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15 Abstract
16 The integration of artificial intelligence (AI) into microscopy systems significantly enhances perfor-
17 mance, optimizing both the image acquisition and analysis phases. Development of Al-assisted super-
18 resolution microscopy is often limited by the access to large biological datasets, as well as by the difficul-
19 ties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of
20 a realistic STED simulation platform, pySTED, for the development and deployment of Al-strategies for
21 super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation
22 of data for the training of deep neural networks, the development of online optimization strategies, and
23 the training of reinforcement learning models, that can be deployed successfully on a real microscope.

. 1 Introduction

2s  Super-resolution microscopy has played a pivotal role in life sciences by allowing the investigation of the
26 nano-organization of biological samples to a few tens of nanometers |1]. STimulated Emission Depletion
2z (STED) 2], a point scanning based super-resolution microscopy fluorescence modality, routinely allows
28 resolution down to 30-80 nm to be reached in fixed and live samples [1]. One drawback of STED microscopy
20 is the photobleaching of the fluorophores associated with the increased light exposure at the sample [1} |3,
30 [4]. Photobleaching results in a decrease in fluorescence, limiting the ability to capture multiple consecutive
a1 images of a particular area and may also increase phototoxicity in living samples |4, 5]. In an imaging
32 experiment, photobleaching and phototoxicity need to be minimized by careful modulation of the imaging
;s parameters |5} |6] or by adopting smart-scanning schemes [719]. Integration of Al-assisted smart-modules to
s« bioimaging acquisition protocols has been proposed to guide and control microscopy experiments |6} |7}, (L0}
35 [11]. However, Machine Learning (ML) and Deep Learning (DL) algorithms generally require a large amount
se of annotated data to be trained, which can be difficult to obtain when working with biological samples.
sz Diversity in curated training datasets also enhances the model’s robustness [12,13]. While large annotated
s datasets of diffraction-limited optical microscopy have been published in recent years |14} [15], access to such
3o datasets for super-resolution microscopy is still limited, in part due to the complexity of data acquisition
20 and annotation as well as a limited access to imaging resources. Similarly, the development of reinforcement
a1 learning (RL) methods adapted to the control of complex systems on a wide variety of tasks in games,
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a2 Trobotics, or even in microscopy imaging, are strongly dependent on the availability of large training datasets,
a3 generally relying on the development of accessible, realistic, and modular simulation environments |11} 1620

2a To circumvent this limitation, simulation strategies have been employed for high-end microscopy techniques.
a5 For instance, in Fluorescence Lifetime Imaging Microscopy (FLIM), it is common practice to use simulation
a6 software to generate synthetic measurements to train ML/DL models [21]. The models can be completely
47 trained in simulation or with few real measurements. Researchers in Single Molecule Localization Mi-
sz croscopy (SMLM) have also adopted simulation tools in their image analysis pipelines to benchmark their
a0 algorithms [22H24]. Nehme et al. [25] could train a DL model with simulated ground truth detections and few
so experimental images which was then deployed on real images. In STED microscopy, simulation software are
51 also available. However, they are limited to theoretical models of the point spread function (PSF) |26, 27| or
52 effective PSF (E-PSF) (8] 28], without reproducing realistic experimental settings influencing the design of
ss STED acquistions (e.g. photobleaching, structures of interest, scanning schemes). This limits the generation
s« of simulated STED datasets and associated training of ML /DL models for smart STED microscopy modules.

ss  We created a simulation platform, pySTED, that emulates an in-silico STED microscope with the aim to
se assist the development of Al methods. pySTED is founded on theoretical and empirically validated models
sz that encompass the generation of the E-PSF in STED microscopy, as well as a photobleaching model |3}, |19,
ss [26] [29]. Additionally, it implements realistic point-scanning dynamics in the simulation process, allowing
so adaptive scanning schemes and non-uniform photobleaching effects to be mimicked. Realistic samples are
e simulated in pySTED by using a DL model that predicts the underlying structure (datamaps) of real images.

61 pySTED can benefit the STED and machine learning communities by facilitating the development and deploy-
e ment of Al-assisted super-resolution microscopy approaches (Extended Fig. . It is implemented in a Google
63 Colab notebook to help trainees develop their intuition regarding STED microscopy on a simulated system
s« (Extended Fig.[l}). We demonstrate how the performance of a DL model trained on a semantic segmentation
es task of nanostructures can be increased using synthetic images from pySTED (Extended Fig. i). A second
es experiment shows how our simulation environment can be leveraged to thoroughly validate the develop-
ez ment of AT methods and challenge their robustness before deploying them in a real-life scenario (Extended
es Fig. ii). Lastly, we show that pySTEDenables the training of a RL agent that can learn by interacting with
oo the realistic STED environment, which would not be possible on a real system due to data constraints [30].
7o The resulting trained agent can be deployed in real experimental conditions to resolve nanostructures and
7 recover biologically relevant features by bridging the reality gap (Extended Fig. V).

» 2 Results

» 2.1 STED simulation with pySTED

za We have built a realistic, open-source STED simulation platform within the Python environment, namely
75 pySTED. pySTED breaks down a STED acquisition into its main constituents: wavelength dependent focusing
76 properties of the objective lens, fluorophore excitation and depletion, and fluorescence detection. Each
7z step of the acquisition process corresponds to an independent component of the pipeline and is created
7 with its own parameters (Supplementary Tables that users can modify according to their experimental
7o requirements (Figure ) [26]. Generating a synthetic image with the pySTED simulator requires to provide
so a map of the emitters in the field of view and to specify the photophysical properties of the fluorophore
a1 (Figure and Supplementary Table [5). The map of fluorophores, referred to as datamap, can consist of
s2 automatically generated simple patterns (e.g. beads, fibers) or more complex structures generated from real
s images (Methods). The emission and photobleaching properties of the fluorophores that are implemented in
sa pySTED are inspired from previous theoretical and experimental models [3,29]. As in a real experiment, the
ss datamap is continuously being updated during the simulation process to realistically simulate point-scanning
ss acquisition schemes (Figure [Ih-e, Methods).

sz Realistic datamap generation Datamaps that can reproduce diverse biological structures of interest
ss are required for the development of a simulation platform that enables the generation of realistic-synthetic

Thttps://github.com/FLClab/pySTED
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Figure 1 : Caption is on the next page

so  STED images. Combining primary object shapes such as points, fibers, or polygonal structures is efficient
oo and simple for some use-cases but is not sufficient to represent more complex and diverse structures that
o1 can be found in real biological samples 2224} 31]. It is essential to reduce the gap between simulation and
o2 reality for microscopist trainees or to train artificial intelligence models on synthetic samples prior to the
o3 deployment on real tasks |32} [33].

oa  We sought to generate realistic datamaps by training a DL model to predict the underlying structures from
os real STED images which can then be used in synthetic pySTED acquisition. We chose the U-Net architecture,
96 U-Netqatamap as it as been shown to perform well on various microscopy datasets of limited size [34} |35
oz (Figure [1f). We adapted a previously established approach in which a low-resolution image is mapped
es  t0 a resolution-enhanced image |36} [37]. Once convolved with an equivalent optical transfer function the
9o resolution-enhanced synthetic image is compared with the original image.

10 Here, we trained the U-Netgatamap o0 STED images of proteins in cultured hippocampal neurons (Meth-
101 0ods, Supplementary Fig. |l and Supplementary Tab. . During the training process, the model aims at
102 predicting the underlying structure (datamap) such that the convolution of the approximated PSF of the
103 STED microscope (full-width at half maximum (FWHM): ~ 50 nm, measured from FWHM of real STED
104 images) minimizes the mean quadratic error with the real image (Figure [If). After training, given a real
105 image, the U-Netqatamap generates the underlying structure (Supplementary Fig. . From this datamap, a
s synthetic pySTED image can be simulated with different imaging parameters (low or high resolution). Qual-
107 itative comparison of the synthetic images acquired in pySTED with the real STED images (Supplementary
18 Fig. [1)) shows similar super-resolved structures for different neuronal proteins confirming the capability of
19 the U-Netgatamap to predict a realistic datamap. We also evaluated the quality of images resulting from
10 datamaps generated with the U-Netgatamap Or & conventional Richardson-Lucy deconvolution (Methods,
11 Supplementary Fig. ) As highlighted in Supplementary Fig. ,c, the use of the U-Netqatamap instead of
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Figure 1: pySTED simulation platform. a) Schematic of the pySTED microscopy simulation platform. The user
specifies the fluorophore properties (e.g. brightness and photobleaching) and the positions of the emitters in the
datamap. A simulation is built from several components (excitation and depletion lasers, detector, and objective
lens) that can be configured by the user according to their experimental settings. A low-resolution (Conf) or high-
resolution (STED) image of an underlying datamap is simulated using the provided imaging parameters. The number
of fluorophores on each pixel in the original datamap is updated according to their photophysical properties and
associated photobleaching effects. b) Modulating the excitation with the depletion beam impacts the effective point
spread function (E-PSF) of the microscope. The E-PSF is convolved on the datamap to calculate the number of
photons. ¢) A time-gating module is implemented in pySTED. The temporal acquisition scheme of the simulation can
be modulated by the user. It affects the lasers and the detection unit. The time-gating parameters of the simulation
(gating delay: Tqel and gating time: Ty) as well as the repetition rate of the lasers (7yep) are presented. A grey box is
used to indicate when a component is active. d) A two state Jablonski diagram (ground state: So and excited state:
S1) presents the transitions that are included in the fluorescence (spontaneous decay: kg, and stimulated emission
decay: kstep) and photobleaching dynamics (photobleaching rate: ky and photobleached state: ) of pySTED. The
vibrational relaxation rate (1/7vin) affects the effective saturation factor in STED. e) An image acquisition is simulated
as a two-step process where for each position in the datamap we do the following : i, Acquire) The convolution of the
E-PSF with the number of emitters in the datamap (Datamap - Emitters) is calculated to obtain the signal intensity
and is reported in the image (Image - Photons). ii, Photobleaching) The number of emitters at each position in the
datamap is updated according to the photobleaching probability (line profile from ks, compare top and bottom line).
The same colormaps used in a are also employed for both the datamap and image in e and f. f) Realistic datamaps
are generated from real images. A U-Net model is trained to predict the underlying structure from a real STED
image. Convolving the predicted datamap with the approximated PSF results in a realistic synthetic image. During
training the mean squared error loss (MSELoss) is calculated between the real and synthetic image. Once trained,
the convolution step can be replaced by pySTED.

112 Richardson-Lucy deconvolution to generate datamaps in pySTED results in improved synthetic images.

13 Validation of pySTED with a real STED microscope We characterized the capacities of pySTED to sim-
1a  ulate realistic fluorophore properties by comparing the synthetic pySTED images with real STED microscopy
1s  acquisitions. We acquired STED images of the protein bassoon, which had been immunostained with the
16 fluorophore ATTO-647N in dissociated cultured hippocampal neurons. We compared the effect of varying
17 the imaging parameters on the pySTED simulation environment and on the real microscope (Supplementary
us  Fig. . For pySTED we used the photophysical properties of the fluorophore ATTO-647N from the liter-
e ature (Supplementary Tab. [5)) 3], 38]. The photobleaching constants (k; and b) were estimated from the
120 experimental data by using a least-squares fitting method (Methods). Synthetic datamaps were generated
121 with the U-Netqatamap to facilitate the comparison between simulation and reality.

122 We first compared how the imaging parameters on the real microscopes and in the pySTED simulations (pixel
123 dwelltime, excitation and depletion powers) influenced the image properties by measuring the resolution [39]
12« and the signal ratio [6] (Methods and Supplementary Fig. [3n). As expected, modulating the STED laser
125 power influences the spatial resolution in real experiments and in pySTED simulations. Examples of acquired
126 and synthetic images are displayed in Supplementary Fig. [3p for visual comparison with different parameter
127 combinations (Supplementary Fig. ) The impact of the imaging parameters in the resolution and signal
12s ratio metrics in pySTED agree with the measurements that were performed on a real microscope. The small
120 deviations can be explained by the variability that is typically observed in the determination of absolute
130 values of fluorophore properties [40].

;1 Next, we validated the photobleaching model that is implemented within pySTED. We calculated the pho-
132 tobleaching by comparing the fluorescence signal in a low-resolution image acquired before (CONF1) and
133 after (CONF2) the high-resolution acquisition [6] (Methods). For the pixel dwelltime and the excitation
13a  power we measured similar trends between real and synthetic image acquisitions (Supplementary Fig. )
135 For a confocal acquisition, the photobleaching in pySTED is assumed to be 0 (Supplementary Fig. [4h) as it
13s  is generally negligible in a real confocal acquisition. Considering the flexibility of pySTED, different photo-
137 bleaching dynamics specifically tailored for any particular experiment can be implemented and added in the
138 simulation platform. Examples of sequential acquisition (10 images) are presented in Supplementary Fig.
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130 to demonstrate the effect of the imaging parameters on the photobleaching of the sample. pySTED also in-

10 tegrates background effects that can influence the quality of the acquired images as in real experiments [41]
11 42| (Supplementary Fig. 7d).

w2 2.2 pySTED as a development platform for Al-assisted microscopy

s 2.2.1 Dataset augmentation for training deep learning models
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Figure 2: pySTED is used to artificially augment the training dataset of a DL model. a) We tackle the segmentation
task that was used in Lavoie-Cardinal et al. [43] where the annotations consist in polygonal bounding boxes around
F-actin fibers (magenta) and rings (green). b) pySTED is used to augment the training dataset by generating synthetic
versions of a STED image. ¢) Average Precision (AP) of the model for the segmentation of F-actin fibers (magenta)
and rings (green). The model was trained on the original dataset from Lavoie-Cardinal et al. [43] (O), and on the
same dataset with updated normalization (N) and additionnal synthetic images (N+S). No significant changes in
AP are measured for F-actin fibers but a significant increase is measured for N+S over O and N for F-actin rings
(p-values in Supplementary Fig. @ d) Images were progressively removed from the dataset (100%: 42 images, 75%:
31 images, 50%: 21 images, 25%: 10 images, and 10%: 4 images). Removing more than 50% of the dataset for
fibers negatively impacts the models whereas removing 25% of the dataset negatively impacts the segmentation of
rings (N; p-values in Supplementary Fig. @ Adding synthetic images from pySTED during training allows 75% of
the original training dataset to be removed without affecting the performance for both structures (N + S, p-values
in Supplementary Fig. @ Only the significant changes from the complete dataset are highlighted. The complete
statistical analysis is provided in Supplementary Fig. @

s DL models are powerful tools to rapidly and efficiently analyse large databanks of images and perform various
a5 tasks such as cell segmentation |35| |44]. When no pretrained models are readily available online to solve the
16 task [45], finetuning or training a DL model from scratch requires the tedious process of annotating a dataset.
1z We herein aim to reduce the required number of distinct images for training by using pySTED as an additional
us data augmentation step. As a benchmark, we used the F-actin segmentation task from Lavoie-Cardinal et al.
10 |43], where the goal is to segment dendritic F-actin fibers or rings using a small dataset (42 images) of STED
10 images (Figure [2h, Methods). pySTED was used first as a form of data augmentation to increase the number
151 of images in the training dataset without requiring new annotations. Using U-Netgatamap We generated F-
152 actin datamaps and a series of synthetic images in pySTED with various simulation parameters (Figure ,
153 Supplementary Tab. .

1sa  We compared the segmentation performance by using the average precision (AP, Methods) of a DL model
155 trained on the original dataset (O [43]) or with different image normalization and increased data augmenta-
1s¢ tion (V). The segmentation performance was not impacted by increasing the amount of data augmentation
157 (O vs. N, Figure ) Adding synthetic images from pySTED (N+S) into the training dataset to improve the
158 diversity of the dataset significantly increases the performance of F-actin rings segmentation compared to O
1se and N and maintains the performance for the F-actin fibers segmentation (Figure ) In biological exper-
10 1ments, where each image is costly to acquire, reducing the size of the training dataset results in a higher
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1e1 number of images for the post-hoc analysis. Hence, we sought to measure the impact of reducing the number
12 of real images in the training dataset by training on subsets of images that are augmented using pySTED
163 (Supplementary Fig. . We measure a significant decrease of the AP for F-actin fibers when the model is
16a  trained on less than 50% of the images. Removing 25% of the dataset negatively impacts the segmentation
s performance of F-actin rings (Figure , p-values in Supplementary Fig. @ However, adding synthetic
166 images from pySTED during training allows the segmentation performance of the model to be maintained by
17 training with only 25% of the original dataset (Figure [2{d, p-values in Supplementary Fig. []).
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Figure 3: Validation of Al-assisted algorithms with pySTED for STED microscopy parameter optimization. a) pySTED
is used to confirm the robustness of a model to the random initialization by repeatedly optimizing (50 repetitions)
the imaging parameters on the same sequence of datamaps (200 images). Two fluorophores are considered for
demonstration purposes (Supplementary Tab. @ b) Resulting imaging optimization objectives from LinTSDiag at 3
different timesteps (10 - cyan, 100 - grey, and 190 - red) for 50 independent models which are presented for increasing
signal ratio (top to bottom). With time, LinTSDiag acquires images that have a higher preference score for both
fluorophores (purple contour lines) and converges into a similar imaging optimization objective space (red points). c)
The standard deviation (STD) of the imaging optimization objectives and of the preference scores decreases during the
optimization (cyan to red) supporting the convergence of LinTSDiag in a specific region of the imaging optimization
objective space for both fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution,
P: Photobleaching, and S: Signal ratio) from the preference network (PN). d) Typical pySTED simulations on two
different fluorophores (top/bottom) using the optimized parameters on fluorophore A (left) or B (right). Parameters
that were optimized for fluorophore A (top-left) result in higher photobleaching with maintaining a similar resolution
and signal ratio on fluorophore B (bottom-left) compared to parameters that were optimized for fluorophore B
(bottom-right). See Supplementary Tab. @ for imaging parameters. e) Example acquisition of LinTSDiag on a
Tubulin in kidney epithelial cells (Vero cells) stained with STAR RED in the beginning (left) and at the end of the
optimization (right). f) Over time, LinT'SDiag manages to increase both the resolution and the signal ratio of the
acquired images (35 images, cyan to red). g) LinTSDiag allows multi-color imaging due to it’s high dimensional
parameter space capability. LinTSDiag optimizes the averaged resolution and signal ratio from both channels in
dual-color images acquired of Golgi (STAR ORANGE) and Nuclear Pore Complex (STAR RED) in Vero cells. h)
LinTSDiag can maximize the signal ratio in the images while maintaining the resolution of the images (35 images,
cyan to red).

16 2.2.2 Validation of AI methods

160 Benchmarking AI models for automating microscopy tasks on biological samples is challenging due to bio-
170 logical variability and the difficulty of comparing imaging strategies on the same region of interest |6, 22,
i [46]. Assessing and comparing AT models requires multiple attempts in similar, yet different experimental
172 conditions to limit the impact of biological variability. This inevitably increases the number of biological
173 samples and the time required to develop robust Al-assisted adaptive microscopy strategies that can be
17a deployed on a variety of samples and imaging conditions. pySTED allows the simulation of multiple versions
s of the same images as if the structure had been imaged with different experimental settings. We herein
17e  showcase the capability of pySTED in thoroughly validating ML approaches for the optimization of STED
177 imaging parameters in a simulated controlled environment, enabling more robust performance assessments
178 and comparisons.

1o We first demonstrate how pySTED can be used to characterize the performance of a multi-armed bandit
180 optimization framework that uses Thompson Sampling (TS) for exploration, Kernel-TS. The application
11 of Kernel-TS for the optimization of STED imaging parameters was demonstrated previously, but com-
12 parison between different experiments was challenging due to local variations in the size, brightness, and
183 photostability of the fluorescently tagged neuronal structures |6]. Using synthetic images generated with
18a  pySTED allows the performance of Kernel-TS to be evaluated on the same image sequence (50 repetitions,
185 Methods) and with controlled photophysical properties of fluorophores (Extended Fig. [2| and Supplementary
186 Tab. . For experimental settings such as multi-channel imaging or adaptive scanning, Kernel-T'S is limited
187 by the number of parameters that can be simultaneously optimized (~4) in an online setting [6]. We thus
188 turned to a neural network implementation of Thompson Sampling which was recently developed to solve
180 the multi-armed bandit framework, LinTSDiag [47].

100 Using pySTED we could characterize the performance of LinTSDiag on a microscopy optimization task on
101 synthetic images without requiring real biological samples. As described above, LinTSDiag was trained on
102 the same sequence (50 repetitions, Methods) using two different fluorophores (Figure [3a and Supplementary
103 Tab. . In a simple 3-parameters optimization setting, LinTSDiag allows a robust optimization of the
10a  signal ratio, photobleaching and spatial resolution for fluorophores with distinct photophysical properties
105 (Figure ) We evaluate the performance of LinTSDiag using the preference score, which is obtained from
106 a network that was trained to predict the preferences of an expert in the imaging optimization objective
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107 space (PrefNet, see Methods) [6]. The convergence of the agent in the imaging optimization objective space
108 18 supported by the smaller standard deviation measured in the last iterations of the imaging session (red
100 lines, Figure ) pPySTED enables the comparison of the optimized parameters for different fluorophores on
200 the same datamap. This experiment confirms that optimal parameters vary depending on the photophysical

200 properties (Figure )

202 LinTSDiag was then deployed on a real microscopy system to simultaneously optimize 4 parameters (Exci-
203 tation power, STED power, pixel dwelltime, and linesteps) for the imaging of Tubulin stained with STAR
20« RED in kidney epithelial cells (Vero cell line). The model was able to optimize the imaging optimization
205 oObjectives, improving the resolution and signal ratio, while maintaining a low level of photobleaching over
206 the course of the optimization (Figure ,f and Supplementary Tab. . Then we sought to increase the
202 number of parameters by tackling a dual-color imaging scheme (6 parameters, Excitation power, STED
208 power, and linesteps for both channels) for STED imaging of Golgi stained with STAR-ORANGE and nu-
200 clear pore complex (NPC) stained with STAR RED in Vero cells (Figure ,h and Supplementary Tab. .
210 The optimization framework allows 4 imaging optimization objectives to be simultaneously optimized (e.g.
211 resolution and signal ratio for both colors). As the visual selection of the trade-off in a 4-dimensional space
212 is challenging for the user in an online setting, we decided to optimize the combined resolution and signal
213 ratio of both fluorophores (average of the imaging optimization objectives), allowing the users to indicate
214 their preference in a two-dimensional optimization objective space. Online 6-parameters optimization of
215 LinTSDiag increases the signal ratio while maintaining a good image resolution for both imaging channels
26 (Figure ) enabling to resolve both structures with sub-100 nm resolution.

a1z Next, we developed a model that leverages prior information (context) to solve a task with a high-dimensional
218 action space. This is the case for DyMIN microscopy which requires parameter selection to be adapted, in
210 particular multiple illumination thresholds, to the current region of interest [8] (Figure fdh,b). We previ-
220 ously showed that contextual-bandit algorithms can use the confocal image as a context to improve DyMIN
221 thresholds optimization in a two parameters setting [48|. In this work we aim to increase the number of pa-
222 rameters (7 parameters) that can be simultaneously optimized and validate the robustness of LinTSDiag |47]
23 (Figure ) We repeatedly trained LinTSDiag on the same datamap sequence using the confocal image as
22 prior information (50 repetitions). The parameter selection was compared by measuring whether the action
225 selection correlated over time between the models (Figure 4, Supplementary Fig. 8] Supplementary Tab.
226 and Methods). For instance, the correlation matrix from the last 10 images shows clusters of similar pa-
227 rameters that are better defined than for the first 10 images (Figure ) This is confirmed by the 90*" and
22s 10" quantile difference in the correlation matrix which rapidly increases with time (Figure 4d). As expected
220 with clustered policies, the average standard deviation of the action selection for each cluster reduces over
230 time implying similar parameter selection by the models (Figure [4g). We also assessed whether the models
231 would adapt their policies to different fluorophores (light/dark purple, Figure ,f). As shown in Figure ,
232 there are specific policies for each fluorophore (e.g. fluorophore A: 0, 3; fluorophore B: 5) demonstrating
233 the capability of the models in adapting their parameter selections to the experimental condition. While
230 the policy of the models are different, the measured imaging optimization objectives are similar for all clus-
a5 ters (Figure i) which suggests that different policies can solve this task unveiling the delicate intricacies
23 of DyMIN microscopy. More importantly this shows that the model can learn one of the many possible
237 solutions to optimize the imaging task.

238 The LinTSDiag optimization strategy was deployed in a real life experiment for the 7 parameter optimization
233 of DyMIN3D imaging of the post-synaptic protein PSD95 in dissociated primary hippocampal neurons
220 stained with STAR-635P. Early in the optimization, the selected parameters produced images with poor
21 resolution or missing structures (artefacts) (Figure [dh and Supplementary Tab. [14). The final images were
2a2  of higher quality (right, Figure ) with fewer artefacts and high resolution. The parameter selection of the
2a3 model converged in a region of the parameter space that could improve all imaging optimization objectives
2as  over the course of optimization (Figure ,j). Parameters optimized with LinTSDiag allowed a significant
2es  improvement of DyMIN3D imaging of PSD95 compared to conventional 3D STED imaging (Supplementary
26 Fig. E[) pySTED allowed us to validate the robustness of the model in a simulated environment prior to its
2a7  deployment in a real experimental setting. This should benefit the ML community by allowing the validation
2as  Oof new online ML optimization algorithms on realistic tasks.
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2.3 Learning through interactions with the system

Online optimization strategies such as Kernel-T'S and LinTSDiag were trained from scratch on a new sample,
implying a learning phase in which only a fraction of the images will meet minimal image quality requirements.
For costly biological samples, there is a need to deploy algorithms that can make decisions based on the
environment with a reduced initial exploration phase. Control tasks and sequential planning are particularly
well suited for a RL framework where an agent (e.g. replacing the microscopist) learns to make decisions
by interacting with the environment (e.g. select imaging parameters on a microscope) with the aim of
maximizing a reward signal (e.g. light exposure, signal ratio, resolution) over the course of an episode (e.g.
imaging session) [49]. Deep RL agents are (unfortunately) famously data-intensive, sometimes requiring
millions of examples to learn a single task |17, |30]. This makes them less attractive to be trained on real-
world tasks where each sample can be laborious to obtain (e.g. biological samples) or when unsuitable actions
can lead to permanent damage (e.g. overexposition of the photon detector). Simulation platforms are thus
essential in RL to provide environments in which an agent can be trained at low cost to then be deployed in
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Figure 4: Validation of contextual-bandit algorithms with pySTED in a high-dimensional parameter space. a) DyMIN
microscopy uses thresholds to turn off the high-intensity STED laser when no structures are within the vicinity of
the donut beam (white regions). Thus limiting the light doses at the sample compared to conventional STED. b)
Typically DyMIN uses a 3 step process at each pixel. In the first step, only the excitation (Exc.) laser is used and the
signal is measured. If the measured signal is higher than the predefined threshold (Threshold 1) after the decision time
(Decision Time 1) then the depletion power (STED) is slightly increased and the signal is measured again (Threshold
2 and Decision time 2). Otherwise the acquisition is stopped until the next pixel. The final step (Step 3) consists in
a normal STED acquisition. c¢) pySTED was used to characterize LinTSDiag models that can simultaneously optimize
7 parameters (STED and excitation powers, pixel dwelltime, threshold 1 & 2, and decision time 1 & 2) with prior
information about the task (confocal image). The convergence of the models to similar parameter combinations is
evaluated by measuring the correlation in the action selection (50 models) over time (See Supplementary Fig. .
Clustering of the correlation matrix reveals clusters of policies that are better defined later in the optimization process
(right dendrogram, color-coded). The shades of purple on the left of the correlation matrix represent two different
fluorophores (light: A, dark: B). d) The difference between the 90 and 10*® quantile of the correlation matrix
increases with time implying better defined clusters of policies. e) The intra cluster standard deviation (STD) of the
parameter selection decreases during the optimization showing that the policy of the models converges in all defined
clusters. f) The proportion of models per cluster for fluorophore A or B (light and dark respectively) shows that
there are different modes of attraction in the parameter space for fluorophores with distinct photophysical properties
(color-code from ¢). g) While models converged in different regions of the parameter space, the measured imaging
optimization objectives (R: Resolution, A: Artefact, P: Photobleaching) are similar for each cluster (color-code from
¢). h) Example acquisition with LinTSDiag optimization on a real acquisition task for DyMIN3D of the synaptic
protein PSD95 in cultured hippocampal neurons. The volume size is 2.88 pm x 2.88 pm x 2 pm. Confocal (left) and
DyMIN (right) acquisitions are displayed. i) A convergence of the parameter selection in the 7-parameter space
is observed (cyan to red, STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime, Th1l-2: First and
second DyMIN threshold, and T1-2: First and second DyMIN decision time). j) LinTSDiag optimization reduces the
variability of all imaging optimization objectives during the optimization (50 images). Boxplot shows the distribution
in bins of 10 images.

a real-life scenario [50|, which is referred to as simulation to reality (Sim2Real) in robotics. While Sim2Real
is widely studied in robotics and autonomous driving, its success for new fields of application is generally
dependant on the gap between simulation and reality [51].

Here, pySTED is used as a simulation software to train RL agents. We implemented pySTED in an OpenAl
Gym environment (gym-STED) to facilitate the deployment and development of RL strategies for STED
microscopy [19} [52]. To highlight the potential of gym-STED to train a RL agent, we crafted the task of
resolving nanostructures in simulated datamaps of various neuronal structures (Figure [fh). In gym-STED
an episode unfolds as follows. At each timestep the agent observes the state of the sample: a visual input
(image) and the current history (Methods, Figure ) The agent then performs an action (adjusting pixel
dwelltime, excitation and depletion powers), receives a reward based on the imaging optimization objectives
and transitions into the next state. A single value reward is calculated using a preference network that was
trained to rank the imaging optimization objectives (resolution, photobleaching and signal ratio) according
to expert preferences [6] (Methods). A negative reward is obtained when the selected parameters lead to
a high photon count that would be detrimental to the detector in real experimental settings (e.g. non-
linear detection of photon counts). This sequence is repeated until the end of the episode, 30 timesteps. In
each episode, the goal of the agent is to balance between detecting the current sample configuration and
acquiring high-quality images to maximize it’s reward (Figure ) We trained a proximal policy optimization
(PPO) [53] agent and evaluate its performance on diverse fluorophores (Methods). Domain randomization
is used heavily within the simulation platform to cover a wide variety of fluorophores and structures and
thus increase the generalization properties of the agent [54]. In Figure —f (Supplementary Tab. , we
report the performance of the agent on a fluorophore with simulated photophysical properties that would
result in high brightness (high signal ratio) and high photostability (low photobleaching) in real experiments.
The results of the agent on other simulated fluorophore properties are reported in supplementary material
(Supplementary Tab.[10and Supplementary Fig. . Over the course of training, the agent adapts its policy
to optimize the imaging optimization objectives (100k and 12M training steps, Figure ) As expected from
RL training, the reward of an agent during an episode is greater at the end of training compared to the
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Figure 5: A RL agent is trained to optimize the STED imaging parameters in simulation with pySTED. a) Schematic
of the RL training loop in simulation. Each episode starts by sampling a set of photophysical properties representing
a fluorophore (1) and the selection of a structural protein from the databank (2). At each timestep a region of interest
(ROI) is selected: a datamap is created and a confocal image is generated with pySTED (3). The confocal image is
used in the state of the agent (4) which then selects an action, i.e. the next imaging parameters (5). A STED image
and a second confocal image are generated in pySTED (6). The imaging optimization objectives and the reward are
calculated (7). On the next timestep, the agent sees a new ROI, the previously simulated images and the history
of the episode. b) The state of the agent includes a visual input (the images) and the history. The visual input
of the agent is the current confocal (CONF;) and the previous confocal/STED images (CONF;_; and STED;_1).
The state of the agent also incorporates the laser excitation power at which the confocal image was acquired (c),
the history of selected actions (a:) and the calculated imaging optimization objectives (O;). The history vector is
zero-padded to a fixed length ((0)). The agent encodes the visual information using a convolutional neural network
(CNN) and the history using a fully connected linear layer (LN). Both encoding are concatenated and fed to a LN
model which predicts the next action. ¢) Evolution of the policy (left, STED: STED power, Exc.: Excitation power,
Pdt.: Pixel dwelltime) and imaging optimization objectives (right, R: Resolution, P: Photobleaching, S: Signal ratio)
for a fluorophore with high-signal and low-photobleaching properties during training at the beginning (cyan, 100k
timesteps) and at the end (red, 12M timesteps) of the training process. A boxplot shows the distribution of the
average value from the last 10 images of an episode (30 repetitions). d) Evolution of the reward during an episode
at the beginning (cyan, 100k timesteps) and at the end of training (red, 12M timesteps) for the same fluorophore
properties as in ¢). e) Evolution of the policy (left) and imaging optimization objectives (right) after training (12M
timesteps) during an episode for a fluorophore with the same photophysical properties as in ¢). ) Typical examples
of images acquired during an episode. The image index is shown in the top right corner and the calculated imaging
optimization objectives in the top left corner. The STED image and second confocal (CONF2) image are normalized
to their respective first confocal (CONF1) images.

2ss  beginning (red vs. cyan, Figure ) When evaluated on a new sequence, the agent trained over 12M
280 steps rapidly adapts its parameter selection during the episode to acquire images with high resolution and
200 signal ratio, while minimizing photobleaching (Figure ,f). The agent shows a similar behavior for various
201 simulated fluorophores (Supplementary Fig. . We compared the number of good images acquired by the
202 RL agent with that of bandit optimization for the first 30 images of the optimization. In similar experimental
203 conditions, with the same fluorophore and parameter search space, the average number of good images were
20 (18£3) and (5+3) for the RL agent and bandit respectively (50 repetitions). This almost four-fold increase in
205 the number of high quality images, highlights the improved efficiency of the RL agent at suggesting optimal
206 1MAging parameters.
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207 Given the capability of the agent in acquiring images for a wide variety of synthetic imaging sequences,
20 we evaluated if the agent could be deployed in a real experimental setting. The experimental conditions
200 chosen for the simulations were based on the parameter range available on the real microscope. Dissociated
300 primary hippocampal neurons were stained for various neuronal proteins (Figure @ Extended Fig. 3] and
301 Supplementary Tab. and imaged on a STED microscope with the RL agent assistance for parameter
s02  choice. First, we evaluated the performance of our approach for Sim2Real on in distribution images from
30z F-actin and CaMKII-f in fixed neurons. While simulated images of both structures were available within
30 the training environment we wanted to evaluate if the agents could adapt to the real life imaging settings
s0s  (Supplementary Fig. . As shown in Figure @a and Extended Figure the agent resolves the nano-
s0s organization of both proteins (Supplementary Fig. . We sought to confirm whether the quality of the
;07 images was sufficient to extract biologically relevant features (Methods). For both proteins, the measured
308 quantitative features matched with values previously reported in the literature, enabling the resolution of the
s0e 190 nm periodicity of the F-actin lattice in axons, and the size distribution of CaMKII-S nanoclusters [55,
a0 56} [58] (Figure[6p and and Extended Figure[3). Next, we wanted to validate that the agent would adapt it’s
s parameter selection to structures, fluorophores properties or imaging conditions that were not included in
;12 the training set. We first observed that the agent could adapt to a very bright fluorescent signal and adjust
a1z the parameters to limit the photon counts on the detector (Extended Fig. . The morphology of the imaged
s1e PSDY95 nano-cluster was in agreement with the values reported by Nair et al. [59] (Extended Fig. [3). We
a1 deployed the RL-based optimization scheme for the imaging of the mitochondrial protein TOM20 to evaluate
a6 the ability of the agent to adapt to out-of-distribution structures (Figure @b) The nano-organization and
sz morphology previously described by Wurm et al. [57] of TOM20 in punctate structures is revealed using
ais  the provided imaging parameters in all acquired images (Figure |§|b and Supplementary Fig. . Next, we
s10  evaluated the generalizability of the approach to a new imaging context, which is live-cell imaging. We
320 used the optimization strategy for the imaging of the F-actin periodic lattice in living neurons (Figure @1)
;22 The quality of the acquired images are confirmed by the quantitative measurement of the periodicity which
322 matches the previously reported values of 190nm from the literature [55, 56]. Finally, we verified the
s23  generalizability of our approach by deploying our RL-assisted strategy on a new microscope and samples
s2¢  (Figure @d—e, Extended Fig. |4} and Supplementary Tab. . We evaluated the performance of the RL agent
325 for the imaging in fixed Vero cells of tubulin stained with STAR-RED and Actin stained with STAR-GREEN.
32 The agent successfully adapted to the new imaging conditions, rapidly acquiring high quality images, even
32z in challenging photobleaching conditions such as with STED microscopy of the green emitting fluorophore
322 STAR-GREEN. Using the pySTED simulation environment we could successfully train RL agents that can
320 be deployed in a variety of real experimental settings to tackle STED imaging parameter optimization tasks.
330 1o our knowledge, this is the first application of RL agents to an online image acquisition task in optical
331 miCI‘OSCOpy.

= 3 Discussion

333 We built pySTED, an in-silico super-resolution STED environment, which can be used to develop and bench-
;32 mark Al-assisted STED microscopy. Throughout synthetic and real experiments, we have demonstrated that
s3s it can be used for the development and benchmarking of AI approaches in optical microscopy. The Google
33 Colab notebook that was created as part of this work can be used by microscopist trainees to develop their
337 skills and intuition for STED microscopy before using the microscope for the first time. The optimal set of
sz parameters defined in pySTED for a specific fluorophore can guide the parameter choice on a real microscope,
330 but should not replace optimization in real experimental settings to account for environmental effects and
a0 biological variability.

sa1 The simulation platform was built to be versatile and modular. This allows the users to create and test the
sa2  efficiency of Al-strategies and adaptive imaging scheme before deploying them on a real microscope. For
a3 instance, both DyMIN [8] and RESCue |60] microscopy are readily available to the users. Additionally, the
s.aa  cOmmunity can contribute open-source modules that would meet their experimental settings.

35 Smart-microscopy requires the development of tools and modules to increase the capabilities of the micro-
ass  scopes |10} |61] which can be challenging when working on a real microscopy system. The development of

12


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.25.586697; this version posted July 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a7 simulation software is one way to mitigate the difficulty of building an Al-assisted microscopy setup. We
s mainly focused on the selection of imaging parameters which is one branch of Al-assisted microscopy but
sa0  also showed that pySTED can be successfully applied to data augmentation in supervised learning settings. A
ss0 recent trend in microscopy focuses on the implementation of data-driven microscopy systems. For example,
351 systems are built to automatically select informative regions or improve the quality of the acquired images |62,
32 63]. The development and validation of such data-driven systems could be achieved with pySTED. An inter-
ss3  esting avenue to pursue for data-driven systems could rely on generative models to create diverse datamaps
ssa  on-the-fly instead of relying on existing databanks of STED microscopy images, which could be integrated to
sss  the modular structure of the pySTED simulation environment. Online ML optimization strategies tested in
sss  the pySTED environment showed similar performances when transferred to the real microscopy environment,
357 opening new possibilities to characterize and benchmark novel data-driven microscopy approaches in pySTED
sss  prior to their deployment on real biological samples.

;o We also tackle the training of an RL agent, the first for optical microscopy, which would be impossible
30 without the access to a large databank of simulated data. The RL agent enables a full automatization of the
se1  imaging parameter selection on a real system when deployed from gym-STED, an OpenAl gym environment
se2  built around pySTED [52]. Domain randomization was used heavily within the simulation platform [54] which
ses  resulted in a RL agent that could adapt its parameter selection to a wide variety of experimental conditions,
sea  even in living samples. Such strategies could be transformative to democratize STED microscopy to a larger
ses  diversity of experimental settings and allow non-expert users to acquire high-quality images on a new sample
ses without previous optimization sessions.

ez While RL agents can represent a powerful tool to automatize microscopy setups, they must be trained on
ses  a very large number of examples (e.g. 12M steps in this work) |17, [30], which would be infeasible on a real
3o 1icroscopy setup. The pySTED simulation environment allowed the RL agent to bridge the gap between
s7o  simulation and reality without requiring any fine-tuning. This makes pySTED an appealing platform for
sn RL development as it is particularly well suited for complex control tasks requiring temporally distinct
sz trade-offs to be made [20]. In this work, the model relied on a constant preference function to convert
373 the multi-objective optimization into a single reward function. This preference function is ultimately user-
s7a  dependant. This could be complemented in the future by incorporating RL from human-feedback in the
srs  training of the RL model |64, 65]. In future work, temporal dynamics could also be implemented in pySTED
376 t0 open new possibilities to fully automatize the selection of informative regions and of imaging parameters
377 in an evolving environment.
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Figure 6: Bridging the reality gap between simulation and reality in RL by pretraining with pySTED. For all real
microscopy experiments, the deployed agent was trained over 12M steps in simulation. The agent was deployed on
a real STED microscope for the imaging of diverse proteins in dissociated neuronal cultures and cultivated Vero
cells. a) Top: Simulated images of F-actin in fixed neurons were used during the training process. Deploying the
RL agent to acquire an image of this in distribution structure in a real experiment allows the periodic lattice of
F-actin tagged with Phalloidin-STAR635 to be revealed in all acquired images. Bottom: Structural parameters are
extracted from the acquired images (the dashed vertical line represents the median of the distribution) and compared
to the values that were previously reported in the literature (solid vertical line). The agent has learned to adjust the
imaging parameters to resolve the 190 nm periodicity of the F-actin periodic lattice |55, [56]). b) Top: The trained
agent is tested on the protein TOM20, a structure that was never seen during training (out of distribution). The
nano-organization of TOMZ20 is revealed in all acquired images. Bottom: The measured average cluster diameter of
TOM20 concords with the averaged reported values from Wurm et al. [57]. ¢) Top: Live-cell imaging of SiR-Actin
shows the capacity of the model in adapting to different experimental conditions (out of distribution). Bottom:
The periodicity of the F-actin lattice is measured from each acquired images and compared with the literature. See
Material and Methods for the quantification. The STED images are normalized to their respective confocal image
(CONF1). The second confocal image (CONF2) uses the same colorscale as CONF1 to reveal photobleaching effects.
d,e) Images acquired by the RL agent in a real experiment on a different microscope. Tubulin was stained with
the STAR-RED fluorophore (d) and Actin was stained with STAR-GREEN (e)in fixed Vero cells. The sequence of
acquired images goes from top left to bottom right. The confocal images before (CONF1) and after (CONF2) are
presented for photobleaching comparison. The CONF1 image is normalized to the CONF2 image. The STED images
are normalized to the 99'" percentile of the intensity of the CONF1 image. Images are 5.12pm x 5.12pm. The
evolution of the parameter selection (left; STED: STED power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and
imaging optimization objectives (right; R: Resolution, P: Photobleaching, S: Signal ratio) are presented, showing that
optimal parameters and optimized objectives for STAR-RED (d) and STAR-GREEN (e) can differ greatly.
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= 4 Methods

s2 4.1 pySTED simulation platform

ss3 Two main software implementations are incorporated within the pySTED simulation platform: i) point spread
sse  functions (PSF) calculation, and ii) emitter-light interactions.

sss. PSF calculation PSF calculation in pySTED is inspired by previous theoretical work from Leutenegger
sse et al. [I] and Xie et al. [2] (Figure[lb). As in Xie et al. [2], we calculate the excitation and depletion PSF by
sz using the electric field (Figure [Ip). The Effective PSF (E-PSF) is calculated by combining the excitation,
sss  depletion and detection PSFs using

E-PSF(7) = PSFpyx(7) exp [~ PSFs1ep (7)¢] [PSFae (7) @ cire(R)] , (1)

sso where R is the radius of the imaged aperture [3] and ¢ is the saturation factor of the depletion defined
se0 as ( = ISfED with I being the saturation intensity [1]. The left-hand side of equation (1| represents the
sex  probability that an emitter at position 7 contributes to the signal [4] and is calculated in pySTED using 7pexc
se2  with

Pexc = qﬂ(l — €Xp (_Uabsq)echSTED))v (2)

ses  where ¢g is the quantum yield of the fluorophore, o,ps the absorption cross-section, ®qy. the photon flux
sea from the excitation laser and 7gTgp the period of the STED laser. The n parameter allows the excitation
ses probability to be modulated with the depletion laser or allows time-gating to be considered during the
ses acquisition [1,5]. Time-gating consists in activating the detector within a small window of time (7, typically
sez 8 1s) after the excitation pulse (Tger, typically 750 ps) to prominently detect photons coming from spontaneous
ses emission. The simulations performed with pySTED follow the scheme of pulsed-STED microscopy in which
seo  time-gating mostly reduces correlated background [5|. Following the derivation from Leutenegger et al. 1]
s7o - and assuming that T, > 7gTED, the emission probability of a fluorophore is described as

F(v) = exp (—ks17tsTED) (exp (—ks1Tael) — exp (—ks1(Taer + 1)), (3)

s1 - where kg1 is the spontaneous decay rate, <y is the effective saturation factor v = (Ckcki“‘) with kyjp the
Sltkyip

s2  vibrational relaxation state of Sy and tgTep is the STED pulse width (Figure 7d). In the confocal case
s3 (Istep = 0), the emission probability simply reduces to

F(0) = (1 —exp (=ks1T)), (4)

sz where T is the period between each STED pulses. This allows the probability of spontaneous decay 7 to be
s7s  calculated using F(y)/F(0). The calculated E-PSF is convolved on the datamap to simulate the photons
s76  that are emitted and the one measured by the detector.

sz In real experiments, the number of detected photons is affected by several factors (e.g. photon detection and
szs  collection efficiency of the detector, the detection PSF, the fluorophore brightness, etc.), which were also
s integrated in the pySTED simulation environment (Supplementary Tab . We also included the possibility
sso  t0 add typical sources of noise that occur in a targeted microscopy experiment such as shot noise, dark noise,
ss1 - and background noise which are all modeled by Poisson processes (Supplementary Tab. .

ss2  Emitter-light interactions In a real microscopy experiment, the emitters can be degraded as they in-
sss  teract with the excitation or depletion light. Photobleaching is the process by which an emitter becomes
ssa  inactive following light exposure [6]. In STED microscopy, this process is mainly caused by the combination
sss  of the excitation and depletion laser beam [6]. Reducing photobleaching is an optimization objective that the
sss Mmicroscopist has to target during an imaging session and that must be minimized to preserve sample health
se7 and sufficient imaging contrast. Hence, we implemented a realistic photobleaching model within the pySTED
sss  simulation software. The photobleaching model is based on the derivations from Oracz et al. [6] which were
sso validated on real samples. Figure presents the energy states, the decay rates, and the photobleaching
seo state B that are used within the photobleaching model.
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sor  As in Oracz et al. [6], we define the photobleaching rate as

I I ’
se2 where kg, k1 and b are dependant on the fluorophore and have to be determined experimentally. In the default
so3  parameters of pySTED we assume that the linear photobleaching term is null (ky=0) and that photobleaching
sea  occurs only from S1 during the STED pulse. Other photobleaching parameters could be easily integrated
sos considering the modular structure of pySTED. We define the effective photobleaching rate k; as the number
sos oOf emitters transitioning from the S1 state to the photobleached state (Pg) over the course of a laser period
597 T
Ds

ky = T (6)

sos  with
1 —exp (—ksitsTep(1 + 7))

Ps = Psi(t = 0)kg(IsTED) ksi(1+7)

(7)

soo  In pySTED the number of emitters N in a pixel is updated by calculating their survival probability p =
soo  €xp (—kpt) from a Binomial distribution for a given dwelltime ¢ (Figure [lg). While most parameters can
eo1 be obtained from the literature for a specific fluorophore, some parameters such as k; and b need to be
sz determined experimentally [6]. Given some experimental data (or a priori about the expected photobleaching
s03 of a sample) we can estimate the photobleaching properties (k1 and b) of a fluorophore with

Photobleaching = 1 — exp (—kpt) (8)

soa by using non-linear least-squares methods. We can also apply a similar process to estimate the absorption
esos cross-section (o4ps) of a fluorophore to optimize the confocal signal intensity to an expected value Oracz
e0s et al. |6|

oz 4.2 Realistic datamaps

sos A realistic datamap, that can be used in pySTED, is generated by predicting the position of emitters in a real
soo super-resolved image. A U-Net model (U-Netgatamap, implemented in PyTorch [7]) is trained to predict the
e10 underlying structure of a super-resolved image (Supplementary Tab. . A single U-Netgatamap Was trained
e11 in this manuscript with images of different sub-cellular structures (F-actin, Tubulin, PSD95, «CaMKII, and
sz LifeAct) and was used to generate all datamaps to train and validate the ML, DL, and RL models presented
613 in this study. U-Netqatamap has a depth of 4 with 64 filters in the first double convolution layer. Padding
e1a  was used for each convolution layer to keep the same image size. As in the seminal implementation of the
e1s  U-Net [8], maxpool with a kernel and stride of 2 was used. The number of filters in the double convolution
e layers doubled at each depth. In the encoder part of the model, each convolution is followed by batch
ez normalization and a Rectified Linear Unit (ReLU). Upsampling is performed using transposed convolution.
e1s The decoder part of the model uses double convolution layers as in the encoder part of the model. At each
e10 depth of the model, features from the encoder are propagated using skipping links and concatenated with
620 the features obtained following the upsampling layer. A last convolution layer is used to obtain a single
e21 image followed by a sigmoid layer.

622 As previously mentioned, the goal of the U-Net is to predict the underlying structure of super-resolved images.
e2s Training U-Netqatamap in & fully-supervised manner requires a training dataset of associated super-resolved
e2a images and underlying structures. However, such a dataset does not currently exist. Mathematically, a
e2s microscopy image is obtained from the convolution of the microscope E-PSF with the position of fluorophores
e26 at the sample. In the images from Durand et al. [9], the E-PSF of the microscope can be approximated by
o2z a Gaussian function with a full width at half maximum of ~ 50nm. Hence, U-Netgatamap can be trained
e2s  to predict the datamap that once convolved with the E-PSF will be similar to the input image (Figure )
620 The Lo error is calculated between the Gaussian convolved datamap and the original input image as the loss
630 function to minimize.
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631 To train the model we used good quality STED images of diverse neuronal proteins from an existing dataset |9]
ez (quality > 0.7). In Durand et al. |9], the quality score of an image was obtained by asking an expert to rate
e33  the image based on a qualitative assessment of the resolution of the structure of interests and the signal to
e3a noise ratio on a scale from 0 to 1. The quality scores from the original dataset were used to train a deep
e3s learning model to automatically rate the quality of an image. Supplementary Tab. [7] presents the proteins
e3s imaged and the number of images that were used for training. Each 224 x 224 pixels image is augmented
e37  with three (3) 90° rotations. The Adam optimizer was used with default parameters using a learning rate
e3s  of 1 x 107%. The model was trained for 1000 epochs with a batch size of 32. We selected the model with
e30  the best generalization properties on the validation set, obtained from the mean squared error between the
es0 input image and the datamap after applying the Gaussian convolution.

eax By default, the predicted datamap reconstructs the background noise from the image. Filtering can be
eaz applied on the predicted datamap to reduce the impact of noise. The number of emitters can be adapted
eas  to the experimental context which is then converted into an integer value. U-Netqatamap Was trained with
saa 224 x 224 pixels images but images of arbitrary size can be processed at inference time.

ess Datamaps from deconvolution Datamaps were generated using the Richardson-Lucy deconvolution im-
ess plementation from van der Walt et al. |[10]. The E-PSF of the input image were approximated by a Gaussian
eaz function with a full width at half maximum of ~ 50nm. 30 iterations were used for the deconvolution
eas  algorithm.

a0 4.3 Imaging optimization objectives

eso Resolution We calculated the resolution of the images by using the parameter-free image resolution es-
es1  timation based on decorrelation analysis that was developed by Descloux et al. [11]. Decorrelation analysis
es2  was used due to its simplicity in transferring from simulation to real imaging conditions.

ess  Photobleaching In all experiments involving the photobleaching as one of the imaging optimization ob-
esa  Jective, we measured the loss of the fluorescence signal between a low-resolution image that is acquired
ess  before (Confocal 1) and after (Confocal 2) the high-resolution (STED) acquisition [9]. The photobleaching
ess 15 defined as

Confocallg, — Confocal2g,

Photobleaching = ) 9)

Confocallg,

esz  where ConfocalXj, is the average signal on the foreground of the first confocal image (Confocall). The
ess  foreground mask is determined using an Otsu threshold on the Confocall.

eso  Signal Ratio We calculate the signal ratio as the ratio between the intensity in the high-resolution image
es0 and the respective confocal image using the following equation

STED], — STEDhpekg

Signal Ratio =
& Confocallzg5

(10)

ee1 The foreground mask of the STED and confocal images are determined using the Otsu method. The fore-
ss2 ground signal in the mask is calculated as the 75'" percentile of the image (STED or Confocall). ST EDpckg
ee3 represents the mean signal of the background signal in the STED image.

esa  Artefact We measured imaging artefacts with a metric inspired by SQUIRREL |[12] and MASK-SSIM
ees approaches |13|. Specifically, we map the super-resolution image (SR) to a low-resolution image using a
ees similar procedure to SQUIRREL but compare structures only within a foreground mask. This foreground
es7 mask is obtained using the Otsu method. The average structural similarity index (SSIM) on the foreground
ees between the low-resolution and the optimized SR image is reported as the metric. The value of the artefact
eso metric that is reported in the paper is

Artefact = 1 — SSIMg, (11)
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eo 4.4 Comparison of pySTED simulations with real acquisitions

ez We compared pySTED simulated images with images acquired on a real STED microscope with similar
ez imaging parameters. To evaluate the reliability of the simulations, we acquired 10 images using a different
ez combination of parameters. We varied each imaging parameter over a range that is commonly used for
ora routine STED experiments and that would not damage the microscope (e.g. detectors, see parameters in
e7s  Supplementary Tab. @ We used a sample of immunostained cultured hippocampal neurons of the neuronal
eze protein Bassoon tagged with the fluorophore ATTO-647N. The small clusters formed by Bassoon are well
ez suited for measurements of resolution. The same parameter combination is used in pySTED and on the
e7s microscope for fair comparison.

oo We optimized the photobleaching constants (k; and b) and the STED cross-section (ostrp) of the fluo-
eso rophore to match the measured photobleaching and resolution values using a least-squares method (data
es1 from Supplementary Fig. , right). It is implemented iteratively, with the optimization of photobleach-
es2 ing and resolution done sequentially and repeated 15 times, since the optimization of ogrgp also affects
ess photobleaching.

esa For each acquired real STED images, a datamap is predicted with the U-Netqatamap. The number of emitters
ess per pixel is obtained by multiplying the datamap with a correction factor f to match the fluorescence signal
ess in the real images. This correction factor f can be obtained by fitting the intensity value obtained at pixel
es7  (x,y) to the real intensity of the acquired confocal image (Iconr(z,y)). The intensity value of the synthetic
ess 1mage is approximated as the product between the E-PSF and the datamap (D)

TIcone(z,y) = [ Dij(x,y)E-PSF,;. (12)

ij

o 4.5 Weakly supervised learning for the segmentation of F-actin nanostructures

eoo  We compared three training schemes (5 random initializations per scheme) to train a U-Net model to segment
eo1 two F-actin nanostructures (Fibers and Rings): i) original model from Lavoie-Cardinal et al. |[14] (O), ii) a
2 model that uses a quantile normalization of the large image (min/max normalization using the 15¢ and 99"
eo3 quantile) and increased data augmentation during training (N, see below), iii) and a model trained as in
eoa 1) with synthetic images (N+S). In all conditions, the same architecture, training procedure, and dataset
eos are used following the methods from Lavoie-Cardinal et al. [14]. A model is trained for 700 epochs and the
eos best model on the validation dataset is kept for testing. To compare only the impact of the training, the
eo7 validation dataset is kept constant in all training instances.

ess In all training schemes, an augmentation has a 50% probability of being selected. For the training scheme
eoo O [14], the augmentations consisted of horizontal /vertical flips, intensity scale, and gamma adaptation. For
700 the approaches using an increased data augmentation scheme (N and N+S), the augmentations from O are
701 combined with random 90° rotations, crop normalization (1%% and 99*" percentile) and more intensity scale
702 and gamma adaptation operations.

73 Synthetic F-actin images The U-Netqaiamap model (Figure was used to extract the datamaps of
z0a all valid crops in the training dataset (contains >10% of dendrite, 256 x 256 pixels, 25% overlap). Five
zos  synthetic images with different resolution and noise properties were simulated for each crops with pySTED
706 USing a parameters combination that would minimally allow to resolve the F-actin nanostructures (Figure
7oz and Supplementary Tab. .

s Generation of subsets Models (with constant parameter initialization) were trained on subsets of the
700 original dataset, to evaluate if pySTED can help reduce the number of original images in the training dataset.
70 Five subsets with 0.75,0.5,0.25,0.1,0.05, 0.025 ratios were used for training. A ratio of 0.025 corresponds to
71 training on a single image (42 images in training dataset). When an image is discarded from a subset, its
72 corresponding crops (synthetic included) are also removed from training (Supplementary Fig. [7).
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n3  Performance evaluation The average precision (AP) is used for performance evaluation. The AP is
71 obtained from the precision and recall measured by the predicted segmentation compared to the ground
715 truth manual annotations. The AP corresponds to the area under the p.(r) curve. p.(r) is given by the
716 maximum precision value that can be attained at any recall r; greater than recall r, i.e.

p«(r) = max p(r;). (13)

71z The AP is calculated as L
AP = / s (r)dr. (14)

0

ns 4.6 Multi-objective bandit optimization

720 The multi-objective bandit optimization aims at finding a set of imaging parameters that simultaneously
720 optimizes all imaging optimization objectives. Such a multi-objective problem is ill-defined as there exists
721 a set of Pareto optimal objectives that could be used to solve the task. Hence, an external input, e.g. a
722 microscopist, is required to make the necessary trade-offs over the course of the optimization session.

723 4.6.1 AIgOI‘ltth

722 The goal of the algorithm is to learn the mapping between the imaging parameters (e.g. laser power, pixel
725 dwelltime) and the imaging optimization objective (e.g. resolution, photobleaching, artefact or signal ratio)
726 by exploring the parameter space while exploiting its current knowledge of the parameter space to acquire
727 high-quality images. A single model is built for each optimization objective as in Durand et al. [9]. The
728 exploration/exploitation trade-off is achieved via Thompson Sampling (TS) [15]. At each time step of the
720 Ooptimization, a function is sampled from the posterior of each model. The expected imaging optimization
730 objective associated with each imaging parameters options are combined. The preferred combination is
721 selected and an image is acquired with the associated parameters. The imaging optimization objectives are
732 calculated from the resulting image and used to update each model.

733 The range of imaging parameters was normalized in [—1,1] using a min-max normalization. The min-max
73a  values were given from the pre-defined range of a parameter. All models are trained from scratch. At the
735 start of each optimization session, 3 images are acquired with parameter combinations obtained from expert
736 knowledge allowing the models to gain insights about the imaging task. For further implementations, these
737 parameter combinations could be obtained from i) a previous imaging session, ii) different fluorophore, or
738 1ii) publications from the field.

73e  Kernel-TS Kernel-TS is implemented by following the procedure from Durand et al. |9]. The regression
7a0 model that maps the imaging parameters to the imaging optimization objectives is a non-parametric Gaussian
7a1 Process. All of the parameters of the method (e.g. the kernel bandwidth or bounds on noise) were based on
7a2  the recommendations from the original manuscript [9]. Kernel-TS works on a discrete parameter space of
73 10 points for each optimized parameters. The values of imaging optimization objectives are rescaled using a
7aa  whitening transformation.

zs  LinTSDiag LinTSDiag is a neural network implementation of TS |16]. LinTSDiag was previously imple-
7es mented to solve a 2 parameter DyMIN task [17] (Supplementary Tab. . In this implementation, the neural
7z network is a fully connected network with 2 layers of hidden sizes of 32. After each layer ReLU activation
zas 18 used and followed by a dropout layer (probability of 0.2). The last layer of the model projects to a single
7e0 imaging optimization objective value. The model is implemented in PyTorch [7] and relies on the seminal
750 implementation from Zhang et al. [16]. The loss of the model is the mean squared error and is optimized
71 using stochastic gradient descent with a learning rate of 1 x 1073, After each acquisition, the weights of
72 the model are updated until the error is < 1 x 1072 or 1000 updates have been done. During training, the
753 imaging optimization objectives are rescaled into a [0, 1] range.

75 Two parameters (v and A, see Zhang et al. [16]) control the exploration of the model. Increasing their values
75 results in more exploration. In all experiments using LinTSDiag A = 0.1 is used. The parameter v varied
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76 depending on the task: i) in simulation v = 0.01 (Figure —c), ii) in 4 parameter optimization v = 0.1
757 (Figure Bp-f), and iii) in 6 parameter optimization v = 0.25 (Figure [Bg-h).

7s  LinTSDiag handles continuous parameter space. Hence, it is not possible to display all of the possible
70 trade-offs. To reduce the number of possibilities, only the Pareto optimal combination of optimization
760 Objectives are displayed (Pareto front). The Pareto optimal options are extracted using NSGA-II [18| with
761 the implementation from the DEAP python library [19]. Since computing the Pareto front is computationally
7e2  expensive, a stopping criterion is used to reduce the calculations as previously reported by Roudenko &
763 Schoenauer [20]. The stopping criterion is based on the rolling standard deviation of the maximum crowding
76 distance (window size of 10) during the NSGA-II search. The search is stopped when the standard deviation
zes 18 lower than /2 X 10~% - n, where n is the number optimization objectives [20]. In theory, the NSGA-II
7es search should restart from scratch after each acquisition. However, given the high dimensionality of the
7ez parameter space, this may lead to high variability in the proposed parameter combination. To reduce this
7es  variability, Deb et al. [21] proposed to keep a fraction of the previous options as a warm start of the NSGA-
760 1l search. In this work, 30% of the previous options are randomly sampled and used as starting points for
770 the next NSGA-II search. The resulting Pareto front of imaging optimization objectives is shown to the
7.1 preference articulation method.

772 Contextual LinTSDiag The contextual version of LinTSDiag heavily relies on the implementation of
773 LinTSDiag described above (Supplementary Tab. . In this work, the contextual information was used
77a  to solve a DyMIN microscopy task. As previously mentioned the confocal image serves as contextual infor-
775 mation, but any other contextual information pertinent to the task could be provided to the model. The
77e confocal image is encoded with a 2 layers convolutional neural network. A first convolution layer with 8
777 filters, kernel size of 3 and padding of 1 is followed by a batch normalization layer, maxpooling layer (size 4;
77 stride 4) and ReLU activation. A second convolution layer of 16 filters is followed by a batch normalization
7o layer. Global average pooling is used to generate a vector embedding. This is followed by a ReLU activa-
7e0  tion and dropout layer with a probability of 0.2. The embedding is projected to 32 features using a fully
ze1  connected layer and is followed by a ReLU activation and a dropout layer with a probability of 0.2. The
zs2  contextual features are concatenated with the parameter features (described in LinTSDiag). A single-layer
7es  fully-connected model with a hidden size of 64 is used to predict the imaging optimization objectives. ReLU
7ea activation is used at the hidden layer. A single contextual encoder is created and shared between the imaging
zes  Ooptimization objectives. The same training procedure and NSGA-II search are used as in LinTSDiag.

zss The exploration parameters A = 0.1 and v = 0.25 were used in simulation (Figure —g) and in 3D DyMIN
sz optimization (Figure [4h-j).

7ss  4.6.2 Preference articulation

7es  The optimization algorithms output possible trade-offs between the imaging optimization objectives. The
700 preference articulation step consists in selecting the trade-off that is the most relevant for the task. Two
ze1  preference articulation methods were used in the bandit optimization: manual selection and automatic
702 selection [9].

7oz Manual selection This method requests a manual input from the microscopist at each image acquisition.
7ea  The microscopist is asked to select the trade-off that is inline with their own preferences from the available
705 options (point cloud). This method was used in all experiments on the real microscope using the bandit
706 Optimization scheme (Figure —h and Figure |4h-j).

7oz  Automatic selection This method aims at reducing the number of interventions from the microscopist
708 in the optimization loop by learning their preferences prior to the optimization session. In Durand et al. [9],
70 the neural network implementation PrefNet was used to learn the preferences from an Expert. In the current
soo work, two PrefNet models were trained from the preferences of an Expert. The same model architecture and
so1 training procedure were used as in Durand et al. [9]. A first model is trained for the STED optimization
so2 to select from the resolution, photobleaching, and signal ratio imaging optimization objectives. A second
sos model is trained for the DyMIN optimization to select the trade-off between resolution, photobleaching,
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soa and artefact. The PrefNet model is used to repeatedly make the trade-offs in multiple optimizations in the
sos simulation environment (Figure [Bp-d and Figure [d-g).

s 4.7 Reinforcement learning experiments

soz A RL agent interacts with an environment by sequentially making decisions based on its observations. The
sos goal of the agent is to maximize its reward signal over the course of an episode.

soo RL formulation The general problem in RL is formalized by a discrete-time stochastic control process,
s10  1.e. it satisfies a Markov Decision Process (MDP). An agent starts in a given state s; € S and gathers some
s11 partial observations o, € . In an MDP, the state is fully observable, that is the agent has access to a
s12 complete observation of a state s;. At each time step t, the agent performs an action a; € A given some
e13 internal policy 7 after which the agent receives a reward r; € R and transitions to a state s;y1 € S with a
s1a  state transition function 7 (s;41]$¢,a:). Following the state transition, a reward signal ry = R(s¢, at, St41)
s1s 18 provided to the agent as feedback. The goal of the agent is to maximize the cumulative reward over the
a6 trajectory T = (s, at, S¢41, 041, ...). Formally, the cumulative reward may be written in the form of

R(r) =7 ' (15)

sz where 7 is a discount factor in the range [0, 1] to temporally weight the reward. Intuitively, using a discount
s1s factor close to 1 implies that the credit assignment of the current action is important for future reward, which
s10 1S the case for long planning horizon, while a discount factor close to 0 reduces the impact of temporally
s20 distant rewards [22].

s21 Reward function The optimization of super-resolution STED microscopy is a multi-objective problem
s22 (e.g. Resolution, Signal Ratio, and Photobleaching). However, the conventional RL settings and algo-
s23 rithms assume the access to a reward function that is single-valued, in other words a single-objective op-
s2¢ timization [22]. Several methods were introduced to solve the multi-objective RL setting, for instance by
s2s  simultaneously learning multiple policies or by using a scalarisation function (see Hayes et al. [23] for a
s26 comprehensive review). The scalarisation function is simple to implement and allows all of the algorithms
s2z that were developed for RL to be used, but assumes that the preference from the user are known a priori.
s2s  In this work, the multi-objective RL setting was transformed into a single scalar reward by using the neural
s20 network model, PrefNet [9], that was developed in the bandit experiments. Indeed, the PrefNet model was
s30 trained to reproduce the trade-off that an expert is willing to make into the imaging optimization objective
ss1  space. The PrefNet model does so by assigning a value to a combination of imaging optimization objectives.
832 The values predicted by the model for a combination of optimization objectives are arbitrary but the ranking
s33  of these values is accurate. Hence, the values from the PrefNet model is proportional to the image quality.
ssa The reward of the agent can then be defined using equation For safety precautions when deploying the
s3s  agent on a real microscopy system, the agent incurs a reward of -10 when the frequency of photons on the
s3s detector is higher than 20 MHz.

-10 h otons > 20 MH
Tt_{ when fphotons > Z (16)

PrefNet(R, P,S) otherwise

s3z  While the negative reward can be used to limit the selection of actions that could damage the microscope,
s3s it is not required. For instance, the results showed in Figure [6d-e and Extended Fig. [4 used a version of the
s3e  reward function that did not include the negative reward. It is worth noting that in these cases, the range
sso  Of parameters should be carefully selected to avoid damages to the microscope.

saa  Agent The Proximal Policy Optimization (PPO) model [24] was used for all RL experiments. PPO is

sz considered state-of-the-art for many control tasks, and is widely used in robotics [25]. PPO allows continuous
sa3  action space making it suitable for the task of microscopy parameter tuning. It is an on-policy algorithm
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sas  meaning that the same policy is used during the data collection and the updating phases. The model uses a
sas  deep neural network to map the state to the actions. Since PPO is an actor-critic method, it simultaneously
sss learns a policy function and a value function that measures the quality of a selected action (Supplementary
sz Tab. 21| and . Both functions use the same model architecture. A convolutionnal neural network (CNN)
ses  extracts information from the visual inputs and a linear neural network (LN) extracts information from the
sao  history of the episode. The CNN encoder is similar to the one used in Mnih et al. |26]. The encoder is
sso composed of 3 layers of convolutions each followed by a leaky ReLU activation. The kernel size of each
ss1 layer is 8,4,3 with a stride of 4,2,1. This allows the spatial size of the state space to be reduced. The LN
es2  1model contains 2 linear layers projecting to sizes 16,4. The information from both layers is concatenated
ss3  and mapped to the action space using a LN layer.

s During training, the Adam optimizer is used with default parameters and a learning rate of 1 x 104, The
sss  batch size of the model is set at 64. Each 512 steps in the environment, the model is trained for 10 batches
sse  which are randomly sampled from the previous 512 steps. A maximal gradient of 1.0 during backpropagation
ss7 15 used to stabilize training.

ess  Synthetic Datamaps A bank of datamaps was generated using U-Netqatamap. Supplementary Tab.
sso  presents the number of images per structures that were available during training. Datamaps were randomly
sso cropped to 96 x 96 pixels with a higher probability of being sampled within the foreground of the datamap.
sss  Random data augmentation is performed online with a 50% probability: random [1,3] 90° rotations, up-
se= down flips, and left-right flips. The resultant cropped datamap is multiplied by a value that is sampled from
ses N(u = 40,0 =4) and turned into an integer array using the floor operation.

sea Synthetic Fluorophores Synthetic fluorophore properties are generated on-the-fly during training by
ses uniform sampling. Supplementary Tab. displays the range of possible fluorophore properties. The pa-
ses rameters ki, b, and o,ps are optimized using the procedure described in section During the optimization
se7 1t is assumed that the maximal number of emitters is 40. A scaling factor that is dependant on the type
ses Of structure is used during the optimization (Supplementary Tab. . At each iteration, the fluorophore
seo parameters from the previous iterations are used as a starting point. The initial conditions of parameters
sro are k1 =2.9x 10716, b= 1.66, and o.ps = 3.2 x 10721 m?2.

sz 4.8 STED microscopy experiments
sz 4.8.1 STED-imaging

s73  Super-resolution imaging of neuronal proteins was performed on an Abberior Expert-Line STED system
sza  (Abberior Instruments GmbH, Germany) equipped with a 100x 1.4NA, oil objective lens (Olympus, UP-
szs LSAPO100XO), motorized stage and auto-focus unit. Far-red dyes were imaged using a 640 nm pulsed
s7e diode (40 MHz), a 775 nm depletion laser (40 MHz) and a ET685/70 (Chroma, USA) fluorescence filter.
sz Fluorescence was detected on an avalanche photodiode detectors (APD) with approximately 1 Airy unit
s7s detection pinhole. Images were processed using FIJI (ImageJ) software. Single- and two-channel imaging of
s7e  tubulin, NPC, and Golgi in Vero cells was performed on an Infinity line microscope (Abberior Instruments
sso  GmbH, Germany) using imaging settings as described in Heine et al. [27].

ss1  Prior to the optimization, the excitation power of the confocal acquisition needed to be set to acquire < 200
ss2 photons in 10 ps. To do so, the excitation power was first set to 10 pW and was halved until this criterion
sss  was met. This value is used by the model to incorporate knowledge about the brightness of the sample.

ssa 4.8.2 Kidney epithelial cell culture

sss  Vero B4 cells were obtained from the DSMZ-German Collection of Microorganisms and Cell Cultures were
sss maintained in DMEM (Gibco) supplemented with GlutaMAX (Thermo Fisher Scientific), 10% FBS (Sigma-
ss7  Aldrich), 1 mM sodium pyruvate (Thermo Fisher Scientific), and Penicillin-Streptomycin (100 ul/ml and 0.1
sss  mg/ml; Sigma-Aldrich) at 37°C with 5% CO2.
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sss Sample preparation and staining procedures For indirect immunostaining, cells were fixed in 8%
soo paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and permeabilized with 0.5% Triton X-100/PBS
so1  for Nuclear Pore Complex (NPC) proteins (Mab414, 1:200; abcam, code: ab24609) and Golgi (Giantin, 1:200;
so2 abcam, code: ab80864) staining. Methanol was used as a fixative for Tubulin staining (1:500; abcam, code:
893 ab18251)

soa  After blocking with 2% BSA /0.1% Tween20/PBS, cells were incubated with the primary antibody for 1 hour
ses at the specified dilutions. Detection of primary antibodies was achieved using secondary STAR RED goat
sos anti-mouse IgG (1:200, abberior GmbH, code: STRED-1001-500UG) and STAR ORANGE goat anti-rabbit
sz 1gG (1:200, abberior GmbH, code: STORANGE-1002-500UG) for double staining of the NPC and Golgi.
ses Tubulin was labeled with STAR RED goat anti-rabbit IgG (1:200, abberior GmbH, code: STRED-1002-
g0 500UQG). Secondary antibodies were also incubated for 1 hour.

s0 After stringent washing with PBS, cells were mounted in MOUNT SOLID ANTIFADE (abberior GmbH,
o1 code: MM-2013-2X15ML). Protocol was adapted from Wurm et al. |28].

902 4.8.3 Neuronal cell culture

903 Neuronal cultures from the hippocampus were obtained using neonatal Sprague Dawley rats, adhering to the
soa animal care guidelines set by Université Laval. The rats, aged P0O-P1, were sacrificed through decapitation
o0s before the hippocampi were dissected. The cells were then seeded onto 12 and 18 mm coverslips coated with
s0s poly-d-lysine and laminin, for fixed (12 mm, 40,000/coverslip) and live-cell (18 mm, 100,000 cells/coverslip)
sz STED imaging. Neurons were cultivated in a growth medium composed of Neurobasal and B27 (in a
s 50:1 ratio), enriched with penicillin/streptomycin (25 U/mL; 25 pg/mL) and 0.5 mM L-GlutaMAX (by
s0o Invitrogen). Ara-C (5 puM; from Sigma-Aldrich) was added into the medium after five days to limit the
o10 proliferation of non-neuronal cells. Twice a week, ~50% of the growth medium was replaced with serum-
o11  and Ara-C—{ree medium. Cells were used between Days In Vitro (DIV) 12-16 for experiments.

s12 Sample preparation and staining procedures Fixation was performed for 10 minutes in 4% PFA so-
e13 lution (PFA 4%, Sucrose 4%, Phosphate Buffer 100mM, Na-EGTA 2mM). Neurons were permeabilized with
o1a 0.1% Triton X-100 and aspecific binding sites were blocked for 30 min with 2% goat serum in PBS 20 mM.
o1s  Primary and secondary antibodies were successively incubated for 2h and 1h respectively. Phalloidin was
o1 incubated for 1h. All incubations were done at room temperature, in the blocking solution. Immunostained
o1z coverslips were mounted in Mowiol-DABCO for imaging. F-actin was stained with phalloidin-STAR635
s1s  (Sigma Aldrich, cat. 30972-20pg, 1:50 dilution). All antibodies used in this study with associated concen-
o1 trations are provided in Supplementary Tab.[16] &

s20 For the live experiment (Figure |§|d)7 the neurons were incubated for 8 min with SiR-actin (0.8 uM, Cy-
021 toskeleton, cat. CY-SC001) diluted in HEPES buffered artificial cerebrospinal fluid (aCSF, in mM: NaCl 98,
022 KCl15, HEPES 10, glucose 10, CaCls 0.6, MgCls 5). For live-cell STED microscopy, coverslips were mounted
23 on a QR chamber (Wagner Instruments, cat. 61-1944) and imaged in HEPES buffered aCSF 5 mM Mg?* /
o2a 0.6 mM Ca?*t using a gravity perfusion system.

o2s 4.8.4 Quantification of biological structures

026 F-actin Line profiles of ~1 um were manually extracted from each image. A linewidth of 3 pixels was used
927 to average the profile values. The autocorrelation function (statsmodels library [29]) was calculated from
o2s the intensity profile. The length of periodicity of the signal was determined from the first peak maxima.

020 CaMKII-8 and PSD95 We segmented clusters using a wavelet segmentation using the implementation
o0 from Wiesner et al. [30]. The scales used were (1, 2) for STED and (3, 4) for confocal segmentation. A
ea1 threshold of 200 was used. Small segmentation objects (<3 pixels) were removed and small holes (<6
032 pixels) were filled. In the STED image segmentation, only the objects part of the confocal foreground were
o33 considered. For STED segmentation, watershed was used to split merged segmented objects. The local peak
e3a maximum were used as initial seeds. Small segmentation objects (<3 pixels) resulting from the watershed
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o35 split were filtered out. The properties of each segmented object was extracted using regionprops from the
e3¢ scikit-image python library [10].

sz TOM20 A similar approach to the one in Wurm et al. [31] was used. Briefly, the confocal foreground
o3s  of each mitochondrion was extracted using the same wavelet segmentation procedure as for CaMKII-5 and
03 PSD95. The 2D autocorrelation on square crops of 320 nm x 320 nm centered on each mitochondrion were
oa0 calculated. The diameter of TOM20 cluster is defined as the standard deviation obtained from a 2D Gaussian
oax curve fit of the autocorrelation profile.
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w0 Extended Figures

i) Education & training iv) Bridging reality gap
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Extended Fig. 1: pySTED can benefit common microscopy tasks, i.e. image analysis and acquisition. i) A Google
Colab notebook implementing pySTED is created for trainees to develop their knowledge and intuition about STED
microscopy. ii) pySTED can be leveraged in deep learning-related microscopy tasks to artificially augment the training
datasets. iii) pySTED can be used to develop and thoroughly validate AT methods by limiting the impact of biological
variability on the measurements and reducing the biological footprint. iv) pySTED reduces the reality gap between
simulation and reality by training RL models that learn through interactions with the system. The trained models
are then deployed in a wide range of real experimental conditions.
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Extended Fig. 2: a) Resulting imaging optimization objectives from Kernel-TS at 3 different timesteps (10 - cyan,
100 - grey, and 190 - red) for 50 independent models are presented for increasing signal ratio (top to bottom). With
time, Kernel-TS acquires images that have a higher preference score for both fluorophores (purple contour lines)
and converges into a similar imaging optimization objective space (red points). b) The standard deviation (STD)
of the imaging optimization objectives and of the preference scores decreases during the optimization (cyan to red)
supporting the convergence of Kernel-TS in a specific region of the imaging optimization objective space for both
fluorophores. The dashed line separates the imaging optimization objectives (R: Resolution, P: Photobleaching,
and S: Signal ratio) from the preference network (PN). c¢) Typical pySTED simulations on two different fluorophores
(top/bottom) using the optimized parameters on fluorophore A (top) or B (bottom). See Supplementary Tab. [9] for
imaging parameters.
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Extended Fig. 3: The agent was deployed on a real STED microscope for the imaging of diverse neuronal proteins in
dissociated hippocampal cultures. In distribution a) (left) The clusters of CaMKII-g are revealed in all acquired
images. (right) The size of the clusters are extracted from the acquired images (dashed vertical line represents the
median of the distribution) and compared to the values that were previously reported in Ferreira et al. |1] (solid
vertical line). Out of distribution b) A bright fluorophore of PSD95 is simulated experimentally (Methods). The
STED images reveal the presence of nano-clusters. The minor (blue) and major (orange) axis length of the nano-
clusters are measured and compared with the values reported in Nair et al. |2].
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Extended Fig. 4: Images acquired by the RL agent in a real experiment on a different microscope. NPC was
stained with the STAR-RED fluorophore. The sequence of acquired images goes from top left to bottom right. The
confocal images before (CONF1) and after (CONF2) are presented for photobleaching comparison. The CONF1
image is normalized to the CONF2 image. The STED images are normalized to the 99'" percentile of the intensity
of the CONF1 image. Images are 5.12um X 5.12pm. The evolution of the parameter selection (left; STED: STED
power, Exc.: Excitation power, Pdt.: Pixel dwelltime) and imaging optimization objectives (right; R: Resolution, P:
Photobleaching, S: Signal ratio) are presented.


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.25.586697; this version posted July 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

. References

= 1.

Ferreira, J. S. et al. Distance-Dependent Regulation of NMDAR Nanoscale Organization along Hip-
pocampal Neuron Dendrites. Proceedings of the National Academy of Sciences of the United States of
America 117, 24526-24533. (2023) (Sept. 2020).

Nair, D. et al. Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dy-
namically Organized in Nanodomains Regulated by PSD95. Journal of Neuroscience 33, 13204-13224.
(2023) (Aug. 2013).


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

d —

Imaging parameters Acquisition
Fluorophore ‘
properties T
>0
=3
[s)
Datamap 2
- " pySTED
1
[ Excitation Depletion Detector Objective ] m
laser laser lens . . 3.
= * =
i) N £
. e

Datamap - Emitters

S ﬂﬂ42ﬂlﬂ9ﬂﬂ5ﬂ]

aanboy (

Image - Photons
ksTED

Probability

L A
NN N[5 [ AEO0 S0

Datamgp

. - B

PSF approx.

-Net

i(



https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

STED: 100 mW STED: 200 mW
Exc.: 2 yW Exc.: 3 yW
Pdt.: 20 ps Pdt.: 30 us

Bckg: 40 kHz Bckg: 100 kHz

C

0.8{Fibers Rings

*

CLO.? e 3
<C

0.6

05 0.5 [Fibers Rings

~ 0 N N+S (¢} N N+S "~ 1.00 0.75 0.50 0.25 0.10 1.00 0.75 0.50 0.25 0.10

Dataset Dataset Ratio of training dataset Ratio of training dataset


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

Tubulin

NPC

@J; T

Fluorophore A (50 repetitions)

Fluorophore B (50 repetitions)

QJ; ;

Photobleaching (%) Photobleaching (%) Photobleaching (%)

Photobleaching (%)

Fluorophore A Fluorophore B Fluorophore A Fluorophore B
100 PrefNet w0-5' N 0.5 T
75410 | 0@ §o04{mages] |\ 04 '
100 Q@ |
50l 71 | .8 3 ?0.3 i ?0.3 :
[ [
fg 302 71302 :
281 T NG Do 22 0.1 !
0 . : . ; ®0.0 L% '
100 R P S PN R P S PN
Param. from A Param. from
75 1 ;>é§
50+ E v B
ox
N <
254 1 S e
02 9 o
0 AL “A L g
3
100 5
J ] [k
75 Sé-
ag
50+ b V=
i
25 1 &=
O 0.9 /\ 0.9 /\
T T T T 0
100 e
2
i ] ()
75 o& 8
®2 6
50 . -%2
o
o
254 - g - 83
j—— O j—— O
0 .\ T .\ T
0 50 100 1500 50 100 150

Resolution (nm)

Resolution (nm)

R: 69 nm
3

f
5] I
e 4 Images|
23
22
2
(20|
0
0 100 200
Resolution (nm)
h
5
o4
23
22
2
N1 Images|
N
0 100 200

Resolution (nm)


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

b

@
c
L
5]
<
o

—++ —

Threshold 1

=

TThreshold 2

Fluorophore Exc. STED

Photons

-+

Step 3

00N

" = ¥

Photons

>
>

Sample STED Power
Cc

Flurophore B

E
s
5
S
o

Q.

First 10 images

Decision time

Models

>
>
1

SI9PON

Decision time 2

Last 10 images

Models

Pixel dwelltime

SISPOIN

.0.28
00.26
X

£0.24
=0.22
50.20

ff

90" - 10"
quantile

e
n0.12

t0.10
30.08
(@]

2006
£0.04

1.0
c 0.8
£0.6
2
go04
002

Fluorophore A
*cluster colors

10

0 100
Time steps

=4

PSD95

0 100
Time steps

0012345

Clusters

Fluorophore B|
*cluster colors

31

012345
Clusters

*cluster colors

N~

P

Images

é«@%*"‘?&‘«\\“ Ot A

£200

§150{ L=

5100
50

Resol

0 0 1020304050
Images

0.0 0 1020304050
Images

0 1020304050
Images


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

a 1) Fluorophore State Agent
s 5) Parameters
2) S;Alctur; O Wsm CONF( ?NFH
4) state . |:|
] s BLY J

%+ —> N - s
s |ao|oo|a1|o1lan|on|<o>|@-
c Training Steps: d Training Steps:

1.0 Policy| Opt. Obj. 0.0 1.0 Policy! Opt. Obj.
(] ' (]
%0.8 - 05 %0.8
=0.6 § 05 =0.6
£0.4 & £0.4
202 1.0 202

O:O 15 0. Timesleg;

O¢t o R P S 0 10 20 30 O ¢l o R P S
‘5'«/ e Timesteps 6'\?’ e

500 nm

E CONF2 -.!...n!..


https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

F-actin SiR-Actin

=-=Measured Reported
0.5
5 0.4
£
903
o
x 0.2
0.1
0.0 0.0 0.0
100 150 200 250 0 50 100 150 100 150 200 250
Periodicity (nm) Diameter (nm) Periodicity (nm)
Tubulln STAR-| RED

Policy | Opt. Obj.
1

Policy  Opt. Obj.

0.0{[EETm
STEDExc. Pdt. R P



https://doi.org/10.1101/2024.03.25.586697
http://creativecommons.org/licenses/by/4.0/

