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HIGHLIGHTS

¢ Comprehensive strain library of endogenously tagged S. pombe TFs

¢ Experimentally determined atlas of TF interactions with proteins and chromatin
o TFexplorer web application for interactive exploration of TF interactomes

¢ |dentification of repressive Nattou complex linked to perinuclear gene

localization
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SUMMARY

Transcription factors (TFs) are key regulators of gene expression, yet many of their
targets and modes of action remain unknown. In Schizosaccharomyces pombe, one-
third of TFs are solely homology-predicted, with few experimentally validated. We
created a comprehensive library of 89 endogenously tagged S. pombe TFs, mapping
their protein and chromatin interactions using immunoprecipitation-mass spectrometry
and chromatin immunoprecipitation sequencing. Our study identified protein
interactors for half the TFs, with over a quarter potentially forming stable complexes.
We discovered DNA binding sites for most TFs across 2,027 unique genomic regions,
revealing motifs for 38 TFs and uncovering a complex regulatory network of extensive
TF cross- and autoregulation. Characterization of the largest TF family revealed
conserved DNA sequence preferences but diverse binding patterns, and identified a
repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our
TFexplorer webtool makes all data interactively accessible, offering new insights into

TF interactions and regulatory mechanisms with broad biological relevance.
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INTRODUCTION

Transcription factors (TFs) play a pivotal role in gene regulation, orchestrating gene
expression by binding to DNA in a sequence-specific manner and recruiting effector
proteins. Despite their critical role, the regulatory targets and modes of action of many
TFs remain unknown. Recently, large-scale characterizations of individual TFs'-® have
expanded our understanding of gene regulation. Projects like ENCODE®>® have
substantially advanced genome-wide investigations of TF binding sites, and many
physical TF interactions have been identified using proximity labeling or
immunoprecipitation-mass spectrometry (IP-MS) screens’ and scalable binary
protein-protein interaction (PPI) assays like yeast-2-hybrid (Y2H)?. However, these
screens often rely on ectopic expression of TFs, do not reflect physiological conditions,
or face technical challenges such as antibody comparability. The budding yeast
community addressed these challenges by creating large collections of strains®® that
enable researchers to study TF interactions at the systems level'®'2. However,
comparable comprehensive datasets are not available for other organisms.

The fission yeast Schizosaccharomyces pombe is an excellent model to study gene
regulation due to its conserved regulatory processes and genetic features shared with
metazoans'3, providing insights into fundamental biological phenomena not easily
studied in other model organisms. Despite its instrumental role in uncovering principles
of epigenetic genome regulation and transcription, the TFs encoded by the S. pombe
genome have received little attention. Among the 93 genes annotated with "DNA-
binding transcription factor activity" on PomBase' (as of March 2024), excluding
general TFs like RNA polymerase Il (Pol Il) cofactors, approximately one-third are
inferred solely from homology'4. Moreover, only a few TFs have been extensively

studied experimentallys.
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To address this gap, we generated a strain library of 89 predicted S. pombe TFs
endogenously tagged with a uniform epitope tag and used it to create an
experimentally determined atlas of their physical interactions with proteins and
chromatin in vegetatively growing cells. We found putative protein interactions for
approximately half of the investigated TFs, including specific interactions with
conserved co-activators and an intriguing connection to a protein with a canonical role
in purine metabolism, indicating an unknown chromatin-related function. We also
found abundant interactions between TFs and the regulatory phospho-binding 14-3-3
proteins, suggesting a conserved regulatory mechanism for TFs. Our genome-wide
TF binding analyses revealed diverse binding patterns and identified genomic regions
with a potentially unique regulatory environment characterized by a high occupancy of
TFs. We uncovered a regulatory network of extensive TF cross- and autoregulation
and observed potential position-dependent TF binding preferences. By providing motif
information alongside TF binding and interaction data, we enable the investigation of
motif selection across a comprehensive set of TFs, facilitating studies on context-
dependent TF binding and cooperativity. Finally, we characterized the largest TF
family, revealing conserved DNA sequence preferences and identifying a repressive
heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization, enabling future studies
into gene repression in the context of subnuclear localization. Together, our results
underscore the complex nature of TF interactions and their regulatory potential. To
support further research into how TFs regulate gene expression, we provide all data,
metadata, and code with detailed explanations of analysis steps and parameter
choices and developed the TFexplorer web tool for interactive and user-friendly

exploration of all TF interactomes.
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RESULTS

Generation of a comprehensive S. pombe strain collection to establish TF

interactomes

To determine the interactions of fission yeast TFs with proteins and chromatin
experimentally, we generated a strain collection with each putative TF endogenously
tagged with an affinity epitope (3xFLAG-tag) (Figure 1A). From the curated list of 93
putative TFs', we chose to investigate 89 TFs, excluding four TFs (mat1-Mi, mat1-
Mc, mat2-Pi, mat3-Mc), as they are associated with the fission yeast mating types'®
h* and h~ and our investigation is conducted in haploid, homothallic h™ strains. The 89
included TFs represent diverse DNA-binding domains (DBDs) across more than 14
conserved families, as identified by the NCBI Conserved Domain Search'’” (Figure
1B). Additionally, 18% of these TFs have predicted human orthologs'* (Figure 1B),
and more than half possess zinc-coordinated DBDs, mirroring the proportion in the
human TF catalog (807/1639 = 49%)'8. The maijority of S. pombe TFs are expressed
in vegetatively growing cells, based on mRNA expression profiling (mMRNA-seq)
(Figure 1C, Figure S1A), allowing us to study them under consistent growth conditions.
To determine TF-protein interactions, we performed low stringency (150 mM NaCl) IP-
MS screening on all 89 TFs, followed by a higher stringency screen (500 mM NaCl) to
validate putative interactions (Figure 1D, Figure S1B). As expected, TFs with very low
or undetectable expression levels showed no or poor enrichment in our IPs, like Mei4,
Atf31, Atf21, Cuf2, and Rsv1, which are distinctly upregulated six hours into meiosis'®
(Figure 1C, Figure S1A). Four other TFs (Cha4, Cbf12, Sre2, and SPBC1348.12) were
not identified (Figure S1A), potentially due to low expression or poor tag accessibility.
To investigate TF association with chromatin, we conducted chromatin

immunoprecipitation coupled to next-generation sequencing (ChlP-seq) for all 80
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successfully immunopurified TFs (Figure 1E, Figure S1C). Using this strain library of
TFs endogenously tagged with the same epitope tag, we established comprehensive
and comparable transcription factor interactomes in vegetatively growing cells cultured

under optimal conditions (30°C, rich medium).

More than one-quarter of investigated TFs interact with other proteins under

stringent conditions

We leveraged the uniform epitope tag used for all IPs to perform comparative
analyses, allowing us to identify TF-specific interactions by comparing co-purifying
proteins across multiple IP experiments. Each TF IP experiment, conducted in
triplicates, was compared to a comprehensive control group (complement), which
included all other anti-FLAG IPs and untagged controls using the same experimental
protocol (tube- or plate-based 150 mM NaCl or 500 mM NaCl IP-MS protocols, see
methods) (Figure S2A). Putative interactors were identified based on their significant
enrichment in each TF IP-MS experiment relative to its control group by calculating a
moderated t-statistic (Figure 2A, Figure 2B), which accounts for variability in protein
detection?°.

With our primary goal of highlighting the most important findings, we report interactions
using a stricter significance cutoff than is typically employed (adjusted p-value < 2e-4
& log2(fold-change) > 1), unless specified otherwise. However, all data are available
in the TFexplorer webtool with user-definable p-value cutoffs, enabling further
exploration with adjustable stringency (show in TFexplorer). Based on the low salt IP-
MS data, we classified each TF into one of three categories: "No bait” enrichment,
"150 mM NaCl IP-MS" for TFs subjected only to the low salt IP-MS screen, and "150

and 500 mM NaCl IP-MS" for TFs also subjected to the high salt IP-MS screen to
8
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assess interaction stability (Figure 2A). We identified interactions for 43 TFs, yielding
a total of 352 interactions in the low salt screen. In the high salt screen, we observed
110 interactions for 24 TFs. For comparison, using a lenient cutoff (adjusted p-value
< 0.01 & log2(fold-change) > 1), we found 881 interactions for 60 TFs in the low salt
screen and 202 interactions for 29 TFs in the high salt screen (show in Report).

These results indicate that under optimal growth conditions, approximately half of the
investigated TFs potentially interact with other proteins, with more than one-quarter

possibly forming stable interactions.

Genome-wide analysis of TF binding reveals diverse patterns and high

occupancy target regions

To determine genome-wide TF binding sites, we conducted ChlP-seq on the 80
successfully immunopurified TFs, performed in duplicates, and called peaks
individually on pooled replicates. Retaining peaks with at least 1.75-fold enrichment in
at least two samples and excluding blacklisted regions (see methods), we identified
2,027 unique peak regions across all experiments. We identified ChIP peaks with at
least 2-fold enrichment (IP over input) for 77 TFs (Figure 1E, Figure S1C), resulting in
a total of 9,365 peaks. Peak enrichments were strongly correlated between replicates,
demonstrating the quality and reproducibility of our ChlP-seq data (Figure S2B). The
number of enriched peaks per TF ranged from 1 to 356 (Figure 1E, Figure S1C), with
50% (interquartile range) of TFs identifying between 38 and 183 peaks. TFs exhibited
diverse binding patterns (Figure 2C, Figure 2D), ranging from singular to multiple
hundred binding sites. Most TF binding sites reside in more accessible regions
indicated by low levels of H3, and many peaks are characterized by elevated H3K14ac

levels (Figure 2C).
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We estimated the number of TF-bound gene promoters, defined as a 1 kb bin centered
on the transcription start site (TSS), and found that 32% (2,347) of all gene promoters
and 27% (1,400) of protein-coding gene promoters are associated with TFs (show in
Report). Highly expressed protein-coding genes, as measured by mRNA-seq, tend to
be bound by at least one TF (Figure S2C). In contrast, 68% (4,922) of all gene
promoters show no TF enrichment. Comparing bound regions (2,027) across all TF
ChIP experiments, we observed striking disparities in the number of TFs binding to a
given site, ranging from a single TF to 65 (>80%) (Figure 2D). We leveraged the
comparability of all TF ChlIPs to classify all identified peak regions based on the
number of TFs that bind to them. We distinguished “specific” peaks, detected in less
than 5% of TF ChIP experiments (max. overlap of four TFs), from “common” peaks,
detected in more than 5% of experiments (Figure 2C, Figure 2D). This cutoff accounts
for specific binding sites of known trimeric TF complexes, such as the CCAAT-binding
factor?’ and MBF complex?2.

The common peak regions in our ChlP-seq dataset resemble high occupancy target
(HOT) regions observed in large-scale TF ChlP-seq datasets across multiple
organisms®>82324 nitially dismissed as artifacts, HOT regions are increasingly
recognized as genuine biological phenomena, yet remain poorly understood?>2.
Further examining these regions, we found a strong enrichment for tRNA and 5S rRNA
genes specific to common peak regions with TF ChIP peaks overlapping these genes
showing moderate, uniform enrichments (Figure 2C). An unsupervised k-means
clustering approach based on peak enrichments (IP/input of replicate averages)
supported this observation, clustering them into a group that we named “common
ubiquitous” peaks. Notably, ChIP samples exhibited a GC-bias with more reads in GC-

rich regions compared to AT-rich ones. Because this trend was consistent, we could
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correct for this bias (see methods), but it did not affect these weak enrichments
observed in common ubiquitous peaks. Given the unlikely specific binding of so many
TFs to these Pol lll-transcribed genes and that peak enrichments are uniform across
most ChlPs only at these loci (Figure 2C), we consider "common ubiquitous" peaks
technical artifacts. Their absence in the untagged control suggests that this bias
originates during bait purification, regardless of whether the tagged TF binds to DNA.
Unlike "common ubiquitous" peaks, the second cluster, termed "common frequent"
peaks, lacks a singular defining feature. Peaks in this cluster are detected for 5 to 26
TFs (Figure 2D), with an average of 9.2 TFs per region. They are predominantly
nucleosome-free and accessible (Figure 2C, Figure 2D), and, like specific peak
regions, they have distinct peak enrichments and average GC-content. We consider
these binding events true and conclude that these “common frequent” regions are S.
pombe HOT regions, similar to previously described HOT regions in other
organisms?32527. The number of TFs detected in HOT regions varies, but most of
these regions contain a core set of bound TFs (Php3, Sak1, Pcr1, Prr1, Atf1, Rst2,
Adn2, Adn3, Hsr1, Phx1, and Pho7) (Figure 2C). Some studies suggest that HOT
regions arise from indirect binding and extensive multivalent and weak TF-TF
interactions?’~2°, potentially enabled by their intrinsically disordered regions (IDRs).
Consequently, the observed co-occupancy could be attributed to indirect binding
events rather than individual, direct TF-DNA contacts. However, our IP-MS dataset did
not reveal a clear difference in interaction patterns between HOT TFs and all other
TFs (Figure S2D), though given that IDR-driven interactions are likely weak, the
absence of increased interactions measured by IP-MS might be expected.

In summary, our comprehensive ChlP-seq analysis of 80 TFs revealed diverse TF

binding patterns, with approximately one-third of gene promoters bound by at least
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one TF. We identified 247 common ubiquitous regions likely attributable to technical
artifacts, 94 genuine HOT regions, and 1,686 specific peak regions, thereby advancing

our understanding of TF interactions with the S. pombe genome.

Extensive cross- and autoregulation among S. pombe TFs

In addition to investigating genome-wide TF binding events, we analyzed the
regulatory network among TFs. Examining the promoters of all 89 TFs, we discovered
that 43 TF promoters are bound by at least one other TF, with 26 promoters bound by
multiple TFs (Figure 3A). Particularly, Atf1, a key regulator of the S. pombe stress
response3%-33 is highly connected (Figure 3B). Atf1 binds its own promoter and the
promoters of ten other TFs. In turn, the atf7* promoter is bound by eleven TFs,
including Atf1 itself and its heterodimer partner Pcr1. Both Atf1 and Pcr1 also bind to
the pcr1* promoter, indicating that they co-regulate their own genes (this study and

Eshaghi et al.3%).

Beyond Atf1 and Pcr1, nine additional TFs bind their own promoters, suggesting
autoregulation (Figure 3C, Figure S3A). Of all eleven TFs found binding to their own
promoters, six have been previously shown or suggested to do so (Atf1, Pcr1, Toe3,
Cdc10, Prz1, and Fkh2)34-39, Interestingly, certain TFs, such as Thi5, Reb1, and Toe3,
bind their promoters at or downstream of their annotated TSS (Figure 3C). Though
these TFs may utilize alternative TSSs, they may also regulate their genes in a
position-dependent manner. A recent preprint reported regulatory regions downstream
of the TSS with TF family-specific binding preferences in plants*® and a study of human
TF binding motifs found highly preferential positioning relative to the TSS, determining

TF function®'.
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Our analysis of the fission yeast TF regulatory network revealed extensive cross-
regulation and suggests autoregulation for 14% of investigated TFs under optimal
conditions. Additionally, our data indicate potential position-dependent TF binding
preferences. Systematically evaluating if this is specific to the TF, the TF family, or the
regulated genes will provide further insights into the fission yeast regulatory

landscape.

De novo DNA-binding motif identification indicates context-dependent TF
binding

For a deeper understanding of TF binding sites, we aimed to identify DNA motifs from
bound genomic regions. Initially including sequences from all peak categories,
predictions were skewed towards consensus sequences in tRNA and 5S rRNA gene
promoters. Only after excluding common peaks we could reliably predict individual
DNA-binding motifs, further suggesting that these observed binding events might be
artifactual. We then curated a list of the most confident DNA-binding motifs (see
methods), yielding 67 predicted motifs for 38 TFs. Using the Pearson correlation
coefficient (PCC) as a similarity metric, we identified both known and novel motif
similarities and detected any duplicate motifs for the same TF, exemplified by Res1
and Res2 (Figure 3D, Figure S3B). After removing redundancies, we identified 45
unique motifs for 38 TFs. As expected, highly similar motifs were observed among
members of known TF complexes, such as the MBF complex3%42 and the Atf1/Pcr1
heterodimer3%:4344 (Figure 3D). Consistent with prior work, Atf1 and Pcr1 recognize the
same motif but can bind DNA independently*®>. We found them overlapping at

approximately one-third of all their identified binding sites, excluding common
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ubiquitous peaks (Figure 3E). In contrast, we identified a group of TFs of the same
DBD family, binuclear zinc cluster TFs Toe1, Toe3, SPAC3H8.08c, and
SPBC16G5.17, with similar motifs but limited overlap in DNA binding sites (Figure 3D,
Figure 3E). This observation shows that features beyond DNA sequence specificity
determine genome binding, which became even more evident when we evaluated the
proportion of available predicted motifs in the genome that TFs would bind. The
percentage varied from 0.3% to 17.5%, with 50% (interquartile range) of TFs binding
1.2% to 4.5% of their available motifs (Figure S3C). For instance, Atf1 bound 7.7% of
its predicted sites, consistent with previous studies34.

These findings underscore the importance of factors beyond sequence motifs in TF
binding, such as the protein sequence context outside the DBD*%4” and the local
chromatin environment*8. By providing motif information in combination with TF
binding and interaction data, we enable the investigation of motif selection across a
comprehensive set of TFs to study context-dependent TF binding and cooperativity on

a global scale or at individual loci.

Systematic evaluation of binuclear zinc cluster TFs reveals conserved DNA

sequence preferences and the Nattou heterodimer

Binuclear zinc clusters (Zn(I1)Cyse) are fungal-specific DBDs, and TFs of this family
can bind to DNA as monomers, homodimers, or heterodimers, with each monomer
interacting with a CGG trinucleotide or variations of it*>. A prominent member of this
family is the Saccharomyces cerevisiae TF GAL4, which binds to the DNA motif CGG-
N11-CCG as a homodimer®®?', Our findings of highly similar, CGG-rich motifs for the
binuclear zinc cluster TFs Toe1, Toe3, SPAC3H8.08c, and SPBC16G5.17, indicate a
similar binding preference for S. pombe TFs of this family (Figure 3E). Notably, Toe3,
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SPAC3H8.08c, and SPBC16G5.17 had not previously been associated with specific
motifs, whereas the DNA-binding motif for Toe1 is known?3®.

For a systematic evaluation of nucleotide binding preferences among binuclear zinc
cluster TFs, we conducted an unbiased k-mer enrichment analysis. This entailed
comparing the frequency of any k-mer (DNA sequence of length k) in a TF’s specific
peaks against their frequency in the control sequences (specific peak sequences of
all other TFs). For instance, a 6-mer analysis of Toe3 revealed high enrichments for
CCRYGG sequences (Figure 4A), matching the motif Toe1.m1 found in our previous
motif identification (Figure 3E). Given that monomers interact with single
trinucleotides, we performed a 3-mer enrichment analysis for any family member with
at least three specific peaks (20 TFs). As a result, we found enrichments for GC-rich
trimers for most TFs, with a notable preference for CGGs in various orientations
(Figure 4B). Toe2, in particular, exhibited a strong preference for CGG, which was
confirmed as a dual repeat motif in the de novo motif identification (Figure 4C), akin to
the motifs discussed before. However, while motifs for Toe1, Toe3, and SPBC16G5.17
comprise everted repeats (CCGCGG), the Toe2 motif consists of inverted repeats
(CGGCCQG), explaining their lack of similarity. The presence of repeat-containing
motifs suggests that these TFs may bind as dimers, as proposed for TFs of this family
in other fungi*®. Therefore, we searched our interactome data for family-wide TF-TF
interactions, which revealed a single reciprocal interaction between two previously
uncharacterized binuclear zinc cluster TFs, SPBC16G5.16 (Ntu1) and SPBC530.08
(Ntu2) (Figure 5A, Figure 5B). We observed this interaction, previously detected in a
proteome-wide Y2H screen when SPBC16G5.16 served as bait?, reciprocally and
under high stringency conditions (Figure 5C). Therefore, we propose that these

proteins form a TF heterodimer complex, which we are naming the Nattou complex,
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with the subunits Ntu1 (SPBC16G5.16) and Ntu2 (SPBC530.08). Conversely, the
observation of limited interactions amongst binuclear zinc cluster TFs implies that
Toe1, Toe2, Toe3, and SPBC16G5.17 may bind to CGG repeat-containing sequences
as homodimers.

In summary, we identified novel DNA-binding motifs for Toe2, Toe3, SPAC3H8.08c,
and SPBC16G5.17, and demonstrate a strong CGG trinucleotide binding preference
for most S. pombe binuclear zinc cluster TFs. Our findings also uncovered a potential
heterodimer, Ntu1/Ntu2, and provide the foundation for further investigation into the
homodimerization potential of these TFs, supported by CGG repeat-containing DNA-

binding motifs predicted from our ChIP-seq data.

Basic helix-loop-helix TFs Esc1 and SPAC3F10.12c recognize near-identical E-

box motifs

Besides the novel motifs we discovered for the binuclear zinc cluster TFs, we find
additional DNA motifs that are particularly intriguing, prompting us to characterize
them further (Figure 4C). Like the previous analysis (Figure 4A), we complemented
the de novo motif identification, displayed as a sequence logo, with a 6-mer enrichment
analysis. Then, we assessed the motif distribution, expecting the highest enrichment
around the peak center. Finally, to evaluate if the motif is specific to the TF-bound
regions in the genome, we counted its occurrence in enriched peaks (foreground),
non-enriched peaks from all other TFs (background), and the rest of the genome (non-
peak) and calculated the enrichment of observed motifs over what would be expected
from a random distribution. Among the newly identified motifs, we found identical E-
box motifs (CACGTG) for two S. pombe TFs, Esc1 and SPAC3F10.12c (Figure 4C),
representing the consensus sequence for basic helix-loop-helix (bHLH) TFs%3. Akin to
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the human TFs Myc, Max, and Mad, these two belong to the phylogenetic class B of
bHLH TFs5% and exhibit class-typical characteristics, including CAC half-site
preferences. bHLH TFs typically form dimers, with each monomer binding a CAN half-
site, and the specific combination of dimerization partners influencing TF sequence
specificity and function®3. The perfectly palindromic E-box sequences (Figure 4C)
suggest the possibility of homodimerization or heterodimerization within the same
class. The absence of overlapping binding sites between Esc1 and SPAC3F10.12c
(Figure S4A), despite their near-identical DNA-binding motifs, indicates that these TFs
likely form homodimers. This hypothesis is further supported by our IP-MS data
(Figure 5A) (show in TFexplorer) that did not indicate heterodimerization. The strong
preference for a 5’ thymine in the E-box flanking sequence of the SPAC3F10.12¢ motif
is a possible explanation for their unique binding sites.

In summary, our integrated ChlP-seq and IP-MS analyses identified E-box DNA-
binding motifs for the bHLH TFs Esc1 and SPAC3F10.12c and predict their

homodimerization, providing key insights to further dissect their mechanisms.

Approximately one in three TFs engage in TF-TF interactions, with stable

interactions typically formed within the same DBD family

Large-scale PPI screens in various organisms have shown a wide range of predictions
for TF-TF interactions. Studies in Drosophila melanogaster, human, and mouse
suggest that over two-thirds of investigated TFs interact with at least one other TF or
themselves'37. In contrast, a Y2H study with Caenorhabditis elegans proteins, which
investigated nearly 90% of predicted TFs, found that only about 19% interact with
themselves or other TFs?. To estimate the number of TF-TF interactions in S. pombe
during optimal growth, we expanded our search beyond the binuclear zinc cluster and
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bHLH families, using the same strict cutoff as previously described (Figure 5A, Figure
5B). We identified 21 interactions involving 17 TFs in the low salt and 15 interactions
involving 14 TFs in the high salt IP-MS screen (Figure S5A). Among these was an
intriguing interaction between two LIS1 homology (LisH) domain TFs, Adn2 and Adn3,
and the transcriptional coregulator Ldb1/Adn1 (Figure S5B). Ldb1/Adn1, Adn2, and
Adn3 are known activators of flocculation, a process where cells rapidly aggregate in
response to environmental stress. Deletion of these genes individually leads to a cell
adhesion-defective phenotype®5’. Thus, our data suggests that their previously
established functional relationship and phenotypic similarity could be due to these TFs
forming a stable complex, which becomes dysfunctional upon loss of any component.
Overall, we observed TF-TF interactions both within the same DBD family and across
different DBD families to an equal extent, with stable complexes mostly formed
between TFs of the same family (Figure 5A, Figure 5B, Figure S5A). This contrasts
with findings in D. melanogaster and Arabidopsis thaliana, where extensive
interactions were observed between different TF families, although not under
physiological conditions®*. Lowering our cutoff for qualifying interactions reveals
additional (potentially transient) TF-TF interactions also in S. pombe, mostly between
different DBD families. Using a lenient cutoff (adjusted p-value < 0.01 & log2(fold-
change) > 1), we identified 39 interactions (18 bilateral) involving 30 TFs under low
salt conditions, and 17 interactions (14 bilateral) involving 14 TFs under high salt
conditions (Figure S5A).

Based on these findings, we estimate that approximately one-third (27-36%) of all
examined S. pombe TFs interact with at least one other TF under optimal growth
conditions. We observed that most interactions occurring within TF families lead to

stable complexes, including interactions between Adn2, Adn3, and Ldb1/Adn1, which
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provides an explanation for their known functional relationship.

S. pombe basic leucine zipper TFs might have pioneering activity

In our study, we identified TFs that specifically interact with core histone subunits of
the canonical nucleosome. Although histones were abundantly pulled down in all low
stringency IPs, including the untagged control, this interaction was uniquely preserved
for Pap1 and the heterodimeric TFs Atf1 and Pcr1 amongst TFs investigated under
high stringency conditions (Figure 5C, Figure S5C). This finding is particularly
intriguing given recent structural studies that have highlighted direct interactions
between certain pioneer TFs and the nucleosome core®8-%9, Pioneer TFs can bind to
DNA and access their binding sites despite the presence of a nucleosome. Whereas
these TFs can induce changes in the local chromatin landscape, the exact definition
of pioneering TFs remains a topic of debate®%.".

Atf1 and Pcr1 have been implicated in various nucleosome-related processes,
including the creation and maintenance of nucleosome-depleted regions®?-6°, meiosis-
specific chromatin remodeling at the M26 hotspot®57, and heterochromatin initiation
and maintenance at the mating type locus®®-"". Whereas Pap1 has not been linked to
nucleosome remodeling, its human orthologs, Jun/Fos, have been shown to bind
nucleosomes in vitro’? and associate with nucleosome-rich regions in vivo, potentially
enhancing accessibility by recruiting chromatin remodelers”. Interestingly, Atf1, Pcr1,
and Pap1 are among the six basic leucine zipper (bZIP) TFs in S. pombe'*. The fourth
bZIP TF expressed in mitotically growing cells, Zip1, did not co-purify histones under
high stringency conditions (Figure S5C). The remaining two bZIP TFs, Atf21 and Atf31,
are exclusively expressed during meiosis'® and investigating them in meiotic cells may

reveal whether nucleosome binding is a characteristic shared by S. pombe bZIP TFs.
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Our finding that Pap1, Atf1, and Pcr1 co-purify with histones under stringent conditions
indicates interactions with the nucleosome and suggests pioneering activity for these

TFs that may extend to an entire family of S. pombe TFs.

TF interactions with the conserved acetyltransferase complexes SAGA and

NuA4, and a putative allantoicase

Investigating our interactome data to identify TF interactions with chromatin modifiers,
we confirmed the recently characterized stable interaction between the forkhead TF
Fkh2 and the CIr6 histone deacetylase complex’*7® (show in TFexplorer). Additionally,
we discovered previously unknown interactions with co-activator complexes: three TFs
(Rst2, Pap1, and Ace2) co-purified with multiple subunits of the conserved
acetyltransferase complexes SAGA and NuA4 in the low salt screen (Figure 5D).
Supporting the validity of these interactions, Rst2 has previously been implicated in
recruiting SAGA based on genetic evidence’®. Furthermore, we observed an
interaction between the binuclear zinc cluster TF Moc3 and the putative allantoicase
Dal2, previously suggested by a Y2H assay®? (Figure 5C). By immunopurifying Dal2,
we confirmed that this interaction is detected reciprocally under high stringency
conditions (Figure 5C). This finding is intriguing given the canonical role of allantoicase
enzymes (Enzyme Commission number 3.5.3.4) in purine metabolism, primarily in
utilizing purines as a secondary nitrogen source. The interaction between a TF and a
predicted allantoicase hints at a non-canonical function for one of these proteins.
Given that Moc3 is constitutively nuclear and functionally dependent on its DBD’”,
which is supported by our ChIP data showing its association with chromatin (show in
TFexplorer), we propose that Dal2, rather than Moc3, might have a moonlighting

function.
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Together, our interactome data revealed specific interactions of TFs with the
conserved co-activators SAGA and NuA4, as well as with a putative allantoicase,
suggesting potential roles in chromatin modification and uncovering a possible novel

chromatin-related activity.

Extensive interactions between TFs and Rad24/Rad25 suggest widespread TF

regulation by 14-3-3 proteins

14-3-3 proteins are phosphoprotein-binding factors that are well-conserved among
eukaryotes, forming homo- and heterodimers to modulate various cellular processes
by interacting with diverse proteins, including TFs”®. S. pombe has two 14-3-3 protein
paralogs, Rad24 and Rad257°. Our study revealed that Pho7, a TF activated by
phosphate starvation8%®!, specifically interacts with Rad24 and Rad25 also under
stringent conditions (Figure 6A). Notably, Rad24 is known to negatively regulate Pho7-
dependent pho1* expression, with its deletion resulting in increased pho1* levels even
under phosphate-replete conditions®2-8*. Mechanistically, Rad24 has been linked to
the regulation of an upstream long non-coding RNA (IncRNA), which is known to
interfere with pho7* expression in the absence of stress?:85. Our data suggests an
alternative mechanism where Rad24, and potentially Rad25, directly interact with and
negatively regulate Pho7, which would explain the de-repression of pho1* in rad24*
mutants. We identified two optimal 14-3-3 binding motifs’® in Pho7, corresponding to
phosphorylated serine and threonine residues (RVCSAP (pS230) and RSFTNP
(pT463))86-89 (Figure 6B). These motifs flank the Pho7 DBD, indicating that
Rad24/Rad25 interactions could interfere with Pho7 DNA binding, similar to the
mechanism proposed for the mammalian TF FOX04%,

At least two other TFs, Prz1, a calcineurin signaling pathway TF, and Ste11, a key TF
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in sexual differentiation, are negatively regulated by direct 14-3-3 protein
interactions®'92, suggesting a broader role for them in TF regulation. To explore this,
we compared all IPs to an untagged control, focusing on identifying interactors
common to many TFs (Figure S6A). This revealed 24 TFs co-purifying with one or
both S. pombe 14-3-3 proteins (adjusted p-value < 0.01 & log2(fold-change) > 1)
(Figure 6C). Though largely of unknown phosphorylation status, ten of these TFs have
motifs matching the optimal 14-3-3 binding site (R-x-x-[S/T]-x-P), as identified by
ScanProsite®® (Figure 6C, Figure S6B), with many more potentially interacting through
derivatives of this motif%+.

These findings highlight abundant interactions between TFs and 14-3-3 proteins,
offering novel mechanistic explanations for the Pho7-mediated phosphate starvation
stress response and suggesting a widespread and possibly conserved regulatory

mechanism for TFs.

Interactively explorable networks to display putative prey-prey interactions

To complement TF-specific interactions with a global analysis of protein interactions,
we extracted bait-agnostic information from our dataset and visualized the results of
our IP-MS screens as a network representation of putative PPIs (Figure 6D, Figure
6E). By computing pairwise similarities among all enriched proteins for both low and
high salt IP-MS screens (Figure S6C), we gained insights into proteins exhibiting
strong correlations across one or multiple IPs. Because this approach is bait-agnostic
and our dataset is large, it allows us to detect protein correlations beyond the TFs,
revealing additional prey-prey connections. For example, subunits of the same
complex that are consistently co-purified together contribute to these connections.

While edges between vertices may indicate potential direct physical interactions, they
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can also represent indirect interactions resulting from shared interactions with other
proteins. In these networks, we marked all TF interactions that are not annotated as
physical interactions on PomBase'* as of February 2024 (Figure 6D, Figure 6E). This
includes unannotated yet known TF interactions, such as Scr1's interaction with the
transcription coregulator complex Ssn6/Tup®, or associations between TFs and all
identified complex members, where the interaction interface likely involves only a few
subunits. Due to space constraints, we have set a high threshold for displayed
interactions, however, an interactive version of these networks is available in the
TFexplorer (show in TFexplorer). These networks allow the community to explore
interactions with TFs and could reveal variations in cofactor subunit compositions or

potentially even lead to the discovery of new cofactor complexes.

The Nattou complex represses two transmembrane transporter genes and is

linked to perinuclear gene localization

Our study uncovered an interaction between two binuclear zinc cluster TFs, Ntu1 and
Ntu2, that we propose to form a stable heterodimeric complex (Figure 7A). Ntu1 and
Ntu2 feature characteristic coiled-coil structures adjacent to their DBDs, presumably
facilitating protein dimerization, and contain fungal-specific MHR domains that are
proposed to regulate TF activity*® (Figure 7B). Their heterodimerization is further
supported by an AlphaFold®-8 prediction indicating interaction surfaces at the
dimerization domain and between their MHRs (Figure 7B, Figure S7A). Additionally,
we observed highly similar gene expression profiles between the individual KO strains
when we assessed their role in transcriptional regulation using mMRNA-seq (Figure 7C).
Particularly, the expression of two predicted transmembrane transporter genes',

tna1® and SPCC576.17c, was strongly upregulated in the absence of either Ntu1 or
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Ntu2, indicating highly specific and mutually dependent gene repressive activities.
Consistent with this observation, our ChiP-seq data revealed that both TFs bind to the
promoters of tna71* and SPCC576.17c, with a complete loss of binding for each TF in
the respective KO strain (Figure 7D). These results indicate that Ntu1 and Ntu2 jointly
repress tna1* and SPCC576.17c transcription.

A notable feature of Ntu2 is a predicted transmembrane domain (TMD) at its C-
terminus®® (Figure 7B). We hypothesized that the TMD could tether Ntu2 to the inner
nuclear membrane, anchoring its target locus at the nuclear periphery. To test this, we
used a strain harboring a /acO array close to the tnaf* locus and monitored its
positioning within the nucleus relative to the nuclear envelope (Cut11-mCherry) in both
wild-type and Nattou KO cells by expressing lacl-GFP (Figure 7E). Dividing the
nucleus into three concentric zones of equal surface area, with Zone lll representing
the nuclear center, we found the /acO array predominantly located near the nuclear
periphery (Zone |) in wild-type cells (Figure 7F, Figure 7G), consistent with our
hypothesis. In contrast, we observed a shift of the locus toward the nuclear center in
Ntu1 or Ntu2 KO cells (Figure 7F), which was quantifiable across hundreds of cells
(Figure 7G, Figure S7B), indicating Nattou-dependent subnuclear localization.
Specifically, the percentage of cells with the /acO array at the nuclear periphery (Zone
) decreased from 55% in the wild type to 39% and 36% in ntu1? and ntu2? cells,
respectively. Conversely, the proportion in the nuclear center (Zone lll) increased from

6% in the wild type to 15% and 17% in the respective KOs.

These results suggest that Ntu1 and Ntu2 form a stable heterodimeric complex and
codependently repress two predicted transmembrane transporter genes. Under

optimal conditions, one of these genes predominantly resides at the nuclear periphery
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in a Nattou-dependent manner, potentially mediated by the TMD of Ntu2, implicating

that subnuclear localization may be important for the repressive activity of Nattou.
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DISCUSSION

In this study, we addressed gaps in resources and knowledge by creating a strain
collection of 89 predicted S. pombe TF genes, each tagged endogenously with a FLAG
epitope. This collection is available through the National Bio-Resource Project (NBRP)
— Yeast, Japan [FY49691-FY49780]. Using this library, we constructed a
comprehensive atlas of TF interactions with proteins and chromatin in vegetatively
growing cells under optimal conditions. We identified putative protein interactors for
approximately half of the investigated TFs, with over a quarter potentially forming
stable complexes. Additionally, we discovered potential DNA binding sites for most
TFs, covering 2,027 unique genomic regions and revealing motifs for 38 TFs. Our
findings offer valuable insights into gene regulation in S. pombe and highlight
biological phenomena with broader relevance, such as HOT regions and TF regulation
by 14-3-3 proteins. To facilitate independent evaluation and further research, we have
made all data, metadata, and code accessible, ensuring full reproducibility of our
analyses. All figures and numbers can be reproduced using the reports available on
GitHub (see Reports). Furthermore, we developed TFexplorer, an interactive web
application that allows users to explore the datasets without computational expertise,

intended to complement ongoing studies and inspire new research directions.

Genomic areas with a high density of TF binding

In our comparative analysis of all ChlP-seq experiments, we identified genomic
regions occupied by many TFs, exhibiting high accessibility and distinct enrichments
similar to HOT regions reported in other organisms?>-?’. We propose that these

regions in S. pombe also be referred to as HOT regions. Notably, a core set of S.
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pombe TFs was found at most HOT regions (Figure 2C), indicating a unique regulatory
environment. Although motif-driven DNA occupancy alone cannot fully explain these
regions, one-third contain the DNA-binding motif for Atf1/Pcr1 (show in Report), two
TFs frequently enriched at HOT regions. Intriguingly, Atf1 and Pcr1 co-purify with core
histone proteins under stringent conditions (Figure 5C), hinting at pioneering TF
activity which may be required for establishing these highly accessible regions. Thus,
Atf1 and Pcr1 could serve as starting points for further investigations into HOT region
characteristics. Additionally, we found that Rst2, another TF enriched at these regions,
interacts with the multimodal co-activator complexes SAGA and NuA4 (Figure 5D),
suggesting that examining the role of chromatin modifiers could be another avenue for

understanding HOT region formation and function.

Functional interplay between TFs and chromatin regulators

The extent to which TFs specify the activity of chromatin-modifying complexes via
direct physical interactions is not well understood. Our study identified limited, rather
weak interactions between TFs and known cofactors, suggesting that direct
recruitment of chromatin-modifying complexes in S. pombe might be uncommon or
transient, without persistent TF-cofactor binding. One notable exception is the
interaction between three TFs and the acetyltransferase complexes SAGA and NuA4
during low stringency purifications (Figure 5D). Given the ubiquitous role of SAGA and
NuA4 in gene activation, broader TF interactions might be expected. Instead, our
results align with a study by Goos et al.”, which found that only a small subset of
human TFs specifically interact with SAGA and NuA4.

We also identified a stable interaction between the TF Moc3 and the allantoicase Dal2

(Figure 5C), an enzyme typically involved in purine metabolism, suggesting a non-
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canonical role for Dal2 in transcriptional regulation. A recent preprint proposed a
moonlighting function for an allantoicase protein in sexual reproduction in the malaria
parasite Plasmodium berghei'®. Future investigations could explore the intriguing
possibility of a role for Dal2's carbon-nitrogen bond hydrolase activity on chromatin,
potentially guided by a sequence-specific TF.

Together, our results suggest a potentially new chromatin regulatory activity and
indicate that TFs in S. pombe might generally interact with cofactors transiently.
Alternatively, cofactors may not physically interact with most TFs, instead engaging at

specific loci as a consequence of TF binding.

Complex fission yeast TF regulatory networks

Our large-scale ChIP-seq analysis revealed that approximately 27% of S. pombe
protein-coding genes are bound by TFs under optimal growth conditions. Bound genes
exhibited slightly higher expression levels, yet non-bound genes were not
transcriptionally silent (Figure S2C). This suggests that certain genes may be
expressed independently of specific TFs or may become TF-bound only in response
to specific stimuli. Notably, several S. pombe TFs, such as Ste11, Mbx2, Cbf12, Mei4,
and Ace2, are known to autoregulate when active37-57:101.102 Qur analysis identified
eleven additional TFs potentially autoregulating under optimal conditions in
vegetatively growing cells (Figure 3), highlighting autoregulation as a prevalent
mechanism in S. pombe. Interestingly, TF binding was observed up- and downstream
of TSSs, as well as just downstream of the transcription end site, indicating regulatory
roles beyond the promoter and potential position-dependency. We expect these
findings to foster future research into TF binding preferences and position-specific

functional properties.

28


https://doi.org/10.1101/2024.08.20.607873
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.607873; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Possibly perinuclear gene repression by the Nattou complex

We uncovered a stable interaction between two previously uncharacterized binuclear
zinc cluster TFs, Ntu1 and Ntu2, which we propose form a repressive heterodimeric
complex that we refer to as Nattou (Figure 7). Their similar genome-wide DNA binding
patterns and knockout mMRNA expression profiles support this hypothesis. One of the
Nattou-repressed genes, tna1*, preferentially localizes near the nuclear periphery in a
Nattou-dependent manner, possibly due to Ntu2’s predicted TMD. This localization is
interesting, as the nuclear periphery has been associated with reduced transcription
and gene silencing’®®. However, Ntu1/Ntu2-mediated repression is restricted to tha1*
(Figure S7C, Figure S7D), which suggests that transcriptional regulation at this locus
may not exclusively depend on its subnuclear position. Further research will be
needed to validate this hypothesis. We attempted to generate a separation-of-function
ntu2 allele by deleting the Ntu2 TMD to test its role in DNA binding independently of a
potential nuclear envelope association. However, this deletion abolished binding to the
tna1* promoter (Figure S7E), similar to the KO phenotype. It is possible that Nattou
binding or assembly require attachment to the nuclear envelope. Alternatively, the loss
of chromatin binding might result from protein instability, structural changes in the
DBD, or impaired nuclear import. Despite these challenges, exploring the separation-
of-function approach further could provide valuable insights into the causal relationship

between gene regulation and subnuclear localization.

Limitations of this study
One limitation of this study concerns the functionality of the tagged TFs. Given the
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largely unknown functions of many TFs, ruling out a potential impact of tagging on TF
activity with certainty is challenging. Examples where we observed TF impairment
were limited: while the interaction between Adn2 and Adn3 was maintained under high
salt conditions with tagged Adn2, it was not observed with tagged Adn3, and four C-
terminally tagged TFs showed compromised cellular growth, prompting us to re-tag
them at the N-terminus. We recommend that researchers carefully evaluate the
functionality of tagged TFs prior to studying them in detail. Furthermore, our TF
interactome screen relies on a manually curated list of predicted TFs (PomBase'4,
March 2024), which may include proteins not directly involved in transcription
regulation or that bind RNA instead of DNA. For instance, SPAC25B8.11 co-purified
with an RNA-binding protein even under high stringency. Additionally, our focus on
high-confidence interactions might exclude more frequent ones, like interactions with
14-3-3 proteins, and we advise comparing results with untagged controls to identify
these. Finally, our study may not capture transient interactions or those dependent on
specific growth conditions or cell cycle stages, which may require alternative

experimental approaches.
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METHODS

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and

will be fulfilled by the lead contact, Marc Buhler (marc.buehler@fmi.ch).

Materials availability

The yeast strain library generated in this study has been deposited to National Bio-

Resource Project (NBRP) — Yeast, Japan [FY49691-FY49780].

Data and code availability

Sequencing data from ChIP-seq and mRNA-seq have been deposited at GEO

(accession numbers GSE274238 and GSE274240) and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE'?” partner repository with the dataset identifier PXD054070,
including einprot'® reports with the processing of MaxQuant outputs. Microscopy data
reported in this paper will be shared by the lead contact upon request. This paper
analyzes existing, publicly available data. Their accession numbers are listed in the

key resources table.

All original code has been deposited on Zenodo

(https://zenodo.org/records/13270429) and is publicly available as of the date of
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publication. In addition to the code this archive includes any additional information
required to reanalyze the data reported in this paper with individual reports to
reproduce all figures and numbers reported in this study and detailed explanations of

the code. Also available on GitHub at https://fmicompbio.github.io/Spombe TFome/.

DOl is listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

Experimental model and study participant details

S. pombe strains and growth conditions

All experiments in this study were conducted using haploid cells of the fission yeast S.
pombe. Strains were generated using the standard genetic methods of DNA
transformation or standard mating'®®'"°. Cells used for all experimental procedures
were grown in rich medium (YES) liquid culture at 30°C until mid-log phase. Table S1

contains all information on the strains used in this study.

Method details

Selection of TFs for investigation

Based on the curated list of 93 TFs from the fission yeast model organism database
PomBase' (as of March 2024), we selected 89 TFs for investigation (go to File). This

excludes four TFs (mat1-Mi, mat1-Mc, mat2-Pi, mat3-Mc), as they are associated with
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the fission yeast mating types'® h* and h- and our TF interaction screen is conducted

in haploid, homothallic A~ strains.

Yeast strain generation and culturing

All S. pombe strains used in this study are listed in Table S1. Library strains were
generated using the PCR-based method'%® and each strain expresses a fusion protein
of a putative TF tagged with a 3xFLAG tag separated by a 6xGlycine linker. All but
four library strains were tagged at the C-terminus and carry a kanMX selection marker.
Cbf11, Mbx2, Pcr1, and Php2 were tagged at the N-terminus using the ura4-based
gene disruption and replacement system'!" following unsuccessful genome editing for
a C-terminal tag. Successful genome editing of all strains was verified by genotyping
PCR and, for tagged strains, by western blot analysis. In addition, we validated all
tagged strains used for ChIP-seq by extracting all reads from ChlIP input samples that
did not map to the S. pombe (wild-type) reference genome and aligned them to
reference sequences corresponding to all tagged TFs (see methods Genomics data
analysis, Alignment). In gene deletion strains the open reading frame was replaced
either by a kanMX or natMX resistance marker. PCR templates for homologous
recombination were generated from pFAGa plasmids and include 80 bp sequence
homology to the edited locus on both sides (see Table S2 for primers and Data S1 for
plasmids). All homology templates were amplified using the NEBNext® High-Fidelity
2X PCR Master Mix (NEB). Strains used in the microscopy assays were generated
using the PCR-based method and standard mating'®'1%. Fission yeast strain
FY38775'? was provided by the National Bio-Resource Project (NBRP) — Yeast,

Japan and contains the /lacO:lacl-GFP reporter at position chrl: 1,866,360. All strains
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were selected on YES plates containing the respective antibiotic. For experiments,

cells were cultured in rich medium (YES) liquid culture at 30°C until mid-log phase.

Immunoprecipitation

Per replicate, 50 ml of yeast culture was grown to mid-log phase (ODeoo approximately
1.0) and harvested at 1,200 rcf at 4°C for 4 min. Cells were washed twice with 5 ml
cold TBS (50 mM Tris-HCI pH 7.5, 150 mM NaCl) before resuspension in 500 ul cold
TBS and transfer to a 2 ml screw-cap tube. Cells were harvested at 3,300 rcf at 4°C
for 30 s. The supernatant was removed, and cell pellets were flash-frozen in liquid
nitrogen (storage at -80°C until further processing). Initially, IPs were performed using
a tube-based protocol (for 30 TFs at 150 mM NaCl) before we adapted the protocol to
a 96-well plate format for all subsequent IP experiments to increase throughput, in the
following distinguished by “plate” and “tube” annotations.

Frozen cell pellets were thawed on ice and cells were disrupted in the screw-cap tubes
in 200 ul (plate)/ 400 ul (tube) Lysis Buffer (150 mM NaCl (low salt) or 500 mM NaCl
(high salt), 20 mM HEPES pH 7.5, 5 mM MgClz2, 1 mM EDTA pH 8.0, 10% Glycerol,
0.25% Triton X-100, 0.5 mM DTT (fresh), 1x HALT Protease Inhibitor Cocktail (Thermo
Fisher Scientific)) with Zirconia/Silica beads (0.5 mm, BioSpec) up to the cell
suspension meniscus, using a FastPrep-24 5G bead beating grinder (MP Biomedicals)
for three rounds of 20 s at 6.5 m/s. In between bead beating rounds, tubes were
cooled on ice for 3 min to avoid overheating.

To collect the crude lysate, tube bottoms were punctured with a 26G needle, placed
into 5 ml round bottom polystyrene tubes, and centrifuged two times at 196 rcf at 4°C
for 1 min. Beads were shaken loose in between rounds. The lysate was cleared in 1.5
ml reaction tubes by centrifuging twice at 16,100 rcf at 4°C for 10 min. After the final
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clearing step, the cleared lysate was transferred to a 96-well PCR plate (non-skirted)
(plate) or a fresh 1.5 ml reaction tube (tube). Plate-based assay note: For parallel
processing of 36 IPs (12 samples in triplicates), each set of replicates was lysed
separately, and cleared lysates were kept in the covered 96-well plate on ice until all
samples were processed.

Per IP, 2 ug (plate)/ 2.5 ug (tube) anti-FLAG M2 antibody (Sigma-Adrich) were pre-
coupled to 15 ul (plate)/ 30 ul (tube) Dynabeads Protein G (Thermo Fisher Scientific)
in TBS-T (0.02% Tween 20) for 30 min at room temperature and incubated with the
cell lysate for 2 h at 4°C, rotating. Plate wells were sealed with lids and not foil.
Beads were separated on ice using the MagnaBot® Il Magnetic Separation Device
(Promega) (plate) or the DynaMag™-2 Magnet (Thermo Fisher Scientific) (tube). After
the beads settled (5-10 min), they were washed with cold buffers. Plate-based assay
note: Buffer addition with a multi-channel pipet, 180° plate rotation for beads to travel
through the buffer, plate incubation on ice for 3 min away from the magnetic plate,
bead collection on the magnetic plate, and careful removal of the buffer with a multi-
channel suction tool.

Beads were washed twice with 200 ul (plate)/ 500 ul (tube) Lysis Buffer (without
protease inhibitor) and twice with 200 ul (plate)/ 500 pl (tube) Wash Buffer (100 mM
NaCl, 20 mM HEPES pH 7.5, 5 mM MgCl2, 1 mM EDTA pH 8.0, 10% Glycerol, 0.25%
Triton X-100). To remove all detergent, beads were resuspended in 200 yl B100nd
Buffer (100 mM NaCl, 10 mM Tris-HCI pH 7.5, 2 mM MgCl.) and transferred to fresh
wells/ tubes. After beads settled (5-10 min), the supernatant was removed and beads
were washed once more with 200 yl B100nd Buffer for 5 min (for B100nd washes,
plate/ tubes are not removed from the magnet and the buffer is removed with a pipet

instead of the suction tool).
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Beads were digested for 2-3 h at 22°C (shaking occasionally) with 0.2 ug Lys-C (Wako)
(1 ul) in 5 ul digestion buffer (3 M GuaHCI, 20 mM EPPS pH 8.5, 10 mM CAA, 5 mM
TCEP). Plate wells were sealed with fresh lids. Samples were diluted with 17 ul 50 mM
HEPES pH 8.5 prior to the addition of 0.2 ug Trypsin (Thermo Fisher Scientific) (1 ul)
and incubated over-night at 37°C. The next day, the supernatant was transferred to a
96-well plate (skirted) for LC-MS/MS analysis.

IP-MS experiments for each TF and the parental untagged controls were conducted
in triplicates. For each batch (11x 150 mM NaCl IP-MS; 4x 500 mM NaCl IP-MS) of
IP-MS experiments, a positive control (Atf1-3xFLAG) and negative control (untagged)
was included. For the analysis, only one of each control per experimental protocol was

included (see Quantification and statistical analysis, Proteomics data analysis).

Mass spectrometry

Peptides generated by Lys-C/ Trypsin digestion were acidified with 0.8% TFA (final
concentration) and analyzed by LC—-MS/MS on either an EASY-nLC 1000 or a
Vanquish Neo chromatography system (both Thermo Fisher Scientific) with a two-
column setup (UPAC trapping column and 50 cm pyPAC column, or a 0.3 x 5§ mm
Pepmap C18 trapping column and an EASY-Spray Pepmap Neo 2 um C18 75 um x
150 mm column heated to 45°C) mounted on an EASY-Spray™ source connected to
an Orbitrap Fusion Lumos mass spectrometer (all Thermo Fisher Scientific, or formerly
Pharmafluidics). The peptides were loaded onto the trapping column a in 0.1% formic
acid and 2% acetonitrile in H20, then separated at room temperature (uUPAC) or 45°C
(Pepmap Neo) over an 80 min gradient with a mobile phase buffer system consisting
of Buffer A: 0.1% formic acid; Buffer B: 0.1% formic acid in 80% acetonitrile in a linear

gradient of 2—7% Buffer B in 3 min followed by a linear increase from 7-20% in 45 min,
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20-30% in 15 min, 30—-36% in 8 min, 36-45% in 2 min, and the column was finally
washed for 7 min at 100% Buffer B.

MS1 survey scans were performed every 3 s using a 120k resolution (at 200 m/z) in
the Orbitrap from 375-1575 m/z in profile mode, with a maximum injection time of 50
ms. Precursors for MS2 were selected using advanced peak determination and
monoisotopic peak determination was set to peptides and charge states 2-7 were
allowed for fragmentation. A dynamic exclusion of 8 s within +/-10 ppm tolerance was
used, and the minimum intensity was set to 1e4. Precursors were selected in the
quadrupole within an isolation window of 1.6 m/z for HCD (higher energy collisional
dissociation) fragmentation. The normalized collision energy was set to 35%. A
maximum injection time of 60 ms was used and the ion trap was scanned in rapid
mode. MS2 data were acquired in centroid mode.

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE'Y" partner repository with the dataset

identifier PXD054070.

Chromatin immunoprecipitation

Per replicate, 50 ml of yeast culture was grown to mid-log phase (ODeoo approximately
1.0-1.2) and harvested at 1,200 rcf for 4 min. Cells were resuspended in 5 ml PBS
(room temperature) and crosslinked with 1% formaldehyde (Sigma-Aldrich) at room
temperature for 15 min, rotating. The crosslinking reaction was quenched with 140 mM
Glycine for 5min, rotating. Cells were harvested at 1,200 rcf at 4°C for 4 min and
washed twice with 15 ml cold PBS before resuspension in 500 ul cold PBS and transfer

to a 2 ml screw-cap tube. Cells were harvested at 3,300 rcf at 4°C for 30 s. The
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supernatant was removed, and cell pellets were flash-frozen in liquid nitrogen (storage
at -80°C until further processing).

Frozen cell pellets were thawed on ice and cells were disrupted in 400 ul Lysis Buffer
(50 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1%
sodium deoxycholate (fresh), 1x HALT Protease Inhibitor Cocktail (Thermo Fisher
Scientific)) with Zirconia/Silica beads (0.5 mm, BioSpec) up to the cell suspension
meniscus, using a FastPrep-24 5G bead beating grinder (MP Biomedicals) for three
rounds of 1 min at 6.5 m/s. In between bead beating rounds, the tubes were cooled
on ice for 3 min to avoid overheating. To collect the crude lysate, tube bottoms were
punctured with a 26G needle, placed into 5 ml round bottom polystyrene tubes, and
centrifuged two times at 196 rcf at 4°C for 1 min. Beads were shaken loose in between
rounds. 1 ml of Lysis Buffer was added to the crude lysate before transferring it to 15
ml Bioruptor® Pico Tubes (diagenode) with sonication beads (diagenode). Samples
were sonicated twice for 12 cycles (30 s on/ 30 s off) using the Bioruptor® Pico
sonication device (diagenode) with 10-12 min incubation on ice in between sonication
rounds to avoid overheating. The lysate was cleared in 1.5 ml reaction tubes by
centrifuging twice at 16,100 rcf at 4°C for 5 min and 15 min, respectively. After the final
clearing step, the cleared lysate was transferred to a fresh 1.5 ml reaction tube. Of
each replicate, 50 ul of lysate was added to 50 ul of Lysis Buffer in a fresh tube, set
aside as input control, and kept on ice until the de-crosslinking step.

Per IP, 2.5 ug anti-FLAG M2 antibody (Sigma-Adrich) were pre-coupled to 30 ul
Dynabeads Protein G (Thermo Fisher Scientific) in TBS-T (0.02% Tween 20) for 30
min at room temperature and incubated with the cell lysate for 2 h at 4°C, rotating.
Beads were separated at room temperature using the DynaMag™-2 Magnet (Thermo

Fisher Scientific) and washed with cold buffers. Beads were washed three times with
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1 ml Lysis Buffer (without protease inhibitor), one time with 1 ml Wash Buffer (10 mM
Tris-HCL pH 8.0, 250 mM LiCl, 1 mM EDTA pH 8.0, 0.5% NP-40, 0.5% sodium
deoxycholate (fresh)), and one time with 1 ml 1x TE (10 mM Tris-HCI pH 8.0, 1 mM
EDTA). Samples were eluted in 250 ul 1% TES (1x TE, 1% SDS) in two steps. First,
beads were incubated in 125 ul 1% TES at 65°C for 10 min and the supernatant was
transferred to a fresh 1.5 ml reaction tube. Second, beads were resuspended in 125
ul 1% TES, separated on the magnetic rack, and the supernatant was combined with
the previous eluate. 150 ul of 1% TES were added to the input control before ChlIP
and input samples were de-crosslinked over-night at 65°C.

The next day, samples were treated first with 40 ug RNase A for 1 h at 37°C and then
with 60 ug Proteinase K for 1 h at 55°C. DNA was precipitated with 150 mM NaCl and
1 volume of isopropanol and extracted with 30 yl AMPure XP beads at room
temperature for 15 min, rotating. Samples were washed twice with 500 ul 80% Ethanol
(fresh) on the magnetic rack for 2 min and eluted in 20 uyl and 50 ul 1x TE for ChlIP and
input samples, respectively.

ChlIP-seq experiments for each TF and the parental untagged control were conducted
from two individual cultures (in duplicates) and each IP sample has a corresponding

input sample.

ChIP NGS library preparation and sequencing

ChIP-seq libraries were generated using the NEBnext Ultra 1| DNA Library Prep kit
(NEB), according to the manufacturer’s protocol, using NEBnext Multiplex Oligos for
lllumina (UDI) (NEB). 10 ng of DNA was used for input samples and the entire material
was used for the IP samples, with the upper limit of 10 ng when DNA was quantifiable
with Qubit dsDNA (high sensitivity) reagents (Thermo Fisher Scientific). Library
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concentration was determined using Qubit dsDNA (high sensitivity) reagents (Thermo
Fisher Scientific) and average fragment sizes were measured using the Fragment
Analyser System (Agilent). Libraries were sequenced using the NovaSeq 6000

platform (lllumina) with paired-end reads (2x 56 bp).

mRNA-sequencing

Total RNA was extracted from three individual cultures (triplicates) using the
MasterPure Yeast RNA Purification Kit (Lucigen) according to the manufacturer’'s
protocol. RNA integrity was assessed using the Tapestation RNA ScreenTape
reagents kit (Agilent). RNA concentration was determined using the Nanodrop
Spectrophotometer (Thermo Fisher Scientific) or Qubit RNA (broad range) reagents
(Thermo Fisher Scientific).

MRNA-seq libraries were generated using the lllumina Stranded mRNA Prep (lllumina)
according to the manufacturer’s protocol, using 300 ng of total RNA as input. Library
concentration was determined using Qubit dsDNA (high sensitivity) reagents (Thermo
Fisher Scientific) and the average fragment size of the final pool was measured using
the Fragment Analyser System (Agilent). Libraries were sequenced using the

NovaSeq 6000 platform (lllumina) with paired-end reads (2x 56 bp).

Microscopy

Two independent microscopy experiments were conducted (duplicates). Liquid
cultures of S. pombe cells were grown over-night in rich medium (YES) at 30°C to the
logarithmic phase (ODsoo approximately 0.6). Prior to imaging, the cells were attached

with lectin (Sigma-Aldrich) to glass bottom dishes with a microwell (MatTek). Cells
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were imaged on a DeltaVision™ Ultra High-Resolution microscope (Cytiva) with an
Olympus 60X/1.42, Plan Apo N, UIS2, 1-U2B933 objective. Z-stacks were obtained at
focus intervals of 0.25 yum and images were deconvolved with the inbuilt software
softWoRx using default settings. Images were randomized before the analysis to avoid
bias. For Z-stack processing, the top and bottom three stacks (out of 22 total stacks)
were disregarded, and Maximum Intensity Projection was applied. The FiJi/lmageJ
software'’® was used to measure the distances between the foci and the nuclear
periphery marked by Cut11-mCherry. For zone-based position quantification the
nucleus was divided into three concentric zones with equal surface area (assuming a

circular shape of the nucleus).

TFexplorer

The data visualization for the TFexplorer webtool (https://data.fmi.ch/TFexplorer/) was

done using the LinkedCharts''* and IGV.js'"® libraries in JavaScript.

AlphaFold interaction prediction

Structural predictions for the Ntu1/Ntu2 complex were obtained with AlphaFold-
Multimer®®. Jobs were run through GUIFold'"® which employs a modified pipeline
based on AlphaFold2%°" version 2.3.1. Feature generation and prediction was
according to the standard Alphafold2-Multimer protocol. Five structural models were
predicted using Ntu1 and Ntu2 protein sequences as inputs at a 1:1 stoichiometry. The
model with the lowest predicted aligned error (PAE) value for the complete prediction
was used for visualization in ChimeraX''” version 1.6.1 and colored by protein identity

or pLDDT confidence measure.
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Quantification and statistical analysis

Proteomics data analysis

Identification and quantification

The IP-MS raw files were processed as a single batch with MaxQuant''® version
2.2.0.0, with the exception of the Dal2 pulldown experiments which was processed
separately, together with a corresponding set of untagged controls. The peptide
identification was performed using a fasta database obtained from ENSEMBL

(https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-

55/fungi/fasta/schizosaccharomyces pombe/pep/Schizosaccharomyces pombe.AS

M294v2.pep.all.fa.gz) and the built-in MaxQuant contaminants database. MaxQuant

was run with mostly default settings, with LFQ (LFQ min. ratio count 2, fastLFQ: True)

and iBAQ enabled.

Processing

The proteinGroups.txt file produced by MaxQuant''® was further processed with
einprot'®® version 0.9.3. Samples generated under low salt and high salt conditions
were processed separately. Fully reproducible reports detailing the complete einprot
analysis are provided on PRIDE (PXD054070). In summary, potential contaminants,
reverse hits, proteins only identified by site, and proteins identified by less than two
peptides or with a score below 10 were filtered out. The LFQ intensities were log2-
transformed and missing values were imputed using a modified version of the MinProb
algorithm implemented in the imputeLCMD R package''® version 2.1, sampling values

to impute from a normal distribution with parameters derived from all observed values,
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rather than separately for each sample. Principal component analysis (see Figure
S2A) was performed on the imputed log-transformed intensities using the scater'® R

package version 1.26.1.

Statistical testing

The limma R package?® version 3.54.2 was used to fit a linear model for each group,
comparing the imputed log2-transformed intensities from the samples in the group to
those in a broad "complement" group. This complement group contained all samples
that were generated under the same salt conditions and with the same protocol (tube-
or plate-based, see methods Immunoprecipitation) as the group of interest. This
approach was selected over, for example, comparing to the untagged controls only, in
order to focus the attention on specific interactors rather than non-specific ones, which
may be pulled down by many baits. For each comparison, at least two observed (non-
imputed) values were required in order to report a test result for a protein, and each
sample was assigned a weight inversely proportional to the total number of
experiments for the corresponding bait. The adjusted p-values and moderated t-
statistics from /imma were used for most visualizations and determination of
interactors. In addition, two other types of comparisons were performed. In order to
detect a broader set of interactors (not just specific ones), each group was compared
to only the untagged controls obtained with the same protocol. Finally, for increased
comparability between low and high salt log2(fold-changes), each low salt group was
compared to a complement group made up of the groups that were also studied under

high salt conditions (high salt complement) (regardless of the type of protocol used).
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Generation of interaction networks

The moderated t-statistics obtained from limma?® were used as the basis for
generating protein networks, in which proteins were connected if they showed similar
enrichment patterns across the whole set of pulldown experiments. More precisely,
the moderated t-statistic profiles were first truncated by setting all values below 0 as
well as those corresponding to an adjusted p-value above 0.1 to 0. Next, a similarity

score was defined for each pair of proteins. Letting ;; denote the truncated t-statistic

for protein i in comparison j, the similarity between proteins i and k was defined by

N ;7 N iz

. (=1 tijtkj Xj=q tijtkj

simy, = min | 45—, 45—
Yjmatij o Xjqtkj

The resulting symmetric matrix of similarity scores (here after thresholding at a suitable
similarity value, in the figures in the manuscript set to 6.0) can be interpreted as an
adjacency matrix, from which a network can be constructed containing all proteins with
at least one remaining edge (for a graphical explanation see (Figure S6C)). The edges

in the displayed networks are weighted by the respective similarity scores.

Genomics data analysis

Alignment

Paired-end reads from ChlP-seq were aligned to the reference genome obtained from

ENSEMBL (https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-

55/fungi/fasta/schizosaccharomyces pombe/dna/Schizosaccharomyces pombe.AS

M294v2.dna.toplevel.fa.gz) using QuasR'' version 1.38.0 with default parameters,

resulting in read pairs with more than a single genomic hit to be discarded. For

validation of tagged yeast strains from this study, read pairs that failed to align to the
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reference genome were further aligned to a custom fasta file (go to File) containing
the TF sequences including the added tags. To account for differences in sequencing
depth, the counts were normalized by dividing them through the total number of read
pairs that mapped to each tagged TF sequence and then visualized as a heatmap
(show in Report). BigWig files were generated using QuasR (qExportWig using default
parameters and binsize=1, scaling=1e6). Public ATAC-seq data'® was first processed
by cutadapt'?® version 3.7 with parameters -a NCTGTCTCTTATA -A
NCTGTCTCTTATA --minimum-length=10 --length=50 --overlap=1, and then aligned
in the same way as ChlP-seq data (see key resources table for accession numbers of

public data).

ChlP-seq quantification

Fragments in genomic regions of interest (such as tiles or peaks) were counted using
QuasR"" with parameters shift="halflnsert", orientation="any", and useRead="first".
Raw fragment counts in regions were normalized to log2 counts per million using
lecpm = log2(r / N * 1e6 + 1), where lcpm is the log2-normalized value for a region
and sample, r is the raw fragment count for a region and sample, and N is the total

number of aligned fragments in a sample.

Identification of problematic regions

Problematic regions (also referred to as blacklisted regions), including regions with low
mappability or copy number variations between experimental strains and the reference
genome, were identified by first tiling the genome into sequential, non-overlapping
windows of 200 bp and quantifying these tiles in all 162 input samples (2 replicates for
each of the 80 tagged TF strains and the parental untagged strain). Tile counts were

normalized to lcpm values and converted to z values in each sample by subtracting
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the mean and dividing by the standard deviation over tiles on all chromosomes except
the mitochondrial ("MT"). Tiles with z values less than -2.575829 (0.5™" percentile of a
standard normal distribution) or greater than 2.575829 (99.5" percentile of a standard
normal distribution) in at least 81 (50%) of the input samples were defined as

problematic (2,387 of 63,155 tiles, 3.78%) and excluded from further analyses.

Correction of GC-bias in ChIP-seq

Genomic tiles of 200 bp were quantified and normalized to lcpm values for all 324
samples. For each sample, a linear model of the form lcpm ~ gc was fitted using R’s
Im function, where gc is the percent G+C bases in a tile. This model can be assumed
to mostly capture signals from background (non-enriched) tiles, which typically
comprise the large majority of all genomic tiles. The sample-specific coefficients ("GC-
slopes") obtained from these fits, ranged up to values of approximately 0.1 for samples
with a clear GC-bias, corresponding to most IP samples but hardly any input samples,
indicating a 219+ %1 = 2-fold increase of signal for a 10% increase of G+C content. The
GC-slopes were used to calculate GC-corrected counts for regions (tiles or peaks)
using rc = r x 29¢5*(¢=9¢) where rc and r are the GC-corrected and raw fragment
counts for a region and sample, gcs is the sample-specific linear model coefficient
("GC-slope") and gc — gc is the difference of a region’s percent G+C from the average
percent G+C over all regions. The corrected counts rc have a similar magnitude as
the raw counts r and are then used to calculate log2 counts per million (Icpm) as
described above. No GC-correction was performed for public data that was not

generated in this study.
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ChlP-seq peak finding and IP enrichment

Peak candidates were identified on the pooled replicates for each TF (IP samples only)
using MACS2'%® version 2.2.7.1 with parameters --gsize 1.21e7 --keep-dup all --
nomodel --shift 0 --qvalue 1e-6. Peak candidates in each sample were set to a width
of 500 bp centered on the peak summit identified by MACS2 and then fused across
TFs (combining overlapping peaks) to create a common set of 6,102 peak candidates.
These peak regions were then quantified in each sample, GC-corrected and
normalized to lcpm as described above. Enrichments were calculated as enr =

lepmip — lcpmippye, Where lcpmpp and  lcpmyn,,, are the Ilcpm values for

corresponding IP and input samples, respectively. Peak candidates with enr >
log, 1.75 in at least two samples (keeping replicates separate) that did not overlap
problematic regions were kept for downstream analyses, resulting in a final set of
2,027 peaks. These peaks were classified into three groups: Peaks with enr values
greater than 1.0 for at most 4 TFs (5%, replicates averaged) were classified as
"specific peaks" (1,686 peaks). The remaining peaks were further grouped into
"common frequent" (94 peaks) and "common ubiquitous" (247 peaks), using R’s
kmeans functions with parameters centers=2, nstart=10 on the enr values (replicates
averaged). A gene was annotated to be bound by a TF if it had an enriched TF peak
(enr = log, 2.0) overlapping its promoter, defined as a 1 kb bin centered on the
annotated transcript start site (TSS annotations of reference genome). Final annotated

peaks are provided as comma-separated File.

Motif finding in ChlP-seq peaks

De novo motif identification was performed using STREME'?* from the MEME motif

finding toolbox version 5.5.2. For each of the 62 TFs with at least 2 enriched specific
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peaks (replicate-averaged enr value greater than 1.0), STREME was run with the
enriched specific peaks as input (excluding common peaks), all non-enriched specific
peaks as control, and parameters objfun="de", alph="dna", nmotifs=5. The resulting
motif candidates were manually reviewed independently by two researchers based on
several motif quality criteria (motif occurrence in enriched versus non-enriched peaks
and in peaks versus the rest of the genome, motif localization relative to peak mid
points, ChlP-seq fragment density near motif hits, and motif similarity to 6-mer words
enriched in TF peaks compared to control peaks). The two manual curations were
consolidated resulting in a consensus set of 67 motifs (45 unique) identified for 38 TFs
(go to File). The universalmotif package'?® version 1.16.0 was used to calculate motif
similarities (compare_motifs function with parameters method = "PCC", tryRC=TRUE,
min.overlap=4, min.mean.ic=0.25, normalise.scores=TRUE) and to scan sequences
for motif hits (scan_sequences function with parameters threshold=1e-4,

threshold.type="pvalue", RC=TRUE).

RNA-seq processing

Paired-end reads from RNA-seq were quantified on the transcript level using
Salmon'2¢ version 1.9.0 with parameters --gcBias --seqBias —-numGibbsSamples=50.
The reference index was constructed based on reference sequences (cDNA and non-
coding RNA sequence) obtained from ENSEMBL

(https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-

55/fungi/fasta/schizosaccharomyces pombe/cdna/Schizosaccharomyces pombe.AS

M294v2.cdna.all.fa.gz and https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-

55/fungi/fasta/schizosaccharomyces pombe/ncrna/Schizosaccharomyces pombe.A

SM294v2.ncrna.fa.gz), using the genome sequence

(https://ftp.ebi.ac.uk/ensemblgenomes/pub/release-
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55/fungi/fasta/schizosaccharomyces pombe/dna/Schizosaccharomyces pombe.AS

M294v2.dna.toplevel.fa.gz) as a decoy'?” and a k-mer length of 23. In addition, reads

were aligned to the genome using STAR'?® version 2.7.10b, and the resulting bam
files were used as input to DeepTools'?® bamCoverage version 3.3.1 for generation of
bigWig files for visualization. The bigWig files were generated separately for fragments

from the positive and negative strand, using a bin width of 1 nt.

RNA-seq differential expression analysis

Transcript-level estimated counts from Salmon'® were imported into R and
summarized to the gene level (only one gene had more than one annotated transcript)
using tximeta’3° version 1.16.1. The fishpond package’®' version 2.4.1 was used to
calculate the inferential relative variance for each gene. Genes with an estimated
count of at least 5 in at least two samples, and an average inferential relative variance
below 0.178 were retained for differential expression analysis. The DESeq2'%?
package version 1.42.1 was used to create a DESeqDataSet from the
SummarizedExperiment object generated by tximeta'3°, and to compare each KO
condition to the wt control, using default settings except for setting alpha=0.05. MA

plots and correlation plots were generated based on the DESeq2 output tables.

Coverage plots

Genome coverage plot tracks for the RNA-seq data were generated from the bigWig
files created by DeepTools'®, which were imported into R using the rtracklayer
package'33 version 1.58.0. Coverage of fragments from the positive strand is displayed
as positive score values, while coverage of fragments from the negative strand is
shown as negative score values. The scores were normalized by the sample-wise

library size (the total number of reads assigned to a gene) to generate counts per
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million (CPM) values, and subset to the regions of interest (on chromosomes | and llI,
respectively). Relative CPM values, obtained by dividing by the largest observed
absolute CPM value, are used for visualization. This normalization is performed
separately for the two displayed regions. The coverage tracks of one representative

replicate are shown in the figures.

Microscopy data analysis

Cell-level measurements of distances of foci from the nuclear periphery as well as the
radii of the nuclei were imported into R (go to File), and relative distances from the
nuclear periphery were calculated. One cell where the estimated distance from the
nuclear envelope was marginally larger than the estimated radius was excluded from
further analysis. The relative distances were used for the zone-based position

classification. Cells where the relative distance to the nuclear periphery was less than

1-— \E = 0.18 were classified as 'Zone I', those with a relative distance larger than 1 —

% = 0.42 were classified as 'Zone IlI', and the remaining ones as 'Zone II'. Relative

distances were compared between conditions by summarizing the values by the
median for each replicate (to avoid pseudoreplication) and fitting a general linear

model to the summarized values, with condition as the predictor.

Additional resources

All data, metadata, and code used in this study is available on GitHub

(https://github.com/fmicompbio/Spombe_TFome) including individual reports that

allow users to fully reproduce all figures and numbers of this study with detailed

explanations of the code.
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TFexplorer, an interactive web application that allows users to explore the datasets

without computational expertise, is available at https://data.fmi.ch/TFexplorer/.
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SUPPLEMENTAL INFORMATION

Table S1. S. pombe strains used in this study, related to STAR Methods
Table S2. Primers used in this study, related to STAR Methods

Data S1. GenBank files of all plasmids used in this study, related to STAR Methods
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Figure 1 Generation of a comprehensive S. pombe strain collection to establish TF

interactomes

(A) Schematic of the screening process to identify TF interactions with proteins and
chromatin. Each strain contains one of 89 TF genes tagged at the endogenous locus with
a 3xFLAG affinity epitope. Cells cultured under optimal conditions (30°C, rich medium)
were subjected to IP-MS at 150 mM and 500 mM NacCl, and to ChlP-seq.

(B) TF distribution across DBD families as identified by the NCBI CD-Search'’. Lighter
color indicates TFs with human orthologs™.

(C) mRNA expression levels (wild-type) of investigated TFs, ordered by decreasing
transcripts per million (TPM). Grey dots represent TFs not identified in the low salt IP-MS
screen and blue bars indicate meiosis-specific TFs.

(D) Number of TF interactors identified in 150 mM (orange) and retained at 500 mM NacCl
(black) IP-MS screens (adj. p-value < 2e-4 & log2(fold-change) > 1).

(E) Number of enriched ChlIP peaks (IP/input > 2) for investigated TFs, all peaks in orange
and specific peaks (bound by at most four TFs) in black.

See also Figure S1.
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Figure 2 Investigated TFs exhibit abundant protein interactions and diverse genome-

wide binding patterns

(A) and (B) Heatmap of moderated t-statistics for 150 mM NaCl IP-MS (A) and 500 mM
NaCl IP-MS (B) screens, respectively. Proteins significantly enriched in at least one
experiment (IP vs complement, adj. p-value < 2e-4 & log2(fold-change) > 1, rows) in TF
and untagged control IP-MS experiments (triplicate averages, columns). Proteins (except
TFs without interactions) are clustered using hierarchical clustering (complete linkage)
based on the correlation between their t-statistic vectors. Columns are reordered to follow
the order of TFs in rows. Complex annotations indicate NuA4 and SAGA subunits in blue
and purple, respectively. Heatmap columns in (A) are split into "No bait” enrichment, "150
mM NaCl IP-MS" (TFs only investigated in the low salt screen), and "150 and 500 mM
NaCl IP-MS" (TFs additionally investigated in the high salt screen). Heatmap columns in
(B) are split into untagged control, "No interactions in 500 mM NaCl IP-MS" (TFs with no
detected interactors at high salt), and "Interactions in 500 mM NaCl IP-MS” (TFs with
interactions at high salt).

(C) Heatmap colored by ChIP enrichment values (log2(IP/input)). Heatmap peaks (rows)
are split into specific peaks (bound by at most four TFs) and common peaks, which are
further subdivided into frequent and ubiquitous peaks by k-means clustering of their
enrichment values across TF ChlIPs. Annotations include enriched peaks per TF (top),
accessibility data'® (ATAC-seq, right), presence of tRNA (orange) or 5S rRNA (pink)
genes (left), and ChIP-seq data (left) for H3/H3K14ac'%® and H3K9me2/H3K9me31%,
(D) Heatmap as in (C) showing binarized ChIP enrichments. Binary values (blue: TRUE,
white: FALSE) indicate average ChIP enrichment values of log2(IP/input) > 1. Additional
annotations include fraction of TFs enriched per region (right), and GC-content (%) and
distance to TSS (left).

See also Figure S2.
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Figure 3 Analysis of TF regulatory networks and de novo DNA-binding motif

identification

(A) Heatmap showing binarized ChIP enrichments at TF gene promoters (1 kb bin
centered on TSS) (rows). Binary values (blue: TRUE, white: FALSE) indicate average
ChIP enrichment values of log2(IP/input) > 1 with dark blue further indicating TF ChIP
enrichments over their own promoters. Heatmap rows are split into bound TF gene
promoters of investigated TFs, and all promoters of non-investigated TFs. Diagonal
(dashed line) matches each TF ChIP with its promoter. Asterisk (*) indicates tRNA gene
within zas7* promoter (considered artifact detected in 48 TF ChlIPs).

(B) Atf1-centric network representation of (A) with nodes representing TFs: dark blue for
autoregulated, light blue for ChlP’ed, and grey for not investigated (other). Edges indicate
detected promoter binding events, starting at the binding TF and ending at the promoter
of the bound TF. Only edges connecting to Atf1 or other TFs connecting to Atf1 are
shown. The Zas1 node was excluded based on (A). The full network is available in the
Report.

(C) Genome browser views of ChIP (colored) and input (grey) fragment densities for six
TFs around their gene loci. Scale: Counts per million (CPM) per base-pair (bp), smoothed
over 101 bp windows using a running mean. All genes are oriented to align at their TSS.
Coverage dips at 3’ ends correspond to affinity tag insertion sites.

(D) Heatmap of pairwise motif similarities (PCC), clustered into 17 groups. Three
highlighted clusters include motif labels. Top annotation shows the number of predicted
motifs per TF. Fully annotated heatmap in Figure S3B.

(E) Aligned sequence logos for motifs from two highlighted clusters in (E). UpSet plots
show the number of specific (orange) and common frequent (pink) ChIP peaks shared
among TFs with similar motifs.

See also Figure S3.


https://fmicompbio.github.io/Spombe_TFome/ms_figure_3_chip.html#Network
https://doi.org/10.1101/2024.08.20.607873
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.607873; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

mﬁﬁlﬁ—__n

Toel
This
Toe3
Mcal

Ntul
Ntu2

Toe2
Grtl

Prtl
Moc3
Gsfl
Pho7

A B
Toe3.ml
«CCACGG
CCGCAG P
CGTGGA =
6 CGCGGAe ¢ .
o [}
CACGGA a
€ =)
o [3)
E * e Q
S 31 P £
5 il o N
o o 5
[} |
= - o Qo
© ® @ - (&)
o ) >
Ot -----s2-a ity Fé “Sagiiot ~ c
- m
-3
1 10 100
6-mer frequency in peaks + 1
C Toe2.ml 20 o & 08
24 specific peaks ) CGGCCG °
2 g 20 E
5 > 93]
L9 g 10 ° 7
= © Y 241 &
o = Ty O VOO C oo L
1 3 10 30 -2 -1 0 1 2
6-mer freq. + 1 Position relative to peak center (kb)
Escl.ml 159 p 2 78
11 specific peaks . CACGTG k<]
2 = 10 £
> ° E 041
» o 5 > .
=1 £ aft A Z ,\\/ :
o © c .
AC CCC otg- - - - 1-F 5 FIorer - I : \
r 0.0+ ;
o ] E . . . . . 1 . r
1 3 10 -2 -1 0 1 2
6-mer freq. + 1 Position relative to peak center (kb)
SPAC3F10.12c.m1 0 2 f 35
25 specific peaks 154 CACGTG k5
2 = £ :
3 101 «— 041 :
- ) o .
> :
£1 £ s ®o 5 :
AA e Lo ..z pe e s 5 : \
NLEE Vek_Ta r r . . S ool . ; : r
1 3 10 30 -2 -1 0 1 2
6-mer freq. + 1 Position relative to peak center (kb)
Ams2.m1 » o 197
25 specific peaks CCCCCA S
2 = 10 ) €
@ N 4 5 051
g [ 3 "
29 E 5 o 86 0o¢" 2
S opo - 4IRS : o~
0 AJalir ° I -
ol = LIV AT - - . . 001 . : . .
1 3 10 30 -2 -1 0 1 2
6-mer freq. + 1 Position relative to peak center (kb)
i 52
Zipl.ml 75 » @
18 specific peaks ATTGCG ° :
2 = 50 ° £ :
o w041 :
o ° o :
" g 25 safas fpate :
21 £ | “ 2 :
5 CchT ¢ oor- -4 1 I - g :
ol= AVYEXAEEL . 251, . . — oot : . r
1 3 10 30 -2 -1 0 1 2
6-mer freq. + 1 Position relative to peak center (kb)
Adn2.m4 10 ° @ 135
42 specific peaks ) CCGCGC ° :
2 E 5 £ :
@ 5 031 :
%) o ®ug® © 0 2 :
21 E B @ :
= C A ¢ S F 11 o0 el & :
0 T ~ - r r r © 001 r r r r
1 3 10 30 -2 -1 0 1 2

6-mer freq. + 1

Position relative to peak center (kb)

motif
expected

SPCC417.09c

SPAC1327.01c

SPAC3H8.08c
SPBC16G5.17
SPAC3C7.04
SPBC56F2.05¢c

SPBC1773.16¢c
SPCC965.10

3.4%
0.8%

0%

30%

60%
Percent of motif sites

90%

foregr. >
backgr. o
non-peak .

0 1 2 3 4 5
Motif site enrichment (obs/exp)
motif 1.7%
expected 0.5%
0% 30% 60% 90%
Percent of motif sites
foregr. o
backgr. o
non-peak )
0 1 2 3
Motif site enrichment (obs/exp)
motif 2.2%
expected 0.3%
0% 30% 60% 90%

Percent of motif sites

foregr. o
backgr. o
non-peak )

o]

motif
expected

2

Motif site enric

4 6
hment (obs/exp)

4.6%
1.4%

0%

30%

60%
Percent of motif sites

90%

foregr. -
backgr. o
non-peak .

0

motif
expected

1

2 3
Motif site enrichment (obs/exp)

1.4%
0.4%

0%

30%

60%
Percent of motif sites

90%

foregr. -
backgr. o
non-peak .

0

motif
expected

1

2 3

Motif site enrichment (obs/exp)

~d

2.7%
1.3%

0%

30%

60%
Percent of motif sites

90%

foregr. -
backgr. o
non-peak )

0.0

05

10 15

Motif site enrichment (obs/exp)

20


https://doi.org/10.1101/2024.08.20.607873
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.607873; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure 4 Systematic evaluation reveals conserved DNA sequence preferences for

binuclear zinc cluster TFs and E-box motifs for bHLH TFs

(A) Frequency and enrichment of 6-mer DNA sequences in specific Toe3 ChIP peaks,
colored by similarity to the predicted motif Toe3.m1. Darker colors indicate higher
similarity.

(B) Clustered heatmap of 3-mer DNA sequence enrichments in specific ChIP peaks of 20
binuclear zinc cluster TFs. GC-content in green, CGG 3-mers in any orientation in black.
(C) Characterization of six predicted DNA-binding motifs. Plots (left to right): Sequence
logo of the predicted motif, frequency and enrichment of 6-mers as in (A), motif location
relative to peak center in foreground (all enriched TF ChlIP peaks, blue) and background
peaks (peaks from all other TF ChlIPs, yellow), percent of motif sites observed or expected
in foreground, background, and non-peak regions (grey) (top), and enrichment of
observed over expected (bottom).

See also Figure S4.
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Figure 5 Diverse TF interactions with other TFs, coactivator complexes, histones, and a

putative allantoicase

(A) and (B) TF-specific subset of moderated t-statistic result heatmaps for 150 and 500
mM NaCl IP-MS screens, respectively (IP vs complement). Negative values setto 0. TFs
identified in each screen (rows) plotted for TF IP-MS experiments (triplicate averages,
columns). Top annotations indicate the number of TF interactors identified for each TF
(adj. p-value < 2e-4 & log2(fold-change) > 1). Row annotations indicate known TF
complexes and their DBD family.

(C) Scatter plots correlating moderated t-statistics from 500 and 150 mM NaCl IP-MS
screens for indicated TFs (IP vs ‘high salt complement’, see methods, for all TFs except
Dal2: IP vs untagged control). Proteins significantly enriched in the high salt screen (ad,.
p-value < 0.001 & log2(fold-change) > 1) in orange and bait in pink. Dashed line intersects
bait and origin.

(D) Scatter plots correlating moderated t-statistics from 500 and 150 mM NaCl IP-MS
screens for Ace2, Rst2, and Pap1. SAGA and NuA4 subunits in purple and blue,
respectively, and bait in pink. Dashed line intersects bait and origin. Binary heatmap (left)
shows significantly enriched SAGA and NuA4 subunits (adj. p-value < 0.05 & log2(fold-
change) > 1) with TRUE values in blue.

See also Figure S5.
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Figure 6 TF interaction with 14-3-3 proteins and interactively explorable networks to

display putative prey-prey interactions

(A) Volcano plot for 500 mM NaCl IP-MS of Pho7 vs complement with significantly
enriched proteins (adj. p-value < 2e-4 & log2(fold-change) > 1) in orange and bait in pink.
(B) Schematic of Pho7 protein domain organization with DBD in orange and optimal 14-
3-3 binding motifs as black bars.

(C) UpSet plot indicating number of TF IPs with significant Rad24 and Rad25 enrichments
(IP vs untagged; adj. p-value < 0.01 & log2(fold-change) > 1). Colored by optimal 14-3-3
protein binding motif found in TF (pink: TRUE, orange: FALSE).

(D) and (E) Interaction networks for the 150 and 500 mM NaCl IP-MS screens,
respectively, with baits as orange squares. Physical interactions of TFs not annotated on
PomBase'* (February 2024) in pink. Similarity score cutoff 6. Interactive version available
in TFexplorer (show in TEexplorer).

See also Figure S6.
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Figure 7 The Nattou complex represses two transmembrane transporter genes and is

linked to perinuclear gene localization

(A) Scatter plot correlating moderated t-statistics of proteins in Ntu1 and Ntu2 500 mM
NaCl IP-MS experiments, with baits in pink.

(B) Schematic of Ntu1 and Ntu2 protein domain organization (top). Cartoon model of the
Ntu1/Ntu2 interaction as predicted by AlphaFold®-8 including the first 630 amino acid
residues with Ntu1 in yellow, Ntu2 in blue, and Ntu2’s predicted TMD in pink (bottom).
(C) Differential expression analysis of ntu14 or ntu24 cells compared to wild type. Genes
with absolute log2(fold-change) > 3 & adj. p-value < 0.001 in orange.

(D) Genome browser views at the tnaf* (chrl) and SPCC576.17c (chrlll) loci. Top:
Relative ChlP-seq fragment densities for Ntu1 (yellow) and Ntu2 (blue) in wild-type and
backgrounds. Input overlay in grey. Scale: CPM per bp, subset to the loci of interest and
scaled by dividing by the largest CPM value, separately for each of the two displayed loci
and for each anti-FLAG ChIP. Bottom: Relative mRNA-seq fragment densities (see
methods) of wt, ntu14, and ntu2? cells.

(E) Schematic representation of microscopy setup to monitor tna7* locus (marked by lacl-
GFP binding lacO array 36 kb downstream) relative to the nuclear envelope (marked by
Cut11-mCherry). The nucleus is divided into three concentric zones of equal surface area
(Zones I-111).

(F) Single images of maximum intensity Z-stack projections of wt, ntu14, and ntu24 cells.
(G) Quantification of the relative zone distribution of lacl-GFP in wt, ntu14, and ntu22 cells.
n indicates the number of cells counted in two independent experiments.

See also Figure S7.
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Figure S1 Extended overview of S. pombe TF expression and interactome results,

related to Figure 1

(A) mRNA expression levels (wild-type) of investigated TFs, ordered by decreasing TPM.
Grey dots represent TFs not identified in the low salt IP-MS screen and blue bars indicate
meiosis-specific TFs.

(B) Number of interactors identified in the 150 mM NaCl IP-MS screen for investigated
TFs in the same order as in (A).

(C) Number of enriched ChlIP peaks (IP/input > 2) for investigated TFs, all peaks in orange
and specific peaks (bound by at most four TFs) in black in the same order as in (A). Grey

bars indicate TFs not included in the ChlP-seq screen.


https://doi.org/10.1101/2024.08.20.607873
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.607873; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available ugier aCC-BY 4.0 International license.

Ace2

“1Adn2  “1Adn3

JAms2

o

o

“Pret “Prz1

Rebl

Resl

A
150 mM NacCl IP-MS
" %
40 .
we
s
3
— 201
N
N
O
o 0-
_20_
20 0 20 40
PC1 (21.6%)
® Plate A Tube
o Atfl Other baits
500 mM NacCl IP-MS
201 g ¢
£ 10
=
O
g 97
_10_
10 0 10 20
PC1 (14.4%)
o Affl Other baits
(o4
)
% 1000.0
@
e 3
24 1001
=g
o
@
= |
2 0.1
=
0 1 >1
Number of promoter TF peaks
D
HOT TFs Other TFs
LUL> T T
=k 8 " meoow - ow
=
o
Q . . e o
: [}
T "t m " " ako "
eb .o e
L
= e e .
E L]
o\ - - om

Moo. tstat. [T
0 5 10 15

o

SPAC11D341c* SPAC11D317 41SPAC1327.01c

4

o

*1SPAC3F10.12c “]1SPAC3H8.08¢

4

4

DM OM
LE iy
B 2 0

2 4

41SPBC56F2:05¢ *1SPCC18.03

[Toe2



https://doi.org/10.1101/2024.08.20.607873
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.607873; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure S2 Investigated TFs exhibit abundant protein interactions and diverse genome-

wide binding patterns, related to Figure 2

(A) Principal component analysis (PCA) of all IPs at 150 mM NaCl (top) and 500 mM NacCl
(bottom). Positive control IPs (Atf1-3xFLAG) in pink. Point shapes indicate experimental
protocols (circle = Plate, triangle = Tube). Also see methods.

(B) Pairwise correlation of ChIP enrichments (log2(IP/input)) between replicates.

(C) Distribution of log-scaled TPM values of protein-coding genes according to the
number of TF peaks in their promoter (1 kb bin centered on TSS).

(D) Heatmap of moderated t-statistics of the 150 mM NaCl IP-MS screen for all TFs (IP
vs untagged control). Heatmap is split by HOT and other TFs, with column order matching

row order.
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Figure S3 Analysis of TF regulatory networks and de novo DNA-binding motif

identification, related to Figure 3

(A) Genome browser views of ChIP (colored) and input (grey) fragment densities for
eleven TFs around their gene loci. Scale: CPM per bp, smoothed over 101 bp windows
using a running mean. Asterisk (*) indicates enrichment over tRNA gene (considered
artifact detected in 48 TF ChIPs). All genes are oriented to align at their TSS. Coverage
dips at 3’ ends correspond to affinity tag insertion sites.

(B) Fully annotated heatmap of pairwise motif similarities (PCC), clustered into 17 groups.
(C) Percent of genome-wide motif sites overlapping ChIP enrichments of the
corresponding TF, indicated separately for each peak class in blue (common ubiquitous),

pink (common frequent), and orange (specific).
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Figure S4 bHLH TF ChIP peaks comparison, related to Figure 4

(A) UpSet plot showing the number of common ubiquitous (blue), common frequent
(pink), and specific (orange) ChIP peaks among Esc1 and SPAC3F10.12c.
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Figure S5 Approximately one in three TFs engage in TF-TF interactions, related to Figure

5

(A) Pie charts of TF-vs-TF interactions detected in the 150 and 500 mM NaCl IP-MS
screens qualified using a strict (adj. p-value < 2e-4 & log2(fold-change) > 1) or lenient
(adj. p-value < 0.01 & log2(fold-change) > 1) cutoff. Charts are divided into interactions
observed within (same) and between (different) DBD families. The black arc indicates the
expected fraction of interactions within the same DBD family given the sizes of the DBD
families.

(B) Volcano plot for 500mM NaCl IP-MS of Adn2 vs complement with significantly
enriched proteins (adj. p-value < 2e-4 & log2(fold-change) > 1) in orange and the bait in
pink.

(C) Heatmap of moderated t-statistics for histone proteins Hta1, Htb1, Hht2, and Hhf2

from the 500 mM NaCl IP-MS screen (IP vs complement), row clustered.
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Figure S6 Extensive interactions between TFs and Rad24/Rad25 suggest widespread TF

regulation by 14-3-3 proteins, related to Figure 6

(A) Heatmap of moderated t-statistics for Rad24 and Rad25 from the 150 mM NacCl IP-
MS screen (IP vs untagged control), row clustered.

(B) Table annotating protein sequence motifs matching the pattern (R-x-x-[S/T]-x-P) of
TFs interacting with at least one 14-3-3 protein (go to File). Amino acid positions of motifs
are shown in brackets.

(C) Schematic explaining the calculation of pairwise protein similarities across IPs to
generate bait-agnostic prey-prey interaction networks using known interacting proteins,
Atf1 and Pcr1, alongside an unrelated protein, the INO80 subunit Arp8, as examples. In
summary, we truncated the moderated t-statistic profile for each protein across all IPs,
setting all negative values or values with an adjusted p-value above 0.1 to 0 and
calculated a similarity score for each pair of proteins based on these truncated t-statistics.
We computed the inner product of the truncated t-statistic vectors for each two IPs. Next,
we divided this number by the sum of the truncated t-statistics to obtain two similarity
scores. To avoid overestimating interactions, we selected the minimum of these two
scores, resulting in a symmetric matrix. By thresholding the matrix of similarity scores, we
create an adjacency matrix, from which we generate a network containing all proteins
with at least one remaining edge, with the edge weight indicating the similarity between

profiles of two proteins across all IPs. Also see methods.
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Figure S7 Nattou-mediated gene repression at the nuclear periphery, related to Figure

7

(A) Cartoon models of the Ntu1/Ntu2 interaction (full-length) predicted by AlphaFold®-.
Left model: Colored by protein identities with Ntu1 in yellow, Ntu2 in blue, and Ntu2'’s
predicted TMD in pink. Right model: Colored by model confidence (pLDDT).

(B) Quantification of lacl-GFP in wt, ntu14, and ntu22 cells relative to the nuclear envelope
(NE). n indicates the number of cells counted in two independent experiments. Statistical
analysis was performed by fitting a linear model to the median of the relative distances
per replicate, using condition as the sole predictor.

(C) mRNA expression levels (wild-type) for genes around the tna7* locus (30 kb window)
in TPMs.

(D) Log2(fold-change) gene expression around the tna7* locus (30 kb window) in ntu14
or ntu22 cells compared to wild type. tna7* gene indicated by orange box.

(E) Genome browser views at the tna1* (chrl) and SPCC576.17c (chrlll) loci showing
relative ChlP-seq fragment densities for Ntu2 (blue) and Ntu22™P (pink), with input
overlay in grey. Scale: CPM per bp, subset to the loci of interest and scaled by dividing

by the largest CPM value, separately for each of the two displayed loci.
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