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Abstract 17 
 18 
Measurements of neural responses to identically repeated experimental events often exhibit large amounts 19 
of variability. This noise is distinct from signal, operationally defined as the average expected response 20 
across repeated trials for each given event. Accurately distinguishing signal from noise is important, as 21 
each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and 22 
it is important not to confuse one for the other. Here, we describe a principled modeling approach in which 23 
response measurements are explicitly modeled as the sum of samples from multivariate signal and noise 24 
distributions. In our proposed method—termed Generative Modeling of Signal and Noise (GSN)—the signal 25 
distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. 26 
Importantly, GSN improves estimates of the signal distribution, but does not provide improved estimates of 27 
responses to individual events. We validate GSN using ground-truth simulations and show that it compares 28 
favorably with related methods. We also demonstrate the application of GSN to empirical fMRI data to 29 
illustrate a simple consequence of GSN: by disentangling signal and noise components in neural 30 
responses, GSN denoises principal components analysis and improves estimates of dimensionality. We 31 
end by discussing other situations that may benefit from GSN's characterization of signal and noise, such 32 
as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is 33 
provided with both MATLAB and Python implementations. 34 
  35 
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Introduction 36 
 37 
Nominally identical sensory, cognitive, and/or motor events often result in highly variable neural activity 38 
measurements (Goris et al., 2014; Ito et al., 2020; Rabinowitz et al., 2015; Tolhurst et al., 1981). Such 39 
variability is termed noise, and manifests in all techniques for measuring brain activity, including 40 
electrophysiology, optical imaging, electroencephalography, magnetoencephalography, and functional 41 
magnetic resonance imaging (fMRI). Noise may originate from multiple sources. Noise can arise for 42 
instrumental reasons (e.g., electrical noise, head motion) or physiological reasons (e.g., cardiac noise), but 43 
can also reflect genuine variability in neural activity. Another important aspect of noise is its complex 44 
multivariate nature: variability in activity is not independent across units (e.g., neurons, voxels, channels) 45 
but typically exhibits structured correlations (Biswal et al., 1995; Cohen and Kohn, 2011; Hazon et al., 2022; 46 
Kanitscheider et al., 2015; Mell et al., 2021; Moreno-Bote et al., 2014). To mitigate the effects of noise, 47 
neuroscientists usually average neural responses across repeated trials associated with the same event. 48 
The underlying premise is that the object of interest, the signal, is not the neural response observed on any 49 
single trial but the average expected neural response across a large (infinite) number of trials. 50 
 51 
Many research programs in systems, cognitive, and computational neuroscience focus on studying signal. 52 
For example, one might seek to characterize the tuning of sensory neurons by averaging responses across 53 
several trials measured for each stimulus condition. But there are also scientific motivations for 54 
characterizing and understanding noise, which may play an important role in neural computation (Panzeri 55 
et al., 2022; Ringach, 2009; Uddin, 2020). One example approach, originating in computational 56 
neuroscience, investigates the correlational structure of noise in the responses of individual neurons and 57 
explores how these noise correlations affect the information capacity of a neural population code (Averbeck 58 
et al., 2006; Azeredo da Silveira and Rieke, 2021; Cafaro and Rieke, 2010; Zylberberg et al., 2016). Another 59 
approach, commonly referred to as resting-state functional connectivity, leverages spontaneous activity 60 
fluctuations to parcellate brain areas and networks (Eickhoff et al., 2018) and to develop biomarkers for 61 
individuals (Gratton et al., 2020) or populations (Zhang et al., 2021). Perhaps the deepest potential 62 
interpretation of noise is that it reflects critical latent cognitive processes that are not directly controlled by 63 
the experimental paradigm. One example of this view is the theory that noise reflects statistical priors and/or 64 
probabilistic neural computations (Ma et al., 2006; Orbán et al., 2016; van Bergen et al., 2015). 65 
 66 
Given that both signal and noise are of potential interest, a challenge faced by neuroscientists is that signal 67 
and noise are entangled in neural activity measurements, and it is not immediately obvious how to separate 68 
the two components. The standard approach is to average responses across trials and assume that the 69 
result adequately isolates signal from noise. However, while simple and straightforward, the approach of 70 
trial averaging does not necessarily produce perfectly accurate signal measures, a point that has been 71 
previously recognized (Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Stringer et al., 2019). To 72 
illustrate, we perform a simple simulation in which two units exhibit positive noise correlation but no signal 73 
correlation (Figure 1). When the number of trials per condition is large, trial averaging indeed suppresses 74 
the noise, but noise correlation is still observed in the trial-averaged results (panel A). When the number of 75 
trials per condition is small, noise correlation in the trial-averaged results is even more substantial (panel 76 
B). Finally, to further accentuate the point, we simulate a situation where there is no signal at all (panel C): 77 
this case clearly shows how noise structure seeps into the trial-averaged results. The residual influence of 78 
noise on trial-averaged results is a problem as it may lead to inaccurate estimates of signal correlation 79 
(Pospisil and Bair, 2021a), and inaccurate interpretations of commonly performed multivariate analyses, 80 
such as principal components analysis, representational similarity analysis, and analysis of neural 81 
dimensionality. In short, what is thought to be due to signal might actually be due to noise. Indeed, there 82 
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has been recent interest in methods for identifying and isolating signal and noise components in high-83 
dimensional neural data (Pospisil and Pillow, 2024; Stringer et al., 2019; Williams and Linderman, 2021). 84 

 85 

 86 
 87 
Figure 1. Trial averaging is insufficient for removing the effects of noise. Here we perform simulations to 88 
illustrate how noise correlations persist after trial averaging (code available at https://osf.io/fc589). A, In this 89 
simulation, responses to 9 conditions are measured from 2 units. The left shows the signal, i.e. responses in the 90 
absence of noise. The middle shows the noise, i.e. trial-to-trial response variability for a fixed condition; the noise 91 
is drawn from a zero-mean multivariate Gaussian distribution (ellipse indicates a Mahalanobis distance of 2). The 92 
right shows responses averaged across 40 trials for each condition (black lines join the trial average to the 93 
corresponding signal). B, Same as panel A except that 4 trials per condition are used. C, Same as panel B except 94 
that the signals associated with the 9 conditions are all set to zero. 95 

 96 
In this paper, we propose an analysis technique for disentangling signal and noise covariance in neural 97 
response measurements. Our approach, termed generative modeling of signal and noise (GSN), builds and 98 
fits a model of the signal and noise components of measured multivariate neural responses. The model is 99 
generative in the sense that the process by which measurements are generated is explicitly modeled, and 100 
the model is distributional in the sense that it attempts to characterize how neural responses are distributed 101 
across conditions. (This latter characteristic contrasts with tuning-based models that attempt to characterize 102 
how neural responses vary as a function of specific properties of experimental conditions.) First, we lay out 103 
the principles underlying GSN and validate GSN through a series of simulations with a known ground truth. 104 
In conducting these simulations, we also compare the performance of GSN to that of several related 105 
techniques. Next, we demonstrate the application of GSN to visually evoked functional magnetic resonance 106 
imaging (fMRI) responses in the publicly available Natural Scenes Dataset (Allen et al., 2022). This provides 107 
intuition for how GSN fares on empirical brain data and highlight ways in which GSN can be leveraged 108 
within computational neuroscience. Finally, we use the example data to illustrate how GSN can be used to 109 
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improve the results of principal components analysis. Specifically, by disentangling signal and noise, GSN 110 
provides a cleaner estimate of the signal in the data and its properties (eigenspectra and dimensionality). 111 
 112 
While elements of the statistical components comprising GSN can be found in prior work (Duan et al., 2023; 113 
Ledoit and Wolf, 2004; Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Schäfer and Strimmer, 2005; 114 
Stringer et al., 2019; van Bergen and Jehee, 2021; Yatsenko et al., 2015), novel contributions of the present 115 
work include integrating principles and techniques into a clearly articulated framework, developing an 116 
algorithm and associated code toolbox for optimally fitting the GSN model, and demonstrating several ways 117 
in which GSN may be useful for neuroscience applications. The code used in this paper is available at 118 
https://osf.io/wkyxn/, and the code toolbox implementing GSN is available at 119 
https://github.com/cvnlab/GSN/. 120 
  121 
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Results 122 
 123 
Generative signal and noise modeling approach 124 
 125 
Consider the general situation where responses are measured from a set of units (e.g., voxels, neurons, 126 
channels) to several experimental conditions (e.g. stimuli) and several trials are collected for each condition. 127 
The core idea of the generative signal and noise (GSN) approach is to model each response as reflecting 128 
the sum of a sample drawn from a multivariate distribution associated with signal (defined as the response 129 
to different conditions in the absence of noise) and a sample drawn from a multivariate distribution 130 
associated with noise (defined as trial-to-trial response variability for a fixed condition). We assume the 131 
noise distribution is zero-mean and assume the noise sample is independent of the signal sample. We 132 
allow the signal and noise distributions to have potentially different covariances. 133 
 134 
A schematic illustrating GSN is shown in Figure 2. This schematic depicts a situation in which responses 135 
are measured from two units to 40 conditions with three trials per condition. Panel A shows the ground-136 
truth signal distribution. Red dots are samples from the distribution and indicate noiseless responses to the 137 
40 conditions. One of the dots is highlighted in blue, marking an example condition. Panel B shows the 138 
ground-truth noise distribution. Blue x's indicate three samples from the distribution; these are noise 139 
samples associated with the example condition. Panel C shows the data distribution, whose mean and 140 
covariance are equal to the sum of the means of the signal and noise distributions and the sum of the 141 
covariances of the signal and noise distributions, respectively. The red x's indicate the measured responses 142 
(obtained as the sum of signal and noise), with the blue x's highlighting the responses associated with the 143 
example condition. Overall, panels A–C illustrate how signal and noise distributions give rise to observed 144 
measurements. 145 
 146 
The core challenge in GSN is estimating the unknown signal and noise distributions given a set of 147 
measurements. The basic procedure that we propose is illustrated in panels D–F. Responses are averaged 148 
across trials and the mean and covariance of the trial-averaged responses are computed, as shown in 149 
panel D (red diamonds indicate trial-averaged responses; the blue diamond corresponds to the example 150 
condition). This procedure yields the estimate of the data distribution. After subtracting the mean response 151 
from the original non-trial-averaged responses to each condition, the covariance of the residuals is 152 
computed and then averaged across conditions, as shown in panel E (red x's indicate the residuals; blue 153 
x's indicate the residuals associated with the example condition). This yields the estimate of the noise 154 
distribution. Finally, the parameters associated with the noise distribution are subtracted from the 155 
parameters associated with the data distribution, as shown in panel F. This is the key step that corrects for 156 
the noise that persists after trial averaging (see Figure 1), and yields the estimate of the signal distribution. 157 
In order to ensure positive semi-definite covariance estimates, the full procedure is more complicated than 158 
what is presented here (please see Methods for details). 159 

 160 
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 161 
 162 
Figure 2. Schematic of GSN. Here we depict an example involving n = 2 units, c = 40 conditions, and t = 3 trials 163 
per condition (code available at https://osf.io/7k2m5). In each plot, the black cross and black ellipse indicate the 164 
mean and spread (Mahalanobis distance of 2) of a multivariate Gaussian distribution. For definitions of symbols, 165 
please see Methods. A, Signal. The signal indicates responses to different conditions in the absence of noise and 166 
is modeled as a multivariate distribution. B, Noise. The noise indicates trial-to-trial variability for a given condition 167 
and is modeled as a zero-mean multivariate distribution. C, Data. The data are modeled as the sum of a sample 168 
from the signal distribution and a sample from the noise distribution. D, Estimate of data distribution. Given a set 169 
of measured responses, we compute trial-averaged responses and estimate the mean and covariance of these 170 
responses, yielding the estimate of the data distribution. E, Estimate of noise distribution. We compute the 171 
covariance of responses to each condition and average across conditions, yielding the estimate of the noise 172 
distribution. F, Estimate of signal distribution. We subtract the estimated parameters of the noise distribution from 173 
the estimated parameters of the data distribution, yielding the estimate of the signal distribution. 174 

 175 
Validation of GSN through ground-truth simulations 176 
 177 
GSN attempts to determine the signal and noise distributions that underlie a set of measured responses. 178 
To help validate GSN, we performed ground-truth simulations involving 10 units whose ground-truth signal 179 
and noise distributions have specific structure (Figure 3). For the signal distribution, each unit was set to 180 
have a variance of 1, and units 1 through 5 were given positive correlation (r = 0.5; covariance = 0.5). For 181 
the noise distribution, each unit was set to have a variance of 2, and units 4 through 8 were given positive 182 
correlation (r = 0.5; covariance = 1).  183 
 184 
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 185 
 186 
Figure 3. Estimation of signal and noise distributions. Here we show results of simulations that assess how 187 
well GSN estimates the signal and noise distributions that underlie a set of measurements (code available at 188 
https://osf.io/5uskr). All simulations involve 10 units whose responses are generated as the sum of a sample from 189 
a signal distribution and a sample from a noise distribution. Both distributions are multivariate Gaussian with zero 190 
mean but have different covariances (as depicted). For different combinations of number of conditions (samples 191 
from the signal distribution) and number of trials (samples from the noise distribution for each condition), we 192 
perform 1,000 simulations. In each simulation, we generate responses and analyze the resulting data using three 193 
different methods: ‘Naive’ refers to simple heuristic methods for estimating signal and noise covariance (see main 194 
text), ‘No shrinkage’ is the GSN method with standard covariance estimation, and ‘Shrinkage’ is the GSN method 195 
with shrinkage-based covariance estimation. Blue number labels highlight specific aspects of the results that are 196 
discussed in the main text. A–C, Detailed inspection of results for specific condition and trial numbers. In the 197 
scatter plots, purple and brown dots indicate diagonal and off-diagonal elements of the covariance matrix, 198 
respectively, and error bars indicate standard deviation across simulations. At the far right are plots of the 199 
eigenspectra (mean across simulations) produced by the three methods, as well as the ground-truth eigenspectra. 200 

 201 
To gain insight, we plot detailed inspections of the performance of different methods for recovering ground-202 
truth signal and noise distributions (Figure 3). First, consider the performance of naive methods for signal 203 
and noise estimation (‘Naive’). For signal estimation, the naive method is to simply average responses 204 
across trials and compute the sample covariance of the trial-averaged data (we refer to this method as 205 
'Signal (Naive)'). We see that this method incurs upward bias in the estimated signal covariance values; 206 
this can be observed in the qualitative image plots as the seeping of the noise covariance into the signal 207 
estimate (panel A, location 1) and in the quantitative scatter plots as dots lying above the line of unity (panel 208 
A, location 2). The bias is due to the fact that although trial averaging reduces noise, the trial-averaged data 209 
are still influenced by noise (Pospisil and Pillow, 2024). Thus, it is critical for an estimation procedure to 210 
account for this persistent noise. For noise estimation, the naive method is to simply remove the mean 211 
response for each condition, aggregate the residuals across conditions, and then proceed to covariance 212 
estimation (we refer to this method as 'Noise (Naive)'). We see that the naive method for noise estimation 213 
incurs downward bias in the estimated noise covariance values; this can be observed in the image plots 214 
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(panel A, location 3) and the scatter plots (panel A, location 4). The reason for this bias is that the naive 215 
method fails to account for the reduced degrees of freedom in the de-meaned responses: aggregating de-216 
meaned responses across conditions involves using 𝑐𝑡 − 1  in the denominator of the calculation of 217 
covariance, whereas the correct approach is to use 𝑡 − 1 in the denominator of the calculation of covariance 218 
for each condition, which is equivalent to a final denominator (after pooling) of 𝑐(𝑡 − 1) = 𝑐𝑡 − 𝑐. Thus, the 219 
denominator is inflated in the naive method, leading to downward bias in the estimated covariance values. 220 
 221 
We now proceed to the GSN method for signal and noise estimation. One version of GSN is coupled with 222 
standard covariance estimation (‘No shrinkage’), providing estimates of signal covariance (referred to as 223 
'Signal (No shrinkage)' and of noise covariance (referred to as 'Noise (No shrinkage)'). These estimates are 224 
unbiased (dots in the scatter plots lie on the line of unity) but suffer from high variance (error bars indicating 225 
standard deviation across simulations are large). A second version of GSN is coupled with shrinkage-based 226 
covariance estimation (‘Shrinkage’), providing estimates of signal covariance (referred to as 'Signal 227 
(Shrinkage)') and of noise covariance (referred to as 'Noise (shrinkage)'). These estimates have reduced 228 
variance (brown dots indicating off-diagonal elements have smaller error bars), but are biased (the brown 229 
dots lie below the line of unity). Notice that the amount of bias is larger in scenarios with low amounts of 230 
data (e.g., panel A, location 5) than in scenarios with high amounts of data (e.g., panel C, location 6). 231 
 232 
Besides assessing how well the different methods estimate covariance, we can also assess how well the 233 
different methods estimate eigenspectra. We observe that the sample covariance tends to underestimate 234 
dimensionality. This is most visible in the estimation of signal covariance when the number of conditions is 235 
small (panel A, location 7, red +'s). By incorporating shrinkage (panel A, location 7, red circles), the match 236 
to the ground-truth eigenspectrum is improved (panel A, location 7, red dashed line). Notice that the 237 
difference between the two methods diminishes in situations where a relatively large number of samples is 238 
available, such as estimation of noise covariance (panel B, location 8) or when the number of conditions is 239 
increased (panel C, location 9). Finally, consistent with earlier observations, we see that naive signal 240 
estimation produces eigenvalues that are too high (pink x's; reflecting the seeping of the noise covariance 241 
into the signal covariance estimate) and that naive noise estimation produces eigenvalues that are too low 242 
(gray x's; reflecting the lack of compensation for the reduced degrees of freedom). 243 
 244 
We summarize the overall performance of the different methods by plotting ground-truth recovery of 245 
covariance as a function of number of trials (Figure 4A) and number of conditions (Figure 4B). In plotting 246 
these results, we also show the performance of an alternative method that is often used to estimate signal 247 
covariance (Pospisil and Pillow, 2024; Stringer et al., 2019). This method involves computing covariance 248 
of responses across independent splits of a given set of data (we refer to this method as 'Split-half'). The 249 
intuition underlying the Split-half method is that the signal is expected to repeat across splits, whereas the 250 
noise is not expected to do so. Finally, we show results for additional scenarios beyond the simple idealized 251 
scenario depicted in Figure 3. In these additional scenarios (Figure 4C), we use randomly generated signal 252 
and noise covariances and explore the impact of varying the number of units and varying the dimensionality 253 
of the signal and noise distributions (see Methods for details). 254 
 255 
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 256 
 257 
Figure 4. Ground-truth recovery of covariance. Here we quantify how well different methods recover signal 258 
and noise covariance (code available at https://osf.io/5uskr and https://osf.io/3yvtg). Performance is quantified 259 
using coefficient of determination (𝑅!) with respect to values in the upper triangle of the covariance matrix 260 
(including the diagonal). The 'Split-half' method involves computing covariance across independent splits (trials) 261 
of the data. A–B, Recovery performance for the simple scenario illustrated in Figure 3. We vary the number of 262 
trials while holding the number of conditions fixed at 50 (panel A), and we vary the number of conditions while 263 
holding the number of trials fixed at 5 (panel B). Markers indicate the mean across 1,000 simulations. C, Recovery 264 
performance for a set of scenarios in which the number of units is varied (rows) and the dimensionality of the 265 
signal and noise is varied (columns). In these scenarios, signal and noise eigenspectra are governed by the 266 
power-law function 𝑑"# where d is the 1-indexed dimension number and 𝛼 is an exponent parameter. We fix the 267 
number of trials at 5 and vary the number of conditions. Markers indicate the mean across 50 simulations. 268 

 269 
We find that in general, the noise distribution is easier to estimate than the signal distribution. This makes 270 
sense since all samples contribute to estimating the noise distribution, whereas only the mean of the 271 
samples associated with a condition contribute to estimating the signal distribution. We also see that across 272 
the board, the shrinkage method performs better than or as well as the other methods, with larger 273 
improvements in low-data regimes (e.g. panel B, location 1). This is consistent with the idea that although 274 
the No shrinkage method converges to the correct covariance when results are averaged across a large 275 
(infinite) number of simulations (i.e. it is unbiased), in individual simulations the Shrinkage method produces 276 
more accurate results than the No shrinkage method. Moreover, the benefit of shrinkage is especially 277 
pronounced in scenarios with high dimensionality (e.g., panel C, locations 2 and 3). This reflects the fact 278 
that non-regularized covariance estimates tend to underestimate dimensionality and shrinkage enables 279 
covariance estimates to become less correlated and hence higher-dimensional. 280 
 281 
Notably, the Split-half method performs very similarly to the No shrinkage method. This makes sense from 282 
a theoretical standpoint: noise is expected to average out when computing covariance across splits and 283 
neither method incorporates shrinkage. However, notice that the Split-half method does systematically 284 
slightly underperform the No shrinkage method at low numbers of conditions (e.g., panel C, locations 4 and 285 
5). One reason this may be the case is that the Split-half method is sensitive to stochastic sampling issues: 286 
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results are dependent on exactly which trials are placed into each split, and performance presumably 287 
suffers unless one averages over all possible splits (which may be computationally impractical).  288 
 289 
A final observation is that the limiting factor for accurate estimation appears to be the number of conditions 290 
available. In the simple scenario (as illustrated in Figure 3), if we fix the number of conditions at 50, even 291 
if we greatly increase the number of trials, ground-truth recovery of the signal reaches a plateau that is 292 
lower than 100% (Figure 4, panel A, location 6). This reflects the fact that although additional trials are 293 
helpful for reducing noise in the responses to individual conditions, the quality of signal covariance 294 
estimation is still limited by the number of samples drawn from the signal distribution. In contrast, if we fix 295 
the number of trials to 5, as we increase the number of conditions, ground-truth recovery of the signal 296 
approaches 100% (panel B, location 7). In other words, even if the number of trials per condition is low, we 297 
can achieve accurate recovery of signal and noise distributions as long as we sample a sufficient number 298 
of conditions. This means that when designing an experiment in which we can either sample more trials 299 
per condition or sample more conditions, if one's goal is to accurately estimate signal and noise covariance, 300 
it is more important to sample many conditions than to sample many trials per condition. Alternatively, if 301 
one's goal is to obtain accurate estimates of the mean response to each condition, sampling more trials per 302 
condition is more important. 303 
 304 
Recovery of effective dimensionality and power-law exponent 305 
 306 
There has been increasing interest in studying the dimensionality of neural representations (e.g. (Canatar 307 
et al., 2023; Jazayeri and Ostojic, 2021; Pospisil and Pillow, 2024; Stringer et al., 2019)). A simple and 308 
useful metric of dimensionality is effective dimensionality (ED) (Del Giudice, 2021), which summarizes the 309 
distribution of eigenvalues in an eigenspectrum with a single number. A different metric stems from 310 
modeling eigenspectra using a power-law function (Stringer et al., 2019). Power-law functions are straight 311 
lines in log-log space; hence, a convenient metric of dimensionality is the slope of a line corresponding to 312 
a power-law function in log-log space, which is equivalent to the exponent of the power-law function. An 313 
interesting open question is how well the signal and noise estimates provided by GSN enable these 314 
dimensionality metrics to be recovered. We therefore augmented our simulations with additional analyses. 315 
Whereas our earlier analyses (in Figure 4) quantify how well a given method recovers signal and noise 316 
covariance values in terms of variance explained (𝑅!), here we sought to quantify how well a given method 317 
recovers ground-truth values for ED and the power-law exponent. Hence, there are two differences in the 318 
evaluations: one difference concerns the quantity being recovered (covariance values vs. summary metrics 319 
of covariance structure), and the other difference concerns the evaluation criterion (variance explained vs. 320 
absolute difference between the ground-truth value and the estimated value). 321 
 322 
For the same scenarios shown in Figure 4C, we calculated the ED and power-law exponent associated 323 
with the ground-truth signal and noise covariances, and compared these ground-truth values to the 324 
estimates provided by different methods (Figure 5). For each data point (reflecting a particular combination 325 
of scenario, number of conditions, and number of trials), we performed 50 simulations and computed the 326 
average estimate obtained across simulations. This allows us to investigate whether we can expect a given 327 
method to recover, on average, the ground-truth ED and power-law exponent, or whether the method 328 
exhibits bias. In conducting these analyses, we also included for comparison the performance of two 329 
methods that have been recently proposed for estimation of signal eigenspectra: cvPCA (Stringer et al., 330 
2019), which is based on computing variance across independent splits of a given set of data, and MEME 331 
(Pospisil and Pillow, 2024), which is based on optimizing an eigenspectrum model to match the moments 332 
of the signal eigenspectrum estimated from a given set of data (see Methods for details). 333 
 334 
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 335 
 336 
Figure 5. Ground-truth recovery of effective dimensionality and power-law exponent. Here we quantify how 337 
well different methods recover two summary metrics of signal and noise eigenspectra: effective dimensionality 338 
and power-law exponent (code available at https://osf.io/3yvtg). Recovery performance is plotted for the same 339 
scenarios shown in Figure 4C. The cvPCA method estimates the signal eigenspectrum by projecting two splits 340 
of a given set of data onto principal components (PCs) and calculating the dot product between the two sets of 341 
projections obtained for each PC. The MEME method estimates the signal eigenspectrum by estimating signal 342 
eigenmoments from a given set of data and then adjusting the parameters of an eigenspectrum model to match 343 
the estimated eigenmoments. Markers indicate the mean across 50 simulations, and the horizontal dotted line 344 
indicates the ground-truth value. Note that the Split-half, cvPCA, and MEME methods do not provide estimates 345 
for the noise (and are therefore not plotted). 346 

 347 
The simulation results show a variety of interesting observations. On the whole, several of the methods 348 
perform reasonably well: GSN (No shrinkage), GSN (Shrinkage), Split-half, and MEME all provide estimates 349 
that converge towards ground-truth values at large number of conditions (e.g. locations 1, 2, 3). Hence, 350 
these methods provide the means to track and recover dimensionality of different scenarios. However, all 351 
methods exhibit bias at low numbers of conditions (e.g. location 4), and biases sometimes persist even for 352 
numbers of conditions that may seem relatively large, such as 100 (e.g. location 5). This underscores the 353 
point that collecting sufficient amounts of data is critical for accurately estimating dimensionality. As might 354 
be expected, the necessary amount of data scales with the dimensionality of the scenario being 355 
characterized (e.g. compare locations 6, 7, 8). Also, similar to earlier observations (see Figure 4), it is 356 
easier to recover properties of noise than properties of signal. 357 
 358 
While ranking methods is tricky given the high complexity of the patterns of results, we venture some 359 
general conclusions. The worst performing methods are Naive and cvPCA, as they tend to exhibit high bias 360 
even for large numbers of conditions (e.g. locations 9, 10). The Split-half and GSN (No shrinkage) methods 361 
perform at about the same level (echoing results in Figure 4), and converge towards ground-truth values 362 
at modest rates. In contrast, GSN (Shrinkage) converges towards ground-truth values more rapidly. The 363 
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best performing method is MEME which exhibits the fastest convergence to ground-truth values. However, 364 
the MEME method comes with limitations, including assumptions about the shape of the eigenspectrum 365 
(see Discussion). 366 
 367 
It is interesting to note that qualitatively different patterns of results can be found for ED and power-law 368 
exponent. For example, performance of a given method can be relatively poor for power-law exponent 369 
(location 10) but relatively good for ED (location 11). We interpret this as simply reflecting the fact that 370 
different metrics emphasize different aspects of eigenspectra. Another observation is that the various 371 
methods perform well even when the number of units increases 5-fold from 10 to 50. Presumably, what is 372 
relevant is not only the raw number of units but also the dimensionalities of the signal and noise that are 373 
distributed across the units (which might be low). 374 
 375 
To further explore the generality of our conclusions, we performed simulations for an additional scenario 376 
involving biologically realistic signal and noise covariances. Results are generally similar, except for 377 
complications related to the recovery of power-law exponent (see S1 Figure for details). Finally, we caution 378 
that while our simulations indicate reasonable performance across a range of settings, our simulations are 379 
not comprehensive (e.g., we did not specifically vary the relative magnitudes of signal and noise) and 380 
practitioners may wish to perform simulations matched to the system being studied if precise values are 381 
critical. 382 
 383 
Application of GSN to empirical data 384 
 385 
Signal and noise covariance estimates 386 
 387 
We demonstrate the application of GSN to empirical data taken from the 7T fMRI Natural Scenes Dataset 388 
(NSD) (Allen et al., 2022). NSD consists of human brain responses to over 70,000 visually presented natural 389 
scenes distributed across eight participants. Each image is presented up to three times to a given 390 
participant. This limited number of presentations reflects the prioritization of sampling a large number of 391 
distinct images over sampling a large number of trials per image (see also (Stringer et al., 2019)). As such, 392 
NSD can be viewed as an especially challenging dataset for methods that seek to accurately disentangle 393 
signal from noise. 394 
 395 

 396 
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 397 
Figure 6. Application of GSN to example fMRI data. Here we demonstrate the application of GSN to example 398 
data from FFA-1 (330 vertices ´ 10,000 images ´ 3 trials) (code available at https://osf.io/yxrsp). A, Signal and 399 
noise covariance estimates. In addition to GSN outputs (first and second columns), we show results from naive 400 
estimation of signal covariance which involves simply calculating the covariance of trial-averaged data (third 401 
column). B, Results for shuffled data. As a control, we shuffled responses across all images and trials and re-402 
analyzed the data. C, Conversion to correlation units. The results of panel A are re-plotted after converting 403 
covariance to correlation units. D, Estimates as a function of amount of data. We varied the fraction of images to 404 
which GSN is applied (e.g. 1/16 corresponds to 625 of 10,000 images being used). This was done such that data 405 
subsets were mutually exclusive of one another. 406 

 407 
As an illustrative example, we extracted responses from right hemisphere fusiform face area subdivision 1 408 
(FFA-1) in one participant (Participant 1), yielding 330 vertices ´ 10,000 images ´ 3 trials. As a pre-409 
processing step, we normalized the responses associated with each vertex to have zero mean and unit 410 
variance. We then performed GSN on these data, yielding estimates of signal and noise covariance (Figure 411 
6). 412 
 413 
A number of observations can be made from the results. First, notice that the magnitude of the noise is 414 
generally larger than the magnitude of the signal (panel A, compare diagonal of noise covariance with 415 
diagonal of signal covariance). The fact that response measurements contain large trial-to-trial variability 416 
even when holding the experimental manipulation (stimulus) constant is typical in fMRI and many other 417 
measurement techniques. Second, we observe that the covariance structure of the noise is different from 418 
that of the signal, though there are some similarities (panel A, compare middle image with left image). A 419 
naive method that averages responses across trials yields covariance structure (panel A, right image) that 420 
is a mixture of signal covariance and noise covariance, since trial averaging reduces but does not eliminate 421 
noise. Third, as a control, if we fully shuffle responses across images and trials, we see that values in GSN's 422 
estimated signal covariance become very low (panel B, left image). This makes sense since after shuffling, 423 
we do not expect to find reliable differences in responses across images. In contrast, the naive method fails 424 
to produce a good signal covariance estimate: even though there are no reliable differences in responses 425 
across images, trial averaging does not fully suppress the noise and the noise covariance seeps into the 426 
signal covariance estimate (panel B, right image). 427 
 428 
For visual comparison, we show covariance estimates after conversion to correlation units (panel C). One 429 
motivation for this conversion is to ensure that each unit contributes equally to subsequent analyses of the 430 
covariance estimates. Prominent differences between covariance and correlation are observed, reflecting 431 
the fact that there are substantial variations in signal-to-noise ratio across vertices (vertices with low signal 432 
strength are only weakly visible in the covariance matrices and become more visible in the correlation 433 
matrices). Finally, by applying GSN to different subsets of the data (panel D), we see that signal and noise 434 
can be reliably estimated in this dataset. For example, compare the signal and noise correlation estimates 435 
obtained using 1/4th of the data to those obtained using 1/16th of the data (these reflect two mutually 436 
exclusive subsets of the data). Reliable estimation is especially notable given that the dataset involved only 437 
three trials for each stimulus. Of course, in the limit of very low amounts of data (panel D, rightmost 438 
columns), estimation quality starts to suffer and we start to see strong influence of the shrinkage bias pulling 439 
off-diagonal elements towards zero. 440 
 441 
Although GSN does not require nor assume Gaussian distributions, if the signal and noise distributions are 442 
indeed Gaussian, then the mean and covariance parameters estimated by GSN are sufficient for a full 443 
characterization of a given dataset. Curious about the nature of the distributions in NSD, we performed 444 
inspections of the example data shown in Figure 6. In these inspections, we compare histograms of the 445 
empirical data to histograms of synthesized data that are generated using parameters of the GSN model 446 
coupled with the assumption of Gaussian signal and noise distributions (S2 Figure). We find a high level 447 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2024. ; https://doi.org/10.1101/2024.04.22.590510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590510
http://creativecommons.org/licenses/by/4.0/


 14 

of similarity for a histogram of trial-averaged responses (which helps focus on signal) and a histogram of 448 
mean-subtracted residuals (which helps focus on noise), suggesting that the signal and noise indeed have 449 
Gaussian-like distributions. 450 
 451 
Eigenspectra of signal and noise 452 
 453 
Principal components analysis (PCA) is a widely used method for dimensionality reduction and data 454 
visualization (Greenacre et al., 2022). Using the empirical data, we conducted several analyses that 455 
demonstrate the benefits of GSN for PCA. The first analysis (Figure 7A) pertains to eigenspectra, which 456 
are important as they indicate the amount of variance explained by different principal components. For each 457 
of the eight NSD participants, we computed the eigenspectrum of the covariance of the data after trial 458 
averaging (cyan lines); this represents a naive analysis in which responses are averaged across trials to 459 
reduce noise. We also computed the eigenspectrum of the signal covariance (red lines) and noise 460 
covariance (black lines) as estimated by GSN. To make the results directly comparable to the results of the 461 
naive analysis, we scaled the noise covariance by 1/3 (since trial averaging is expected to reduce the 462 
variance of the noise by a factor equal to the number of trials). Finally, we calculated the effective 463 
dimensionality associated with each of the three eigenspectra (numbers above each plot). 464 
 465 

 466 
 467 
Figure 7. GSN disentangles signal and noise in principal components analysis (PCA). Here we use PCA to 468 
analyze the results of GSN as applied to FFA-1 (code available at https://osf.io/f34bc). A, Eigenspectra. For each 469 
of the eight participants (P1–P8), we plot the eigenspectra of the signal and noise as estimated by GSN ('Signal 470 
(GSN)', 'Noise (GSN)'), as well as the eigenspectrum of the trial-averaged data ('Naive'). The main plots show 471 
results on a linear scale for up to the first 10 dimensions; the insets show results on a base-10 log-log scale for 472 
up to the first 100 dimensions. Numbers above each main plot indicate the effective dimensionality of the three 473 
eigenspectra. B, Split-half reliability of principal components. The cosine similarity between corresponding 474 
principal components from two split-halves of the data from each participant is plotted for up to the first 100 475 
dimensions. The thick black line indicates the mean across participants. C, Across-participant consistency. A 476 
common set of 515 images were viewed three times each by all participants. For each participant, we computed 477 
the projections of trial-averaged responses to these 515 images onto either (i) the first principal component of the 478 
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covariance of the trial-averaged data ('Standard PCA') or (ii) the first principal component of the signal covariance 479 
estimated by GSN ('GSN PCA'). The cosine similarity of these projections between each pair of participants is 480 
shown. 481 

 482 
We find that the three eigenspectra exhibit distinct patterns. In terms of overall magnitudes, eigenvalues 483 
are slightly higher for the signal than they are for the noise and are highest for the naive analysis. This is 484 
consistent with the interpretation that after averaging across 3 trials, the total variance contributed by signal 485 
is slightly higher than the total variance contributed by noise, and that the trial-averaged data have high 486 
total variance due to contributions from both signal and noise. In terms of how quickly eigenvalues fall off 487 
(independent of their magnitudes), we see that the eigenspectrum of the signal falls off relatively quickly 488 
and has low effective dimensionality (between 2–4). This indicates that the coding of natural scenes in FFA-489 
1 is low-dimensional (at least as measured in NSD). In contrast, we find that the eigenspectrum of the noise 490 
falls off more slowly and has higher effective dimensionality than the signal (between 9–18). This is most 491 
evident in the inset log-log plots, which show more clearly what occurs at high numbers of dimensions. 492 
Finally, we find that the eigenspectrum of the trial-averaged data falls somewhere in the middle, with a 493 
moderate effective dimensionality (between 4–10). Overall, these results illustrate how GSN separates 494 
signal and noise components in a set of data and enables the researcher to study their separate properties. 495 
The separation of noise from signal is important, as it compensates for the fact that in empirical data, noise 496 
corrupts the dimensionality of the measured signal (Del Giudice, 2021). 497 
 498 
Reliability of principal components 499 
 500 
A second analysis pertains to the reliability of the principal components derived from the data. We randomly 501 
split the images from each participant into halves, performed PCA separately on the two split-halves, and 502 
then computed the cosine similarity of principal components across the split-halves. Results are shown 503 
both for the signal and noise as estimated by GSN as well as for the naive trial-averaged data (Figure 7B). 504 
We find that the principal components of the signal are highly reliable across split-halves for approximately 505 
the first 4 dimensions, and that the principal components of the noise are highly reliable for approximately 506 
the first 12 dimensions (see labeled points). Beyond these numbers of dimensions, reliability levels are 507 
substantially lower, which makes sense given that the amount of variance associated with the higher 508 
dimensions is very small (see Figure 7A). The principal components of the trial-averaged data also exhibit 509 
reasonably high levels of reliability. However, the reliability levels decrease gradually, making it difficult to 510 
decide the number of highly reliable dimensions. 511 
 512 
One peculiar observation is that reliability values for the noise and the trial-averaged data fluctuate, but on 513 
average stay elevated, over a large range of dimensions (20–100). We suggest that this could be due to 514 
the fact that the eigenvalues in these higher dimensions are roughly equal in magnitude, making the 515 
ordering of the principal components somewhat arbitrary and subject to estimation error. In such a scenario, 516 
corresponding principal components across split-halves are not likely to match but might incidentally match 517 
on occasion. Finally, notice that the reliability pattern for the trial-averaged data looks approximately like a 518 
mixture of the reliability patterns for the signal and the noise. This is consistent with the interpretation that 519 
the data is a mixture of signal and noise and that GSN successfully decomposes the data into these 520 
constituent components. 521 
 522 
Denoising of PCA results 523 
 524 
The third and final analysis seeks to validate the signal and noise identification provided by GSN. In short, 525 
how do we know that GSN is successfully estimating and removing the influence of noise? Here, we can 526 
leverage the notion that signal, not noise, is expected to generalize across participants (Charest et al., 527 
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2018). We reasoned that if GSN successfully separates signal from noise in each participant, then signal 528 
properties—specifically, the coding of natural scenes—should exhibit improved consistency across 529 
participants compared to the trial-averaged data. This is because the trial-averaged data is expected to 530 
contain the residual effects of noise, and many types of noise are expected to be idiosyncratic to each 531 
participant (e.g., the effects of head motion on fMRI responses is likely unrelated to the coding of natural 532 
scenes). But how can we compare participants? Given the variability of the size and shape of FFA-1 across 533 
participants (the number of vertices is not even the same), comparing principal components across 534 
participants is not straightforward. However, we can compute the projections of responses to natural scenes 535 
onto principal components, and these projections should be comparable across participants insofar that 536 
there is some degree of commonality in the representation of natural scenes across participants. 537 
 538 
In accordance with our approach for assessing across-participant consistency, we computed trial-averaged 539 
responses for a common set of 515 images that were viewed by all participants, and then projected these 540 
responses onto the top principal component of the signal covariance estimated by GSN. For comparison, 541 
we also projected the responses onto the top principal component of the trial-averaged data. The results 542 
show that the projections for GSN are substantially more consistent across participants than the standard 543 
analysis (Figure 7C). This implies that GSN is successfully reducing the influence of noise on principal 544 
components derived from the data, and that the principal components derived by GSN better reflect the 545 
underlying coding dimensions in the brain that are shared across humans. As a sanity check, we visually 546 
inspected the stimulus images that drive variance along the direction of the top principal component (S3 547 
Figure); this reveals that the presence of faces appears to be the dominant factor, consistent with prior 548 
studies (Grill-Spector et al., 2017; Kanwisher et al., 1997). 549 
 550 
Finally, we show results of our PCA analyses for additional brain regions V1, hV4, and PPA (S4 Figure). 551 
Our main observations replicate, including lower dimensionality for the signal compared to the noise, high 552 
within-participant reliability of the first several signal PCs and noise PCs, and higher across-participant 553 
consistency of trial-averaged response projections onto PC1 for GSN PCA than for standard PCA. In 554 
addition, we find that the dimensionality of the signal is substantially higher in V1 (mean across subjects: 555 
5.6) and hV4 (mean across subjects: 4.6) than it is in FFA-1 (mean across subjects: 2.4), whereas the 556 
signal dimensionality is comparable in PPA (mean across subjects: 2.5). These variations in dimensionality 557 
across brain regions are a desirable outcome, as they are consistent with the idea that GSN is able to track 558 
and recover different dimensionality levels. More generally, these results indicate that GSN can aid the 559 
investigation of representational differences across the brain. 560 
  561 
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Discussion 562 
 563 
In this paper, we have described a simple generative model that characterizes the contributions of signal 564 
and noise to a set of neural response measurements. We developed a method for fitting this model, 565 
implemented this method in a code toolbox, and demonstrated the method on ground-truth simulations and 566 
empirical data. We showed four main results. First, we showed that naive approaches to estimating signal 567 
covariance (i.e. trial averaging) and estimating noise covariance (i.e. aggregating residuals) are inaccurate 568 
(Figures 3–6). A key insight is that simply computing trial-averaged responses is insufficient to eliminate 569 
noise: the result will invariably contain a mixture of both signal and noise covariance. Second, we confirmed 570 
that the GSN method works as expected, with ground-truth recovery performance improving with larger 571 
numbers of trials and conditions (Figure 4). Third, we performed simulations directly comparing GSN to 572 
alternative methods for signal estimation (including split-half analyses, cvPCA, and MEME), and found that 573 
GSN is competitive with these methods (Figure 5). Fourth, we showed how GSN can be exploited to 574 
improve principal components analysis (PCA). Specifically, GSN decomposes a set of data into signal and 575 
noise distributions, each of which has its own eigenspectrum and eigenvectors. These distributions can be 576 
analyzed separately, for example, with respect to dimensionality (Figure 7A) and reliability (Figure 7B). 577 
Furthermore, isolating the signal distribution leads to principal components that have improved 578 
generalizability across participants (Figure 7C). 579 
 580 
Novel contributions of the present work 581 
 582 
Elements of GSN can be found in prior work, including using repeated trials to separate signal and noise in 583 
neural responses (Henriksson et al., 2015; Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Stringer et 584 
al., 2019) and the use of shrinkage for covariance estimation (Ledoit and Wolf, 2004; Schäfer and Strimmer, 585 
2005; van Bergen and Jehee, 2021; Yatsenko et al., 2015). We note, in particular, that the formulation of 586 
the GSN model is fairly close to the approach described in a recent pre-print in the statistics literature (Duan 587 
et al., 2023). Overall, the work presented here is best viewed as an applied statistics paper, one that selects 588 
and consolidates statistical ideas and designs methods for application to a specific scientific domain (neural 589 
response measurements). The primary novel contributions of the present work are the integration of 590 
techniques into a clearly articulated framework, developing an algorithm for optimally fitting the GSN model 591 
under the constraint of positive semi-definite covariance estimates, and demonstrating specific examples 592 
of how GSN could be useful in neuroscience applications. In addition, we provide a code toolbox for easy 593 
application of GSN.  594 
 595 
Relationship to other approaches 596 
 597 
From a statistical perspective, GSN bears some similarity to probabilistic principal components analysis 598 
(PPCA) (Ghojogh et al., 2021; Roweis, 1997; Tipping and Bishop, 1999). PPCA is a special case of factor 599 
analysis, and models the data as the sum of the combination of latent factors and a noise term. However, 600 
a key difference between PPCA and GSN is that PPCA assumes that the noise is isotropic (i.e., the noise 601 
has the same variance and is uncorrelated across units), whereas GSN does not make this assumption. 602 
Instead, GSN exploits the fact that neural response measurements usually involve multiple trials per 603 
condition, and estimates the noise structure instead of assuming it to be isotropic. Another difference is that 604 
PPCA typically comes with the presumption that the latent variables have lower dimensionality than the 605 
original data, whereas GSN does not necessarily involve dimensionality reduction. 606 
 607 
Signal and noise correlations have been studied in the computational neuroscience literature using a variety 608 
of approaches. Here, we discuss a few approaches closely related to GSN. The approach used in (Triplett 609 
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et al., 2020) involves building a model of calcium imaging data that simultaneously characterizes both 610 
evoked activity (signal) and spontaneous activity (noise). The model is generative in nature, similar to GSN. 611 
A difference is that the approach involves a number of modeling choices that are specific to the signal and 612 
noise characteristics present in calcium imaging data. Incorporating modality-specific details may enhance 613 
statistical efficiency and interpretability. In contrast, GSN has a different philosophical goal of providing a 614 
general-purpose framework for signal and noise estimation that rests on minimal assumptions. Another 615 
generative modeling approach, TAFKAP, was introduced by (van Bergen and Jehee, 2021, 2018) in the 616 
context of developing improved decoding methods for fMRI data. This approach, like GSN, estimates both 617 
signal covariance and noise covariance. However, the modeling of signal proceeds quite differently in 618 
TAFKAP than GSN. In TAFKAP, the response of each unit to the experimental conditions is fit using a 619 
specific tuning curve model—for example, in (van Bergen and Jehee, 2021), a weighted sum of basis 620 
functions is used to model the orientation tuning of each unit. GSN takes a different approach: instead of 621 
attempting to estimate the signal (noiseless response) to each condition, GSN attempts to estimate only 622 
the distribution of the signal across conditions. An advantage of the GSN approach is that it avoids the need 623 
to specify (and thus does not depend on) a tuning curve model, thereby providing more generality. 624 
Moreover, if a tuning curve model is used, there is a risk that model failures (either due to model 625 
misspecification or imperfections in model fitting) may corrupt estimates of the noise (assuming noise is 626 
estimated from model residuals) (Wilson and Gardner, 2023). However, a disadvantage of the GSN 627 
approach is that it requires condition repeats to estimate the noise, whereas in TAFKAP, noise can be 628 
estimated based on residuals of the model fit. Another disadvantage is that the lack of an explicit tuning 629 
model in GSN implies that further analysis steps must be carried out in order to incorporate GSN into 630 
decoding analyses. 631 
 632 
Comparison to cvPCA and MEME 633 
 634 
A recent paper (Stringer et al., 2019) proposed a method termed 'cross-validated PCA' (cvPCA) that seeks 635 
to quantify signal (stimulus-related variance) in neural response measurements, similar to GSN. The 636 
method involves splitting a dataset into halves (where the halves contain different trials for the same set of 637 
conditions), performing PCA on one half, projecting the responses in each half onto the estimated PCs, and 638 
then computing covariance across the projections from each half as an estimate of signal variance. The 639 
underlying logic is that noise is not expected to covary across halves, whereas the signal is expected to do 640 
so. Similar to GSN, the cvPCA method leverages repeated trials to infer what is related to the experimental 641 
manipulations (signal) and relies on a model in which the total variance in a dataset is equal to the sum of 642 
signal variance and noise variance. However, the two methods differ substantially in the procedures by 643 
which estimates are obtained. 644 
 645 
Recent work (Pospisil and Pillow, 2024) has pointed out that the PCs estimated in cvPCA are influenced 646 
by noise and are therefore not identical to the true underlying signal PCs. This fact degrades the accuracy 647 
of the signal components estimated by cvPCA, and leads to biased estimates of the signal eigenspectrum 648 
(Pospisil and Pillow, 2024). Motivated by these concerns, the authors propose the MEME (minimize 649 
eigenmoment error) method to deliver improved estimates of the signal eigenspectrum. Specifically, MEME 650 
first calculates unbiased estimates of the moments of the signal eigenspectrum, assumes a parametric 651 
model for the signal eigenspectrum, and then optimizes parameters of the model to minimize the error 652 
between the eigenspectrum moments achieved by the model and the estimated moments of the signal 653 
eigenspectrum. 654 
 655 
In this paper, we performed simulations that directly compare the performance of GSN, cvPCA, and MEME 656 
with respect to recovery of effective dimensionality and power-law exponent (see Figure 5 and S1 Figure). 657 
We observed substantial bias in cvPCA results, consistent with recent reports (Pospisil and Pillow, 2024). 658 
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GSN performs better, converging towards ground-truth values with increasing amounts of data. MEME 659 
performs the best, with even faster convergence. However, a major limitation of MEME is that it assumes 660 
a parametric form for the signal eigenspectrum. In our main set of simulations (Figure 5), for simplicity we 661 
considered only scenarios where the ground-truth signal eigenspectrum fully conformed to the form 662 
assumed by our MEME implementation (specifically, a single unbroken power-law function). Deviations 663 
from the assumed form are expected to lead to degraded performance from MEME. Indeed, it is possible 664 
that deviation from the assumed form is responsible for the poor performance of MEME in recovering power-665 
law exponent in the biologically realistic scenario (S1 Figure). While allowing break points in the power-law 666 
function may help ease the constraints of MEME, doing so increases complexity and may lead to instability 667 
in parameter optimization. As the user must hand-pick initial guesses for parameter values, it might be 668 
challenging to come up with robust choices for initial parameter values for break points. 669 
 670 
Overall, the cvPCA and MEME methods are similar in spirit to GSN in the sense of using repeated trials to 671 
separate signal and noise in neural response measurements. However, the former two methods are 672 
primarily focused on estimation of signal eigenspectra, whereas GSN takes a broader view in which the 673 
goal is to estimate full covariance matrices (including both the eigenspectrum and eigenvectors) for the 674 
signal and the noise. As such, GSN supports a wider array of subsequent analyses of signal and noise 675 
properties. It might be possible to use eigenspectrum estimates from cvPCA or MEME to produce improved 676 
estimates of full covariance matrices, but the originally described methods do not do so, which is why we 677 
do not compare to such hybrid or extended methods here. 678 
 679 
Other applications of GSN 680 
 681 
Besides improving PCA and dimensionality estimation (as illustrated in Figure 7), GSN may aid in other 682 
applications not specifically covered in this paper. One important application is the estimation of noise 683 
ceilings for computational models (Lage-Castellanos et al., 2019; Pospisil and Bair, 2021b). Since noise 684 
imposes limits on the maximum amount of variance that can in theory be predicted on the basis of 685 
experimental events (e.g. sensory stimuli), obtaining accurate estimates of the noise ceiling is critical for 686 
assessing model performance. GSN provides explicit models of the distributions of signal and noise, and 687 
can be used to estimate noise ceilings for the responses of individual units (see Methods in (Allen et al., 688 
2022)) as well as noise ceilings for multivariate measures, such as representational dissimilarity matrices 689 
(see Methods in (Conwell et al., 2022)). Having principled methods to compute univariate and multivariate 690 
noise ceilings is critical in efforts to compare deep neural network models of brain data at scale (Cichy et 691 
al., 2019; Conwell et al., 2022; Schrimpf et al., 2020; Willeke et al., 2022). 692 
 693 
Another application relates to research programs where noise itself is of intrinsic interest, often 694 
hypothesized to perform functions relevant to neural computation (e.g., (Bays, 2014; Dinstein et al., 2015; 695 
Ecker et al., 2014; Keeley et al., 2020; Ma et al., 2006; Orbán et al., 2016; Stein et al., 2005; van Bergen 696 
et al., 2015)). The GSN approach facilitates the study of noise by decomposing datasets into signal and 697 
noise, providing researchers with two distinct entities that can be separately measured, characterized, 698 
manipulated, compared with one another, and related to brain function. Isolating the separate contributions 699 
of signal and noise to response measurements may help enrich our understanding of how response 700 
variability contributes to the function of neural systems and whether and how noise and signal interact. 701 
 702 
Limitations of GSN and future directions 703 
 704 
GSN rests on the assumption that noise is additive and independent of the signal. The assumption of 705 
independence simplifies estimation and enables efficient use of data: even though the example dataset in 706 
this paper included only three trials per image, pooling estimates of noise covariance across images 707 
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enabled robust noise covariance estimates (see Figure 6D). The extent to which the additive and 708 
independence assumptions accurately characterize fMRI responses is an important open question. For 709 
example, a recent study provided evidence that noise magnitude and noise correlations in fMRI data 710 
decrease during task states (Ito et al., 2020). However, it is clear that the additive and independence 711 
assumptions do not strictly hold for spiking data. Spike trains exhibit Poisson-like proportionality between 712 
the mean firing rate and the variance of firing rate across trials (Tolhurst et al., 1983), and this proportionality 713 
may depend upon stimulus statistics (Festa et al., 2021). Moreover, multiplicative-type noise has been 714 
observed in which firing rates in neural populations are collectively scaled (Goris et al., 2014; Lin et al., 715 
2015; Liska et al., 2022). Finally, evidence that noise depends on the stimulus has been shown for neurons 716 
in the retina (Franke et al., 2016; Zylberberg et al., 2016). A direction for future work would be to relax the 717 
assumptions of GSN to accommodate a larger range of settings. 718 
 719 
Another potential limitation of GSN is that it may require a large number of samples for accurate estimation 720 
of signal and noise distributions. We observed that a relatively large number of conditions is required to 721 
accurately estimate the signal covariance (see Figure 4B). In addition, although pooling of noise covariance 722 
estimates across conditions can achieve robust estimation of noise (see Figure 6D), if one wishes to 723 
explore the possibility that the noise distribution may depend on the experimental condition, large numbers 724 
of trials for each condition may be required. Future research might investigate practical data requirements 725 
for a diverse range of experimental scenarios. A third limitation is that GSN in its current form provides just 726 
a point estimate of model parameters. If one is interested in the reliability of parameter estimates, it may be 727 
possible to extend GSN using bootstrapping or Bayesian techniques to obtain confidence intervals or 728 
posteriors for model parameters. 729 
 730 
There is a sizable statistical literature on techniques for covariance matrix estimation (reviewed in (Fan et 731 
al., 2016)). Our proposed method for estimating covariance only incorporates shrinkage to improve 732 
estimation accuracy. This is a mild prior and is expected to improve out-of-sample generalization compared 733 
to an unbiased estimator. Within the technique of shrinkage, there are variants that can be tried such as 734 
deriving the optimal level of shrinkage analytically or using different shrinkage targets (Ledoit and Wolf, 735 
2022, 2004; Schäfer and Strimmer, 2005). If one is willing to make stronger assumptions, there are other 736 
approaches that could achieve more efficient covariance estimates. Such approaches include banding and 737 
tapering (Bickel and Levina, 2008a), thresholding (Bickel and Levina, 2008b), and methods that impose 738 
low-rank structure (Pourahmadi, 2013; Yatsenko et al., 2015). In addition, one could seek to model 739 
covariance in terms of one or more structured covariance components (Pourahmadi, 2013; Triplett et al., 740 
2020; van Bergen and Jehee, 2021; Yatsenko et al., 2015). This type of approach can improve estimation 741 
efficiency, but its utility depends on the accuracy of the assumed covariance components. If one is willing 742 
to make an explicit distributional assumption, one can apply Bayesian inference (e.g. (Leonard and Hsu, 743 
1992)), which allows regularization through the prior. Finally, one could apply robust statistics (den Haan 744 
and Levin, 1997) to improve estimation. These various methods for covariance estimation could be easily 745 
incorporated into the GSN framework by simply replacing the shrinkage estimators that we use. 746 
 747 
Finally, an important direction for future research is to devise methods for distinguishing different sources 748 
of noise. Neural noise (true variability in neural activity) is fundamentally distinct from instrumental noise 749 
(e.g. electrical noise), physiological noise (e.g. noise related to respiration and the cardiac cycle), and 750 
motion-related noise (e.g. motion of the head). Without specific modeling of these various noise sources, it 751 
remains unknown how much of the noise observed in a set of measurements is due to neural noise. 752 
Developing methods to identify non-neural noise and isolate neural noise will presumably lead to improved 753 
insights into the nature of noise and how it may support brain function. 754 
  755 
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Methods 756 
 757 
The GSN method 758 
 759 
Basic framework 760 
 761 
GSN is a multivariate generalization of the univariate framework that we previously proposed for modeling 762 
signal and noise in responses of individual units (Allen et al., 2022). Consider the general situation in which 763 
responses are measured from a set of n units (e.g., voxels, neurons, channels) to c conditions (e.g., different 764 
stimuli) and this process is repeated for t trials per condition (we assume t > 1). In this scenario, response 765 
measurements have a dimensionality of n units ´ c conditions ´ t trials. The scenario is multivariate in the 766 
sense that there exist multiple units and we are attempting to model the joint distribution across all units. 767 
Our broad goal is to formally characterize the distribution of signal, i.e., the average expected response to 768 
each given condition, and the distribution of noise, i.e., trial-to-trial variability in the response to each given 769 
condition. 770 
 771 
For the purposes of modeling, we assume that the signal and the noise are independent and additive and 772 
that each is characterized by some underlying multivariate distribution. We propose the following model: 773 

𝐷	~	𝑋"#$%&' + 𝑋%(#") 774 

E/𝑋"#$%&'0 = 𝜇"#$%&' 775 
Cov/𝑋"#$%&'0 = Σ"#$%&' 776 
E[𝑋%(#")] = 𝜇%(#") = 𝟎 777 
Cov[𝑋%(#")] = Σ%(#") 778 

Cov9𝑋"#$%&' , 𝑋%(#"); = 𝟎 779 
where 𝐷 is an n-dimensional random variable indicating the responses of the n units on each trial (1 ´ n), 780 
𝑋"#$%&' is the signal component of the data with mean 𝜇"#$%&' (1 ´ n) and covariance Σ"#$%&' (n ´ n), 𝑋%(#") is 781 
the noise component of the data with mean 𝜇%(#") (1 ´ n) and covariance Σ%(#") (n ´ n), and 𝟎 indicates a 782 
matrix of zeros. In other words, the response on each trial is modeled as the sum of a random sample 783 
drawn from a signal distribution (which represents the noiseless response to some condition) and a random 784 
sample drawn from a noise distribution (which represents the noise that accompanies the response). The 785 
noise is assumed to be zero-mean. See Figure 2A–C for a visual illustration. 786 
 787 
The modeling approach we describe is generative in the sense that we are characterizing the process by 788 
which measurements are generated (specifically, the data for each trial are modeled as a random draw 789 
from the multivariate distribution associated with 𝐷). We therefore refer to the approach as generative 790 
modeling of signal and noise (GSN). Note that a complete generative model requires choosing specific 791 
forms for the distribution of signal and the distribution of noise; a simple choice is the multivariate Gaussian 792 
distribution (see S2 Figure). 793 
 794 
Algorithm for estimating model parameters 795 
 796 
The core challenge in GSN is estimating the parameters of the signal and noise distributions. We propose 797 
a method based on the observation that the sum of two independent random variables has a mean that is 798 
equal to the sum of the means of the distributions associated with the variables and a covariance that is 799 
equal to the sum of the covariances of the two distributions. Hence, we can write: 800 

𝜇*&+& = 𝜇"#$%&' + 𝜇%(#") = 𝜇"#$%&' 801 
Σ*&+& = Σ"#$%&' + Σ%(#") 802 
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where 𝜇*&+&  and Σ*&+&  indicate, respectively, the mean (1 ´ n) and the covariance (n ´ n) of the 803 
measurement variable 𝐷. For simplicity, we have used notation that acts as if each trial involves a fresh 804 
draw from the signal distribution. However, in typical practice, several trials are measured for each condition 805 
and the draw from the signal distribution is the same for each of these trials. To account for this, we average 806 
responses across the available t trials before estimating the data distribution. Since trials are independent, 807 
averaging is expected to reduce the covariance of the noise by a factor of t. Hence, we can write the 808 
following for the distribution of the trial-averaged data: 809 

𝜇*&+&[+] = 𝜇"#$%&' 810 
Σ*&+&[+] = Σ"#$%&' + Σ%(#")/𝑡 811 

where 𝜇*&+&[+] indicates the mean of the multivariate distribution that describes trial-averaged data (1 ´ n) 812 

and Σ*&+&[+] indicates the covariance of this distribution (n ´ n). 813 
 814 
The general approach of GSN is to estimate the mean and covariance of the noise, estimate the mean and 815 
covariance of the trial-averaged data, and then subtract the noise covariance estimate (scaled by 1/t) from 816 
the trial-averaged data covariance estimate to obtain an estimate of the signal (see schematic in Figure 817 
2D–F). However, because it is possible that the obtained estimate of signal covariance may be not positive 818 
semi-definite (especially in scenarios with limited data or low signal-to-noise ratio), a more sophisticated 819 
approach is necessary. To meet this challenge, we develop a mathematical formalism in which we use a 820 
weighted sum-of-squares approach to find positive semi-definite matrices for signal and noise covariance 821 
estimates that are as close as possible to the estimates derived directly from the data (details in S5 822 
Appendix). This turns out to be a convex optimization problem that can be solved using an iterative 823 
approach, as we detail below. 824 
 825 
The following is a step-by-step algorithm for GSN (performgsn.{m,py}): 826 

1. Start with a set of neural response measurements 𝑿 (n units ´ c conditions ´ t trials). Let 𝑿. 827 
denote the responses measured for condition j, arranged as a 2D matrix (t trials ´ n units). Let 𝑿> 828 
denote trial-averaged responses, arranged as a 2D matrix (c conditions ´ n units). 829 

2. To estimate the noise distribution, calculate the covariance of responses separately for each 830 
condition, average the covariances across conditions, and then shrink the result. This yields an 831 
initial estimate of the noise covariance, which we refer to as Σ?%(#")/012 (n ´ n): 832 

Σ?%(#")/012 = 𝑠ABcov(𝑿.)
3

.45

𝑐D E	843 

where cov(𝑨) = 𝑨̇T𝑨̇/(𝑑 − 1) computes sample covariance using Bessel's correction, 𝑨̇ indicates 833 
𝑨 with its columns centered around zero, 𝑑 is the number of rows in 𝑨, and 𝑠() is a shrinkage 834 
procedure (see Shrinkage-based regularization of covariance below). Intuitively, we are 835 
quantifying unit-to-unit covariation around the mean response to each condition, pooling 836 
covariance estimates across conditions to improve accuracy, and then using shrinkage to further 837 
improve accuracy. Since we might update our estimate of the noise covariance later in the 838 
algorithm (if the signal covariance estimate turns out to be not positive semi-definite), we use 839 
Σ?%(#")	(n ´ n) to refer to our current estimate of the noise covariance:	840 

Σ?%(#") = Σ?%(#")/012 	844 
We assume that the noise distribution is zero-mean (i.e., the expected value of the noise for each 841 
unit is zero): 842 

𝜇̂%(#") = 𝟎 845 
where 𝜇̂%(#") is the estimated noise mean (1 ´ n). 846 
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3. To estimate the data distribution (i.e., the distribution that characterizes the measured data), take 847 
the trial-averaged responses and then estimate mean and covariance, again applying shrinkage 848 
to improve accuracy of covariance estimation: 849 

𝜇̂*&+&[+] = mean(𝑿>) 850 
Σ?*&+&[+] = 𝑠(cov(𝑿>)) 851 

where mean() indicates column-wise mean, 𝜇̂*&+&[+] is the estimated data mean for the case of 852 
averaging across t trials (1 ´ n), and Σ?*&+&[+] is the estimated data covariance for the case of 853 
averaging across t trials (n ´ n). Notice that cov(𝑿>) is the naive estimate of signal covariance that 854 
is obtained after simply trial averaging. 855 

4. To estimate the signal distribution, subtract the current estimate of the noise distribution scaled by 856 
1/t from the estimated data distribution: 857 

Σ?"#$%&' = Σ?*&+&[+] − Σ?%(#")/𝑡 859 

where Σ?"#$%&' is the estimated signal covariance (n ´ n). Additionally: 858 
𝜇̂"#$%&' = 𝜇̂*&+&[+] − 𝜇̂%(#") 860 

where 𝜇̂"#$%&' is the estimated signal mean (1 ´ n). 861 
5. If the signal covariance estimate is positive semi-definite, we are done. Otherwise, proceed to 862 

Step 6. 863 
6. Repeat until convergence: 864 

6.1. Calculate an updated estimate of the signal covariance: 865 
Σ?"#$%&' = Σ?*&+&[+] − Σ?%(#")/𝑡 870 

Ensure the signal covariance estimate is positive semi-definite by finding the nearest positive 866 
semi-definite matrix: 867 

Σ?"#$%&' = PSD9Σ?"#$%&';	871 
where PSD() is a method for finding the nearest symmetric positive semi-definite matrix to a 868 
given square matrix (details below). 869 

6.2. Calculate an updated estimate of the noise covariance: 872 

Σ?%(#") =
𝑐𝑡!(𝑡 − 1)

𝑐𝑡!(𝑡 − 1) + 𝑐 − 1Σ
?%(#")/012 +

𝑐 − 1
𝑐𝑡!(𝑡 − 1) + 𝑐 − 1 𝑡9Σ

?*&+&[+] − Σ?"#$%&'; 879 

This calculates a weighted average of two possible estimates of the noise covariance: the 873 
first is the estimate based on the covariance of the mean-subtracted residuals (as calculated 874 
in Step 2), while the second is the estimate based on the subtraction of the signal distribution 875 
from the data distribution. The weights reflect the number of samples that inform each of the 876 
two estimates (see S5 Appendix for details). Ensure the noise covariance estimate is 877 
positive semi-definite by finding the nearest positive semi-definite matrix: 878 

Σ?%(#") = PSD9Σ?%(#"); 880 
6.3. If the correlation between the current and previous signal covariance estimates and the 881 

correlation between the current and previous noise covariance estimates are both greater 882 
than 0.999, stop. Otherwise, return to Step 6.1. 883 

 884 
Convergence of the algorithm is guaranteed because the optimization problem is biconvex. In practice, 885 
convergence typically takes just a few iterations. For instance, in the execution of the set of simulations 886 
underlying Figure 5, the maximum number of iterations required by GSN was 3 (corresponding to the case 887 
where two updates are calculated beyond the initial estimates). 888 
 889 
Theoretical analysis of the GSN estimates 890 
 891 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2024. ; https://doi.org/10.1101/2024.04.22.590510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.22.590510
http://creativecommons.org/licenses/by/4.0/


 24 

The proposed algorithm for GSN can be viewed as providing least-squares estimates of signal and noise 892 
covariance under the constraint that the estimates are positive semi-definite. Note that as long as the true 893 
signal and noise covariances are positive semi-definite, our estimators for them are consistent. This is 894 
because the original estimates Σ?%(#")/012  and Σ?*&+&[+] − Σ?%(#")/𝑡  are consistent estimators of Σ%(#")  and 895 
Σ"#$%&', respectively. For large enough datasets, the probability that the initial signal covariance estimate 896 
leaves the positive semi-definite cone thus goes to 0. Hence, our iterative estimates converge to the same 897 
values as the original estimates. For the same reason, our iterative estimates inherit all asymptotic 898 
properties of the original estimates. In particular, they are asymptotically unbiased and efficient, and the 899 
rate of convergence is the same as for the original estimates. 900 
 901 
The primary advantage of our iterative estimates is that they are guaranteed to produce positive semi-902 
definite (and, thus, valid) covariance matrices. Having valid covariance matrices is critical, as it is required 903 
for performing many subsequent analyses (such as PCA). While the constraint of positive semi-definiteness 904 
can be viewed as introducing bias, the true covariance matrices are known to be positive semi-definite. 905 
Hence, requiring positive semi-definiteness is warranted. Furthermore, due to the convexity of the cone 906 
encompassing positive semi-definite matrices, the projection of estimates onto this cone always reduces 907 
the distances (errors) to the true covariance matrices (see S5 Appendix). 908 
 909 
Shrinkage-based regularization of covariance 910 
 911 
An appealing feature of computing sample covariance using Bessel's correction is that the covariance 912 
values are unbiased estimates of the true covariance values. However, when the number of observations 913 
is small relative to the number of variables (in our case, when the number of trials or conditions is small 914 
relative to the number of units), the sample covariance is unstable and hence inaccurate. Moreover, the 915 
sample covariance may have an eigenspectrum that suffers from bias. To improve accuracy of covariance 916 
estimation, the GSN algorithm incorporates shrinkage (in Steps 2 and 3), a well-established method for 917 
regularizing covariance estimates (Chen et al., 2010; Daniels and Kass, 2001; Ledoit and Wolf, 2004; 918 
Schäfer and Strimmer, 2005). Specifically, the off-diagonal elements of the sample covariance are scaled 919 
towards zero, reflecting the prior that variables are generally expected to be uncorrelated. The goal of 920 
shrinkage is to introduce some amount of bias in order to reduce estimation variance and achieve a 921 
covariance estimate that is closer to the ground-truth covariance. Note that shrinking towards a diagonal 922 
matrix tends to increase the rank (dimensionality) of the covariance estimate. Also, note that shrinkage is 923 
not a requirement of the GSN approach and can be omitted if desired (using the flag <wantshrinkage>). 924 
 925 
To perform shrinkage, we calculate: 926 

Σ"789%: = 𝑠(Σ) = 𝜆Σ + (1 − 𝜆)Σ*#&$ 927 
where Σ is the sample covariance (n ´ n), 𝜆 is a shrinkage fraction in the range [0,1], Σ*#&$ is Σ with off-928 
diagonal elements set to zero (n ́  n), and Σ"789%: is the shrinkage-based covariance estimate (n ́  n). When 929 
the shrinkage fraction is 1, the sample covariance is preserved and no shrinkage is applied; when the 930 
shrinkage fraction is 0, full shrinkage is applied. Notice that in our formulation, the target towards which 931 
estimates are shrunk (Σ*#&$) contains the original sample variance estimates on the diagonal. This choice 932 
of target is referred to as Target D "diagonal, unequal variance" in (Schäfer and Strimmer, 2005). The 933 
reason for this choice of target is to avoid imposing bias on the variances associated with the variables. 934 
 935 
To determine the amount of shrinkage to apply, we use a cross-validation approach (similar to that used in 936 
(van Bergen and Jehee, 2021; Yatsenko et al., 2015)) in which held-out data are used to evaluate 937 
likelihoods corresponding to covariance estimates at different levels of shrinkage. We opt for this 938 
computational approach, as opposed to analytical methods for setting the shrinkage level (Ledoit and Wolf, 939 
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2004; Schäfer and Strimmer, 2005), for increased transparency and to avoid reliance on assumptions. In 940 
our implementation (calcshrunkencovariance.{m,py}), we randomly split the available data into an 80% 941 
training set and a 20% testing set. In the case of noise estimation (Step 2), the data are split with respect 942 
to trials; in the case of data estimation (Step 3), the data are split with respect to conditions. The sample 943 
covariance of the training set is then calculated, different shrinkage fractions ranging from 0 to 1 in 944 
increments of 0.02 are applied, the average negative log likelihood of observations in the testing set is 945 
calculated for each shrinkage fraction, and the shrinkage fraction yielding the minimum negative log 946 
likelihood is selected. In this way, the procedure derives a balance between bias and variance (the 947 
procedure will impose just enough bias to mitigate the damaging effects of variance). Note that in the case 948 
of estimating the noise distribution, the mean response to each condition in the testing set is subtracted 949 
before evaluating likelihoods (in order to remove the signal). 950 
 951 
Our implementation includes flexible options that allow the user to control the training/testing split 952 
(<leaveout>) as well as the specific shrinkage fractions evaluated (<shrinklevels>). In addition, the 953 
implementation includes an optional flag (<wantfull>) that enables a final step in which the selected 954 
shrinkage fraction is applied to the sample covariance of the full dataset (combining both the training and 955 
testing sets). This option improves estimation quality (since more data are used) at the expense of imposing 956 
slightly more shrinkage than is optimal (in theory, if more training data are available, then less shrinkage 957 
should be necessary). 958 
 959 
We conducted simulations to confirm the validity of our shrinkage-based method for covariance estimation 960 
(S6 Appendix). These simulations also confirm that shrinkage reduces the bias present in the 961 
eigenspectrum of the sample covariance. 962 
 963 
Method for finding the nearest positive semi-definite matrix 964 
 965 
To ensure valid covariance matrices, the GSN algorithm involves finding the nearest (in the sense of the 966 
Frobenius norm) symmetric positive semi-definite matrix to a given matrix (see PSD() in Steps 6.1 and 6.2). 967 
This is accomplished using the method proposed by Higham (Higham, 1988). Our implementation is as 968 
follows (constructnearestpsdcovariance.{m,py}): 969 

1. Start with a given square matrix 𝑪. 970 
2. Ensure symmetry by updating 𝑪 = (𝑪 + 𝑪T)/2. 971 
3. Perform singular value decomposition to obtain 𝑪 = 𝑼𝑺𝑽T. 972 
4. Compute the approximating matrix 𝑪W = (𝑪 + 𝑽𝑺𝑽T)/2. 973 
5. If 𝑪W is not positive semi-definite (due to numerical precision issues), add a small multiple of the 974 

identity matrix (𝜀𝑰) to 𝑪W and restart the procedure starting from Step 3. We use 𝜀 = 10;5<. 975 
Note that this method is equivalent to performing an eigendecomposition of 𝑪  and setting negative 976 
eigenvalues to zero. 977 
 978 
Additional analyses related to GSN 979 
 980 
Conversion of covariance to correlation 981 
 982 
When interpreting covariance matrices, it is often useful to convert the values to correlation units. 983 
Correlation is simply a version of covariance where the variances of each of the two variables have been 984 
normalized to one. We provide a function to convert covariance matrices to correlation units 985 
(convertcovariancetocorrelation.{m,py}). Our implementation divides each element of a given covariance 986 
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matrix by the square root of its associated row-wise diagonal element and by the square root of its 987 
associated column-wise diagonal element. This conversion procedure is used in Figure 6. 988 
 989 
Principal components analysis 990 
 991 
The present study uses principal components analysis (PCA) as a means for interpreting the results of 992 
GSN. We perform PCA through eigendecomposition of a given covariance matrix: 993 

𝑪 = 𝑽𝑺𝑽T 994 

𝑺 = [
𝜆5 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆%

_ 995 

where 𝑪 is a covariance matrix (n ´ n) associated with data in n dimensions, 𝑽 is an orthonormal matrix (n 996 
´ n) with unit-length eigenvectors in the columns, and 𝑺 is a diagonal matrix (n ´ n) with eigenvalues along 997 
the diagonal in descending order (𝜆5 ≥ 𝜆! ≥ ⋯ ≥ 𝜆% ≥ 0). The eigenvectors are referred to as principal 998 
components; the sizes of the eigenvalues indicate the importance of the principal components; and the full 999 
set of eigenvalues is referred to as the eigenspectrum. A given data point (1 ´ n), expressed relative to the 1000 
centroid of the data, can be projected onto the principal components, producing scores (1 ´ n). These 1001 
scores are simply the coordinates of the data point in the rotated space defined by the principal components. 1002 
Finally, a useful metric that summarizes the distribution of eigenvalues is effective dimensionality (ED) (Del 1003 
Giudice, 2021): 1004 

ED =
(∑ 𝜆#%

#45 )!

∑ 9𝜆#!;%
#45

 1005 

This metric ranges continuously from 1 to n and indicates the number of underlying dimensions in the data 1006 
(specifically, the number of dimensions that results in an equivalent amount of entropy). Note that the metric 1007 
shown above is just one of several possible metrics for ED (Del Giudice, 2021). 1008 
 1009 
Depending on one's goals, one might want to convert a covariance matrix to correlation units before 1010 
computing the eigendecomposition. The motivation for this would be to ensure that all dimensions have 1011 
equal influence (otherwise, dimensions with larger variances would tend to dominate the principal 1012 
components). Indeed, in standard usage of PCA, it is generally recommended to z-score each dimension 1013 
as a pre-processing step; this has the consequence that the covariance matrix will be in correlation units. 1014 
 1015 
Ground-truth simulations 1016 
 1017 
We conducted ground-truth simulations to illustrate key concepts, test our code implementation, and 1018 
evaluate the performance of different methods. All simulations involved generating synthetic response 1019 
measurements based on multivariate Gaussian signal and noise distributions. 1020 
 1021 
Data scenarios 1022 
 1023 
We designed three types of data scenarios: 1024 

1. First, we created easy-to-interpret scenarios involving simple structure for signal and noise 1025 
covariance. These scenarios involved 10 units, and are used in Figures 3 and 4A and S6 1026 
Appendix. 1027 

2. Second, we created a set of scenarios that systematically varied the number of units and the 1028 
dimensionality of the signal and the noise. These scenarios are used in Figures 4C and 5. In these 1029 
scenarios, the ground-truth signal and noise distributions were each zero-mean and had a 1030 
covariance that was constructed by combining a randomly generated set of eigenvectors and a 1031 
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power-law eigenspectrum. Specifically, eigenspectra were governed by the power-law function 1032 
1/𝑑= = 𝑑;=  where 𝑑  indicates the 1-indexed dimension number and 𝛼  indicates an exponent 1033 
parameter. Scenarios involved either 10 or 50 units and either an exponent of 𝛼 = 3  (low 1034 
dimensionality), 𝛼 = 1 (medium dimensionality), or 𝛼 = 0.33 (high dimensionality) for the signal 1035 
and noise, resulting in a total of six scenarios. For each number of units (10, 50), we generated 1036 
random eigenvectors independently for the signal and the noise and held these eigenvectors 1037 
constant across scenarios with different exponents. 1038 

3. Third, we created a biologically realistic scenario in which ground-truth signal and noise 1039 
distributions were taken to be the empirical GSN signal and noise distribution estimates obtained 1040 
for right hemisphere FFA-1 in Participant 1 as shown in Figure 6. This is, of course, somewhat 1041 
provisional since it assumes that the estimates provided by GSN are reasonable. Nonetheless, the 1042 
choice is justifiable since the goal of our simulations is to evaluate ground-truth recovery in 1043 
simulated data (as opposed to making an inference about empirical data). The scenario involved 1044 
330 units, and is used in S1 Figure. 1045 

 1046 
Each scenario was simulated using specific combinations of numbers of conditions (c) and numbers of 1047 
trials (t). For each combination of c and t, multiple simulations were performed in order to average out 1048 
incidental variability. The standard errors of results across simulations were sufficiently small and therefore 1049 
are not shown in the figures. 1050 
 1051 
Estimation methods 1052 
 1053 
Given a set of response measurements generated in a simulation, we applied five different methods for 1054 
estimating aspects of the signal and noise. The methods are as follows: 1055 

1. GSN (No shrinkage) - This is the GSN method coupled with standard covariance estimation. 1056 
2. GSN (Shrinkage) - This is the GSN method coupled with shrinkage-based covariance estimation. 1057 
3. Naive - For signal estimation, the naive method is to simply average responses across trials and 1058 

compute the sample covariance of the trial-averaged data. For noise estimation, the naive method 1059 
is to simply remove the mean response for each condition, aggregate the residuals across 1060 
conditions, and then perform covariance estimation. 1061 

4. Split-half - This method refers to computing covariance across independent splits of a dataset as a 1062 
means for signal covariance estimation, and has been previously used in the literature (Pospisil 1063 
and Pillow, 2024; Stringer et al., 2019). Our implementation of the method is as follows. Given a 1064 
set of response measurements (n units ´ c conditions ´ t trials), we randomly divide the trials into 1065 
two equal splits (or nearly equal in the case of an odd number of trials), average responses across 1066 
trials within each split, compute covariance across the splits, and then average the resulting 1067 
covariance matrix with its transpose to ensure symmetry. Formally, the signal covariance estimate 1068 

is given by e𝑿𝟏̇
T𝑿𝟐̇/(𝑐 − 1) + 𝑿𝟐̇

T𝑿𝟏̇/(𝑐 − 1)f /2  where 𝑿𝟏  and 𝑿𝟐  indicate trial-averaged 1069 

responses arranged as a 2D matrix (c conditions ´ n units) for the two splits, respectively, and 𝑨̇ 1070 
indicates 𝑨 with its columns centered around zero. We perform 10 random splits of the trials, and 1071 
average the signal covariance estimate across splits. We note that variants of the method are 1072 
possible, including performing exhaustive trial splits (in the case of low numbers of trials) and 1073 
calculating covariance across pairs of trials. 1074 

5. cvPCA - The cross-validated PCA (cvPCA) method is described in (Stringer et al., 2019), and 1075 
delivers an estimate of the signal eigenspectrum. We start with the same preparation as described 1076 
for the Split-half method: 𝑿𝟏̇ and 𝑿𝟐̇ are centered, trial-averaged responses (c conditions ´ n units) 1077 
for two splits of the data. We compute principal components (PCs) of the first split, project the 1078 
responses in each split onto these PCs, and then compute the dot product between the two sets of 1079 
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projections obtained for each PC dimension. Formally, the signal eigenspectrum estimate is given 1080 
by diag((𝑿𝟏̇𝑽)T(𝑿𝟐̇𝑽)) where 𝑽 indicates the PCs (n units ´ n dimensions) obtained from the first 1081 
split. We perform 10 random splits of the trials, and average the signal eigenspectrum estimate 1082 
across splits. We note that other variants of the cvPCA method are possible, such as performing 1083 
multiple iterations where responses to each condition are shuffled across the two splits (Stringer et 1084 
al., 2019). 1085 

6. MEME - The minimize eigenmoment error (MEME) method is described in (Pospisil and Pillow, 1086 
2024), and delivers an estimate of the signal eigenspectrum. Given a set of response 1087 
measurements (n units ´ c conditions ´ t trials), we randomly divide the trials into two equal splits 1088 
(or nearly equal in the case of an odd number of trials) and average responses across trials within 1089 
each split. We then apply the MEME method as implemented in the code provided at 1090 
https://github.com/dp4846/meme_v1_bpl/blob/master/src/eig_mom.py (function 1091 
fit_broken_power_law_meme_W). A high-level overview of the procedure is as follows. First, the 1092 
user chooses a parametric model—specifically, a broken power-law function—for the 1093 
eigenspectrum. Then, moments of the eigenvalues of the covariance matrix (i.e. eigenmoments) 1094 
are estimated from the data. Finally, nonlinear optimization is used to optimize parameters of the 1095 
model in order to minimize the squared error between the moments of the modeled eigenspectrum 1096 
and the moments estimated from the data. We use the fitted model parameters returned by the 1097 
code to reconstruct the estimate of the signal eigenspectrum. We perform 10 random splits of the 1098 
trials, and average the signal eigenspectrum estimate across splits. 1099 

The MEME implementation requires specifying several hyperparameters: the number of 1100 
eigenmoments to consider, a list of break points where the power-law function might be broken, 1101 
and initial guesses for the power-law intercept and the slopes of the power-law segments. For our 1102 
simulations, we make the following choices. First, we set the number of eigenmoments to consider 1103 
to 5. Second, given that the ground-truth eigenspectra are exactly linear in log-log space in the 1104 
main set of simulations (Figure 5), we do not use the MEME functionality for estimating breakpoints 1105 
and instead use a single (unbroken) power-law function as the parametric model. Third, to give the 1106 
MEME method the best possible chance for accurate estimation, we set the initial guesses for the 1107 
slope and intercept of the power-law line to the ground-truth values. In our tests, we found that 1108 
MEME results are generally robust to the choice of initial guesses (e.g., using generic values often 1109 
gave good results); however, we noticed that results are more unstable when using initial guesses 1110 
that are farther from the ground-truth values, suggesting that caution should be exercised when 1111 
setting hyperparameters in real analysis contexts. 1112 

 1113 
We evaluated the performance of the methods with respect to three different metrics. One metric is recovery 1114 
of signal and noise covariance values. For a given method's estimate of covariance (either of the signal or 1115 
of the noise), the coefficient of determination (𝑅!) between the estimated covariance values and the ground-1116 
truth covariance values was calculated, and the average 𝑅! across simulations was computed. The second 1117 
metric is recovery of effective dimensionality (ED). For a given method's estimate of the eigenspectrum 1118 
(either of the signal or of the noise), ED was computed, and the average ED across simulations was 1119 
compared to the ED of the ground-truth eigenspectrum. The third metric is recovery of power-law exponent. 1120 
For a given method's estimate of the eigenspectrum (either of the signal or of the noise), a line was fit to 1121 
the estimated eigenspectrum in log-log space (details below) and the slope of the line was recorded. The 1122 
average slope across simulations was compared to the slope of a line fit to the ground-truth eigenspectrum.  1123 
 1124 
Note that the Split-half method generates estimates of only the signal covariance, and is therefore evaluated 1125 
only in terms of recovery of signal covariance, signal ED, and signal exponent. Also, note that the cvPCA 1126 
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and MEME methods generate estimates of only the signal eigenspectrum, and are therefore evaluated only 1127 
in terms of recovery of signal ED and signal exponent. 1128 
 1129 
Line fitting method 1130 
 1131 
To determine the power-law exponent corresponding to a given eigenspectrum, we fit a line to the 1132 
eigenspectrum in log-log space where the x-axis corresponds to the 1-indexed dimension number and the 1133 
y-axis corresponds to the eigenvalue. To ensure robust results across diverse simulations, we designed a 1134 
heuristic procedure that appears to work well in practice. First, given an eigenspectrum of length d, we 1135 
create a linear grid in log space from log(1) to log(d) using a granularity that is at least as fine as the 1136 
separation between log(d–1) and log(d). This grid is transformed back to linear space and rounded to the 1137 
nearest integer, producing a set of indices. The motivation for this rounding procedure (which is a method 1138 
used in the code provided with (Stringer et al., 2019)) is to avoid interpolation of eigenvalues. Next, we 1139 
define "good" eigenvalues as those that are greater than 0.001 of the maximum eigenvalue. This excludes 1140 
very small, zero, and negative eigenvalues, all of which can degrade the quality of line fits. (If only one 1141 
eigenvalue is deemed good, the scale factor is repeatedly divided by 10 until at least two eigenvalues are 1142 
deemed good.) Finally, we fit a line using least-squares in log-log space to the data points referred to by 1143 
the indices, considering only the good eigenvalues. The slope of the fitted line gives the power-law 1144 
exponent. 1145 
 1146 
Empirical data 1147 
 1148 
Data preparation 1149 
 1150 
We demonstrate GSN on example data taken from the Natural Scenes Dataset (NSD) (Allen et al., 2022). 1151 
NSD consists of 7T fMRI measurements (1.8-mm resolution) from 8 healthy young adults who each viewed 1152 
9,000–10,000 distinct natural scenes up to 3 times each over the course of 30–40 scan sessions. Images 1153 
were presented for 3 s with 1-s gaps in between images. Participants fixated centrally and performed a 1154 
long-term continuous recognition task on the images. The fMRI data in NSD come already pre-processed 1155 
and analyzed using a general linear model as implemented in GLMsingle (Prince et al., 2022). This general 1156 
linear model produces single-trial beta weights representing the amplitude of the fMRI response on each 1157 
trial in units of percent signal change. Note that GLMsingle denoises the signal-trial beta weights (i.e. 1158 
removes some unwanted sources of variance); hence, the analyses in this paper assess the noise that 1159 
remains after the GLMsingle procedure. 1160 
 1161 
For the purposes of this paper, we took the betas_fithrf version of the single-trial betas in the fsaverage 1162 
preparation of NSD (the betas_fithrf version reflects a general linear model that accounts for voxel-to-voxel 1163 
variation in the hemodynamic response function). From the single-trial betas, we extracted responses from 1164 
several brain regions in the right hemisphere: fusiform face area (FFA-1 subdivision), V1, hV4, and 1165 
parahippocampal place area (PPA). We use the first region (FFA-1) as the main example; results for the 1166 
other regions (V1, hV4, PPA) are shown in S4 Figure. All regions were functionally localized in each 1167 
participant, and are supplied with the NSD dataset. We normalized the data by z-scoring the responses of 1168 
each vertex in each session, and then extracted responses for all images that were shown all three times 1169 
to the participant. (The term 'vertex' refers to a point that belongs to a cortical surface representation; for all 1170 
practical purposes, 'vertex' can be treated as synonymous with 'voxel' in this paper.) This procedure yielded, 1171 
for each participant, a set of response measurements with dimensionality n vertices ´ c images ´ 3 trials. 1172 
As an example of actual numbers, for FFA-1, across participants, the value of n ranged from 167 to 1,231 1173 
and the value of c ranged from 5,445 to 10,000. 1174 
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 1175 
Application of GSN 1176 
 1177 
We performed GSN on the response measurements from each participant. For the example participant 1178 
shown in Figure 6, GSN was applied to the full dataset as well as data subsets of varying sizes in order to 1179 
examine the impact of amount of data on estimation quality. This was accomplished by varying the fraction 1180 
of images used: 1 (10,000 images), 1/4 (2,500 images), 1/16 (625 images), 1/64 (156 images), and 1/256 1181 
(39 images). The images in the data subsets were randomly selected and mutually exclusive across 1182 
subsets. For the full set of participants shown in Figure 7, GSN was applied to the full dataset as well as 1183 
split-halves of the data from each participant. Splitting was performed such that a random half of the images 1184 
were used for one split and the remaining images were used for the other split. 1185 
 1186 
To aid visual inspection of covariance matrices, we used a particular vertex ordering for the rows and 1187 
columns of the covariance matrices in Figure 6. Specifically, we performed hierarchical clustering 1188 
(MATLAB's Statistics Toolbox's linkage.m) on trial-averaged responses using a distance metric of one 1189 
minus correlation and the linkage algorithm of unweighted average distance. This procedure yielded a 1190 
vertex ordering where similar vertices tend to be close to one another. The same vertex ordering is used 1191 
for all depicted covariance matrices. 1192 
 1193 
Application of PCA 1194 
 1195 
We performed PCA on the results of GSN ('GSN PCA'). This involved performing PCA separately on the 1196 
covariance of the signal distribution and on the covariance of the noise distribution. For comparison, we 1197 
also conducted a naive application of PCA by simply performing PCA on the covariance of the trial-1198 
averaged data ('Standard PCA'). 1199 
 1200 
To compare PCA results across participants, we isolated the set of 515 images that were viewed by all 8 1201 
participants 3 times each during the NSD experiment. For each participant, we computed trial-averaged 1202 
responses for the 515 images and projected these responses onto (i) the principal components associated 1203 
with the signal distribution in the case of GSN PCA, or (ii) the principal components of the trial-averaged 1204 
data in the case of Standard PCA. The resulting scores were then compared across participants using the 1205 
metric of cosine similarity (i.e., the dot product of unit-length-normalized vectors). 1206 
 1207 
One characteristic of PCA is that the sign of each principal component is arbitrary. We performed several 1208 
sign adjustments to facilitate comparison of PCA results across data splits and participants. First, for every 1209 
principal component, we flipped the sign of the principal component if necessary to ensure that the mean 1210 
of the values in the principal component is positive. This incurs no loss of generality and establishes a 1211 
reasonable starting point for the determination of signs. Second, for corresponding principal components 1212 
in the split-half analysis for each participant (e.g., PC1 from one half and PC1 from the other half), we 1213 
flipped the sign of one of the principal components if necessary to ensure that the cosine similarity between 1214 
the two principal components is non-negative. This flipping procedure ensures that the reliability of results 1215 
across split halves is not penalized for incidental variation in signs. Third, when comparing scores across 1216 
participants, we performed a simple iterative algorithm in which scores are sign-flipped if necessary to 1217 
ensure that the cosine similarity between the scores from a given participant and the average of the scores 1218 
from the other seven participants is non-negative. This procedure compensates for the sign ambiguity of 1219 
the principal components derived from each participant. 1220 
 1221 
Data and code availability statement 1222 
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 1223 
The code used in this study is provided at https://osf.io/wkyxn/. The empirical fMRI data used is available 1224 
at http://naturalscenesdataset.org. The GSN code toolbox is available at https://github.com/cvnlab/GSN/. 1225 
  1226 
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S1 Figure. Simulations for empirically derived signal and noise covariance. Here, we show simulation 
results for a scenario in which we take the ground-truth signal and noise covariance to be the GSN 
estimates of signal and noise covariance obtained from FFA-1 as illustrated in Figure 6 (code available at 
https://osf.io/3yvtg). A, Same format as Figure 4C. Results are similar to those found in Figure 4C. B, 
Same format as Figure 5. The results for effective dimensionality (ED) look similar to those found in Figure 
5. However, the results for power-law exponent look different. Specifically, the methods exhibit poor 
recovery of signal power-law exponent: each method either takes a very large amount of data to converge 
towards ground truth or has biases that do not resolve with additional data. One potential explanation is 
that the ground-truth signal covariance in this scenario is not exactly a line in log-log space (i.e. a power-
law function), whereas all of the scenarios shown in Figure 5 are exactly linear in log-log space. Hence, 
recovery may be especially difficult to achieve for the current scenario. Arguably, ED is a more appropriate 
metric for the evaluation of methods here, as it makes minimal assumptions about the structure of the 
eigenspectrum. Also, note that for sake of consistency with the other simulations, the MEME method was 
run assuming an unbroken power-law function; in theory, the MEME method could be run assuming a 
broken power-law function, which might help better match the ground-truth signal eigenspectrum and 
improve results. 
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S2 Figure. Assessment of data distributions. As an instructive exercise, we take the empirical brain data 
from FFA-1 illustrated in Figure 6 and perform an inspection of the signal and noise components of the 
data (code available at https://osf.io/yxrsp). We inspect two different distributions. One is the distribution of 
trial-averaged responses. Since trial averaging reduces noise, inspecting trial-averaged responses helps 
us assess properties of the signal. The second is the distribution of mean-subtracted residuals (in which 
trial-averaged responses have been removed). This allows us to focus our assessment on properties of the 
noise. We compute the first several principal components (PCs) of the covariance of the trial-averaged 
responses and then visualize the two distributions of interest in the low-dimensional space defined by these 
PCs. We also generate, for comparison, a synthesized dataset based on the parameters of the GSN model 
as fit to the empirical data. In order to generate responses for this synthesized dataset, we assume that 
both the signal and noise are Gaussian-distributed. We visualize the synthesized data in exactly the same 
manner as the real data (including using the same low-dimensional space). Examining the distributions 
associated with the real data (top row), we see that both the distribution of trial-averaged responses and 
the distribution of mean-subtracted residuals are Gaussian-like in their shape. We also see that the 
structure of the mean-subtracted residuals differs from that of the trial-averaged responses (top row, 
compare first and second images). This indicates that the noise structure is not identical to the signal 
structure, consistent with the inspections in Figure 6A. Next, we compare the distributions associated with 
the real data (top row) with those obtained from the synthesized data (bottom row). The distributions 
obtained from the synthesized data look very similar to those from the real data, suggesting that both the 
signal and the noise in the real data have Gaussian-like distributions and that the generative model learned 
by GSN accurately characterizes the real data. 
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S3 Figure. Inspection of stimuli in PCA results. Here we visually inspect stimulus images from the PCA 
analysis (code available at https://osf.io/f34bc). The projections of responses in FFA-1 to the common 515 
images onto PC1 (see Figure 7C) were unit-length-normalized, averaged across participants, and then 
unit-length-normalized again. This figure compares the results obtained using Standard PCA (x-axis) 
against the results obtained using GSN PCA (y-axis). Red dots indicate images that were judged by human 
raters to have at least one prominent face present; black dots indicate all other images. (The human raters 
were blind to the results in this paper.) The actual images corresponding to the highest five and lowest five 
projection values (based on the average of the results of the two methods) are shown. The presence of 
faces appears to be the dominant factor governing the response projections. (Note: Faces have been 
grayed out due to privacy reasons.) 
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S4 Figure. PCA results for additional brain regions. Here we show results of the PCA analysis for 
additional brain regions (code available at https://osf.io/f34bc). The format is the same as used in Figure 
7. A–C, Results for V1, hV4, and PPA, respectively. The main findings observed for FFA-1 in Figure 7 
replicate for these additional regions, including lower dimensionality for the signal compared to the noise, 
high within-participant reliability of the first several signal PCs and noise PCs, and higher across-participant 
consistency of trial-averaged response projections onto PC1 for GSN PCA than for standard PCA. 
Compared to FFA-1, the increase in across-participant consistency is more variable in hV4 and is relatively 
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small (but reliable) in PPA. One possible source of these region-wise differences may be differences in the 
degree to which signal covariance structure and noise covariance structure are aligned in different brain 
regions. For example, if noise covariance tends to align with signal covariance, then noise may have less 
of a corrupting influence on the estimation of signal PCs compared to when noise covariance is orthogonal 
to signal covariance. 
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S5 Appendix: GSN estimation of signal and noise covariance 
 
Problem setting 
 
As described in the main text, GSN calculates two covariance estimates from the data: Σ"!"#$%&'()  and 
Σ"*+,+[,]. The former is an estimate of the noise covariance based on the trial-to-trial variability around the 
mean response to each condition (see Step 2). The latter is an estimate of the data covariance based on 
the data after averaging across 𝑡 trials (see Step 3). 
 
These two covariance estimates reflect unknown covariance matrices Σ$#/!+0 and Σ!"#$% such that Σ"!"#$%&'() 
is a noisy version of Σ!"#$% based on 𝑐(𝑡 − 1) samples and Σ"*+,+[,] is a noisy version of Σ*+,+[,] = Σ$#/!+0 +
Σ!"#$%/𝑡 based on 𝑐 − 1 samples.  
 
We wish to determine estimates Σ"$#/!+0 and Σ"!"#$% under the constraint that these estimates are positive 
semi-definite matrices. To do so, we define the following loss that quantifies errors from the data-derived 
covariances scaled by the number of samples they are based on: 

𝐿-Σ"$#/!+0 , Σ"!"#$%/ = 𝑐(𝑡 − 1)0Σ"!"#$%&'() − Σ"!"#$%01
1 + (𝑐 − 1)0-Σ"*+,+[,] − Σ"!"#$%/𝑡/ − Σ"$#/!+001

1 

where ‖	‖1 indicates the Frobenius norm. Intuitively, the noise estimate Σ"!"#$% is allowed to deviate to some 
degree from the data-derived Σ"!"#$%&'() , and the signal estimate Σ"$#/!+0  is allowed to deviate to some 
degree from the subtraction-based estimate of the signal covariance Σ"*+,+[,] − Σ"!"#$%/𝑡. 
 
Notice Σ"!"#$%&'()  is positive semi-definite, as it is a covariance matrix computed from data. If Σ"*+,+[,] −
Σ"!"#$%/𝑡  is also positive semi-definite, setting Σ"!"#$% = Σ"!"#$%&'()  and Σ"$#/!+0 = Σ"*+,+[,] − Σ"!"#$%/𝑡  is the 
optimal solution for the problem (since the loss equals zero). If not, we can solve the optimization problem 
using the method described below. 
 
Solution 
 
To solve the optimization problem in the general case, we note that it is a convex optimization problem, as 
it is a sum of squares and the cone of semi-definite matrices is a convex set (Boyd and Vandenberghe, 
2016). Thus, this problem has a single optimum. For solving this problem efficiently, we split the problem 
into optimizing Σ"$#/!+0 and Σ"!"#$% separately, as we can compute an analytic solution for each matrix if the 
other is fixed. Since each of these separate optimizations is guaranteed to improve the loss, this approach 
is guaranteed to converge. 
 
Lemma: solution pattern 
 
Consider the following problem. Given 𝐵, find 𝐴 that minimizes ‖𝐵 − 𝐴‖11 (or equivalently ‖𝐴 − 𝐵‖11) subject 
to the constraint that 𝐴 is positive semi-definite. We can solve this problem as 𝐴 = PSD(𝐵) where PSD() is 
the method for finding the nearest positive semi-definite matrix described in the main text. We will use this 
solution pattern in solving the individual optimizations for Σ"$#/!+0 and Σ"!"#$%. 
 
Optimizing Σ"$#/!+0 
 
Since 𝑐(𝑡 − 1)0Σ"!"#$%&'() − Σ"!"#$%01

1 is independent of Σ"$#/!+0, we are left with minimizing 
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(𝑐 − 1)0-Σ"*+,+[,] − Σ"!"#$%/𝑡/ − Σ"$#/!+001
1 

subject to Σ"$#/!+0 being positive semi-definite. To do this, we use our solution pattern where 𝐴 = Σ"$#/!+0 and 
𝐵 = Σ"*+,+[,] − Σ"!"#$%/𝑡. 
 
Optimizing Σ"!"#$% 
 
In this case, we apply a quadratic extension to turn the sum of squares into a single one: 

𝐿-Σ"$#/!+0 , Σ"!"#$%/ =89𝑐(𝑡 − 1)-Σ"!"#$%&'()
(#3) − Σ"!"#$%

(#3) /
1
+ (𝑐 − 1):Σ"*+,+[,]

(#3) − Σ"$#/!+0
(#3) −

Σ"!"#$%
(#3)

𝑡 ;
1

<
#3

 

=8=𝑐(𝑡 − 1) >-Σ"!"#$%&'()
(#3) /

1
− 2Σ"!"#$%&'()

(#3) Σ"!"#$%
(#3) + -Σ"!"#$%

(#3) /
1
@

#3

+
𝑐 − 1
𝑡1 AB𝑡1 >Σ"*+,+[,]

(#3) − Σ"$#/!+0
(#3) @

1
C − 2𝑡 >Σ"*+,+[,]

(#3) − Σ"$#/!+0
(#3) @ Σ"!"#$%

(#3) + -Σ"!"#$%
(#3) /

1
DE 

=8=
𝑐𝑡1(𝑡 − 1) + 𝑐 − 1

𝑡1 -Σ"!"#$%
(#3) /

1
− 2Σ"!"#$%

(#3) A𝑐(𝑡 − 1)Σ"!"#$%&'()
(#3) +

𝑐 − 1
𝑡 >Σ"*+,+[,]

(#3) − Σ"$#/!+0
(#3) @DE

#3

+ 𝐶5 

where 𝐶5 is a term that is independent of Σ"!"#$%. Simplifying, we obtain: 

𝐿-Σ"$#/!+0 , Σ"!"#$%/ ∝8=Σ"!"#$%
(#3) −

𝑐𝑡1(𝑡 − 1)
𝑐𝑡1(𝑡 − 1) + 𝑐 − 1Σ

"
!"#$%&'()
(#3) −

𝑐 − 1
𝑐𝑡1(𝑡 − 1) + 𝑐 − 1 𝑡 >Σ

"
*+,+[,]
(#3) − Σ"$#/!+0

(#3) @E
1

#3

+ 𝐶6 

where 𝐶6 is a term that is independent of Σ"!"#$%. To minimize this loss, we use our solution pattern where 

𝐴 = Σ"!"#$% and 𝐵 = 7,!(,86)
7,!(,86)9786

Σ"!"#$%&'() +
786

7,!(,86)9786
𝑡-Σ"*+,+[,] − Σ"$#/!+0/. 

 
Notice that the calculation of 𝐵 is a weighted average of two possible estimates of the noise covariance. 
The first estimate, Σ"!"#$%&'() , reflects the covariance of mean-subtracted residuals, while the second 
estimate, 𝑡-Σ"*+,+[,] − Σ"$#/!+0/, reflects the subtraction of the signal distribution from the data distribution. 
The weights in the weighted average reflect the amount of data that inform each of the two estimates. 
 
Algorithm 
 
The overall algorithm for optimizing signal and noise covariance estimates is described in the main text. 
Holding Σ"!"#$%  fixed, the algorithm optimizes Σ"$#/!+0  in Step 6.1. Holding Σ"$#/!+0  fixed, the algorithm 
optimizes Σ"!"#$% in Step 6.2. This process of biconvex optimization is iterated until convergence. 
 
Proof that projection reduces error 
 
We claim in the main text that projection of a given covariance estimate onto the positive semi-definite cone 
always reduces the error of the estimate. Here we provide a simple proof of this claim. 
 
Definitions: For this proof, let Σ be the true n-dimensional covariance which lies within the convex cone of 
positive semi-definite matrices 𝐶 ⊂ ℝ!×!. We assume the original covariance estimate Σ" ∉ 𝐶. 
 
Theorem: Under these conditions, the squared error of the projection onto the positive semi-definite cone 
PSD(Σ") is smaller than the squared error of the original estimate, i.e.: 

0Σ − PSD(Σ")0
1
1 < 0Σ − Σ"0

1
1 
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Proof: As 𝐶 is convex, there is a tangent plane touching 𝐶 at PSD(Σ") to which the vector from Σ" to PSD(Σ") 
is orthogonal. All points in 𝐶 are on the other side of this tangent plane compared to Σ". The squared distance 
from Σ" to Σ can be decomposed into the distance orthogonal to the tangent plane and the distance within 
the tangent plane. The distance within the plane is the same for Σ" and PSD(Σ"), and the distance orthogonal 
to the plane is smaller for PSD(Σ"). Thus, the total distance for PSD(Σ") is indeed smaller than the total 
distance for Σ". See Figure S5.1 for a helpful illustration. 
 

 
 

Figure S5.1. Illustration that projection onto the positive semi-definite cone reduces error. 
 
Rationale for squared error 
 
Our estimates are based on minimizing sum of squares, i.e., we minimize the squared difference between 
our estimates and the data-derived Σ"!"#$%&'()  and Σ"*+,+[,] . Squared error is a common loss for the 
estimation of covariance matrices, and in particular, it is the loss optimized by the shrinkage method we 
employ for covariance estimation. Additionally, squared error is a convex loss function, which guarantees 
that our fitting procedure converges. 
 
We note that our squared-error loss does not correspond to a log likelihood under some distributional 
assumption. Rather, it is merely a mathematically convenient way to express the trade-off between the two 
data-driven covariance estimates Σ"!"#$%&'()  and Σ"*+,+[,] . Typical likelihood functions for covariance 
matrices imply larger variabilities for larger entries in the covariance matrix, but this is not the case for our 
squared-error loss. 
 
In our squared-error loss, we weight the two errors (one for Σ"!"#$%&'() , one for Σ"*+,+[,]) by the relevant 
degrees of freedom. This is a sensible approach that adapts to the specific numbers of conditions and trials 
used in a given experiment. We acknowledge that it may be possible to devise a more principled approach 
for determining the weighting. Nonetheless, note that the relative weighting of the errors does not change 
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fundamental properties of the estimators. For any chosen weighting, Σ"!"#$% and Σ"$#/!+0 are positive semi-
definite and approximate the data-derived covariance estimates. 
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S6 Appendix: Shrinkage-based covariance estimation 
 
A core component of GSN is estimation of covariance (this is performed for the estimated noise covariance 
in Step 2 and the estimated data covariance in Step 3). However, in high-dimensional datasets involving a 
large number of units but only a limited number of samples (e.g. trials), the standard method of computing 
sample covariance may yield inaccurate estimates of covariance. To improve accuracy of covariance 
estimation, GSN incorporates shrinkage (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005) of off-
diagonal elements of covariance matrices towards zero. This reflects the prior that units are generally 
expected to be uncorrelated. The specific amount of shrinkage is tailored to optimally match the data using 
a cross-validation procedure in which likelihoods are evaluated on held-out data (see Methods). 
 
We tested our shrinkage-based method for covariance estimation. We performed a set of simulations in 
which we assessed, as a function of the number of samples, how well the shrinkage method recovers a 
ground-truth covariance, compared to the standard method in which shrinkage is omitted (Figure S6.1). In 
one set of simulations, we used a ground-truth covariance equal to the identity matrix, corresponding to a 
scenario of uncorrelated units (panel A). In a second set of simulations, we re-used the previous ground-
truth covariance but introduced positive correlations (r = 0.5) amongst the first five units (panel B). For 
additional comparison, in a third set of simulations, we used a ground-truth covariance equal to the 
covariance of a fixed set of random numbers drawn from the standard normal distribution (20 observations, 
10 variables) (panel C). 
 
The results show that the shrinkage method works well. In each scenario, the introduction of shrinkage 
improves ground-truth covariance recovery and this occurs regardless of the number of samples (panels 
A–C, lower left). Note that the size of the improvement varies across scenarios, with larger improvements 
when the ground truth is consistent with the prior of uncorrelated units (e.g. panel A) than when this is less 
the case (e.g. panel C). This makes sense: the cross-validation procedure should, in theory, correctly 
determine that shrinkage should be applied more strongly in situations where the underlying ground-truth 
covariance involves uncorrelated variables. Indeed, if we examine cross-validation results across different 
shrinkage levels, we see that in the scenario of uncorrelated variables, the shrinkage fractions yielding the 
highest likelihood on held-out data are close to 0, indicating large amounts of shrinkage (panel A, vertical 
red line in rightmost column), whereas in scenarios of correlated variables, the optimal shrinkage levels are 
closer to 1, indicating small amounts of shrinkage (panels B–C, vertical red lines in rightmost column). 
 
The simulations also reveal insights into how ground-truth recovery performance varies as a function of the 
amount of data. As the number of samples increases, the induced shrinkage becomes weaker (compare 5 
samples to 100 samples in panel C). This makes sense because at small sample sizes, the unregularized 
(non-shrunken) covariance is so inaccurate that inducing heavy bias improves the estimate. Furthermore, 
we see that as the number of samples increases, the difference in results between the shrinkage method 
and the standard method becomes smaller. Thus, shrinkage provides the most benefit when the amount of 
available data is small. It is important to keep in mind, however, that the covariance estimates produced by 
shrinkage are by no means perfect and that they contain bias. This can be seen intuitively by visually 
comparing the shrinkage-based covariance estimates at low number of samples to the ground-truth 
covariance. While shrinkage increases the overall similarity of covariance estimates to the underlying 
ground-truth covariance, it does so at the expense of biasing the magnitudes of off-diagonal elements 
towards zero. The introduction of bias is not necessarily a problem per se, as it depends on the goals of 
the researcher. 
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Figure S6.1. Shrinkage-based covariance estimation. Here we show results of simulations that assess the 
performance of the shrinkage-based method we use for covariance estimation (code available at 
https://osf.io/yr3vx). Panels A–C depict three different scenarios. Each scenario involves 10 units whose 
responses are distributed according to a ground-truth multivariate Gaussian (whose covariance is shown at the 
upper left). We vary the number of samples (e.g., trials, conditions) drawn from the distribution, performing 50 
simulations for each number of samples. In each simulation, we estimate covariance from the samples using two 
different methods. One method ('No shrinkage') is to simply compute the sample covariance with Bessel's 
correction. The second method ('Shrinkage') involves additionally shrinking the off-diagonal elements of the 
sample covariance, using cross-validation to determine the optimal shrinkage level. In each panel, the ground-
truth covariance is shown at the upper left. Cross-validation results for different numbers of samples are shown 
at the upper right, where colored lines indicate different simulations, black dots indicate the minimum negative 
log likelihood achieved, and the vertical red line indicates the median selected shrinkage level across simulations. 
Below each cross-validation plot, covariance estimates from one simulation are shown (we choose the simulation 
in which the selected shrinkage level is closest to the median). At the bottom are plots of the eigenspectra (mean 
across simulations) produced by the two methods (red and pink lines) as well as the ground-truth eigenspectrum 
(black dotted line). Finally, the ground-truth recovery performance quantified using coefficient of determination 
(𝑅!) is shown at the lower left (mean across simulations). 

 
A clear benefit of the bias induced by shrinkage can be seen in the eigenspectra of the covariance estimates 
(panels A–C, bottom right). Even though the sample covariance provides an unbiased estimate of 
covariance, it produces biased eigenspectra that are lower in dimensionality than the ground-truth 
eigenspectra (see steep fall-off of the eigenspectra in the case of 5 samples). In other words, the sample 
covariance tends to underestimate the true dimensionality of the data. Shrinkage, to an extent, alleviates 
this issue, as it increases dimensionality (eigenvalues become more spread out) and produces 
eigenspectra that more closely resemble the ground-truth eigenspectra. These results are consistent with 
prior results from the literature (see Figure 1 in (Schäfer and Strimmer, 2005)). 
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