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Abstract

Inference of demographic and evolutionary parameters from a sample of genome
sequences often proceeds by first inferring identical-by-descent (IBD) genome segments.
By exploiting efficient data encoding based on the ancestral recombination graph
(ARG), we obtain three major advantages over current approaches: (i) no need to
impose a length threshold on IBD segments, (ii) IBD can be defined without the
hard-to-verify requirement of no recombination, and (iii) computation time can be
reduced with little loss of statistical efficiency using only the IBD segments from a set of
sequence pairs that scales linearly with sample size. We first demonstrate powerful
inferences when true IBD information is available from simulated data. For IBD inferred
from real data, we propose an approximate Bayesian computation inference algorithm
and use it to show that poorly-inferred short IBD segments can improve estimation
precision. We show estimation precision similar to a previously-published estimator
despite a 4 000-fold reduction in data used for inference. Computational cost limits
model complexity in our approach, but we are able to incorporate unknown nuisance
parameters and model misspecification, still finding improved parameter inference.

Author summary

Samples of genome sequences can be informative about the history of the population
from which they were drawn, and about mutation and other processes that led to the
observed sequences. However, obtaining reliable inferences is challenging, because of the
complexity of the underlying processes and the large amounts of sequence data that are
often now available. A common approach to simplifying the data is to use only genome
segments that are very similar between two sequences, called identical-by-descent (IBD).
The longer the IBD segment the more informative about recent shared ancestry, and
current approaches restrict attention to IBD segments above a length threshold. We
instead are able to use IBD segments of any length, allowing us to extract much more
information from the sequence data. To reduce the computation burden we identify
subsets of the available sequence pairs that lead to little information loss. Our approach
exploits recent advances in inferring aspects of the ancestral recombination graph
(ARG) underlying the sample of sequences. Computational cost still limits the size and
complexity of problems our method can handle, but where feasible we obtain dramatic
improvements in the power of inferences.

March 13, 2024 1/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.07.583855doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.583855
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 1

A common data-reduction technique when analysing samples of genome sequences is to 2

identify identical-by-descent (IBD) genome segments [1–5]. In practice IBD is often 3

identified by searching for regions with no evidence for recombination along two 4

sequences since their most recent common ancestor (MRCA). Further, only IBD 5

segments (IBDs) above a given length threshold, often 2 to 4 cM, are retained. This 6

practice wastes valuable information, but has been necessary because the inference of 7

short IBDs is too noisy to be useful for downstream analyses. 8

The ancestral recombination graph (ARG) is widely used to represent the 9

genealogical history of a sample [6–8] and recent developments in inferring aspects of 10

the ARG [9–13] now permit us to rapidly extract IBD directly from inferred shared 11

ancestors, without requiring zero recombination. Further, computationally fast ARG 12

inference and extraction of IBD can be implemented within an approximate Bayesian 13

computation (ABC) algorithm which removes the need for an information-wasteful 14

length threshold. Instead, we reduce computational cost by using an efficient subset of 15

IBDs that scales linearly with sample size with little information loss relative to using 16

all IBDs. 17

Our approach relies on an efficient data structure encoding features of an ARG 18

underlying a sample of genome sequences, called the succinct tree sequence (TS) [14]. 19

The TS minimises redundant storage of subsequences that are similar due to shared 20

ancestry. It has led to spectacular improvements in storage and simulation of large 21

genome datasets [15], and has recently been applied to IBD-based inferences about 22

demographic history and evolutionary parameters [16]. 23

We first demonstrate powerful inferences of mutation and sequencing error rates, 24

TMRCA (time since the MRCA), and past and present population sizes, given true IBD 25

information in simulation studies. For real datasets, we propose TSABC: ABC with 26

statistics computed from IBDs extracted from an inferred TS. We demonstrate the 27

performance of TSABC with inferences of the mutation rate and population size in 28

simulation studies and real data, and we compare mutation rate estimates with 29

previously-published results and with analyses using a range of IBD length thresholds. 30

We find that using IBDs extracted from an inferred ARG leads to a surprisingly 31

small loss of precision relative to use of true IBDs. Further, even a low threshold on 32

IBD length reduces the quality of inferences, despite the fact that short IBDs are poorly 33

inferred. TSABC is computationally demanding, which limits the size and complexity of 34

inference problems that can be tackled. However, TSABC can achieve comparable 35

results to previous estimators using much smaller data sets: we show similar precision 36

to a previously-published estimator despite a 4 000 fold reduction in data available for 37

inference. 38

Methods 39

Definition and notations 40

The TS encodes genome sequence data efficiently by storing subsequences that are 41

similar due to shared ancestry as variations of an ancestral sequence. It is defined [17] 42

as {C, P, E,M}, where C = {1, . . . ,m} is the set of leaf (or tip) nodes corresponding to 43

m observed sequences each of length ℓ, and P = {m+1, . . . , n} is the set of internal 44

(ancestral) nodes of the TS ordered backwards in time from the present. An edge in 45

E = {(ci, pi, li, ri) : i = 1, 2, . . . , I} represents inheritance of sites in the segment [li, ri], 46

with 1 ≤ li ≤ ri ≤ ℓ, from internal node pi ∈ P to its child ci ∈ {1, . . . , pi−1}, while 47

M = {(cj , sj) : j = 1, 2, . . .} stores the set of sites sj at which there is a sequence 48
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Fig 1. An ancestral recombination graph (ARG) spanning a genome sequence of length
ℓ = 100 (left), the corresponding sequence of local trees (middle) and efficient IBD
subset (right). The ARG has leaf nodes {1, 2, 3, 4} = C, named ancestral nodes
{5, 6, 7, 8} = P , and a recombination at site 42 of an internal ancestral node (red dot).
The two dashed lines in the ARG represent inheritance paths due to two ineffective
recombination events, which are not represented in the TS. The efficient IBD subset
includes two IBD segments for the node pair (1, 2), corresponding to intervals [1, 42] and
[43, 100] which have MRCA 6 and 8, respectively, and one IBD segment spanning the
whole sequence for pairs (3, 4) and (4, 1).

difference between cj and its parent, due either to a mutation or, if cj is a leaf node, 49

sequencing error. The TS has the “succinct” property that any tree component 50

conserved over a genome segment is stored only once, which greatly reduces data 51

storage requirements compared with retaining all distinct marginal trees. 52

Identity by descent and efficient subsets 53

We denote the ith IBD segment in the TS by IBDi = (ci1, ci2, li, ri, pi,Mi), i = 1, . . . , I, 54

ordered such that ci1 is non-decreasing in i. Here ci1 and ci2 are the leaf nodes of the 55

two sequences, [li, ri] is the IBD genome segment, pi is the MRCA node of ci1 and ci2 56

for this segment, and Mi denotes the set of sites in [li, ri] at which ci1 and ci2 differ. As 57

there is no length threshold, the IBDs of any sequence pair partition the genome: every 58

sequence site is included in exactly one of the IBD segments. 59

Each IBDi has the same MRCA at each site in [li, ri], and a different MRCA at 60

adjacent sites. Imposing a no-recombination requirement as part of the definition of 61

IBD would be more restrictive, since the absence of recombination implies a common 62

MRCA but the reverse does not hold (see Figure 1, left, for examples of recombinations 63

that do not change the MRCA). 64

To reduce computational effort, we use for inference only an “efficient” subset of 65

IBDs. After fixing an arbitrary order for the sequences, we include in the subset only 66

the IBDs of the sequence pairs (1,m) and (c, c+1) for c = 1, . . . ,m−1 (see Figure 1, 67

right, and Appendix S1). An efficient subset has the property that each edge of the TS 68

is included in a descent path from the MRCA for at least one IBD segment in the 69

subset, which ensures that information is retained in the subset about every mutation. 70

Imposing a length threshold on IBDs is also a form of data reduction but we show 71

below that it can lead to high information loss, because mutations are ignored if they 72

occur at sites not contained in a sufficiently long IBD segment. 73
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Estimation 74

Let µ and ϵ be the per-site per-generation mutation rate and the per site sequencing 75

error rate, both assumed constant over sites. For i = 1, . . . , I, let gi denote the age of pi 76

in generations, and let N(g), g = 0, 1, 2, . . ., be the population size g generations in the 77

past. In Appendix S2 we derive method-of-moment estimators for µ and ϵ, and 78

non-parametric estimators of gi, i = 1, . . . , I, and N(g), g = 0, 1, 2, . . ., based on 79

statistics computed from IBD lengths. We investigate the performance of these 80

estimators when true IBD information is available in simulation studies. The 81

recombination rate r is assumed constant over sites and known for all inferences; the 82

extension to a known recombination map is straightforward (a recombination at site s 83

means between sites s and s+ 1). 84

For observed sequence data, true IBD information is not available and we extract 85

IBDs from an inferred TS. TSABC uses summary statistics derived from these IBDs 86

and related to the method-of-moments estimators. For inference of µ and ϵ, we use the 87

statistics M̄ × I and C1 (Appendix S2.1) which are linear transformations of the 88

method-of-moments estimators µ̂ and ϵ̂. Nonparametric estimation of N(g) is not 89

feasible, but we can estimate the parameters of a demographic model, which allows 90

powerful inference provided that the model is adequate. We use as statistics the mean 91

and standard deviation (SD) of IBD lengths ri − li, i = 1, . . . , I. 92

Simulation study design: true IBD available 93

Evolutionary parameters and sample properties
Symbol Definition Value(s) in simulations

µ mutation rate 1.3× 10−8 per site per generation
ϵ sequencing error rate up to 10−3 per site
r recombination rate 10−8 per site per generation
m sample size 10, 20, 40, 60, 80, 100, 160 or 200 sequences
ℓ sequence length 106, 107 or 108 sites

Demographic models (N(g) = population size g generations ago)
Model C N(g) constant N(g) = 2× 104

Model G N(g) = N(0)× e−τg N(0) = 106, τ = 10−4 (Model Ga)
N(0) = 2× 105, τ = 10−3 (Model Gb)

Model S N(g) = N(0) for 0 < g < G N(0) = G = 4× 104

= N(G) for g ≥ G N(G) = 104

Model EA European-American See Figure S2 for N(g) values;
demographic history [18] gene conversion: tract length 100 bp

rate 10−8/site/generation.

Table 1. Parameter values, sample properties and demographic models for the
simulation study. Unless otherwise stated, 25 simulation replicates were generated in
each scenario. Model Ga is used for inferences given true IBD and Model Gb is used for
inferences from inferred IBD. The value of r is assumed known for all inferences,
whereas µ, ϵ and N(g), g ≥ 0, are targets of inference.

We jointly estimated µ, ϵ, gi, i = 1, . . . , I, and N(g), g ≥ 0, using our novel 94

estimators. We used msprime [19] to generate TS under the coalescent with 95

recombination model [20,21], assuming demographic models C, Ga and S (Table 1). 96

From each TS we extracted an efficient subset of IBDs (Algorithm 1). Sequencing error 97

was simulated by adding elements to M at leaf nodes of the generated TS. At the 98

largest error rate (ϵ = 10−3), any singleton variant is a few times more likely to arise 99

from sequencing error rather than a mutation. 100
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Simulation study design: inferred IBD 101

We used msprime to generate simulated sequences, recoded them as binary strings using 102

0 and 1 for the ancestral and derived alleles and added sequencing errors by assigning 1 103

to randomly selected sites at rate ϵ (see [22] for alternative models of sequencing error). 104

We choose tsinfer [10] to infer the TS from the resulting sequence data; speed is critical 105

for an ABC algorithm, and tsinfer is the fastest of the current methods, while retaining 106

high accuracy [13,23]. Unless otherwise stated, in each scenario we used η = 2500 107

simulations with ABC acceptance rate 0.05 (125 acceptances). 108

We first use simulations to confirm previous reports [24] that the quality of IBD 109

inference is often poor, particularly for short IBDs. We compared the number of true 110

and inferred IBDs for datasets simulated under Model C with µ ranging from 1 to 20 111

units of 10−8 per site per generation and m = 10, 20 and 160. We also compared the 112

length distribution of true and inferred IBDs for m = 160 and µ = 1.3× 10−8. 113

To investigate the effect of including short IBDs, both true and inferred, we also 114

modified TSABC to include only IBDs with length greater than a threshold of 1, 2 or 4 115

units of 104 bp. When a threshold was applied, we included all IBDs satisfying the 116

threshold, rather than using only the efficient subset of IBDs. 117

We next investigated TSABC estimation of µ under Model C and Model Gb with 118

ℓ = 107. The N(g) values and ϵ = 0 were assumed known for the inference and we 119

adopted a Uniform(10−8, 2× 10−8) prior distribution for µ. For the Model C 120

simulations with m = 10, we also applied TSABC after thresholding on IBD length and 121

repeated using true IBD extracted from the msprime simulations. 122

To study TSABC estimation of the population size N(g), we used m = 200 and 123

ℓ = 106 under each of Model C and Model Gb. For both data simulation models, the 124

TSABC inference used Model G but with different prior distributions. When the 125

simulation model was Model C, we fitted Model G with independent prior distributions 126

Uniform(104, 3× 104) for N(0) and Uniform(−2× 10−5, 2× 10−5) for τ . Whenever 127

τ < 0, we impose a population size limit N(g) ≤ 2×N(0). With simulation model 128

Model Gb, the independent prior distributions were Uniform(105, 3× 105) for N(0), 129

and Uniform(0, 0.002) for τ . All parameters were treated as known except the targets of 130

inference N(0) and τ . 131

We performed additional simulations to allow comparison with the inferences of µ 132

reported by [18]. Data were simulated under Model EA, which aims to capture key 133

features of the demographic history of European-Americans (Table 1), and Model C 134

modified to include sequencing errors. The Model C simulations of [18] used ϵ = 10−4
135

but no gene conversion, while for Model EA they set ϵ = 0 and included gene conversion. 136

We include both sequencing error and gene conversion in both Model C and Model EA 137

simulations. We used a 400-fold smaller sample size than [18] (m = 10 versus 138

m = 4× 103) and 10-fold smaller genome length (ℓ = 107 per chromosome, versus 139

ℓ = 108). 140

We did not include gene conversion in the TSABC inference, thus challenging it with 141

model misspecification. As a further challenge, we treated N(g) as unknown when 142

inferring µ, and misspecified the model for N(g) in the TSABC simulations. 143

When the data were simulated under Model C, TSABC used independent prior 144

distributions Uniform(10−8, 2× 10−8) for µ and Uniform(0.6× 10−4, 1.6× 10−4) for ϵ. 145

For N(g), we adopted Model G with independent priors N(0) ∼ Uniform(14 000, 30 000) 146

and τ ∼ Uniform(−2× 10−5, 10−5). 147

When the data were simulated under Model EA, TSABC used a Uniform(10−8, 148

2× 10−8) prior distribution for µ. For inference of N(g), we adopted Model S with 149

independent prior distributions N(0) ∼ Uniform(11 000, 15 000), G ∼ Uniform(4500, 150

6500) and N(G) ∼ Uniform(45 000, 49 000). 151
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Mutation and growth rates in the 1000 Genome Project 152

We analyse chromosomes 20 and 21 from 8 of the 26 human populations of the 1000 153

Genomes Project (1KGP) [25] making use of the demographic model of [26] which we 154

refer to as the 1KGP model. See Figure S2 for plots of the 1KGP model and Appendix 155

S3 for details of the data analysis. Separately for each chromosome, we use TSABC to 156

infer µ assuming the prior Uniform(10−8, 2× 10−8) and the 1KGP model. The 16 sets 157

of 125 accepted values were analysed in a two-way ANOVA to assess differences in µ 158

across chromosomes and over populations. 159

Next, we use chromosome 20 and 21 data to estimate population size N(g) assuming 160

the 1KGP model for g ≥ 1000 and fitting demographic Model G for 0 ≤ g ≤ 1 000, 161

constrained such that N(1000) in Model G matches the 1KGP model value. The 162

constrained Model G has one free parameter N(0), for which we adopt a 163

Uniform(10000, 240000) prior distribution. To reduce computational effort with little 164

loss of information, in both the observed dataset and TSABC simulations we removed 165

SNPs with a minor allele count > 40, which typically arose at g ≫ 1 000. We estimate 166

N(g) from each chromosome separately and average the results. 167

Results 168

Simulation study results: true IBD available 169

While use of the efficient subset of IBDs reduces computational cost in proportion to 170

the reduction in sequence pairs from m(m−1)/2 to m, the average estimated SD of µ̂ in 171

our simulation study increased only slightly, from 0.017 to 0.019 units of 10−8 (see also 172

Figure S3, left panel). This gain in computation time is typically worth the small loss of 173

statistical efficiency. 174

Both µ̂ and ϵ̂ are well estimated in all demographic models, with no indication of bias 175

(Figure 2). Increasing m has only a modest effect on the SD of estimators, whereas ℓ has 176

a larger effect (SD scales with
√
ℓ, Figures 2, S3 (right) and S4). Sequencing errors only 177

inflate the number of singleton variants, so µ̂ is little affected by increasing ϵ (Figure 2). 178

Although individual ĝi are not precise, the empirical and theoretical densities 179

obtained from all ĝi, i = 1 . . . , I, are close (Figure 3) despite the TS used for input only 180

including information about the order of the coalescent events, and not their times. The 181

population size estimator N̂(g) is accurate under all models, at least for g ≤ 5× 105 182

(Figure 4). Figures S3 (right) and S4 show more precise estimates of µ̂ and N(g), with a 183

longer sequence length. 184

Simulation study results: inferred IBD 185

The number of inferred IBDs tends to increase with both µ and m, but except for very 186

high µ (over 10 times the average human value when m = 160) it remains well below 187

the true number of IBDs (Figure 5, left). Correspondingly, the length distribution of 188

inferred IBDs is highly skewed towards larger values relative to the true distribution 189

(Figure 5, right), as previously reported [27,28]. Despite this poor detection of small 190

IBDs, and consequent tendency for inferred IBDs to be longer than the true IBDs, 191

Table 2 shows that each increase in the length threshold reduced the precision of 192

inference, both for inferred and true IBD, so that even poorly-inferred short IBDs do 193

contribute useful information for inference. We also see in Table 2 (final column) further 194

evidence that use of the efficient subset of IBDs leads to only a small loss of statistical 195

efficiency. As expected, the use of true IBD improves TSABC compared with using 196

inferred IBD, but the magnitude of the improvement is modest in the case of standard 197
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Fig 2. Inference of mutation rate µ and sequencing error rate ϵ with two sequence
lengths (columns), when true IBD was available for inference. Line segments show
indicative 95% CIs computed from the average estimate (indicated by a symbol, see
legend box) and the empirical SD of the estimates from 25 simulated datasets in each
scenario. Bottom left panel shows the impact of ϵ on µ̂ when m = 10, in the other three
panels ϵ = 10−4.

TSABC (threshold = 0). For higher thresholds, bias can be high due to low precision of 198

inference and the prior boundary at 10−8. 199

Although TSABC can provide approximations to the full posterior distribution, we 200

report here only posterior mean estimates of unknown parameters. For inference of µ, it 201

appears that any bias of TSABC is small for both models (Figure 6). Some 202

under-estimation is expected because the binarisation of the sequence data obscures 203

instances of multiple mutations at the same site, but this effect is negligible. 204

Parametric estimation of N(g) also performs well (Figure 7). When the data 205

simulation model was Model C, the average estimate of N(0) (true value 20 000) over 206

the 25 replicates is 20 931 with standard error (SE) 1 428/
√
25 = 286, while for the 207

growth rate τ (true value 0) the average estimate ± SE is 2.10± 1.8/
√
25 = 0.36 (in 208

units of 10−6). When the data simulation model was Model Gb, for N(0) (true value 209

200 000) we obtained 202 534± 2 173 while for τ (true value 1) we obtained 1.08± 0.07 210

(in units of 10−3). 211

Table 3 shows that TSABC performs similarly to the results reported by [18] despite 212

a 4 000-fold reduction in data used for inference, and despite the challenges we imposed 213

on TSABC: gene conversion was incorporated in data simulation models but not the 214

ABC inference simulations, and the latter also used a misspecified demographic model. 215
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Fig 3. Histogram of the ĝi, i = 1, . . . , I, obtained from one sample simulated under
each of Model C (left) and Model Ga (right), with sample size m = 80, sequence length
ℓ = 108 and sequencing error rate ϵ = 10−3. Also shown is a probability density
obtained by kernel smoothing of the ĝi together with the true density. True IBD was
available for inference but no time information.

Fig 4. Estimates of the population size N(g), g ≥ 0, from each of 25 simulation
replicates under Model C, Model Ga and Model S, when true IBD was available for
inference. Sequence length is ℓ = 108, sequencing error rate is ϵ = 10−3 and sample size
is m = 80.

1000 Genomes data analysis 216

The global mean µ̂ over the two chromosomes and eight populations is 1.27× 10−8
217

(Table 4), similar to previous estimates assuming µ to be constant over 218

populations [26,29,30], and also those finding small between-family differences in 219

µ [31, 32]. A two-way ANOVA revealed no significant difference between the two 220

chromosomes, but highly significant differences across populations, which may be due to 221

differences in heritable factors or environmental exposures. 222

Figure 8 shows positive growth in the past 1 000 generations for all eight populations. 223

CHB and BEB (both in Asia) have the highest N(0) while MSL and LWK (both in 224

Africa) have the lowest N(0) despite having the highest values of N(1000). These 225

findings are consistent with the results of [26] for 400 ≤ g ≤ 1 000, and the recent 226

growth estimates obtained using Relate [11, Figure 3]. 227

Discussion 228

We have shown that ARG-derived IBD combined with ABC can deliver big advantages 229

over previous IBD-based methods for inferring evolutionary and demographic 230
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Fig 5. Comparison of true and inferred IBDs. Left: each symbol and vertical line
segment shows the mean and 95% CI of the mean ratio of IBD counts over 25 Model C
simulations with sample sizes m = 10, 20 and 160. Right: histograms of true and
inferred IBD length distributions for a Model C simulated dataset with m = 160 and
sequence length ℓ = 106.

Fig 6. TSABC estimation of mutation rate µ. Symbols and line segments show mean
and 95% CI over 25 simulations with no sequencing error (ϵ = 0) and sequence length
ℓ = 107.

Fig 7. Fitted exponential curves for the population size N(g) obtained using TSABC.
Each of the 25 curves corresponds to a dataset simulated under Model C (left) and
Model Gb (right) with no sequencing error (ϵ = 0), sample size m = 200 and sequence
length ℓ = 106.
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Threshold (104 bp) 4 2 1 0
inferred IBD

# IBD 1 001 7 033 24 683 48 289 (10 667)
µ̂ (10−8) 1.51 1.44 1.32 1.30 (1.31)
SD (10−8) 0.219 0.167 0.067 0.041 (0.043)

true IBD
# IBD 478 1 803 6 940 121 027 (26 394)
µ̂ (10−8) 1.33 1.30 1.31 1.30 (1.29)
SD (10−8) 0.141 0.089 0.064 0.029 (0.034)

Table 2. Comparison of TSABC inference for µ using different IBD length thresholds.
Each result is an average over 25 Model C simulation replicates with m = 10 and ϵ = 0.
In the last column, values based only on IBDs in the efficient subset are given in ().

Model C Model EA
µ̂ SD µ̂ SD m ℓ

[18] 1.30 0.020 1.34 0.007 4 000 108

TSABC 1.30 0.017 1.28 0.007 10 107

Table 3. Comparison of TSABC inference of µ (in units of 10−8) with results reported
in [18]. TSABC results are obtained from 25 simulated datasets under each model.

parameters from a sample of genome-wide sequences, including nonparametric 231

estimation of past population sizes. Despite verifying that IBD extracted from an 232

inferred TS is often inaccurate, we have shown that it provides powerful inferences for 233

the mutation rate and historic population sizes. For example, we obtained similar 234

estimation results to a previous study that used 4 000 times more data for inference. 235

These advantages arise because we can define IBD in terms of a common MRCA, 236

avoiding both the problem of detecting recombinations and the need for a minimum IBD 237

length. Further, we require only IBDs from m sequence pairs, rather than all m(m−1)/2 238

pairs, which reduces computational effort with little loss of statistical efficiency. 239

We illustrated our TSABC approach in simple scenarios, finding that it suffers only 240

modest loss of efficiency relative to using true IBD. Importantly, removing IBDs with 241

length below even a low threshold reduces the precision of inferences despite the poor 242

quality of ARG-based IBD inferences. 243

TSABC can be computationally demanding for complex demographic models, and 244

MSL LWK BEB ITU FIN GBR JPT CHB
Sample size: 170 198 172 204 198 182 208 206

Chr 20 µ̂ 1.27 1.24 1.23 1.22 1.32 1.36 1.32 1.20
SE 0.004 0.004 0.004 0.004 0.004 0.011 0.004 0.004

Chr 21 µ̂ 1.25 1.26 1.21 1.29 1.29 1.35 1.33 1.24
SE 0.004 0.005 0.006 0.005 0.006 0.006 0.006 0.006

Combined µ̂ 1.26 1.25 1.22 1.25 1.31 1.36 1.33 1.22
SE 0.003 0.003 0.003 0.004 0.004 0.006 0.004 0.004

Table 4. Estimates of the posterior mean and SE of the mutation rate per site per
generation (in units of 10−8) on human chromosome 20 and 21 for populations MSL
(Mende in Sierra Leone), LWK (Luhya in Webuye, Kenya), BEB (Bengali from
Bangladesh), ITU (Indian Telugu from the UK), FIN (Finnish in Finland), GBR
(British in England and Scotland), JPT (Japanese in Tokyo, Japan), and CHB (Han
Chinese in Beijing, China). The TSABC analysis assumes the 1KGP demographic
model in each population.
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Fig 8. Estimates of recent population sizes for eight populations sampled in the 1000
Genomes Project (curves are shown in order of decreasing N(0)). See Table 4 caption
for explanation of the population labels.

the results presented here are limited to inferring the mutation rate and two parameters 245

of a demographic model. However, we were able to incorporate unknown nuisance 246

parameters such as the sequence error rate and misspecification of the demographic 247

model to challenge TSABC inference without substantial detriment to inference quality. 248

Our results open the way for more powerful demographic and evolutionary inferences 249

from samples of genome sequences than have previously been available. 250

Data availability 251

Data and code used here are available at: 252

github.com/ZhendongHuang/Estimating evolutionary and demographic parameters Huang253
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Supporting Information 259

S1 Appendix: The efficient IBD subsets and TSABC algorithms 260

Algorithm 1 searches the IBDs in the order of their children. For instance, the 261

algorithm first starts to search all IBDs corresponding to the sequence pair (1, 2) along 262

the whole sequence, from left to right. Then it searches the IBDs for (2, 3) and so on 263

until the final sequence pair (m, 1). 264

Algorithm 2 adopts a standard ABC approach, the innovation here is in the choice of 265

summary statistics which are derived from an inferred TS. 266

S2 Appendix: Derivation of Estimators when TS is known 267

S2.1 Mutation and sequencing error rates 268

The right endpoint ri of an IBD segment is usually the site of an effective recombination 269

event for (c1, c2), where “effective” means that c1 and c2 have a different MRCA on 270
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Algorithm 1 The efficient IBD subsets algorithm

1: Initialize c = 0. Let p1 = c and p2 = c+1 be the current children and parents of the
edge chains. Let lt = 0 and rt = ℓ be the current potential left and right end point
of the IBD. Let p = min(p1, p2). Let S = ∅ be a set storing candidate IBDs.

2: Search edges in TS. Let ce, pe, le and re be the child, parent, left and right end
points of an edge, respectively. If ce = p and le ≤ lt < re, update rt = min(re, rt).
Go to Step 3.

3: If pe ̸= max(p1, p2), go to Step 4. Else, we find a candidate IBD segment and add
it to the set S. Update lt = rt and rt = ℓ. If lt ̸= ℓ, update p1 = c, p2 = c+1 and
p = min(p1, p2). Go to Step 2. Else, go to step 5

4: If p1 < p2, update p1 = pe. Else, update p2 = pe. Let p = min(p1, p2). Go to Step 2.
5: Combine neighboring candidate IBDs in S with the same parent. Update c = c+1,

p1 = c and p2 = c+1. If c < m, go to Step 2. Else, stop.

Algorithm 2 TSABC algorithm for parameter θ

1: Initialization. Set the number of simulation replicates η, and a prior distribution for
θ with density fθ. Choose summary statistics and write s0 for their value computed
from the observed data. Set a tolerance level ε > 0.

2: For = 1, . . . , η, generate θi from fθ. Simulate a sample of m genomes with θ = θi and
length ℓ, infer the TS from the simulated genomes and then compute the summary
statistics si. Apply the linear adjustment to θi [33] by letting θ∗i = θi − (si−s0)

′β̂,

where (α̂, β̂′)′ = argmin(α,β)
∑η

i=1{θi − α− (si−s0)
′β}2.

3: Accept θ∗i if d(si−s0) < ε, where d(·) is the estimated Mahalanobis distance.
4: The accepted values of θ∗ can be regarded as a sample from the posterior distribution.

We use the sample mean as an estimator of the posterior mean.

either side. The exceptions are IBDs terminating at the sequence end site ℓ, which are 271

excluded from the derivations below but, as they are rare, there is little impact if they 272

are included in practice. For the derivation of our estimators, we also assume that at 273

most one mutation occurs at each site since the MRCA of the sequences at that site. 274

The effect of this assumption is minor when the mutation rates is low, which is the case 275

for humans and many other organisms. We further assume that sequencing errors occur 276

independently at rate ϵ at each site, and do not occur at sites with mutations. 277

Suppose that a recombination occurs at site s of sequence c1 creating two 278

subsequences going backward in time, in the intervals [1, s] and [s+1, ℓ]. This 279

recombination is effective for (c1, c2) if and only if one of these subsequences coalesces 280

(reaches a common ancestor) with c2 before coalescing with the other subsequence. By 281

symmetry, all three possible coalescence events are equally likely, and so the 282

recombination has probability 2/3 of being effective. Mutation and effective 283

recombinations occur independently at each site of c1 and c2. Given that one of these 284

events occurs at a site before the two sequences reach their MRCA, with probability 285

(2r/3)/(µ+2r/3) it is an effective recombination. Thus the expected number of 286

mutations that occur in the segment before it is terminated by an effective 287

recombination is one less than the mean of a geometric distribution with parameter 288

(2r/3)/(µ+2r/3), which is 3µ/2r. Site differences in IBDs can also arise from 289

sequencing errors, which occur with rate 2ϵ per site. 290

Let L̄ =
∑I

i=1(ri−li)/I and M̄ =
∑I

i=1 |Mi|/I denote the averages of the IBD 291

segment length and the number of sites that differ in an IBD segment, respectively. Our 292

first estimating equation is 293

M̄ =
3µ̂

2r
+ 2L̄ϵ̂. (1)
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which can be read intuitively as site differences = mutations + sequencing errors. Our 294

second estimating equation has a similar interpretation, but is based on site differences 295

on each sequence relative to both its neighbours in the efficient subset, rather than 296

between pairs of sequences: 297

C1 = C2
µ̂

r
+mℓϵ̂, (2)

where we define

C1 =
3

2

I∑
i,j=1
i<j

ℓ∑
s=1

{
I(s ∈ Mi∩Mj)× I(ci2 = cj1)× I(pi ̸= pj)

}
(3)

C2 =
9

4

I∑
i,j=1
i<j

I∑
i′,j′=1
i′<j′

ℓ∑
s=1

{
I(ci2 = cj1 = ci′2 = cj′1)× I(s =ri = rj = li′ = lj′)×

I(pi ̸= pj ∪ pi′ ̸= pj′)

}
. (4)

These quantities estimate, respectively, the total number of sequencing errors and 298

mutations (C1) and the number of recombinations (C2) on the branch immediately 299

above sequence c, before the first coalescence between any of {c−1, c, c+1}. See below 300

for further explanation. Among all of the target recombinations, only 4/9 of them can 301

be unambiguously determined from the data, so we scale this count by 9/4 in (4). The 302

factor µ̂/r in (2) converts the estimated number of recombinations to an estimated 303

number of mutations. The final term in (2) is the expected total number of sequencing 304

errors among the m sequences, each of length ℓ. 305

Combining (1) and (2), we obtain 306

µ̂ =
2mℓM̄ − 4L̄C1

3mℓ− 4L̄C2
r, ϵ̂ =

3C1 − 2C2M̄

3mℓ− 4L̄C2
. (5)

S2.2 Time since MRCA of IBDs 307

Given gi, the coalescence time of ci1 and ci2, the probability of a recombination event 308

being effective (and thus being the right end point of the IBD) is no longer 2/3, but a 309

function of gi. For example, if a recombination event occurs more recently than the 310

coalescence, when gi is small there is little opportunity for the two subsequences created 311

by the recombination to find a common ancestor before gi, which implies a high 312

probability for this recombination event to be effective. For this reason, it is difficult to 313

estimate gi based on the distribution of the recombination events or IBD lengths. 314

Note that |Mi| follows a Poisson distribution with parameter 2(µgi + ϵ)(ri − li).
Given µ̂, ϵ̂, we find the first moment estimator of gi by solving, for p ∈ P ,

I∑
i=1

|Mi|I(pi = p) = (2µ̂gp + 2ϵ̂)
I∑

i=1

(ri − li)I(pi = p)

to obtain

g̃p =
1

µ̂

( ∑I
i=1 |Mi|I(pi = p)

2
∑I

i=1(ri−li)I(pi = p)
− ϵ̂

)
.

Let g0 = 0, and noting that gp−1 < gp for p = m+2, . . . , n, we estimate gp by the
following quadratic optimization with linear constraints,

ǧp = argmin
gp

∥gp − g̃p∥22.

subject to gp′ − gp ≥ 0, for p′ > p and p′, p ∈ P .
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By the nature of constrained optimization, many parent nodes will be inferred to share 315

the same age, which is unrealistic. Numerical studies show that it will be helpful to 316

smooth these estimates when they are used later in estimating the population size. For 317

this reason, the final estimate ĝp of gp is acquired by further smoothing ǧp by a 318

Savitzky-Golay smoothing filter [34]. 319

S2.3 Present and past population sizes 320

We estimate population sizes by first estimating the density fG̃ of G̃, the TMRCA at a 321

specific site s. We estimate fG̃ by relating it to the density fG of G, the TMRCA of an 322

IBD segment. We first estimate fG empirically from the estimated TMRCAs of each 323

IBD segment, as calculated in Section S2.2. Then the density of G̃ is derived by 324

conditioning on L, the length of the IBD segment. Intuitively, the larger L is, the more 325

sites are covered by the IBD. Hence 326

fG̃(g) =

∑
l≥1 lfG|L(g|L) Pr(L = l)

E(L)
=

∑
l≥1 lPr(L = l|G = g)fG(g)

E(L)
=

E(L|G = g)

E(L)
fG(g).

The mean IBD length E(L) can be estimated as L̄, and the conditional mean E(L|G) 327

can be found by a local linear kernel regression estimator given each pair (ĝpi
, ri−li) of 328

IBDi, where ĝpi
is the estimated TMRCA in Section S2.2. Thus, the estimate f̂G̃ of fG̃ 329

can be found by substituting the corresponding estimates of fG, E(L|G) and E(L). We 330

then smooth the estimate f̂G̃ by a Savitzky–Golay filter. 331

To estimate population sizes, note that the distribution of G̃ is solely determined by
the coalescent rate 1/N(g), i.e.,

Pr(G̃ > g) = exp

{
−
∫ g

0

1

N(t)
dt

}
.

Taking the log-derivative with respect to g on both sides, we have

N(g) =
1− FG̃(g)

fG̃(g)
.

We thus calculate the estimate 332

N̂(g) =

∫∞
g

f̂G̃(t)dt

f̂G̃(g)
,

followed by another Savitzky–Golay smoothing filter. 333

S2.4 Interpretation of C1 and C2 334

The quantity C1 estimates the total number of sequencing errors and mutations on the 335

branch immediately above (i.e. backwards in time from) a sequence c, before the first 336

coalescence between any of c, c−1 and c+1. 337

In the efficient IBD subset, for each sequence c we record the IBDs of the pairs 338

(c−1, c) and (c, c+1). If IBDs in (c−1, c) and (c, c+1) covering a site s have different 339

parent nodes, then c must coalesce with either c−1 or c+1 at site s more recently than 340

the coalescence of c−1 with c+1. In this case, any site differences contained in both 341

IBDs can be attributed to an event unambiguously located on the branch immediately 342

above sequence c before the first coalescence. 343

We also wish to include site changes above c in the case where c−1 coalesces with 344

c+1 first, in which site differences cannot be located in this way. By symmetry, this 345
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case occurs 1/3 of the time, and so we scale the previous count by a factor of 3/2. See 346

Figure S1 (top left) for illustration. The quantity C1 in (3) thus sums the total number 347

of sequencing errors and mutations on the branch immediately above each sequence c, 348

before the first coalescence. 349

Likewise, the quantity C2 estimates the total number of recombinations on the 350

branch immediately above each sequence c, before the first coalescence between any of c, 351

c−1 and c+1. Recall that pi, li and ri are the MRCA and left and right endpoints of 352

IBDi. Similarly to C1, we only count recombinations that produce four adjacent IBDs 353

IBDi, IBDi′ , IBDj and IBDj′ , with the first two corresponding to sequence pair (c−1, c) 354

and the latter two corresponding to (c, c+1), such that s = ri = li′ = rj = rj′ (i.e., the 355

breakpoint between i and i′ is the same as the breakpoint between j and j′), and either 356

pi ̸=pj or pi′ ̸=pj′ , as shown in Figure S1 (top right). We then scale to account for the 357

remaining cases. 358

If we have two IBD breakpoints at s, we must have a recombination on the c lineage 359

since we assume that only one recombination can occur at s. If the MRCAs of these 360

IBDs also satisfy pi ̸=pj or pi′ ̸=pj′ , the recombination must occur before any 361

coalescence, since: 362

• if {c−1, c+1} coalesce before the recombination, we must observe pi = pj and 363

pi′ = pj′ ; 364

• if {c−1, c} coalesce before the recombination, there would not be an IBD 365

breakpoint at s for the (c−1, c) pair; 366

• likewise for when {c, c+1} coalesce before the recombination. 367

Thus we do indeed count a subset of the desired recombinations. 368

When there is a recombination in c before any coalescences, there are 4 lineages 369

immediately after the recombination (backwards in time), as shown in Figure S1 370

(bottom). There are three cases: 371

• If lineages 1 and 2 coalesce first, the recombination is not effective and there are 372

no IBD breakpoints at s (probability 1/6). 373

• If lineages 3 and 4 coalesce first, we will have pi = pi′ and pj = pj′ and so not 374

count the recombination (probability 1/6). 375

• Otherwise, we may count the recombination (probability 2/3). 376

As shown in Figure S1 (bottom), suppose (without loss of generality) that for the third 377

case, lineages 1 and 3 coalesce first. If the coalesced lineage then coalesces with lineage 378

2, then there will not be an IBD breakpoint at s for (c, c+1); otherwise the required 379

pattern will be produced. Thus we only count 2/3× 2/3 = 4/9 of the cases, and so scale 380

by a factor of 9/4 to estimate the desired number of recombinations. 381

S3 Appendix: Further details for 1KGP data analysis 382

The chromosome lengths are ℓ20 = 63 025 522 and ℓ21 = 48 129 897 sites, of which 383

1 552 394 and 927 753 sites are polymorphic in the full dataset. The sequence data were 384

downloaded as .vcf files from ftp.1000genomes.ebi.ac.uk. Then, we converted them to 385

the .samples format required for input to tsinfer and adopted human reference assembly 386

GRCh37 recombination map following the data pre-processing steps in [35]. Specifically, 387

we first cloned the Github repository from github.com/awohns/unified genealogy paper 388

and installed all of the necessary software, packages and modules listed in the 389

“requirements.txt” file and the “tools” sub-folder. Then we redirected to the “all-data” 390

sub-folder and conducted the “Makefile” document to build the tree sequence for 1000 391
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Fig S1. Top left: the three possible coalescent patterns of sequences c, c−1 and c+1 at
a site s. While mutation events on the thicker edges should be included in the quantity
C1, only those in the first two patterns are counted. Top right: a sketch of four IBDs
corresponding to sequence pairs (c−1, c) and (c, c+1). Bottom: a recombination event
occurred on sequence c, which breaks the sequence before any coalescence between c−1,
c and c+1, immediately resulting in a total of four segments (1, 2, 3, 4). The figure
shows three of the possible coalescent patterns, corresponding to the cases where
segments 1 and 3 coalesce first.

Genomes chromosome 20, during which the program downloaded the chromosome 20 392

variant data and produced a .samples file (tsinfer input format) converted from a .vcf 393

file. Then IBDs were extracted from the inferred TS, and TSABC was employed, as 394

described in Section . A similar process is repeated for chromosome 21. 395

S4 Supplementary Figures 396
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Fig S2. The 1KGP N(g) models [26]. Natural logarithms of g are shown on the x-axis,
with the models starting at g = exp(6) ≈ 400 generations in the past. The values of
N(1 000) which form the right endpoints of Figure 8 correspond to x = log(1 000) ≈ 6.9.

Fig S3. Left: Estimated 95% CIs for the estimation of µ when an efficient subset of
IBD segments were extracted from the TS and when all IBDs were used. At each
sample size, 25 replicate datasets were simulated under Model C, with sequence length
ℓ = 107. Right: Impact of sequencing error rate ϵ on µ̂ under Model C, Model Ga and
Model S, from 25 replicates with sample size m = 10 and sequence length ℓ = 108.

Fig S4. Estimates of the population size N(g) under Model C, Model Ga and Model S,
from 25 simulations at each setting. Sequence length ℓ = 107, sequencing error rate
ϵ = 10−3, sample size m = 80.
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