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Abstract

Inference of demographic and evolutionary parameters from a sample of genome
sequences often proceeds by first inferring identical-by-descent (IBD) genome segments.
By exploiting efficient data encoding based on the ancestral recombination graph
(ARG), we obtain three major advantages over current approaches: (i) no need to
impose a length threshold on IBD segments, (ii) IBD can be defined without the
hard-to-verify requirement of no recombination, and (iii) computation time can be
reduced with little loss of statistical efficiency using only the IBD segments from a set of
sequence pairs that scales linearly with sample size. We first demonstrate powerful
inferences when true IBD information is available from simulated data. For IBD inferred
from real data, we propose an approximate Bayesian computation inference algorithm
and use it to show that poorly-inferred short IBD segments can improve estimation
precision. We show estimation precision similar to a previously-published estimator
despite a 4 000-fold reduction in data used for inference. Computational cost limits
model complexity in our approach, but we are able to incorporate unknown nuisance
parameters and model misspecification, still finding improved parameter inference.

Author summary

Samples of genome sequences can be informative about the history of the population
from which they were drawn, and about mutation and other processes that led to the
observed sequences. However, obtaining reliable inferences is challenging, because of the
complexity of the underlying processes and the large amounts of sequence data that are
often now available. A common approach to simplifying the data is to use only genome
segments that are very similar between two sequences, called identical-by-descent (IBD).
The longer the IBD segment the more informative about recent shared ancestry, and
current approaches restrict attention to IBD segments above a length threshold. We
instead are able to use IBD segments of any length, allowing us to extract much more
information from the sequence data. To reduce the computation burden we identify
subsets of the available sequence pairs that lead to little information loss. Our approach
exploits recent advances in inferring aspects of the ancestral recombination graph
(ARG) underlying the sample of sequences. Computational cost still limits the size and
complexity of problems our method can handle, but where feasible we obtain dramatic
improvements in the power of inferences.
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Introduction

A common data-reduction technique when analysing samples of genome sequences is to
identify identical-by-descent (IBD) genome segments [1-5]. In practice IBD is often
identified by searching for regions with no evidence for recombination along two
sequences since their most recent common ancestor (MRCA). Further, only IBD
segments (IBDs) above a given length threshold, often 2 to 4 ¢cM, are retained. This
practice wastes valuable information, but has been necessary because the inference of
short IBDs is too noisy to be useful for downstream analyses.

The ancestral recombination graph (ARG) is widely used to represent the
genealogical history of a sample [6-8] and recent developments in inferring aspects of
the ARG [9-13] now permit us to rapidly extract IBD directly from inferred shared
ancestors, without requiring zero recombination. Further, computationally fast ARG
inference and extraction of IBD can be implemented within an approximate Bayesian
computation (ABC) algorithm which removes the need for an information-wasteful
length threshold. Instead, we reduce computational cost by using an efficient subset of
IBDs that scales linearly with sample size with little information loss relative to using
all IBDs.

Our approach relies on an efficient data structure encoding features of an ARG
underlying a sample of genome sequences, called the succinct tree sequence (TS) [14].
The TS minimises redundant storage of subsequences that are similar due to shared
ancestry. It has led to spectacular improvements in storage and simulation of large
genome datasets [15], and has recently been applied to IBD-based inferences about
demographic history and evolutionary parameters [16].

We first demonstrate powerful inferences of mutation and sequencing error rates,
TMRCA (time since the MRCA), and past and present population sizes, given true IBD
information in simulation studies. For real datasets, we propose TSABC: ABC with
statistics computed from IBDs extracted from an inferred T'S. We demonstrate the
performance of TSABC with inferences of the mutation rate and population size in
simulation studies and real data, and we compare mutation rate estimates with
previously-published results and with analyses using a range of IBD length thresholds.

We find that using IBDs extracted from an inferred ARG leads to a surprisingly
small loss of precision relative to use of true IBDs. Further, even a low threshold on
IBD length reduces the quality of inferences, despite the fact that short IBDs are poorly
inferred. TSABC is computationally demanding, which limits the size and complexity of
inference problems that can be tackled. However, TSABC can achieve comparable
results to previous estimators using much smaller data sets: we show similar precision
to a previously-published estimator despite a 4 000 fold reduction in data available for
inference.

Methods

Definition and notations

The TS encodes genome sequence data efficiently by storing subsequences that are
similar due to shared ancestry as variations of an ancestral sequence. It is defined [17]
as {C, P, E, M}, where C = {1,...,m} is the set of leaf (or tip) nodes corresponding to
m observed sequences each of length ¢, and P = {m+1,...,n} is the set of internal
(ancestral) nodes of the TS ordered backwards in time from the present. An edge in

E = {(¢ci,pisli,mi) : 1 =1,2,... I} represents inheritance of sites in the segment [l;, r;],
with 1 <[; <r; </, from internal node p; € P to its child ¢; € {1,...,p;—1}, while
M ={(cj,s5) : j =1,2,...} stores the set of sites s; at which there is a sequence
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Fig 1. An ancestral recombination graph (ARG) spanning a genome sequence of length
¢ =100 (left), the corresponding sequence of local trees (middle) and efficient IBD
subset (right). The ARG has leaf nodes {1,2, 3,4} = C, named ancestral nodes
{5,6,7,8} = P, and a recombination at site 42 of an internal ancestral node (red dot).
The two dashed lines in the ARG represent inheritance paths due to two ineffective
recombination events, which are not represented in the TS. The efficient IBD subset
includes two IBD segments for the node pair (1,2), corresponding to intervals [1,42] and
[43,100] which have MRCA 6 and 8, respectively, and one IBD segment spanning the
whole sequence for pairs (3,4) and (4, 1).

difference between c; and its parent, due either to a mutation or, if ¢; is a leaf node,
sequencing error. The TS has the “succinct” property that any tree component
conserved over a genome segment is stored only once, which greatly reduces data
storage requirements compared with retaining all distinct marginal trees.

Identity by descent and efficient subsets

We denote the ith IBD segment in the TS by IBD; = (¢;1, ¢ia, li, 7, 0is Mi), i =1,..., I,
ordered such that ¢;; is non-decreasing in i. Here ¢;; and ¢;5 are the leaf nodes of the
two sequences, [l;, ;] is the IBD genome segment, p; is the MRCA node of ¢;; and ¢;o
for this segment, and M; denotes the set of sites in [I;, ;] at which ¢;; and ¢;2 differ. As
there is no length threshold, the IBDs of any sequence pair partition the genome: every
sequence site is included in exactly one of the IBD segments.

Each IBD; has the same MRCA at each site in [l;, r;], and a different MRCA at
adjacent sites. Imposing a no-recombination requirement as part of the definition of
IBD would be more restrictive, since the absence of recombination implies a common
MRCA but the reverse does not hold (see Figure 1, left, for examples of recombinations
that do not change the MRCA).

To reduce computational effort, we use for inference only an “efficient” subset of
IBDs. After fixing an arbitrary order for the sequences, we include in the subset only
the IBDs of the sequence pairs (1, m) and (¢,c+1) for ¢ =1,...,m—1 (see Figure 1,
right, and Appendix S1). An efficient subset has the property that each edge of the TS
is included in a descent path from the MRCA for at least one IBD segment in the
subset, which ensures that information is retained in the subset about every mutation.

Imposing a length threshold on IBDs is also a form of data reduction but we show
below that it can lead to high information loss, because mutations are ignored if they
occur at sites not contained in a sufficiently long IBD segment.
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Estimation

Let p and € be the per-site per-generation mutation rate and the per site sequencing
error rate, both assumed constant over sites. For ¢ =1,..., 1, let g; denote the age of p;
in generations, and let N(g), g =0,1,2,..., be the population size g generations in the
past. In Appendix S2 we derive method-of-moment estimators for p and €, and
non-parametric estimators of ¢g;,i = 1,...,I, and N(g), ¢ =0,1,2,..., based on
statistics computed from IBD lengths. We investigate the performance of these
estimators when true IBD information is available in simulation studies. The
recombination rate r is assumed constant over sites and known for all inferences; the
extension to a known recombination map is straightforward (a recombination at site s
means between sites s and s+ 1).

For observed sequence data, true IBD information is not available and we extract
IBDs from an inferred T'S. TSABC uses summary statistics derived from these IBDs
and related to the method-of-moments estimators. For inference of p and €, we use the
statistics M x I and C; (Appendix S2.1) which are linear transformations of the
method-of-moments estimators i and é. Nonparametric estimation of N(g) is not
feasible, but we can estimate the parameters of a demographic model, which allows
powerful inference provided that the model is adequate. We use as statistics the mean
and standard deviation (SD) of IBD lengths r; — I;, i =1,...,1I.

Simulation study design: true IBD available
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Evolutionary parameters and sample properties

rate 108 /site/generation.

Symbol Definition Value(s) in simulations
o mutation rate 1.3 x 10~% per site per generation
€ sequencing error rate up to 1073 per site
r recombination rate 10~® per site per generation
m sample size 10, 20, 40, 60, 80, 100, 160 or 200 sequences
l sequence length 106, 107 or 108 sites
Demographic models (N (g) = population size g generations ago)
Model C N(g) constant N(g) =2 x 10?
Model G N(g) =N(0) xe 79 N(0) = 10°% 7 =10"* (Model Ga)
N(0) =2 x 105, 7 = 1073 (Model Gb)
Model S | N(g) = N(0) for 0 < g <G N() =G =4 x 10*
=N(G) for g > G N(G) = 10*
Model EA European-American See Figure S2 for N(g) values;
demographic history [18] gene conversion: tract length 100 bp

Table 1. Parameter values, sample properties and demographic models for the
simulation study. Unless otherwise stated, 25 simulation replicates were generated in
each scenario. Model Ga is used for inferences given true IBD and Model Gb is used for
inferences from inferred IBD. The value of r is assumed known for all inferences,
whereas p, € and N(g), g > 0, are targets of inference.

We jointly estimated p, €, g;, i =1,...,I, and N(g), g > 0, using our novel
estimators. We used msprime [19] to generate TS under the coalescent with
recombination model [20,21], assuming demographic models C, Ga and S (Table 1).
From each TS we extracted an efficient subset of IBDs (Algorithm 1). Sequencing error
was simulated by adding elements to M at leaf nodes of the generated TS. At the
largest error rate (e = 1073), any singleton variant is a few times more likely to arise
from sequencing error rather than a mutation.
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Simulation study design: inferred IBD

We used msprime to generate simulated sequences, recoded them as binary strings using
0 and 1 for the ancestral and derived alleles and added sequencing errors by assigning 1
to randomly selected sites at rate e (see [22] for alternative models of sequencing error).
We choose tsinfer [10] to infer the TS from the resulting sequence data; speed is critical
for an ABC algorithm, and tsinfer is the fastest of the current methods, while retaining
high accuracy [13,23]. Unless otherwise stated, in each scenario we used 1 = 2500
simulations with ABC acceptance rate 0.05 (125 acceptances).

We first use simulations to confirm previous reports [24] that the quality of IBD
inference is often poor, particularly for short IBDs. We compared the number of true
and inferred IBDs for datasets simulated under Model C with p ranging from 1 to 20
units of 10~® per site per generation and m = 10, 20 and 160. We also compared the
length distribution of true and inferred IBDs for m = 160 and yu = 1.3 x 1078.

To investigate the effect of including short IBDs, both true and inferred, we also
modified TSABC to include only IBDs with length greater than a threshold of 1, 2 or 4
units of 10* bp. When a threshold was applied, we included all IBDs satisfying the
threshold, rather than using only the efficient subset of IBDs.

We next investigated TSABC estimation of p under Model C and Model Gb with
¢=107. The N(g) values and € = 0 were assumed known for the inference and we
adopted a Uniform(10~8, 2 x 1078) prior distribution for x. For the Model C
simulations with m = 10, we also applied TSABC after thresholding on IBD length and
repeated using true IBD extracted from the msprime simulations.

To study TSABC estimation of the population size N(g), we used m = 200 and
¢ =105 under each of Model C and Model Gb. For both data simulation models, the
TSABC inference used Model G but with different prior distributions. When the
simulation model was Model C, we fitted Model G with independent prior distributions
Uniform(10%, 3 x 10%) for N(0) and Uniform(—2 x 1075, 2 x 107°) for 7. Whenever
T < 0, we impose a population size limit N(g) < 2 x N(0). With simulation model
Model Gb, the independent prior distributions were Uniform(10°, 3 x 10°) for N(0),
and Uniform(0, 0.002) for 7. All parameters were treated as known except the targets of
inference N(0) and 7.

We performed additional simulations to allow comparison with the inferences of
reported by [18]. Data were simulated under Model EA, which aims to capture key
features of the demographic history of European-Americans (Table 1), and Model C
modified to include sequencing errors. The Model C simulations of [18] used ¢ = 10~*

but no gene conversion, while for Model EA they set € = 0 and included gene conversion.

We include both sequencing error and gene conversion in both Model C and Model EA
simulations. We used a 400-fold smaller sample size than [18] (m = 10 versus

m =4 x 10®) and 10-fold smaller genome length (¢ = 10" per chromosome, versus

¢ =10%).

We did not include gene conversion in the TSABC inference, thus challenging it with
model misspecification. As a further challenge, we treated N(g) as unknown when
inferring u, and misspecified the model for N(g) in the TSABC simulations.

When the data were simulated under Model C, TSABC used independent prior

distributions Uniform(1078, 2 x 1078) for x and Uniform(0.6 x 107%, 1.6 x 10~%) for .

For N(g), we adopted Model G with independent priors N(0) ~ Uniform(14 000, 30 000)
and 7 ~ Uniform(—2 x 107°, 1079).

When the data were simulated under Model EA, TSABC used a Uniform(10~8,
2 x 1078) prior distribution for p. For inference of N(g), we adopted Model S with
independent prior distributions N(0) ~ Uniform(11 000, 15000), G ~ Uniform(4500,
6500) and N(G) ~ Uniform(45 000, 49 000).
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Mutation and growth rates in the 1000 Genome Project

We analyse chromosomes 20 and 21 from 8 of the 26 human populations of the 1000
Genomes Project (1IKGP) [25] making use of the demographic model of [26] which we
refer to as the 1IKGP model. See Figure S2 for plots of the 1IKGP model and Appendix
S3 for details of the data analysis. Separately for each chromosome, we use TSABC to
infer 1 assuming the prior Uniform(1078, 2 x 107%) and the 1IKGP model. The 16 sets
of 125 accepted values were analysed in a two-way ANOVA to assess differences in
across chromosomes and over populations.

Next, we use chromosome 20 and 21 data to estimate population size N(g) assuming
the 1KGP model for g > 1000 and fitting demographic Model G for 0 < g < 1000,
constrained such that N(1000) in Model G matches the IKGP model value. The
constrained Model G has one free parameter N(0), for which we adopt a
Uniform(10000, 240000) prior distribution. To reduce computational effort with little
loss of information, in both the observed dataset and TSABC simulations we removed
SNPs with a minor allele count > 40, which typically arose at g > 1000. We estimate
N(g) from each chromosome separately and average the results.

Results

Simulation study results: true IBD available

While use of the efficient subset of IBDs reduces computational cost in proportion to
the reduction in sequence pairs from m(m—1)/2 to m, the average estimated SD of ji in
our simulation study increased only slightly, from 0.017 to 0.019 units of 1078 (see also
Figure S3, left panel). This gain in computation time is typically worth the small loss of
statistical efficiency.

Both /i and € are well estimated in all demographic models, with no indication of bias
(Figure 2). Increasing m has only a modest effect on the SD of estimators, whereas £ has
a larger effect (SD scales with v/¢, Figures 2, S3 (right) and S4). Sequencing errors only

inflate the number of singleton variants, so fi is little affected by increasing e (Figure 2).

Although individual §; are not precise, the empirical and theoretical densities
obtained from all g;, i =1...,1, are close (Figure 3) despite the TS used for input only
including information about the order of the coalescent events, and not their times. The
population size estimator N (g) is accurate under all models, at least for g < 5 x 10°
(Figure 4). Figures S3 (right) and S4 show more precise estimates of i and N(g), with a
longer sequence length.

Simulation study results: inferred IBD

The number of inferred IBDs tends to increase with both p and m, but except for very
high 4 (over 10 times the average human value when m = 160) it remains well below
the true number of IBDs (Figure 5, left). Correspondingly, the length distribution of
inferred IBDs is highly skewed towards larger values relative to the true distribution
(Figure 5, right), as previously reported [27,28]. Despite this poor detection of small
IBDs, and consequent tendency for inferred IBDs to be longer than the true IBDs,
Table 2 shows that each increase in the length threshold reduced the precision of
inference, both for inferred and true IBD, so that even poorly-inferred short IBDs do
contribute useful information for inference. We also see in Table 2 (final column) further
evidence that use of the efficient subset of IBDs leads to only a small loss of statistical
efficiency. As expected, the use of true IBD improves TSABC compared with using
inferred IBD, but the magnitude of the improvement is modest in the case of standard
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Fig 2. Inference of mutation rate u and sequencing error rate € with two sequence
lengths (columns), when true IBD was available for inference. Line segments show
indicative 95% ClIs computed from the average estimate (indicated by a symbol, see
legend box) and the empirical SD of the estimates from 25 simulated datasets in each
scenario. Bottom left panel shows the impact of € on i when m = 10, in the other three
panels € = 1074,

TSABC (threshold = 0). For higher thresholds, bias can be high due to low precision of
inference and the prior boundary at 1078.

Although TSABC can provide approximations to the full posterior distribution, we
report here only posterior mean estimates of unknown parameters. For inference of p, it
appears that any bias of TSABC is small for both models (Figure 6). Some
under-estimation is expected because the binarisation of the sequence data obscures
instances of multiple mutations at the same site, but this effect is negligible.

Parametric estimation of N(g) also performs well (Figure 7). When the data
simulation model was Model C, the average estimate of N(0) (true value 20 000) over
the 25 replicates is 20931 with standard error (SE) 1428/+/25 = 286, while for the
growth rate 7 (true value 0) the average estimate 4+ SE is 2.10 + 1.8/4/25 = 0.36 (in
units of 107%). When the data simulation model was Model Gb, for N(0) (true value
200000) we obtained 202534 4 2173 while for 7 (true value 1) we obtained 1.08 £ 0.07
(in units of 1073).

Table 3 shows that TSABC performs similarly to the results reported by [18] despite
a 4 000-fold reduction in data used for inference, and despite the challenges we imposed
on TSABC: gene conversion was incorporated in data simulation models but not the
ABC inference simulations, and the latter also used a misspecified demographic model.
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5 Time to MRCA of Model C 5 des Time to MRCA of Model Ga
—-— True density —-— True density
—— Estimated density —— Estimated density

I Histogram of the estimates I Histogram of the estimates

0 20000 40000 60000 80000 100000 00 20000 40000 60000 80000 100000
time to MRCA (generations) time to MRCA (generations)
Fig 3. Histogram of the g;, i = 1,...,1, obtained from one sample simulated under

each of Model C (left) and Model Ga (right), with sample size m = 80, sequence length
¢ = 10® and sequencing error rate e = 1073. Also shown is a probability density
obtained by kernel smoothing of the g; together with the true density. True IBD was
available for inference but no time information.

Estimates of Model C - Estimates of Model 2 Estimates of Model 3

—= True 1.0 —= True —= True

15000

population
population size

10000

02
5000

0 — — 0.0+ , : . ; - 0 — —
010000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 0 1000020000300004000050000600007000080000
time (generations) time (generations) time (generations)

Fig 4. Estimates of the population size N(g), g > 0, from each of 25 simulation
replicates under Model C, Model Ga and Model S, when true IBD was available for
inference. Sequence length is ¢ = 108, sequencing error rate is e = 10~3 and sample size
is m = 80.

1000 Genomes data analysis

The global mean /i over the two chromosomes and eight populations is 1.27 x 1078
(Table 4), similar to previous estimates assuming p to be constant over

populations [26,29,30], and also those finding small between-family differences in

w [31,32]. A two-way ANOVA revealed no significant difference between the two
chromosomes, but highly significant differences across populations, which may be due to
differences in heritable factors or environmental exposures.

Figure 8 shows positive growth in the past 1000 generations for all eight populations.
CHB and BEB (both in Asia) have the highest N(0) while MSL and LWK (both in
Africa) have the lowest N(0) despite having the highest values of N(1000). These
findings are consistent with the results of [26] for 400 < g < 1000, and the recent
growth estimates obtained using Relate [11, Figure 3].

Discussion

We have shown that ARG-derived IBD combined with ABC can deliver big advantages
over previous IBD-based methods for inferring evolutionary and demographic
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Fig 5. Comparison of true and inferred IBDs. Left: each symbol and vertical line
segment shows the mean and 95% CI of the mean ratio of IBD counts over 25 Model C
simulations with sample sizes m = 10, 20 and 160. Right: histograms of true and
inferred IBD length distributions for a Model C simulated dataset with m = 160 and

sequence length ¢ = 106.
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Fig 7. Fitted exponential curves for the population size N(g) obtained using TSABC.
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Model Gb (right) with no sequencing error (e = 0), sample size m = 200 and sequence

length ¢ = 10°.
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Threshold (10°bp) [ 4 | 2 [ 1 0
inferred IBD

# IBD 1001 | 7033 | 24683 | 48289 (10667)
i (1078) 1.51 | 144 | 1.32 1.30 (1.31)
SD (1079) 0.219 | 0.167 | 0.067 0.041 (0.043)

true IBD

# IBD 478 | 1803 | 6940 | 121027 (26394)
i (1078) 1.33 | 1.30 | 1.31 1.30 (1.29)
SD (107%) 0.141 | 0.089 | 0.064 0.029 (0.034)

Table 2. Comparison of TSABC inference for u using different IBD length thresholds.
Each result is an average over 25 Model C simulation replicates with m = 10 and € = 0.

In the last column, values based only on IBDs in the efficient subset are given in ().

Model C Model EA
1] SD i SD m 14

[18] 1.30 0.020 | 1.34 0.007 | 4000 | 108
TSABC | 1.30 0.017 | 1.28 0.007 10 107
Table 3. Comparison of TSABC inference of i (in units of 1078) with results reported
in [18]. TSABC results are obtained from 25 simulated datasets under each model.

parameters from a sample of genome-wide sequences, including nonparametric
estimation of past population sizes. Despite verifying that IBD extracted from an
inferred TS is often inaccurate, we have shown that it provides powerful inferences for
the mutation rate and historic population sizes. For example, we obtained similar
estimation results to a previous study that used 4 000 times more data for inference.
These advantages arise because we can define IBD in terms of a common MRCA,
avoiding both the problem of detecting recombinations and the need for a minimum IBD
length. Further, we require only IBDs from m sequence pairs, rather than all m(m—1)/2
pairs, which reduces computational effort with little loss of statistical efficiency.

We illustrated our TSABC approach in simple scenarios, finding that it suffers only
modest loss of efficiency relative to using true IBD. Importantly, removing IBDs with
length below even a low threshold reduces the precision of inferences despite the poor
quality of ARG-based IBD inferences.

TSABC can be computationally demanding for complex demographic models, and

231

232

233

234

235

236

237

238

239

240

241

242

243

244

MSL | LWK | BEB | ITU | FIN | GBR | JPT | CHB

\ Sample size: | 170 198 172 204 198 182 208 206

Chr 20 i 1.27 1.24 1.23 1.22 1.32 1.36 1.32 1.20
SE 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.011 | 0.004 | 0.004

Chr 21 i 1.25 1.26 1.21 1.29 1.29 1.35 1.33 1.24
SE 0.004 | 0.005 | 0.006 | 0.005 | 0.006 | 0.006 | 0.006 | 0.006

Combined i 1.26 1.25 1.22 1.25 1.31 1.36 1.33 1.22
SE 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 0.006 | 0.004 | 0.004

Table 4. Estimates of the posterior mean and SE of the mutation rate per site per
generation (in units of 10~%) on human chromosome 20 and 21 for populations MSL
(Mende in Sierra Leone), LWK (Luhya in Webuye, Kenya), BEB (Bengali from
Bangladesh), ITU (Indian Telugu from the UK), FIN (Finnish in Finland), GBR
(British in England and Scotland), JPT (Japanese in Tokyo, Japan), and CHB (Han
Chinese in Beijing, China). The TSABC analysis assumes the 1IKGP demographic
model in each population.
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generations ago
Fig 8. Estimates of recent population sizes for eight populations sampled in the 1000
Genomes Project (curves are shown in order of decreasing N(0)). See Table 4 caption
for explanation of the population labels.

the results presented here are limited to inferring the mutation rate and two parameters
of a demographic model. However, we were able to incorporate unknown nuisance
parameters such as the sequence error rate and misspecification of the demographic

model to challenge TSABC inference without substantial detriment to inference quality.

Our results open the way for more powerful demographic and evolutionary inferences
from samples of genome sequences than have previously been available.

Data availability

Data and code used here are available at:
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github.com/ZhendongHuang/Estimating_evolutionary_and_demographic_parameters_Huangsss
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Supporting Information

S1 Appendix: The efficient IBD subsets and TSABC algorithms

Algorithm 1 searches the IBDs in the order of their children. For instance, the
algorithm first starts to search all IBDs corresponding to the sequence pair (1,2) along
the whole sequence, from left to right. Then it searches the IBDs for (2,3) and so on
until the final sequence pair (m, 1).

Algorithm 2 adopts a standard ABC approach, the innovation here is in the choice of
summary statistics which are derived from an inferred T'S.

S2 Appendix: Derivation of Estimators when TS is known
S2.1 Mutation and sequencing error rates

The right endpoint r; of an IBD segment is usually the site of an effective recombination
event for (c1,cq), where “effective” means that ¢; and ¢y have a different MRCA on
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Algorithm 1 The efficient IBD subsets algorithm

1: Initialize ¢ = 0. Let p; = ¢ and pa = c+1 be the current children and parents of the
edge chains. Let I; = 0 and r; = £ be the current potential left and right end point
of the IBD. Let p = min(py, p2). Let S = () be a set storing candidate IBDs.

2: Search edges in TS. Let ce, pe, I and r. be the child, parent, left and right end
points of an edge, respectively. If ¢, = p and . < l; < r., update r; = min(re, r¢).
Go to Step 3.

3: If pe # max(p1,p2), go to Step 4. Else, we find a candidate IBD segment and add
it to the set S. Update l; = ry and r, = £. If [, # ¢, update p; = ¢, p2 = c¢+1 and
p = min(pl, p2). Go to Step 2. Else, go to step 5

4: If p1 < pa, update p; = pe. Else, update ps = p.. Let p = min(p1,p2). Go to Step 2.

5: Combine neighboring candidate IBDs in S with the same parent. Update ¢ = c+1,
p1 = c and ps = c+1. If ¢ < m, go to Step 2. Else, stop.

Algorithm 2 TSABC algorithm for parameter 6

1: Initialization. Set the number of simulation replicates 7, and a prior distribution for
0 with density fy. Choose summary statistics and write sg for their value computed
from the observed data. Set a tolerance level £ > 0.

2: For =1,...,n, generate 6; from fy. Simulate a sample of m genomes with 6 = 6; and
length ¢, infer the TS from the simulated genomes and then compute the summary
statistics s;. Apply the linear adjustment to 6; [33] by letting 6 = 6; — (si—so)’ﬁ,
where (&, @A’/)' = argmin,, g S {0 — a— (si—s0) B}

3: Accept 0F if d(s;—s¢) < &, where d(-) is the estimated Mahalanobis distance.

4: The accepted values of 8* can be regarded as a sample from the posterior distribution.

We use the sample mean as an estimator of the posterior mean.

either side. The exceptions are IBDs terminating at the sequence end site ¢, which are
excluded from the derivations below but, as they are rare, there is little impact if they
are included in practice. For the derivation of our estimators, we also assume that at
most one mutation occurs at each site since the MRCA of the sequences at that site.
The effect of this assumption is minor when the mutation rates is low, which is the case
for humans and many other organisms. We further assume that sequencing errors occur
independently at rate € at each site, and do not occur at sites with mutations.

Suppose that a recombination occurs at site s of sequence c¢; creating two
subsequences going backward in time, in the intervals [1, s] and [s+1, ¢]. This
recombination is effective for (cq, c2) if and only if one of these subsequences coalesces
(reaches a common ancestor) with co before coalescing with the other subsequence. By
symmetry, all three possible coalescence events are equally likely, and so the
recombination has probability 2/3 of being effective. Mutation and effective
recombinations occur independently at each site of ¢; and ¢o. Given that one of these
events occurs at a site before the two sequences reach their MRCA, with probability
(2r/3)/(pu+2r/3) it is an effective recombination. Thus the expected number of
mutations that occur in the segment before it is terminated by an effective
recombination is one less than the mean of a geometric distribution with parameter
(2r/3)/(u+2r/3), which is 3u/2r. Site differences in IBDs can also arise from
sequencing errors, which occur with rate 2¢ per site.

Let L = Zfil(ri—li)/l and M = 25:1 |M;|/I denote the averages of the IBD
segment length and the number of sites that differ in an IBD segment, respectively. Our
first estimating equation is

B
M = or + 2Le. (1)
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which can be read intuitively as site differences = mutations + sequencing errors. Our
second estimating equation has a similar interpretation, but is based on site differences
on each sequence relative to both its neighbours in the efficient subset, rather than
between pairs of sequences:

<x:@%+mm (2)

where we define

I ¢
= g Z Z {H(S S MlﬁM]) X H(Cig = le) X H(pz 7& pj)} (3)

i,j=1s=1
i<j
I ¢
9
ZE g g Icio = cj1=cpra=cjn) xUs=r;=r; =1y =1j)x
i,j=1 /j/ s=1
1<J <J

I(p; # pj Upir # pj/)} (4)

These quantities estimate, respectively, the total number of sequencing errors and
mutations (C4) and the number of recombinations (C2) on the branch immediately
above sequence ¢, before the first coalescence between any of {¢—1, ¢, c+1}. See below
for further explanation. Among all of the target recombinations, only 4/9 of them can
be unambiguously determined from the data, so we scale this count by 9/4 in (4). The
factor fi/r in (2) converts the estimated number of recombinations to an estimated
number of mutations. The final term in (2) is the expected total number of sequencing
errors among the m sequences, each of length /.

Combining (1) and (2), we obtain

2mﬁﬂ—4i0”) G_SCI—ZGﬂZ 5)
3ml —4LCy 3ml—4LCy

u:

S2.2 Time since MRCA of IBDs

Given g;, the coalescence time of ¢;; and ¢;2, the probability of a recombination event
being effective (and thus being the right end point of the IBD) is no longer 2/3, but a
function of g;. For example, if a recombination event occurs more recently than the
coalescence, when g; is small there is little opportunity for the two subsequences created
by the recombination to find a common ancestor before g;, which implies a high
probability for this recombination event to be effective. For this reason, it is difficult to
estimate g; based on the distribution of the recombination events or IBD lengths.

Note that | M;| follows a Poisson distribution with parameter 2(ug; + €)(r; — ;).
Given fi, €, we find the first moment estimator of g; by solving, for p € P,

I I

Z |M;|I(p; = p) = (21gp + 2€) Z(Tz’ —1;)I(pi = p)

i=1 =1

- 1( iy | Mill(ps = p) _é>_
TR \2X L (=) = p)

Let go = 0, and noting that g,_1 < g, for p = m+2,...,n, we estimate g, by the
following quadratic optimization with linear constraints,

to obtain

gp = argmin”gp - gp”%
9p

subject to g, — g, >0, for p’ >pand p',pe€ P.
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By the nature of constrained optimization, many parent nodes will be inferred to share
the same age, which is unrealistic. Numerical studies show that it will be helpful to
smooth these estimates when they are used later in estimating the population size. For
this reason, the final estimate g, of g, is acquired by further smoothing §, by a
Savitzky-Golay smoothing filter [34].

S2.3 Present and past population sizes

We estimate population sizes by first estimating the density fz of G, the TMRCA at a
specific site s. We estimate fz by relating it to the density fo of G, the TMRCA of an
IBD segment. We first estimate fg empirically from the estimated TMRCAs of each
IBD segment, as calculated in Section $2.2. Then the density of G is derived by
conditioning on L, the length of the IBD segment. Intuitively, the larger L is, the more
sites are covered by the IBD. Hence

_ i U@L Pr(L=1) 30 IPHL =G =9g)fc(9) _ E(L|G = g)

The mean IBD length E(L) can be estimated as L, and the conditional mean E(L|G)
can be found by a local linear kernel regression estimator given each pair (gp,,r;—!l;) of
IBD;, where g, is the estimated TMRCA in Section S2.2. Thus, the estimate fé of fa
can be found by substituting the corresponding estimates of fg, E(L|G) and E(L). We
then smooth the estimate fé by a Savitzky—Golay filter.

To estimate population sizes, note that the distribution of G is solely determined by
the coalescent rate 1/N(g), i.e.,

Pr(G > g) = exp{—/og Nl(t)dt}'

Taking the log-derivative with respect to g on both sides, we have

1—Fa(9)
N(g) = ——& 22,
(9) fa(9)
We thus calculate the estimate
- I faat
N(g) = 2o 167
) falg)

followed by another Savitzky—Golay smoothing filter.

S2.4 Interpretation of C'; and C,

The quantity C estimates the total number of sequencing errors and mutations on the
branch immediately above (i.e. backwards in time from) a sequence ¢, before the first
coalescence between any of ¢, c—1 and c+1.

In the efficient IBD subset, for each sequence ¢ we record the IBDs of the pairs
(c—1,¢) and (¢,c+1). If IBDs in (c—1,¢) and (¢, c+1) covering a site s have different
parent nodes, then ¢ must coalesce with either ¢c—1 or c+1 at site s more recently than
the coalescence of ¢c—1 with c¢+1. In this case, any site differences contained in both
IBDs can be attributed to an event unambiguously located on the branch immediately
above sequence c¢ before the first coalescence.

We also wish to include site changes above ¢ in the case where c—1 coalesces with
c+1 first, in which site differences cannot be located in this way. By symmetry, this
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case occurs 1/3 of the time, and so we scale the previous count by a factor of 3/2. See
Figure S1 (top left) for illustration. The quantity C4 in (3) thus sums the total number
of sequencing errors and mutations on the branch immediately above each sequence c,
before the first coalescence.

Likewise, the quantity C5 estimates the total number of recombinations on the
branch immediately above each sequence ¢, before the first coalescence between any of ¢,
c—1 and c+1. Recall that p;, I; and r; are the MRCA and left and right endpoints of
IBD;. Similarly to C7, we only count recombinations that produce four adjacent IBDs
IBD,, IBD,/, IBD; and IBD,, with the first two corresponding to sequence pair (c—1, c)
and the latter two corresponding to (¢, c+1), such that s =r; =l =1r; =rj (ie., the
breakpoint between i and ¢’ is the same as the breakpoint between j and j'), and either
PiFDpj or py#pj, as shown in Figure S1 (top right). We then scale to account for the
remaining cases.

If we have two IBD breakpoints at s, we must have a recombination on the ¢ lineage
since we assume that only one recombination can occur at s. If the MRCAs of these
IBDs also satisfy p;#p; or pi#pj, the recombination must occur before any
coalescence, since:

o if {¢—1,c+1} coalesce before the recombination, we must observe p; = p; and
bir = Ppjr;

e if {¢c—1,c} coalesce before the recombination, there would not be an IBD
breakpoint at s for the (¢—1, ¢) pair;

e likewise for when {c, c+1} coalesce before the recombination.

Thus we do indeed count a subset of the desired recombinations.

When there is a recombination in ¢ before any coalescences, there are 4 lineages
immediately after the recombination (backwards in time), as shown in Figure S1
(bottom). There are three cases:

e If lineages 1 and 2 coalesce first, the recombination is not effective and there are
no IBD breakpoints at s (probability 1/6).

o If lineages 3 and 4 coalesce first, we will have p; = p» and p; = p;» and so not
count the recombination (probability 1/6).

e Otherwise, we may count the recombination (probability 2/3).

As shown in Figure S1 (bottom), suppose (without loss of generality) that for the third
case, lineages 1 and 3 coalesce first. If the coalesced lineage then coalesces with lineage
2, then there will not be an IBD breakpoint at s for (¢, c+1); otherwise the required
pattern will be produced. Thus we only count 2/3 x 2/3 = 4/9 of the cases, and so scale
by a factor of 9/4 to estimate the desired number of recombinations.

S3 Appendix: Further details for 1IKGP data analysis

The chromosome lengths are 59 = 63 025522 and f2; = 48 129 897 sites, of which
1552394 and 927 753 sites are polymorphic in the full dataset. The sequence data were
downloaded as .vcf files from ftp.1000genomes.ebi.ac.uk. Then, we converted them to
the .samples format required for input to tsinfer and adopted human reference assembly
GRCh37 recombination map following the data pre-processing steps in [35]. Specifically,
we first cloned the Github repository from github.com/awohns/unified_genealogy_paper
and installed all of the necessary software, packages and modules listed in the
“requirements.txt” file and the “tools” sub-folder. Then we redirected to the “all-data”
sub-folder and conducted the “Makefile” document to build the tree sequence for 1000
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IBD; | IBD;

[ 1
//4¥/W\ IBD; | IBDy

C
c-1 ¢ c¢ctl c¢-1 ¢ ct+tlic-1 ¢ c+1 '

c-1 c ctl c-1 c ctl c-1 c c+1

Fig S1. Top left: the three possible coalescent patterns of sequences ¢, c—1 and c+1 at
a site s. While mutation events on the thicker edges should be included in the quantity
C1, only those in the first two patterns are counted. Top right: a sketch of four IBDs
corresponding to sequence pairs (¢c—1,¢) and (¢, c+1). Bottom: a recombination event
occurred on sequence ¢, which breaks the sequence before any coalescence between c—1,
¢ and c+1, immediately resulting in a total of four segments (1,2, 3,4). The figure
shows three of the possible coalescent patterns, corresponding to the cases where
segments 1 and 3 coalesce first.

Genomes chromosome 20, during which the program downloaded the chromosome 20
variant data and produced a .samples file (tsinfer input format) converted from a .vcf
file. Then IBDs were extracted from the inferred TS, and TSABC was employed, as
described in Section . A similar process is repeated for chromosome 21.

S4 Supplementary Figures
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Fig S2. The 1IKGP N(g) models [26]. Natural logarithms of g are shown on the z-axis,
with the models starting at g = exp(6) ~ 400 generations in the past. The values of
N (1000) which form the right endpoints of Figure 8 correspond to z = log(1000) ~ 6.9.
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Fig S3. Left: Estimated 95% CIs for the estimation of y when an efficient subset of
IBD segments were extracted from the TS and when all IBDs were used. At each
sample size, 25 replicate datasets were simulated under Model C, with sequence length
¢ =107. Right: Impact of sequencing error rate ¢ on i under Model C, Model Ga and
Model S, from 25 replicates with sample size m = 10 and sequence length ¢ = 108.
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Fig S4. Estimates of the population size N(g) under Model C, Model Ga and Model S,
from 25 simulations at each setting. Sequence length ¢ = 107, sequencing error rate
e = 1073, sample size m = 80.
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