

1 Disentangling signal and noise in neural 2 responses through generative modeling

3
4 Kendrick Kay^{*1}, Jacob S. Prince², Thomas Gebhart³, Greta Tuckute^{4,5},
5 Jingyang Zhou⁶, Thomas Naselaris^{1,7}, Heiko Schutt⁸

6
7 ¹Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota

8 ²Department of Psychology, Harvard University

9 ³Department of Computer Science, University of Minnesota

10 ⁴Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

11 ⁵McGovern Institute for Brain Research, Massachusetts Institute of Technology

12 ⁶Center for Computational Neuroscience (CCN), Flatiron Institute

13 ⁷Department of Neuroscience, University of Minnesota

14 ⁸Department of Behavioural and Cognitive Sciences, Université du Luxembourg

15 *Corresponding author (kay@umn.edu)

17 Abstract

18 Measurements of neural responses to identically repeated experimental events often exhibit large amounts
19 of variability. This *noise* is distinct from *signal*, operationally defined as the average expected response
20 across repeated trials for each given event. Accurately distinguishing signal from noise is important, as
21 each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and
22 it is important not to confuse one for the other. Here, we describe a principled modeling approach in which
23 response measurements are explicitly modeled as the sum of samples from multivariate signal and noise
24 distributions. In our proposed method—termed Generative Modeling of Signal and Noise (GSN)—the signal
25 distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution.
26 Importantly, GSN improves estimates of the signal distribution, but does not provide improved estimates of
27 responses to individual events. We validate GSN using ground-truth simulations and show that it compares
28 favorably with related methods. We also demonstrate the application of GSN to empirical fMRI data to
29 illustrate a simple consequence of GSN: by disentangling signal and noise components in neural
30 responses, GSN denoises principal components analysis and improves estimates of dimensionality. We
31 end by discussing other situations that may benefit from GSN's characterization of signal and noise, such
32 as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is
33 provided with both MATLAB and Python implementations.

34
35

36 Introduction

37

38 Nominally identical sensory, cognitive, and/or motor events often result in highly variable neural activity
39 measurements (Goris et al., 2014; Ito et al., 2020; Rabinowitz et al., 2015; Tolhurst et al., 1981). Such
40 variability is termed *noise*, and manifests in all techniques for measuring brain activity, including
41 electrophysiology, optical imaging, electroencephalography, magnetoencephalography, and functional
42 magnetic resonance imaging (fMRI). Noise may originate from multiple sources. Noise can arise for
43 instrumental reasons (e.g., electrical noise, head motion) or physiological reasons (e.g., cardiac noise), but
44 can also reflect genuine variability in neural activity. Another important aspect of noise is its complex
45 multivariate nature: variability in activity is not independent across units (e.g., neurons, voxels, channels)
46 but typically exhibits structured correlations (Biswal et al., 1995; Cohen and Kohn, 2011; Hazon et al., 2022;
47 Kanitscheider et al., 2015; Mell et al., 2021; Moreno-Bote et al., 2014). To mitigate the effects of noise,
48 neuroscientists usually average neural responses across repeated trials associated with the same event.
49 The underlying premise is that the object of interest, the *signal*, is not the neural response observed on any
50 single trial but the average expected neural response across a large (infinite) number of trials.

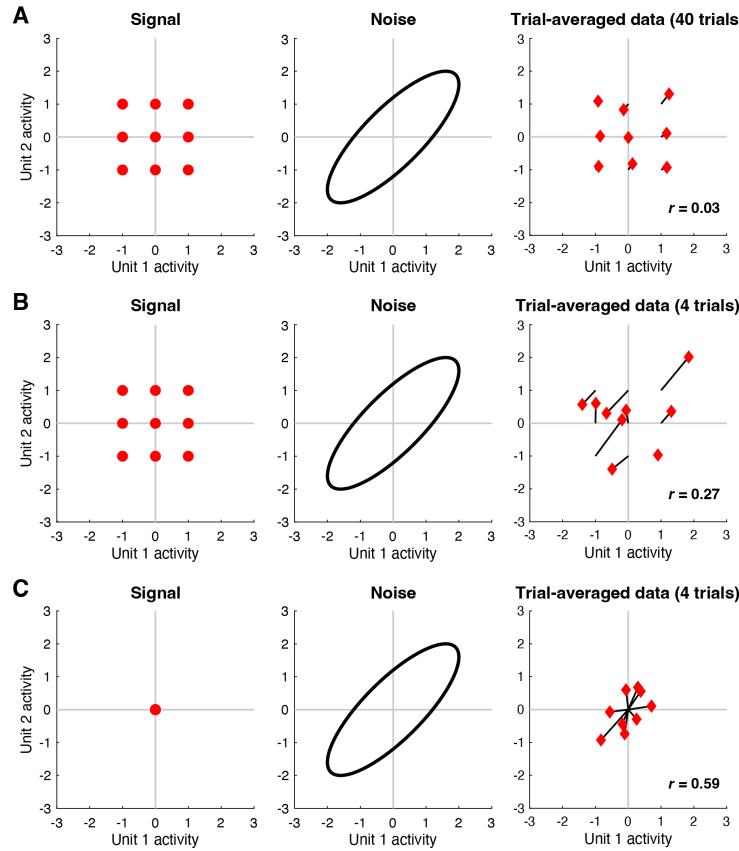
51

52 Many research programs in systems, cognitive, and computational neuroscience focus on studying signal.
53 For example, one might seek to characterize the tuning of sensory neurons by averaging responses across
54 several trials measured for each stimulus condition. But there are also scientific motivations for
55 characterizing and understanding noise, which may play an important role in neural computation (Panzeri
56 et al., 2022; Ringach, 2009; Uddin, 2020). One example approach, originating in computational
57 neuroscience, investigates the correlational structure of noise in the responses of individual neurons and
58 explores how these noise correlations affect the information capacity of a neural population code (Averbeck
59 et al., 2006; Azeredo da Silveira and Rieke, 2021; Cafaro and Rieke, 2010; Zylberberg et al., 2016). Another
60 approach, commonly referred to as resting-state functional connectivity, leverages spontaneous activity
61 fluctuations to parcellate brain areas and networks (Eickhoff et al., 2018) and to develop biomarkers for
62 individuals (Gratton et al., 2020) or populations (Zhang et al., 2021). Perhaps the deepest potential
63 interpretation of noise is that it reflects critical latent cognitive processes that are not directly controlled by
64 the experimental paradigm. One example of this view is the theory that noise reflects statistical priors and/or
65 probabilistic neural computations (Ma et al., 2006; Orbán et al., 2016; van Bergen et al., 2015).

66

67 Given that both signal and noise are of potential interest, a challenge faced by neuroscientists is that signal
68 and noise are entangled in neural activity measurements, and it is not immediately obvious how to separate
69 the two components. The standard approach is to average responses across trials and assume that the
70 result adequately isolates signal from noise. However, while simple and straightforward, the approach of
71 trial averaging does not necessarily produce perfectly accurate signal measures, a point that has been
72 previously recognized (Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Stringer et al., 2019). To
73 illustrate, we perform a simple simulation in which two units exhibit positive noise correlation but no signal
74 correlation (**Figure 1**). When the number of trials per condition is large, trial averaging indeed suppresses
75 the noise, but noise correlation is still observed in the trial-averaged results (panel A). When the number of
76 trials per condition is small, noise correlation in the trial-averaged results is even more substantial (panel
77 B). Finally, to further accentuate the point, we simulate a situation where there is no signal at all (panel C):
78 this case clearly shows how noise structure seeps into the trial-averaged results. The residual influence of
79 noise on trial-averaged results is a problem as it may lead to inaccurate estimates of signal correlation
80 (Pospisil and Bair, 2021a), and inaccurate interpretations of commonly performed multivariate analyses,
81 such as principal components analysis, representational similarity analysis, and analysis of neural
82 dimensionality. In short, what is thought to be due to signal might actually be due to noise. Indeed, there

83 has been recent interest in methods for identifying and isolating signal and noise components in high-
84 dimensional neural data (Pospisil and Pillow, 2024; Stringer et al., 2019; Williams and Linderman, 2021).
85



86
87

88 **Figure 1. Trial averaging is insufficient for removing the effects of noise.** Here we perform simulations to
89 illustrate how noise correlations persist after trial averaging (code available at <https://osf.io/fc589>). A, In this
90 simulation, responses to 9 conditions are measured from 2 units. The left shows the signal, i.e. responses in the
91 absence of noise. The middle shows the noise, i.e. trial-to-trial response variability for a fixed condition; the noise
92 is drawn from a zero-mean multivariate Gaussian distribution (ellipse indicates a Mahalanobis distance of 2). The
93 right shows responses averaged across 40 trials for each condition (black lines join the trial average to the
94 corresponding signal). B, Same as panel A except that 4 trials per condition are used. C, Same as panel B except
95 that the signals associated with the 9 conditions are all set to zero.

96

97 In this paper, we propose an analysis technique for disentangling signal and noise covariance in neural
98 response measurements. Our approach, termed generative modeling of signal and noise (GSN), builds and
99 fits a model of the signal and noise components of measured multivariate neural responses. The model is
100 *generative* in the sense that the process by which measurements are generated is explicitly modeled, and
101 the model is *distributional* in the sense that it attempts to characterize how neural responses are distributed
102 across conditions. (This latter characteristic contrasts with tuning-based models that attempt to characterize
103 how neural responses vary as a function of specific properties of experimental conditions.) First, we lay out
104 the principles underlying GSN and validate GSN through a series of simulations with a known ground truth.
105 In conducting these simulations, we also compare the performance of GSN to that of several related
106 techniques. Next, we demonstrate the application of GSN to visually evoked functional magnetic resonance
107 imaging (fMRI) responses in the publicly available Natural Scenes Dataset (Allen et al., 2022). This provides
108 intuition for how GSN fares on empirical brain data and highlight ways in which GSN can be leveraged
109 within computational neuroscience. Finally, we use the example data to illustrate how GSN can be used to

110 improve the results of principal components analysis. Specifically, by disentangling signal and noise, GSN
111 provides a cleaner estimate of the signal in the data and its properties (eigenspectra and dimensionality).
112
113 While elements of the statistical components comprising GSN can be found in prior work (Duan et al., 2023;
114 Ledoit and Wolf, 2004; Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Schäfer and Strimmer, 2005;
115 Stringer et al., 2019; van Bergen and Jehee, 2021; Yatsenko et al., 2015), novel contributions of the present
116 work include integrating principles and techniques into a clearly articulated framework, developing an
117 algorithm and associated code toolbox for optimally fitting the GSN model, and demonstrating several ways
118 in which GSN may be useful for neuroscience applications. The code used in this paper is available at
119 <https://osf.io/wkyxn/>, and the code toolbox implementing GSN is available at
120 <https://github.com/cvnlab/GSN/>.
121

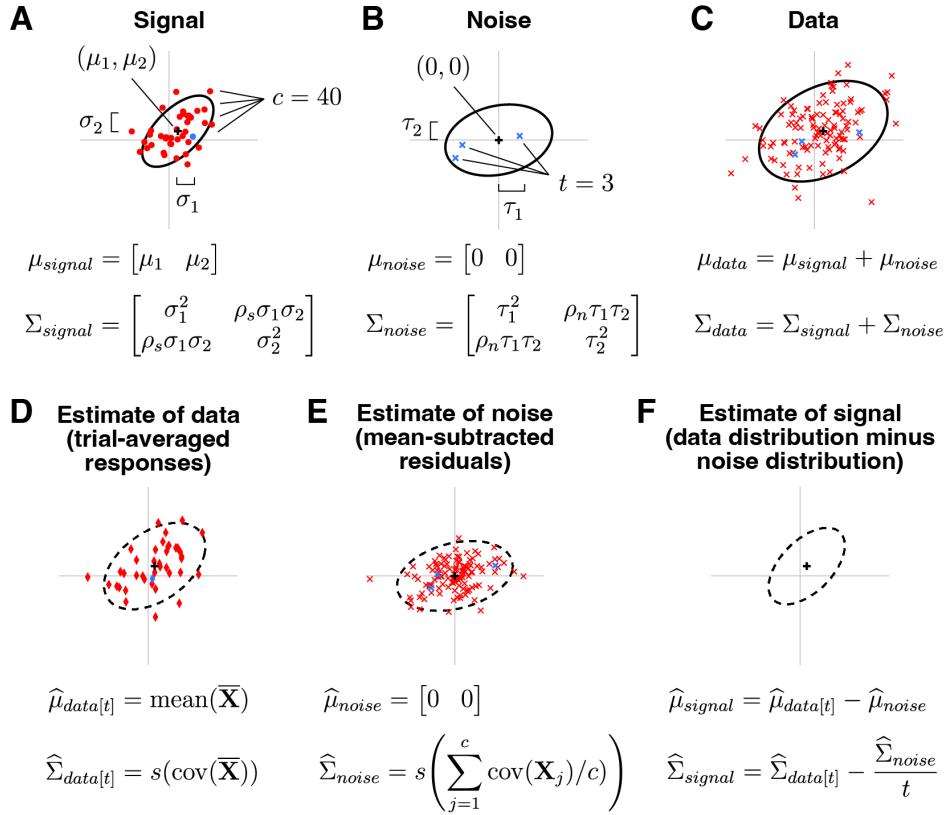
122 Results

124 Generative signal and noise modeling approach

126 Consider the general situation where responses are measured from a set of units (e.g., voxels, neurons,
127 channels) to several experimental conditions (e.g. stimuli) and several trials are collected for each condition.
128 The core idea of the generative signal and noise (GSN) approach is to model each response as reflecting
129 the sum of a sample drawn from a multivariate distribution associated with signal (defined as the response
130 to different conditions in the absence of noise) and a sample drawn from a multivariate distribution
131 associated with noise (defined as trial-to-trial response variability for a fixed condition). We assume the
132 noise distribution is zero-mean and assume the noise sample is independent of the signal sample. We
133 allow the signal and noise distributions to have potentially different covariances.

134
135 A schematic illustrating GSN is shown in **Figure 2**. This schematic depicts a situation in which responses
136 are measured from two units to 40 conditions with three trials per condition. Panel A shows the ground-
137 truth signal distribution. Red dots are samples from the distribution and indicate noiseless responses to the
138 40 conditions. One of the dots is highlighted in blue, marking an example condition. Panel B shows the
139 ground-truth noise distribution. Blue x's indicate three samples from the distribution; these are noise
140 samples associated with the example condition. Panel C shows the data distribution, whose mean and
141 covariance are equal to the sum of the means of the signal and noise distributions and the sum of the
142 covariances of the signal and noise distributions, respectively. The red x's indicate the measured responses
143 (obtained as the sum of signal and noise), with the blue x's highlighting the responses associated with the
144 example condition. Overall, panels A–C illustrate how signal and noise distributions give rise to observed
145 measurements.

146
147 The core challenge in GSN is estimating the unknown signal and noise distributions given a set of
148 measurements. The basic procedure that we propose is illustrated in panels D–F. Responses are averaged
149 across trials and the mean and covariance of the trial-averaged responses are computed, as shown in
150 panel D (red diamonds indicate trial-averaged responses; the blue diamond corresponds to the example
151 condition). This procedure yields the estimate of the data distribution. After subtracting the mean response
152 from the original non-trial-averaged responses to each condition, the covariance of the residuals is
153 computed and then averaged across conditions, as shown in panel E (red x's indicate the residuals; blue
154 x's indicate the residuals associated with the example condition). This yields the estimate of the noise
155 distribution. Finally, the parameters associated with the noise distribution are subtracted from the
156 parameters associated with the data distribution, as shown in panel F. This is the key step that corrects for
157 the noise that persists after trial averaging (see **Figure 1**), and yields the estimate of the signal distribution.
158 In order to ensure positive semi-definite covariance estimates, the full procedure is more complicated than
159 what is presented here (please see *Methods* for details).



161

162

163 **Figure 2. Schematic of GSN.** Here we depict an example involving $n = 2$ units, $c = 40$ conditions, and $t = 3$ trials
 164 per condition (code available at <https://osf.io/7k2m5>). In each plot, the black cross and black ellipse indicate the
 165 mean and spread (Mahalanobis distance of 2) of a multivariate Gaussian distribution. For definitions of symbols,
 166 please see *Methods*. *A*, Signal. The signal indicates responses to different conditions in the absence of noise and
 167 is modeled as a multivariate distribution. *B*, Noise. The noise indicates trial-to-trial variability for a given condition
 168 and is modeled as a zero-mean multivariate distribution. *C*, Data. The data are modeled as the sum of a sample
 169 from the signal distribution and a sample from the noise distribution. *D*, Estimate of data distribution. Given a set
 170 of measured responses, we compute trial-averaged responses and estimate the mean and covariance of these
 171 responses, yielding the estimate of the data distribution. *E*, Estimate of noise distribution. We compute the
 172 covariance of responses to each condition and average across conditions, yielding the estimate of the noise
 173 distribution. *F*, Estimate of signal distribution. We subtract the estimated parameters of the noise distribution from
 174 the estimated parameters of the data distribution, yielding the estimate of the signal distribution.

175

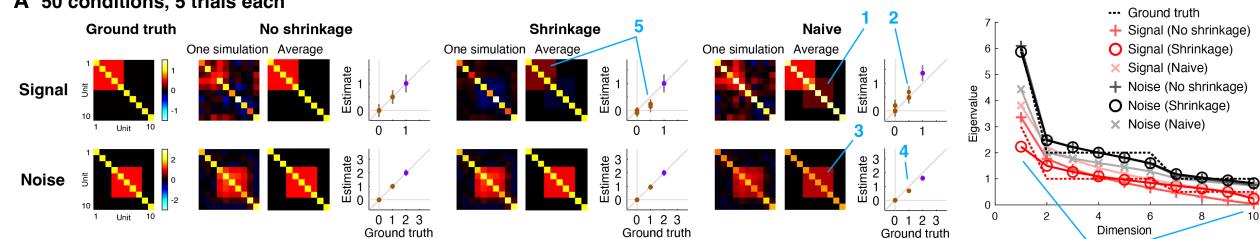
176 Validation of GSN through ground-truth simulations

177

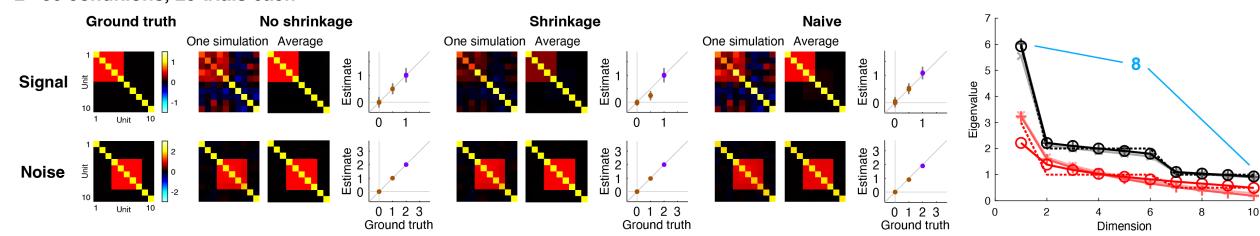
178 GSN attempts to determine the signal and noise distributions that underlie a set of measured responses.
 179 To help validate GSN, we performed ground-truth simulations involving 10 units whose ground-truth signal
 180 and noise distributions have specific structure (**Figure 3**). For the signal distribution, each unit was set to
 181 have a variance of 1, and units 1 through 5 were given positive correlation ($r = 0.5$; covariance = 0.5). For
 182 the noise distribution, each unit was set to have a variance of 2, and units 4 through 8 were given positive
 183 correlation ($r = 0.5$; covariance = 1).

184

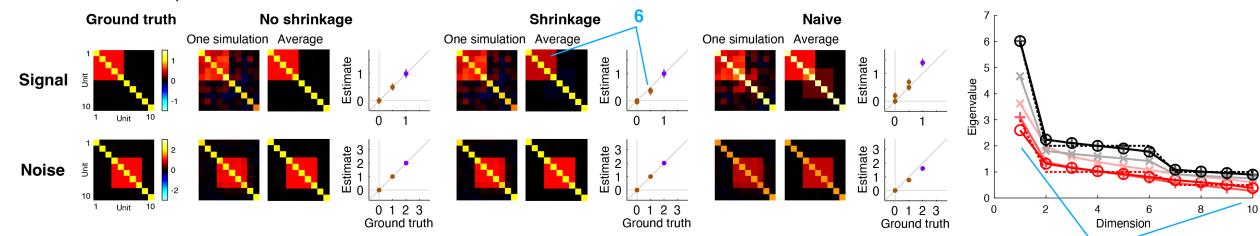
A 50 conditions, 5 trials each



B 50 conditions, 20 trials each



C 200 conditions, 5 trials each



185

186

187

Figure 3. Estimation of signal and noise distributions. Here we show results of simulations that assess how well GSN estimates the signal and noise distributions that underlie a set of measurements (code available at <https://osf.io/5uskr>). All simulations involve 10 units whose responses are generated as the sum of a sample from a signal distribution and a sample from a noise distribution. Both distributions are multivariate Gaussian with zero mean but have different covariances (as depicted). For different combinations of number of conditions (samples from the signal distribution) and number of trials (samples from the noise distribution for each condition), we perform 1,000 simulations. In each simulation, we generate responses and analyze the resulting data using three different methods: 'Naive' refers to simple heuristic methods for estimating signal and noise covariance (see main text), 'No shrinkage' is the GSN method with standard covariance estimation, and 'Shrinkage' is the GSN method with shrinkage-based covariance estimation. Blue number labels highlight specific aspects of the results that are discussed in the main text. A–C, Detailed inspection of results for specific condition and trial numbers. In the scatter plots, purple and brown dots indicate diagonal and off-diagonal elements of the covariance matrix, respectively, and error bars indicate standard deviation across simulations. At the far right are plots of the eigenspectra (mean across simulations) produced by the three methods, as well as the ground-truth eigenspectra.

201

202

203

204

205

206

207

208

209

210

211

212

213

214

To gain insight, we plot detailed inspections of the performance of different methods for recovering ground-truth signal and noise distributions (Figure 3). First, consider the performance of naive methods for signal and noise estimation ('Naive'). For signal estimation, the naive method is to simply average responses across trials and compute the sample covariance of the trial-averaged data (we refer to this method as 'Signal (Naive)'). We see that this method incurs upward bias in the estimated signal covariance values; this can be observed in the qualitative image plots as the seeping of the noise covariance into the signal estimate (panel A, location 1) and in the quantitative scatter plots as dots lying above the line of unity (panel A, location 2). The bias is due to the fact that although trial averaging reduces noise, the trial-averaged data are still influenced by noise (Pospisil and Pillow, 2024). Thus, it is critical for an estimation procedure to account for this persistent noise. For noise estimation, the naive method is to simply remove the mean response for each condition, aggregate the residuals across conditions, and then proceed to covariance estimation (we refer to this method as 'Noise (Naive)'). We see that the naive method for noise estimation incurs downward bias in the estimated noise covariance values; this can be observed in the image plots

215 (panel A, location 3) and the scatter plots (panel A, location 4). The reason for this bias is that the naive
216 method fails to account for the reduced degrees of freedom in the de-means responses: aggregating de-
217 means responses across conditions involves using $ct - 1$ in the denominator of the calculation of
218 covariance, whereas the correct approach is to use $t - 1$ in the denominator of the calculation of covariance
219 for each condition, which is equivalent to a final denominator (after pooling) of $c(t - 1) = ct - c$. Thus, the
220 denominator is inflated in the naive method, leading to downward bias in the estimated covariance values.
221

222 We now proceed to the GSN method for signal and noise estimation. One version of GSN is coupled with
223 standard covariance estimation ('No shrinkage'), providing estimates of signal covariance (referred to as
224 'Signal (No shrinkage)' and of noise covariance (referred to as 'Noise (No shrinkage)'). These estimates are
225 unbiased (dots in the scatter plots lie on the line of unity) but suffer from high variance (error bars indicating
226 standard deviation across simulations are large). A second version of GSN is coupled with shrinkage-based
227 covariance estimation ('Shrinkage'), providing estimates of signal covariance (referred to as 'Signal
228 (Shrinkage)') and of noise covariance (referred to as 'Noise (shrinkage)'). These estimates have reduced
229 variance (brown dots indicating off-diagonal elements have smaller error bars), but are biased (the brown
230 dots lie below the line of unity). Notice that the amount of bias is larger in scenarios with low amounts of
231 data (e.g., panel A, location 5) than in scenarios with high amounts of data (e.g., panel C, location 6).
232

233 Besides assessing how well the different methods estimate covariance, we can also assess how well the
234 different methods estimate eigenspectra. We observe that the sample covariance tends to underestimate
235 dimensionality. This is most visible in the estimation of signal covariance when the number of conditions is
236 small (panel A, location 7, red +'s). By incorporating shrinkage (panel A, location 7, red circles), the match
237 to the ground-truth eigenspectrum is improved (panel A, location 7, red dashed line). Notice that the
238 difference between the two methods diminishes in situations where a relatively large number of samples is
239 available, such as estimation of noise covariance (panel B, location 8) or when the number of conditions is
240 increased (panel C, location 9). Finally, consistent with earlier observations, we see that naive signal
241 estimation produces eigenvalues that are too high (pink x's; reflecting the seeping of the noise covariance
242 into the signal covariance estimate) and that naive noise estimation produces eigenvalues that are too low
243 (gray x's; reflecting the lack of compensation for the reduced degrees of freedom).
244

245 We summarize the overall performance of the different methods by plotting ground-truth recovery of
246 covariance as a function of number of trials (**Figure 4A**) and number of conditions (**Figure 4B**). In plotting
247 these results, we also show the performance of an alternative method that is often used to estimate signal
248 covariance (Pospisil and Pillow, 2024; Stringer et al., 2019). This method involves computing covariance
249 of responses across independent splits of a given set of data (we refer to this method as 'Split-half'). The
250 intuition underlying the Split-half method is that the signal is expected to repeat across splits, whereas the
251 noise is not expected to do so. Finally, we show results for additional scenarios beyond the simple idealized
252 scenario depicted in **Figure 3**. In these additional scenarios (**Figure 4C**), we use randomly generated signal
253 and noise covariances and explore the impact of varying the number of units and varying the dimensionality
254 of the signal and noise distributions (see *Methods* for details).
255



256
257
258 **Figure 4. Ground-truth recovery of covariance.** Here we quantify how well different methods recover signal
259 and noise covariance (code available at <https://osf.io/5uskr> and <https://osf.io/3yvtg>). Performance is quantified
260 using coefficient of determination (R^2) with respect to values in the upper triangle of the covariance matrix
261 (including the diagonal). The 'Split-half' method involves computing covariance across independent splits (trials)
262 of the data. A–B, Recovery performance for the simple scenario illustrated in **Figure 3**. We vary the number of
263 trials while holding the number of conditions fixed at 50 (panel A), and we vary the number of conditions while
264 holding the number of trials fixed at 5 (panel B). Markers indicate the mean across 1,000 simulations. C, Recovery
265 performance for a set of scenarios in which the number of units is varied (rows) and the dimensionality of the
266 signal and noise is varied (columns). In these scenarios, signal and noise eigenspectra are governed by the
267 power-law function $d^{-\alpha}$ where d is the 1-indexed dimension number and α is an exponent parameter. We fix the
268 number of trials at 5 and vary the number of conditions. Markers indicate the mean across 50 simulations.
269

270 We find that in general, the noise distribution is easier to estimate than the signal distribution. This makes
271 sense since all samples contribute to estimating the noise distribution, whereas only the mean of the
272 samples associated with a condition contribute to estimating the signal distribution. We also see that across
273 the board, the shrinkage method performs better than or as well as the other methods, with larger
274 improvements in low-data regimes (e.g. panel B, location 1). This is consistent with the idea that although
275 the No shrinkage method converges to the correct covariance when results are averaged across a large
276 (infinite) number of simulations (i.e. it is unbiased), in individual simulations the Shrinkage method produces
277 more accurate results than the No shrinkage method. Moreover, the benefit of shrinkage is especially
278 pronounced in scenarios with high dimensionality (e.g., panel C, locations 2 and 3). This reflects the fact
279 that non-regularized covariance estimates tend to underestimate dimensionality and shrinkage enables
280 covariance estimates to become less correlated and hence higher-dimensional.
281

282 Notably, the Split-half method performs very similarly to the No shrinkage method. This makes sense from
283 a theoretical standpoint: noise is expected to average out when computing covariance across splits and
284 neither method incorporates shrinkage. However, notice that the Split-half method does systematically
285 slightly underperform the No shrinkage method at low numbers of conditions (e.g., panel C, locations 4 and
286 5). One reason this may be the case is that the Split-half method is sensitive to stochastic sampling issues:

287 results are dependent on exactly which trials are placed into each split, and performance presumably
288 suffers unless one averages over all possible splits (which may be computationally impractical).
289

290 A final observation is that the limiting factor for accurate estimation appears to be the number of conditions
291 available. In the simple scenario (as illustrated in **Figure 3**), if we fix the number of conditions at 50, even
292 if we greatly increase the number of trials, ground-truth recovery of the signal reaches a plateau that is
293 lower than 100% (**Figure 4**, panel A, location 6). This reflects the fact that although additional trials are
294 helpful for reducing noise in the responses to individual conditions, the quality of signal covariance
295 estimation is still limited by the number of samples drawn from the signal distribution. In contrast, if we fix
296 the number of trials to 5, as we increase the number of conditions, ground-truth recovery of the signal
297 approaches 100% (panel B, location 7). In other words, even if the number of trials per condition is low, we
298 can achieve accurate recovery of signal and noise distributions as long as we sample a sufficient number
299 of conditions. This means that when designing an experiment in which we can either sample more trials
300 per condition or sample more conditions, if one's goal is to accurately estimate signal and noise covariance,
301 it is more important to sample many conditions than to sample many trials per condition. Alternatively, if
302 one's goal is to obtain accurate estimates of the mean response to each condition, sampling more trials per
303 condition is more important.
304

305 Recovery of effective dimensionality and power-law exponent

306

307 There has been increasing interest in studying the dimensionality of neural representations (e.g. (Canatar
308 et al., 2023; Jazayeri and Ostožić, 2021; Pospisil and Pillow, 2024; Stringer et al., 2019)). A simple and
309 useful metric of dimensionality is effective dimensionality (ED) (Del Giudice, 2021), which summarizes the
310 distribution of eigenvalues in an eigenspectrum with a single number. A different metric stems from
311 modeling eigenspectra using a power-law function (Stringer et al., 2019). Power-law functions are straight
312 lines in log-log space; hence, a convenient metric of dimensionality is the slope of a line corresponding to
313 a power-law function in log-log space, which is equivalent to the exponent of the power-law function. An
314 interesting open question is how well the signal and noise estimates provided by GSN enable these
315 dimensionality metrics to be recovered. We therefore augmented our simulations with additional analyses.
316 Whereas our earlier analyses (in **Figure 4**) quantify how well a given method recovers signal and noise
317 covariance values in terms of variance explained (R^2), here we sought to quantify how well a given method
318 recovers ground-truth values for ED and the power-law exponent. Hence, there are two differences in the
319 evaluations: one difference concerns the quantity being recovered (covariance values vs. summary metrics
320 of covariance structure), and the other difference concerns the evaluation criterion (variance explained vs.
321 absolute difference between the ground-truth value and the estimated value).
322

323 For the same scenarios shown in **Figure 4C**, we calculated the ED and power-law exponent associated
324 with the ground-truth signal and noise covariances, and compared these ground-truth values to the
325 estimates provided by different methods (**Figure 5**). For each data point (reflecting a particular combination
326 of scenario, number of conditions, and number of trials), we performed 50 simulations and computed the
327 average estimate obtained across simulations. This allows us to investigate whether we can expect a given
328 method to recover, on average, the ground-truth ED and power-law exponent, or whether the method
329 exhibits bias. In conducting these analyses, we also included for comparison the performance of two
330 methods that have been recently proposed for estimation of signal eigenspectra: cvPCA (Stringer et al.,
331 2019), which is based on computing variance across independent splits of a given set of data, and MEME
332 (Pospisil and Pillow, 2024), which is based on optimizing an eigenspectrum model to match the moments
333 of the signal eigenspectrum estimated from a given set of data (see *Methods* for details).
334

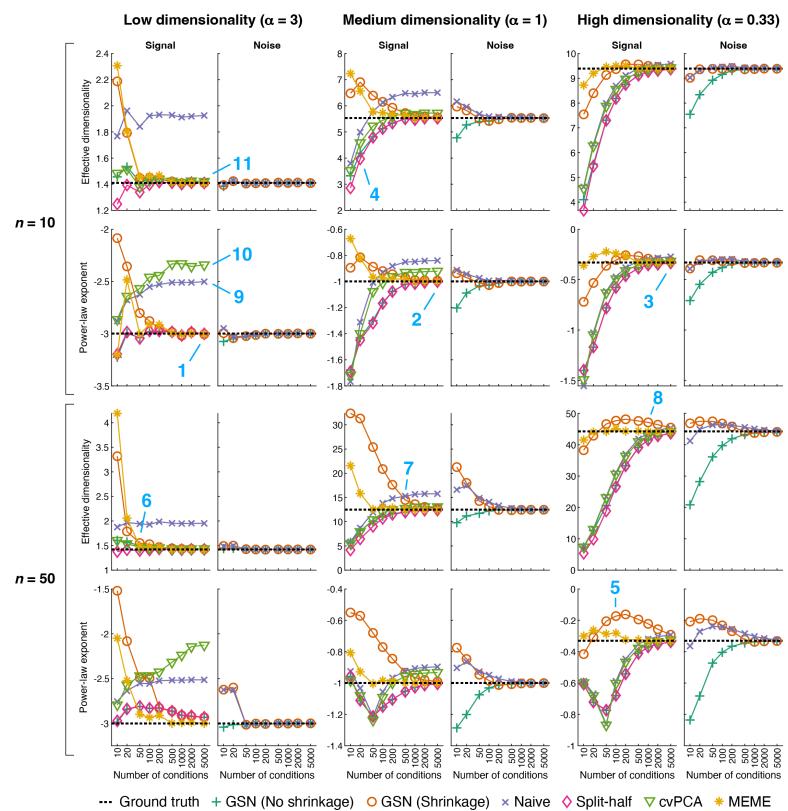


Figure 5. Ground-truth recovery of effective dimensionality and power-law exponent. Here we quantify how well different methods recover two summary metrics of signal and noise eigenspectra: effective dimensionality and power-law exponent (code available at <https://osf.io/3yvtg>). Recovery performance is plotted for the same scenarios shown in **Figure 4C**. The cvPCA method estimates the signal eigenspectrum by projecting two splits of a given set of data onto principal components (PCs) and calculating the dot product between the two sets of projections obtained for each PC. The MEME method estimates the signal eigenspectrum by estimating signal eigenmoments from a given set of data and then adjusting the parameters of an eigenspectrum model to match the estimated eigenmoments. Markers indicate the mean across 50 simulations, and the horizontal dotted line indicates the ground-truth value. Note that the Split-half, cvPCA, and MEME methods do not provide estimates for the noise (and are therefore not plotted).

The simulation results show a variety of interesting observations. On the whole, several of the methods perform reasonably well: GSN (No shrinkage), GSN (Shrinkage), Split-half, and MEME all provide estimates that converge towards ground-truth values at large number of conditions (e.g. locations 1, 2, 3). Hence, these methods provide the means to track and recover dimensionality of different scenarios. However, all methods exhibit bias at low numbers of conditions (e.g. location 4), and biases sometimes persist even for numbers of conditions that may seem relatively large, such as 100 (e.g. location 5). This underscores the point that collecting sufficient amounts of data is critical for accurately estimating dimensionality. As might be expected, the necessary amount of data scales with the dimensionality of the scenario being characterized (e.g. compare locations 6, 7, 8). Also, similar to earlier observations (see **Figure 4**), it is easier to recover properties of noise than properties of signal.

While ranking methods is tricky given the high complexity of the patterns of results, we venture some general conclusions. The worst performing methods are Naive and cvPCA, as they tend to exhibit high bias even for large numbers of conditions (e.g. locations 9, 10). The Split-half and GSN (No shrinkage) methods perform at about the same level (echoing results in **Figure 4**), and converge towards ground-truth values at modest rates. In contrast, GSN (Shrinkage) converges towards ground-truth values more rapidly. The

335
336

337
338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364 best performing method is MEME which exhibits the fastest convergence to ground-truth values. However,
365 the MEME method comes with limitations, including assumptions about the shape of the eigenspectrum
366 (see Discussion).

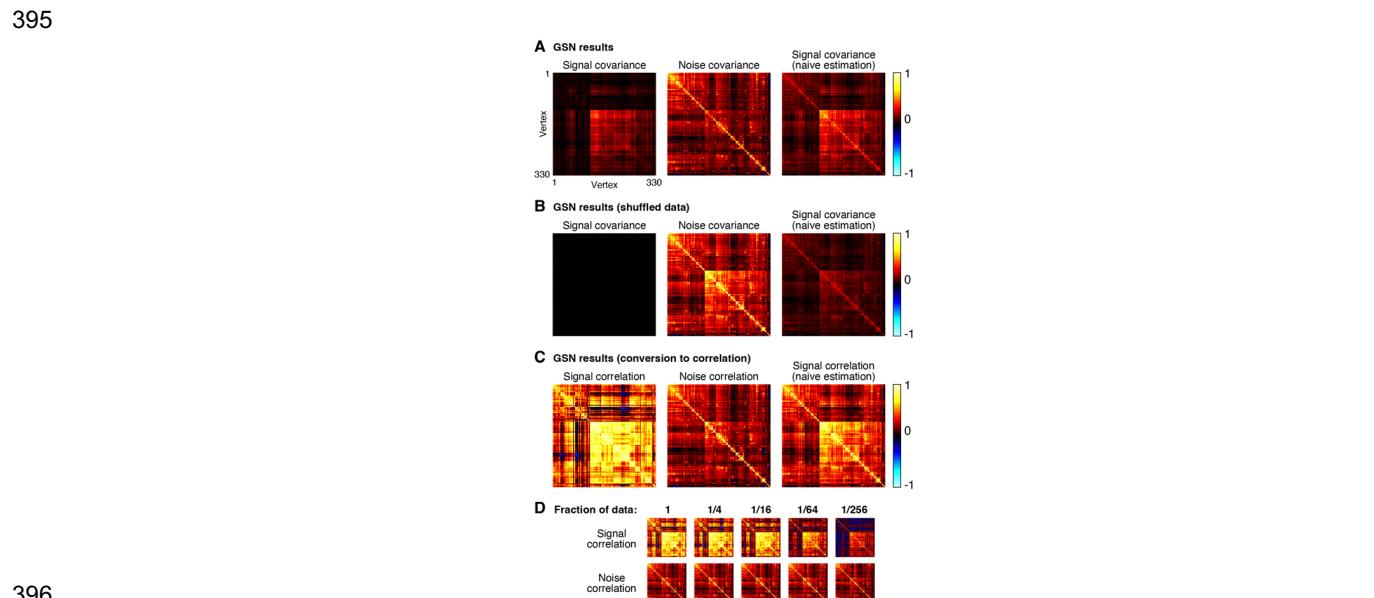
367
368 It is interesting to note that qualitatively different patterns of results can be found for ED and power-law
369 exponent. For example, performance of a given method can be relatively poor for power-law exponent
370 (location 10) but relatively good for ED (location 11). We interpret this as simply reflecting the fact that
371 different metrics emphasize different aspects of eigenspectra. Another observation is that the various
372 methods perform well even when the number of units increases 5-fold from 10 to 50. Presumably, what is
373 relevant is not only the raw number of units but also the dimensionalities of the signal and noise that are
374 distributed across the units (which might be low).

375
376 To further explore the generality of our conclusions, we performed simulations for an additional scenario
377 involving biologically realistic signal and noise covariances. Results are generally similar, except for
378 complications related to the recovery of power-law exponent (see **S1 Figure** for details). Finally, we caution
379 that while our simulations indicate reasonable performance across a range of settings, our simulations are
380 not comprehensive (e.g., we did not specifically vary the relative magnitudes of signal and noise) and
381 practitioners may wish to perform simulations matched to the system being studied if precise values are
382 critical.

383
384 **Application of GSN to empirical data**

385
386 *Signal and noise covariance estimates*

387
388 We demonstrate the application of GSN to empirical data taken from the 7T fMRI Natural Scenes Dataset
389 (NSD) (Allen et al., 2022). NSD consists of human brain responses to over 70,000 visually presented natural
390 scenes distributed across eight participants. Each image is presented up to three times to a given
391 participant. This limited number of presentations reflects the prioritization of sampling a large number of
392 distinct images over sampling a large number of trials per image (see also (Stringer et al., 2019)). As such,
393 NSD can be viewed as an especially challenging dataset for methods that seek to accurately disentangle
394 signal from noise.



396

397

Figure 6. Application of GSN to example fMRI data. Here we demonstrate the application of GSN to example data from FFA-1 (330 vertices \times 10,000 images \times 3 trials) (code available at <https://osf.io/yxrsp>). A, Signal and noise covariance estimates. In addition to GSN outputs (first and second columns), we show results from naive estimation of signal covariance which involves simply calculating the covariance of trial-averaged data (third column). B, Results for shuffled data. As a control, we shuffled responses across all images and trials and re-analyzed the data. C, Conversion to correlation units. The results of panel A are re-plotted after converting covariance to correlation units. D, Estimates as a function of amount of data. We varied the fraction of images to which GSN is applied (e.g. 1/16 corresponds to 625 of 10,000 images being used). This was done such that data subsets were mutually exclusive of one another.

407

408 As an illustrative example, we extracted responses from right hemisphere fusiform face area subdivision 1
409 (FFA-1) in one participant (Participant 1), yielding 330 vertices \times 10,000 images \times 3 trials. As a pre-
410 processing step, we normalized the responses associated with each vertex to have zero mean and unit
411 variance. We then performed GSN on these data, yielding estimates of signal and noise covariance (**Figure**
412 **6**).

413

414 A number of observations can be made from the results. First, notice that the magnitude of the noise is
415 generally larger than the magnitude of the signal (panel A, compare diagonal of noise covariance with
416 diagonal of signal covariance). The fact that response measurements contain large trial-to-trial variability
417 even when holding the experimental manipulation (stimulus) constant is typical in fMRI and many other
418 measurement techniques. Second, we observe that the covariance structure of the noise is different from
419 that of the signal, though there are some similarities (panel A, compare middle image with left image). A
420 naive method that averages responses across trials yields covariance structure (panel A, right image) that
421 is a mixture of signal covariance and noise covariance, since trial averaging reduces but does not eliminate
422 noise. Third, as a control, if we fully shuffle responses across images and trials, we see that values in GSN's
423 estimated signal covariance become very low (panel B, left image). This makes sense since after shuffling,
424 we do not expect to find reliable differences in responses across images. In contrast, the naive method fails
425 to produce a good signal covariance estimate: even though there are no reliable differences in responses
426 across images, trial averaging does not fully suppress the noise and the noise covariance seeps into the
427 signal covariance estimate (panel B, right image).

428

429 For visual comparison, we show covariance estimates after conversion to correlation units (panel C). One
430 motivation for this conversion is to ensure that each unit contributes equally to subsequent analyses of the
431 covariance estimates. Prominent differences between covariance and correlation are observed, reflecting
432 the fact that there are substantial variations in signal-to-noise ratio across vertices (vertices with low signal
433 strength are only weakly visible in the covariance matrices and become more visible in the correlation
434 matrices). Finally, by applying GSN to different subsets of the data (panel D), we see that signal and noise
435 can be reliably estimated in this dataset. For example, compare the signal and noise correlation estimates
436 obtained using 1/4th of the data to those obtained using 1/16th of the data (these reflect two mutually
437 exclusive subsets of the data). Reliable estimation is especially notable given that the dataset involved only
438 three trials for each stimulus. Of course, in the limit of very low amounts of data (panel D, rightmost
439 columns), estimation quality starts to suffer and we start to see strong influence of the shrinkage bias pulling
440 off-diagonal elements towards zero.

441

442 Although GSN does not require nor assume Gaussian distributions, if the signal and noise distributions are
443 indeed Gaussian, then the mean and covariance parameters estimated by GSN are sufficient for a full
444 characterization of a given dataset. Curious about the nature of the distributions in NSD, we performed
445 inspections of the example data shown in **Figure 6**. In these inspections, we compare histograms of the
446 empirical data to histograms of synthesized data that are generated using parameters of the GSN model
447 coupled with the assumption of Gaussian signal and noise distributions (**S2 Figure**). We find a high level

448 of similarity for a histogram of trial-averaged responses (which helps focus on signal) and a histogram of
449 mean-subtracted residuals (which helps focus on noise), suggesting that the signal and noise indeed have
450 Gaussian-like distributions.

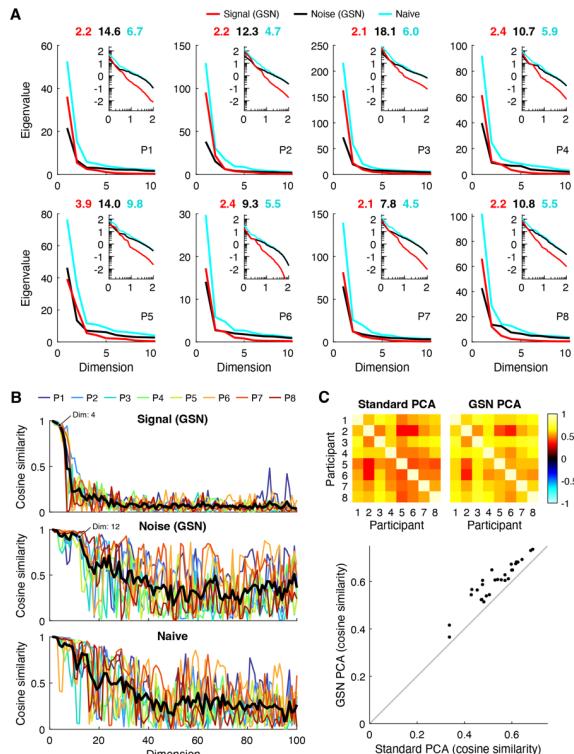
451

452 *Eigenspectra of signal and noise*

453

454 Principal components analysis (PCA) is a widely used method for dimensionality reduction and data
455 visualization (Greenacre et al., 2022). Using the empirical data, we conducted several analyses that
456 demonstrate the benefits of GSN for PCA. The first analysis (**Figure 7A**) pertains to eigenspectra, which
457 are important as they indicate the amount of variance explained by different principal components. For each
458 of the eight NSD participants, we computed the eigenspectrum of the covariance of the data after trial
459 averaging (cyan lines); this represents a naive analysis in which responses are averaged across trials to
460 reduce noise. We also computed the eigenspectrum of the signal covariance (red lines) and noise
461 covariance (black lines) as estimated by GSN. To make the results directly comparable to the results of the
462 naive analysis, we scaled the noise covariance by 1/3 (since trial averaging is expected to reduce the
463 variance of the noise by a factor equal to the number of trials). Finally, we calculated the effective
464 dimensionality associated with each of the three eigenspectra (numbers above each plot).

465



466

467

468 **Figure 7. GSN disentangles signal and noise in principal components analysis (PCA).** Here we use PCA to
469 analyze the results of GSN as applied to FFA-1 (code available at <https://osf.io/f34bc>). A, Eigenspectra. For each
470 of the eight participants (P1–P8), we plot the eigenspectra of the signal and noise as estimated by GSN ('Signal
471 (GSN)', 'Noise (GSN)'), as well as the eigenspectrum of the trial-averaged data ('Naive'). The main plots show
472 results on a linear scale for up to the first 10 dimensions; the insets show results on a base-10 log-log scale for
473 up to the first 100 dimensions. Numbers above each main plot indicate the effective dimensionality of the three
474 eigenspectra. B, Split-half reliability of principal components. The cosine similarity between corresponding
475 principal components from two split-halves of the data from each participant is plotted for up to the first 100
476 dimensions. The thick black line indicates the mean across participants. C, Across-participant consistency. A
477 common set of 515 images were viewed three times each by all participants. For each participant, we computed
478 the projections of trial-averaged responses to these 515 images onto either (i) the first principal component of the

479 covariance of the trial-averaged data ('Standard PCA') or (ii) the first principal component of the signal covariance
480 estimated by GSN ('GSN PCA'). The cosine similarity of these projections between each pair of participants is
481 shown.

482
483 We find that the three eigenspectra exhibit distinct patterns. In terms of overall magnitudes, eigenvalues
484 are slightly higher for the signal than they are for the noise and are highest for the naive analysis. This is
485 consistent with the interpretation that after averaging across 3 trials, the total variance contributed by signal
486 is slightly higher than the total variance contributed by noise, and that the trial-averaged data have high
487 total variance due to contributions from both signal and noise. In terms of how quickly eigenvalues fall off
488 (independent of their magnitudes), we see that the eigenspectrum of the signal falls off relatively quickly
489 and has low effective dimensionality (between 2–4). This indicates that the coding of natural scenes in FFA-
490 1 is low-dimensional (at least as measured in NSD). In contrast, we find that the eigenspectrum of the noise
491 falls off more slowly and has higher effective dimensionality than the signal (between 9–18). This is most
492 evident in the inset log-log plots, which show more clearly what occurs at high numbers of dimensions.
493 Finally, we find that the eigenspectrum of the trial-averaged data falls somewhere in the middle, with a
494 moderate effective dimensionality (between 4–10). Overall, these results illustrate how GSN separates
495 signal and noise components in a set of data and enables the researcher to study their separate properties.
496 The separation of noise from signal is important, as it compensates for the fact that in empirical data, noise
497 corrupts the dimensionality of the measured signal (Del Giudice, 2021).

498
499 *Reliability of principal components*
500

501 A second analysis pertains to the reliability of the principal components derived from the data. We randomly
502 split the images from each participant into halves, performed PCA separately on the two split-halves, and
503 then computed the cosine similarity of principal components across the split-halves. Results are shown
504 both for the signal and noise as estimated by GSN as well as for the naive trial-averaged data (**Figure 7B**).
505 We find that the principal components of the signal are highly reliable across split-halves for approximately
506 the first 4 dimensions, and that the principal components of the noise are highly reliable for approximately
507 the first 12 dimensions (see labeled points). Beyond these numbers of dimensions, reliability levels are
508 substantially lower, which makes sense given that the amount of variance associated with the higher
509 dimensions is very small (see **Figure 7A**). The principal components of the trial-averaged data also exhibit
510 reasonably high levels of reliability. However, the reliability levels decrease gradually, making it difficult to
511 decide the number of highly reliable dimensions.

512
513 One peculiar observation is that reliability values for the noise and the trial-averaged data fluctuate, but on
514 average stay elevated, over a large range of dimensions (20–100). We suggest that this could be due to
515 the fact that the eigenvalues in these higher dimensions are roughly equal in magnitude, making the
516 ordering of the principal components somewhat arbitrary and subject to estimation error. In such a scenario,
517 corresponding principal components across split-halves are not likely to match but might incidentally match
518 on occasion. Finally, notice that the reliability pattern for the trial-averaged data looks approximately like a
519 mixture of the reliability patterns for the signal and the noise. This is consistent with the interpretation that
520 the data is a mixture of signal and noise and that GSN successfully decomposes the data into these
521 constituent components.

522
523 *Denoising of PCA results*
524

525 The third and final analysis seeks to validate the signal and noise identification provided by GSN. In short,
526 how do we know that GSN is successfully estimating and removing the influence of noise? Here, we can
527 leverage the notion that signal, not noise, is expected to generalize across participants (Charest et al.,

528 2018). We reasoned that if GSN successfully separates signal from noise in each participant, then signal
529 properties—specifically, the coding of natural scenes—should exhibit improved consistency across
530 participants compared to the trial-averaged data. This is because the trial-averaged data is expected to
531 contain the residual effects of noise, and many types of noise are expected to be idiosyncratic to each
532 participant (e.g., the effects of head motion on fMRI responses is likely unrelated to the coding of natural
533 scenes). But how can we compare participants? Given the variability of the size and shape of FFA-1 across
534 participants (the number of vertices is not even the same), comparing principal components across
535 participants is not straightforward. However, we can compute the projections of responses to natural scenes
536 onto principal components, and these projections should be comparable across participants insofar that
537 there is some degree of commonality in the representation of natural scenes across participants.
538

539 In accordance with our approach for assessing across-participant consistency, we computed trial-averaged
540 responses for a common set of 515 images that were viewed by all participants, and then projected these
541 responses onto the top principal component of the signal covariance estimated by GSN. For comparison,
542 we also projected the responses onto the top principal component of the trial-averaged data. The results
543 show that the projections for GSN are substantially more consistent across participants than the standard
544 analysis (**Figure 7C**). This implies that GSN is successfully reducing the influence of noise on principal
545 components derived from the data, and that the principal components derived by GSN better reflect the
546 underlying coding dimensions in the brain that are shared across humans. As a sanity check, we visually
547 inspected the stimulus images that drive variance along the direction of the top principal component (**S3**
548 **Figure**); this reveals that the presence of faces appears to be the dominant factor, consistent with prior
549 studies (Grill-Spector et al., 2017; Kanwisher et al., 1997).
550

551 Finally, we show results of our PCA analyses for additional brain regions V1, hV4, and PPA (**S4 Figure**).
552 Our main observations replicate, including lower dimensionality for the signal compared to the noise, high
553 within-participant reliability of the first several signal PCs and noise PCs, and higher across-participant
554 consistency of trial-averaged response projections onto PC1 for GSN PCA than for standard PCA. In
555 addition, we find that the dimensionality of the signal is substantially higher in V1 (mean across subjects:
556 5.6) and hV4 (mean across subjects: 4.6) than it is in FFA-1 (mean across subjects: 2.4), whereas the
557 signal dimensionality is comparable in PPA (mean across subjects: 2.5). These variations in dimensionality
558 across brain regions are a desirable outcome, as they are consistent with the idea that GSN is able to track
559 and recover different dimensionality levels. More generally, these results indicate that GSN can aid the
560 investigation of representational differences across the brain.
561

562 Discussion

563
564 In this paper, we have described a simple generative model that characterizes the contributions of signal
565 and noise to a set of neural response measurements. We developed a method for fitting this model,
566 implemented this method in a code toolbox, and demonstrated the method on ground-truth simulations and
567 empirical data. We showed four main results. First, we showed that naive approaches to estimating signal
568 covariance (i.e. trial averaging) and estimating noise covariance (i.e. aggregating residuals) are inaccurate
569 (**Figures 3–6**). A key insight is that simply computing trial-averaged responses is insufficient to eliminate
570 noise: the result will invariably contain a mixture of both signal and noise covariance. Second, we confirmed
571 that the GSN method works as expected, with ground-truth recovery performance improving with larger
572 numbers of trials and conditions (**Figure 4**). Third, we performed simulations directly comparing GSN to
573 alternative methods for signal estimation (including split-half analyses, cvPCA, and MEME), and found that
574 GSN is competitive with these methods (**Figure 5**). Fourth, we showed how GSN can be exploited to
575 improve principal components analysis (PCA). Specifically, GSN decomposes a set of data into signal and
576 noise distributions, each of which has its own eigenspectrum and eigenvectors. These distributions can be
577 analyzed separately, for example, with respect to dimensionality (**Figure 7A**) and reliability (**Figure 7B**).
578 Furthermore, isolating the signal distribution leads to principal components that have improved
579 generalizability across participants (**Figure 7C**).
580

581 *Novel contributions of the present work*

582
583 Elements of GSN can be found in prior work, including using repeated trials to separate signal and noise in
584 neural responses (Henriksson et al., 2015; Pospisil and Bair, 2021a; Pospisil and Pillow, 2024; Stringer et
585 al., 2019) and the use of shrinkage for covariance estimation (Ledoit and Wolf, 2004; Schäfer and Strimmer,
586 2005; van Bergen and Jehee, 2021; Yatsenko et al., 2015). We note, in particular, that the formulation of
587 the GSN model is fairly close to the approach described in a recent pre-print in the statistics literature (Duan
588 et al., 2023). Overall, the work presented here is best viewed as an applied statistics paper, one that selects
589 and consolidates statistical ideas and designs methods for application to a specific scientific domain (neural
590 response measurements). The primary novel contributions of the present work are the integration of
591 techniques into a clearly articulated framework, developing an algorithm for optimally fitting the GSN model
592 under the constraint of positive semi-definite covariance estimates, and demonstrating specific examples
593 of how GSN could be useful in neuroscience applications. In addition, we provide a code toolbox for easy
594 application of GSN.
595

596 *Relationship to other approaches*

597
598 From a statistical perspective, GSN bears some similarity to probabilistic principal components analysis
599 (PPCA) (Ghojogh et al., 2021; Roweis, 1997; Tipping and Bishop, 1999). PPCA is a special case of factor
600 analysis, and models the data as the sum of the combination of latent factors and a noise term. However,
601 a key difference between PPCA and GSN is that PPCA assumes that the noise is isotropic (i.e., the noise
602 has the same variance and is uncorrelated across units), whereas GSN does not make this assumption.
603 Instead, GSN exploits the fact that neural response measurements usually involve multiple trials per
604 condition, and estimates the noise structure instead of assuming it to be isotropic. Another difference is that
605 PPCA typically comes with the presumption that the latent variables have lower dimensionality than the
606 original data, whereas GSN does not necessarily involve dimensionality reduction.
607

608 Signal and noise correlations have been studied in the computational neuroscience literature using a variety
609 of approaches. Here, we discuss a few approaches closely related to GSN. The approach used in (Triplett

610 et al., 2020) involves building a model of calcium imaging data that simultaneously characterizes both
611 evoked activity (signal) and spontaneous activity (noise). The model is generative in nature, similar to GSN.
612 A difference is that the approach involves a number of modeling choices that are specific to the signal and
613 noise characteristics present in calcium imaging data. Incorporating modality-specific details may enhance
614 statistical efficiency and interpretability. In contrast, GSN has a different philosophical goal of providing a
615 general-purpose framework for signal and noise estimation that rests on minimal assumptions. Another
616 generative modeling approach, TAFKAP, was introduced by (van Bergen and Jehee, 2021, 2018) in the
617 context of developing improved decoding methods for fMRI data. This approach, like GSN, estimates both
618 signal covariance and noise covariance. However, the modeling of signal proceeds quite differently in
619 TAFKAP than GSN. In TAFKAP, the response of each unit to the experimental conditions is fit using a
620 specific tuning curve model—for example, in (van Bergen and Jehee, 2021), a weighted sum of basis
621 functions is used to model the orientation tuning of each unit. GSN takes a different approach: instead of
622 attempting to estimate the signal (noiseless response) to each condition, GSN attempts to estimate only
623 the distribution of the signal across conditions. An advantage of the GSN approach is that it avoids the need
624 to specify (and thus does not depend on) a tuning curve model, thereby providing more generality.
625 Moreover, if a tuning curve model is used, there is a risk that model failures (either due to model
626 misspecification or imperfections in model fitting) may corrupt estimates of the noise (assuming noise is
627 estimated from model residuals) (Wilson and Gardner, 2023). However, a disadvantage of the GSN
628 approach is that it requires condition repeats to estimate the noise, whereas in TAFKAP, noise can be
629 estimated based on residuals of the model fit. Another disadvantage is that the lack of an explicit tuning
630 model in GSN implies that further analysis steps must be carried out in order to incorporate GSN into
631 decoding analyses.

632

633 *Comparison to cvPCA and MEME*

634

635 A recent paper (Stringer et al., 2019) proposed a method termed 'cross-validated PCA' (cvPCA) that seeks
636 to quantify signal (stimulus-related variance) in neural response measurements, similar to GSN. The
637 method involves splitting a dataset into halves (where the halves contain different trials for the same set of
638 conditions), performing PCA on one half, projecting the responses in each half onto the estimated PCs, and
639 then computing covariance across the projections from each half as an estimate of signal variance. The
640 underlying logic is that noise is not expected to covary across halves, whereas the signal is expected to do
641 so. Similar to GSN, the cvPCA method leverages repeated trials to infer what is related to the experimental
642 manipulations (signal) and relies on a model in which the total variance in a dataset is equal to the sum of
643 signal variance and noise variance. However, the two methods differ substantially in the procedures by
644 which estimates are obtained.

645

646 Recent work (Pospisil and Pillow, 2024) has pointed out that the PCs estimated in cvPCA are influenced
647 by noise and are therefore not identical to the true underlying signal PCs. This fact degrades the accuracy
648 of the signal components estimated by cvPCA, and leads to biased estimates of the signal eigenspectrum
649 (Pospisil and Pillow, 2024). Motivated by these concerns, the authors propose the MEME (minimize
650 eigenmoment error) method to deliver improved estimates of the signal eigenspectrum. Specifically, MEME
651 first calculates unbiased estimates of the moments of the signal eigenspectrum, assumes a parametric
652 model for the signal eigenspectrum, and then optimizes parameters of the model to minimize the error
653 between the eigenspectrum moments achieved by the model and the estimated moments of the signal
654 eigenspectrum.

655

656 In this paper, we performed simulations that directly compare the performance of GSN, cvPCA, and MEME
657 with respect to recovery of effective dimensionality and power-law exponent (see **Figure 5** and **S1 Figure**).
658 We observed substantial bias in cvPCA results, consistent with recent reports (Pospisil and Pillow, 2024).

659 GSN performs better, converging towards ground-truth values with increasing amounts of data. MEME
660 performs the best, with even faster convergence. However, a major limitation of MEME is that it assumes
661 a parametric form for the signal eigenspectrum. In our main set of simulations (**Figure 5**), for simplicity we
662 considered only scenarios where the ground-truth signal eigenspectrum fully conformed to the form
663 assumed by our MEME implementation (specifically, a single unbroken power-law function). Deviations
664 from the assumed form are expected to lead to degraded performance from MEME. Indeed, it is possible
665 that deviation from the assumed form is responsible for the poor performance of MEME in recovering power-
666 law exponent in the biologically realistic scenario (**S1 Figure**). While allowing break points in the power-law
667 function may help ease the constraints of MEME, doing so increases complexity and may lead to instability
668 in parameter optimization. As the user must hand-pick initial guesses for parameter values, it might be
669 challenging to come up with robust choices for initial parameter values for break points.
670

671 Overall, the cvPCA and MEME methods are similar in spirit to GSN in the sense of using repeated trials to
672 separate signal and noise in neural response measurements. However, the former two methods are
673 primarily focused on estimation of signal eigenspectra, whereas GSN takes a broader view in which the
674 goal is to estimate full covariance matrices (including both the eigenspectrum and eigenvectors) for the
675 signal and the noise. As such, GSN supports a wider array of subsequent analyses of signal and noise
676 properties. It might be possible to use eigenspectrum estimates from cvPCA or MEME to produce improved
677 estimates of full covariance matrices, but the originally described methods do not do so, which is why we
678 do not compare to such hybrid or extended methods here.
679

680 *Other applications of GSN*

681
682 Besides improving PCA and dimensionality estimation (as illustrated in **Figure 7**), GSN may aid in other
683 applications not specifically covered in this paper. One important application is the estimation of noise
684 ceilings for computational models (Lage-Castellanos et al., 2019; Pospisil and Bair, 2021b). Since noise
685 imposes limits on the maximum amount of variance that can in theory be predicted on the basis of
686 experimental events (e.g. sensory stimuli), obtaining accurate estimates of the noise ceiling is critical for
687 assessing model performance. GSN provides explicit models of the distributions of signal and noise, and
688 can be used to estimate noise ceilings for the responses of individual units (see Methods in (Allen et al.,
689 2022)) as well as noise ceilings for multivariate measures, such as representational dissimilarity matrices
690 (see Methods in (Conwell et al., 2022)). Having principled methods to compute univariate and multivariate
691 noise ceilings is critical in efforts to compare deep neural network models of brain data at scale (Cichy et
692 al., 2019; Conwell et al., 2022; Schrimpf et al., 2020; Willeke et al., 2022).
693

694 Another application relates to research programs where noise itself is of intrinsic interest, often
695 hypothesized to perform functions relevant to neural computation (e.g., (Bays, 2014; Dinstein et al., 2015;
696 Ecker et al., 2014; Keeley et al., 2020; Ma et al., 2006; Orbán et al., 2016; Stein et al., 2005; van Bergen
697 et al., 2015)). The GSN approach facilitates the study of noise by decomposing datasets into signal and
698 noise, providing researchers with two distinct entities that can be separately measured, characterized,
699 manipulated, compared with one another, and related to brain function. Isolating the separate contributions
700 of signal and noise to response measurements may help enrich our understanding of how response
701 variability contributes to the function of neural systems and whether and how noise and signal interact.
702

703 *Limitations of GSN and future directions*

704
705 GSN rests on the assumption that noise is additive and independent of the signal. The assumption of
706 independence simplifies estimation and enables efficient use of data: even though the example dataset in
707 this paper included only three trials per image, pooling estimates of noise covariance across images

708 enabled robust noise covariance estimates (see **Figure 6D**). The extent to which the additive and
709 independence assumptions accurately characterize fMRI responses is an important open question. For
710 example, a recent study provided evidence that noise magnitude and noise correlations in fMRI data
711 decrease during task states (Ito et al., 2020). However, it is clear that the additive and independence
712 assumptions do not strictly hold for spiking data. Spike trains exhibit Poisson-like proportionality between
713 the mean firing rate and the variance of firing rate across trials (Tolhurst et al., 1983), and this proportionality
714 may depend upon stimulus statistics (Festa et al., 2021). Moreover, multiplicative-type noise has been
715 observed in which firing rates in neural populations are collectively scaled (Goris et al., 2014; Lin et al.,
716 2015; Liska et al., 2022). Finally, evidence that noise depends on the stimulus has been shown for neurons
717 in the retina (Franke et al., 2016; Zylberberg et al., 2016). A direction for future work would be to relax the
718 assumptions of GSN to accommodate a larger range of settings.
719

720 Another potential limitation of GSN is that it may require a large number of samples for accurate estimation
721 of signal and noise distributions. We observed that a relatively large number of conditions is required to
722 accurately estimate the signal covariance (see **Figure 4B**). In addition, although pooling of noise covariance
723 estimates across conditions can achieve robust estimation of noise (see **Figure 6D**), if one wishes to
724 explore the possibility that the noise distribution may depend on the experimental condition, large numbers
725 of trials for each condition may be required. Future research might investigate practical data requirements
726 for a diverse range of experimental scenarios. A third limitation is that GSN in its current form provides just
727 a point estimate of model parameters. If one is interested in the reliability of parameter estimates, it may be
728 possible to extend GSN using bootstrapping or Bayesian techniques to obtain confidence intervals or
729 posteriors for model parameters.
730

731 There is a sizable statistical literature on techniques for covariance matrix estimation (reviewed in (Fan et
732 al., 2016)). Our proposed method for estimating covariance only incorporates shrinkage to improve
733 estimation accuracy. This is a mild prior and is expected to improve out-of-sample generalization compared
734 to an unbiased estimator. Within the technique of shrinkage, there are variants that can be tried such as
735 deriving the optimal level of shrinkage analytically or using different shrinkage targets (Ledoit and Wolf,
736 2022, 2004; Schäfer and Strimmer, 2005). If one is willing to make stronger assumptions, there are other
737 approaches that could achieve more efficient covariance estimates. Such approaches include banding and
738 tapering (Bickel and Levina, 2008a), thresholding (Bickel and Levina, 2008b), and methods that impose
739 low-rank structure (Pourahmadi, 2013; Yatsenko et al., 2015). In addition, one could seek to model
740 covariance in terms of one or more structured covariance components (Pourahmadi, 2013; Triplett et al.,
741 2020; van Bergen and Jehee, 2021; Yatsenko et al., 2015). This type of approach can improve estimation
742 efficiency, but its utility depends on the accuracy of the assumed covariance components. If one is willing
743 to make an explicit distributional assumption, one can apply Bayesian inference (e.g. (Leonard and Hsu,
744 1992)), which allows regularization through the prior. Finally, one could apply robust statistics (den Haan
745 and Levin, 1997) to improve estimation. These various methods for covariance estimation could be easily
746 incorporated into the GSN framework by simply replacing the shrinkage estimators that we use.
747

748 Finally, an important direction for future research is to devise methods for distinguishing different sources
749 of noise. Neural noise (true variability in neural activity) is fundamentally distinct from instrumental noise
750 (e.g. electrical noise), physiological noise (e.g. noise related to respiration and the cardiac cycle), and
751 motion-related noise (e.g. motion of the head). Without specific modeling of these various noise sources, it
752 remains unknown how much of the noise observed in a set of measurements is due to neural noise.
753 Developing methods to identify non-neural noise and isolate neural noise will presumably lead to improved
754 insights into the nature of noise and how it may support brain function.
755

756 Methods

757 The GSN method

759 Basic framework

760 GSN is a multivariate generalization of the univariate framework that we previously proposed for modeling
761 signal and noise in responses of individual units (Allen et al., 2022). Consider the general situation in which
762 responses are measured from a set of n units (e.g., voxels, neurons, channels) to c conditions (e.g., different
763 stimuli) and this process is repeated for t trials per condition (we assume $t > 1$). In this scenario, response
764 measurements have a dimensionality of n units \times c conditions \times t trials. The scenario is multivariate in the
765 sense that there exist multiple units and we are attempting to model the joint distribution across all units.
766 Our broad goal is to formally characterize the distribution of signal, i.e., the average expected response to
767 each given condition, and the distribution of noise, i.e., trial-to-trial variability in the response to each given
768 condition.

769 For the purposes of modeling, we assume that the signal and the noise are independent and additive and
770 that each is characterized by some underlying multivariate distribution. We propose the following model:

$$\begin{aligned} 771 \quad D &\sim X_{\text{signal}} + X_{\text{noise}} \\ 772 \quad \mathbb{E}[X_{\text{signal}}] &= \mu_{\text{signal}} \\ 773 \quad \text{Cov}[X_{\text{signal}}] &= \Sigma_{\text{signal}} \\ 774 \quad \mathbb{E}[X_{\text{noise}}] &= \mu_{\text{noise}} = \mathbf{0} \\ 775 \quad \text{Cov}[X_{\text{noise}}] &= \Sigma_{\text{noise}} \\ 776 \quad \text{Cov}(X_{\text{signal}}, X_{\text{noise}}) &= \mathbf{0} \end{aligned}$$

777 where D is an n -dimensional random variable indicating the responses of the n units on each trial ($1 \times n$),
778 X_{signal} is the signal component of the data with mean μ_{signal} ($1 \times n$) and covariance Σ_{signal} ($n \times n$), X_{noise} is
779 the noise component of the data with mean μ_{noise} ($1 \times n$) and covariance Σ_{noise} ($n \times n$), and $\mathbf{0}$ indicates a
780 matrix of zeros. In other words, the response on each trial is modeled as the sum of a random sample
781 drawn from a signal distribution (which represents the noiseless response to some condition) and a random
782 sample drawn from a noise distribution (which represents the noise that accompanies the response). The
783 noise is assumed to be zero-mean. See **Figure 2A–C** for a visual illustration.

784 The modeling approach we describe is generative in the sense that we are characterizing the process by
785 which measurements are generated (specifically, the data for each trial are modeled as a random draw
786 from the multivariate distribution associated with D). We therefore refer to the approach as *generative*
787 *modeling of signal and noise* (GSN). Note that a complete generative model requires choosing specific
788 forms for the distribution of signal and the distribution of noise; a simple choice is the multivariate Gaussian
789 distribution (see **S2 Figure**).

794 Algorithm for estimating model parameters

795 The core challenge in GSN is estimating the parameters of the signal and noise distributions. We propose
796 a method based on the observation that the sum of two independent random variables has a mean that is
797 equal to the sum of the means of the distributions associated with the variables and a covariance that is
798 equal to the sum of the covariances of the two distributions. Hence, we can write:

$$\begin{aligned} 801 \quad \mu_{\text{data}} &= \mu_{\text{signal}} + \mu_{\text{noise}} = \mu_{\text{signal}} \\ 802 \quad \Sigma_{\text{data}} &= \Sigma_{\text{signal}} + \Sigma_{\text{noise}} \end{aligned}$$

803 where μ_{data} and Σ_{data} indicate, respectively, the mean ($1 \times n$) and the covariance ($n \times n$) of the
804 measurement variable D . For simplicity, we have used notation that acts as if each trial involves a fresh
805 draw from the signal distribution. However, in typical practice, several trials are measured for each condition
806 and the draw from the signal distribution is the same for each of these trials. To account for this, we average
807 responses across the available t trials before estimating the data distribution. Since trials are independent,
808 averaging is expected to reduce the covariance of the noise by a factor of t . Hence, we can write the
809 following for the distribution of the trial-averaged data:

810
$$\mu_{data[t]} = \mu_{signal}$$

811
$$\Sigma_{data[t]} = \Sigma_{signal} + \Sigma_{noise}/t$$

812 where $\mu_{data[t]}$ indicates the mean of the multivariate distribution that describes trial-averaged data ($1 \times n$)
813 and $\Sigma_{data[t]}$ indicates the covariance of this distribution ($n \times n$).

814
815 The general approach of GSN is to estimate the mean and covariance of the noise, estimate the mean and
816 covariance of the trial-averaged data, and then subtract the noise covariance estimate (scaled by $1/t$) from
817 the trial-averaged data covariance estimate to obtain an estimate of the signal (see schematic in **Figure**
818 **2D–F**). However, because it is possible that the obtained estimate of signal covariance may be not positive
819 semi-definite (especially in scenarios with limited data or low signal-to-noise ratio), a more sophisticated
820 approach is necessary. To meet this challenge, we develop a mathematical formalism in which we use a
821 weighted sum-of-squares approach to find positive semi-definite matrices for signal and noise covariance
822 estimates that are as close as possible to the estimates derived directly from the data (details in **S5**
823 **Appendix**). This turns out to be a convex optimization problem that can be solved using an iterative
824 approach, as we detail below.

825
826 The following is a step-by-step algorithm for GSN (*performgsn.{m,py}*):

- 827 1. Start with a set of neural response measurements X (n units \times c conditions \times t trials). Let X_j
828 denote the responses measured for condition j , arranged as a 2D matrix (t trials \times n units). Let \bar{X}
829 denote trial-averaged responses, arranged as a 2D matrix (c conditions \times n units).
- 830 2. To estimate the noise distribution, calculate the covariance of responses separately for each
831 condition, average the covariances across conditions, and then shrink the result. This yields an
832 initial estimate of the noise covariance, which we refer to as $\hat{\Sigma}_{noiseORIG}$ ($n \times n$):

833
834
$$\hat{\Sigma}_{noiseORIG} = s \left(\sum_{j=1}^c \text{cov}(X_j) / c \right)$$

835 where $\text{cov}(A) = \dot{A}^T \dot{A} / (d - 1)$ computes sample covariance using Bessel's correction, \dot{A} indicates
836 A with its columns centered around zero, d is the number of rows in A , and $s()$ is a shrinkage
837 procedure (see *Shrinkage-based regularization of covariance* below). Intuitively, we are
838 quantifying unit-to-unit covariation around the mean response to each condition, pooling
839 covariance estimates across conditions to improve accuracy, and then using shrinkage to further
840 improve accuracy. Since we might update our estimate of the noise covariance later in the
841 algorithm (if the signal covariance estimate turns out to be not positive semi-definite), we use
842 $\hat{\Sigma}_{noise}$ ($n \times n$) to refer to our current estimate of the noise covariance:

843
844
$$\hat{\Sigma}_{noise} = \hat{\Sigma}_{noiseORIG}$$

845 We assume that the noise distribution is zero-mean (i.e., the expected value of the noise for each
846 unit is zero):

847
848
$$\hat{\mu}_{noise} = \mathbf{0}$$

849 where $\hat{\mu}_{noise}$ is the estimated noise mean ($1 \times n$).

847 3. To estimate the data distribution (i.e., the distribution that characterizes the measured data), take
848 the trial-averaged responses and then estimate mean and covariance, again applying shrinkage
849 to improve accuracy of covariance estimation:

850 $\hat{\mu}_{data[t]} = \text{mean}(\bar{X})$

851 $\hat{\Sigma}_{data[t]} = s(\text{cov}(\bar{X}))$

852 where `mean()` indicates column-wise mean, $\hat{\mu}_{data[t]}$ is the estimated data mean for the case of
853 averaging across t trials ($1 \times n$), and $\hat{\Sigma}_{data[t]}$ is the estimated data covariance for the case of
854 averaging across t trials ($n \times n$). Notice that $\text{cov}(\bar{X})$ is the naive estimate of signal covariance that
855 is obtained after simply trial averaging.

856 4. To estimate the signal distribution, subtract the current estimate of the noise distribution scaled by
857 $1/t$ from the estimated data distribution:

859 $\hat{\Sigma}_{signal} = \hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$

858 where $\hat{\Sigma}_{signal}$ is the estimated signal covariance ($n \times n$). Additionally:

860 $\hat{\mu}_{signal} = \hat{\mu}_{data[t]} - \hat{\mu}_{noise}$

861 where $\hat{\mu}_{signal}$ is the estimated signal mean ($1 \times n$).

862 5. If the signal covariance estimate is positive semi-definite, we are done. Otherwise, proceed to
863 Step 6.

864 6. Repeat until convergence:

865 6.1. Calculate an updated estimate of the signal covariance:

870 $\hat{\Sigma}_{signal} = \hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$

866 Ensure the signal covariance estimate is positive semi-definite by finding the nearest positive
867 semi-definite matrix:

871 $\hat{\Sigma}_{signal} = \text{PSD}(\hat{\Sigma}_{signal})$

868 where `PSD()` is a method for finding the nearest symmetric positive semi-definite matrix to a
869 given square matrix (details below).

872 6.2. Calculate an updated estimate of the noise covariance:

879
$$\hat{\Sigma}_{noise} = \frac{ct^2(t-1)}{ct^2(t-1) + c - 1} \hat{\Sigma}_{noiseORIG} + \frac{c-1}{ct^2(t-1) + c - 1} t(\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{signal})$$

873 This calculates a weighted average of two possible estimates of the noise covariance: the
874 first is the estimate based on the covariance of the mean-subtracted residuals (as calculated
875 in Step 2), while the second is the estimate based on the subtraction of the signal distribution
876 from the data distribution. The weights reflect the number of samples that inform each of the
877 two estimates (see **S5 Appendix** for details). Ensure the noise covariance estimate is
878 positive semi-definite by finding the nearest positive semi-definite matrix:

880 $\hat{\Sigma}_{noise} = \text{PSD}(\hat{\Sigma}_{noise})$

881 6.3. If the correlation between the current and previous signal covariance estimates and the
882 correlation between the current and previous noise covariance estimates are both greater
883 than 0.999, stop. Otherwise, return to Step 6.1.

884
885 Convergence of the algorithm is guaranteed because the optimization problem is biconvex. In practice,
886 convergence typically takes just a few iterations. For instance, in the execution of the set of simulations
887 underlying **Figure 5**, the maximum number of iterations required by GSN was 3 (corresponding to the case
888 where two updates are calculated beyond the initial estimates).

889

890 *Theoretical analysis of the GSN estimates*

891

892 The proposed algorithm for GSN can be viewed as providing least-squares estimates of signal and noise
893 covariance under the constraint that the estimates are positive semi-definite. Note that as long as the true
894 signal and noise covariances are positive semi-definite, our estimators for them are consistent. This is
895 because the original estimates $\hat{\Sigma}_{noiseORIG}$ and $\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$ are consistent estimators of Σ_{noise} and
896 Σ_{signal} , respectively. For large enough datasets, the probability that the initial signal covariance estimate
897 leaves the positive semi-definite cone thus goes to 0. Hence, our iterative estimates converge to the same
898 values as the original estimates. For the same reason, our iterative estimates inherit all asymptotic
899 properties of the original estimates. In particular, they are asymptotically unbiased and efficient, and the
900 rate of convergence is the same as for the original estimates.

901

902 The primary advantage of our iterative estimates is that they are guaranteed to produce positive semi-
903 definite (and, thus, valid) covariance matrices. Having valid covariance matrices is critical, as it is required
904 for performing many subsequent analyses (such as PCA). While the constraint of positive semi-definiteness
905 can be viewed as introducing bias, the true covariance matrices are known to be positive semi-definite.
906 Hence, requiring positive semi-definiteness is warranted. Furthermore, due to the convexity of the cone
907 encompassing positive semi-definite matrices, the projection of estimates onto this cone always reduces
908 the distances (errors) to the true covariance matrices (see **S5 Appendix**).

909

910 *Shrinkage-based regularization of covariance*

911

912 An appealing feature of computing sample covariance using Bessel's correction is that the covariance
913 values are unbiased estimates of the true covariance values. However, when the number of observations
914 is small relative to the number of variables (in our case, when the number of trials or conditions is small
915 relative to the number of units), the sample covariance is unstable and hence inaccurate. Moreover, the
916 sample covariance may have an eigenspectrum that suffers from bias. To improve accuracy of covariance
917 estimation, the GSN algorithm incorporates shrinkage (in Steps 2 and 3), a well-established method for
918 regularizing covariance estimates (Chen et al., 2010; Daniels and Kass, 2001; Ledoit and Wolf, 2004;
919 Schäfer and Strimmer, 2005). Specifically, the off-diagonal elements of the sample covariance are scaled
920 towards zero, reflecting the prior that variables are generally expected to be uncorrelated. The goal of
921 shrinkage is to introduce some amount of bias in order to reduce estimation variance and achieve a
922 covariance estimate that is closer to the ground-truth covariance. Note that shrinking towards a diagonal
923 matrix tends to increase the rank (dimensionality) of the covariance estimate. Also, note that shrinkage is
924 not a requirement of the GSN approach and can be omitted if desired (using the flag <wantshrinkage>).

925

926 To perform shrinkage, we calculate:

$$\Sigma_{shrunk} = s(\Sigma) = \lambda \Sigma + (1 - \lambda) \Sigma_{diag}$$

927 where Σ is the sample covariance ($n \times n$), λ is a shrinkage fraction in the range $[0, 1]$, Σ_{diag} is Σ with off-
928 diagonal elements set to zero ($n \times n$), and Σ_{shrunk} is the shrinkage-based covariance estimate ($n \times n$). When
929 the shrinkage fraction is 1, the sample covariance is preserved and no shrinkage is applied; when the
930 shrinkage fraction is 0, full shrinkage is applied. Notice that in our formulation, the target towards which
931 estimates are shrunk (Σ_{diag}) contains the original sample variance estimates on the diagonal. This choice
932 of target is referred to as Target D "diagonal, unequal variance" in (Schäfer and Strimmer, 2005). The
933 reason for this choice of target is to avoid imposing bias on the variances associated with the variables.

934

935 To determine the amount of shrinkage to apply, we use a cross-validation approach (similar to that used in
936 (van Bergen and Jehee, 2021; Yatsenko et al., 2015)) in which held-out data are used to evaluate
937 likelihoods corresponding to covariance estimates at different levels of shrinkage. We opt for this
938 computational approach, as opposed to analytical methods for setting the shrinkage level (Ledoit and Wolf,
939

940 2004; Schäfer and Strimmer, 2005), for increased transparency and to avoid reliance on assumptions. In
941 our implementation (`calcshrunkencovariance.{m,py}`), we randomly split the available data into an 80%
942 training set and a 20% testing set. In the case of noise estimation (Step 2), the data are split with respect
943 to trials; in the case of data estimation (Step 3), the data are split with respect to conditions. The sample
944 covariance of the training set is then calculated, different shrinkage fractions ranging from 0 to 1 in
945 increments of 0.02 are applied, the average negative log likelihood of observations in the testing set is
946 calculated for each shrinkage fraction, and the shrinkage fraction yielding the minimum negative log
947 likelihood is selected. In this way, the procedure derives a balance between bias and variance (the
948 procedure will impose just enough bias to mitigate the damaging effects of variance). Note that in the case
949 of estimating the noise distribution, the mean response to each condition in the testing set is subtracted
950 before evaluating likelihoods (in order to remove the signal).

951

952 Our implementation includes flexible options that allow the user to control the training/testing split
953 (`<leaveout>`) as well as the specific shrinkage fractions evaluated (`<shrinklevels>`). In addition, the
954 implementation includes an optional flag (`<wantfull>`) that enables a final step in which the selected
955 shrinkage fraction is applied to the sample covariance of the full dataset (combining both the training and
956 testing sets). This option improves estimation quality (since more data are used) at the expense of imposing
957 slightly more shrinkage than is optimal (in theory, if more training data are available, then less shrinkage
958 should be necessary).

959

960 We conducted simulations to confirm the validity of our shrinkage-based method for covariance estimation
961 (**S6 Appendix**). These simulations also confirm that shrinkage reduces the bias present in the
962 eigenspectrum of the sample covariance.

963

964 *Method for finding the nearest positive semi-definite matrix*

965

966 To ensure valid covariance matrices, the GSN algorithm involves finding the nearest (in the sense of the
967 Frobenius norm) symmetric positive semi-definite matrix to a given matrix (see `PSD()` in Steps 6.1 and 6.2).
968 This is accomplished using the method proposed by Higham (Higham, 1988). Our implementation is as
969 follows (`constructnearestpsdcovariance.{m,py}`):

- 970 1. Start with a given square matrix \mathcal{C} .
- 971 2. Ensure symmetry by updating $\mathcal{C} = (\mathcal{C} + \mathcal{C}^T)/2$.
- 972 3. Perform singular value decomposition to obtain $\mathcal{C} = \mathbf{U}\mathbf{S}\mathbf{V}^T$.
- 973 4. Compute the approximating matrix $\tilde{\mathcal{C}} = (\mathcal{C} + \mathbf{V}\mathbf{S}\mathbf{V}^T)/2$.
- 974 5. If $\tilde{\mathcal{C}}$ is not positive semi-definite (due to numerical precision issues), add a small multiple of the
975 identity matrix ($\varepsilon\mathbf{I}$) to $\tilde{\mathcal{C}}$ and restart the procedure starting from Step 3. We use $\varepsilon = 10^{-10}$.

976 Note that this method is equivalent to performing an eigendecomposition of \mathcal{C} and setting negative
977 eigenvalues to zero.

978

979 Additional analyses related to GSN

980

981 *Conversion of covariance to correlation*

982

983 When interpreting covariance matrices, it is often useful to convert the values to correlation units.
984 Correlation is simply a version of covariance where the variances of each of the two variables have been
985 normalized to one. We provide a function to convert covariance matrices to correlation units
986 (`convertcovariantocorrelation.{m,py}`). Our implementation divides each element of a given covariance

987 matrix by the square root of its associated row-wise diagonal element and by the square root of its
988 associated column-wise diagonal element. This conversion procedure is used in **Figure 6**.
989

990 *Principal components analysis*

991

992 The present study uses principal components analysis (PCA) as a means for interpreting the results of
993 GSN. We perform PCA through eigendecomposition of a given covariance matrix:
994

$$C = VSV^T$$
$$S = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

995 where C is a covariance matrix ($n \times n$) associated with data in n dimensions, V is an orthonormal matrix ($n \times n$) with unit-length eigenvectors in the columns, and S is a diagonal matrix ($n \times n$) with eigenvalues along the diagonal in descending order ($\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$). The eigenvectors are referred to as *principal components*; the sizes of the eigenvalues indicate the importance of the principal components; and the full set of eigenvalues is referred to as the *eigenspectrum*. A given data point ($1 \times n$), expressed relative to the centroid of the data, can be projected onto the principal components, producing scores ($1 \times n$). These scores are simply the coordinates of the data point in the rotated space defined by the principal components. Finally, a useful metric that summarizes the distribution of eigenvalues is effective dimensionality (ED) (Del Giudice, 2021):
1004

$$ED = \frac{(\sum_{i=1}^n \lambda_i)^2}{\sum_{i=1}^n (\lambda_i^2)}$$

1005 This metric ranges continuously from 1 to n and indicates the number of underlying dimensions in the data
1006 (specifically, the number of dimensions that results in an equivalent amount of entropy). Note that the metric
1007 shown above is just one of several possible metrics for ED (Del Giudice, 2021).
1008

1009

1010 Depending on one's goals, one might want to convert a covariance matrix to correlation units before
1011 computing the eigendecomposition. The motivation for this would be to ensure that all dimensions have
1012 equal influence (otherwise, dimensions with larger variances would tend to dominate the principal
1013 components). Indeed, in standard usage of PCA, it is generally recommended to z-score each dimension
1014 as a pre-processing step; this has the consequence that the covariance matrix will be in correlation units.
1015

1016 **Ground-truth simulations**

1017

1018 We conducted ground-truth simulations to illustrate key concepts, test our code implementation, and
1019 evaluate the performance of different methods. All simulations involved generating synthetic response
1020 measurements based on multivariate Gaussian signal and noise distributions.
1021

1022

1023 *Data scenarios*

1024 We designed three types of data scenarios:

- 1025 1. First, we created easy-to-interpret scenarios involving simple structure for signal and noise
1026 covariance. These scenarios involved 10 units, and are used in **Figures 3 and 4A** and **S6**
1027 **Appendix**.
- 1028 2. Second, we created a set of scenarios that systematically varied the number of units and the
1029 dimensionality of the signal and the noise. These scenarios are used in **Figures 4C and 5**. In these
1030 scenarios, the ground-truth signal and noise distributions were each zero-mean and had a
1031 covariance that was constructed by combining a randomly generated set of eigenvectors and a

1032 power-law eigenspectrum. Specifically, eigenspectra were governed by the power-law function
1033 $1/d^\alpha = d^{-\alpha}$ where d indicates the 1-indexed dimension number and α indicates an exponent
1034 parameter. Scenarios involved either 10 or 50 units and either an exponent of $\alpha = 3$ (low
1035 dimensionality), $\alpha = 1$ (medium dimensionality), or $\alpha = 0.33$ (high dimensionality) for the signal
1036 and noise, resulting in a total of six scenarios. For each number of units (10, 50), we generated
1037 random eigenvectors independently for the signal and the noise and held these eigenvectors
1038 constant across scenarios with different exponents.

1039 3. Third, we created a biologically realistic scenario in which ground-truth signal and noise
1040 distributions were taken to be the empirical GSN signal and noise distribution estimates obtained
1041 for right hemisphere FFA-1 in Participant 1 as shown in **Figure 6**. This is, of course, somewhat
1042 provisional since it assumes that the estimates provided by GSN are reasonable. Nonetheless, the
1043 choice is justifiable since the goal of our simulations is to evaluate ground-truth recovery in
1044 simulated data (as opposed to making an inference about empirical data). The scenario involved
1045 330 units, and is used in **S1 Figure**.

1046
1047 Each scenario was simulated using specific combinations of numbers of conditions (c) and numbers of
1048 trials (t). For each combination of c and t , multiple simulations were performed in order to average out
1049 incidental variability. The standard errors of results across simulations were sufficiently small and therefore
1050 are not shown in the figures.

1051
1052 *Estimation methods*

1053
1054 Given a set of response measurements generated in a simulation, we applied five different methods for
1055 estimating aspects of the signal and noise. The methods are as follows:

1056 1. *GSN (No shrinkage)* - This is the GSN method coupled with standard covariance estimation.
1057 2. *GSN (Shrinkage)* - This is the GSN method coupled with shrinkage-based covariance estimation.
1058 3. *Naive* - For signal estimation, the naive method is to simply average responses across trials and
1059 compute the sample covariance of the trial-averaged data. For noise estimation, the naive method
1060 is to simply remove the mean response for each condition, aggregate the residuals across
1061 conditions, and then perform covariance estimation.
1062 4. *Split-half* - This method refers to computing covariance across independent splits of a dataset as a
1063 means for signal covariance estimation, and has been previously used in the literature (Pospisil
1064 and Pillow, 2024; Stringer et al., 2019). Our implementation of the method is as follows. Given a
1065 set of response measurements (n units \times c conditions \times t trials), we randomly divide the trials into
1066 two equal splits (or nearly equal in the case of an odd number of trials), average responses across
1067 trials within each split, compute covariance across the splits, and then average the resulting
1068 covariance matrix with its transpose to ensure symmetry. Formally, the signal covariance estimate
1069 is given by $(\dot{X}_1^T \dot{X}_2 / (c - 1) + \dot{X}_2^T \dot{X}_1 / (c - 1)) / 2$ where \dot{X}_1 and \dot{X}_2 indicate trial-averaged
1070 responses arranged as a 2D matrix (c conditions \times n units) for the two splits, respectively, and \dot{A}
1071 indicates A with its columns centered around zero. We perform 10 random splits of the trials, and
1072 average the signal covariance estimate across splits. We note that variants of the method are
1073 possible, including performing exhaustive trial splits (in the case of low numbers of trials) and
1074 calculating covariance across pairs of trials.
1075 5. *cvPCA* - The cross-validated PCA (cvPCA) method is described in (Stringer et al., 2019), and
1076 delivers an estimate of the signal eigenspectrum. We start with the same preparation as described
1077 for the Split-half method: \dot{X}_1 and \dot{X}_2 are centered, trial-averaged responses (c conditions \times n units)
1078 for two splits of the data. We compute principal components (PCs) of the first split, project the
1079 responses in each split onto these PCs, and then compute the dot product between the two sets of

1080 projections obtained for each PC dimension. Formally, the signal eigenspectrum estimate is given
1081 by $\text{diag}((\dot{\mathbf{X}}_1 \mathbf{V})^T (\dot{\mathbf{X}}_2 \mathbf{V}))$ where \mathbf{V} indicates the PCs (n units \times n dimensions) obtained from the first
1082 split. We perform 10 random splits of the trials, and average the signal eigenspectrum estimate
1083 across splits. We note that other variants of the cvPCA method are possible, such as performing
1084 multiple iterations where responses to each condition are shuffled across the two splits (Stringer et
1085 al., 2019).

1086 6. *MEME* - The minimize eigenmoment error (MEME) method is described in (Pospisil and Pillow,
1087 2024), and delivers an estimate of the signal eigenspectrum. Given a set of response
1088 measurements (n units \times c conditions \times t trials), we randomly divide the trials into two equal splits
1089 (or nearly equal in the case of an odd number of trials) and average responses across trials within
1090 each split. We then apply the MEME method as implemented in the code provided at
1091 https://github.com/dp4846/meme_v1_bpl/blob/master/src/eig_mom.py (function
1092 *fit_broken_power_law_meme_W*). A high-level overview of the procedure is as follows. First, the
1093 user chooses a parametric model—specifically, a broken power-law function—for the
1094 eigenspectrum. Then, moments of the eigenvalues of the covariance matrix (i.e. eigenmoments)
1095 are estimated from the data. Finally, nonlinear optimization is used to optimize parameters of the
1096 model in order to minimize the squared error between the moments of the modeled eigenspectrum
1097 and the moments estimated from the data. We use the fitted model parameters returned by the
1098 code to reconstruct the estimate of the signal eigenspectrum. We perform 10 random splits of the
1099 trials, and average the signal eigenspectrum estimate across splits.

1100 The MEME implementation requires specifying several hyperparameters: the number of
1101 eigenmoments to consider, a list of break points where the power-law function might be broken,
1102 and initial guesses for the power-law intercept and the slopes of the power-law segments. For our
1103 simulations, we make the following choices. First, we set the number of eigenmoments to consider
1104 to 5. Second, given that the ground-truth eigenspectra are exactly linear in log-log space in the
1105 main set of simulations (**Figure 5**), we do not use the MEME functionality for estimating breakpoints
1106 and instead use a single (unbroken) power-law function as the parametric model. Third, to give the
1107 MEME method the best possible chance for accurate estimation, we set the initial guesses for the
1108 slope and intercept of the power-law line to the ground-truth values. In our tests, we found that
1109 MEME results are generally robust to the choice of initial guesses (e.g., using generic values often
1110 gave good results); however, we noticed that results are more unstable when using initial guesses
1111 that are farther from the ground-truth values, suggesting that caution should be exercised when
1112 setting hyperparameters in real analysis contexts.

1113
1114 We evaluated the performance of the methods with respect to three different metrics. One metric is recovery
1115 of signal and noise covariance values. For a given method's estimate of covariance (either of the signal or
1116 of the noise), the coefficient of determination (R^2) between the estimated covariance values and the ground-
1117 truth covariance values was calculated, and the average R^2 across simulations was computed. The second
1118 metric is recovery of effective dimensionality (ED). For a given method's estimate of the eigenspectrum
1119 (either of the signal or of the noise), ED was computed, and the average ED across simulations was
1120 compared to the ED of the ground-truth eigenspectrum. The third metric is recovery of power-law exponent.
1121 For a given method's estimate of the eigenspectrum (either of the signal or of the noise), a line was fit to
1122 the estimated eigenspectrum in log-log space (details below) and the slope of the line was recorded. The
1123 average slope across simulations was compared to the slope of a line fit to the ground-truth eigenspectrum.

1124
1125 Note that the Split-half method generates estimates of only the signal covariance, and is therefore evaluated
1126 only in terms of recovery of signal covariance, signal ED, and signal exponent. Also, note that the cvPCA

1127 and MEME methods generate estimates of only the signal eigenspectrum, and are therefore evaluated only
1128 in terms of recovery of signal ED and signal exponent.

1129
1130 *Line fitting method*

1131
1132 To determine the power-law exponent corresponding to a given eigenspectrum, we fit a line to the
1133 eigenspectrum in log-log space where the x-axis corresponds to the 1-indexed dimension number and the
1134 y-axis corresponds to the eigenvalue. To ensure robust results across diverse simulations, we designed a
1135 heuristic procedure that appears to work well in practice. First, given an eigenspectrum of length d , we
1136 create a linear grid in log space from $\log(1)$ to $\log(d)$ using a granularity that is at least as fine as the
1137 separation between $\log(d-1)$ and $\log(d)$. This grid is transformed back to linear space and rounded to the
1138 nearest integer, producing a set of indices. The motivation for this rounding procedure (which is a method
1139 used in the code provided with (Stringer et al., 2019)) is to avoid interpolation of eigenvalues. Next, we
1140 define "good" eigenvalues as those that are greater than 0.001 of the maximum eigenvalue. This excludes
1141 very small, zero, and negative eigenvalues, all of which can degrade the quality of line fits. (If only one
1142 eigenvalue is deemed good, the scale factor is repeatedly divided by 10 until at least two eigenvalues are
1143 deemed good.) Finally, we fit a line using least-squares in log-log space to the data points referred to by
1144 the indices, considering only the good eigenvalues. The slope of the fitted line gives the power-law
1145 exponent.

1146
1147 **Empirical data**

1148
1149 *Data preparation*

1150
1151 We demonstrate GSN on example data taken from the Natural Scenes Dataset (NSD) (Allen et al., 2022).
1152 NSD consists of 7T fMRI measurements (1.8-mm resolution) from 8 healthy young adults who each viewed
1153 9,000–10,000 distinct natural scenes up to 3 times each over the course of 30–40 scan sessions. Images
1154 were presented for 3 s with 1-s gaps in between images. Participants fixated centrally and performed a
1155 long-term continuous recognition task on the images. The fMRI data in NSD come already pre-processed
1156 and analyzed using a general linear model as implemented in GLMsingle (Prince et al., 2022). This general
1157 linear model produces single-trial beta weights representing the amplitude of the fMRI response on each
1158 trial in units of percent signal change. Note that GLMsingle denoises the signal-trial beta weights (i.e.
1159 removes some unwanted sources of variance); hence, the analyses in this paper assess the noise that
1160 remains after the GLMsingle procedure.

1161
1162 For the purposes of this paper, we took the betas_fithrf version of the single-trial betas in the fsaverage
1163 preparation of NSD (the betas_fithrf version reflects a general linear model that accounts for voxel-to-voxel
1164 variation in the hemodynamic response function). From the single-trial betas, we extracted responses from
1165 several brain regions in the right hemisphere: fusiform face area (FFA-1 subdivision), V1, hV4, and
1166 parahippocampal place area (PPA). We use the first region (FFA-1) as the main example; results for the
1167 other regions (V1, hV4, PPA) are shown in **S4 Figure**. All regions were functionally localized in each
1168 participant, and are supplied with the NSD dataset. We normalized the data by z-scoring the responses of
1169 each vertex in each session, and then extracted responses for all images that were shown all three times
1170 to the participant. (The term 'vertex' refers to a point that belongs to a cortical surface representation; for all
1171 practical purposes, 'vertex' can be treated as synonymous with 'voxel' in this paper.) This procedure yielded,
1172 for each participant, a set of response measurements with dimensionality n vertices \times c images \times 3 trials.
1173 As an example of actual numbers, for FFA-1, across participants, the value of n ranged from 167 to 1,231
1174 and the value of c ranged from 5,445 to 10,000.

1175

1176 *Application of GSN*

1177

1178 We performed GSN on the response measurements from each participant. For the example participant
1179 shown in **Figure 6**, GSN was applied to the full dataset as well as data subsets of varying sizes in order to
1180 examine the impact of amount of data on estimation quality. This was accomplished by varying the fraction
1181 of images used: 1 (10,000 images), 1/4 (2,500 images), 1/16 (625 images), 1/64 (156 images), and 1/256
1182 (39 images). The images in the data subsets were randomly selected and mutually exclusive across
1183 subsets. For the full set of participants shown in **Figure 7**, GSN was applied to the full dataset as well as
1184 split-halves of the data from each participant. Splitting was performed such that a random half of the images
1185 were used for one split and the remaining images were used for the other split.

1186

1187 To aid visual inspection of covariance matrices, we used a particular vertex ordering for the rows and
1188 columns of the covariance matrices in **Figure 6**. Specifically, we performed hierarchical clustering
1189 (MATLAB's Statistics Toolbox's *linkage.m*) on trial-averaged responses using a distance metric of one
1190 minus correlation and the linkage algorithm of unweighted average distance. This procedure yielded a
1191 vertex ordering where similar vertices tend to be close to one another. The same vertex ordering is used
1192 for all depicted covariance matrices.

1193

1194 *Application of PCA*

1195

1196 We performed PCA on the results of GSN ('GSN PCA'). This involved performing PCA separately on the
1197 covariance of the signal distribution and on the covariance of the noise distribution. For comparison, we
1198 also conducted a naive application of PCA by simply performing PCA on the covariance of the trial-
1199 averaged data ('Standard PCA').

1200

1201 To compare PCA results across participants, we isolated the set of 515 images that were viewed by all 8
1202 participants 3 times each during the NSD experiment. For each participant, we computed trial-averaged
1203 responses for the 515 images and projected these responses onto (i) the principal components associated
1204 with the signal distribution in the case of GSN PCA, or (ii) the principal components of the trial-averaged
1205 data in the case of Standard PCA. The resulting scores were then compared across participants using the
1206 metric of cosine similarity (i.e., the dot product of unit-length-normalized vectors).

1207

1208 One characteristic of PCA is that the sign of each principal component is arbitrary. We performed several
1209 sign adjustments to facilitate comparison of PCA results across data splits and participants. First, for every
1210 principal component, we flipped the sign of the principal component if necessary to ensure that the mean
1211 of the values in the principal component is positive. This incurs no loss of generality and establishes a
1212 reasonable starting point for the determination of signs. Second, for corresponding principal components
1213 in the split-half analysis for each participant (e.g., PC1 from one half and PC1 from the other half), we
1214 flipped the sign of one of the principal components if necessary to ensure that the cosine similarity between
1215 the two principal components is non-negative. This flipping procedure ensures that the reliability of results
1216 across split halves is not penalized for incidental variation in signs. Third, when comparing scores across
1217 participants, we performed a simple iterative algorithm in which scores are sign-flipped if necessary to
1218 ensure that the cosine similarity between the scores from a given participant and the average of the scores
1219 from the other seven participants is non-negative. This procedure compensates for the sign ambiguity of
1220 the principal components derived from each participant.

1221

1222 **Data and code availability statement**

1223
1224 The code used in this study is provided at <https://osf.io/wkxnx/>. The empirical fMRI data used is available
1225 at <http://naturalscenesdataset.org>. The GSN code toolbox is available at <https://github.com/cvnlab/GSN/>.
1226

1227 **Author Contributions**

1228
1229 K.K. developed methods and performed data analysis. H.S. developed methods. J.S.P. and T.G. developed
1230 concepts and performed data analysis. G.T. aided in code implementation. K.K., J.S.P., and H.S. wrote the
1231 paper. All authors discussed and edited the manuscript.

1232

1233 **Acknowledgements**

1234
1235 We thank J. Wilson and B. Pig for comments on the manuscript. This work was supported by NIH grant
1236 R01EY034118 (K.K.). Collection of the NSD dataset was supported by NSF IIS-1822683 (K.K.) and NSF
1237 IIS-1822929 (T.N.).

1238

1239 **Competing Interests**

1240
1241 The authors confirm that there are no competing interests.

1242

1243 References

1244

1245 Allen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M., Caron, B., Pestilli, F.,
1246 Charest, I., Hutchinson, J.B., Naselaris, T., Kay, K., 2022. A massive 7T fMRI dataset to bridge
1247 cognitive neuroscience and artificial intelligence. *Nat. Neurosci.* 25, 116–126.

1248 Averbeck, B.B., Latham, P.E., Pouget, A., 2006. Neural correlations, population coding and computation.
1249 *Nat. Rev. Neurosci.* 7, 358–366.

1250 Azeredo da Silveira, R., Rieke, F., 2021. The geometry of information coding in correlated neural
1251 populations. *Annu. Rev. Neurosci.* 44, 403–424.

1252 Bays, P.M., 2014. Noise in neural populations accounts for errors in working memory. *J. Neurosci.* 34,
1253 3632–3645.

1254 Bickel, P.J., Levina, E., 2008a. Regularized estimation of large covariance matrices. *Ann. Stat.* 36, 199–
1255 227.

1256 Bickel, P.J., Levina, E., 2008b. Covariance regularization by thresholding. *The Annals of Statistics* 36,
1257 2577–2604.

1258 Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of
1259 resting human brain using echo-planar MRI. *Magn. Reson. Med.* 34, 537–541.

1260 Cafaro, J., Rieke, F., 2010. Noise correlations improve response fidelity and stimulus encoding. *Nature*
1261 468, 964–967.

1262 Canatar, A., Feather, J., Wakhloo, A., Chung, S., 2023. A spectral theory of neural prediction and
1263 alignment. *arXiv* [q-bio.NC].

1264 Charest, I., Kriegeskorte, N., Kay, K.N., 2018. GLMdenoise improves multivariate pattern analysis of fMRI
1265 data. *Neuroimage* 183, 606–616.

1266 Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O., 2010. Shrinkage Algorithms for MMSE Covariance
1267 Estimation. *IEEE Trans. Signal Process.* 58, 5016–5029.

1268 Cichy, R.M., Roig, G., Andonian, A., Dwivedi, K., Lahner, B., Lascelles, A., Mohsenzadeh, Y.,
1269 Ramakrishnan, K., Oliva, A., 2019. The Algonauts Project: A platform for communication between
1270 the sciences of biological and artificial intelligence. *arXiv* [cs.CV].

1271 Cohen, M.R., Kohn, A., 2011. Measuring and interpreting neuronal correlations. *Nat. Neurosci.* 14, 811–
1272 819.

1273 Conwell, C., Prince, J.S., Kay, K.N., Alvarez, G.A., Konkle, T., 2022. What can 1.8 billion regressions tell
1274 us about the pressures shaping high-level visual representation in brains and machines? *bioRxiv*.
1275 <https://doi.org/10.1101/2022.03.28.485868>

1276 Daniels, M.J., Kass, R.E., 2001. Shrinkage estimators for covariance matrices. *Biometrics* 57, 1173–
1277 1184.

1278 Del Giudice, M., 2021. Effective dimensionality: A tutorial. *Multivariate Behav. Res.* 56, 527–542.

1279 den Haan, W.J., Levin, A.T., 1997. 12 A practitioner's guide to robust covariance matrix estimation, in:
1280 *Handbook of Statistics*, *Handbook of Statistics*. Elsevier, pp. 299–342.

1281 Dinstein, I., Heeger, D.J., Behrmann, M., 2015. Neural variability: friend or foe? *Trends Cogn. Sci.* 19,
1282 322–328.

1283 Duan, S., Yu, G., Duan, J., Wang, Y., 2023. Sparse positive-definite estimation for covariance matrices
1284 with repeated measurements. *arXiv* [stat.ME].

1285 Ecker, A.S., Berens, P., Cotton, R.J., Subramaniyan, M., Denfield, G.H., Cadwell, C.R., Smirnakis, S.M.,
1286 Bethge, M., Tolias, A.S., 2014. State dependence of noise correlations in macaque primary visual
1287 cortex. *Neuron* 82, 235–248.

1288 Eickhoff, S.B., Yeo, B.T.T., Genon, S., 2018. Imaging-based parcellations of the human brain. *Nat. Rev.*
1289 *Neurosci.* 19, 672–686.

1290 Fan, J., Liao, Y., Liu, H., 2016. An overview of the estimation of large covariance and precision matrices.
1291 *Econom. J.* 19, C1–C32.

1292 Festa, D., Aschner, A., Davila, A., Kohn, A., Coen-Cagli, R., 2021. Neuronal variability reflects
1293 probabilistic inference tuned to natural image statistics. *Nat. Commun.* 12, 3635.

1294 Franke, F., Fiscella, M., Sevelev, M., Roska, B., Hierlemann, A., da Silveira, R.A., 2016. Structures of
1295 neural correlation and how they favor coding. *Neuron* 89, 409–422.

1296 Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M., 2021. Factor analysis, probabilistic Principal Component
1297 Analysis, variational inference, and Variational Autoencoder: Tutorial and survey. *arXiv* [stat.ML].

1298 Goris, R.L.T., Movshon, J.A., Simoncelli, E.P., 2014. Partitioning neuronal variability. *Nat. Neurosci.* 17, 1299 858–865.

1300 Gratton, C., Kraus, B.T., Greene, D.J., Gordon, E.M., Laumann, T.O., Nelson, S.M., Dosenbach, N.U.F., 1301 Petersen, S.E., 2020. Defining individual-specific functional neuroanatomy for precision 1302 psychiatry. *Biol. Psychiatry* 88, 28–39.

1303 Greenacre, M., Groenen, P.J.F., Hastie, T., D'Enza, A.I., Markos, A., Tuzhilina, E., 2022. Principal 1304 component analysis. *Nat. Rev. Methods Primers* 2. <https://doi.org/10.1038/s43586-022-00184-w>

1305 Grill-Spector, K., Weiner, K.S., Kay, K., Gomez, J., 2017. The Functional Neuroanatomy of Human Face 1306 Perception. *Annu Rev Vis Sci* 3, 167–196.

1307 Hazon, O., Mince, V.H., Tomàs, D.P., Ganguli, S., Schnitzer, M.J., Jercog, P.E., 2022. Noise 1308 correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations. 1309 *Nat. Commun.* 13, 4276.

1310 Henriksson, L., Khaligh-Razavi, S.-M., Kay, K., Kriegeskorte, N., 2015. Visual representations are 1311 dominated by intrinsic fluctuations correlated between areas. *Neuroimage* 114, 275–286.

1312 Higham, N.J., 1988. Computing a nearest symmetric positive semidefinite matrix. *Linear Algebra Appl.* 1313 103, 103–118.

1314 Ito, T., Brincat, S.L., Siegel, M., Mill, R.D., He, B.J., Miller, E.K., Rotstein, H.G., Cole, M.W., 2020. Task- 1315 evoked activity quenches neural correlations and variability across cortical areas. *PLoS Comput. Biol.* 16, 1316 e1007983.

1317 Jazayeri, M., Ostožić, S., 2021. Interpreting neural computations by examining intrinsic and embedding 1318 dimensionality of neural activity. *Curr. Opin. Neurobiol.* 70, 113–120.

1319 Kanitscheider, I., Coen-Cagli, R., Pouget, A., 2015. Origin of information-limiting noise correlations. *Proc. 1320 Natl. Acad. Sci. U. S. A.* 112, E6973–82.

1321 Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: a module in human extrastriate 1322 cortex specialized for face perception. *J. Neurosci.* 17, 4302–4311.

1323 Keeley, S.L., Aoi, M.C., Yu, Y., Smith, S.L., Pillow, J.W., 2020. Identifying signal and noise structure in 1324 neural population activity with Gaussian process factor models. *bioRxiv*. 1325 <https://doi.org/10.1101/2020.07.23.217984>

1326 Lage-Castellanos, A., Valente, G., Formisano, E., De Martino, F., 2019. Methods for computing the 1327 maximum performance of computational models of fMRI responses. *PLoS Comput. Biol.* 15, 1328 e1006397.

1329 Ledoit, O., Wolf, M., 2022. The power of (non-)linear shrinking: A review and guide to covariance matrix 1330 estimation. *J. Financ. Econom.* 20, 187–218.

1331 Ledoit, O., Wolf, M., 2004. A well-conditioned estimator for large-dimensional covariance matrices. *J. 1332 Multivar. Anal.* 88, 365–411.

1333 Leonard, T., Hsu, J.S.J., 1992. Bayesian Inference for a Covariance Matrix. *Ann. Stat.* 20, 1669–1696.

1334 Lin, I.-C., Okun, M., Carandini, M., Harris, K.D., 2015. The nature of shared cortical variability. *Neuron* 87, 1335 644–656.

1336 Liska, J.P., Rowley, D.P., Nguyen, T.T.K., Muthmann, J.-O., Butts, D.A., Yates, J.L., Huk, A.C., 2022. 1337 Running modulates primate and rodent visual cortex via common mechanism but quantitatively 1338 distinct implementation. *bioRxiv*. <https://doi.org/10.1101/2022.06.13.495712>

1339 Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A., 2006. Bayesian inference with probabilistic population 1340 codes. *Nat. Neurosci.* 9, 1432–1438.

1341 Mell, M.M., St-Yves, G., Naselaris, T., 2021. Voxel-to-voxel predictive models reveal unexpected structure 1342 in unexplained variance. *Neuroimage* 238, 118266.

1343 Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., Pouget, A., 2014. Information-limiting 1344 correlations. *Nat. Neurosci.* 17, 1410–1417.

1345 Orbán, G., Berkes, P., Fiser, J., Lengyel, M., 2016. Neural variability and sampling-based probabilistic 1346 representations in the visual cortex. *Neuron* 92, 530–543.

1347 Panzeri, S., Moroni, M., Safaai, H., Harvey, C.D., 2022. The structures and functions of correlations in 1348 neural population codes. *Nat. Rev. Neurosci.* 23, 551–567.

1349 Pospisil, D.A., Bair, W., 2021a. Accounting for biases in the estimation of neuronal signal correlation. *J. 1350 Neurosci.* 41, 5638–5651.

1351 Pospisil, D.A., Bair, W., 2021b. The unbiased estimation of the fraction of variance explained by a model. 1352 *PLoS Comput. Biol.* 17, e1009212.

1353 Pospisil, D.A., Pillow, J.W., 2024. Revisiting the high-dimensional geometry of population responses in
1354 visual cortex. *bioRxiv*. <https://doi.org/10.1101/2024.02.16.580726>

1355 Pourahmadi, M., 2013. High-dimensional covariance estimation, 1st ed, Wiley Series in Probability and
1356 Statistics. John Wiley & Sons, Nashville, TN.

1357 Prince, J.S., Charest, I., Kurzawski, J.W., Pyles, J.A., Tarr, M.J., Kay, K.N., 2022. Improving the accuracy
1358 of single-trial fMRI response estimates using GLMsingle. *Elife* 11.
1359 <https://doi.org/10.7554/eLife.77599>

1360 Rabinowitz, N.C., Goris, R.L., Cohen, M., Simoncelli, E.P., 2015. Attention stabilizes the shared gain of
1361 V4 populations. *Elife* 4, e08998.

1362 Ringach, D.L., 2009. Spontaneous and driven cortical activity: implications for computation. *Curr. Opin.*
1363 *Neurobiol.* 19, 439–444.

1364 Roweis, S., 1997. EM algorithms for PCA and SPCA. *Adv. Neural Inf. Process. Syst.* 626–632.

1365 Schäfer, J., Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix estimation and
1366 implications for functional genomics. *Stat. Appl. Genet. Mol. Biol.* 4, Article32.

1367 Schrimpf, M., Kubilius, J., Lee, M.J., Ratan Murty, N.A., Ajemian, R., DiCarlo, J.J., 2020. Integrative
1368 Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. *Neuron* 108, 413–
1369 423.

1370 Stein, R.B., Gossen, E.R., Jones, K.E., 2005. Neuronal variability: noise or part of the signal? *Nat. Rev.*
1371 *Neurosci.* 6, 389–397.

1372 Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., Harris, K.D., 2019. High-dimensional geometry
1373 of population responses in visual cortex. *Nature* 571, 361–365.

1374 Tipping, M.E., Bishop, C.M., 1999. Probabilistic principal component analysis. *J. R. Stat. Soc. Series B*
1375 *Stat. Methodol.* 61, 611–622.

1376 Tolhurst, D.J., Movshon, J.A., Dean, A.F., 1983. The statistical reliability of signals in single neurons in cat
1377 and monkey visual cortex. *Vision Res.* 23, 775–785.

1378 Tolhurst, D.J., Movshon, J.A., Thompson, I.D., 1981. The dependence of response amplitude and
1379 variance of cat visual cortical neurones on stimulus contrast. *Exp. Brain Res.* 41, 414–419.

1380 Triplett, M.A., Pujic, Z., Sun, B., Avitan, L., Goodhill, G.J., 2020. Model-based decoupling of evoked and
1381 spontaneous neural activity in calcium imaging data. *PLoS Comput. Biol.* 16, e1008330.

1382 Uddin, L.Q., 2020. Bring the noise: Reconceptualizing spontaneous neural activity. *Trends Cogn. Sci.* 24,
1383 734–746.

1384 van Bergen, R.S., Jehee, J.F.M., 2021. TAFKAP: An improved method for probabilistic decoding of
1385 cortical activity. *bioRxiv*. <https://doi.org/10.1101/2021.03.04.433946>

1386 van Bergen, R.S., Jehee, J.F.M., 2018. Modeling correlated noise is necessary to decode uncertainty.
1387 *Neuroimage* 180, 78–87.

1388 van Bergen, R.S., Ma, W.J., Pratte, M.S., Jehee, J.F.M., 2015. Sensory uncertainty decoded from visual
1389 cortex predicts behavior. *Nat. Neurosci.* 18, 1728–1730.

1390 Willeke, K.F., Fahey, P.G., Bashiri, M., Pede, L., Burg, M.F., Blessing, C., Cadena, S.A., Ding, Z., Lurz,
1391 K.-K., Ponder, K., Muhammad, T., Patel, S.S., Ecker, A.S., Tolias, A.S., Sinz, F.H., 2022. The
1392 Sensorium competition on predicting large-scale mouse primary visual cortex activity. *arXiv* [q-
1393 bio.NC].

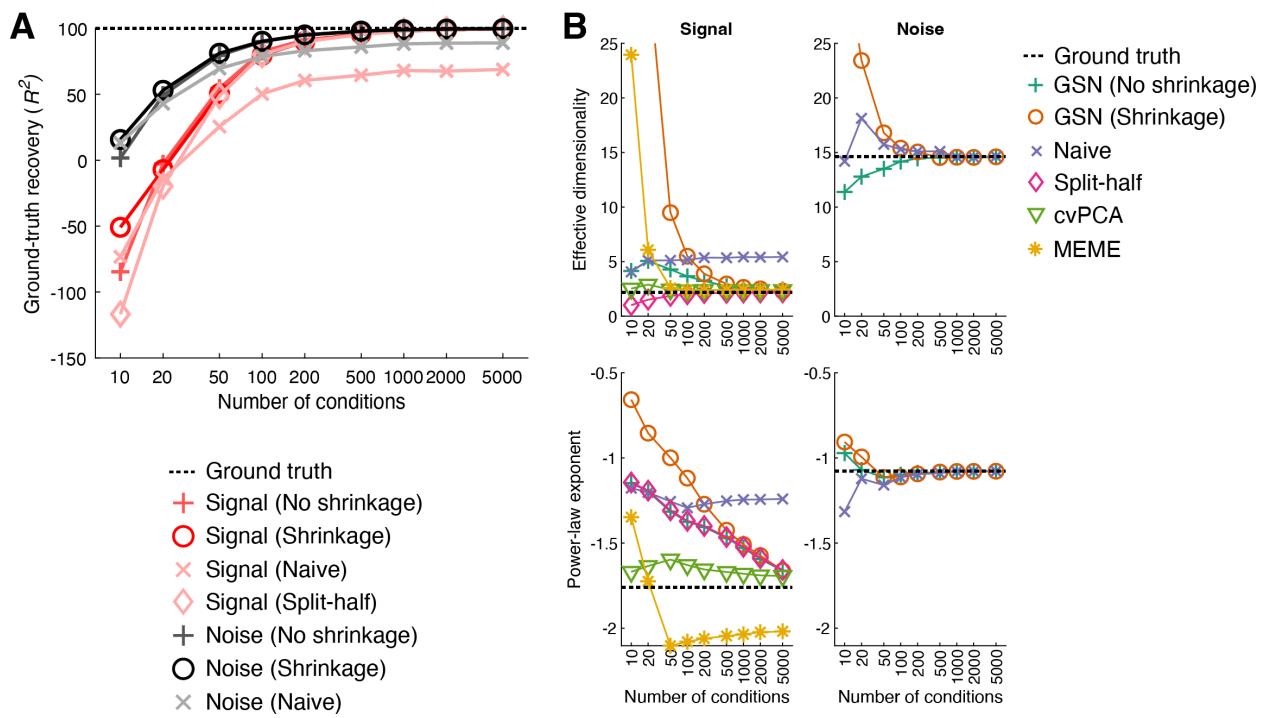
1394 Williams, A.H., Linderman, S.W., 2021. Statistical neuroscience in the single trial limit. *Curr. Opin.*
1395 *Neurobiol.* 70, 193–205.

1396 Wilson, J., Gardner, J., 2023. Covariance between similarly tuned populations in human visual cortex is
1397 model-dependent. *J. Vis.* 23, 5802–5802.

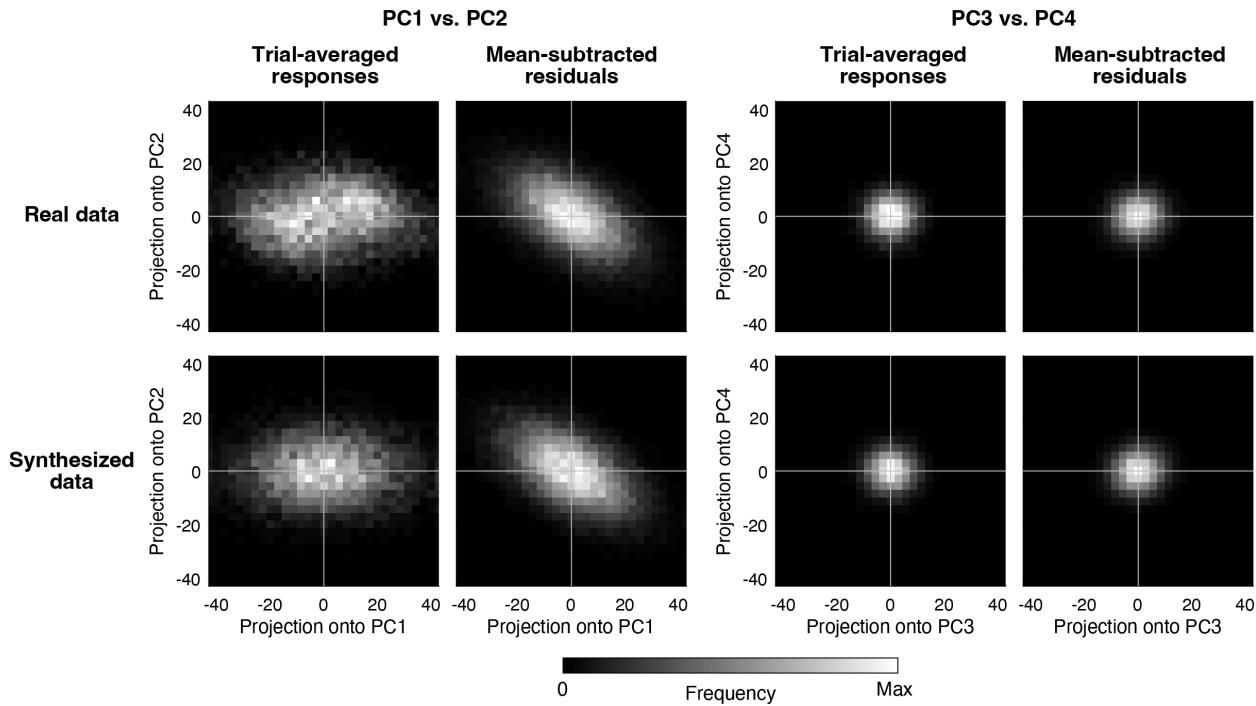
1398 Yatsenko, D., Josić, K., Ecker, A.S., Froudarakis, E., Cotton, R.J., Tolias, A.S., 2015. Improved estimation
1399 and interpretation of correlations in neural circuits. *PLoS Comput. Biol.* 11, e1004083.

1400 Zhang, J., Kucyi, A., Raya, J., Nielsen, A.N., Nomi, J.S., Damoiseaux, J.S., Greene, D.J., Horovitz, S.G.,
1401 Uddin, L.Q., Whitfield-Gabrieli, S., 2021. What have we really learned from functional connectivity
1402 in clinical populations? *Neuroimage* 242, 118466.

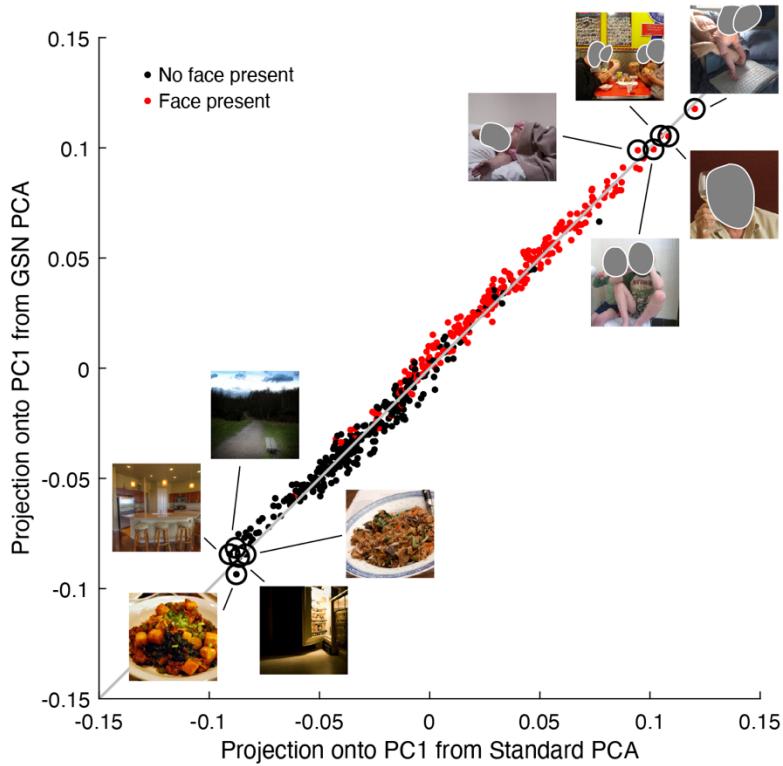
1403 Zylberberg, J., Cafaro, J., Turner, M.H., Shea-Brown, E., Rieke, F., 2016. Direction-selective circuits
1404 shape noise to ensure a precise population code. *Neuron* 89, 369–383.



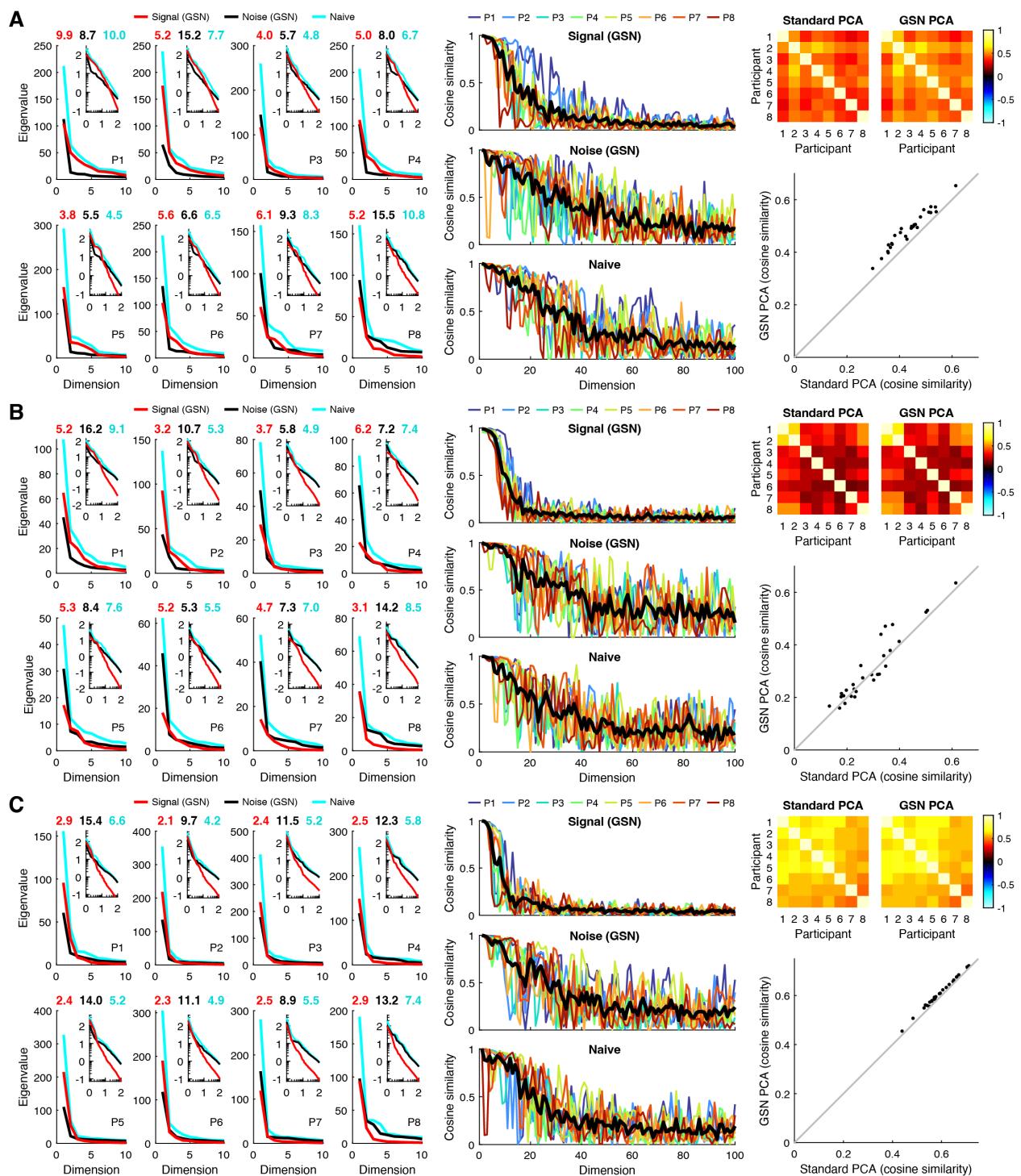
S1 Figure. Simulations for empirically derived signal and noise covariance. Here, we show simulation results for a scenario in which we take the ground-truth signal and noise covariance to be the GSN estimates of signal and noise covariance obtained from FFA-1 as illustrated in **Figure 6** (code available at <https://osf.io/3yvtg>). **A**, Same format as **Figure 4C**. Results are similar to those found in **Figure 4C**. **B**, Same format as **Figure 5**. The results for effective dimensionality (ED) look similar to those found in **Figure 5**. However, the results for power-law exponent look different. Specifically, the methods exhibit poor recovery of signal power-law exponent: each method either takes a very large amount of data to converge towards ground truth or has biases that do not resolve with additional data. One potential explanation is that the ground-truth signal covariance in this scenario is not exactly a line in log-log space (i.e. a power-law function), whereas all of the scenarios shown in **Figure 5** are exactly linear in log-log space. Hence, recovery may be especially difficult to achieve for the current scenario. Arguably, ED is a more appropriate metric for the evaluation of methods here, as it makes minimal assumptions about the structure of the eigenspectrum. Also, note that for sake of consistency with the other simulations, the MEME method was run assuming an unbroken power-law function; in theory, the MEME method could be run assuming a broken power-law function, which might help better match the ground-truth signal eigenspectrum and improve results.



S2 Figure. Assessment of data distributions. As an instructive exercise, we take the empirical brain data from FFA-1 illustrated in **Figure 6** and perform an inspection of the signal and noise components of the data (code available at <https://osf.io/yxrsp>). We inspect two different distributions. One is the distribution of trial-averaged responses. Since trial averaging reduces noise, inspecting trial-averaged responses helps us assess properties of the signal. The second is the distribution of mean-subtracted residuals (in which trial-averaged responses have been removed). This allows us to focus our assessment on properties of the noise. We compute the first several principal components (PCs) of the covariance of the trial-averaged responses and then visualize the two distributions of interest in the low-dimensional space defined by these PCs. We also generate, for comparison, a synthesized dataset based on the parameters of the GSN model as fit to the empirical data. In order to generate responses for this synthesized dataset, we assume that both the signal and noise are Gaussian-distributed. We visualize the synthesized data in exactly the same manner as the real data (including using the same low-dimensional space). Examining the distributions associated with the real data (top row), we see that both the distribution of trial-averaged responses and the distribution of mean-subtracted residuals are Gaussian-like in their shape. We also see that the structure of the mean-subtracted residuals differs from that of the trial-averaged responses (top row, compare first and second images). This indicates that the noise structure is not identical to the signal structure, consistent with the inspections in **Figure 6A**. Next, we compare the distributions associated with the real data (top row) with those obtained from the synthesized data (bottom row). The distributions obtained from the synthesized data look very similar to those from the real data, suggesting that both the signal and the noise in the real data have Gaussian-like distributions and that the generative model learned by GSN accurately characterizes the real data.



S3 Figure. Inspection of stimuli in PCA results. Here we visually inspect stimulus images from the PCA analysis (code available at <https://osf.io/f34bc>). The projections of responses in FFA-1 to the common 515 images onto PC1 (see **Figure 7C**) were unit-length-normalized, averaged across participants, and then unit-length-normalized again. This figure compares the results obtained using Standard PCA (x-axis) against the results obtained using GSN PCA (y-axis). Red dots indicate images that were judged by human raters to have at least one prominent face present; black dots indicate all other images. (The human raters were blind to the results in this paper.) The actual images corresponding to the highest five and lowest five projection values (based on the average of the results of the two methods) are shown. The presence of faces appears to be the dominant factor governing the response projections. (Note: Faces have been grayed out due to privacy reasons.)



S4 Figure. PCA results for additional brain regions. Here we show results of the PCA analysis for additional brain regions (code available at <https://osf.io/f34bc>). The format is the same as used in **Figure 7**. A–C, Results for V1, hV4, and PPA, respectively. The main findings observed for FFA-1 in **Figure 7** replicate for these additional regions, including lower dimensionality for the signal compared to the noise, high within-participant reliability of the first several signal PCs and noise PCs, and higher across-participant consistency of trial-averaged response projections onto PC1 for GSN PCA than for standard PCA. Compared to FFA-1, the increase in across-participant consistency is more variable in hV4 and is relatively

small (but reliable) in PPA. One possible source of these region-wise differences may be differences in the degree to which signal covariance structure and noise covariance structure are aligned in different brain regions. For example, if noise covariance tends to align with signal covariance, then noise may have less of a corrupting influence on the estimation of signal PCs compared to when noise covariance is orthogonal to signal covariance.

S5 Appendix: GSN estimation of signal and noise covariance

Problem setting

As described in the main text, GSN calculates two covariance estimates from the data: $\hat{\Sigma}_{noiseORIG}$ and $\hat{\Sigma}_{data[t]}$. The former is an estimate of the noise covariance based on the trial-to-trial variability around the mean response to each condition (see Step 2). The latter is an estimate of the data covariance based on the data after averaging across t trials (see Step 3).

These two covariance estimates reflect unknown covariance matrices Σ_{signal} and Σ_{noise} such that $\hat{\Sigma}_{noiseORIG}$ is a noisy version of Σ_{noise} based on $c(t - 1)$ samples and $\hat{\Sigma}_{data[t]}$ is a noisy version of $\Sigma_{data[t]} = \Sigma_{signal} + \Sigma_{noise}/t$ based on $c - 1$ samples.

We wish to determine estimates $\hat{\Sigma}_{signal}$ and $\hat{\Sigma}_{noise}$ under the constraint that these estimates are positive semi-definite matrices. To do so, we define the following loss that quantifies errors from the data-derived covariances scaled by the number of samples they are based on:

$$L(\hat{\Sigma}_{signal}, \hat{\Sigma}_{noise}) = c(t - 1) \|\hat{\Sigma}_{noiseORIG} - \hat{\Sigma}_{noise}\|_2^2 + (c - 1) \|(\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t) - \hat{\Sigma}_{signal}\|_2^2$$

where $\|\cdot\|_2$ indicates the Frobenius norm. Intuitively, the noise estimate $\hat{\Sigma}_{noise}$ is allowed to deviate to some degree from the data-derived $\hat{\Sigma}_{noiseORIG}$, and the signal estimate $\hat{\Sigma}_{signal}$ is allowed to deviate to some degree from the subtraction-based estimate of the signal covariance $\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$.

Notice $\hat{\Sigma}_{noiseORIG}$ is positive semi-definite, as it is a covariance matrix computed from data. If $\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$ is also positive semi-definite, setting $\hat{\Sigma}_{noise} = \hat{\Sigma}_{noiseORIG}$ and $\hat{\Sigma}_{signal} = \hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$ is the optimal solution for the problem (since the loss equals zero). If not, we can solve the optimization problem using the method described below.

Solution

To solve the optimization problem in the general case, we note that it is a convex optimization problem, as it is a sum of squares and the cone of semi-definite matrices is a convex set (Boyd and Vandenberghe, 2016). Thus, this problem has a single optimum. For solving this problem efficiently, we split the problem into optimizing $\hat{\Sigma}_{signal}$ and $\hat{\Sigma}_{noise}$ separately, as we can compute an analytic solution for each matrix if the other is fixed. Since each of these separate optimizations is guaranteed to improve the loss, this approach is guaranteed to converge.

Lemma: solution pattern

Consider the following problem. Given B , find A that minimizes $\|B - A\|_2^2$ (or equivalently $\|A - B\|_2^2$) subject to the constraint that A is positive semi-definite. We can solve this problem as $A = PSD(B)$ where $PSD()$ is the method for finding the nearest positive semi-definite matrix described in the main text. We will use this solution pattern in solving the individual optimizations for $\hat{\Sigma}_{signal}$ and $\hat{\Sigma}_{noise}$.

Optimizing $\hat{\Sigma}_{signal}$

Since $c(t - 1) \|\hat{\Sigma}_{noiseORIG} - \hat{\Sigma}_{noise}\|_2^2$ is independent of $\hat{\Sigma}_{signal}$, we are left with minimizing

$$(c-1) \left\| (\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t) - \hat{\Sigma}_{signal} \right\|_2^2$$

subject to $\hat{\Sigma}_{signal}$ being positive semi-definite. To do this, we use our solution pattern where $A = \hat{\Sigma}_{signal}$ and $B = \hat{\Sigma}_{data[t]} - \hat{\Sigma}_{noise}/t$.

Optimizing $\hat{\Sigma}_{noise}$

In this case, we apply a quadratic extension to turn the sum of squares into a single one:

$$\begin{aligned} L(\hat{\Sigma}_{signal}, \hat{\Sigma}_{noise}) &= \sum_{ij} \left[c(t-1) (\hat{\Sigma}_{noiseORIG}^{(ij)} - \hat{\Sigma}_{noise}^{(ij)})^2 + (c-1) \left(\hat{\Sigma}_{data[t]}^{(ij)} - \hat{\Sigma}_{signal}^{(ij)} - \frac{\hat{\Sigma}_{noise}^{(ij)}}{t} \right)^2 \right] \\ &= \sum_{ij} \left[c(t-1) \left((\hat{\Sigma}_{noiseORIG}^{(ij)})^2 - 2\hat{\Sigma}_{noiseORIG}^{(ij)}\hat{\Sigma}_{noise}^{(ij)} + (\hat{\Sigma}_{noise}^{(ij)})^2 \right) \right. \\ &\quad \left. + \frac{c-1}{t^2} \left(\left(t^2 (\hat{\Sigma}_{data[t]}^{(ij)} - \hat{\Sigma}_{signal}^{(ij)})^2 \right) - 2t (\hat{\Sigma}_{data[t]}^{(ij)} - \hat{\Sigma}_{signal}^{(ij)}) \hat{\Sigma}_{noise}^{(ij)} + (\hat{\Sigma}_{noise}^{(ij)})^2 \right) \right] \\ &= \sum_{ij} \left[\frac{ct^2(t-1) + c-1}{t^2} (\hat{\Sigma}_{noise}^{(ij)})^2 - 2\hat{\Sigma}_{noise}^{(ij)} \left(c(t-1)\hat{\Sigma}_{noiseORIG}^{(ij)} + \frac{c-1}{t} (\hat{\Sigma}_{data[t]}^{(ij)} - \hat{\Sigma}_{signal}^{(ij)}) \right) \right] + C_0 \end{aligned}$$

where C_0 is a term that is independent of $\hat{\Sigma}_{noise}$. Simplifying, we obtain:

$$L(\hat{\Sigma}_{signal}, \hat{\Sigma}_{noise}) \propto \sum_{ij} \left[\hat{\Sigma}_{noise}^{(ij)} - \frac{ct^2(t-1)}{ct^2(t-1) + c-1} \hat{\Sigma}_{noiseORIG}^{(ij)} - \frac{c-1}{ct^2(t-1) + c-1} t (\hat{\Sigma}_{data[t]}^{(ij)} - \hat{\Sigma}_{signal}^{(ij)}) \right]^2 + C_1$$

where C_1 is a term that is independent of $\hat{\Sigma}_{noise}$. To minimize this loss, we use our solution pattern where $A = \hat{\Sigma}_{noise}$ and $B = \frac{ct^2(t-1)}{ct^2(t-1) + c-1} \hat{\Sigma}_{noiseORIG} + \frac{c-1}{ct^2(t-1) + c-1} t (\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{signal})$.

Notice that the calculation of B is a weighted average of two possible estimates of the noise covariance. The first estimate, $\hat{\Sigma}_{noiseORIG}$, reflects the covariance of mean-subtracted residuals, while the second estimate, $t(\hat{\Sigma}_{data[t]} - \hat{\Sigma}_{signal})$, reflects the subtraction of the signal distribution from the data distribution. The weights in the weighted average reflect the amount of data that inform each of the two estimates.

Algorithm

The overall algorithm for optimizing signal and noise covariance estimates is described in the main text. Holding $\hat{\Sigma}_{noise}$ fixed, the algorithm optimizes $\hat{\Sigma}_{signal}$ in Step 6.1. Holding $\hat{\Sigma}_{signal}$ fixed, the algorithm optimizes $\hat{\Sigma}_{noise}$ in Step 6.2. This process of biconvex optimization is iterated until convergence.

Proof that projection reduces error

We claim in the main text that projection of a given covariance estimate onto the positive semi-definite cone always reduces the error of the estimate. Here we provide a simple proof of this claim.

Definitions: For this proof, let Σ be the true n -dimensional covariance which lies within the convex cone of positive semi-definite matrices $C \subset \mathbb{R}^{n \times n}$. We assume the original covariance estimate $\hat{\Sigma} \notin C$.

Theorem: Under these conditions, the squared error of the projection onto the positive semi-definite cone $PSD(\hat{\Sigma})$ is smaller than the squared error of the original estimate, i.e.:

$$\left\| \Sigma - PSD(\hat{\Sigma}) \right\|_2^2 < \left\| \Sigma - \hat{\Sigma} \right\|_2^2$$

Proof: As C is convex, there is a tangent plane touching C at $\text{PSD}(\hat{\Sigma})$ to which the vector from $\hat{\Sigma}$ to $\text{PSD}(\hat{\Sigma})$ is orthogonal. All points in C are on the other side of this tangent plane compared to $\hat{\Sigma}$. The squared distance from $\hat{\Sigma}$ to Σ can be decomposed into the distance orthogonal to the tangent plane and the distance within the tangent plane. The distance within the plane is the same for $\hat{\Sigma}$ and $\text{PSD}(\hat{\Sigma})$, and the distance orthogonal to the plane is smaller for $\text{PSD}(\hat{\Sigma})$. Thus, the total distance for $\text{PSD}(\hat{\Sigma})$ is indeed smaller than the total distance for $\hat{\Sigma}$. See **Figure S5.1** for a helpful illustration.

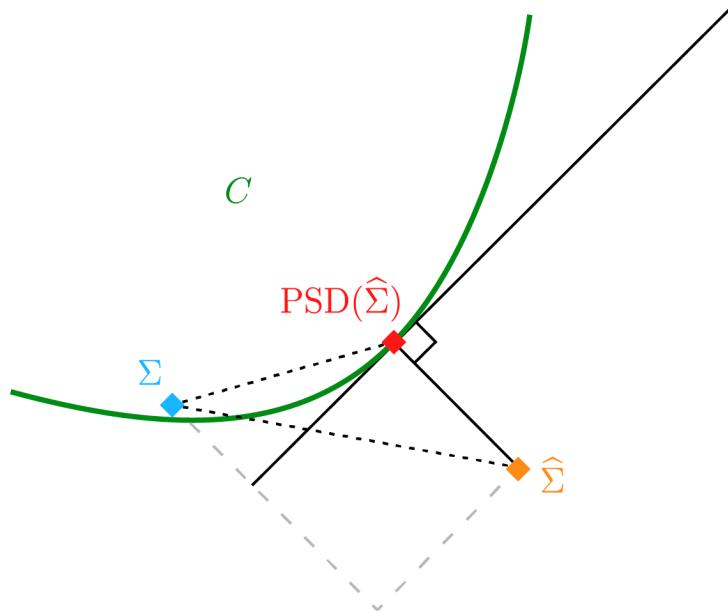


Figure S5.1. Illustration that projection onto the positive semi-definite cone reduces error.

Rationale for squared error

Our estimates are based on minimizing sum of squares, i.e., we minimize the squared difference between our estimates and the data-derived $\hat{\Sigma}_{\text{noiseORIG}}$ and $\hat{\Sigma}_{\text{data}[t]}$. Squared error is a common loss for the estimation of covariance matrices, and in particular, it is the loss optimized by the shrinkage method we employ for covariance estimation. Additionally, squared error is a convex loss function, which guarantees that our fitting procedure converges.

We note that our squared-error loss does not correspond to a log likelihood under some distributional assumption. Rather, it is merely a mathematically convenient way to express the trade-off between the two data-driven covariance estimates $\hat{\Sigma}_{\text{noiseORIG}}$ and $\hat{\Sigma}_{\text{data}[t]}$. Typical likelihood functions for covariance matrices imply larger variabilities for larger entries in the covariance matrix, but this is not the case for our squared-error loss.

In our squared-error loss, we weight the two errors (one for $\hat{\Sigma}_{\text{noiseORIG}}$, one for $\hat{\Sigma}_{\text{data}[t]}$) by the relevant degrees of freedom. This is a sensible approach that adapts to the specific numbers of conditions and trials used in a given experiment. We acknowledge that it may be possible to devise a more principled approach for determining the weighting. Nonetheless, note that the relative weighting of the errors does not change

fundamental properties of the estimators. For any chosen weighting, $\hat{\Sigma}_{noise}$ and $\hat{\Sigma}_{signal}$ are positive semi-definite and approximate the data-derived covariance estimates.

References

Boyd, S., Vandenberghe, L., 2016. Convex Optimization. Cambridge University Press, Cambridge, England.

S6 Appendix: Shrinkage-based covariance estimation

A core component of GSN is estimation of covariance (this is performed for the estimated noise covariance in Step 2 and the estimated data covariance in Step 3). However, in high-dimensional datasets involving a large number of units but only a limited number of samples (e.g. trials), the standard method of computing sample covariance may yield inaccurate estimates of covariance. To improve accuracy of covariance estimation, GSN incorporates shrinkage (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005) of off-diagonal elements of covariance matrices towards zero. This reflects the prior that units are generally expected to be uncorrelated. The specific amount of shrinkage is tailored to optimally match the data using a cross-validation procedure in which likelihoods are evaluated on held-out data (see *Methods*).

We tested our shrinkage-based method for covariance estimation. We performed a set of simulations in which we assessed, as a function of the number of samples, how well the shrinkage method recovers a ground-truth covariance, compared to the standard method in which shrinkage is omitted (**Figure S6.1**). In one set of simulations, we used a ground-truth covariance equal to the identity matrix, corresponding to a scenario of uncorrelated units (panel A). In a second set of simulations, we re-used the previous ground-truth covariance but introduced positive correlations ($r = 0.5$) amongst the first five units (panel B). For additional comparison, in a third set of simulations, we used a ground-truth covariance equal to the covariance of a fixed set of random numbers drawn from the standard normal distribution (20 observations, 10 variables) (panel C).

The results show that the shrinkage method works well. In each scenario, the introduction of shrinkage improves ground-truth covariance recovery and this occurs regardless of the number of samples (panels A–C, lower left). Note that the size of the improvement varies across scenarios, with larger improvements when the ground truth is consistent with the prior of uncorrelated units (e.g. panel A) than when this is less the case (e.g. panel C). This makes sense: the cross-validation procedure should, in theory, correctly determine that shrinkage should be applied more strongly in situations where the underlying ground-truth covariance involves uncorrelated variables. Indeed, if we examine cross-validation results across different shrinkage levels, we see that in the scenario of uncorrelated variables, the shrinkage fractions yielding the highest likelihood on held-out data are close to 0, indicating large amounts of shrinkage (panel A, vertical red line in rightmost column), whereas in scenarios of correlated variables, the optimal shrinkage levels are closer to 1, indicating small amounts of shrinkage (panels B–C, vertical red lines in rightmost column).

The simulations also reveal insights into how ground-truth recovery performance varies as a function of the amount of data. As the number of samples increases, the induced shrinkage becomes weaker (compare 5 samples to 100 samples in panel C). This makes sense because at small sample sizes, the unregularized (non-shrunken) covariance is so inaccurate that inducing heavy bias improves the estimate. Furthermore, we see that as the number of samples increases, the difference in results between the shrinkage method and the standard method becomes smaller. Thus, shrinkage provides the most benefit when the amount of available data is small. It is important to keep in mind, however, that the covariance estimates produced by shrinkage are by no means perfect and that they contain bias. This can be seen intuitively by visually comparing the shrinkage-based covariance estimates at low number of samples to the ground-truth covariance. While shrinkage increases the overall similarity of covariance estimates to the underlying ground-truth covariance, it does so at the expense of biasing the magnitudes of off-diagonal elements towards zero. The introduction of bias is not necessarily a problem per se, as it depends on the goals of the researcher.



Figure S6.1. Shrinkage-based covariance estimation. Here we show results of simulations that assess the performance of the shrinkage-based method we use for covariance estimation (code available at <https://osf.io/yr3vx>). Panels A–C depict three different scenarios. Each scenario involves 10 units whose responses are distributed according to a ground-truth multivariate Gaussian (whose covariance is shown at the upper left). We vary the number of samples (e.g., trials, conditions) drawn from the distribution, performing 50 simulations for each number of samples. In each simulation, we estimate covariance from the samples using two different methods. One method ('No shrinkage') is to simply compute the sample covariance with Bessel's correction. The second method ('Shrinkage') involves additionally shrinking the off-diagonal elements of the sample covariance, using cross-validation to determine the optimal shrinkage level. In each panel, the ground-truth covariance is shown at the upper left. Cross-validation results for different numbers of samples are shown at the upper right, where colored lines indicate different simulations, black dots indicate the minimum negative log likelihood achieved, and the vertical red line indicates the median selected shrinkage level across simulations. Below each cross-validation plot, covariance estimates from one simulation are shown (we choose the simulation in which the selected shrinkage level is closest to the median). At the bottom are plots of the eigenspectra (mean across simulations) produced by the two methods (red and pink lines) as well as the ground-truth eigenspectrum (black dotted line). Finally, the ground-truth recovery performance quantified using coefficient of determination (R^2) is shown at the lower left (mean across simulations).

A clear benefit of the bias induced by shrinkage can be seen in the eigenspectra of the covariance estimates (panels A–C, bottom right). Even though the sample covariance provides an unbiased estimate of covariance, it produces biased eigenspectra that are lower in dimensionality than the ground-truth eigenspectra (see steep fall-off of the eigenspectra in the case of 5 samples). In other words, the sample covariance tends to underestimate the true dimensionality of the data. Shrinkage, to an extent, alleviates this issue, as it increases dimensionality (eigenvalues become more spread out) and produces eigenspectra that more closely resemble the ground-truth eigenspectra. These results are consistent with prior results from the literature (see Figure 1 in (Schäfer and Strimmer, 2005)).