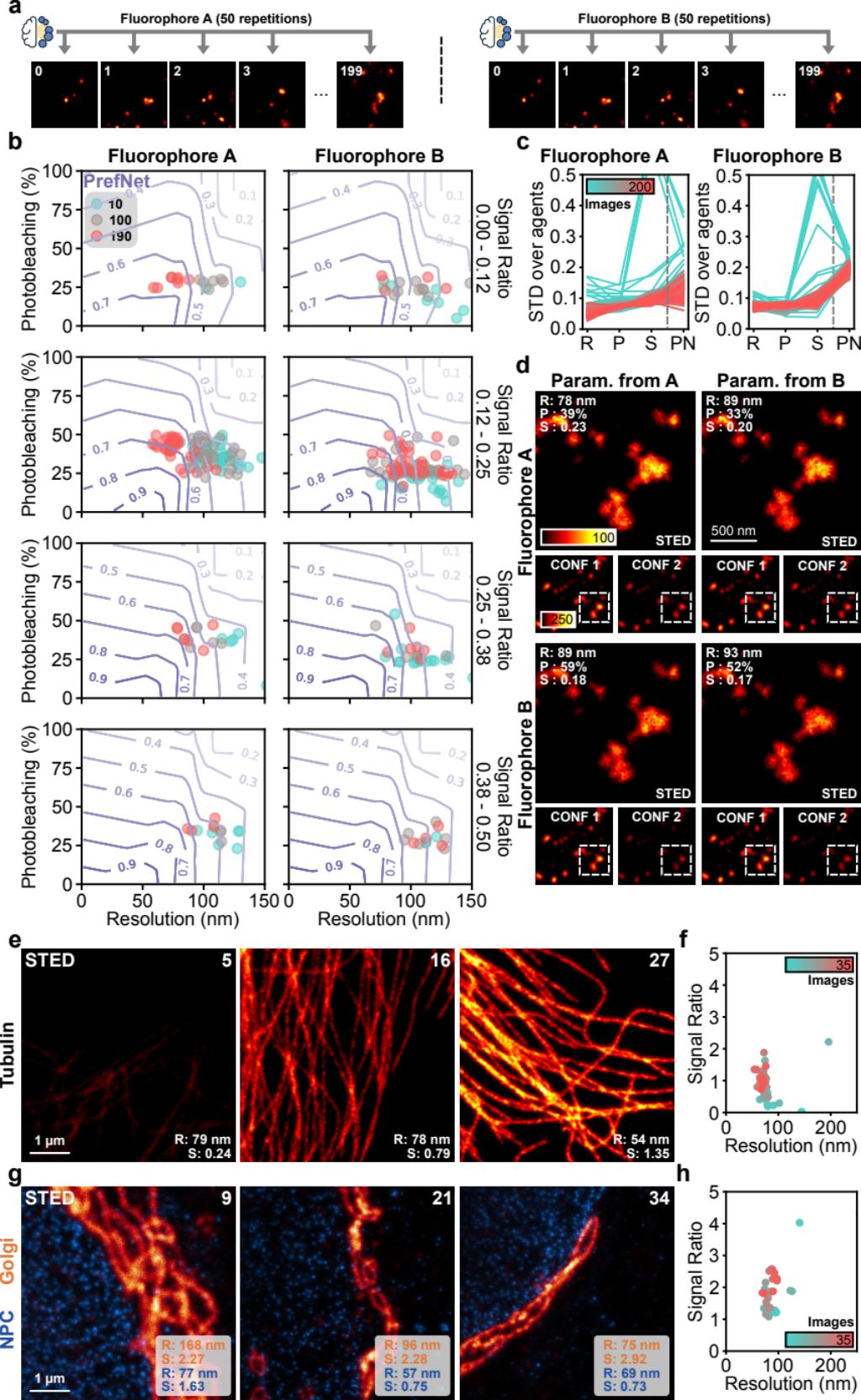
Extended Fig. 4: Images acquired by the RL agent in a real experiment on a different microscope. NPC was stained with the STAR-RED fluorophore. The sequence of acquired images goes from top left to bottom right. The confocal images before (CONF1) and after (CONF2) are presented for photobleaching comparison. The CONF1 image is normalized to the CONF2 image. The STED images are normalized to the 99th percentile of the intensity of the CONF1 image. Images are 5.12 μm × 5.12 μm. The evolution of the parameter selection (left; STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and imaging optimization objectives (right; R: Resolution, P: Photobleaching, S: Signal ratio) are presented.

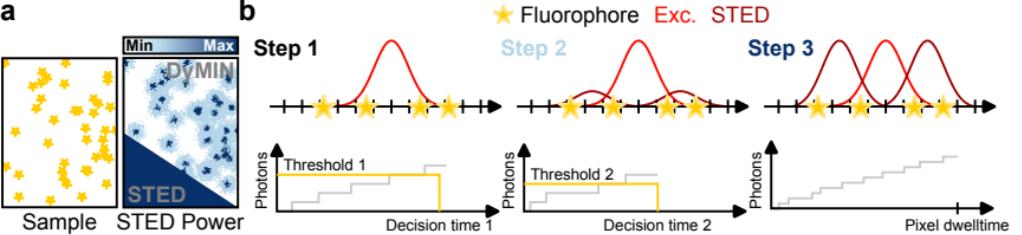
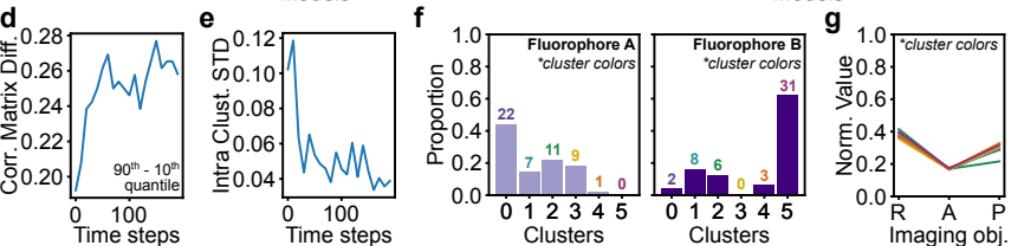
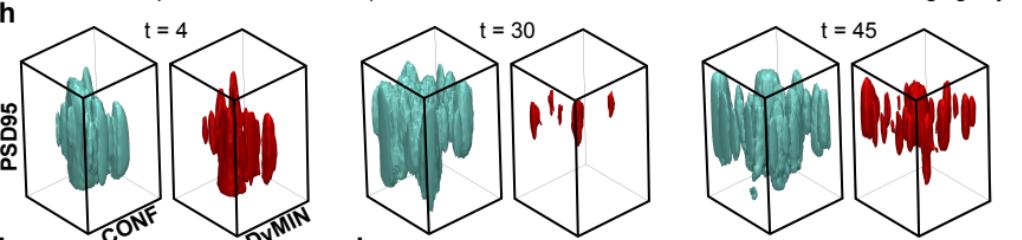
1 References

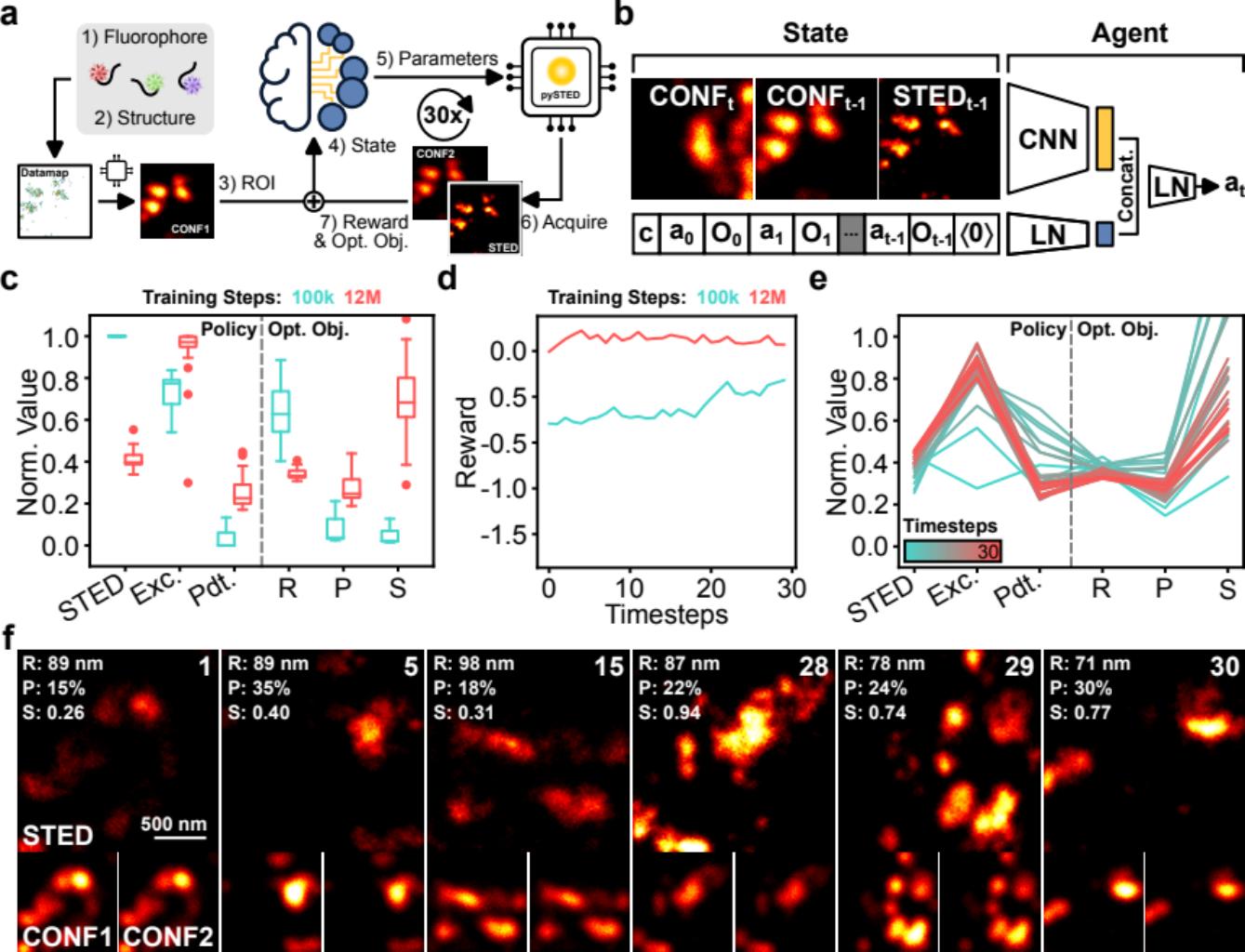
- 2 1. Ferreira, J. S. *et al.* Distance-Dependent Regulation of NMDAR Nanoscale Organization along Hip-
3 pocampal Neuron Dendrites. *Proceedings of the National Academy of Sciences of the United States of*
4 *America* **117**, 24526–24533. (2023) (Sept. 2020).
- 5 2. Nair, D. *et al.* Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dy-
6 namically Organized in Nanodomains Regulated by PSD95. *Journal of Neuroscience* **33**, 13204–13224.
7 (2023) (Aug. 2013).

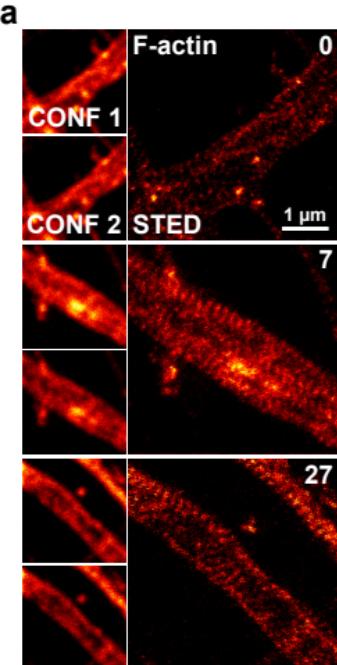
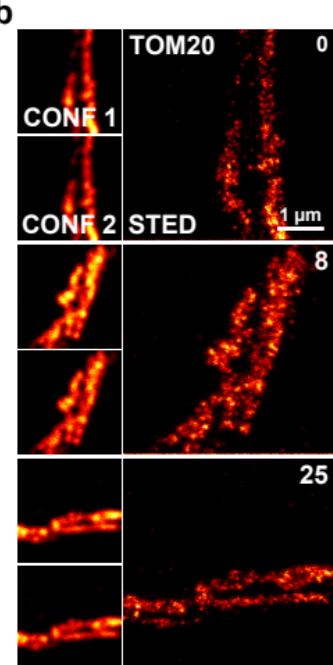
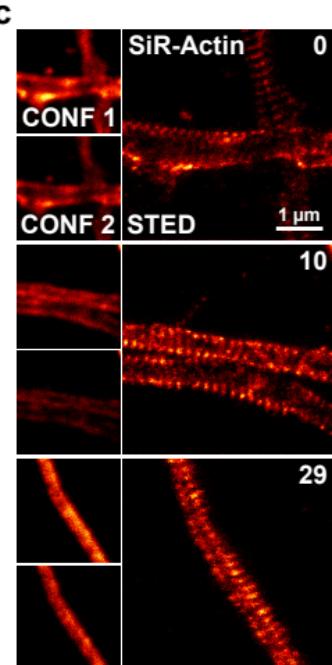
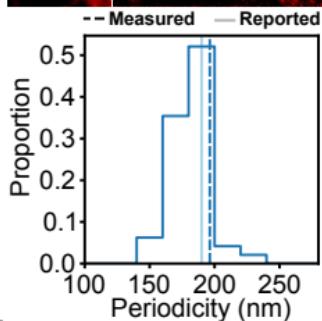
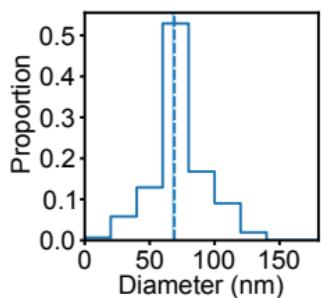
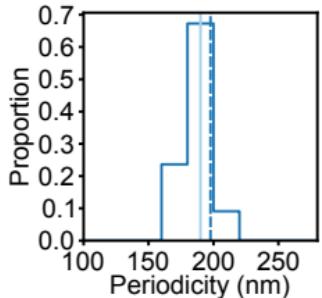


a**b****c****d**

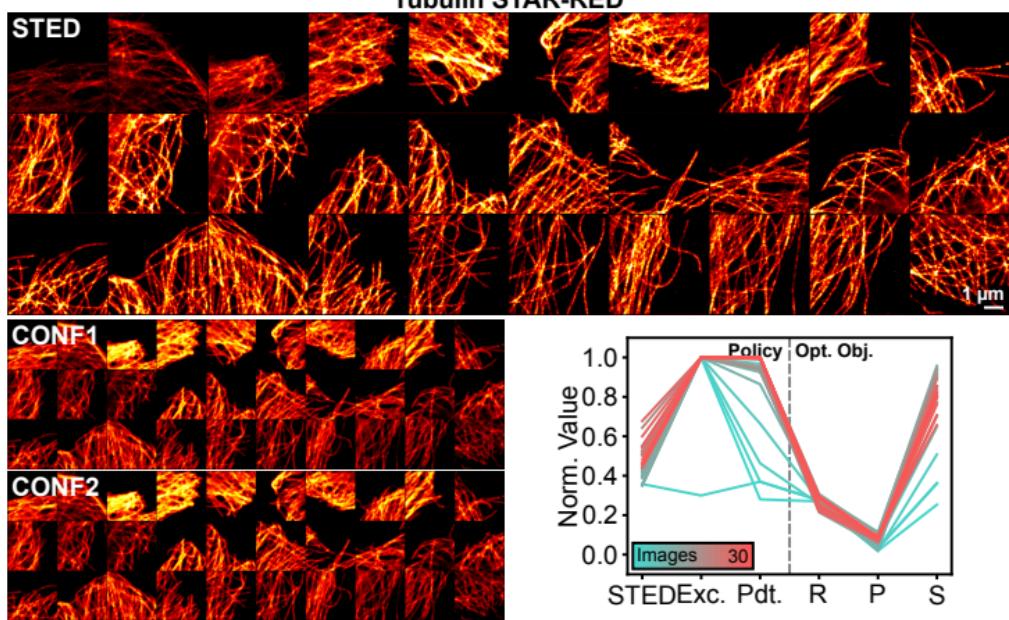
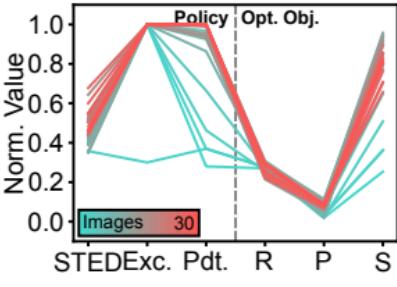








d



e

