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Abstract15

The integration of artificial intelligence (AI) into microscopy systems significantly enhances perfor-16

mance, optimizing both the image acquisition and analysis phases. Development of AI-assisted super-17

resolution microscopy is often limited by the access to large biological datasets, as well as by the difficul-18

ties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of19

a realistic STED simulation platform, pySTED, for the development and deployment of AI-strategies for20

super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation21

of data for the training of deep neural networks, the development of online optimization strategies, and22

the training of reinforcement learning models, that can be deployed successfully on a real microscope.23

1 Introduction24

Super-resolution microscopy has played a pivotal role in life sciences by allowing the investigation of the25

nano-organization of biological samples to a few tens of nanometers [1]. STimulated Emission Depletion26

(STED) [2], a point scanning based super-resolution microscopy fluorescence modality, routinely allows27

resolution down to 30-80 nm to be reached in fixed and live samples [1]. One drawback of STED microscopy28

is the photobleaching of the fluorophores associated with the increased light exposure at the sample [1, 3,29

4]. Photobleaching results in a decrease in fluorescence, limiting the ability to capture multiple consecutive30

images of a particular area and may also increase phototoxicity in living samples [4, 5]. In an imaging31

experiment, photobleaching and phototoxicity need to be minimized by careful modulation of the imaging32

parameters [5, 6] or by adopting smart-scanning schemes [7–9]. Integration of AI-assisted smart-modules to33

bioimaging acquisition protocols has been proposed to guide and control microscopy experiments [6, 7, 10,34

11]. However, Machine Learning (ML) and Deep Learning (DL) algorithms generally require a large amount35

of annotated data to be trained, which can be difficult to obtain when working with biological samples.36

Diversity in curated training datasets also enhances the model’s robustness [12, 13]. While large annotated37

datasets of diffraction-limited optical microscopy have been published in recent years [14, 15], access to such38

datasets for super-resolution microscopy is still limited, in part due to the complexity of data acquisition39

and annotation as well as a limited access to imaging resources. Similarly, the development of reinforcement40

learning (RL) methods adapted to the control of complex systems on a wide variety of tasks in games,41
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robotics, or even in microscopy imaging, are strongly dependent on the availability of large training datasets,42

generally relying on the development of accessible, realistic, and modular simulation environments [11, 16–20]43

To circumvent this limitation, simulation strategies have been employed for high-end microscopy techniques.44

For instance, in Fluorescence Lifetime Imaging Microscopy (FLIM), it is common practice to use simulation45

software to generate synthetic measurements to train ML/DL models [21]. The models can be completely46

trained in simulation or with few real measurements. Researchers in Single Molecule Localization Mi-47

croscopy (SMLM) have also adopted simulation tools in their image analysis pipelines to benchmark their48

algorithms [22–24]. Nehme et al. [25] could train a DL model with simulated ground truth detections and few49

experimental images which was then deployed on real images. In STED microscopy, simulation software are50

also available. However, they are limited to theoretical models of the point spread function (PSF) [26, 27] or51

effective PSF (E-PSF) [8, 28], without reproducing realistic experimental settings influencing the design of52

STED acquistions (e.g. photobleaching, structures of interest, scanning schemes). This limits the generation53

of simulated STED datasets and associated training of ML/DL models for smart STED microscopy modules.54

We created a simulation platform, pySTED, that emulates an in-silico STED microscope with the aim to55

assist the development of AI methods. pySTED is founded on theoretical and empirically validated models56

that encompass the generation of the E-PSF in STED microscopy, as well as a photobleaching model [3, 19,57

26, 29]. Additionally, it implements realistic point-scanning dynamics in the simulation process, allowing58

adaptive scanning schemes and non-uniform photobleaching effects to be mimicked. Realistic samples are59

simulated in pySTED by using a DL model that predicts the underlying structure (datamaps) of real images.60

pySTED can benefit the STED and machine learning communities by facilitating the development and deploy-61

ment of AI-assisted super-resolution microscopy approaches (Extended Fig. 1). It is implemented in a Google62

Colab notebook to help trainees develop their intuition regarding STED microscopy on a simulated system63

(Extended Fig. 1i). We demonstrate how the performance of a DL model trained on a semantic segmentation64

task of nanostructures can be increased using synthetic images from pySTED (Extended Fig. 1ii). A second65

experiment shows how our simulation environment can be leveraged to thoroughly validate the develop-66

ment of AI methods and challenge their robustness before deploying them in a real-life scenario (Extended67

Fig. 1iii). Lastly, we show that pySTEDenables the training of a RL agent that can learn by interacting with68

the realistic STED environment, which would not be possible on a real system due to data constraints [30].69

The resulting trained agent can be deployed in real experimental conditions to resolve nanostructures and70

recover biologically relevant features by bridging the reality gap (Extended Fig. 1iv).71

2 Results72

2.1 STED simulation with pySTED73

We have built a realistic, open-sourced1, STED simulation platform within the Python environment, namely74

pySTED. pySTED breaks down a STED acquisition into its main constituents: wavelength dependent focusing75

properties of the objective lens, fluorophore excitation and depletion, and fluorescence detection. Each76

step of the acquisition process corresponds to an independent component of the pipeline and is created77

with its own parameters (Supplementary Tables 1-4) that users can modify according to their experimental78

requirements (Figure 1a) [26]. Generating a synthetic image with the pySTED simulator requires to provide79

a map of the emitters in the field of view and to specify the photophysical properties of the fluorophore80

(Figure 1a and Supplementary Table 5). The map of fluorophores, referred to as datamap, can consist of81

automatically generated simple patterns (e.g. beads, fibers) or more complex structures generated from real82

images (Methods). The emission and photobleaching properties of the fluorophores that are implemented in83

pySTED are inspired from previous theoretical and experimental models [3, 29]. As in a real experiment, the84

datamap is continuously being updated during the simulation process to realistically simulate point-scanning85

acquisition schemes (Figure 1a-e, Methods).86

Realistic datamap generation Datamaps that can reproduce diverse biological structures of interest87

are required for the development of a simulation platform that enables the generation of realistic-synthetic88

1https://github.com/FLClab/pySTED
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Figure 1 : Caption is on the next page

STED images. Combining primary object shapes such as points, fibers, or polygonal structures is efficient89

and simple for some use-cases but is not sufficient to represent more complex and diverse structures that90

can be found in real biological samples [22–24, 31]. It is essential to reduce the gap between simulation and91

reality for microscopist trainees or to train artificial intelligence models on synthetic samples prior to the92

deployment on real tasks [32, 33].93

We sought to generate realistic datamaps by training a DL model to predict the underlying structures from94

real STED images which can then be used in synthetic pySTED acquisition. We chose the U-Net architecture,95

U-Netdatamap as it as been shown to perform well on various microscopy datasets of limited size [34, 35]96

(Figure 1f). We adapted a previously established approach in which a low-resolution image is mapped97

to a resolution-enhanced image [36, 37]. Once convolved with an equivalent optical transfer function the98

resolution-enhanced synthetic image is compared with the original image.99

Here, we trained the U-Netdatamap on STED images of proteins in cultured hippocampal neurons (Meth-100

ods, Supplementary Fig. 1, and Supplementary Tab. 7). During the training process, the model aims at101

predicting the underlying structure (datamap) such that the convolution of the approximated PSF of the102

STED microscope (full-width at half maximum (FWHM): ⇠ 50 nm, measured from FWHM of real STED103

images) minimizes the mean quadratic error with the real image (Figure 1f). After training, given a real104

image, the U-Netdatamap generates the underlying structure (Supplementary Fig. 1). From this datamap, a105

synthetic pySTED image can be simulated with different imaging parameters (low or high resolution). Qual-106

itative comparison of the synthetic images acquired in pySTED with the real STED images (Supplementary107

Fig. 1) shows similar super-resolved structures for different neuronal proteins confirming the capability of108

the U-Netdatamap to predict a realistic datamap. We also evaluated the quality of images resulting from109

datamaps generated with the U-Netdatamap or a conventional Richardson-Lucy deconvolution (Methods,110

Supplementary Fig. 2a). As highlighted in Supplementary Fig. 2b,c, the use of the U-Netdatamap instead of111
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Figure 1: pySTED simulation platform. a) Schematic of the pySTED microscopy simulation platform. The user
specifies the fluorophore properties (e.g. brightness and photobleaching) and the positions of the emitters in the
datamap. A simulation is built from several components (excitation and depletion lasers, detector, and objective
lens) that can be configured by the user according to their experimental settings. A low-resolution (Conf) or high-
resolution (STED) image of an underlying datamap is simulated using the provided imaging parameters. The number
of fluorophores on each pixel in the original datamap is updated according to their photophysical properties and
associated photobleaching effects. b) Modulating the excitation with the depletion beam impacts the effective point
spread function (E-PSF) of the microscope. The E-PSF is convolved on the datamap to calculate the number of
photons. c) A time-gating module is implemented in pySTED. The temporal acquisition scheme of the simulation can
be modulated by the user. It affects the lasers and the detection unit. The time-gating parameters of the simulation
(gating delay: Tdel and gating time: Tg) as well as the repetition rate of the lasers (⌧rep) are presented. A grey box is
used to indicate when a component is active. d) A two state Jablonski diagram (ground state: S0 and excited state:
S1) presents the transitions that are included in the fluorescence (spontaneous decay: kS1 and stimulated emission
decay: kSTED) and photobleaching dynamics (photobleaching rate: kb and photobleached state: �) of pySTED. The
vibrational relaxation rate (1/⌧vib) affects the effective saturation factor in STED. e) An image acquisition is simulated
as a two-step process where for each position in the datamap we do the following : i, Acquire) The convolution of the
E-PSF with the number of emitters in the datamap (Datamap - Emitters) is calculated to obtain the signal intensity
and is reported in the image (Image - Photons). ii, Photobleaching) The number of emitters at each position in the
datamap is updated according to the photobleaching probability (line profile from kb, compare top and bottom line).
The same colormaps used in a are also employed for both the datamap and image in e and f. f) Realistic datamaps
are generated from real images. A U-Net model is trained to predict the underlying structure from a real STED
image. Convolving the predicted datamap with the approximated PSF results in a realistic synthetic image. During
training the mean squared error loss (MSELoss) is calculated between the real and synthetic image. Once trained,
the convolution step can be replaced by pySTED.

Richardson-Lucy deconvolution to generate datamaps in pySTED results in improved synthetic images.112

Validation of pySTED with a real STED microscope We characterized the capacities of pySTED to sim-113

ulate realistic fluorophore properties by comparing the synthetic pySTED images with real STED microscopy114

acquisitions. We acquired STED images of the protein bassoon, which had been immunostained with the115

fluorophore ATTO-647N in dissociated cultured hippocampal neurons. We compared the effect of varying116

the imaging parameters on the pySTED simulation environment and on the real microscope (Supplementary117

Fig. 3-5). For pySTED we used the photophysical properties of the fluorophore ATTO-647N from the liter-118

ature (Supplementary Tab. 5) [3, 38]. The photobleaching constants (k1 and b) were estimated from the119

experimental data by using a least-squares fitting method (Methods). Synthetic datamaps were generated120

with the U-Netdatamap to facilitate the comparison between simulation and reality.121

We first compared how the imaging parameters on the real microscopes and in the pySTED simulations (pixel122

dwelltime, excitation and depletion powers) influenced the image properties by measuring the resolution [39]123

and the signal ratio [6] (Methods and Supplementary Fig. 3a). As expected, modulating the STED laser124

power influences the spatial resolution in real experiments and in pySTED simulations. Examples of acquired125

and synthetic images are displayed in Supplementary Fig. 3b for visual comparison with different parameter126

combinations (Supplementary Fig. 3a). The impact of the imaging parameters in the resolution and signal127

ratio metrics in pySTED agree with the measurements that were performed on a real microscope. The small128

deviations can be explained by the variability that is typically observed in the determination of absolute129

values of fluorophore properties [40].130

Next, we validated the photobleaching model that is implemented within pySTED. We calculated the pho-131

tobleaching by comparing the fluorescence signal in a low-resolution image acquired before (CONF1) and132

after (CONF2) the high-resolution acquisition [6] (Methods). For the pixel dwelltime and the excitation133

power we measured similar trends between real and synthetic image acquisitions (Supplementary Fig. 4a).134

For a confocal acquisition, the photobleaching in pySTED is assumed to be 0 (Supplementary Fig. 4a) as it135

is generally negligible in a real confocal acquisition. Considering the flexibility of pySTED, different photo-136

bleaching dynamics specifically tailored for any particular experiment can be implemented and added in the137

simulation platform. Examples of sequential acquisition (10 images) are presented in Supplementary Fig. 4b138
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to demonstrate the effect of the imaging parameters on the photobleaching of the sample. pySTED also in-139

tegrates background effects that can influence the quality of the acquired images as in real experiments [41,140

42] (Supplementary Fig. 4c,d).141

2.2 pySTED as a development platform for AI-assisted microscopy142

2.2.1 Dataset augmentation for training deep learning models143
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Figure 2: pySTED is used to artificially augment the training dataset of a DL model. a) We tackle the segmentation
task that was used in Lavoie-Cardinal et al. [43] where the annotations consist in polygonal bounding boxes around
F-actin fibers (magenta) and rings (green). b) pySTED is used to augment the training dataset by generating synthetic
versions of a STED image. c) Average Precision (AP) of the model for the segmentation of F-actin fibers (magenta)
and rings (green). The model was trained on the original dataset from Lavoie-Cardinal et al. [43] (O), and on the
same dataset with updated normalization (N) and additionnal synthetic images (N+S). No significant changes in
AP are measured for F-actin fibers but a significant increase is measured for N+S over O and N for F-actin rings
(p-values in Supplementary Fig. 6). d) Images were progressively removed from the dataset (100%: 42 images, 75%:
31 images, 50%: 21 images, 25%: 10 images, and 10%: 4 images). Removing more than 50% of the dataset for
fibers negatively impacts the models whereas removing 25% of the dataset negatively impacts the segmentation of
rings (N; p-values in Supplementary Fig. 6). Adding synthetic images from pySTED during training allows 75% of
the original training dataset to be removed without affecting the performance for both structures (N + S, p-values
in Supplementary Fig. 6). Only the significant changes from the complete dataset are highlighted. The complete
statistical analysis is provided in Supplementary Fig. 6.

DL models are powerful tools to rapidly and efficiently analyse large databanks of images and perform various144

tasks such as cell segmentation [35, 44]. When no pretrained models are readily available online to solve the145

task [45], finetuning or training a DL model from scratch requires the tedious process of annotating a dataset.146

We herein aim to reduce the required number of distinct images for training by using pySTED as an additional147

data augmentation step. As a benchmark, we used the F-actin segmentation task from Lavoie-Cardinal et al.148

[43], where the goal is to segment dendritic F-actin fibers or rings using a small dataset (42 images) of STED149

images (Figure 2a, Methods). pySTED was used first as a form of data augmentation to increase the number150

of images in the training dataset without requiring new annotations. Using U-Netdatamap we generated F-151

actin datamaps and a series of synthetic images in pySTED with various simulation parameters (Figure 2b,152

Supplementary Tab. 8).153

We compared the segmentation performance by using the average precision (AP, Methods) of a DL model154

trained on the original dataset (O [43]) or with different image normalization and increased data augmenta-155

tion (N ). The segmentation performance was not impacted by increasing the amount of data augmentation156

(O vs. N, Figure 2c). Adding synthetic images from pySTED (N+S) into the training dataset to improve the157

diversity of the dataset significantly increases the performance of F-actin rings segmentation compared to O158

and N and maintains the performance for the F-actin fibers segmentation (Figure 2c). In biological exper-159

iments, where each image is costly to acquire, reducing the size of the training dataset results in a higher160
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number of images for the post-hoc analysis. Hence, we sought to measure the impact of reducing the number161

of real images in the training dataset by training on subsets of images that are augmented using pySTED162

(Supplementary Fig. 7). We measure a significant decrease of the AP for F-actin fibers when the model is163

trained on less than 50% of the images. Removing 25% of the dataset negatively impacts the segmentation164

performance of F-actin rings (Figure 2d, p-values in Supplementary Fig. 6). However, adding synthetic165

images from pySTED during training allows the segmentation performance of the model to be maintained by166

training with only 25% of the original dataset (Figure 2d, p-values in Supplementary Fig. 6).167
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Figure 3: Validation of AI-assisted algorithms with pySTED for STED microscopy parameter optimization. a) pySTED
is used to confirm the robustness of a model to the random initialization by repeatedly optimizing (50 repetitions)
the imaging parameters on the same sequence of datamaps (200 images). Two fluorophores are considered for
demonstration purposes (Supplementary Tab. 9). b) Resulting imaging optimization objectives from LinTSDiag at 3
different timesteps (10 - cyan, 100 - grey, and 190 - red) for 50 independent models which are presented for increasing
signal ratio (top to bottom). With time, LinTSDiag acquires images that have a higher preference score for both
fluorophores (purple contour lines) and converges into a similar imaging optimization objective space (red points). c)
The standard deviation (STD) of the imaging optimization objectives and of the preference scores decreases during the
optimization (cyan to red) supporting the convergence of LinTSDiag in a specific region of the imaging optimization
objective space for both fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution,
P: Photobleaching, and S: Signal ratio) from the preference network (PN). d) Typical pySTED simulations on two
different fluorophores (top/bottom) using the optimized parameters on fluorophore A (left) or B (right). Parameters
that were optimized for fluorophore A (top-left) result in higher photobleaching with maintaining a similar resolution
and signal ratio on fluorophore B (bottom-left) compared to parameters that were optimized for fluorophore B
(bottom-right). See Supplementary Tab. 9 for imaging parameters. e) Example acquisition of LinTSDiag on a
Tubulin in kidney epithelial cells (Vero cells) stained with STAR RED in the beginning (left) and at the end of the
optimization (right). f) Over time, LinTSDiag manages to increase both the resolution and the signal ratio of the
acquired images (35 images, cyan to red). g) LinTSDiag allows multi-color imaging due to it’s high dimensional
parameter space capability. LinTSDiag optimizes the averaged resolution and signal ratio from both channels in
dual-color images acquired of Golgi (STAR ORANGE) and Nuclear Pore Complex (STAR RED) in Vero cells. h)
LinTSDiag can maximize the signal ratio in the images while maintaining the resolution of the images (35 images,
cyan to red).

2.2.2 Validation of AI methods168

Benchmarking AI models for automating microscopy tasks on biological samples is challenging due to bio-169

logical variability and the difficulty of comparing imaging strategies on the same region of interest [6, 22,170

46]. Assessing and comparing AI models requires multiple attempts in similar, yet different experimental171

conditions to limit the impact of biological variability. This inevitably increases the number of biological172

samples and the time required to develop robust AI-assisted adaptive microscopy strategies that can be173

deployed on a variety of samples and imaging conditions. pySTED allows the simulation of multiple versions174

of the same images as if the structure had been imaged with different experimental settings. We herein175

showcase the capability of pySTED in thoroughly validating ML approaches for the optimization of STED176

imaging parameters in a simulated controlled environment, enabling more robust performance assessments177

and comparisons.178

We first demonstrate how pySTED can be used to characterize the performance of a multi-armed bandit179

optimization framework that uses Thompson Sampling (TS) for exploration, Kernel-TS. The application180

of Kernel-TS for the optimization of STED imaging parameters was demonstrated previously, but com-181

parison between different experiments was challenging due to local variations in the size, brightness, and182

photostability of the fluorescently tagged neuronal structures [6]. Using synthetic images generated with183

pySTED allows the performance of Kernel-TS to be evaluated on the same image sequence (50 repetitions,184

Methods) and with controlled photophysical properties of fluorophores (Extended Fig. 2 and Supplementary185

Tab. 14). For experimental settings such as multi-channel imaging or adaptive scanning, Kernel-TS is limited186

by the number of parameters that can be simultaneously optimized (⇠4) in an online setting [6]. We thus187

turned to a neural network implementation of Thompson Sampling which was recently developed to solve188

the multi-armed bandit framework, LinTSDiag [47].189

Using pySTED we could characterize the performance of LinTSDiag on a microscopy optimization task on190

synthetic images without requiring real biological samples. As described above, LinTSDiag was trained on191

the same sequence (50 repetitions, Methods) using two different fluorophores (Figure 3a and Supplementary192

Tab. 14). In a simple 3-parameters optimization setting, LinTSDiag allows a robust optimization of the193

signal ratio, photobleaching and spatial resolution for fluorophores with distinct photophysical properties194

(Figure 3b). We evaluate the performance of LinTSDiag using the preference score, which is obtained from195

a network that was trained to predict the preferences of an expert in the imaging optimization objective196
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space (PrefNet, see Methods) [6]. The convergence of the agent in the imaging optimization objective space197

is supported by the smaller standard deviation measured in the last iterations of the imaging session (red198

lines, Figure 3c). pySTED enables the comparison of the optimized parameters for different fluorophores on199

the same datamap. This experiment confirms that optimal parameters vary depending on the photophysical200

properties (Figure 3d).201

LinTSDiag was then deployed on a real microscopy system to simultaneously optimize 4 parameters (Exci-202

tation power, STED power, pixel dwelltime, and linesteps) for the imaging of Tubulin stained with STAR203

RED in kidney epithelial cells (Vero cell line). The model was able to optimize the imaging optimization204

objectives, improving the resolution and signal ratio, while maintaining a low level of photobleaching over205

the course of the optimization (Figure 3e,f and Supplementary Tab. 14). Then we sought to increase the206

number of parameters by tackling a dual-color imaging scheme (6 parameters, Excitation power, STED207

power, and linesteps for both channels) for STED imaging of Golgi stained with STAR-ORANGE and nu-208

clear pore complex (NPC) stained with STAR RED in Vero cells (Figure 3g,h and Supplementary Tab. 14).209

The optimization framework allows 4 imaging optimization objectives to be simultaneously optimized (e.g.210

resolution and signal ratio for both colors). As the visual selection of the trade-off in a 4-dimensional space211

is challenging for the user in an online setting, we decided to optimize the combined resolution and signal212

ratio of both fluorophores (average of the imaging optimization objectives), allowing the users to indicate213

their preference in a two-dimensional optimization objective space. Online 6-parameters optimization of214

LinTSDiag increases the signal ratio while maintaining a good image resolution for both imaging channels215

(Figure 3h) enabling to resolve both structures with sub-100 nm resolution.216

Next, we developed a model that leverages prior information (context) to solve a task with a high-dimensional217

action space. This is the case for DyMIN microscopy which requires parameter selection to be adapted, in218

particular multiple illumination thresholds, to the current region of interest [8] (Figure 4a,b). We previ-219

ously showed that contextual-bandit algorithms can use the confocal image as a context to improve DyMIN220

thresholds optimization in a two parameters setting [48]. In this work we aim to increase the number of pa-221

rameters (7 parameters) that can be simultaneously optimized and validate the robustness of LinTSDiag [47]222

(Figure 4b). We repeatedly trained LinTSDiag on the same datamap sequence using the confocal image as223

prior information (50 repetitions). The parameter selection was compared by measuring whether the action224

selection correlated over time between the models (Figure 4c, Supplementary Fig. 8, Supplementary Tab. 14,225

and Methods). For instance, the correlation matrix from the last 10 images shows clusters of similar pa-226

rameters that are better defined than for the first 10 images (Figure 4c). This is confirmed by the 90th and227

10th quantile difference in the correlation matrix which rapidly increases with time (Figure 4d). As expected228

with clustered policies, the average standard deviation of the action selection for each cluster reduces over229

time implying similar parameter selection by the models (Figure 4e). We also assessed whether the models230

would adapt their policies to different fluorophores (light/dark purple, Figure 4c,f). As shown in Figure 4f,231

there are specific policies for each fluorophore (e.g. fluorophore A: 0, 3; fluorophore B: 5) demonstrating232

the capability of the models in adapting their parameter selections to the experimental condition. While233

the policy of the models are different, the measured imaging optimization objectives are similar for all clus-234

ters (Figure 4g) which suggests that different policies can solve this task unveiling the delicate intricacies235

of DyMIN microscopy. More importantly this shows that the model can learn one of the many possible236

solutions to optimize the imaging task.237

The LinTSDiag optimization strategy was deployed in a real life experiment for the 7 parameter optimization238

of DyMIN3D imaging of the post-synaptic protein PSD95 in dissociated primary hippocampal neurons239

stained with STAR-635P. Early in the optimization, the selected parameters produced images with poor240

resolution or missing structures (artefacts) (Figure 4h and Supplementary Tab. 14). The final images were241

of higher quality (right, Figure 4h) with fewer artefacts and high resolution. The parameter selection of the242

model converged in a region of the parameter space that could improve all imaging optimization objectives243

over the course of optimization (Figure 4i,j). Parameters optimized with LinTSDiag allowed a significant244

improvement of DyMIN3D imaging of PSD95 compared to conventional 3D STED imaging (Supplementary245

Fig. 9). pySTED allowed us to validate the robustness of the model in a simulated environment prior to its246

deployment in a real experimental setting. This should benefit the ML community by allowing the validation247

of new online ML optimization algorithms on realistic tasks.248
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2.3 Learning through interactions with the system249

Online optimization strategies such as Kernel-TS and LinTSDiag were trained from scratch on a new sample,250

implying a learning phase in which only a fraction of the images will meet minimal image quality requirements.251

For costly biological samples, there is a need to deploy algorithms that can make decisions based on the252

environment with a reduced initial exploration phase. Control tasks and sequential planning are particularly253

well suited for a RL framework where an agent (e.g. replacing the microscopist) learns to make decisions254

by interacting with the environment (e.g. select imaging parameters on a microscope) with the aim of255

maximizing a reward signal (e.g. light exposure, signal ratio, resolution) over the course of an episode (e.g.256

imaging session) [49]. Deep RL agents are (unfortunately) famously data-intensive, sometimes requiring257

millions of examples to learn a single task [17, 30]. This makes them less attractive to be trained on real-258

world tasks where each sample can be laborious to obtain (e.g. biological samples) or when unsuitable actions259

can lead to permanent damage (e.g. overexposition of the photon detector). Simulation platforms are thus260

essential in RL to provide environments in which an agent can be trained at low cost to then be deployed in261
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Figure 4: Validation of contextual-bandit algorithms with pySTED in a high-dimensional parameter space. a) DyMIN
microscopy uses thresholds to turn off the high-intensity STED laser when no structures are within the vicinity of
the donut beam (white regions). Thus limiting the light doses at the sample compared to conventional STED. b)
Typically DyMIN uses a 3 step process at each pixel. In the first step, only the excitation (Exc.) laser is used and the
signal is measured. If the measured signal is higher than the predefined threshold (Threshold 1) after the decision time
(Decision Time 1) then the depletion power (STED) is slightly increased and the signal is measured again (Threshold
2 and Decision time 2). Otherwise the acquisition is stopped until the next pixel. The final step (Step 3) consists in
a normal STED acquisition. c) pySTED was used to characterize LinTSDiag models that can simultaneously optimize
7 parameters (STED and excitation powers, pixel dwelltime, threshold 1 & 2, and decision time 1 & 2) with prior
information about the task (confocal image). The convergence of the models to similar parameter combinations is
evaluated by measuring the correlation in the action selection (50 models) over time (See Supplementary Fig. 8).
Clustering of the correlation matrix reveals clusters of policies that are better defined later in the optimization process
(right dendrogram, color-coded). The shades of purple on the left of the correlation matrix represent two different
fluorophores (light: A, dark: B). d) The difference between the 90th and 10th quantile of the correlation matrix
increases with time implying better defined clusters of policies. e) The intra cluster standard deviation (STD) of the
parameter selection decreases during the optimization showing that the policy of the models converges in all defined
clusters. f) The proportion of models per cluster for fluorophore A or B (light and dark respectively) shows that
there are different modes of attraction in the parameter space for fluorophores with distinct photophysical properties
(color-code from c). g) While models converged in different regions of the parameter space, the measured imaging
optimization objectives (R: Resolution, A: Artefact, P: Photobleaching) are similar for each cluster (color-code from
c). h) Example acquisition with LinTSDiag optimization on a real acquisition task for DyMIN3D of the synaptic
protein PSD95 in cultured hippocampal neurons. The volume size is 2.88 µm⇥ 2.88 µm⇥ 2 µm. Confocal (left) and
DyMIN (right) acquisitions are displayed. i) A convergence of the parameter selection in the 7-parameter space
is observed (cyan to red, STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime, Th1-2: First and
second DyMIN threshold, and T1-2: First and second DyMIN decision time). j) LinTSDiag optimization reduces the
variability of all imaging optimization objectives during the optimization (50 images). Boxplot shows the distribution
in bins of 10 images.

a real-life scenario [50], which is referred to as simulation to reality (Sim2Real) in robotics. While Sim2Real262

is widely studied in robotics and autonomous driving, its success for new fields of application is generally263

dependant on the gap between simulation and reality [51].264

Here, pySTED is used as a simulation software to train RL agents. We implemented pySTED in an OpenAI265

Gym environment (gym-STED) to facilitate the deployment and development of RL strategies for STED266

microscopy [19, 52]. To highlight the potential of gym-STED to train a RL agent, we crafted the task of267

resolving nanostructures in simulated datamaps of various neuronal structures (Figure 5a). In gym-STED268

an episode unfolds as follows. At each timestep the agent observes the state of the sample: a visual input269

(image) and the current history (Methods, Figure 5b). The agent then performs an action (adjusting pixel270

dwelltime, excitation and depletion powers), receives a reward based on the imaging optimization objectives271

and transitions into the next state. A single value reward is calculated using a preference network that was272

trained to rank the imaging optimization objectives (resolution, photobleaching and signal ratio) according273

to expert preferences [6] (Methods). A negative reward is obtained when the selected parameters lead to274

a high photon count that would be detrimental to the detector in real experimental settings (e.g. non-275

linear detection of photon counts). This sequence is repeated until the end of the episode, 30 timesteps. In276

each episode, the goal of the agent is to balance between detecting the current sample configuration and277

acquiring high-quality images to maximize it’s reward (Figure 5a). We trained a proximal policy optimization278

(PPO) [53] agent and evaluate its performance on diverse fluorophores (Methods). Domain randomization279

is used heavily within the simulation platform to cover a wide variety of fluorophores and structures and280

thus increase the generalization properties of the agent [54]. In Figure 5c-f (Supplementary Tab. 15), we281

report the performance of the agent on a fluorophore with simulated photophysical properties that would282

result in high brightness (high signal ratio) and high photostability (low photobleaching) in real experiments.283

The results of the agent on other simulated fluorophore properties are reported in supplementary material284

(Supplementary Tab. 10 and Supplementary Fig. 10). Over the course of training, the agent adapts its policy285

to optimize the imaging optimization objectives (100k and 12M training steps, Figure 5c). As expected from286

RL training, the reward of an agent during an episode is greater at the end of training compared to the287
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Figure 5: A RL agent is trained to optimize the STED imaging parameters in simulation with pySTED. a) Schematic
of the RL training loop in simulation. Each episode starts by sampling a set of photophysical properties representing
a fluorophore (1) and the selection of a structural protein from the databank (2). At each timestep a region of interest
(ROI) is selected: a datamap is created and a confocal image is generated with pySTED (3). The confocal image is
used in the state of the agent (4) which then selects an action, i.e. the next imaging parameters (5). A STED image
and a second confocal image are generated in pySTED (6). The imaging optimization objectives and the reward are
calculated (7). On the next timestep, the agent sees a new ROI, the previously simulated images and the history
of the episode. b) The state of the agent includes a visual input (the images) and the history. The visual input
of the agent is the current confocal (CONFt) and the previous confocal/STED images (CONFt�1 and STEDt�1).
The state of the agent also incorporates the laser excitation power at which the confocal image was acquired (c),
the history of selected actions (at) and the calculated imaging optimization objectives (Ot). The history vector is
zero-padded to a fixed length (h0i). The agent encodes the visual information using a convolutional neural network
(CNN) and the history using a fully connected linear layer (LN). Both encoding are concatenated and fed to a LN
model which predicts the next action. c) Evolution of the policy (left, STED: STED power, Exc.: Excitation power,
Pdt.: Pixel dwelltime) and imaging optimization objectives (right, R: Resolution, P: Photobleaching, S: Signal ratio)
for a fluorophore with high-signal and low-photobleaching properties during training at the beginning (cyan, 100k
timesteps) and at the end (red, 12M timesteps) of the training process. A boxplot shows the distribution of the
average value from the last 10 images of an episode (30 repetitions). d) Evolution of the reward during an episode
at the beginning (cyan, 100k timesteps) and at the end of training (red, 12M timesteps) for the same fluorophore
properties as in c). e) Evolution of the policy (left) and imaging optimization objectives (right) after training (12M
timesteps) during an episode for a fluorophore with the same photophysical properties as in c). f) Typical examples
of images acquired during an episode. The image index is shown in the top right corner and the calculated imaging
optimization objectives in the top left corner. The STED image and second confocal (CONF2) image are normalized
to their respective first confocal (CONF1) images.

beginning (red vs. cyan, Figure 5d). When evaluated on a new sequence, the agent trained over 12M288

steps rapidly adapts its parameter selection during the episode to acquire images with high resolution and289

signal ratio, while minimizing photobleaching (Figure 5e,f). The agent shows a similar behavior for various290

simulated fluorophores (Supplementary Fig. 10). We compared the number of good images acquired by the291

RL agent with that of bandit optimization for the first 30 images of the optimization. In similar experimental292

conditions, with the same fluorophore and parameter search space, the average number of good images were293

(18±3) and (5±3) for the RL agent and bandit respectively (50 repetitions). This almost four-fold increase in294

the number of high quality images, highlights the improved efficiency of the RL agent at suggesting optimal295

imaging parameters.296
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Given the capability of the agent in acquiring images for a wide variety of synthetic imaging sequences,297

we evaluated if the agent could be deployed in a real experimental setting. The experimental conditions298

chosen for the simulations were based on the parameter range available on the real microscope. Dissociated299

primary hippocampal neurons were stained for various neuronal proteins (Figure 6, Extended Fig. 3, and300

Supplementary Tab. 15) and imaged on a STED microscope with the RL agent assistance for parameter301

choice. First, we evaluated the performance of our approach for Sim2Real on in distribution images from302

F-actin and CaMKII-� in fixed neurons. While simulated images of both structures were available within303

the training environment we wanted to evaluate if the agents could adapt to the real life imaging settings304

(Supplementary Fig. 1). As shown in Figure 6a and Extended Figure 3, the agent resolves the nano-305

organization of both proteins (Supplementary Fig. 11). We sought to confirm whether the quality of the306

images was sufficient to extract biologically relevant features (Methods). For both proteins, the measured307

quantitative features matched with values previously reported in the literature, enabling the resolution of the308

190 nm periodicity of the F-actin lattice in axons, and the size distribution of CaMKII-� nanoclusters [55,309

56, 58] (Figure 6a and and Extended Figure 3). Next, we wanted to validate that the agent would adapt it’s310

parameter selection to structures, fluorophores properties or imaging conditions that were not included in311

the training set. We first observed that the agent could adapt to a very bright fluorescent signal and adjust312

the parameters to limit the photon counts on the detector (Extended Fig. 3). The morphology of the imaged313

PSD95 nano-cluster was in agreement with the values reported by Nair et al. [59] (Extended Fig. 3). We314

deployed the RL-based optimization scheme for the imaging of the mitochondrial protein TOM20 to evaluate315

the ability of the agent to adapt to out-of-distribution structures (Figure 6b). The nano-organization and316

morphology previously described by Wurm et al. [57] of TOM20 in punctate structures is revealed using317

the provided imaging parameters in all acquired images (Figure 6b and Supplementary Fig. 11). Next, we318

evaluated the generalizability of the approach to a new imaging context, which is live-cell imaging. We319

used the optimization strategy for the imaging of the F-actin periodic lattice in living neurons (Figure 6c).320

The quality of the acquired images are confirmed by the quantitative measurement of the periodicity which321

matches the previously reported values of 190 nm from the literature [55, 56]. Finally, we verified the322

generalizability of our approach by deploying our RL-assisted strategy on a new microscope and samples323

(Figure 6d-e, Extended Fig. 4, and Supplementary Tab. 15). We evaluated the performance of the RL agent324

for the imaging in fixed Vero cells of tubulin stained with STAR-RED and Actin stained with STAR-GREEN.325

The agent successfully adapted to the new imaging conditions, rapidly acquiring high quality images, even326

in challenging photobleaching conditions such as with STED microscopy of the green emitting fluorophore327

STAR-GREEN. Using the pySTED simulation environment we could successfully train RL agents that can328

be deployed in a variety of real experimental settings to tackle STED imaging parameter optimization tasks.329

To our knowledge, this is the first application of RL agents to an online image acquisition task in optical330

microscopy.331

3 Discussion332

We built pySTED, an in-silico super-resolution STED environment, which can be used to develop and bench-333

mark AI-assisted STED microscopy. Throughout synthetic and real experiments, we have demonstrated that334

it can be used for the development and benchmarking of AI approaches in optical microscopy. The Google335

Colab notebook that was created as part of this work can be used by microscopist trainees to develop their336

skills and intuition for STED microscopy before using the microscope for the first time. The optimal set of337

parameters defined in pySTED for a specific fluorophore can guide the parameter choice on a real microscope,338

but should not replace optimization in real experimental settings to account for environmental effects and339

biological variability.340

The simulation platform was built to be versatile and modular. This allows the users to create and test the341

efficiency of AI-strategies and adaptive imaging scheme before deploying them on a real microscope. For342

instance, both DyMIN [8] and RESCue [60] microscopy are readily available to the users. Additionally, the343

community can contribute open-source modules that would meet their experimental settings.344

Smart-microscopy requires the development of tools and modules to increase the capabilities of the micro-345

scopes [10, 61] which can be challenging when working on a real microscopy system. The development of346
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simulation software is one way to mitigate the difficulty of building an AI-assisted microscopy setup. We347

mainly focused on the selection of imaging parameters which is one branch of AI-assisted microscopy but348

also showed that pySTED can be successfully applied to data augmentation in supervised learning settings. A349

recent trend in microscopy focuses on the implementation of data-driven microscopy systems. For example,350

systems are built to automatically select informative regions or improve the quality of the acquired images [62,351

63]. The development and validation of such data-driven systems could be achieved with pySTED. An inter-352

esting avenue to pursue for data-driven systems could rely on generative models to create diverse datamaps353

on-the-fly instead of relying on existing databanks of STED microscopy images, which could be integrated to354

the modular structure of the pySTED simulation environment. Online ML optimization strategies tested in355

the pySTED environment showed similar performances when transferred to the real microscopy environment,356

opening new possibilities to characterize and benchmark novel data-driven microscopy approaches in pySTED357

prior to their deployment on real biological samples.358

We also tackle the training of an RL agent, the first for optical microscopy, which would be impossible359

without the access to a large databank of simulated data. The RL agent enables a full automatization of the360

imaging parameter selection on a real system when deployed from gym-STED, an OpenAI gym environment361

built around pySTED [52]. Domain randomization was used heavily within the simulation platform [54] which362

resulted in a RL agent that could adapt its parameter selection to a wide variety of experimental conditions,363

even in living samples. Such strategies could be transformative to democratize STED microscopy to a larger364

diversity of experimental settings and allow non-expert users to acquire high-quality images on a new sample365

without previous optimization sessions.366

While RL agents can represent a powerful tool to automatize microscopy setups, they must be trained on367

a very large number of examples (e.g. 12M steps in this work) [17, 30], which would be infeasible on a real368

microscopy setup. The pySTED simulation environment allowed the RL agent to bridge the gap between369

simulation and reality without requiring any fine-tuning. This makes pySTED an appealing platform for370

RL development as it is particularly well suited for complex control tasks requiring temporally distinct371

trade-offs to be made [20]. In this work, the model relied on a constant preference function to convert372

the multi-objective optimization into a single reward function. This preference function is ultimately user-373

dependant. This could be complemented in the future by incorporating RL from human-feedback in the374

training of the RL model [64, 65]. In future work, temporal dynamics could also be implemented in pySTED375

to open new possibilities to fully automatize the selection of informative regions and of imaging parameters376

in an evolving environment.377
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Figure 6: Bridging the reality gap between simulation and reality in RL by pretraining with pySTED. For all real
microscopy experiments, the deployed agent was trained over 12M steps in simulation. The agent was deployed on
a real STED microscope for the imaging of diverse proteins in dissociated neuronal cultures and cultivated Vero
cells. a) Top: Simulated images of F-actin in fixed neurons were used during the training process. Deploying the
RL agent to acquire an image of this in distribution structure in a real experiment allows the periodic lattice of
F-actin tagged with Phalloidin-STAR635 to be revealed in all acquired images. Bottom: Structural parameters are
extracted from the acquired images (the dashed vertical line represents the median of the distribution) and compared
to the values that were previously reported in the literature (solid vertical line). The agent has learned to adjust the
imaging parameters to resolve the 190 nm periodicity of the F-actin periodic lattice [55, 56]). b) Top: The trained
agent is tested on the protein TOM20, a structure that was never seen during training (out of distribution). The
nano-organization of TOM20 is revealed in all acquired images. Bottom: The measured average cluster diameter of
TOM20 concords with the averaged reported values from Wurm et al. [57]. c) Top: Live-cell imaging of SiR-Actin
shows the capacity of the model in adapting to different experimental conditions (out of distribution). Bottom:
The periodicity of the F-actin lattice is measured from each acquired images and compared with the literature. See
Material and Methods for the quantification. The STED images are normalized to their respective confocal image
(CONF1). The second confocal image (CONF2) uses the same colorscale as CONF1 to reveal photobleaching effects.
d,e) Images acquired by the RL agent in a real experiment on a different microscope. Tubulin was stained with
the STAR-RED fluorophore (d) and Actin was stained with STAR-GREEN (e)in fixed Vero cells. The sequence of
acquired images goes from top left to bottom right. The confocal images before (CONF1) and after (CONF2) are
presented for photobleaching comparison. The CONF1 image is normalized to the CONF2 image. The STED images
are normalized to the 99th percentile of the intensity of the CONF1 image. Images are 5.12 µm ⇥ 5.12 µm. The
evolution of the parameter selection (left; STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and
imaging optimization objectives (right; R: Resolution, P: Photobleaching, S: Signal ratio) are presented, showing that
optimal parameters and optimized objectives for STAR-RED (d) and STAR-GREEN (e) can differ greatly.
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4 Methods551

4.1 pySTED simulation platform552

Two main software implementations are incorporated within the pySTED simulation platform: i) point spread553

functions (PSF) calculation, and ii) emitter-light interactions.554

PSF calculation PSF calculation in pySTED is inspired by previous theoretical work from Leutenegger555

et al. [1] and Xie et al. [2] (Figure 1b). As in Xie et al. [2], we calculate the excitation and depletion PSF by556

using the electric field (Figure 1b). The Effective PSF (E-PSF) is calculated by combining the excitation,557

depletion and detection PSFs using558

E-PSF(~r) = PSFExc(~r) exp [�PSFSTED(~r)⇣] [PSFdet(~r)⌦ circ(R)] , (1)

where R is the radius of the imaged aperture [3] and ⇣ is the saturation factor of the depletion defined559

as ⇣ =
ISTED

Is
with Is being the saturation intensity [1]. The left-hand side of equation 1 represents the560

probability that an emitter at position ~r contributes to the signal [4] and is calculated in pySTED using ⌘pexc561

with562

pexc = qfl(1� exp (��abs�exc⌧STED)), (2)

where qfl is the quantum yield of the fluorophore, �abs the absorption cross-section, �exc the photon flux563

from the excitation laser and ⌧STED the period of the STED laser. The ⌘ parameter allows the excitation564

probability to be modulated with the depletion laser or allows time-gating to be considered during the565

acquisition [1, 5]. Time-gating consists in activating the detector within a small window of time (Tg, typically566

8 ns) after the excitation pulse (Tdel, typically 750 ps) to prominently detect photons coming from spontaneous567

emission. The simulations performed with pySTED follow the scheme of pulsed-STED microscopy in which568

time-gating mostly reduces correlated background [5]. Following the derivation from Leutenegger et al. [1]569

and assuming that Tg � ⌧STED, the emission probability of a fluorophore is described as570

F (�) = exp (�kS1�tSTED) (exp (�kS1Tdel)� exp (�kS1(Tdel + Tg))) , (3)

where kS1 is the spontaneous decay rate, � is the effective saturation factor � =
⇣kvib

(⇣kS1+kvib)
with kvib the571

vibrational relaxation state of S00 and tSTED is the STED pulse width (Figure 1c,d). In the confocal case572

(ISTED = 0), the emission probability simply reduces to573

F (0) = (1� exp (�kS1T )) , (4)

where T is the period between each STED pulses. This allows the probability of spontaneous decay ⌘ to be574

calculated using F (�)/F (0). The calculated E-PSF is convolved on the datamap to simulate the photons575

that are emitted and the one measured by the detector.576

In real experiments, the number of detected photons is affected by several factors (e.g. photon detection and577

collection efficiency of the detector, the detection PSF, the fluorophore brightness, etc.), which were also578

integrated in the pySTED simulation environment (Supplementary Tab 1-5). We also included the possibility579

to add typical sources of noise that occur in a targeted microscopy experiment such as shot noise, dark noise,580

and background noise which are all modeled by Poisson processes (Supplementary Tab. 3).581

Emitter-light interactions In a real microscopy experiment, the emitters can be degraded as they in-582

teract with the excitation or depletion light. Photobleaching is the process by which an emitter becomes583

inactive following light exposure [6]. In STED microscopy, this process is mainly caused by the combination584

of the excitation and depletion laser beam [6]. Reducing photobleaching is an optimization objective that the585

microscopist has to target during an imaging session and that must be minimized to preserve sample health586

and sufficient imaging contrast. Hence, we implemented a realistic photobleaching model within the pySTED587

simulation software. The photobleaching model is based on the derivations from Oracz et al. [6] which were588

validated on real samples. Figure 1d presents the energy states, the decay rates, and the photobleaching589

state � that are used within the photobleaching model.590
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As in Oracz et al. [6], we define the photobleaching rate as591

k�(ISTED) = k0

✓
ISTED

1W/m2

◆
+ k1

✓
ISTED

1W/m2

◆b

, (5)

where k0, k1 and b are dependant on the fluorophore and have to be determined experimentally. In the default592

parameters of pySTED we assume that the linear photobleaching term is null (k0=0) and that photobleaching593

occurs only from S1 during the STED pulse. Other photobleaching parameters could be easily integrated594

considering the modular structure of pySTED. We define the effective photobleaching rate kb as the number595

of emitters transitioning from the S1 state to the photobleached state (P�) over the course of a laser period596

T597

kb =
P�

T
(6)

with598

P� = PS1(t = 0)k�(ISTED)
1� exp (�kS1tSTED(1 + �))

kS1(1 + �)
. (7)

In pySTED the number of emitters N in a pixel is updated by calculating their survival probability p =599

exp (�kbt) from a Binomial distribution for a given dwelltime t (Figure 1e). While most parameters can600

be obtained from the literature for a specific fluorophore, some parameters such as k1 and b need to be601

determined experimentally [6]. Given some experimental data (or a priori about the expected photobleaching602

of a sample) we can estimate the photobleaching properties (k1 and b) of a fluorophore with603

Photobleaching = 1� exp (�kbt) (8)

by using non-linear least-squares methods. We can also apply a similar process to estimate the absorption604

cross-section (�abs) of a fluorophore to optimize the confocal signal intensity to an expected value Oracz605

et al. [6].606

4.2 Realistic datamaps607

A realistic datamap, that can be used in pySTED, is generated by predicting the position of emitters in a real608

super-resolved image. A U-Net model (U-Netdatamap, implemented in PyTorch [7]) is trained to predict the609

underlying structure of a super-resolved image (Supplementary Tab. 18). A single U-Netdatamap was trained610

in this manuscript with images of different sub-cellular structures (F-actin, Tubulin, PSD95, ↵CaMKII, and611

LifeAct) and was used to generate all datamaps to train and validate the ML, DL, and RL models presented612

in this study. U-Netdatamap has a depth of 4 with 64 filters in the first double convolution layer. Padding613

was used for each convolution layer to keep the same image size. As in the seminal implementation of the614

U-Net [8], maxpool with a kernel and stride of 2 was used. The number of filters in the double convolution615

layers doubled at each depth. In the encoder part of the model, each convolution is followed by batch616

normalization and a Rectified Linear Unit (ReLU). Upsampling is performed using transposed convolution.617

The decoder part of the model uses double convolution layers as in the encoder part of the model. At each618

depth of the model, features from the encoder are propagated using skipping links and concatenated with619

the features obtained following the upsampling layer. A last convolution layer is used to obtain a single620

image followed by a sigmoid layer.621

As previously mentioned, the goal of the U-Net is to predict the underlying structure of super-resolved images.622

Training U-Netdatamap in a fully-supervised manner requires a training dataset of associated super-resolved623

images and underlying structures. However, such a dataset does not currently exist. Mathematically, a624

microscopy image is obtained from the convolution of the microscope E-PSF with the position of fluorophores625

at the sample. In the images from Durand et al. [9], the E-PSF of the microscope can be approximated by626

a Gaussian function with a full width at half maximum of ⇠ 50 nm. Hence, U-Netdatamap can be trained627

to predict the datamap that once convolved with the E-PSF will be similar to the input image (Figure 1f).628

The L2 error is calculated between the Gaussian convolved datamap and the original input image as the loss629

function to minimize.630
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To train the model we used good quality STED images of diverse neuronal proteins from an existing dataset [9]631

(quality > 0.7). In Durand et al. [9], the quality score of an image was obtained by asking an expert to rate632

the image based on a qualitative assessment of the resolution of the structure of interests and the signal to633

noise ratio on a scale from 0 to 1. The quality scores from the original dataset were used to train a deep634

learning model to automatically rate the quality of an image. Supplementary Tab. 7 presents the proteins635

imaged and the number of images that were used for training. Each 224 ⇥ 224 pixels image is augmented636

with three (3) 90° rotations. The Adam optimizer was used with default parameters using a learning rate637

of 1 ⇥ 10
�4. The model was trained for 1000 epochs with a batch size of 32. We selected the model with638

the best generalization properties on the validation set, obtained from the mean squared error between the639

input image and the datamap after applying the Gaussian convolution.640

By default, the predicted datamap reconstructs the background noise from the image. Filtering can be641

applied on the predicted datamap to reduce the impact of noise. The number of emitters can be adapted642

to the experimental context which is then converted into an integer value. U-Netdatamap was trained with643

224⇥ 224 pixels images but images of arbitrary size can be processed at inference time.644

Datamaps from deconvolution Datamaps were generated using the Richardson-Lucy deconvolution im-645

plementation from van der Walt et al. [10]. The E-PSF of the input image were approximated by a Gaussian646

function with a full width at half maximum of ⇠ 50 nm. 30 iterations were used for the deconvolution647

algorithm.648

4.3 Imaging optimization objectives649

Resolution We calculated the resolution of the images by using the parameter-free image resolution es-650

timation based on decorrelation analysis that was developed by Descloux et al. [11]. Decorrelation analysis651

was used due to its simplicity in transferring from simulation to real imaging conditions.652

Photobleaching In all experiments involving the photobleaching as one of the imaging optimization ob-653

jective, we measured the loss of the fluorescence signal between a low-resolution image that is acquired654

before (Confocal 1) and after (Confocal 2) the high-resolution (STED) acquisition [9]. The photobleaching655

is defined as656

Photobleaching =
Confocal1fg � Confocal2fg

Confocal1fg

, (9)

where ConfocalXfg is the average signal on the foreground of the first confocal image (Confocal1). The657

foreground mask is determined using an Otsu threshold on the Confocal1.658

Signal Ratio We calculate the signal ratio as the ratio between the intensity in the high-resolution image659

and the respective confocal image using the following equation660

Signal Ratio =
STED75

fg
� STEDbckg

Confocal175
fg

. (10)

The foreground mask of the STED and confocal images are determined using the Otsu method. The fore-661

ground signal in the mask is calculated as the 75
th percentile of the image (STED or Confocal1). STEDbckg662

represents the mean signal of the background signal in the STED image.663

Artefact We measured imaging artefacts with a metric inspired by SQUIRREL [12] and MASK-SSIM664

approaches [13]. Specifically, we map the super-resolution image (SR) to a low-resolution image using a665

similar procedure to SQUIRREL but compare structures only within a foreground mask. This foreground666

mask is obtained using the Otsu method. The average structural similarity index (SSIM) on the foreground667

between the low-resolution and the optimized SR image is reported as the metric. The value of the artefact668

metric that is reported in the paper is669

Artefact = 1� SSIMfg (11)
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4.4 Comparison of pySTED simulations with real acquisitions670

We compared pySTED simulated images with images acquired on a real STED microscope with similar671

imaging parameters. To evaluate the reliability of the simulations, we acquired 10 images using a different672

combination of parameters. We varied each imaging parameter over a range that is commonly used for673

routine STED experiments and that would not damage the microscope (e.g. detectors, see parameters in674

Supplementary Tab. 6). We used a sample of immunostained cultured hippocampal neurons of the neuronal675

protein Bassoon tagged with the fluorophore ATTO-647N. The small clusters formed by Bassoon are well676

suited for measurements of resolution. The same parameter combination is used in pySTED and on the677

microscope for fair comparison.678

We optimized the photobleaching constants (k1 and b) and the STED cross-section (�STED) of the fluo-679

rophore to match the measured photobleaching and resolution values using a least-squares method (data680

from Supplementary Fig. 4a, right). It is implemented iteratively, with the optimization of photobleach-681

ing and resolution done sequentially and repeated 15 times, since the optimization of �STED also affects682

photobleaching.683

For each acquired real STED images, a datamap is predicted with the U-Netdatamap. The number of emitters684

per pixel is obtained by multiplying the datamap with a correction factor f to match the fluorescence signal685

in the real images. This correction factor f can be obtained by fitting the intensity value obtained at pixel686

(x, y) to the real intensity of the acquired confocal image (ICONF(x, y)). The intensity value of the synthetic687

image is approximated as the product between the E-PSF and the datamap (D)688

ICONF(x, y) = f
X

ij

Dij(x, y)E-PSFij . (12)

4.5 Weakly supervised learning for the segmentation of F-actin nanostructures689

We compared three training schemes (5 random initializations per scheme) to train a U-Net model to segment690

two F-actin nanostructures (Fibers and Rings): i) original model from Lavoie-Cardinal et al. [14] (O), ii) a691

model that uses a quantile normalization of the large image (min/max normalization using the 1st and 99th
692

quantile) and increased data augmentation during training (N, see below), iii) and a model trained as in693

ii) with synthetic images (N+S). In all conditions, the same architecture, training procedure, and dataset694

are used following the methods from Lavoie-Cardinal et al. [14]. A model is trained for 700 epochs and the695

best model on the validation dataset is kept for testing. To compare only the impact of the training, the696

validation dataset is kept constant in all training instances.697

In all training schemes, an augmentation has a 50% probability of being selected. For the training scheme698

O [14], the augmentations consisted of horizontal/vertical flips, intensity scale, and gamma adaptation. For699

the approaches using an increased data augmentation scheme (N and N+S), the augmentations from O are700

combined with random 90° rotations, crop normalization (1st and 99th percentile) and more intensity scale701

and gamma adaptation operations.702

Synthetic F-actin images The U-Netdatamap model (Figure 2) was used to extract the datamaps of703

all valid crops in the training dataset (contains >10% of dendrite, 256 ⇥ 256 pixels, 25% overlap). Five704

synthetic images with different resolution and noise properties were simulated for each crops with pySTED705

using a parameters combination that would minimally allow to resolve the F-actin nanostructures (Figure 2b706

and Supplementary Tab. 8).707

Generation of subsets Models (with constant parameter initialization) were trained on subsets of the708

original dataset, to evaluate if pySTED can help reduce the number of original images in the training dataset.709

Five subsets with 0.75, 0.5, 0.25, 0.1, 0.05, 0.025 ratios were used for training. A ratio of 0.025 corresponds to710

training on a single image (42 images in training dataset). When an image is discarded from a subset, its711

corresponding crops (synthetic included) are also removed from training (Supplementary Fig. 7).712
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Performance evaluation The average precision (AP) is used for performance evaluation. The AP is713

obtained from the precision and recall measured by the predicted segmentation compared to the ground714

truth manual annotations. The AP corresponds to the area under the p⇤(r) curve. p⇤(r) is given by the715

maximum precision value that can be attained at any recall ri greater than recall r, i.e.716

p⇤(r) = max
ri�r

p(ri). (13)

The AP is calculated as717

AP =

Z 1

0
p⇤(r)dr. (14)

4.6 Multi-objective bandit optimization718

The multi-objective bandit optimization aims at finding a set of imaging parameters that simultaneously719

optimizes all imaging optimization objectives. Such a multi-objective problem is ill-defined as there exists720

a set of Pareto optimal objectives that could be used to solve the task. Hence, an external input, e.g. a721

microscopist, is required to make the necessary trade-offs over the course of the optimization session.722

4.6.1 Algorithms723

The goal of the algorithm is to learn the mapping between the imaging parameters (e.g. laser power, pixel724

dwelltime) and the imaging optimization objective (e.g. resolution, photobleaching, artefact or signal ratio)725

by exploring the parameter space while exploiting its current knowledge of the parameter space to acquire726

high-quality images. A single model is built for each optimization objective as in Durand et al. [9]. The727

exploration/exploitation trade-off is achieved via Thompson Sampling (TS) [15]. At each time step of the728

optimization, a function is sampled from the posterior of each model. The expected imaging optimization729

objective associated with each imaging parameters options are combined. The preferred combination is730

selected and an image is acquired with the associated parameters. The imaging optimization objectives are731

calculated from the resulting image and used to update each model.732

The range of imaging parameters was normalized in [�1, 1] using a min-max normalization. The min-max733

values were given from the pre-defined range of a parameter. All models are trained from scratch. At the734

start of each optimization session, 3 images are acquired with parameter combinations obtained from expert735

knowledge allowing the models to gain insights about the imaging task. For further implementations, these736

parameter combinations could be obtained from i) a previous imaging session, ii) different fluorophore, or737

iii) publications from the field.738

Kernel-TS Kernel-TS is implemented by following the procedure from Durand et al. [9]. The regression739

model that maps the imaging parameters to the imaging optimization objectives is a non-parametric Gaussian740

Process. All of the parameters of the method (e.g. the kernel bandwidth or bounds on noise) were based on741

the recommendations from the original manuscript [9]. Kernel-TS works on a discrete parameter space of742

10 points for each optimized parameters. The values of imaging optimization objectives are rescaled using a743

whitening transformation.744

LinTSDiag LinTSDiag is a neural network implementation of TS [16]. LinTSDiag was previously imple-745

mented to solve a 2 parameter DyMIN task [17] (Supplementary Tab. 19). In this implementation, the neural746

network is a fully connected network with 2 layers of hidden sizes of 32. After each layer ReLU activation747

is used and followed by a dropout layer (probability of 0.2). The last layer of the model projects to a single748

imaging optimization objective value. The model is implemented in PyTorch [7] and relies on the seminal749

implementation from Zhang et al. [16]. The loss of the model is the mean squared error and is optimized750

using stochastic gradient descent with a learning rate of 1 ⇥ 10
�3. After each acquisition, the weights of751

the model are updated until the error is < 1 ⇥ 10
�3 or 1000 updates have been done. During training, the752

imaging optimization objectives are rescaled into a [0, 1] range.753

Two parameters (⌫ and �, see Zhang et al. [16]) control the exploration of the model. Increasing their values754

results in more exploration. In all experiments using LinTSDiag � = 0.1 is used. The parameter ⌫ varied755
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depending on the task: i) in simulation ⌫ = 0.01 (Figure 3a-c), ii) in 4 parameter optimization ⌫ = 0.1756

(Figure 3e-f), and iii) in 6 parameter optimization ⌫ = 0.25 (Figure 3g-h).757

LinTSDiag handles continuous parameter space. Hence, it is not possible to display all of the possible758

trade-offs. To reduce the number of possibilities, only the Pareto optimal combination of optimization759

objectives are displayed (Pareto front). The Pareto optimal options are extracted using NSGA-II [18] with760

the implementation from the DEAP python library [19]. Since computing the Pareto front is computationally761

expensive, a stopping criterion is used to reduce the calculations as previously reported by Roudenko &762

Schoenauer [20]. The stopping criterion is based on the rolling standard deviation of the maximum crowding763

distance (window size of 10) during the NSGA-II search. The search is stopped when the standard deviation764

is lower than
p
2⇥ 10�4 · n, where n is the number optimization objectives [20]. In theory, the NSGA-II765

search should restart from scratch after each acquisition. However, given the high dimensionality of the766

parameter space, this may lead to high variability in the proposed parameter combination. To reduce this767

variability, Deb et al. [21] proposed to keep a fraction of the previous options as a warm start of the NSGA-768

II search. In this work, 30% of the previous options are randomly sampled and used as starting points for769

the next NSGA-II search. The resulting Pareto front of imaging optimization objectives is shown to the770

preference articulation method.771

Contextual LinTSDiag The contextual version of LinTSDiag heavily relies on the implementation of772

LinTSDiag described above (Supplementary Tab. 20). In this work, the contextual information was used773

to solve a DyMIN microscopy task. As previously mentioned the confocal image serves as contextual infor-774

mation, but any other contextual information pertinent to the task could be provided to the model. The775

confocal image is encoded with a 2 layers convolutional neural network. A first convolution layer with 8776

filters, kernel size of 3 and padding of 1 is followed by a batch normalization layer, maxpooling layer (size 4;777

stride 4) and ReLU activation. A second convolution layer of 16 filters is followed by a batch normalization778

layer. Global average pooling is used to generate a vector embedding. This is followed by a ReLU activa-779

tion and dropout layer with a probability of 0.2. The embedding is projected to 32 features using a fully780

connected layer and is followed by a ReLU activation and a dropout layer with a probability of 0.2. The781

contextual features are concatenated with the parameter features (described in LinTSDiag). A single-layer782

fully-connected model with a hidden size of 64 is used to predict the imaging optimization objectives. ReLU783

activation is used at the hidden layer. A single contextual encoder is created and shared between the imaging784

optimization objectives. The same training procedure and NSGA-II search are used as in LinTSDiag.785

The exploration parameters � = 0.1 and ⌫ = 0.25 were used in simulation (Figure 4c-g) and in 3D DyMIN786

optimization (Figure 4h-j).787

4.6.2 Preference articulation788

The optimization algorithms output possible trade-offs between the imaging optimization objectives. The789

preference articulation step consists in selecting the trade-off that is the most relevant for the task. Two790

preference articulation methods were used in the bandit optimization: manual selection and automatic791

selection [9].792

Manual selection This method requests a manual input from the microscopist at each image acquisition.793

The microscopist is asked to select the trade-off that is inline with their own preferences from the available794

options (point cloud). This method was used in all experiments on the real microscope using the bandit795

optimization scheme (Figure 3e-h and Figure 4h-j).796

Automatic selection This method aims at reducing the number of interventions from the microscopist797

in the optimization loop by learning their preferences prior to the optimization session. In Durand et al. [9],798

the neural network implementation PrefNet was used to learn the preferences from an Expert. In the current799

work, two PrefNet models were trained from the preferences of an Expert. The same model architecture and800

training procedure were used as in Durand et al. [9]. A first model is trained for the STED optimization801

to select from the resolution, photobleaching, and signal ratio imaging optimization objectives. A second802

model is trained for the DyMIN optimization to select the trade-off between resolution, photobleaching,803
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and artefact. The PrefNet model is used to repeatedly make the trade-offs in multiple optimizations in the804

simulation environment (Figure 3b-d and Figure 4c-g).805

4.7 Reinforcement learning experiments806

A RL agent interacts with an environment by sequentially making decisions based on its observations. The807

goal of the agent is to maximize its reward signal over the course of an episode.808

RL formulation The general problem in RL is formalized by a discrete-time stochastic control process,809

i.e. it satisfies a Markov Decision Process (MDP). An agent starts in a given state st 2 S and gathers some810

partial observations ot 2 O. In an MDP, the state is fully observable, that is the agent has access to a811

complete observation of a state st. At each time step t, the agent performs an action at 2 A given some812

internal policy ⇡ after which the agent receives a reward rt 2 R and transitions to a state st+1 2 S with a813

state transition function T (st+1|st, at). Following the state transition, a reward signal rt = R(st, at, st+1)814

is provided to the agent as feedback. The goal of the agent is to maximize the cumulative reward over the815

trajectory ⌧ = (st, at, st+1, at+1, ...). Formally, the cumulative reward may be written in the form of816

R(⌧) =
TX

t=0

�trt (15)

where � is a discount factor in the range [0, 1] to temporally weight the reward. Intuitively, using a discount817

factor close to 1 implies that the credit assignment of the current action is important for future reward, which818

is the case for long planning horizon, while a discount factor close to 0 reduces the impact of temporally819

distant rewards [22].820

Reward function The optimization of super-resolution STED microscopy is a multi-objective problem821

(e.g. Resolution, Signal Ratio, and Photobleaching). However, the conventional RL settings and algo-822

rithms assume the access to a reward function that is single-valued, in other words a single-objective op-823

timization [22]. Several methods were introduced to solve the multi-objective RL setting, for instance by824

simultaneously learning multiple policies or by using a scalarisation function (see Hayes et al. [23] for a825

comprehensive review). The scalarisation function is simple to implement and allows all of the algorithms826

that were developed for RL to be used, but assumes that the preference from the user are known a priori.827

In this work, the multi-objective RL setting was transformed into a single scalar reward by using the neural828

network model, PrefNet [9], that was developed in the bandit experiments. Indeed, the PrefNet model was829

trained to reproduce the trade-off that an expert is willing to make into the imaging optimization objective830

space. The PrefNet model does so by assigning a value to a combination of imaging optimization objectives.831

The values predicted by the model for a combination of optimization objectives are arbitrary but the ranking832

of these values is accurate. Hence, the values from the PrefNet model is proportional to the image quality.833

The reward of the agent can then be defined using equation 16. For safety precautions when deploying the834

agent on a real microscopy system, the agent incurs a reward of -10 when the frequency of photons on the835

detector is higher than 20MHz.836

rt =

(
�10 when fphotons > 20MHz

PrefNet(R,P, S) otherwise
(16)

While the negative reward can be used to limit the selection of actions that could damage the microscope,837

it is not required. For instance, the results showed in Figure 6d-e and Extended Fig. 4 used a version of the838

reward function that did not include the negative reward. It is worth noting that in these cases, the range839

of parameters should be carefully selected to avoid damages to the microscope.840

Agent The Proximal Policy Optimization (PPO) model [24] was used for all RL experiments. PPO is841

considered state-of-the-art for many control tasks, and is widely used in robotics [25]. PPO allows continuous842

action space making it suitable for the task of microscopy parameter tuning. It is an on-policy algorithm843
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meaning that the same policy is used during the data collection and the updating phases. The model uses a844

deep neural network to map the state to the actions. Since PPO is an actor-critic method, it simultaneously845

learns a policy function and a value function that measures the quality of a selected action (Supplementary846

Tab. 21 and 22). Both functions use the same model architecture. A convolutionnal neural network (CNN)847

extracts information from the visual inputs and a linear neural network (LN) extracts information from the848

history of the episode. The CNN encoder is similar to the one used in Mnih et al. [26]. The encoder is849

composed of 3 layers of convolutions each followed by a leaky ReLU activation. The kernel size of each850

layer is 8, 4, 3 with a stride of 4, 2, 1. This allows the spatial size of the state space to be reduced. The LN851

model contains 2 linear layers projecting to sizes 16, 4. The information from both layers is concatenated852

and mapped to the action space using a LN layer.853

During training, the Adam optimizer is used with default parameters and a learning rate of 1⇥ 10
�4. The854

batch size of the model is set at 64. Each 512 steps in the environment, the model is trained for 10 batches855

which are randomly sampled from the previous 512 steps. A maximal gradient of 1.0 during backpropagation856

is used to stabilize training.857

Synthetic Datamaps A bank of datamaps was generated using U-Netdatamap. Supplementary Tab. 11858

presents the number of images per structures that were available during training. Datamaps were randomly859

cropped to 96⇥ 96 pixels with a higher probability of being sampled within the foreground of the datamap.860

Random data augmentation is performed online with a 50% probability: random [1, 3] 90° rotations, up-861

down flips, and left-right flips. The resultant cropped datamap is multiplied by a value that is sampled from862

N (µ = 40,� = 4) and turned into an integer array using the floor operation.863

Synthetic Fluorophores Synthetic fluorophore properties are generated on-the-fly during training by864

uniform sampling. Supplementary Tab. 12 displays the range of possible fluorophore properties. The pa-865

rameters k1, b, and �abs are optimized using the procedure described in section 4.4. During the optimization866

it is assumed that the maximal number of emitters is 40. A scaling factor that is dependant on the type867

of structure is used during the optimization (Supplementary Tab. 13). At each iteration, the fluorophore868

parameters from the previous iterations are used as a starting point. The initial conditions of parameters869

are k1 = 2.9⇥ 10
�16, b = 1.66, and �abs = 3.2⇥ 10

�21
m

2.870

4.8 STED microscopy experiments871

4.8.1 STED-imaging872

Super-resolution imaging of neuronal proteins was performed on an Abberior Expert-Line STED system873

(Abberior Instruments GmbH, Germany) equipped with a 100x 1.4NA, oil objective lens (Olympus, UP-874

LSAPO100XO), motorized stage and auto-focus unit. Far-red dyes were imaged using a 640 nm pulsed875

diode (40 MHz), a 775 nm depletion laser (40 MHz) and a ET685/70 (Chroma, USA) fluorescence filter.876

Fluorescence was detected on an avalanche photodiode detectors (APD) with approximately 1 Airy unit877

detection pinhole. Images were processed using FIJI (ImageJ) software. Single- and two-channel imaging of878

tubulin, NPC, and Golgi in Vero cells was performed on an Infinity line microscope (Abberior Instruments879

GmbH, Germany) using imaging settings as described in Heine et al. [27].880

Prior to the optimization, the excitation power of the confocal acquisition needed to be set to acquire < 200881

photons in 10 µs. To do so, the excitation power was first set to 10 µW and was halved until this criterion882

was met. This value is used by the model to incorporate knowledge about the brightness of the sample.883

4.8.2 Kidney epithelial cell culture884

Vero B4 cells were obtained from the DSMZ-German Collection of Microorganisms and Cell Cultures were885

maintained in DMEM (Gibco) supplemented with GlutaMAX (Thermo Fisher Scientific), 10% FBS (Sigma-886

Aldrich), 1 mM sodium pyruvate (Thermo Fisher Scientific), and Penicillin-Streptomycin (100 µl/ml and 0.1887

mg/ml; Sigma-Aldrich) at 37°C with 5% CO2.888
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Sample preparation and staining procedures For indirect immunostaining, cells were fixed in 8%889

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and permeabilized with 0.5% Triton X-100/PBS890

for Nuclear Pore Complex (NPC) proteins (Mab414, 1:200; abcam, code: ab24609) and Golgi (Giantin, 1:200;891

abcam, code: ab80864) staining. Methanol was used as a fixative for Tubulin staining (1:500; abcam, code:892

ab18251).893

After blocking with 2% BSA/0.1% Tween20/PBS, cells were incubated with the primary antibody for 1 hour894

at the specified dilutions. Detection of primary antibodies was achieved using secondary STAR RED goat895

anti-mouse IgG (1:200, abberior GmbH, code: STRED-1001-500UG) and STAR ORANGE goat anti-rabbit896

IgG (1:200, abberior GmbH, code: STORANGE-1002-500UG) for double staining of the NPC and Golgi.897

Tubulin was labeled with STAR RED goat anti-rabbit IgG (1:200, abberior GmbH, code: STRED-1002-898

500UG). Secondary antibodies were also incubated for 1 hour.899

After stringent washing with PBS, cells were mounted in MOUNT SOLID ANTIFADE (abberior GmbH,900

code: MM-2013-2X15ML). Protocol was adapted from Wurm et al. [28].901

4.8.3 Neuronal cell culture902

Neuronal cultures from the hippocampus were obtained using neonatal Sprague Dawley rats, adhering to the903

animal care guidelines set by Université Laval. The rats, aged P0-P1, were sacrificed through decapitation904

before the hippocampi were dissected. The cells were then seeded onto 12 and 18 mm coverslips coated with905

poly-d-lysine and laminin, for fixed (12 mm, 40,000/coverslip) and live-cell (18 mm, 100,000 cells/coverslip)906

STED imaging. Neurons were cultivated in a growth medium composed of Neurobasal and B27 (in a907

50:1 ratio), enriched with penicillin/streptomycin (25 U/mL; 25 µg/mL) and 0.5 mM L-GlutaMAX (by908

Invitrogen). Ara-C (5 µM; from Sigma-Aldrich) was added into the medium after five days to limit the909

proliferation of non-neuronal cells. Twice a week, ⇠50% of the growth medium was replaced with serum-910

and Ara-C–free medium. Cells were used between Days In Vitro (DIV) 12-16 for experiments.911

Sample preparation and staining procedures Fixation was performed for 10 minutes in 4% PFA so-912

lution (PFA 4%, Sucrose 4%, Phosphate Buffer 100mM, Na-EGTA 2mM). Neurons were permeabilized with913

0.1% Triton X-100 and aspecific binding sites were blocked for 30 min with 2% goat serum in PBS 20 mM.914

Primary and secondary antibodies were successively incubated for 2h and 1h respectively. Phalloidin was915

incubated for 1h. All incubations were done at room temperature, in the blocking solution. Immunostained916

coverslips were mounted in Mowiol-DABCO for imaging. F-actin was stained with phalloidin-STAR635917

(Sigma Aldrich, cat. 30972-20µg, 1:50 dilution). All antibodies used in this study with associated concen-918

trations are provided in Supplementary Tab. 16 & 17.919

For the live experiment (Figure 6d), the neurons were incubated for 8 min with SiR-actin (0.8 µM, Cy-920

toskeleton, cat. CY-SC001) diluted in HEPES buffered artificial cerebrospinal fluid (aCSF, in mM: NaCl 98,921

KCl 5, HEPES 10, glucose 10, CaCl2 0.6, MgCl2 5). For live-cell STED microscopy, coverslips were mounted922

on a QR chamber (Wagner Instruments, cat. 61-1944) and imaged in HEPES buffered aCSF 5 mM Mg2+ /923

0.6 mM Ca2+ using a gravity perfusion system.924

4.8.4 Quantification of biological structures925

F-actin Line profiles of ⇠1 µm were manually extracted from each image. A linewidth of 3 pixels was used926

to average the profile values. The autocorrelation function (statsmodels library [29]) was calculated from927

the intensity profile. The length of periodicity of the signal was determined from the first peak maxima.928

CaMKII-� and PSD95 We segmented clusters using a wavelet segmentation using the implementation929

from Wiesner et al. [30]. The scales used were (1, 2) for STED and (3, 4) for confocal segmentation. A930

threshold of 200 was used. Small segmentation objects (<3 pixels) were removed and small holes (<6931

pixels) were filled. In the STED image segmentation, only the objects part of the confocal foreground were932

considered. For STED segmentation, watershed was used to split merged segmented objects. The local peak933

maximum were used as initial seeds. Small segmentation objects (<3 pixels) resulting from the watershed934
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split were filtered out. The properties of each segmented object was extracted using regionprops from the935

scikit-image python library [10].936

TOM20 A similar approach to the one in Wurm et al. [31] was used. Briefly, the confocal foreground937

of each mitochondrion was extracted using the same wavelet segmentation procedure as for CaMKII-� and938

PSD95. The 2D autocorrelation on square crops of 320 nm x 320 nm centered on each mitochondrion were939

calculated. The diameter of TOM20 cluster is defined as the standard deviation obtained from a 2D Gaussian940

curve fit of the autocorrelation profile.941
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Extended Figures1010

Synthetic 1

Synthetic 2

STED

1 µm

ii) Data augmentation

i) Education & training

iii) Validation of AI methods

iv) Bridging reality gap

...

N

0 1 2 3 t

pySTED

RL
PSD95 TOM20

SiR-ActinCaMKII-β

Extended Fig. 1: pySTED can benefit common microscopy tasks, i.e. image analysis and acquisition. i) A Google
Colab notebook implementing pySTED is created for trainees to develop their knowledge and intuition about STED
microscopy. ii) pySTED can be leveraged in deep learning-related microscopy tasks to artificially augment the training
datasets. iii) pySTED can be used to develop and thoroughly validate AI methods by limiting the impact of biological
variability on the measurements and reducing the biological footprint. iv) pySTED reduces the reality gap between
simulation and reality by training RL models that learn through interactions with the system. The trained models
are then deployed in a wide range of real experimental conditions.
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Extended Fig. 2: a) Resulting imaging optimization objectives from Kernel-TS at 3 different timesteps (10 - cyan,
100 - grey, and 190 - red) for 50 independent models are presented for increasing signal ratio (top to bottom). With
time, Kernel-TS acquires images that have a higher preference score for both fluorophores (purple contour lines)
and converges into a similar imaging optimization objective space (red points). b) The standard deviation (STD)
of the imaging optimization objectives and of the preference scores decreases during the optimization (cyan to red)
supporting the convergence of Kernel-TS in a specific region of the imaging optimization objective space for both
fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution, P: Photobleaching,
and S: Signal ratio) from the preference network (PN). c) Typical pySTED simulations on two different fluorophores
(top/bottom) using the optimized parameters on fluorophore A (top) or B (bottom). See Supplementary Tab. 9 for
imaging parameters.
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Extended Fig. 3: The agent was deployed on a real STED microscope for the imaging of diverse neuronal proteins in
dissociated hippocampal cultures. In distribution a) (left) The clusters of CaMKII-� are revealed in all acquired
images. (right) The size of the clusters are extracted from the acquired images (dashed vertical line represents the
median of the distribution) and compared to the values that were previously reported in Ferreira et al. [1] (solid
vertical line). Out of distribution b) A bright fluorophore of PSD95 is simulated experimentally (Methods). The
STED images reveal the presence of nano-clusters. The minor (blue) and major (orange) axis length of the nano-
clusters are measured and compared with the values reported in Nair et al. [2].
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Extended Fig. 4: Images acquired by the RL agent in a real experiment on a different microscope. NPC was
stained with the STAR-RED fluorophore. The sequence of acquired images goes from top left to bottom right. The
confocal images before (CONF1) and after (CONF2) are presented for photobleaching comparison. The CONF1
image is normalized to the CONF2 image. The STED images are normalized to the 99th percentile of the intensity
of the CONF1 image. Images are 5.12 µm ⇥ 5.12 µm. The evolution of the parameter selection (left; STED: STED
power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and imaging optimization objectives (right; R: Resolution, P:
Photobleaching, S: Signal ratio) are presented.
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