

1 **Neurons enhance blood-brain barrier function via upregulating claudin-5**
2 **and VE-cadherin expression due to GDNF secretion**

3 **Author names**

4 Lu Yang^a, Zijin Lin^a, Ruijing Mu^a, Wenhan Wu^a, Hao Zhi^a, Xiaodong Liu^{a,*}, Hanyu
5 Yang^{a,*}, Li Liu^{a,*}

6 **Affiliations**

7 ^aDepartment of Pharmacology, School of Pharmacy, China Pharmaceutical University,
8 Nanjing 210009, China

9 *Correspondence.

10 Tel./fax: +86 2583271060

11 Email address: xdliu@cpu.edu.cn (Xiaodong Liu), shenyhy@cpu.edu.cn (Hanyu
12 Yang), liulee@cpu.edu.cn (Li Liu)

13 **Impact Statement**

14 Neurons and astrocytes enhance the integrity of BBB by releasing GDNF. The
15 released GDNF upregulated claudin-5 and VE-cadherin expression by the activation
16 of PI3K/AKT and MAPK/ERK pathways.

17

18 **Abstract**

19 Blood-brain barrier (BBB) prevents neurotoxins from entering central nervous
20 system. We aimed to establish and characterize an *in vitro* triple co-culture BBB
21 model consisting of brain endothelial cells hCMEC/D3, astrocytoma U251 cells, and
22 neuroblastoma SH-SY5Y cells. Co-culture of SH-SY5Y and U251 cells markedly
23 enhanced claudin-5 and VE-cadherin expression in hCMEC/D3 cells, accompanied by
24 increased transendothelial electrical resistance and decreased permeability.
25 Conditioned medium (CM) from SH-SY5Y cells (S-CM), U251 cells (U-CM), and
26 co-culture of SH-SY5Y and U251 cells (US-CM) also promoted claudin-5 and
27 VE-cadherin expression. Glial cell line-derived neurotrophic factor (GDNF) levels in
28 S-CM and US-CM were significantly higher than CMs from hCMEC/D3 and U-CM.
29 Both GDNF and US-CM upregulated claudin-5 and VE-cadherin expression, which
30 were attenuated by anti-GDNF antibody and GDNF signaling inhibitors. GDNF
31 increased claudin-5 expression via the PI3K/AKT/FOXO1 and MAPK/ERK pathways.
32 Meanwhile, GDNF promoted VE-cadherin expression by activating PI3K/AKT/ETS1
33 and MAPK/ERK/ETS1 signaling. The roles of GDNF in BBB integrity were
34 validated using brain-specific *Gdnf* silencing mice. The developed triple co-culture
35 BBB model was successfully applied to predict BBB permeability. In conclusion,
36 neurons enhance BBB integrity by upregulating claudin-5 and VE-cadherin
37 expression through GDNF secretion and established triple co-culture BBB model may
38 be used to predict drugs' BBB permeability.

39

40 **Keywords**

41 Blood-Brain Barrier; *in vitro* BBB model; Glia-derived neurotrophic factor; IVIVC;
42 Co-culture; Tight junction

43

44 **Introduction**

45 As a dynamic interface between the blood circulatory system and the central
46 nervous system (CNS), the blood-brain barrier (BBB) maintains homeostasis and
47 normal function of CNS by strictly regulating material exchange between the blood
48 and brain (Palmiotti et al., 2014). The maintenance of BBB is mainly attributed to the
49 expression of tight junctions (TJ) and adherent junctions (AJ) between adjacent brain
50 endothelial cells as well as a variety of drug transporters. However, as a double-edged
51 sword that protects CNS function, BBB also restricts the transport of some drugs from
52 blood to brain, leading to poor CNS therapeutic effects and even CNS treatment
53 failure (Banks, 2016).

54 Several *in silico*, *in vitro*, *in situ*, and *in vivo* methods have been developed to
55 assess the permeability of drugs across BBB, but each method has its limitations
56 (Hanafy et al., 2021). The *in situ* brain perfusion (ISBP) is considered the “gold
57 standard” for assessing BBB permeability but there exist limits related to animal
58 ethics. Moreover, ISBP is not suitable for human or high-throughput workflows. Thus,
59 a suitable, accurate, and high-throughput *in vitro* BBB model is required to predict the
60 permeability of drug candidates through BBB.

61 BBB is formed by neurovascular units (NVU), composed of neural (neurons,
62 microglia, and astrocytes) and vascular components (vascular endothelial cells,
63 pericytes, and vascular smooth muscle cells) (Potjewyd et al., 2018). The constant
64 crosstalk and interactions among these cells contribute to the structural and

65 signaling-based regulation of transcellular and paracellular transport, control of BBB
66 permeability, and regulation of cerebral circulation (Arvanitis et al., 2020; Muoio et
67 al., 2014; Potjewyd et al., 2018). Although brain microvascular endothelial cells
68 (BMECs) are commonly utilized as an *in vitro* BBB model to assess drug
69 permeability across BBB, *in vitro* mono-culture of BMECs tends to lose some unique
70 characteristics without the support of other cell types. To overcome the drawbacks of
71 mono-culture BBB models, a range of multicellular co-culture BBB models
72 co-cultured with other NVU elements (such as astrocytes or pericytes) have been
73 developed. Astrocytes are the most abundant glial cell type in brain (Clasadonte et al.,
74 2017). Their terminal feet cover >80% of the surface of capillaries to form
75 interdigitating coverage without slits (Mathiisen et al., 2010). In addition, astrocytes
76 also contain several proteins related to the tight binding of the basement membrane.
77 The *in vitro* multicellular co-culture BBB models composed of astrocytes, pericytes,
78 and endothelial cells are considered to mimic the vascular structure and offer
79 paracellular tightness in BBB (Ito et al., 2019; Nakagawa et al., 2009; Watanabe et al.,
80 2021).

81 Neurons also play a crucial role in the NVU and may be involved in the
82 regulation of BBB function. The maturation of BBB in mice considerably overlaps
83 with the establishment of neuronal activity (Biswas et al., 2020). A study revealed that
84 the conditioned medium collected from primary rat neurons also attenuated cell death
85 caused by glucose-oxygen-serum deprivation (Lin et al., 2016). Furthermore, the
86 primary rat neurons were reported to affect the differentiation and formation of
87 BMECs (Savettieri et al., 2000; Schiera G. et al., 2003; Xue et al., 2013). Recent
88 research reported that, compared with the double co-culture of hCMEC/D3 and
89 1321N1 (human astrocytoma cells), the triple co-culture of hCMEC/D3, 1321N1, and

90 human neuroblastoma SH-SY5Y cells exhibited a higher transendothelial electrical
91 resistance (TEER) (Barberio et al., 2022). A similar report showed that co-cultivation
92 of RBE4.B (rat brain capillary endothelial cells) and neurons resulted in the lower
93 permeability of [³H] sucrose than RBE4.B cells grown alone (Schiera Gabriella. et al.,
94 2005). All these studies indicate that neurons, as the elements of the NVU, may be
95 tightly connected to the formation and maintenance of BBB functions.

96 The aims of the study were: 1) to establish and characterize an *in vitro* triple
97 co-culture BBB model consisting of human brain endothelial cells (hCMEC/D3),
98 human astrocytoma cells (U251), and human neuroblastoma cells (SH-SY5Y); 2) to
99 investigate whether neurons were involved in the formation and maintenance of BBB
100 integrity and explore their underlying mechanisms. The integrity of BBB was
101 evaluated by quantifying the leakage of both fluorescein and FITC-Dextran 3–5 kDa
102 (FITC-Dex); 3) to validate the *in vitro* results through *in vivo* experiments. Finally, the
103 *in vivo/in vitro* correlation assay (IVIVC) was analyzed to prove that the triple
104 co-culture BBB model could better predict the BBB penetration of CNS drugs
105 compared with the mono-culture BBB model.

106

107 **Result**

108 **Establishment and characterization of the *in vitro* triple co-culture BBB 109 model**

110 Four types of BBB *in vitro* models were established to compare the contributions
111 of U251 and SH-SY5Y cells to hCMEC/D3 cells (Figure 1A). TEER values were
112 measured during the co-culture (Figure 1B). TEER values of the four *in vitro* BBB
113 models gradually increased until day 6. On day 7, the TEER values showed a
114 decreasing trend. Thus, six-day co-culture period was used for subsequent

115 experiments. The highest TEER values were observed in the triple co-culture BBB
116 model, followed by double co-culture with U251 cells and double co-culture with
117 SH-SY5Y cells BBB models, hCMEC/D3 cells mono-culture BBB model showed the
118 lowest TEER values. We also measured the TEER values of U251 monolayer cells,
119 and the results showed that U251 cells themselves also contributed to the physical
120 barrier of the model (Figure 1C). The apparent permeability coefficient (P_{app}) values
121 of fluorescein and FITC-Dex were measured to characterize the integrity of four BBB
122 models (Figure 1D, 1E). Consistent with the TEER values, the triple co-culture BBB
123 model showed the lowest permeability of fluorescein and FITC-Dex, followed by
124 double co-culture with U251 cells and double co-culture with SH-SY5Y cells BBB
125 models. It was noticed that monolayer of U251 cells itself also worked as a barrier,
126 preventing the leakage of permeability markers, which may explain why the
127 permeability of FITC-Dex in double co-culture model with U251 cells is lower than
128 that in double co-culture model with SH-SY5Y cells (Figure 1F). Co-culture with
129 SH-SY5Y, U251, and U251 + SH-SY5Y cells also enhanced the proliferation of
130 hCMEC/D3 cells. Moreover, the promoting effect of SH-SY5Y cells was stronger
131 than that of U251 cells (Figure 1G-1I). Furthermore, hCMEC/D3 cells were incubated
132 with basic fibroblast growth factor (bFGF), which promotes cell proliferation without
133 affecting both claudin-5 and VE-cadherin expression (Figure 2F). The results showed
134 that incubation with bFGF increased cell proliferation and reduced permeabilities of
135 fluorescein and FITC-Dex across hCMEC/D3 cell monolayer. However, the
136 permeability reduction was less than that by double co-culture with U251 cells or
137 triple co-culture. These results inferred that contribution of cell proliferation to the
138 barrier function of hCMEC/D3 was minor (Figure 1—figure supplement 1).

139 The paracellular barrier of BBB is also associated with TJs, AJs, and transporters

140 (Abbott, 2013). The mRNA levels of TJs (claudin-5, ZO-1, and occludin), AJs
141 (VE-cadherin and β -catenin), and transporters (P-gp, BCRP, OCT-1, OCT-2, OAT-3,
142 and OATP1A1) in hCMEC/D3 cells from the four BBB models were analyzed using
143 qPCR (Figure 1J and 1K). Compared with hCMEC/D3 cell mono-culture model,
144 double co-culture with SH-SY5Y, double co-culture with U251, and triple co-culture
145 BBB models showed markedly increases in claudin-5, VE-cadherin, β -catenin, and
146 BCRP mRNA expression. Expression of corresponding proteins was measured using
147 Western blot (Figure 1L-1O). Notably increased claudin-5 expression was detected in
148 double co-culture with SH-SY5Y cells and triple co-culture BBB models, while
149 VE-cadherin expression was markedly increased in double co-culture with U251 cells
150 and triple co-culture BBB models. Expression levels of other TJ proteins (ZO-1 and
151 occludin) and AJ protein (β -catenin) were unaltered. The expression of BCRP was
152 slightly affected by co-cultivation with U251 cells. Significant negative correlations
153 were found between P_{app} values of fluorescein and the expression of claudin-5 or
154 VE-cadherin. P_{app} values of FITC-Dex were also negatively correlated to the
155 expression levels of claudin-5 or VE-cadherin (Figure 1P-1S). These results indicate
156 that the decreased permeability of fluorescein and FITC-Dex mainly results from the
157 upregulated expression of both claudin-5 and VE-cadherin.

158 **Neurons and astrocytes upregulated the expression of claudin-5 and**
159 **VE-cadherin by GDNF secretion.**

160 The hCMEC/D3 cells did not direct contact with U251 or SH-SY5Y cells in the
161 double co-culture and triple co-culture BBB models, indicating that cell-cell
162 interaction between U251, SH-SY5Y, and hCMEC/D3 cells relied on secreted active
163 factors. To test this hypothesis, the effects of conditioned medium (CM) from
164 SH-SY5Y cells (S-CM), U251 cells (U-CM), and co-culture of SH-SY5Y and U251

165 cells (US-CM) on the expression of claudin-5 and VE-cadherin in hCMEC/D3 cells
166 were analyzed (Figure 2A). Both S-CM, U-CM, and US-CM markedly increased the
167 expression of claudin-5 and VE-cadherin. US-CM showed the strongest induction
168 effects on claudin-5 and VE-cadherin.

169 To investigate which cytokines were involved in the promotion of hCMEC/D3
170 cell integrity by U251 and SH-SY5Y cells, the mRNA expression levels of various
171 cytokines in these three types of cells were compared. The results showed that U251
172 or SH-SY5Y cells exhibited significantly higher expression levels of GDNF, nerve
173 growth factor (NGF), insulin-like growth factor-1 (IGF-1), vascular endothelial
174 growth factor (VEGF), bFGF, and transforming growth factor- β (TGF- β) compared to
175 hCMEC/D3 cells (Figure 2B). Furthermore, the mRNA expression of GDNF, IGF-1,
176 TGF- β , and bFGF in SH-SY5Y cells was higher than those in U251 cells

177 In these cytokines, GDNF (Dong et al., 2018; Igarashi et al., 1999; Shimizu et al.,
178 2012), bFGF (Shimizu et al., 2011; Wang et al., 2016), IGF-1 (Ji-Ae K et al., 2009;
179 Nowrangi et al., 2019), and TGF- β (Fu et al., 2021) have been reported to promote
180 BBB integrity. Thus, the concentrations of GDNF, bFGF, IGF-1, and TGF- β in the
181 CMs were measured (Figure 2C). The results showed that levels of GDNF, bFGF, and
182 IGF-1 in S-CM and US-CM were significantly higher than CMs from hCMEC/D3
183 cells (H-CM) and U-CM, but levels of TGF- β in S-CM and U-CM were lower than
184 those in H-CM. Interestingly, the level of IGF-1 in US-CM was remarkably lower
185 than that in S-CM, indicating that U251 cells suppressed IGF-1 secretion from
186 SH-SY5Y. The effects of GDNF, bFGF, IGF-1, and TGF- β on the expression of
187 claudin-5 and VE-cadherin were investigated (Figure 2D-2G). Among the four tested
188 neurotrophic factors, only GDNF induced the expression of claudin-5 and
189 VE-cadherin in a concentration-dependent manner (Figure 2D). In contrast, a high

190 level (5 ng/mL) of TGF- β slightly downregulated claudin-5 expression (Figure 2G).

191 These results demonstrate that upregulation of claudin-5 and VE-cadherin expression

192 by US-CM are attributed to secreted GDNF.

193 To provide additional verification of the deduction, anti-GDNF antibody was

194 used to neutralize exogenous and endogenous GDNF in culture medium. Consistent

195 with our expectation, the anti-GDNF antibody concentration-dependent reversed the

196 US-CM-induced claudin-5 and VE-cadherin expression (Figure 2H). Furthermore,

197 GDNF-induced upregulation of claudin-5 and VE-cadherin expression was also

198 reversed by the anti-GDNF antibody (Figure 2I). The induction effects of US-CM and

199 GDNF on the claudin-5 and VE-cadherin expression in hCMEC/D3 cells were also

200 confirmed in primary rat brain microvascular endothelial cells (Figure 2J)

201 GDNF forms a heterohexameric complex with two GFR α 1 molecules and two

202 RET receptors to activate the GDNF-GFR α 1-RET signaling (Fielder et al., 2018). The

203 RET receptor tyrosine kinase inhibitor SPP-86 (Bhallamudi et al., 2021) and Src-type

204 kinase inhibitor PP2 (Morita et al., 2006) were used to further investigate whether

205 GDNF upregulated the expression of claudin-5 and VE-cadherin in hCMEC/D3 cells

206 by activating the GDNF-GFR α 1-RET signaling pathway. Both SPP-86 and PP2

207 markedly attenuated claudin-5 and VE-cadherin expression induced by GDNF (Figure

208 2K) and US-CM (Figure 2L).

209 The contributions of GDNF-induced claudin-5 and VE-cadherin expression to

210 TEER and permeability were investigated using hCMEC/D3 cells mono-culture BBB

211 model. GDNF significantly increased TEER values (Figure 2M, 2O) and decreased

212 the permeability of fluorescein and FITC-Dex (Figure 2N, 2P), which were almost

213 abolished by SPP-86 or PP2. Furthermore, treatment with SPP-86 or PP2 completely

214 reversed the increased TEER values (Figure 2Q, 2S) and decreased permeability of

215 fluorescein and FITC-Dex (Figure. 2R, 2T) in the triple co-culture BBB model. These
216 results indicate that neurons but also astrocytes upregulate claudin-5 and VE-cadherin
217 expression in hCMEC/D3 cells by secreting GDNF. Subsequently, GDNF induces
218 claudin-5 and VE-cadherin expression by activating GDNF-GFR α 1-RET signaling.

219 **GDNF induced claudin-5 and VE-cadherin expression of hCMEC/D3 by
220 activating the PI3K/AKT and MAPK/ERK pathways**

221 GDNF exerts its biological activities by activating several signaling pathways,
222 including the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT),
223 mitogen-activated protein kinase (MAPK)/ extracellular regulated kinase (ERK),
224 MAPK/ c-Jun N-terminal kinase (JNK), and MAPK/ p38 pathways (Fielder et al.,
225 2018). The effects of the PI3K/AKT, MAPK/ERK, MAPK/JNK, and MAPK/p38
226 pathway inhibitors LY294002 (Figure 3A), U0126 (Figure 3B), SP600125 (Figure
227 3C), and SB203580 (Figure 3D), respectively, on GDNF-induced claudin-5 and
228 VE-cadherin expression in hCMEC/D3 cells were investigated. GDNF increased
229 claudin-5 and VE-cadherin expression, accompanied by the phosphorylation of AKT
230 (p-AKT) and ERK (p-ERK). However, it did not stimulate the phosphorylation of
231 JNK and p38. SPP-86, LY29002, and U0126 significantly suppressed GDNF-induced
232 claudin-5 and VE-cadherin expression, while SP600125 and SB203580 had almost no
233 effect on GDNF-induced claudin-5 and VE-cadherin expression. GDNF-induced
234 phosphorylation of AKT and ERK was also markedly attenuated by the anti-GDNF
235 antibody (Figure 3E). Similarly, US-CM remarkably upregulated the expression of
236 claudin-5, VE-cadherin, p-AKT, and p-ERK, which were also markedly reversed by
237 SPP-86, LY29002, U0126, or anti-GDNF antibody (Figure 3F-3J). These findings
238 indicate that GDNF induces the expression of claudin-5 and VE-cadherin in
239 hCMEC/D3 cells by activating both the PI3K/AKT and MAPK/ERK pathways.

240 **GDNF upregulated the claudin-5 expression in hCMEC/D3 cells by activating
241 the PI3K/AKT/FOXO1 pathway**

242 Claudin-5 is negatively regulated by the transcriptional repressor forkhead box
243 O1 (FOXO1) (Beard et al., 2020). FOXO1 is also an important target of PI3K/AKT
244 signaling. FOXO1 phosphorylation results in FOXO1 accumulation in the cytoplasm
245 (Zhang et al., 2011) and lowers its level in the nucleus. Here, we investigated whether
246 GDNF-induced claudin-5 expression is involved in FOXO1 nuclear exclusion. As
247 shown in Figure 4A, both GDNF and US-CM significantly enhanced FOXO1
248 phosphorylation (p-FOXO1). Similarly, GDNF and US-CM increased the levels of
249 phosphorylated and unphosphorylated FOXO1 in the cytoplasm and decreased the
250 levels of nuclear FOXO1 (Figure 4B). Whether FOXO1 was involved in the
251 GDNF-induced regulation of claudin-5 and VE-cadherin expression was investigated
252 in hCMEC/D3 cells transfected with *FOXO1* siRNA. Silencing *FOXO1* significantly
253 decreased FOXO1 levels in both whole-cell lysates and nucleus of hCMEC/D3 cells
254 (Figure 4C), demonstrating *FOXO1* silencing efficacy. Consistent with our
255 expectation, silencing *FOXO1* upregulated the expression of claudin-5 rather than
256 VE-cadherin expression (Figure 4D). In contrast, high levels of FOXO1 were
257 observed in both whole-cell lysates and nucleus of hCMEC/D3 cells that were
258 transfected with plasmids containing *FOXO1*. Meanwhile, FOXO1 overexpression
259 resulted in a decrease in both basal and GDNF-induced claudin-5 expression (Figure
260 4E), consistent with the known role of FOXO1 on claudin-5 expression.

261 Several reports have demonstrated that nuclear localization of FOXO1 is
262 modulated by multiple pathways, including the PI3K/AKT (Tang et al., 1999) and
263 MAPK/ERK (Asada et al., 2007) pathways. The effects of LY294002 and U0126 on
264 GDNF-induced FOXO1 phosphorylation were measured in hCMEC/D3 cells.

265 LY294002, but not U0126, significantly reversed the GDNF-induced alterations in
266 total p-FOXO1, cytoplasmic p-FOXO1, cytoplasmic FOXO1, and nuclear FOXO1
267 (Figure 4F). Furthermore, LY294002 reversed the upregulation of claudin-5
268 expression induced by *FOXO1* siRNA and GDNF (Figure 4G).

269 It was reported that VE-cadherin also upregulates claudin-5 via inhibiting
270 FOXO1 activities (Taddei et al., 2008). Effect of VE-cadherin on claudin-5 was
271 studied in hCMEC/D3 cells silencing VE-cadherin. It was not consistent with Taddei
272 et al. that silencing VE-cadherin only slightly decreased the mRNA level of claudin-5
273 without significant difference. Furthermore, basal and GDNF-induced claudin-5
274 protein levels were unaltered by silencing VE-cadherin (Figure 4—figure supplement
275 1). Thus, the roles of VE-cadherin in regulation of claudin-5 in BBB should be further
276 investigated.

277 **GDNF upregulated VE-cadherin expression in hCMEC/D3 cells by
278 activating the PI3K/AKT/ETS1 and MAPK/ERK/ETS1 signaling
279 pathways.**

280 E26 oncogene homolog 1 (ETS1) is a transcription factor that binds to the
281 ETS-binding site located in the proximal region of the VE-cadherin promoter, hence
282 regulating the expression of VE-cadherin (Lelievre et al., 2000; Luo et al., 2022).
283 Activation of the PI3K/AKT (He et al., 2023; Hui et al., 2018) and MAPK/ERK
284 (Watanabe et al., 2004) pathways was reported to upregulate the expression of ETS1.
285 The previous results showed that GDNF induced VE-cadherin and claudin-5
286 expression in hCMEC/D3 cells by activating the PI3K/AKT and MAPK/ERK
287 pathways. Therefore, we hypothesized that GDNF modulated ETS1 levels to promote
288 VE-Cadherin and claudin-5 expression through PI3K/AKT and MAPK/ERK
289 signaling pathways. Both US-CM and GDNF significantly increased total (Figure 5A)

290 and nuclear ETS1 expression (Figure 5B). LY294002 and U0126 markedly attenuated
291 GDNF-induced total (Figure 5C) and nuclear ETS1 expression (Figure 5D). To
292 further confirm the involvement of the PI3K/AKT/ETS1 and MAPK/ERK/ETS1
293 pathways in GDNF-induced VE-cadherin expression, ETS1 in hCMEC/D3 cells was
294 knocked down using *ETS1* siRNA. *ETS1* silencing saliently declined the expression
295 levels of total (Figure 5E) and nuclear (Figure 5F) ETS1 in hCMEC/D3 cells,
296 demonstrating silencing efficacy. In *ETS1* silencing hCMEC/D3 cells, GDNF no
297 longer induced the expression of total (Figure 5E) and nuclear (Figure 5F) ETS1.
298 Moreover, *ETS1* silencing substantially downregulated VE-cadherin expression and
299 attenuated GDNF-induced VE-cadherin expression (Figure 5G and 5H), while having
300 minimal impact on both basal and GDNF-induced claudin-5 expression (Figure 5G
301 and 5I).

302 **Brain GDNF deficiency increased BBB permeability partly due to the
303 impairment of claudin-5 and VE-cadherin expression**

304 To further demonstrate the positive effects of GDNF on BBB maintenance,
305 GDNF in mice brains was knocked down via intracerebroventricular injection of
306 AAV-PHP.eB packaged with *Gdnf* short hairpin RNA (shRNA) (Figure 6A).
307 Knockdown efficiency was confirmed through Western blotting (Figure 6B).
308 Consistent with *in vitro* results, GDNF knockdown greatly downregulated claudin-5
309 and VE-cadherin expression in the mice brains (Figure 6B). The integrity of BBB was
310 assessed by examining the brain distributions of fluorescein and FITC-Dex. The
311 results showed that specifically knocking down brain GDNF little affected plasma
312 levels of fluorescein (Figure 6C) and FITC-Dex (Figure 6F), but significantly elevated
313 the concentrations of fluorescein (Figure 6D) and FITC-Dex (Figure 6G) in the brains,
314 leading to notable increases in the brain-to-plasma concentration ratios of two probes

315 (Figure 6E and 6H). These alterations were consistent with the decline in claudin-5
316 and VE-cadherin expression. In addition, significant reductions in the levels of p-AKT
317 (Figure 6I), p-ERK (Figure 6J), p-FOXO1 (Figure 6K), and ETS1 expression (Figure
318 6L) were observed in the brains of *Gdnf* knockdown mice.

319 **The triple co-culture BBB model better predicted the permeabilities of**
320 **drugs across BBB**

321 In this study, 18 drugs were utilized to further investigate the superiority of the
322 triple co-culture BBB model over the hCMEC/D3 mono-culture BBB model. The P_{app}
323 of 18 drugs from the apical to the basolateral side based on the hCMEC/D3
324 mono-culture ($P_{app, Mono}$) and triple co-culture ($P_{app, Triple}$) BBB models are measured
325 and listed in Table 1. The results showed that $P_{app, Triple}$ values of all tested drugs were
326 lower than the $P_{app, Mono}$ values. Significant differences were observed in 14 out of 18
327 drugs. The predicted permeability coefficient-surface area product values (PS) of the
328 tested drugs were respectively calculated based on their $P_{app, Mono}$ values ($PS_{Pre, Mono}$),
329 and $P_{app, Triple}$ values ($PS_{Pre, Triple}$). The predicted PS values were further compared to
330 their corresponding observations (PS_{obs}). The results showed that the predictive
331 accuracy of $PS_{Pre, Triple}$ was superior to $PS_{Pre, Mono}$. Except for verapamil, amitriptyline,
332 fluoxetine, and clozapine, the predicted $PS_{Pre, Triple}$ values of the other 14 drugs in the
333 triple co-culture BBB models were within the 0.5–2 folds of PS_{obs} (Figure 7B).
334 However, in the hCMEC/D3 mono-culture BBB model, only 7 predicted $PS_{Pre, Mono}$
335 values were within the 0.5–2 folds range of their observations (Figure 7A).

336

337 **Discussion**

338 The main findings of the study were to successfully develop an *in vitro* triple
339 co-culture BBB model consisting of hCMEC/D3, U251, and SH-SY5Y cells and to

340 confirm the involvement of neurons in BBB maintenance as well as the possible
341 mechanisms. Co-culture with U251 and/or SH-SY5Y cells markedly promoted the
342 TEER of hCMEC/D3 cells and reduced the leakage of fluorescein and FITC-Dex due
343 to the upregulation of claudin-5 and VE-cadherin expression.

344 The roles of claudin-5 and VE-cadherin in the maintenance of BBB function
345 have been demonstrated (Dejana et al., 2008; Hashimoto et al., 2023; Li et al., 2018;
346 Ohtsuki et al., 2007). It was reported that *Cld-5*-deficient mice exhibited BBB
347 impairment, allowing the transport of small molecules (<800 D) across BBB (Nitta et
348 al., 2003). In contrast, claudin-5 overexpression significantly restricted the
349 permeability of inulin across the conditionally immortalized rat brain capillary
350 endothelial cell monolayer (Ohtsuki et al., 2007). Moreover, the claudin-5 expression
351 in hCMEC/D3 is much lower than in human brain microvessels (Eigenmann et al.,
352 2013; Ohtsuki et al., 2013; Weksler et al., 2013), which may cause the low TEER
353 values. VE-cadherin, a major member of the cadherin family in endothelial cells, is
354 also required for BBB integrity (Dejana et al., 2008; Li et al., 2018). The absence of
355 VE-cadherin resulted in faulty cell-to-cell junctions and disrupted distribution of
356 ZO-1 (Sauteur et al., 2017; Tunggal et al., 2005). Strongly negative correlations
357 between P_{app} values of fluorescein or FITC-Dex and expression of claudin-5 or
358 VE-cadherin further demonstrated the importance of claudin-5 and VE-cadherin in
359 BBB integrity.

360 Neurons and astrocytes, as important components of the NVU, may be involved
361 in the formation and maintenance of BBB function. Several reports showed that
362 co-culture with astrocytes CC-2565 or SC-1810 enhanced the TEER of hCMEC/D3
363 cells (Hatherell et al., 2011), whereas co-culture of RBE4.B cells with primary rat
364 neurons and astrocytes showed a lower permeability of [3 H] sucrose than

365 mono-culture of RBE4.B cells (Schiera Gabriella. et al., 2005). Similarly, co-cultured
366 with hCMEC/D3 cells and 1321N1 (astrocytes) or 1321N1+SH-SY5Y cells possess
367 higher TEER values and lower permeability to Lucifer yellow than hCMEC/D3 alone.
368 Compared with double co-culture of hCMEC/D3 and 321N1 cells, the triple
369 co-culture of hCMEC/D3, 1321N1, and SH-SY5Y cells showed higher TEER values
370 (Barberio et al., 2022). Our study also demonstrated that co-culture with U251 and/or
371 SH-SY5Y cells significantly lowered BBB permeability and upregulated VE-cadherin
372 or claudin-5 expression in hCMEC/D3 cells.

373 Next, we focused on the molecular mechanisms by which neurons and possibly
374 astrocytes upregulated the VE-cadherin and claudin-5 expression in BMECs.
375 Co-culture with SH-SY5Y cells significantly upregulated claudin-5 and VE-cadherin
376 expression in hCMEC/D3 cells. In the double co-culture with SH-SY5Y cells or triple
377 co-culture BBB models, hCMEC/D3 cells were not in direct contact with SH-SY5Y
378 cells, indicating that the interaction between SH-SY5Y and hCMEC/D3 cells
379 depended on the release of some active compounds. It was consistent with the above
380 deduction that the S-CM also markedly induced claudin-5 and VE-cadherin
381 expression. Different from S-CM, U-CM mainly upregulated the VE-cadherin
382 expression and just had a slight impact on claudin-5. In general, neurons but also
383 astrocytes secrete some neurotrophic factors (Lonka-Nevalaita et al., 2010; Sweeney
384 et al., 2019) that could contribute to the maintenance of structural stability of BBB.
385 High levels of bFGF, GDNF, IGF-1, and TGF- β were detected in U-CM, S-CM, and
386 US-CM. Further research showed that only GDNF induced VE-cadherin and
387 claudin-5 expression in hCMEC/D3 cells in a concentration-dependent manner, and
388 the anti-GDNF antibody attenuated claudin-5 and VE-cadherin expression induced by
389 US-CM or GDNF. These results indicated that neurons upregulated claudin-5 and

390 VE-cadherin expression through GDNF secretion. Levels of GDNF in S-CM were
391 higher than those in U-CM, which seemed to partly explain why S-CM has a stronger
392 promoting effect on claudin-5 than U-CM. The roles of GDNF in BBB maintenance
393 and the regulation of claudin-5 and VE-cadherin expression were further confirmed
394 using brain-specific *Gdnf* knockdown C57BL/6J mice. Consistent with our *in vitro*
395 results, brain-specific *Gdnf* silencing greatly increased BBB penetration of fluorescein
396 and FITC-Dex, accompanied by the downregulation of claudin-5 and VE-cadherin
397 expression.

398 GDNF is mainly expressed in astrocytes and neurons (Lonka-Nevalaita et al.,
399 2010; Pochon et al., 1997). In adult animals, GDNF is mainly secreted by striatal
400 neurons rather than astrocytes and microglial cells (Hidalgo-Figueroa et al., 2012).
401 The present study also shows that GDNF mRNA levels in SH-SY5Y cells were
402 significantly higher than that in U251 cells. GDNF was also detected in conditioned
403 medium from SH-SY5Y cells. All these results demonstrate that neurons may secrete
404 GDNF.

405 Generally, GDNF activates several signal transduction pathways, such as the
406 PI3K/AKT and MAPK signaling pathways (Fielder et al., 2018) by forming a
407 heterohexameric complex with two GFR α molecules and RET receptors. It was also
408 reported that GDNF improved BBB barrier function due to the activation of
409 MAPK/ERK1 (Dong et al., 2018) and PI3K/AKT (Liu D. et al., 2022) signaling.
410 Consistent with previous reports, we found that signaling inhibitors SPP-86, PP2,
411 LY294002, and U0126 markedly attenuated US-CM- and GDNF-induced claudin-5
412 and VE-cadherin expression in hCMEC/D3 cells, inferring that GDNF promoted
413 claudin-5 and VE-cadherin expression via activating both the PI3K/AKT and
414 MAPK/ERK pathways.

415 Signal transduction pathways control gene expression by modifying the function
416 of nuclear transcription factors. The nuclear accumulation of FOXO1 negatively
417 regulates claudin-5 expression (Beard et al., 2020; Taddei et al., 2008). FOXO1 is an
418 important target of the PI3K/AKT signaling axis (Zhang et al., 2011), and
419 AKT-induced phosphorylation of FOXO1 results in cytoplasmic FOXO1
420 accumulation and decreases nuclear FOXO1 accumulation (Zhang et al., 2011). From
421 these results, we inferred that GDNF-induced claudin-5 expression in hCMEC/D3
422 cells may be involved in the activation of PI3K/AKT/FOXO1 pathway. Similarly,
423 both US-CM and GDNF increased cytoplasmic p-FOXO1 and decreased nuclear
424 FOXO1 in hCMEC/D3 cells, which was reversed by LY29002 rather than U0126.
425 Roles of FOXO1 in GDNF-induced claudin-5 were verified through silencing and
426 overexpressing *FOXO1* in hCMEC/D3 cells. *FOXO1* silencing enhanced claudin-5
427 but not VE-cadherin expression, accompanied by a decline in total and nuclear
428 FOXO1. In contrast, *FOXO1* overexpression significantly decreased claudin-5
429 expression. In hCMEC/D3 cells overexpressing *FOXO1*, GDNF lost its promotion
430 effect on claudin-5 expression. It was noticed that U0126 attenuated the
431 GDNF-induced upregulation of claudin-5 but had minimal impact on
432 GDNF-mediated FOXO1 phosphorylation and the decline of nuclear FOXO1. In
433 Sertoli cells, it was found that testosterone stimulated claudin-5 expression by
434 activating the RAS/RAF/ERK/CREB pathway (Bulldan et al., 2016). The
435 transcriptional regulation of claudin-5 by CREB was confirmed in bEnd.3 (mouse
436 brain endothelial cell). CREB overexpression significantly increased both gene and
437 protein expression of claudin 5. In contrast, depletion of CREB decreased claudin-5
438 expression in gene and protein levels (Li Y. et al., 2022). However, another report
439 showed that in human lung microvascular endothelial cells, U0126 attenuated

440 phosphorylation of ERK and lipopolysaccharide-stimulated claudin-5 damage,
441 indicating activation of MAPK/ERK pathway impaired rather than promoted
442 claudin-5 expression (Liu Y. et al., 2019). Thus, the real mechanisms that
443 GDNF-induced activation of the RET/MAPK/ERK pathway promotes claudin-5
444 expression need further investigation.

445 ETS1 is a member of the ETS family that plays an important role in cell
446 adhesion, migration, and blood vessel information. ETS1 binds to an ETS-binding site
447 located in the proximal region of the VE-cadherin promoter, controlling VE-cadherin
448 expression (Lelievre et al., 2001). Several studies have demonstrated the role of
449 ETS1 in the regulation of VE-cadherin expression. For example, IFN- γ and TNF- α
450 impaired BBB integrity by decreasing ETS1-induced VE-cadherin expression (Luo et
451 al., 2022). *ETS1* silencing reduced VE-cadherin expression in umbilical vein
452 endothelial cells (Colas-Algora et al., 2020). In contrast, *ETS1* overexpression
453 induced VE-cadherin expression in mouse brain capillary endothelial cells and
454 fibroblasts (Lelievre et al., 2000). As expected, *ETS1* silencing resulted in a decrease
455 in the expression of VE-cadherin in hCMEC/D3 cells, but claudin-5 expression
456 remained unaffected. Additionally, *ETS1* silencing removed the inductive effect of
457 GDNF on VE-cadherin expression while unaffected the upregulation of claudin-5
458 induced by GDNF. The activation of the PI3K/AKT (He et al., 2023; Hui et al., 2018)
459 and MAPK/ERK (Watanabe et al., 2004) pathways promotes ETS1 expression. In our
460 findings, US-CM and GDNF significantly increased total and nuclear ETS1 levels,
461 which were eliminated by signaling inhibitors LY294002 and U0126. Both our results
462 and previous research provide evidence that GDNF upregulates ETS1 expression via
463 the activation of PI3K/AKT and MAPK/ERK signaling to promote VE-cadherin
464 expression.

465 Claudin-5 expression is also regulated by VE-cadherin (Taddei et al., 2008).
466 Differing from the previous reports, silencing VE-cadherin with siRNA only slightly
467 affected basal and GDNF-induced claudin-5 expression. The discrepancies may come
468 from different characteristics of the tested cells. Several reports have supported the
469 above deduction. In retinal endothelial cells, hyperglycemia remarkably reduced
470 claudin-5 expression (but not VE-cadherin) (Saker et al., 2014). However, in
471 hCMEC/D3 cells, hypoglycemia significantly decreased claudin-5 expression but
472 hyperglycemia increased VE-cadherin expression (Sajja et al., 2014).

473 The present study showed that characteristics of *in vitro* triple co-culture BBB
474 model were superior to those of hCMEC/D3 mono-culture BBB model. The
475 hCMEC/D3 mono-culture and triple co-culture BBB models were used to try to
476 predict the *PS* values of 18 drugs by comparing them with their observations. The
477 prediction success rate (14/18) of triple co-culture BBB model was greater than that
478 of hCMEC/D3 mono-culture BBB model (7/18). However, poor predictions were
479 observed for verapamil, amitriptyline, fluoxetine, and clozapine, which may partly be
480 due to inaccuracies in their $f_{u, brain}$ values. These four drugs are high protein-binding
481 drugs. Due to the methodological discordance and limitations of historic devices for
482 these drugs, the $f_u \leq 0.01$ maybe with low confidence and accuracy (Bowman et al.,
483 2018; Di et al., 2017). For example, $f_{u, brain}$ values of amitriptyline from different
484 reports display large differences (0.002 (Sanchez-Dengra et al., 2021), 0.0071 (Weber
485 et al., 2013)). The same large differences of $f_{u, brain}$ values were also found in
486 fluoxetine (0.0023 (Maurer et al., 2005), 0.004 (Summerfield et al., 2007), 0.00094
487 (Liu X. et al., 2005)), and clozapine (0.0056 (Bhyrapuneni et al., 2018), 0.014
488 (Cremers et al., 2012), 0.0094 (Summerfield et al., 2007)).

489 In summary, our triple co-culture BBB model outperformed the mono-culture or

490 double co-culture BBB models, mainly attributing to the fact that neurons and
491 possibly astrocytes upregulated claudin-5 and VE-cadherin expression by secreting
492 GDNF through activating PI3K/AKT and MAPK/ERK pathways. Additionally, the
493 developed *in vitro* triple co-culture BBB model accurately predicted the *in vivo* BBB
494 permeability of CNS drugs. This suggests the potential of our triple co-culture BBB
495 model for utilization in CNS candidate screening during the drug development
496 process (Figure 8).

497 However, the study also has some limitations. In addition to neurons and
498 astrocytes, other cells such as microglia, pericytes, and vascular smooth muscle cells,
499 especially pericytes, may also affect BBB function. How pericytes affect BBB
500 function and interaction among neurons, astrocytes, and pericytes needs further
501 investigation.

502

503 Materials and Methods

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	β -actin (mouse monoclonal)	Proteintech	66009 RRID:AB_2883475	1:10000
Antibody	GAPDH (mouse monoclonal)	Absin	Abs830030ss RRID:AB_2811228	1:50000
Antibody	β -Tubulin (mouse monoclonal)	Fdbio Science	FD0064 RRID: AB_3076327	1:10000

Antibody	Lamin B (mouse monoclonal)	Proteintech	66095 RRID:AB_2721256	1:10000
Antibody	Claudin-5 (rabbit polyclonal)	Wanleibio	WL03731 RRID: AB_3076320	1:1000
Antibody	Occludin (rabbit polyclonal)	Wanleibio	WL01996 RRID:AB_3076325	1:500
Antibody	ZO-1 (mouse polyclonal)	Proteintech	21773-1-AP RRID:AB_10733242	1:5000
Antibody	VE-cadherin (rabbit polyclonal)	Wanleibio	WL02033 RRID:AB_3076321	1:1000
Antibody	β -catenin (rabbit polyclonal)	Wanleibio	WL0962a RRID: AB_3076323	1:5000
Antibody	BCPR (rabbit polyclonal)	CST	4477S RRID:AB_10544928	1:1000
Antibody	P-gp (rabbit monoclonal)	CST	13978S RRID:AB_2798357	1:1500
Antibody	p-AKT (mouse monoclonal)	Huaan Biotechnology	ET1607 RRID:AB_2940863	1:2000
Antibody	AKT (mouse monoclonal)	Huaan Biotechnology	ET1609 RRID:AB_3069857	1:2000
Antibody	p-ERK (rabbit polyclonal)	Proteintech	28733-1-AP RRID:AB_2881202	1:1000
Antibody	ERK (rabbit polyclonal)	Proteintech	11257-1-AP RRID:AB_2139822	1:1000
Antibody	p-p38 (rabbit monoclonal)	CST	4511S RRID:AB_10890701	1:250
Antibody	p38 (rabbit	CST	8690S RRID:AB_10999090	1:250

	monoclonal)			
Antibody	p-JNK (rabbit polyclonal)	Wanleibio	WL01813 RRID:AB_2910628	1:1000
Antibody	JNK (rabbit polyclonal)	Wanleibio	WL01295 RRID:AB_3064853	1:1000
Antibody	FOXO1 (rabbit polyclonal)	Proteintech	18592 RRID:AB_2934932	1:1000
Antibody	p-FOXO1 (rabbit polyclonal)	Wanleibio	WL03634 RRID: AB_3076326	1:1000
Antibody	ETS1 (mouse monoclonal)	Santa Cruz	sc-55581 RRID:AB_831289	1:500
Antibody	ETS1 (mouse monoclonal)	Proteintech	66598 RRID:AB_2881958	1:3000
cell line (<i>Homo sapiens</i>)	hCMEC/D3 cells	JENNIO Biological Technology	Cat#JNO-H0520	Authenticated (STR profiling)
cell line (<i>Homo sapiens</i>)	U251 cells	Cellcook Biological Technology	Cat#CC1701	Authenticated (STR profiling)
cell line (<i>Homo sapiens</i>)	SH-SY5Y cells	Cellcook Biological Technology	Cat#CC2101	Authenticated (STR profiling)
Software, algorithm	GraphPad Prism	Version 8.0.2	RRID:SCR_002798	
Software, algorithm	BioTek Cytaion 5 Cell Imaging Multi-Mode Reader	BioTek Cytaion 5	RRID:SCR_019732	
Software, algorithm	QuantStudio 3 Real Time PCR System	QuantStudio 3	RRID:SCR_018712	
commercial	GDNF-Elisa kit	R&D system	Cat#212-GD	

assay or kit				
commercial assay or kit	bFGF-Elisa kit	Elabscience	Cat#E-EL-H6042	
commercial assay or kit	IGF-1-Elisa kit	Elabscience	Cat#E-EL-H0086	
commercial assay or kit	TGF- β -Elisa kit	Elabscience	Cat#E-EL-0162	
peptide, recombinant protein	GDNF	R&D system	Cat#212-GD	
peptide, recombinant protein	bFGF	MedChemExpress	Cat#HY-P7331	
peptide, recombinant protein	IGF-1	MedChemExpress	Cat#HY-P70783	
peptide, recombinant protein	TGF- β	MedChemExpress	Cat#HY-P70543	
chemical compound, drug	SPP-86	MedChemExpress	Cat#HY-110193	
chemical compound, drug	PP2	MedChemExpress	Cat#HY-13805	
chemical compound, drug	LY294002	MedChemExpress	Cat#HY-10108	
chemical compound, drug	U0126	MedChemExpress	Cat#S1102	
chemical compound, drug	SP600125	Selleck	Cat#HY-12041	

chemical compound, drug	SB203580	MedChemExpress	Cat#HY-10256	
-------------------------	----------	----------------	--------------	--

504 **Cell culture and viability assay**

505 Rat brain microvascular endothelial cells were isolated from Sprague-Dawley
506 rats (male, 7–10 days old, Sino-British Sippr/BKLaboratory Animal Ltd, Shanghai,
507 China) as the described method (Bian-Sheng Ji et al., 2013; Ming-Shan L et al., 2013)
508 and cultured in Dulbecco's Modified Eagle Media (DMEM)/F12 (#12500-039, Gibco,
509 Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) (#10100147C, Gibco,
510 Carlsbad, CA, USA) and 62.5 µg/mL penicillin and 100 µg/mL streptomycin
511 (SunShine Biotechnology Co., ltd. Nanjing, China). Then, hCMEC/D3, U251, and
512 SH-SY5Y cells were cultured in DMEM/F12 containing 10% FBS, 62.5 µg/mL
513 penicillin and 100 µg/mL streptomycin. Cell viability was assessed using a CCK-8 kit
514 (Beyotime Biotechnology, Shanghai, China), and the results were expressed as the
515 fold of control.

516 **Establishment of the triple co-culture model**

517 Although hCMEC/D3 cells have poor barrier properties and low TEER
518 compared to human physiological BBB, the use of human BMECs may be restricted
519 by the acquisition of materials and ethical approval. Isolation and purification of
520 primary BMECs are time-consuming and laborious. Moreover, culture conditions can
521 alter transcriptional activity (Qi et al., 2023). All limit the establishment of BBB
522 models based on primary human BMECs for high-throughput screening. Here,
523 hCMEC/D3 cells were selected to establish an *in vitro* BBB model.

524 The establishment process of the triple co-culture model is illustrated in Figure 9.
525 SH-SY5Y cells were seeded at a density of 4.5×10^4 cells/cm² in plates and

526 differentiated with 10 μ M retinoic acid (Sigma-Aldrich, St. Louis, MO, USA) for 72 h.
527 The differentiated SH-SY5Y cells were cultured in the fresh DMEM/F12 medium
528 containing 10% FBS. U251 cells were seeded at 2×10^4 cells/cm² on the bottom of
529 Transwell inserts (PET, 0.4 μ m pore size, SPL Life Sciences, Pocheon, Korea) coated
530 with rat-tail collagen (Corning Inc., Corning, NY, USA). Next, the inserts were
531 suspended in plate wells containing the culture medium after 5 h of incubation. After
532 24 h of incubation, hCMEC/D3 cells were seeded on the apical side of the inserts at 3
533 $\times 10^4$ cells/cm² and cultured for another 48 h. Then, the inserts seeded with U251 and
534 hCMEC/D3 cells were suspended in plates seeded with differentiated SH-SY5Y cells
535 and co-cultured for another 6 days. The culture medium was replaced every 24 h.
536 TEER was periodically measured using a Millicell-ERS (MERS00002) instrument
537 (Millipore, Billerica MA, USA) to monitor cell confluence and development of tight
538 junctions.

539 **EdU incorporation assay**

540 The cells were incubated with medium containing 10 μ M Edu for 2 hours. Then
541 cells were washed by PBS and harvested by 0.25% trypsin-ethylenediaminetetraacetic
542 acid (#25200072, Gibco, Carlsbad, CA, USA). The EdU incorporation assay was
543 measured using the BeyoClick™ EdU Cell Proliferation Kit (Beyotime Biotechnology,
544 Shanghai, China) according to the manufacturer's instructions. The samples were
545 determined on the FACSCelesta flow cytometer (Becton, Dickins on and Company,
546 USA, and data were analyzed by Flowjo 10.4 software.

547 ***In vitro* BBB permeability study**

548 On day 7, the TEER values of BBB models showed a decreasing trend.
549 Therefore, the subsequent experiments were all completed on day 6. The culture
550 medium was removed from the apical and basolateral sides of the inserts and washed

551 twice with preheated Hank's balanced salt solution (HBSS). Fresh HBSS was then
552 added to both the apical and basolateral chambers. After 15 min of preincubation,
553 HBSS in the apical and basolateral chambers was replaced with HBSS containing
554 FITC-dextran 3–5 kDa (FITC-Dex) (Sigma-Aldrich, St. Louis, MO, USA),
555 fluorescein sodium (Sigma-Aldrich, St. Louis, MO, USA), or other tested agents and
556 blank HBSS, respectively. Next, 200 μ L aliquots were collected from the basolateral
557 chamber after 30 min of incubation at 37 °C. The concentrations of the tested agents
558 in the basolateral chamber were measured.

559 The apparent permeability coefficient (P_{app} , cm/s) values of the tested agents
560 across the *in vitro* BBB model were calculated using the equation (Tavelin et al.,
561 2002):

$$562 \quad P_{app} = (Q/1800)/(S \times C_0) \quad (1)$$

563 where S is the surface area of the insert membrane (0.33 cm² for 6.5 mm inserts, 4.46
564 cm² for 24 mm inserts), Q is the transported amount of the tested agents transported
565 from the donor chamber to the receiver chamber for 30 min (1800 s), and C_0 is the
566 initial concentration of the tested agents in the donor chamber.

567 **The quantification methods of prazosin, verapamil, lamotrigine**

568 Prazosin, verapamil, and lamotrigine (Aladdin, Shanghai, China) were analyzed
569 by high-performance liquid chromatography (Shimadzu, Kyoto, Japan) with
570 YMC-Triart C18 column (5 μ m, 150 \times 4.6 mm, YMC America Inc., Allentown, PA,
571 USA). Prazosin and verapamil were detected using the RF-20A fluorescence detector.
572 Lamotrigine was detected using the SPD-20A ultraviolet detector. Samples were
573 centrifugated at 12000 rpm for 10 mins, then 150 μ L supernatant was taken and used
574 for analysis. The run temperature was set at 40 °C, the injection volume was 20 μ L
575 and the flow rate was 1 mL/min. Initial concentrations in donor chamber and other

576 chromatographic conditions of drugs are summarized in Table 2.

577 **The quantification methods of clozapine, venlafaxine, bupropion,**
578 **amantadine, carbamazepine, fluoxetine, amitriptyline, gabapentin,**
579 **midazolam, risperidone, olanzapine, mirtazapine, metoclopramide,**
580 **doxepin, donepezil**

581 All compounds were purchased from Aladdin (Shanghai, China). Except for
582 prazosin, verapamil, and lamotrigine, the other compounds were analyzed by using
583 liquid chromatography-mass spectrometry (Shimadzu, Kyoto, Japan) with
584 YMC-Triart C18 column (5 μ m, 150 \times 2.0 mm, YMC America Inc., Allentown, PA,
585 USA). Each sample was mixed with 10 μ L internal standard. Then 1 mL extraction
586 was added to each sample. The samples were vortex vibrated on the oscillator for 10
587 min, and then centrifuged at 4 °C and 12000 rpm for 10 mins. The supernatant solvent
588 was evaporated with nitrogen flow, then redissolved with 100 μ L 40 % (v/v)
589 acetonitrile, and centrifuged at 4 °C and 15000 rpm for 10 min. The supernatants were
590 injected into LC-MS for analysis. The injection volume of each sample was 5 μ L. The
591 mass charge ratio, extraction, and initial concentrations in donor chamber of drugs
592 were summarized in Table 3.

593 **Cell density analysis**

594 On day 6 of co-culture, hCMEC/D3 cells were fixed with 4% paraformaldehyde
595 for 15 min and washed with phosphate buffered saline (PBS) for three times. Next,
596 the fixed cells were blocked with 5% goat serum for 2 h and washed with PBS for
597 four times. The blocked cells were incubated with DAPI (Invitrogen, Carlsbad, CA,
598 USA) and washed with PBS for four times. Cell numbers were counted using
599 Cytation5 (BioTek, Winooski, VT, USA).

600 **Reverse transcription and Quantitative real-time PCR (qPCR)**

601 Total RNA of cells was extracted using RNAiso Plus reagent (Takara Bio Inc.
602 Otsu, Shiga, Japan) and reverse transcribed using HiScript III RT SuperMix (Vazyme,
603 Shanghai, China) as the described method (Yang et al., 2023). Paired primers were
604 synthesized by Tsingke Biotech Co., Ltd (Beijing, China), and their sequences were
605 listed in Table 4. The SYBR Master Mix was purchased from Yeasen (Shanghai,
606 China). Then, qPCR was performed on the Applied Biosystems QuantStudio 3
607 real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA). The mRNA
608 levels of related genes were normalized to *ACTB* or *GAPDH* using the comparative
609 cycle threshold method.

610 **Western blotting analysis**

611 Whole-cell and tissue lysates, nucleoprotein, and cytoplasmic protein were
612 prepared using RIPA Lysis Buffer (Beyotime, Shanghai, China) as the described
613 method (Wu et al., 2021). Proteins were separated through sodium dodecyl
614 sulfate-polyacrylamide gel electrophoresis and transferred onto nitrocellulose or
615 polyvinylidene difluoride membranes. The membranes were blocked with 5% skim
616 milk and incubated with corresponding primary antibodies at 4 °C overnight. After
617 being washed with Tris-buffered saline Tween buffer, the membranes were incubated
618 with secondary antibodies (Cell Signaling Technology, MA, USA) at 1:3000 dilution:
619 Anti-mouse IgG, HRP-linked Antibody (#7076), Anti-rabbit IgG, HRP-linked
620 Antibody (#7074). Protein levels were visualized using a highly sensitive ECL
621 western blotting substrate and a gel imaging system (Tanon Science & Technology,
622 Shanghai, China).

623 **Preparation of conditioned medium**

624 Conditioned medium (CM) of U251 cells (U-CM), SH-SY5Y cells (S-CM), or
625 co-culture of U251 and SH-SY5Y cells (US-CM) were prepared. U251 cells were

626 seeded at the top of the insert membrane and suspended on 6-well plates seeded with
627 differentiated SH-SY5Y cells to co-culture U251 cells with SH-SY5Y cells. The
628 medium was collected every 24 h. The CMs were subsequently used for hCMEC/D3
629 cell culture after filtrating with 0.2 μ m filters for 144 h. The levels of glia-derived
630 neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), insulin-like
631 growth factor-1 (IGF-1), and transforming growth factor- β (TGF- β) in CMs were
632 measured using corresponding ELISA kits according to the manufacturers'
633 instructions.

634 **Neutralization of GDNF with Anti-GDNF Antibody**

635 Exogenous and endogenous GDNF in the medium was neutralized with
636 anti-GDNF antibody (#AF-212-NA, R&D system, Minneapolis, MN, USA). 0.25, 0.5,
637 1.0 μ g/mL anti-GDNF antibody was added into the US-CM or medium containing
638 200 pg/mL GDNF, and then the medium was preincubated at 4 °C for 1 h. The
639 hCMEC/D3 cells were incubated with 200 pg/mL GDNF or US-CM containing
640 anti-GDNF antibody or not for 6 days, and then cell lysate was collected for western
641 blot. The medium was replaced every 24 h.

642 **Transfection of hCMEC/D3**

643 Here, hCMEC/D3 cells were plated in the plates or culture dishes at 6×10^4
644 cells/cm² and transfected with 10 nM of negative control or human *FOXO1* and *ETS1*
645 small interfering RNA (siRNA) (Tsingke Biotechnology, Beijing, China) for 12 h
646 using Lipofectamine™ 3000 (Invitrogen, Carlsbad, CA, USA) reagent according to
647 the manufacturer's instructions. Cells were then incubated with a medium containing
648 GDNF for 72 h. The siRNA sequences of human *FOXO1* and *ETS1* were summarized
649 in Table 5.

650 **FOXO1 Overexpression by plasmids**

651 The plasmids encoding FOXO1 (EX-Z7404-M02) were constructed by
652 GeneCopoeia (Rockville, MD, USA). The hCMEC/D3 cells were plated in plates or
653 dishes at 6×10^4 cells/cm². They were subsequently transfected with 1 μ g of negative
654 control or plasmids encoding FOXO1 6 h using LipofectamineTM 3000 reagent
655 according to the manufacturer's instructions. Transfected cells were then incubated
656 with the medium containing GDNF for 72 h.

657 **Animals**

658 C57BL/6J mice (male, 4–5 weeks old, 16–18 g, 12 mice) were obtained from
659 Sino-British Sippr/BKLaboratory Animal Ltd (Shanghai, China). Mice were
660 maintained in groups under standard conditions with free access to food and water.
661 Animal studies were performed in accordance with the Guide for the Care and Use of
662 Laboratory Animals (National Institutes of Health) and approved by the Animal
663 Ethics Committee of China Pharmaceutical University (Approval Number:
664 202307003).

665 **Brain-specific *Gdnf* knockdown and evaluation of BBB permeability**

666 Mice were randomly divided into control (shNC) and *Gdnf* silencing (sh*Gdnf*)
667 groups (6 mice each group). The shRNA sequence of mice *Gdnf* was listed in Table 5.
668 The 2×10^9 viral genome each of pAAV-U6-shRNA (NC2)-CMV-EGFP or pAAV-
669 U6-shRNA (*Gdnf*)-CMV-EGFP (OBio Technology, Beijing, China) were injected into
670 the bilateral lateral ventricle area (relative to the bregma: anterior-posterior -0.3 mm;
671 medial-lateral ± 1.0 mm; dorsal-ventral -3.0 mm) through intracerebroventricular (*i.c.v*)
672 infusion. Three weeks following *i.c.v* injection, BBB permeability and expression of
673 corresponding targeted proteins were measured in the mice.

674 A mixture of FITC-Dex (50 mg/kg) and fluorescein sodium (10 mg/kg) was
675 intravenously administered to experimental mice. Thirty minutes after the injection,

676 the mice were euthanized under isoflurane anesthesia, and brain tissue and plasma
677 samples were obtained quickly. The concentrations of FITC-Dex and fluorescein in
678 the plasma and brain were measured as previously described (Li P. et al., 2022; Zhou
679 Y. et al., 2019). No blinding was performed in animal studies.

680 **The prediction of drug permeability across BBB using the developed in
681 vitro BBB model**

682 The P_{app} values of 18 drugs – prazosin, verapamil, lamotrigine, clozapine,
683 venlafaxine, bupropion, amantadine, carbamazepine, fluoxetine, amitriptyline,
684 gabapentin, midazolam, risperidone, olanzapine, mirtazapine, metoclopramide,
685 doxepin, and donepezil – across the hCMEC/D3 cells mono-culture and triple
686 co-culture models were measured. The predicted *in vivo* permeability-surface area
687 product (PS , $\mu\text{L}/\text{min}/\text{g}$ brain) values across BBB were calculated using the following
688 equation:

$$689 \quad PS_{Pre} = \frac{P_{app} \times 60 \times VSA \times 1000}{f_{u,brain}} \quad (2)$$

690 where VSA is the luminal area of the vascular space of brain, which was set to 150
691 cm^2/g (Fenstermacher et al., 1988), and $f_{u,brain}$ is the unbound fraction of brain. The
692 published *in vivo* brain permeability values were unified to observed PS (PS_{Obs}) by
693 multiplying by VSA equal to $150 \text{ cm}^2/\text{g}$. If PS_{Pre} values were within 0.5–2.0 folds of
694 observations, the prediction was considered successful.

695 **Statistical analyses**

696 All results are presented as mean \pm SEM. The average of technical replicates
697 generated a single independent value that contributes to the n value used for
698 comparative statistical analysis. The data were assessed for Gaussian distributions
699 using Shapiro-Wilk test. Brown-Forsythe test was employed to evaluate the

700 homogeneity of variance between groups. For comparisons between two groups,
701 statistical significance was determined by unpaired 2-tailed t-test. The acquired data
702 with significant variation were tested using unpaired t-test with Welch's correction,
703 and non-Gaussian distributed data were tested using Mann-Whitney test. For multiple
704 group comparisons, one-way ANOVA followed by Fisher's LSD test was used to
705 determine statistical significance. The acquired data with significant variation were
706 tested using Welch's ANOVA test, and non-Gaussian distributed data were tested
707 using Kruskal-Wallis test. $P < 0.05$ was considered statistically significant. The
708 simple linear regression analysis was used to examine the presence of a linear
709 relationship between two variables. Data were analyzed using GraphPad Prism
710 software version 8.0.2 (GraphPad Software, La Jolla, CA, USA).

711 **Acknowledgments**

712 The authors would like to give special thanks to the support of the China
713 Pharmaceutical University Pharmaceutical Animal Laboratory Center.

714 **Funding information**

Funder	Grant reference number	Author
National Natural Science Foundation of China	82373943	Xiaodong Liu
National Natural Science Foundation of China	82173884	Li Liu
National Natural Science Foundation of China	82204511	Hanyu Yang
“Double First-Class” university project	No. CPU2022QZ21	Li Liu
Jiangsu Funding Program for Excellent Postdoctoral Talent	No. 2022ZB305	Hanyu Yang
China Postdoctoral Science Foundation	2023M733897	Hanyu Yang
Postgraduate Research & Practice Innovation Program of Jiangsu Province	KYCX24_1019	Lu Yang
The funding sources were involved in study design, data collection, and interpretation, or the decision to submit the work for publication.		

715 **Author Contributions**

716 **Lu Yang:** Conceptualization, Methodology, Investigation, Data curation, and
717 Writing–original draft preparation, Funding acquisition; **Zijin Lin:** Data curation,
718 Formal analysis; **Ruijing Mu:** Visualisation, Software; **Wenhan Wu:** Formal analysis;
719 **Hao Zhi:** Data curation; **Xiaodong Liu:** Supervision, Conceptualization, Project
720 administration, Funding acquisition; **Hanyu Yang:** Supervision, Conceptualization,
721 Funding acquisition; **Li Liu:** Supervision, Conceptualization, Project administration,
722 Funding acquisition, Resources. All authors reviewed and approved the final version
723 of this manuscript.

724 **Declaration of interests**

725 The authors declare no competing interests.

726 **Data availability**

727 All data are available in the manuscript and supporting files; source data files for
728 western blots have been provided for all figures.

729 **References**

730 Abbott N J. (2013). Blood-brain barrier structure and function and the challenges for
731 CNS drug delivery. *J Inher Metab Dis*, 36(3), 437-449.

732 <https://doi.org/10.1007/s10545-013-9608-0>

733 Arvanitis C D, Ferraro G B, Jain R K. (2020). The blood-brain barrier and
734 blood-tumour barrier in brain tumours and metastases. *Nat Rev Cancer*, 20(1), 26-41.

735 <https://doi.org/10.1038/s41568-019-0205-x>

736 Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K,
737 Kishi T, Kasuya Y, Fukamizu A. (2007). Mitogen-activated protein kinases, Erk and
738 p38, phosphorylate and regulate Foxo1. *Cell Signal*, 19(3), 519-527.

- 739 <https://doi.org/10.1016/j.cellsig.2006.08.015>
- 740 Avdeef A, Sun N. (2010). A New In Situ Brain Perfusion Flow Correction Method for
- 741 Lipophilic Drugs Based on the pH-Dependent Crone-Renkin Equation.
- 742 *Pharmaceutical Research*, 28(3), 517-530. <https://doi.org/10.1007/s11095-010-0298-0>
- 743 Banks W A. (2016). From blood-brain barrier to blood-brain interface: new
- 744 opportunities for CNS drug delivery. *Nat Rev Drug Discov*, 15(4), 275-292.
- 745 <https://doi.org/10.1038/nrd.2015.21>
- 746 Barberio C, Withers A, Mishra Y, Couraud P-O, Romero I A, Weksler B, Owens R M.
- 747 (2022). A human-derived neurovascular unit in vitro model to study the effects of
- 748 cellular cross-talk and soluble factors on barrier integrity. *Frontiers in Cellular*
- 749 *Neuroscience*, 16. <https://doi.org/10.3389/fncel.2022.1065193>
- 750 Beard R S, Jr., Hoettels B A, Meegan J E, Wertz T S, Cha B J, Yang X, Oxford J T,
- 751 Wu M H, Yuan S Y. (2020). AKT2 maintains brain endothelial claudin-5 expression
- 752 and selective activation of IR/AKT2/FOXO1-signaling reverses barrier dysfunction. *J*
- 753 *Cereb Blood Flow Metab*, 40(2), 374-391.
- 754 <https://doi.org/10.1177/0271678X18817512>
- 755 Bhallamudi S, Roos B B, Teske J J, Wicher S A, McConico A, C M P, Sathish V,
- 756 Prakash Y S. (2021). Glial-derived neurotrophic factor in human airway smooth
- 757 muscle. *J Cell Physiol*, 236(12), 8184-8196. <https://doi.org/10.1002/jcp.30489>
- 758 Bhattacharya C, Masters A R, Bach C, Stratford R E, Jr. (2021). Population model
- 759 analysis of chiral inversion and degradation of bupropion enantiomers, and
- 760 application to enantiomer specific fraction unbound determination in rat plasma and

- 761 brain. *J Pharm Biomed Anal*, 195, 113872. <https://doi.org/10.1016/j.jpba.2020.113872>
- 762 Bhyrapuneni G, Thentu J B, Palacharla V R C, Muddana N, Aleti R R, Ajjala D R,
- 763 Nirogi R. (2018). A definite measure of occupancy exposures, seeking with
- 764 non-radiolabeled in vivo 5-HT2A receptor occupancy and in vitro free fractions. *J*
- 765 *Recept Signal Transduct Res*, 38(4), 359-366.
- 766 <https://doi.org/10.1080/10799893.2018.1531888>
- 767 Bian-Sheng Ji, Juan Cen, Ling He, Meng Liu, Yan-Qing Liu, Liu L. (2013).
- 768 Modulation of P-glycoprotein in rat brain microvessel endothelial cells under oxygen
- 769 glucose deprivation. *J Pharm Pharmacol*, 65(10), 1508-1517.
- 770 <https://doi.org/10.1111/jphp.12122>
- 771 Biswas S, Cottarelli A, Agalliu D. (2020). Neuronal and glial regulation of CNS
- 772 angiogenesis and barriergenesis. *Development*, 147(9).
- 773 <https://doi.org/10.1242/dev.182279>
- 774 Bowman C M, Benet L Z. (2018). An examination of protein binding and
- 775 protein-facilitated uptake relating to in vitro-in vivo extrapolation. *Eur J Pharm Sci*,
- 776 123, 502-514. <https://doi.org/10.1016/j.ejps.2018.08.008>
- 777 Buldan A, Dietze R, Shihan M, Scheiner-Bobis G. (2016). Non-classical testosterone
- 778 signaling mediated through ZIP9 stimulates claudin expression and tight junction
- 779 formation in Sertoli cells. *Cellular Signalling*, 28(8), 1075-1085.
- 780 <https://doi.org/10.1016/j.cellsig.2016.04.015>
- 781 Clasadonte J, Prevot V. (2017). The special relationship: glia–neuron interactions in
- 782 the neuroendocrine hypothalamus. *Nature Reviews Endocrinology*, 14(1), 25-44.

- 783 <https://doi.org/10.1038/nrendo.2017.124>
- 784 Colas-Algora N, Garcia-Weber D, Cacho-Navas C, Barroso S, Caballero A, Ribas C,
- 785 Correas I, Millan J. (2020). Compensatory increase of VE-cadherin expression
- 786 through ETS1 regulates endothelial barrier function in response to TNFalpha. *Cell Mol Life Sci*, 77(11), 2125-2140. <https://doi.org/10.1007/s00018-019-03260-9>
- 788 Cremers T I, Flik G, Hofland C, Stratford R E, Jr. (2012). Microdialysis evaluation of
- 789 clozapine and N-desmethylclozapine pharmacokinetics in rat brain. *Drug Metab Dispos*, 40(10), 1909-1916. <https://doi.org/10.1124/dmd.112.045682>
- 791 Dejana E, Orsenigo F, Lampugnani M G. (2008). The role of adherens junctions and
- 792 VE-cadherin in the control of vascular permeability. *J Cell Sci*, 121(Pt 13), 2115-2122.
- 793 <https://doi.org/10.1242/jcs.017897>
- 794 Di L, Umland J P, Chang G, Huang Y, Lin Z, Scott D O, Troutman M D, Liston T E.
- 795 (2011). Species independence in brain tissue binding using brain homogenates. *Drug Metab Dispos*, 39(7), 1270-1277. <https://doi.org/10.1124/dmd.111.038778>
- 797 Di L, Breen C, Chambers R, Eckley S T, Fricke R, Ghosh A, Harradine P, Kalvass J C,
- 798 Ho S, Lee C A, Marathe P, Perkins E J, Qian M, Tse S, Yan Z, Zamek-Gliszczynski M
- 799 J. (2017). Industry Perspective on Contemporary Protein-Binding Methodologies:
- 800 Considerations for Regulatory Drug-Drug Interaction and Related Guidelines on
- 801 Highly Bound Drugs. *J Pharm Sci*, 106(12), 3442-3452.
- 802 <https://doi.org/10.1016/j.xphs.2017.09.005>
- 803 Di Marco A, Gonzalez Paz O, Fini I, Vignone D, Cellucci A, Battista M R, Auciello G,
- 804 Orsatti L, Zini M, Monteagudo E, Khetarpal V, Rose M, Dominguez C, Herbst T,

- 805 Toledo-Sherman L, Summa V, Munoz-Sanjuan I. (2019). Application of an in Vitro
806 Blood-Brain Barrier Model in the Selection of Experimental Drug Candidates for the
807 Treatment of Huntington's Disease. *Mol Pharm*, 16(5), 2069-2082.
808 <https://doi.org/10.1021/acs.molpharmaceut.9b00042>
- 809 Dong C, Ubogu E E. (2018). GDNF enhances human blood-nerve barrier function in
810 vitro via MAPK signaling pathways. *Tissue Barriers*, 6(4), 1-22.
811 <https://doi.org/10.1080/21688370.2018.1546537>
- 812 Eigenmann D E, Xue G, Kim K S, Moses A V, Hamburger M, Oufir M. (2013).
813 Comparative study of four immortalized human brain capillary endothelial cell lines,
814 hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for
815 an in vitro blood-brain barrier model for drug permeability studies. *Fluids Barriers*
816 *CNS*, 10(1), 33. <https://doi.org/10.1186/2045-8118-10-33>
- 817 Esaki T, Ohashi R, Watanabe R, Natsume-Kitatani Y, Kawashima H, Nagao C,
818 Mizuguchi K. (2019). Computational Model To Predict the Fraction of Unbound Drug
819 in the Brain. *J Chem Inf Model*, 59(7), 3251-3261.
820 <https://doi.org/10.1021/acs.jcim.9b00180>
- 821 Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K. (1988).
822 Structural and Functional Variations in Capillary Systems within the Brain. *Ann N Y*
823 *Acad Sci*, 529, 21-30. <https://doi.org/10.1111/j.1749-6632.1988.tb51416.x>
- 824 Fielder G C, Yang T W, Razdan M, Li Y, Lu J, Perry J K, Lobie P E, Liu D X. (2018).
825 The GDNF Family: A Role in Cancer? *Neoplasia*, 20(1), 99-117.
826 <https://doi.org/10.1016/j.neo.2017.10.010>

- 827 Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M,
- 828 Bredberg U. (2011). Measurement of unbound drug exposure in brain: modeling of
- 829 pH partitioning explains diverging results between the brain slice and brain
- 830 homogenate methods. *Drug Metab Dispos*, 39(3), 353-362.
- 831 <https://doi.org/10.1124/dmd.110.035998>
- 832 Fu J, Li L, Huo D, Zhi S, Yang R, Yang B, Xu B, Zhang T, Dai M, Tan C, Chen H,
- 833 Wang X. (2021). Astrocyte-Derived TGF β 1 Facilitates Blood–Brain Barrier Function
- 834 via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells.
- 835 *Brain Sciences*, 11(1). <https://doi.org/10.3390/brainsci11010077>
- 836 Hanafy A S, Dietrich D, Fricker G, Lamprecht A. (2021). Blood-brain barrier models:
- 837 Rationale for selection. *Adv Drug Deliv Rev*, 176, 113859.
- 838 <https://doi.org/10.1016/j.addr.2021.113859>
- 839 Hashimoto Y, Greene C, Munnich A, Campbell M. (2023). The CLDN5 gene at the
- 840 blood-brain barrier in health and disease. *Fluids and Barriers of the CNS*, 20(1).
- 841 <https://doi.org/10.1186/s12987-023-00424-5>
- 842 Hatherell K, Couraud P O, Romero I A, Weksler B, Pilkington G J. (2011).
- 843 Development of a three-dimensional, all-human in vitro model of the blood-brain
- 844 barrier using mono-, co-, and tri-cultivation Transwell models. *J Neurosci Methods*,
- 845 199(2), 223-229. <https://doi.org/10.1016/j.jneumeth.2011.05.012>
- 846 He F, Wang Q F, Li L, Yu C, Liu C Z, Wei W C, Chen L P, Li H Y. (2023). Melatonin
- 847 Protects Against Hyperoxia-Induced Apoptosis in Alveolar Epithelial type II Cells by
- 848 Activating the MT2/PI3K/AKT/ETS1 Signaling Pathway. *Lung*, 201(2), 225-234.

- 849 <https://doi.org/10.1007/s00408-023-00610-0>
- 850 Hidalgo-Figueroa M, Bonilla S, Gutierrez F, Pascual A, Lopez-Barneo J. (2012).
- 851 GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in
- 852 normal mouse and after injury of the nigrostriatal pathway. *J Neurosci*, 32(3), 864-872.
- 853 <https://doi.org/10.1523/JNEUROSCI.2693-11.2012>
- 854 Hui K, Wu S, Yue Y, Gu Y, Guan B, Wang X, Hsieh J T, Chang L S, He D, Wu K.
- 855 (2018). RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder
- 856 cancer. *Cell Signal*, 48, 38-44. <https://doi.org/10.1016/j.cellsig.2018.04.006>
- 857 Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y,
- 858 Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N. (1999). Glial cell line-derived
- 859 neurotrophic factor induces barrier function of endothelial cells forming the
- 860 blood-brain barrier. *Biochem Biophys Res Commun*, 261(1), 108-112.
- 861 <https://doi.org/10.1006/bbrc.1999.0992>
- 862 Ito R, Umehara K, Suzuki S, Kitamura K, Nunoya K I, Yamaura Y, Imawaka H, Izumi
- 863 S, Wakayama N, Komori T, Anzai N, Akita H, Furihata T. (2019). A Human
- 864 Immortalized Cell-Based Blood-Brain Barrier Triculture Model: Development and
- 865 Characterization as a Promising Tool for Drug-Brain Permeability Studies. *Mol*
- 866 *Pharm*, 16(11), 4461-4471. <https://doi.org/10.1021/acs.molpharmaceut.9b00519>
- 867 Ji-Ae K, RyojiI Y, Teruo N. (2009). IGF-1 released by corneal epithelial cells induces
- 868 up-regulation of N-cadherin in corneal fibroblasts. *J Cell Physiol*, 221(1), 254-261.
- 869 <https://doi.org/10.1002/jcp.21850>
- 870 Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y. (2011). Quantitative

871 evaluation of the impact of active efflux by p-glycoprotein and breast cancer
872 resistance protein at the blood-brain barrier on the predictability of the unbound
873 concentrations of drugs in the brain using cerebrospinal fluid concentration as a
874 surrogate. *J Pharmacol Exp Ther*, 339(3), 935-944.

875 <https://doi.org/10.1124/jpet.111.180398>

876 Lelievre E, Mattot V, Huber P, Vandenbunde B, Soncin F. (2000). ETS1 lowers
877 capillary endothelial cell density at confluence and induces the expression of
878 VE-cadherin. *Oncogene*, 19(20), 2438-2446. <https://doi.org/10.1038/sj.onc.1203563>
879 Lelievre E, Lionneton F, Soncin F, Vandenbunder B. (2001). The Ets family contains
880 transcriptional activators and repressors involved in angiogenesis. *Int J Biochem Cell
881 Biol*, 33(4), 391-407. [https://doi.org/10.1016/s1357-2725\(01\)00025-5](https://doi.org/10.1016/s1357-2725(01)00025-5)

882 Li P, Yang Y, Lin Z, Hong S, Jiang L, Zhou H, Yang L, Zhu L, Liu X, Liu L. (2022).
883 Bile Duct Ligation Impairs Function and Expression of Mrp1 at Rat Blood-Retinal
884 Barrier via Bilirubin-Induced P38 MAPK Pathway Activations. *Int J Mol Sci*, 23(14).

885 <https://doi.org/10.3390/ijms23147666>

886 Li W, Chen Z, Chin I, Chen Z, Dai H. (2018). The Role of VE-cadherin in
887 Blood-brain Barrier Integrity Under Central Nervous System Pathological Conditions.
888 *Current Neuropharmacology*, 16(9), 1375-1384.

889 <https://doi.org/10.2174/1570159x16666180222164809>

890 Li Y, Li Y, Zhang Y, Zhao Q, Zhang P, Sun M, Liu B, Yang H, Li P. (2022). Muscone
891 and (+)-Borneol Cooperatively Strengthen CREB Induction of Claudin 5 in
892 IL-1 β -Induced Endothelium Injury. *Antioxidants*, 11(8).

- 893 <https://doi.org/10.3390/antiox11081455>
- 894 Lin C H, Wang C H, Hsu S L, Liao L Y, Lin T A, Hsueh C M. (2016). Molecular
895 Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated
896 Protection of Ischemic Brain. *PLoS One*, 11(1), e0146692.
- 897 <https://doi.org/10.1371/journal.pone.0146692>
- 898 Liu D, Yang L, Liu P, Ji X, Qi X, Wang Z, Chi T, Zou L. (2022). Sigma-1 receptor
899 activation alleviates blood-brain barrier disruption post cerebral ischemia stroke by
900 stimulating the GDNF-GFRalpha1-RET pathway. *Exp Neurol*, 347, 113867.
- 901 <https://doi.org/10.1016/j.expneurol.2021.113867>
- 902 Liu X, Smith B J, Chen C, Callegari E, Becker S L, Chen X, Cianfrogna J, Doran A C,
903 Doran S D, Gibbs J P, Hosea N, Liu J, Nelson F R, Szewc M A, Van Deusen J. (2005).
904 Use of a physiologically based pharmacokinetic model to study the time to reach
905 brain equilibrium: an experimental analysis of the role of blood-brain barrier
906 permeability, plasma protein binding, and brain tissue binding. *J Pharmacol Exp Ther*,
907 313(3), 1254-1262. <https://doi.org/10.1124/jpet.104.079319>
- 908 Liu Y, Mu S, Li X, Liang Y, Wang L, Ma X. (2019). Unfractionated Heparin
909 Alleviates Sepsis-Induced Acute Lung Injury by Protecting Tight Junctions. *Journal*
910 *of Surgical Research*, 238, 175-185. <https://doi.org/10.1016/j.jss.2019.01.020>
- 911 Lonka-Nevalaita L, Lume M, Leppänen S, Jokitalo E, Peränen J, Saarma M. (2010).
912 Characterization of the Intracellular Localization, Processing, and Secretion of Two
913 Glial Cell Line-Derived Neurotrophic Factor Splice Isoforms. *The Journal of*
914 *Neuroscience*, 30(34), 11403-11413. <https://doi.org/10.1523/jneurosci.5888-09.2010>

- 915 Luo Y, Yang H, Wan Y, Yang S, Wu J, Chen S, Li Y, Jin H, He Q, Zhu D Y, Zhou Y,
- 916 Hu B. (2022). Endothelial ETS1 inhibition exacerbate blood-brain barrier dysfunction
- 917 in multiple sclerosis through inducing endothelial-to-mesenchymal transition. *Cell*
- 918 *Death Dis*, 13(5), 462. <https://doi.org/10.1038/s41419-022-04888-5>
- 919 Mathiisen T M, Lehre K P, Danbolt N C, Ottersen O P. (2010). The perivascular
- 920 astroglial sheath provides a complete covering of the brain microvessels: an electron
- 921 microscopic 3D reconstruction. *Glia*, 58(9), 1094-1103.
- 922 <https://doi.org/10.1002/glia.20990>
- 923 Maurer T S, Debartolo D B, Tess D A, Scott D O. (2005). Relationship between
- 924 exposure and nonspecific binding of thirty-three central nervous system drugs in mice.
- 925 *Drug Metab Dispos*, 33(1), 175-181. <https://doi.org/10.1124/dmd.104.001222>
- 926 Ming-Shan L, Juan C, Ling H, Lu L, Bian-Sheng J. (2013). CJY, an isoflavone,
- 927 interacts with ATPase of P-glycoprotein in the rat brain microvessel endothelial cells
- 928 (RBMECs). *J Chemother*, 25(6), 347-354.
- 929 <https://doi.org/10.1179/1973947813Y.0000000094>
- 930 Morita A, Yamashita N, Sasaki Y, Uchida Y, Nakajima O, Nakamura F, Yagi T,
- 931 Taniguchi M, Usui H, Katoh-Semba R, Takei K, Goshima Y. (2006). Regulation of
- 932 Dendritic Branching and Spine Maturation by Semaphorin3A-Fyn Signaling. *The*
- 933 *Journal of Neuroscience*, 26(11), 2971-2980.
- 934 <https://doi.org/10.1523/jneurosci.5453-05.2006>
- 935 Muoio V, Persson P B, Sendeski M M. (2014). The neurovascular unit - concept
- 936 review. *Acta Physiol*, 210(4), 790-798. <https://doi.org/10.1111/apha.12250>

- 937 Nakagawa S, Deli M A, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K,
- 938 Niwa M. (2009). A new blood-brain barrier model using primary rat brain endothelial
- 939 cells, pericytes and astrocytes. *Neurochem Int*, 54(3-4), 253-263.
- 940 <https://doi.org/10.1016/j.neuint.2008.12.002>
- 941 Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. (2003).
- 942 Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. *J Cell*
- 943 *Biol*, 161(3), 653-660. <https://doi.org/10.1083/jcb.200302070>
- 944 Nowrangi D S, McBride D, Manaenko A, Dixon B, Tang J, Zhang J H. (2019).
- 945 rhIGF-1 reduces the permeability of the blood-brain barrier following intracerebral
- 946 hemorrhage in mice. *Exp Neurol*, 312, 72-81.
- 947 <https://doi.org/10.1016/j.expneurol.2018.11.009>
- 948 Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. (2007).
- 949 Exogenous expression of claudin-5 induces barrier properties in cultured rat brain
- 950 capillary endothelial cells. *J Cell Physiol*, 210(1), 81-86.
- 951 <https://doi.org/10.1002/jcp.20823>
- 952 Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X,
- 953 Scherrmann J M, Couraud P O, Kubo Y, Tachikawa M, Terasaki T. (2013).
- 954 Quantitative targeted absolute proteomic analysis of transporters, receptors and
- 955 junction proteins for validation of human cerebral microvascular endothelial cell line
- 956 hCMEC/D3 as a human blood-brain barrier model. *Mol Pharm*, 10(1), 289-296.
- 957 <https://doi.org/10.1021/mp3004308>
- 958 Palmiotti C A, Prasad S, Naik P, Abul K M, Sajja R K, Achyuta A H, Cucullo L.

- 959 (2014). In vitro cerebrovascular modeling in the 21st century: current and prospective
960 technologies. *Pharm Res*, 31(12), 3229-3250.
- 961 <https://doi.org/10.1007/s11095-014-1464-6>
- 962 Pochon N A, Menoud A, Tseng J L, Zurn A D, Aebischer P. (1997). Neuronal GDNF
963 Expression in the Adult Rat Nervous System Identified By In Sifu Hybridization.
964 *European Journal of Neuroscience*, 9(3), 463-471.
- 965 <https://doi.org/10.1111/j.1460-9568.1997.tb01623.x>
- 966 Potjewyd G, Moxon S, Wang T, Domingos M, Hooper N M. (2018). Tissue
967 Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective.
968 *Trends Biotechnol*, 36(4), 457-472. <https://doi.org/10.1016/j.tibtech.2018.01.003>
- 969 Qi D, Lin H, Hu B, Wei Y. (2023). A review on in vitro model of the blood-brain
970 barrier (BBB) based on hCMEC/D3 cells. *J Control Release*, 358, 78-97.
- 971 <https://doi.org/10.1016/j.jconrel.2023.04.020>
- 972 Sajja R K, Prasad S, Cucullo L. (2014). Impact of altered glycaemia on blood-brain
973 barrier endothelium: an in vitro study using the hCMEC/D3 cell line. *Fluids Barriers
974 CNS*, 11(1), 8. <https://doi.org/10.1186/2045-8118-11-8>
- 975 Saker S, Stewart E A, Browning A C, Allen C L, Amoaku W M. (2014). The effect of
976 hyperglycaemia on permeability and the expression of junctional complex molecules
977 in human retinal and choroidal endothelial cells. *Exp Eye Res*, 121, 161-167.
- 978 <https://doi.org/10.1016/j.exer.2014.02.016>
- 979 Sanchez-Dengra B, Gonzalez-Alvarez I, Sousa F, Bermejo M, Gonzalez-Alvarez M,
980 Sarmento B. (2021). In vitro model for predicting the access and distribution of drugs

981 in the brain using hCMEC/D3 cells. *Eur J Pharm Biopharm*, 163, 120-126.

982 <https://doi.org/10.1016/j.ejpb.2021.04.002>

983 Sauteur L, Affolter M, Belting H-G. (2017). Distinct and redundant functions of Esam

984 and VE-cadherin during vascular morphogenesis. *Development*.

985 <https://doi.org/10.1242/dev.140038>

986 Savettieri G, Di Liegro I, Catania C, Licata L, Pitarresi G L, D'Agostino S, Gabriella

987 S, De Caro V, Giandalia G, Giannola L I, Cestelli A. (2000). Neurons and ECM

988 regulate occludin localization in brain endothelial cells. *Neuroreport*, 11(5),

989 1081-1084. <https://doi.org/10.1097/00001756-200004070-00035>

990 Schiera G, Bono E, Raffa M P, Gallo A, Pitarresi G L, Di Liegro I, Savettieri G.

991 (2003). Synergistic effects of neurons and astrocytes on the differentiation of brain

992 capillary endothelial cells in culture. *J Cell Mol Med*, 7(2), 165-170.

993 <https://doi.org/10.1111/j.1582-4934.2003.tb00215.x>

994 Schiera G, Sala S, Gallo A, Raffa M P, Pitarresi G L, Savettieri G, Di Liegro I. (2005).

995 Permeability properties of a three-cell type in vitro model of blood-brain barrier.

996 *Journal of Cellular and Molecular Medicine*, 9(2), 373-379.

997 <https://doi.org/10.1111/j.1582-4934.2005.tb00362.x>

998 Shimizu F, Sano Y, Abe M A, Maeda T, Ohtsuki S, Terasaki T, Kanda T. (2011).

999 Peripheral nerve pericytes modify the blood-nerve barrier function and tight

1000 junctional molecules through the secretion of various soluble factors. *J Cell Physiol*,

1001 226(1), 255-266. <https://doi.org/10.1002/jcp.22337>

1002 Shimizu F, Sano Y, Saito K, Abe M A, Maeda T, Haruki H, Kanda T. (2012).

- 1003 Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of
1004 claudin-5 in the blood-brain barrier and the blood-nerve barrier. *Neurochem Res*,
1005 37(2), 401-409. <https://doi.org/10.1007/s11064-011-0626-8>
- 1006 Summerfield S G, Read K, Begley D J, Obradovic T, Hidalgo I J, Coggon S, Lewis A
1007 V, Porter R A, Jeffrey P. (2007). Central nervous system drug disposition: the
1008 relationship between in situ brain permeability and brain free fraction. *J Pharmacol*
1009 *Exp Ther*, 322(1), 205-213. <https://doi.org/10.1124/jpet.107.121525>
- 1010 Sweeney M D, Zhao Z, Montagne A, Nelson A R, Zlokovic B V. (2019). Blood-Brain
1011 Barrier: From Physiology to Disease and Back. *Physiol Rev*, 99(1), 21-78.
1012 <https://doi.org/10.1152/physrev.00050.2017>
- 1013 Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M,
1014 Daly C, Dimmeler S, Dejana E. (2008). Endothelial adherens junctions control tight
1015 junctions by VE-cadherin-mediated upregulation of claudin-5. *Nat Cell Biol*, 10(8),
1016 923-934. <https://doi.org/10.1038/ncb1752>
- 1017 Tang E D, Nuñez G, Barr F G, Guan K-L. (1999). Negative Regulation of the
1018 Forkhead Transcription Factor FKHR by Akt. *Journal of Biological Chemistry*,
1019 274(24), 16741-16746. <https://doi.org/10.1074/jbc.274.24.16741>
- 1020 Tavelin S, Gråsjö J, Taipalensuu J, Ocklind G, Artursson P. (2002). Applications of
1021 Epithelial Cell Culture in Studies of Drug Transport. In C. Wise (Ed.), *Epithelial Cell*
1022 *Culture Protocols* (pp. 233-272). Totowa, NJ: Humana Press.
1023 <https://doi.org/10.1385/1-59259-185-x:233>
- 1024 Tunggal J A, Helfrich I, Schmitz A, Schwarz H, Günzel D, Fromm M, Kemler R,

- 1025 Krieg T, Niessen C M. (2005). E-cadherin is essential for in vivo epidermal barrier
1026 function by regulating tight junctions. *The EMBO Journal*, 24(6), 1146-1156.
- 1027 <https://doi.org/10.1038/sj.emboj.7600605>
- 1028 Wang Z G, Cheng Y, Yu X C, Ye L B, Xia Q H, Johnson N R, Wei X, Chen D Q, Cao
1029 G, Fu X B, Li X K, Zhang H Y, Xiao J. (2016). bFGF Protects Against Blood-Brain
1030 Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway
1031 Following Traumatic Brain Injury. *Mol Neurobiol*, 53(10), 7298-7311.
- 1032 <https://doi.org/10.1007/s12035-015-9583-6>
- 1033 Watanabe D, Takagi H, Suzuma K, Suzuma I, Oh H, Ohashi H, Kemmochi S, Uemura
1034 A, Ojima T, Suganami E, Miyamoto N, Sato Y, Honda Y. (2004). Transcription factor
1035 Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal
1036 neovascularization. *Am J Pathol*, 164(5), 1827-1835.
- 1037 [https://doi.org/10.1016/S0002-9440\(10\)63741-8](https://doi.org/10.1016/S0002-9440(10)63741-8)
- 1038 Watanabe D, Nakagawa S, Morofuji Y, Toth A E, Vastag M, Aruga J, Niwa M, Deli M
1039 A. (2021). Characterization of a Primate Blood-Brain Barrier Co-Culture Model
1040 Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes.
- 1041 *Pharmaceutics*, 13(9). <https://doi.org/10.3390/pharmaceutics13091484>
- 1042 Weber M L, Hofland C M, Shaffer C L, Flik G, Cremers T, Hurst R S, Rollema H.
1043 (2013). Therapeutic doses of antidepressants are projected not to inhibit human
1044 alpha4beta2 nicotinic acetylcholine receptors. *Neuropharmacology*, 72, 88-95.
- 1045 <https://doi.org/10.1016/j.neuropharm.2013.04.027>
- 1046 Weksler B, Romero I A, Couraud P-O. (2013). The hCMEC/D3 cell line as a model of

1047 the human blood brain barrier. *Fluids and Barriers of the CNS*, 10(1), 16.

1048 <https://doi.org/10.1186/2045-8118-10-16>

1049 Wu T, Sheng Y, Qin Y Y, Kong W M, Jin M M, Yang H Y, Zheng X K, Dai C, Liu M,

1050 Liu X D, Liu L. (2021). Bile duct ligation causes opposite impacts on the expression

1051 and function of BCRP and P-gp in rat brain partly via affecting membrane expression

1052 of ezrin/radixin/moesin proteins. *Acta Pharmacol Sin*, 42(11), 1942-1950.

1053 <https://doi.org/10.1038/s41401-020-00602-3>

1054 Xue Q, Liu Y, Qi H, Ma Q, Xu L, Chen W, Chen G, Xu X. (2013). A Novel Brain

1055 Neurovascular Unit Model with Neurons, Astrocytes and Microvascular Endothelial

1056 Cells of Rat. *International Journal of Biological Sciences*, 9(2), 174-189.

1057 <https://doi.org/10.7150/ijbs.5115>

1058 Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. (2023).
1059 Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing
1060 PCK1- and G6PC-mediated gluconeogenesis. *Acta Pharm Sin B*, 13(9), 3728-3743.

1061 <https://doi.org/10.1016/j.apsb.2023.06.014>

1062 Zhang X, Tang N, Hadden T J, Rishi A K. (2011). Akt, FoxO and regulation of
1063 apoptosis. *Biochimica et Biophysica Acta*, 1813(11), 1978-1986.

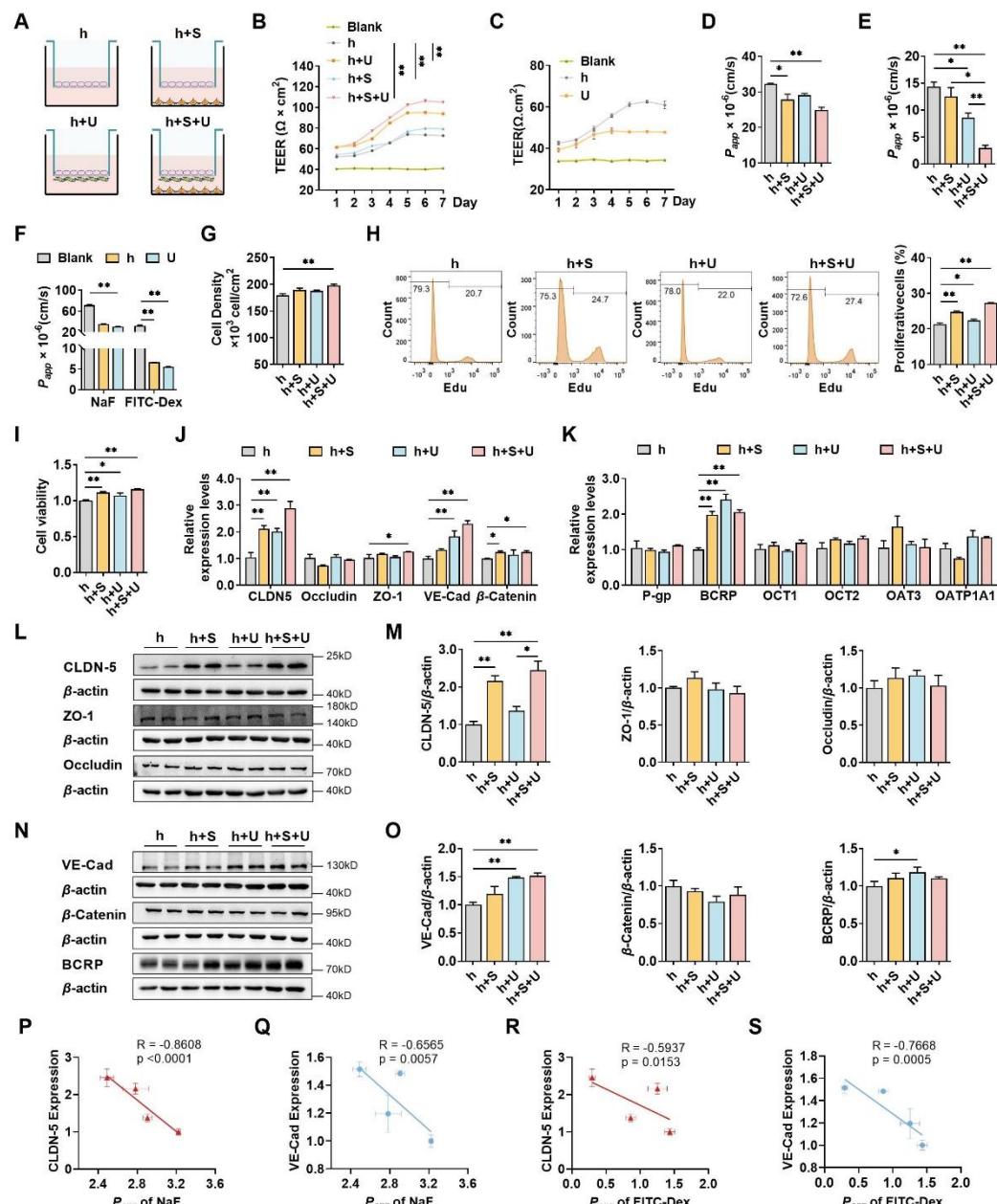
1064 <https://doi.org/10.1016/j.bbamcr.2011.03.010>

1065 Zhou L, Schmidt K, Nelson F R, Zelesky V, Troutman M D, Feng B. (2009). The
1066 effect of breast cancer resistance protein and P-glycoprotein on the brain penetration
1067 of flavopiridol, imatinib mesylate (Gleevec), prazosin, and
1068 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid

1069 (PF-407288) in mice. *Drug Metab Dispos*, 37(5), 946-955.

1070 <https://doi.org/10.1124/dmd.108.024489>

1071 Zhou Y, Zhou J, Li P, Xie Q, Sun B, Li Y, Chen Y, Zhao K, Yang T, Zhu L, Xu J, Liu


1072 X, Liu L. (2019). Increase in P-glycoprotein levels in the blood-brain barrier of partial

1073 portal vein ligation /chronic hyperammonemia rats is medicated by ammonia/reactive

1074 oxygen species/ERK1/2 activation: In vitro and in vivo studies. *Eur J Pharmacol*, 846,

1075 119-127. <https://doi.org/10.1016/j.ejphar.2019.01.005>

1076 _____

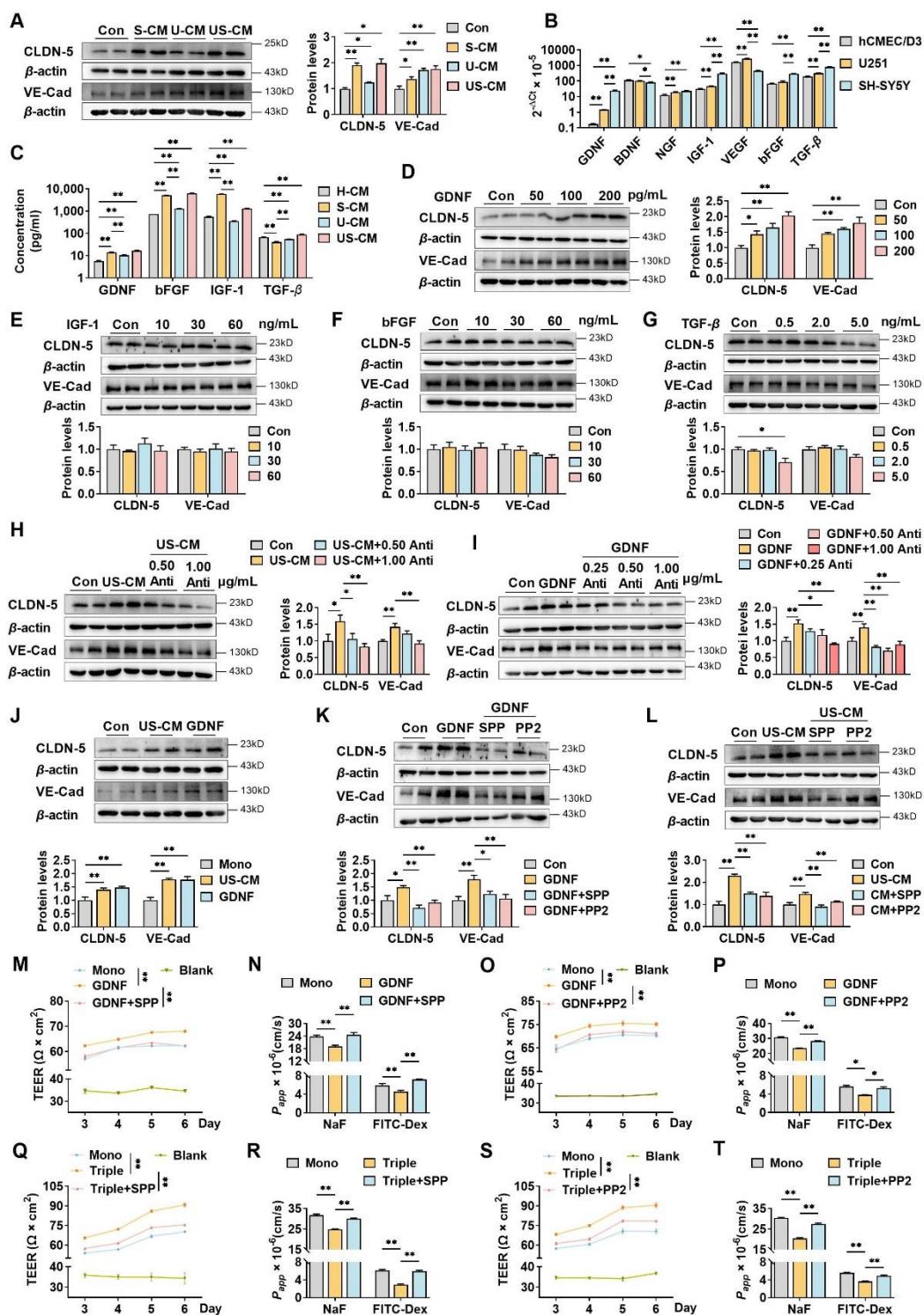
1077

1078 **Figure 1. The effects of co-culture with U251 and/or SH-SY5Y cells on the integrity of**
1079 **hCMEC/D3 and BBB function.**

1080 (A): Four different types of BBB models were prepared from hCMEC/D3 cells (h), SH-SY5Y
1081 cells (S), and U251 cells (U). (B): The transendothelial electrical resistance (TEER) of four
1082 models, and the TEER values in day 6 were compared. Blank: no cells. Four biological
1083 replicates per group. (C): The TEER of hCMEC/D3 and U251 cells monolayer. Four
1084 biological replicates per group. (D and E): The apparent permeability coefficient (P_{app} , $\times 10^6$
1085 cm/s) of fluorescein (NaF) and FITC-Dextran 3–5 kDa (FITC-Dex) of four BBB models.
1086 Four biological replicates per group. (F): The P_{app} ($\times 10^6$ cm/s) of NaF and FITC-Dex across
1087 the blank inserts, and hCMEC/D3 or U251 mono-culture models. Four biological replicates

1088 per group. **(G and H)**: The cell density (G), EdU incorporation (H) of hCMEC/D3 cells after
1089 mono/co-culturing. Three biological replicates per group. **(I)**: Cell viability of hCMEC/D3
1090 cells after mono/co-culturing. Four biological replicates per group. **(J and K)**: The mRNA
1091 levels of tight junction proteins, adherent junction proteins, and transporters. Four biological
1092 replicates per group. **(L-O)**: The protein expression levels of claudin-5 (CLDN-5), ZO-1,
1093 occluding (L and M), VE-cadherin (VE-Cad), β -catenin, and BCRP (N and O) in hCMEC/D3
1094 cells. Four biological replicates per group. **(P and Q)**: The correlations between the P_{app} (\times
1095 10^{-5} cm/s) of NaF and claudin-5 expression (P), or VE-cadherin expression (Q). **(R and S)**:
1096 The correlation between P_{app} ($\times 10^{-5}$ cm/s) of FITC-Dex and claudin-5 expression (R), or
1097 VE-cadherin expression (S). The above data are shown as the mean \pm SEM. For J and K, two
1098 technical replicates per biological replicate. One technical replicate per biological replicate
1099 for the rest. * $p < 0.05$; ** $p < 0.01$ by one-way ANOVA test followed by Fisher's LSD test,
1100 Welch's ANOVA test, or Kruskal-Wallis test. The simple linear regression analysis was used
1101 to examine the presence of a linear relationship between two variables.

1102 **Figure 1-Source data1**


1103 The western blot raw images in Figure 1

1104 **Figure 1-Source data2**

1105 The labeled western blot images in Figure 1

1106 **Figure 1-Source data3**

1107 Excel file containing summary data and data analysis of Figure 1

1108

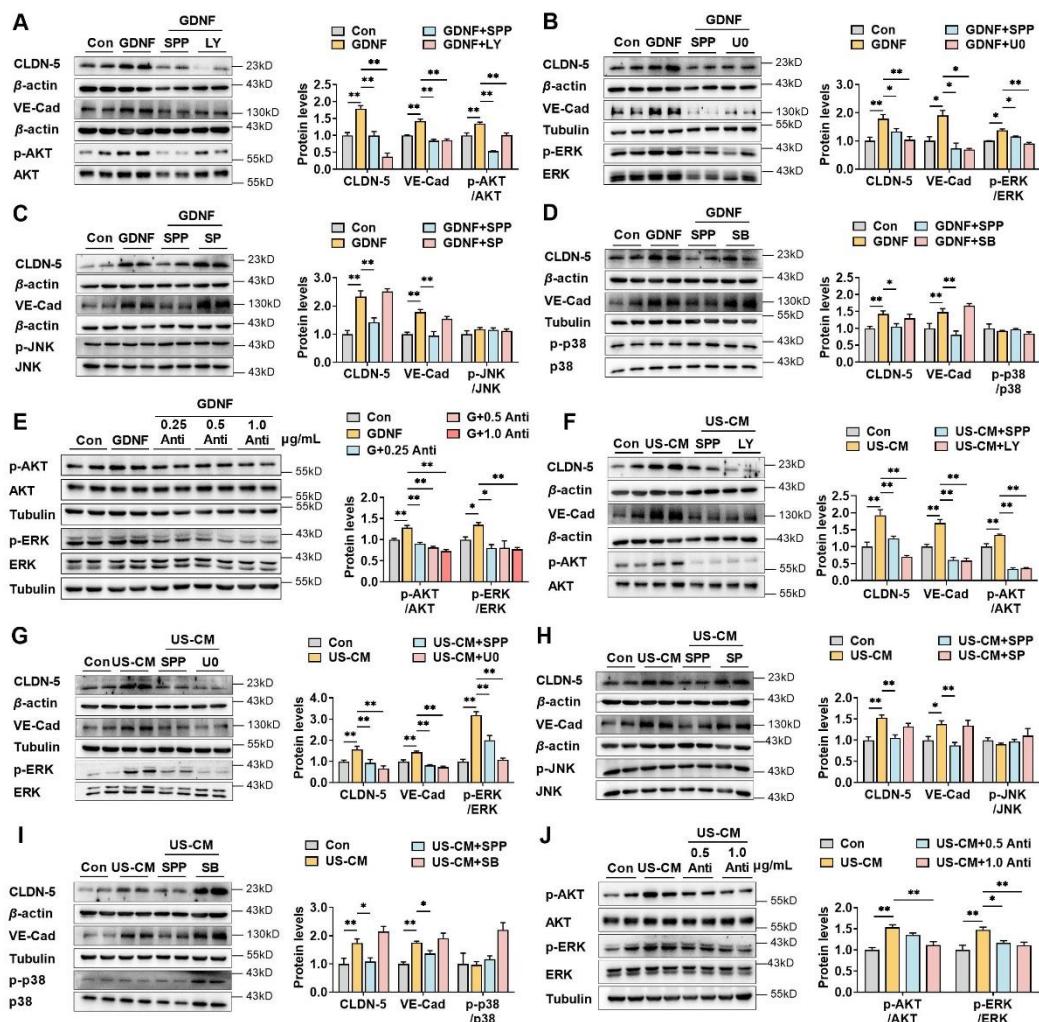
1109 **Figure 2. Neurons and astrocytes upregulated claudin-5 and VE-cadherin expression in**

1110 **hCMEC/D3 cells due to GDNF secretion.**

1111 (A): Effects of conditioned medium (CM) on claudin-5 and VE-cadherin expression. Con: the
 1112 normal medium; S-CM: the CM from SH-SY5Y cells; U-CM: the CM from U251 cells;
 1113 US-CM: the CM from SH-SY5Y cells co-culture with U251 cells. (B): The mRNA expression
 1114 levels of neurotrophic factors in hCMEC/D3, U251, and SH-SY5Y cells. (C): Concentrations

1115 of GDNF, bFGF, IGF-1, and TGF- β in the CMs. H-CM: the CM from hCMEC/D3 cells.
1116 (D-G): Effects of GDNF (D), IGF-1 (E), bFGF (F), and TGF- β (G) on the expression of
1117 claudin-5 and VE-cadherin. The dosages have been marked in the figure. (H and I): Effects of
1118 anti-GDNF antibody on the upregulation of claudin-5 and VE-cadherin expression induced by
1119 US-CM (H) or 200 pg/mL GDNF (I). (J): Effects of 200 pg/mL GDNF and US-CM on
1120 claudin-5 and VE-cadherin expression in primary rat brain microvascular endothelial cells. (K
1121 and L): Effects of 3 μ M RET tyrosine kinase inhibitor SSP-86 (SPP), and 5 μ M Src family
1122 kinases inhibitor PP2 on the upregulation of claudin-5 and VE-cadherin induced by 200
1123 pg/mL GDNF (K) and US-CM (L). (M and N): Effects of SPP on the TEER on day 6 (M), the
1124 permeability of NaF, and FITC-Dex (N) of the hCMEC/D3 mono-culture BBB model treating
1125 200 pg/mL GDNF. (O and P): Effects of PP2 on the TEER on day 6 (O), the permeability of
1126 NaF, and FITC-Dex (P) of the hCMEC/D3 mono-culture BBB model treating 200 pg/mL
1127 GDNF. (Q and R): Effects of SPP on the TEER on day 6 (Q), the permeability of NaF, and
1128 FITC-Dex (R) of the triple co-culture BBB model. (S and T): Effects of PP2 on the TEER on
1129 day 6 (S), the permeability of NaF, and FITC-Dex (T) of the triple co-culture BBB model.
1130 The above data are shown as the mean \pm SEM. Four biological replicates per group. For B
1131 and C, two technical replicates per biological replicate. One technical replicate per biological
1132 replicate for the rest. * $p < 0.05$; ** $p < 0.01$ by one-way ANOVA test followed by Fisher's
1133 LSD test, Welch's ANOVA test, or Kruskal-Wallis test.

1134 **Figure 2-Source data1**


1135 The western blot raw images in Figure 2

1136 **Figure 2-Source data2**

1137 The labeled western blot images in Figure 2

1138 **Figure 2-Source data3**

1139 Excel file containing summary data and data analysis of Figure 2

1140

1141 **Figure 3. GDNF induced claudin-5 and VE-cadherin expression in hCMEC/D3 cells by**

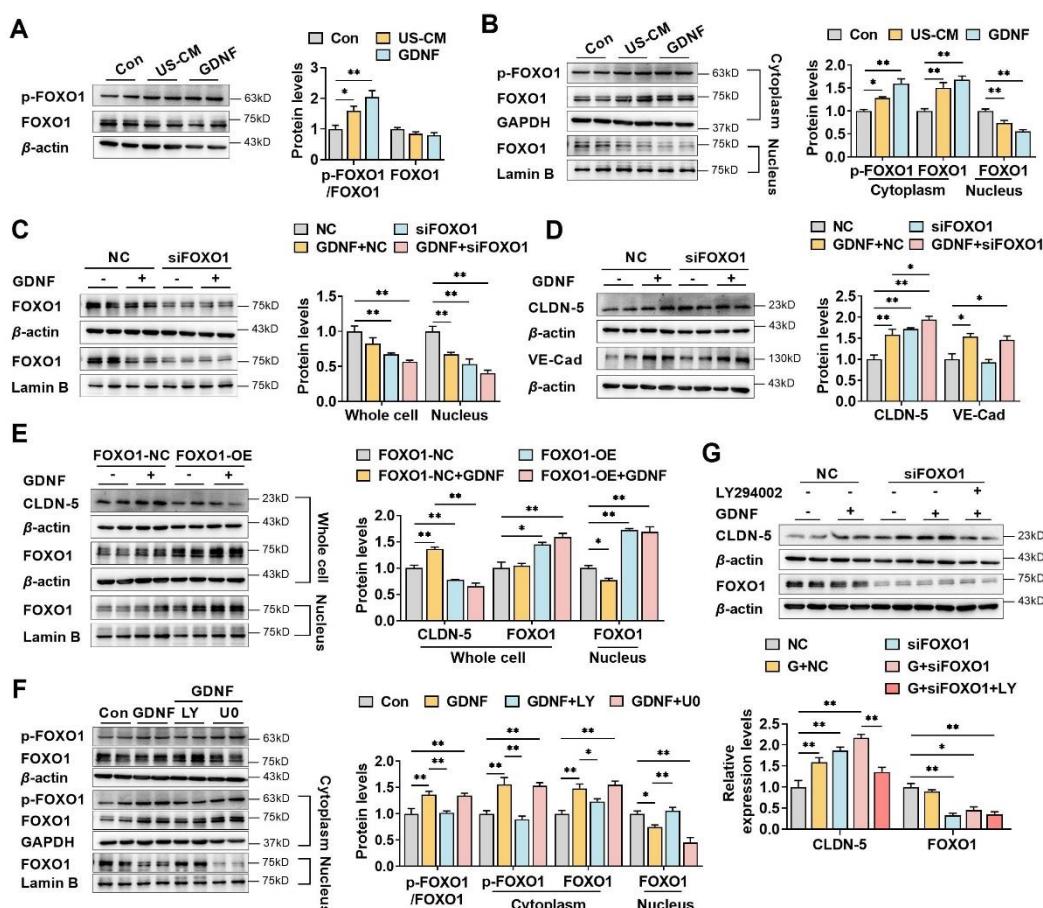
1142 **activating the PI3K/AKT and MAPK/ERK signaling.**

1143 (A): Effects of 3 μ M LY294002 (LY) on the levels of claudin-5, VE-cadherin, and
1144 p-AKT/AKT in hCMEC/D3 cells stimulated by 200 pg/mL GDNF. (B): Effects of 2 μ M
1145 U0126 (U0) on the levels of claudin-5, VE-cadherin, and p-ERK/ERK in hCMEC/D3 cells
1146 stimulated by 200 pg/mL GDNF. (C): Effects of 5 μ M SP600125 (SP) on the levels of
1147 claudin-5, VE-cadherin, and p-JNK/JNK in hCMEC/D3 cells stimulated by 200 pg/mL GDNF.
1148 (D): Effects of 2 μ M SB203580 (SB) on the levels of claudin-5, VE-cadherin, and p-p38/p38
1149 in hCMEC/D3 cells stimulated by 200 pg/mL GDNF. (E): Effects of anti-GDNF antibody on
1150 the GDNF-induced p-AKT/AKT and p-ERK/ERK ratios. (F): Effects of 3 μ M LY on the
1151 levels of claudin-5, VE-cadherin, and p-AKT/AKT in hCMEC/D3 cells stimulated by US-CM.
1152 (G): Effects of 2 μ M U0 on the levels of claudin-5, VE-cadherin, and p-ERK/ERK in
1153 hCMEC/D3 cells stimulated by US-CM. (H): Effects of 5 μ M SP on the levels of claudin-5,
1154 VE-cadherin, and p-JNK/JNK in hCMEC/D3 cells stimulated by US-CM. (I): Effects of 2
1155 μ M SB on the levels of claudin-5, VE-cadherin, and p-p38/p38 in hCMEC/D3 cells

1156 stimulated by 2 US-CM. (J): Effects of anti-GDNF antibody on the US-CM-induced
 1157 p-AKT/AKT and p-ERK/ERK ratios. The above data are shown as the mean \pm SEM. Four
 1158 biological replicates per group. One technical replicate for each biological replicate. * $p <$
 1159 0.05; ** $p < 0.01$ by one-way ANOVA test followed by Fisher's LSD test or Welch's
 1160 ANOVA test.

1161 **Figure 3-Source data1**

1162 The western blot raw images in Figure 3


1163 **Figure 3-Source data2**

1164 The labeled western blot images in Figure 3

1165 **Figure 3-Source data3**

1166 Excel file containing summary data and data analysis of Figure 3

1167

1168

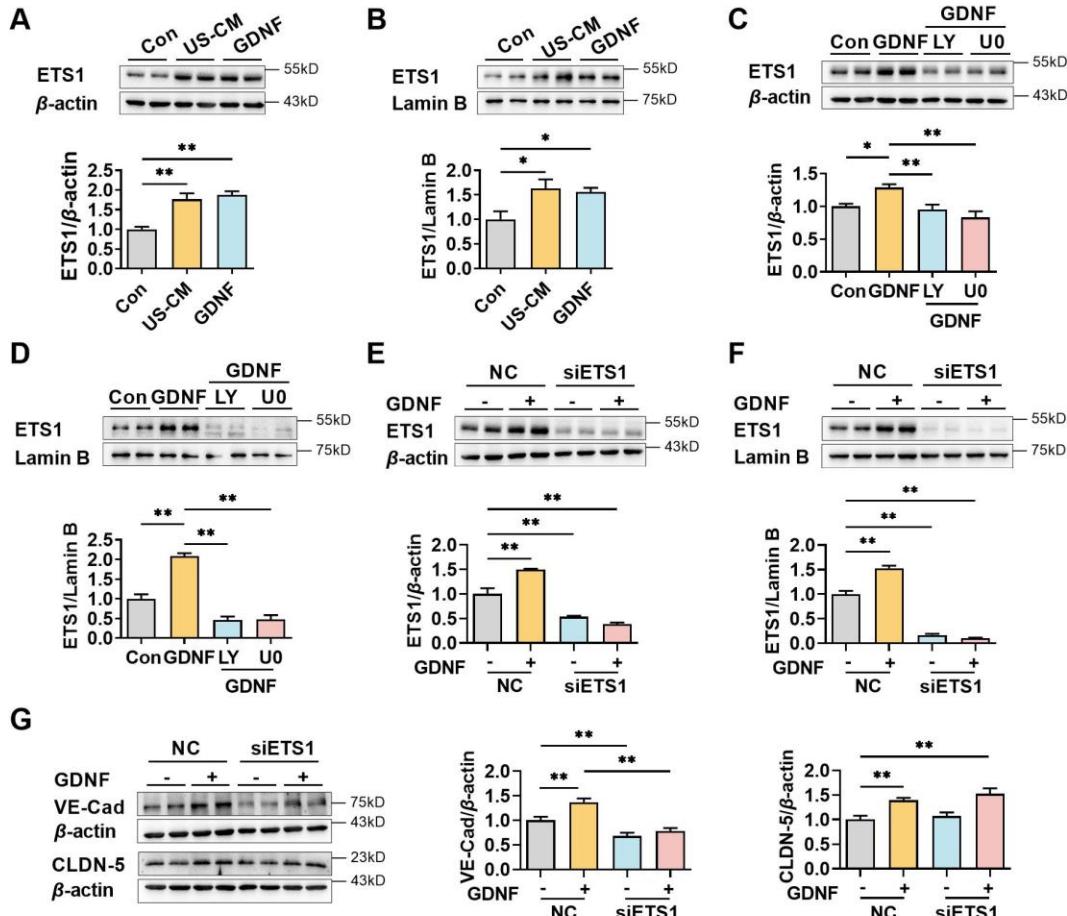
1169 **Figure 4. GDNF induced the claudin-5 expression in hCMEC/D3 cells by activating the**
 1170 **PI3K/AKT/FOXO1 pathway.**

1171 (A and B): Effects of US-CM and GDNF on the phosphorylated FOXO1 (p-FOXO1)/FOXO1
 1172 ratio, total FOXO1 expression (A), cytoplasmic p-FOXO1, cytoplasmic FOXO1, and nuclear

1173 FOXO1 expression (B). **(C and D):** The expression levels of total and nuclear FOXO1 (C),
1174 claudin-5, and VE-cadherin (D) in hCMEC/D3 cells transfected with *FOXO1* siRNA
1175 (siFOXO1). NC: negative control. **(E):** Effects of *FOXO1* overexpression (FOXO1-OE) and
1176 GDNF on the expression levels of claudin-5, total FOXO1, and nuclear FOXO1. FOXO1-NC:
1177 negative control plasmids. **(F):** Effects of LY and U0 on GDNF-induced alterations of total
1178 p-FOXO1/FOXO1 ratio, cytoplasmic p-FOXO1, cytoplasmic FOXO1, and nuclear FOXO1
1179 expression. **(G):** Effects of LY on the claudin-5 expression upregulated by siFOXO1. The
1180 above data are shown as the mean \pm SEM. Four biological replicates per group. One technical
1181 replicate for each biological replicate. * $p < 0.05$; ** $p < 0.01$ by one-way ANOVA test
1182 followed by Fisher's LSD test, Welch's ANOVA test, or Kruskal-Wallis test.

1183 **Figure 4-Source data1**

1184 The western blot raw images in Figure 4


1185 **Figure 4-Source data2**

1186 The labeled western blot images in Figure 4

1187 **Figure 4-Source data3**

1188 Excel file containing summary data and data analysis of Figure 4

1189

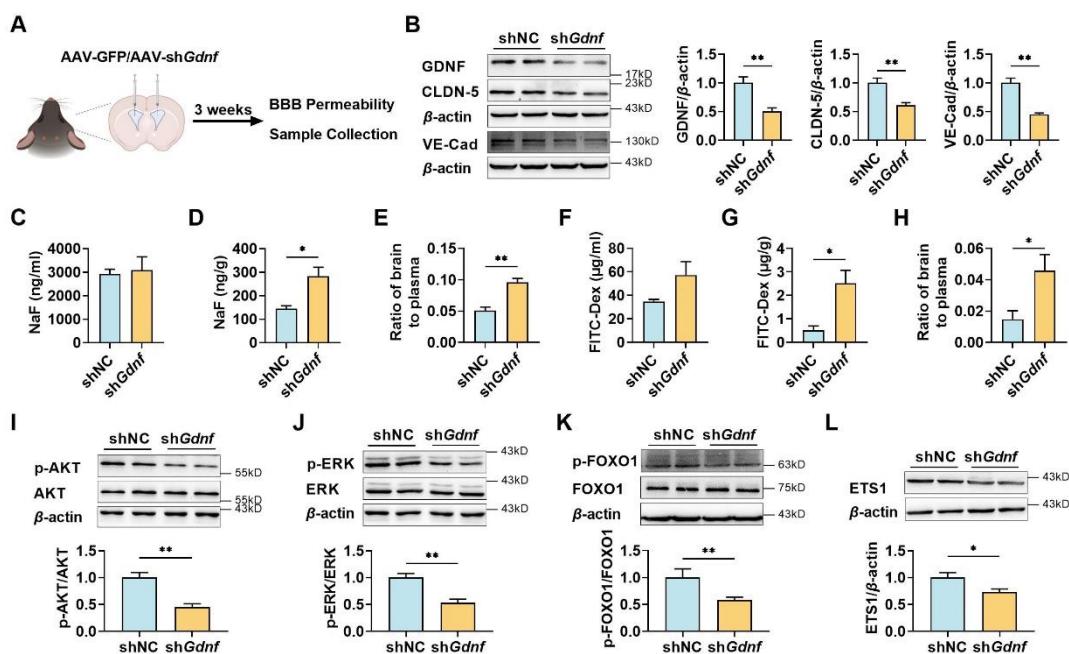
1190

1191 **Figure 5. GDNF induced VE-cadherin expression in hCMEC/D3 cells by activating the**
1192 **PI3K/AKT/ETS1 and MAPK/ERK/ETS1 pathways.**

1193 (A and B): Effects of US-CM and GDNF on total (A) and nuclear (B) ETS1 expression. (C
1194 and D): Effects of LY and U0 on 200 pg/mL GDNF-induced total (C) and nuclear (D) ETS1
1195 expression. (E and F): Expression levels of total (E) and the nuclear ETS1 (F) in hCMEC/D3
1196 cells after knocking down *ETS1* with siRNA (siETS1). (G-I): Effects of GDNF and siETS1
1197 on the expression of VE-cadherin and claudin-5. The above data are shown as the mean \pm
1198 SEM. Four biological replicates per group. One technical replicate for each biological
1199 replicate. * $p < 0.05$; ** $p < 0.01$ by one-way ANOVA test followed by Fisher's LSD test.

1200 **Figure 5-Source data1**

1201 The western blot raw images in Figure 5


1202 **Figure 5-Source data2**

1203 The labeled western blot images in Figure 5

1204 **Figure 5-Source data3**

1205 Excel file containing summary data and data analysis of Figure 5

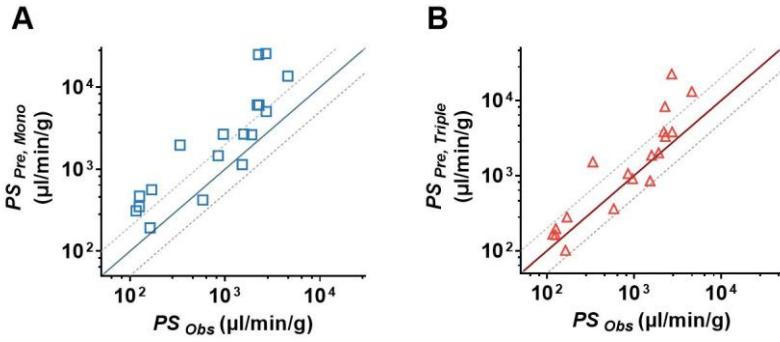
1206

1207
1208 **Figure 6. The deficiency of brain GDNF in mice increased the permeability of BBB and**
1209 **reduced claudin-5 and VE-cadherin expression in mice brains.**

1210 (A): Experimental configuration of AAV-GFP (shNC) or AAV-shGdnf (shGdnf)
1211 intracerebroventricular injection. (B): Effects of brain-specific *Gdnf* silencing on the
1212 expression levels of GDNF, claudin-5, and VE-cadherin in the brains. (C-E): Effects of
1213 brain-specific *Gdnf* silencing on NaF levels in plasma (C), brain (D), and the ratio of brain to
1214 plasma (E). (F-H): Effects of brain-specific *Gdnf* silencing on FITC-Dex levels in plasma (F),
1215 brain (G), and the ratio of brain to plasma (H). (I-K): The expression ratios of p-AKT/AKT
1216 (I), p-ERK/ERK (J), and p-FOXO1/FOXO1 (K) in the brains of *Gdnf* silencing mice. (L):
1217 The expression level of ETS1 in the brains of *Gdnf* silencing mice. The above data are shown
1218 as the mean \pm SEM. Six biological replicates per group. One technical replicate for each
1219 biological replicate. * $p < 0.05$; ** $p < 0.01$ by unpaired t-test, unpaired t-test with Welch's
1220 correction, or Mann-Whitney test.

1221 **Figure 6-Source data1**

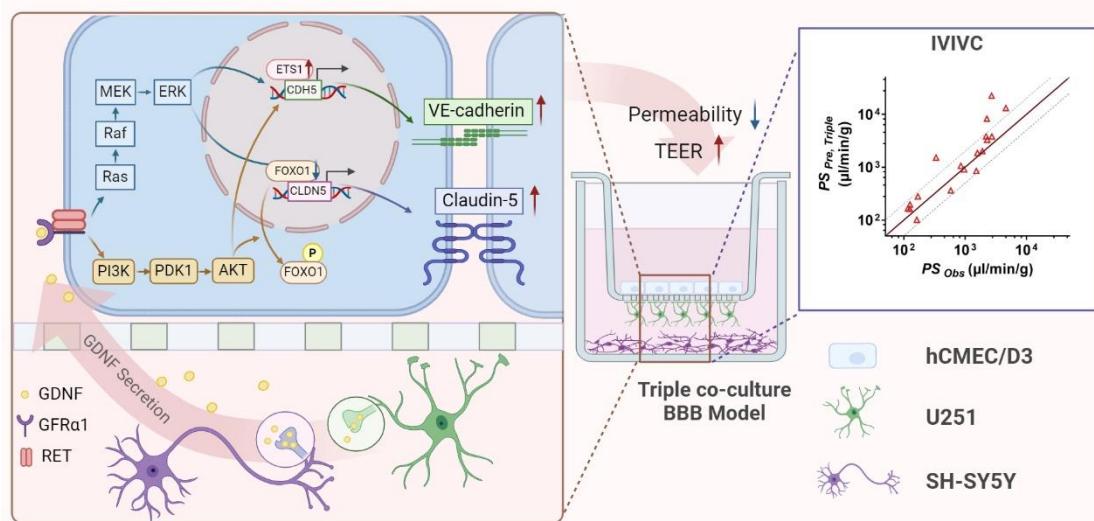
1222 The western blot raw images in Figure 6


1223 **Figure 6-Source data2**

1224 The labeled western blot images in Figure 6

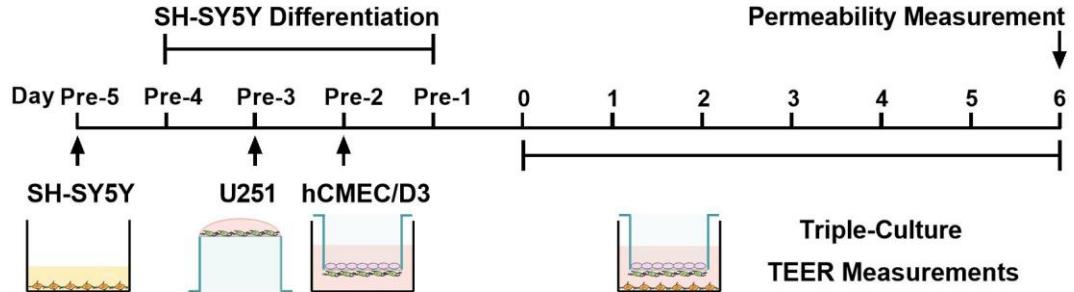
1225 **Figure 6-Source data3**

1226 Excel file containing summary data and data analysis of Figure 6


1227

1228

1229 **Figure 7. *In vitro/in vivo* correlation assay of BBB permeability.**


1230 (A): The comparison of the estimated permeability coefficient-surface area product (PS_{Mono})
1231 recalculated from $P_{app, Mono}$ with the observed *in vivo* PS values (PS_{Obs}). (B): The comparison
1232 of the estimated permeability coefficient-surface area product (PS_{Triple}) recalculated from $P_{app,$
1233 $Triple$ with the observed *in vivo* PS values (PS_{Obs}). The solid line represents a perfect prediction,
1234 and the dashed lines represent the 0.5-2 folds of their observations. The PS_{Obs} values were
1235 determined by *in situ* brain perfusion in rodents, which were collected from the literature.

1236

1237 **Figure 8. The mechanism of neurons and astrocytes induced the integrity of brain**
1238 **endothelial cells.** Neurons but also astrocytes trigger the activation of PI3K/AKT and
1239 MAPK/ERK pathways in brain endothelial cells by GDNF secretion, which in turn regulates
1240 transcription factors of claudin-5 (FOXO1) and VE-cadherin (ETS1) to promote claudin-5
1241 and VE-cadherin expression and leads to the enhancement of BBB integrity. Meanwhile, with
1242 the increase in barrier integrity, the *in vitro* BBB model also obtained a stronger *in vivo*
1243 correlation.

1244

1245

1246 **Figure 9. Schematic diagram of the establishment process of the triple co-culture BBB**
1247 **model.**

1248

1249 **Table 1.** The unbound fraction in brain ($f_{u, brain}$), the observed PS_{Obs} , and the predicted PS (PS_{Pre})
1250 P_{app} across the hCMEC/D3 mono-culture model ($P_{app, Mono}$) and triple co-culture model
1251 ($P_{app, Triple}$) of the tested drugs. One technical replicate of 4 biological replicates per group.

Compounds	$f_{u, brain}$	PS_{Obs} μl/min/g	$P_{app, Mono}$ cm/s $\times 10^{-6}$	$PS_{Pre, Mono}$ μl/min/g	$P_{app, Triple}$ cm/s $\times 10^{-6}$	$PS_{Pre, Triple}$ μl/min/g
Amantadine	0.1985 ^(a)	116.10 ^(b)	6.84 \pm 0.95	310.22	3.64 \pm 0.26	165.23
Amitriptyline	0.01 ^(c)	4608.00 ^(k)	15.24 \pm 0.64	13716.00	14.61 \pm 0.27	13149.00
Bupropion	0.12 ^(d)	1519.20 ^(b)	15.19 \pm 0.20	1139.58	11.34 \pm 0.44	850.58
Carbamazepine	0.116 ^(e)	959.40 ^(b)	34.37 \pm 1.26	2666.89	11.71 \pm 0.15	908.69
Clozapine	0.014 ^(f)	2260.80 ^(b)	38.97 \pm 0.54	25052.57	12.87 \pm 2.06	8272.72
Donepezil	0.07 ^(g)	1581.30 ^(b)	20.91 \pm 0.75	2688.43	14.47 \pm 0.84	1860.43
Doxepin	0.025 ^(b)	2192.40 ^(b)	16.88 \pm 1.08	6076.80	10.66 \pm 0.92	3837.60
Fluoxetine	0.004 ^(b)	2698.20 ^(b)	11.48 \pm 0.84	2583.00	9.97 \pm 1.03	2243.25
Gabapentin	0.782 ^(b)	162.90 ^(b)	16.75 \pm 1.62	192.77	8.78 \pm 0.23	101.05
Lamotrigine	0.273 ^(b)	126.00 ^(b)	14.26 \pm 0.37	470.11	5.97 \pm 0.11	196.88
Metoclopramide	0.365 ^(b)	125.10 ^(b)	14.14 \pm 1.44	348.66	6.63 \pm 0.42	163.41
Midazolam	0.045 ^(h)	2727.00 ^(b)	25.30 \pm 1.00	5060.00	19.09 \pm 0.24	3818.00
Mirtazapine	0.08 ^(b)	1912.50 ^(b)	23.44 \pm 0.44	2637.00	17.86 \pm 0.21	2009.25
Olanzapine	0.034 ^(b)	2279.70 ^(b)	22.91 \pm 3.80	6064.41	12.49 \pm 0.53	3306.18
Prazosin	0.09 ⁽ⁱ⁾	169.20 ^(j)	5.61 \pm 0.38	560.93	2.81 \pm 0.52	280.99
Risperidone	0.099 ^(b)	849.60 ^(b)	16.10 \pm 2.87	1463.64	11.70 \pm 0.25	11063.64
Venlafaxine	0.205 ^(a)	584.10 ^(b)	9.58 \pm 0.28	420.6	8.25 \pm 0.36	362.02
Verapamil	0.033 ^(c)	335.70 ^(c)	7.21 \pm 0.41	1965.24	5.56 \pm 0.06	1517.67

1252 ^(a)(Esaki et al., 2019); ^(b)(Summerfield et al., 2007); ^(c)(Friden et al., 2011); ^(d)(Bhattacharya et
1253 al., 2021); ^(e)(Maurer et al., 2005); ^(f)(Cremers et al., 2012); ^(g)(Di et al., 2011); ^(h)(Kodaira et
1254 al., 2011); ⁽ⁱ⁾(Zhou L. et al., 2009); ^(j)(Di Marco et al., 2019); ^(k)(Avdeef et al., 2010).

1255 **Table 1-Source data1**

1256 The apparent permeability coefficients of 18 tested drugs from mono or triple culture BBB
1257 model

1258

1259 **Table 2** Initial concentrations in donor chamber and chromatographic conditions of prazosin,
1260 verapamil, and lamotrigine

Compound	Concentration	Wavelength
Prazosin	5 μ M	Ex: 250 nm Em: 390 nm
Verapamil	5 μ M	Ex: 280 nm Em: 310 nm
Lamotrigine	6 μ M	220nm

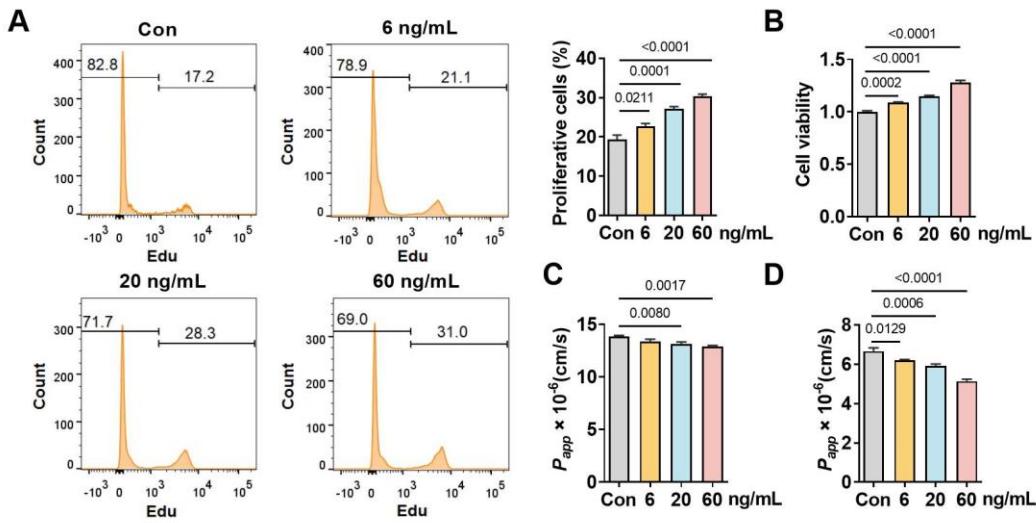
1261
1262 **Table 3** The summary of mass charge ratio, extraction, initial concentrations in donor
1263 chamber

Compound	Concentration	Mass charge ratio [M+H] ⁺	Extraction
Amantadine	3 μ M	181	Water-saturated N-butanol
Amitriptyline	1.5 μ M	278	Ethyl acetate
Bupropion	3 μ M	240	Ethyl acetate
Carbamazepine	3 μ M	237	Ethyl acetate
Clozapine	4 μ M	327	Ethyl acetate
Donepezil	3 μ M	380	Methyl tert-butyl ether
Doxepin	4 μ M	317	Methyl tert-butyl ether
Fluoxetine	3 μ M	310	Ethyl acetate
Gabapentin	10 μ M	172	Ethyl acetate
Metoclopramide	4 μ M	301	Ethyl acetate
Midazolam	3 μ M	327	Ethyl acetate
Mirtazapine	3 μ M	266	Methyl tert-butyl ether
Olanzapine	3 μ M	313	Methyl tert-butyl ether
Risperidone	4 μ M	427	Methyl tert-butyl ether
Venlafaxine	10 μ M	278	Ethyl acetate

1264

1265 **Table 4** Primer sequences for qPCR for indicated genes

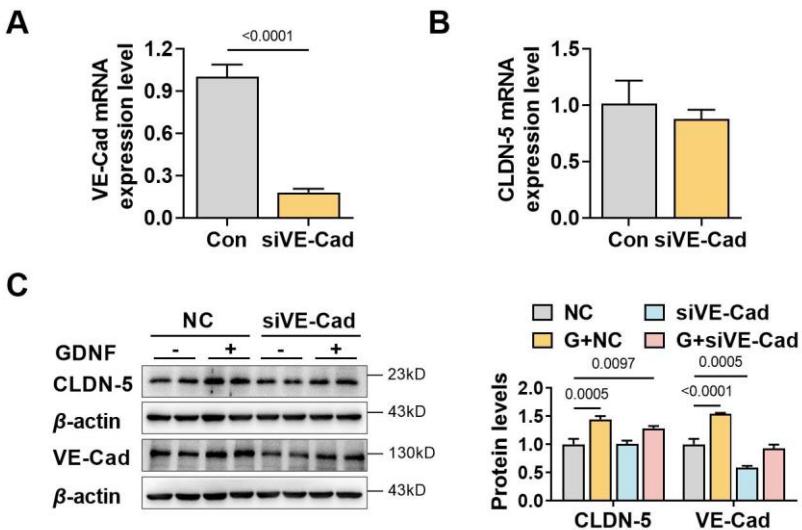
Gene (protein)	Forwards Primer, 5'→3'	Reverse Primer, 3'→5'
<i>ACTB</i> (β -actin)	GGACTTCGAGCAAGAGATGG	AGCACTGTGTTGGCGTACAG
<i>GAPDH</i> (GAPDH)	TGTGGGCATCAATGGATTGG	ACACCATGTATTCCGGGTCAAT
<i>CLDN5</i> (claudin-5)	CTCTGCTGGTTGCCAACAT	CAGCTCGTACTTCTGCGACA
<i>OCLN</i> (occludin)	ACAAGCGGTTTATCCAGAGTC	GTCATCCACAGGCGAAGTTAAT
<i>TJPI</i> (ZO-1)	ACCAGTAAGTCGTCCCTGATCC	TCGGCCAAATCTTCTCACTCC
<i>CDH5</i> (VE-cadherin)	AAGCGTGAGTCGCAAGAATG	TCTCCAGGTTTCGCCAGTG
<i>ABCB1</i> (P-gp)	TTGCTGCTTACATTCAAGGTTCA	AGCCTATCTCCTGTCGCATTA
<i>ABCG2</i> (BCRP)	ACGAACGGATTAACAGGGTCA	CTCCAGACACACCACGGAT
<i>SLC22A1</i> (OCT1)	ACGGTGGCGATCATGTACC	CCCATTCTTGAGCGATGTGG
<i>SLC22A2</i> (OCT2)	CATCGTCACCGAGTTAACCTG	AGCCGATACTCATAGAGCCAAT
<i>SLC22A8</i> (OAT3)	ATGGCCCAGTCTATCTTCATGG	GACGGTGCTCAGGGTAATGC
<i>SLCO1A1</i> (OATP1A1)	TAATGTGGGTGTACGTCTAGT	GCTCCTGTTCTACAAGCCAA
<i>GDNF</i> (GDNF)	GCAGACCCATCGCCTTGAT	CCACACCTTTAGCGGAATGC
<i>BDNF</i> (BDNF)	CTACGAGACCAAGTGCAATCC	AATGCCAGCCAATTCTCTTT
<i>NGF</i> (NGF)	TGTGGGTTGGGGATAAGACCA	GCTGTCAACGGGATTGGGT
<i>IGF1</i> (IGF-1)	GCTCTTCAGTTCGTGTGTGGA	GGTCATGGATGGACCTTACTGT
<i>VEGFA</i> (VEGF)	CCCACTGAGGAGTCCAACAT	AAATGCTTCTCCGCTCTGA
<i>FGF2</i> (bFGF)	AGAAGAGCGACCCTCACATCA	CGGTTAGCACACACTCCTTG
<i>TGFB1</i> (TGF- β)	GGCCAGATCCTGTCCAAGC	GTGGGTTCCACCATTAGCAC


1266

1267 **Table 5** The target sequences for siRNA or shRNA

Gene	Target sequence
<i>ETS1</i>	CGCTATACCTCGGATTACT
<i>FOXO1</i>	AATCTCCTAGGAGAAGAGCTG
<i>Gdnf</i>	GCCAGTGTATTCTGATAC
<i>CDH5</i>	GCCTCTGTATGTACCAAA

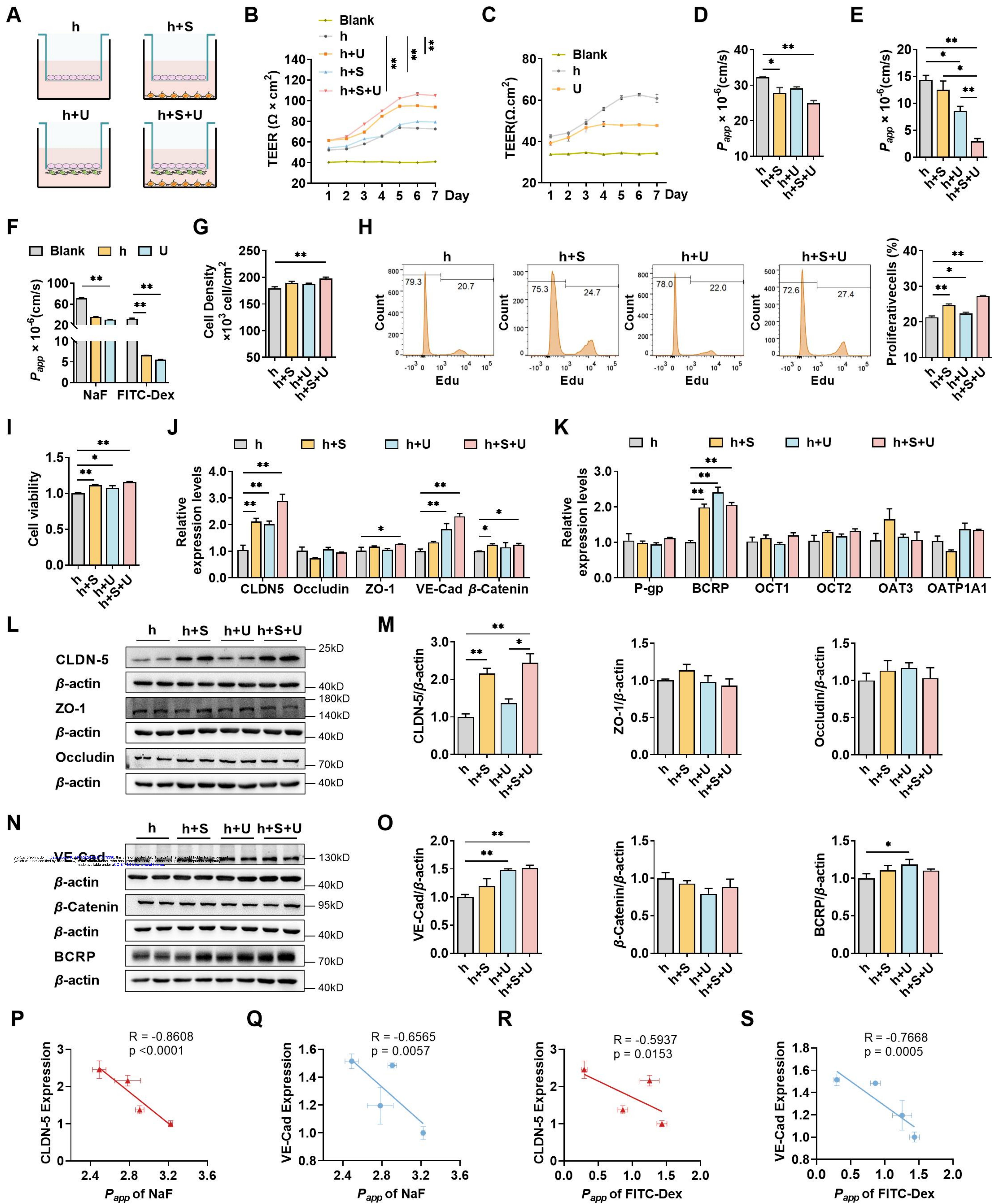
1268

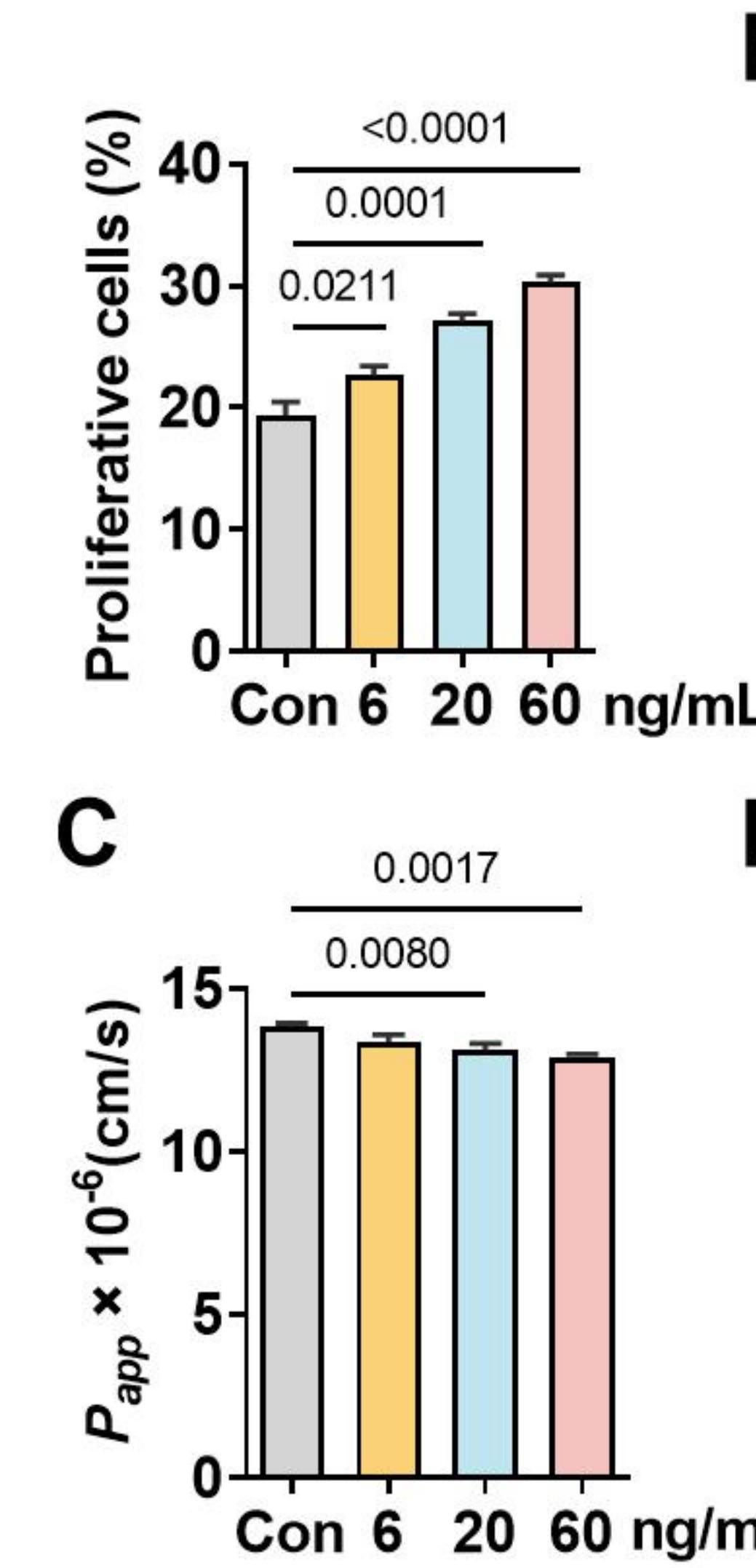
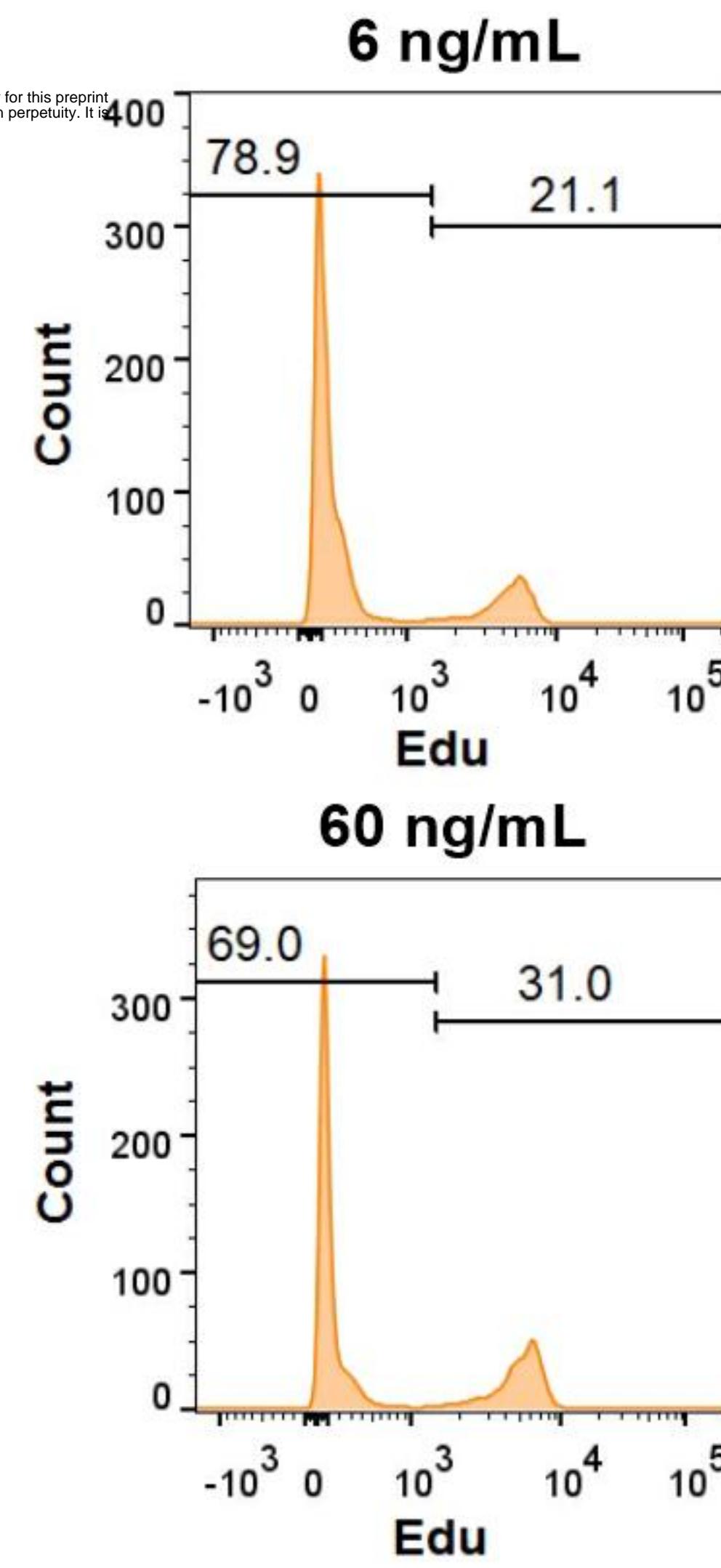
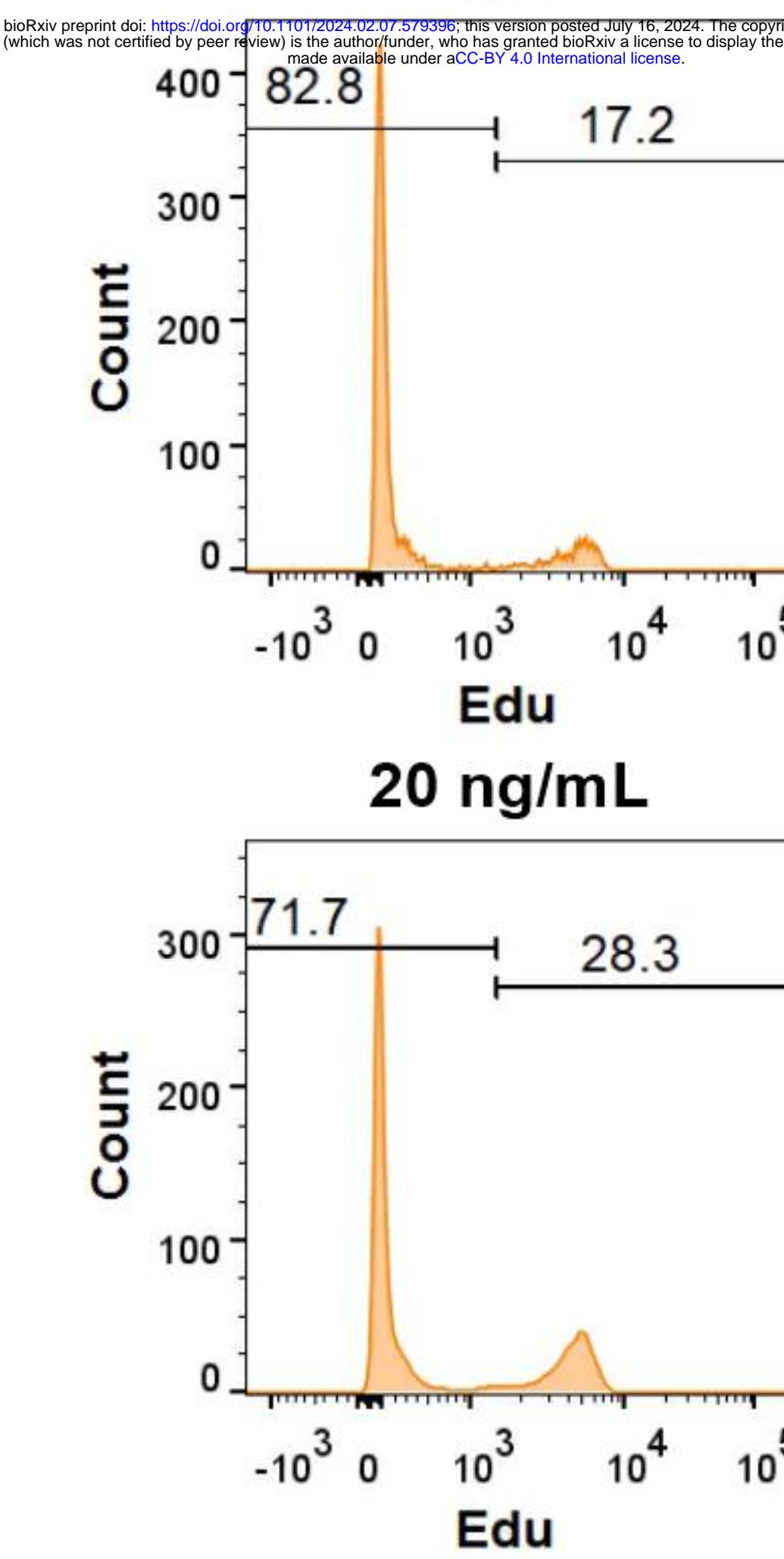

1269 **Figure 1—figure supplement 1**

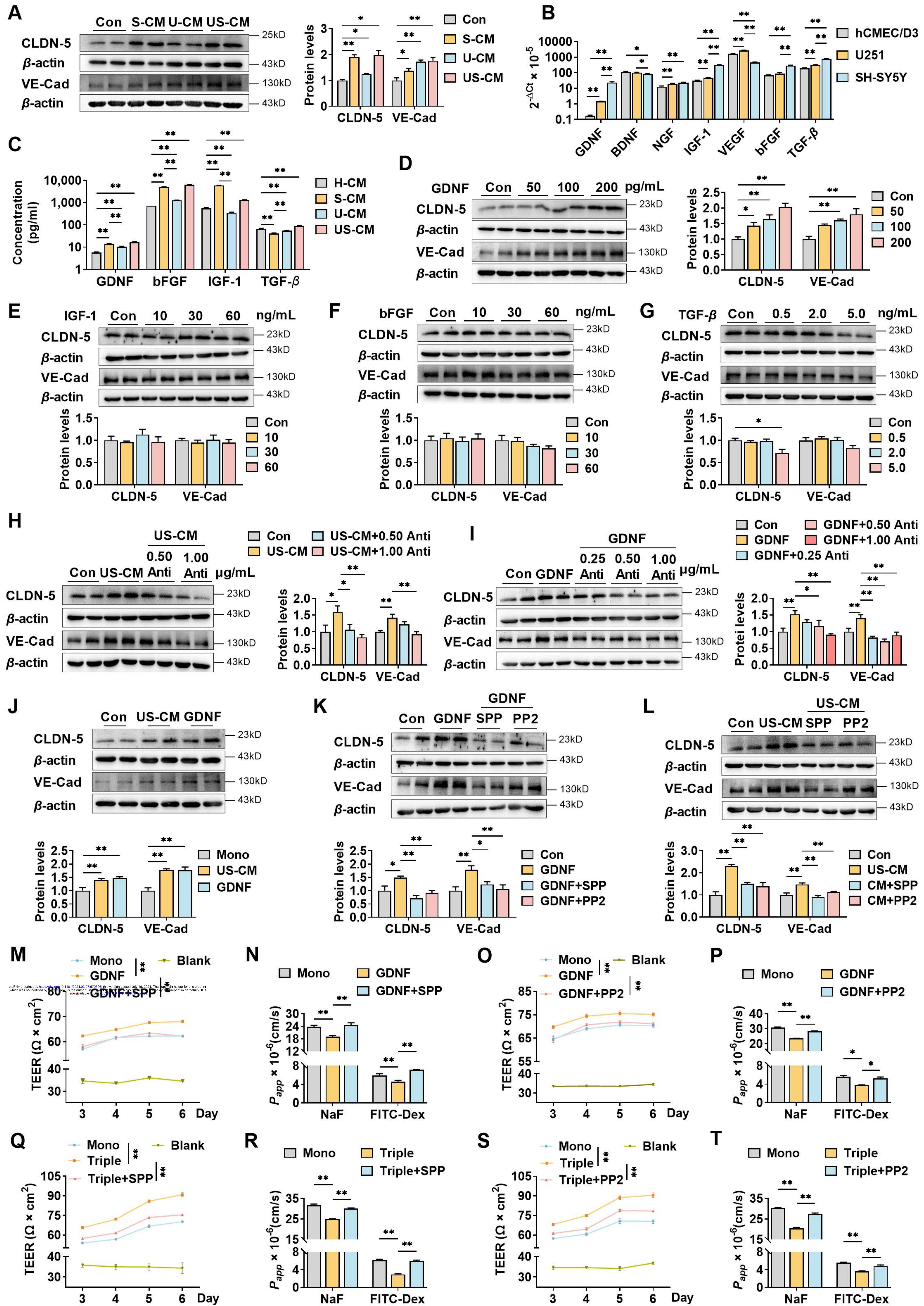
1270

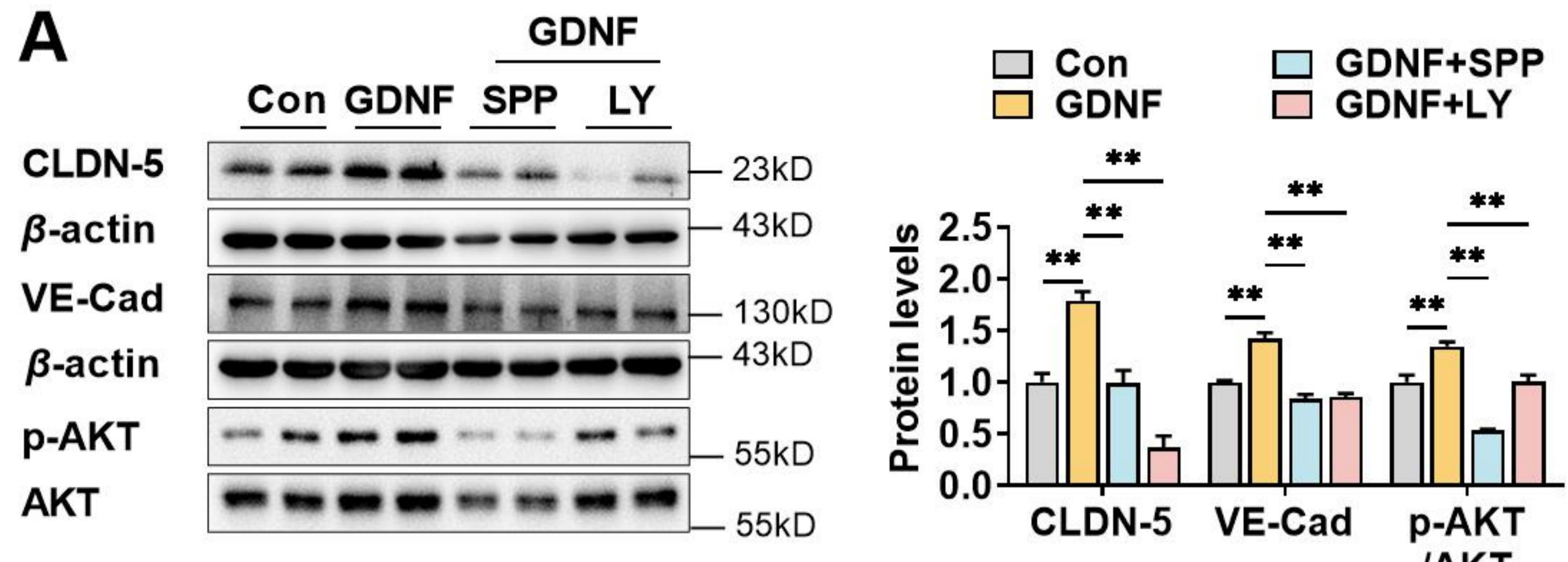
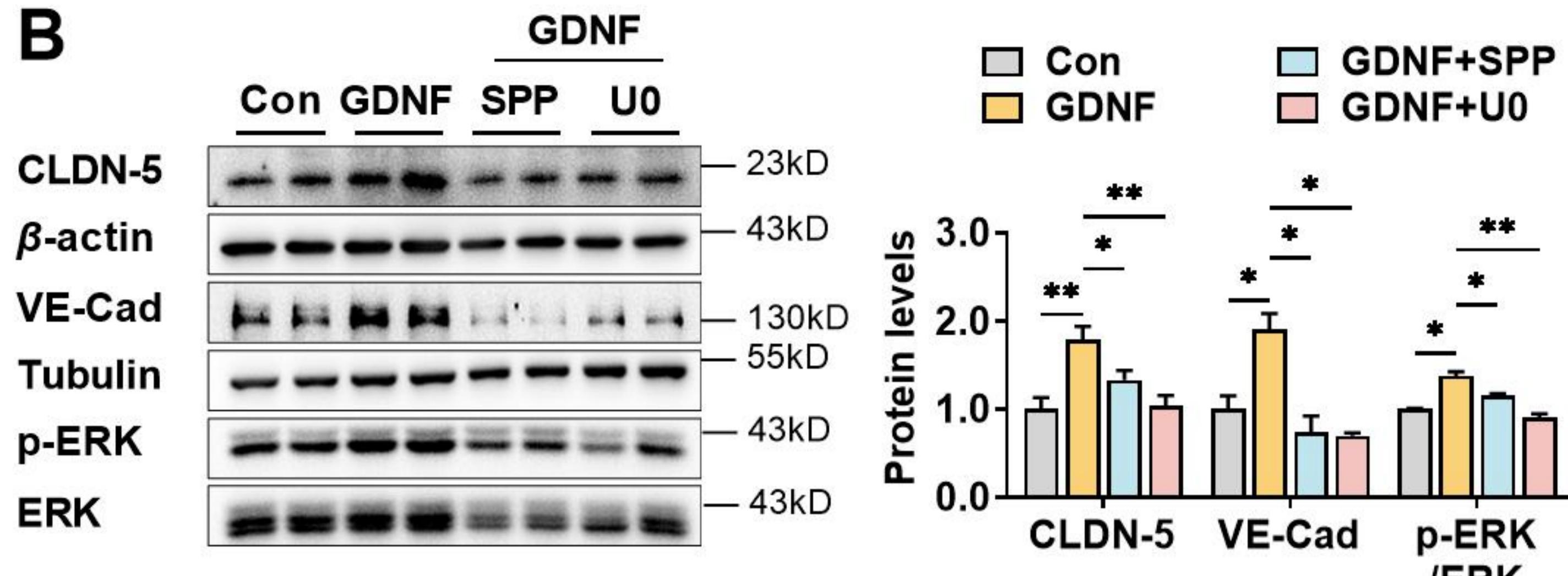
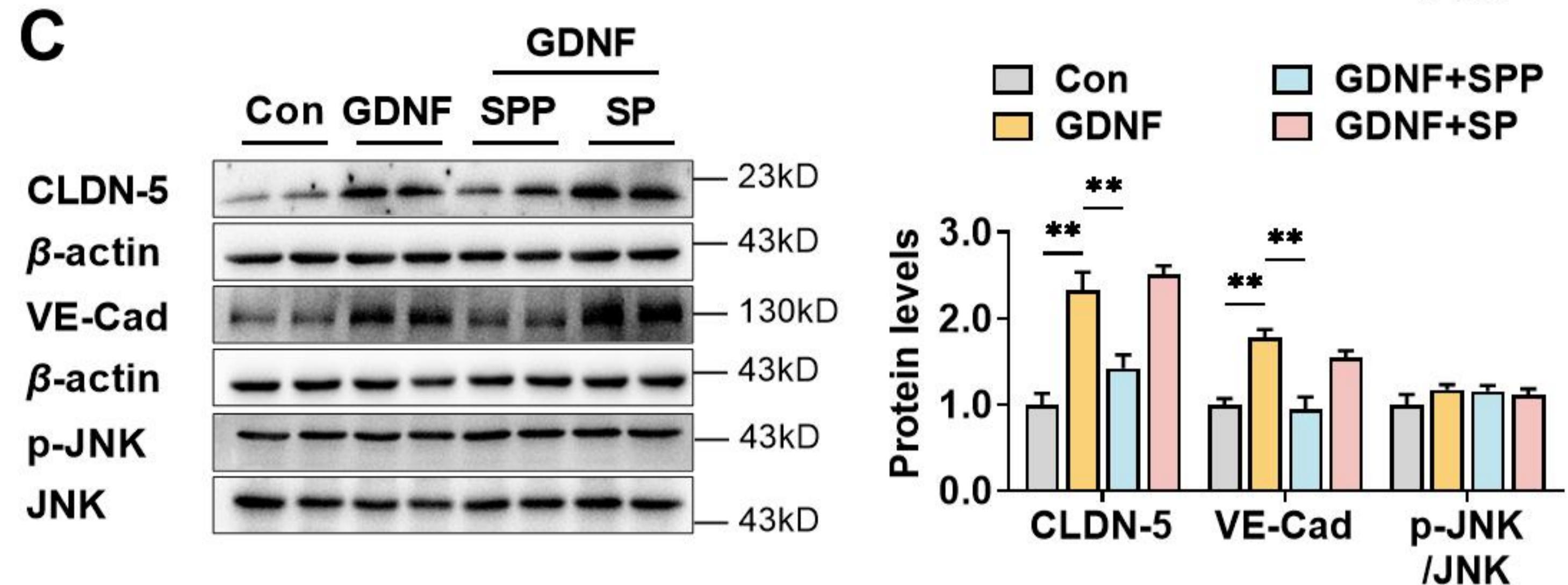
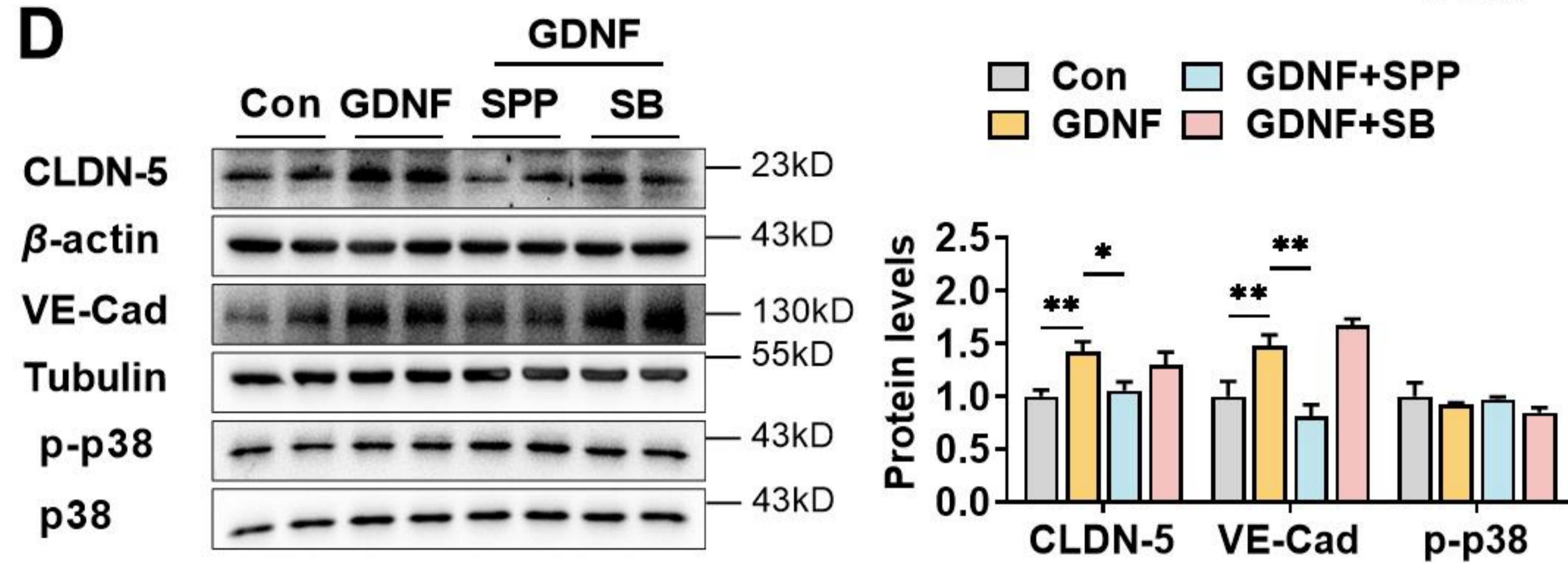
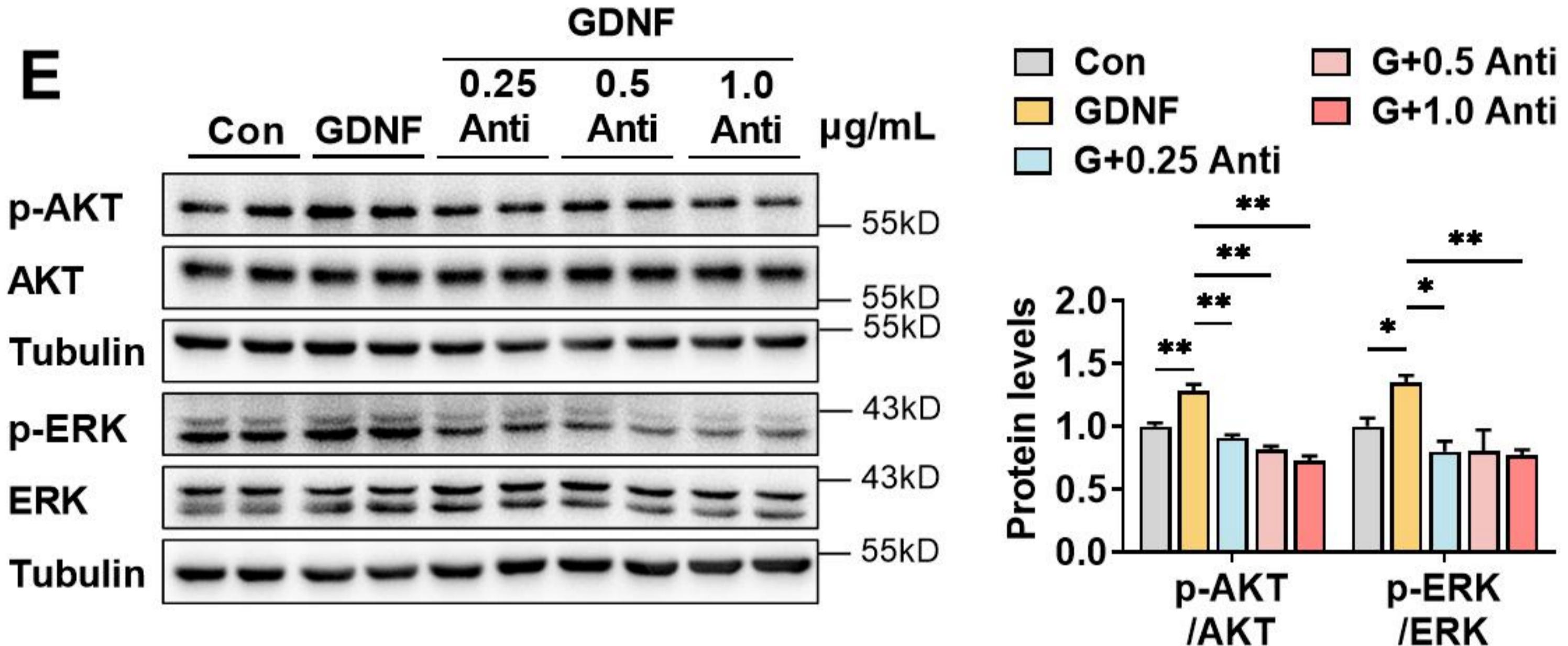
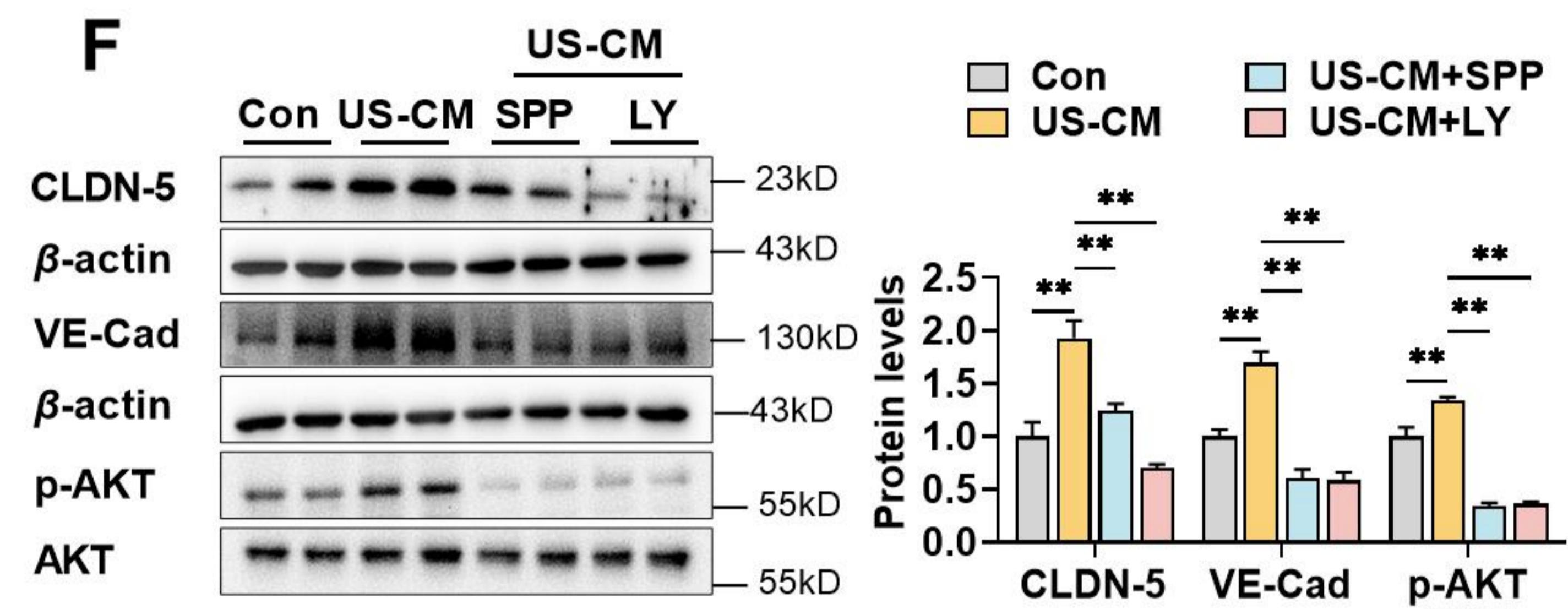
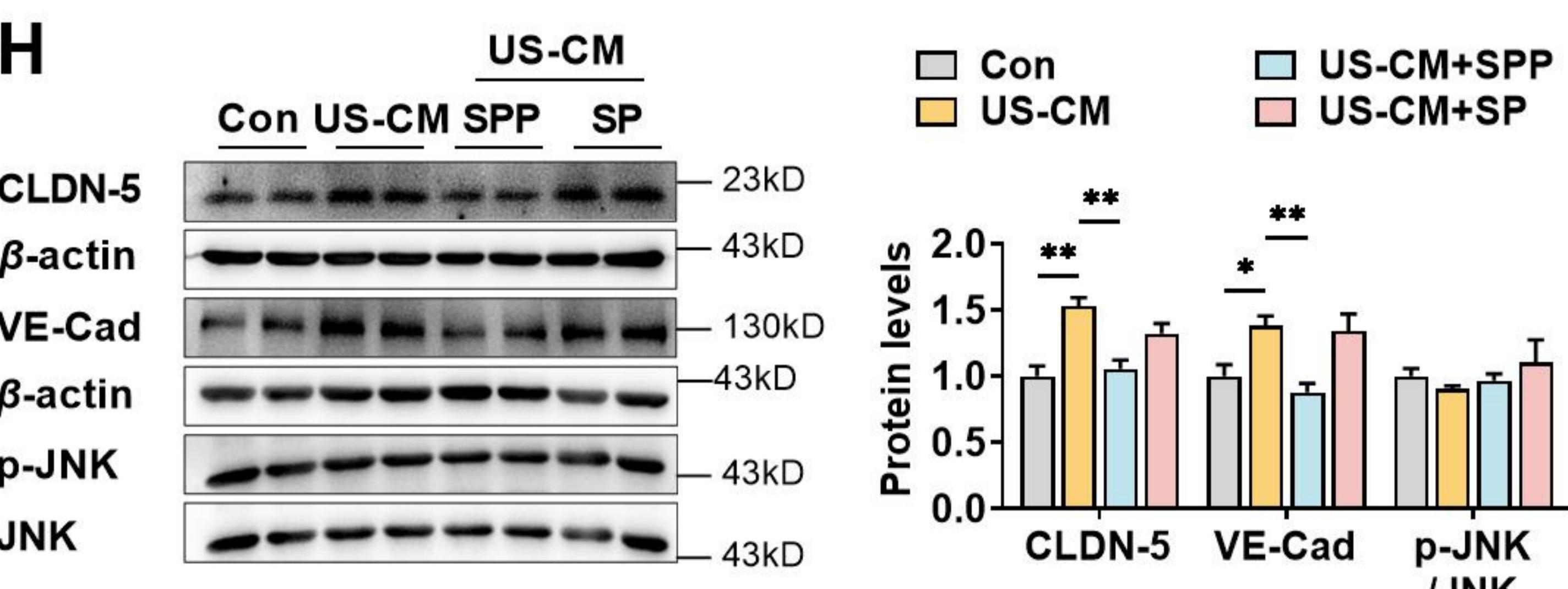
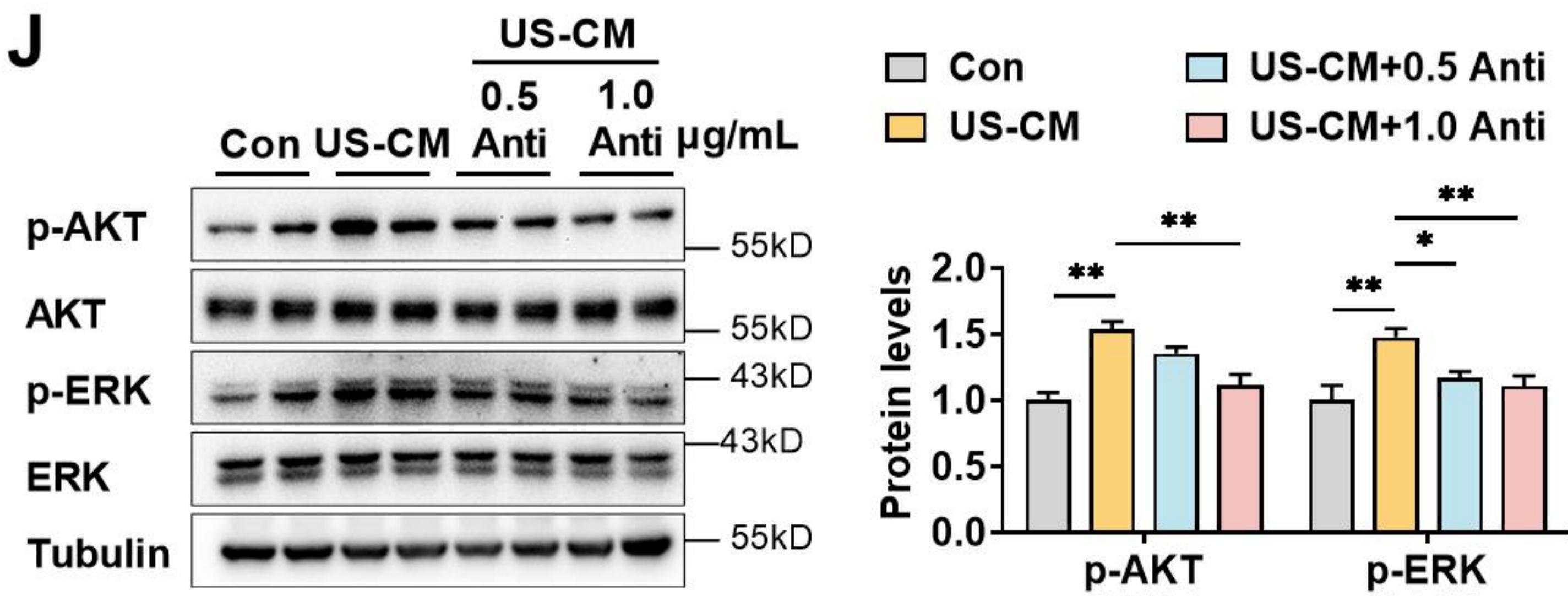
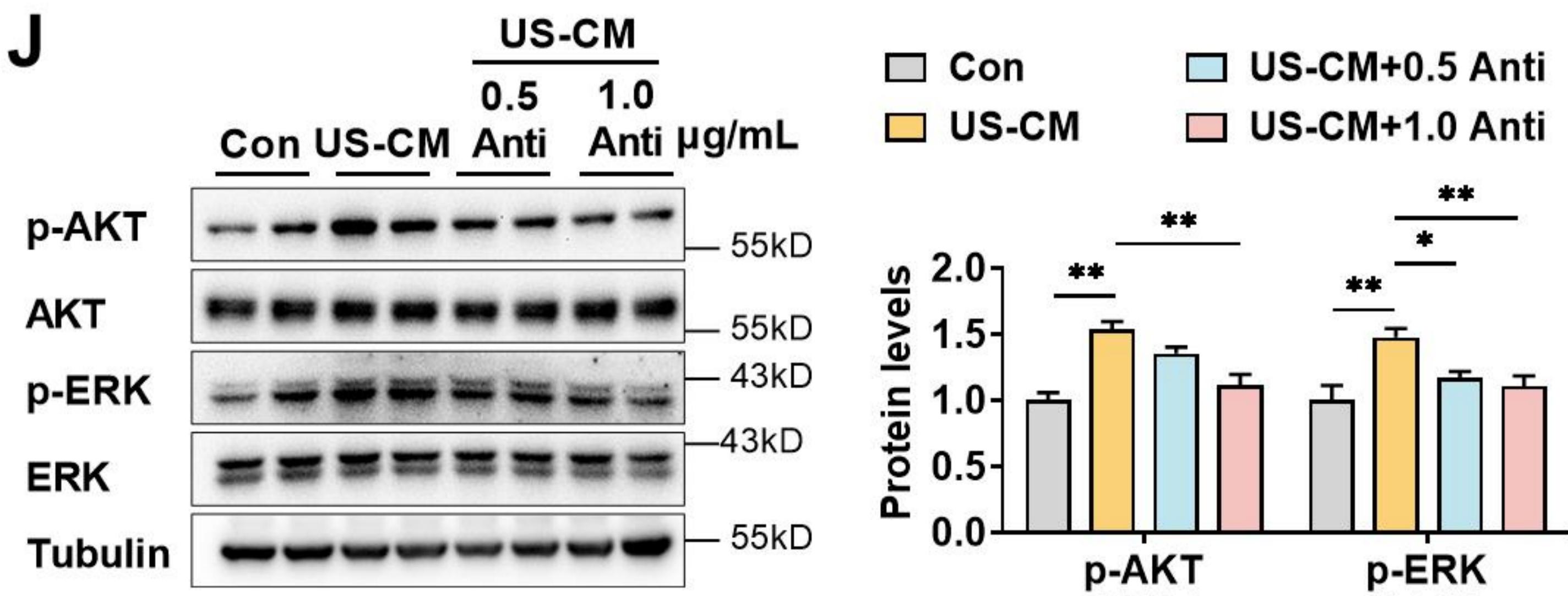
1271 **Figure 1—figure supplement 1: The induced proliferation of hCMEC/D3 cells by**
1272 **bFGF slightly reduced the permeability of cell layers.** EdU incorporation (A), cell viability
1273 (B), and apparent permeability coefficient (P_{app} , $\times 10^6$ cm/s) of fluorescein (C) or
1274 FITC-Dextran 3–5 kDa (D) of hCMEC/D3 cells treated with bFGF (6, 20, 60 ng/mL) for 6
1275 days. The above data are shown as the mean \pm SEM. Four biological replicates per group.
1276 One technical replicate for each biological replicate. Statistical significance was determined
1277 using one-way ANOVA test followed by Fisher's LSD test or Welch's ANOVA test.
1278

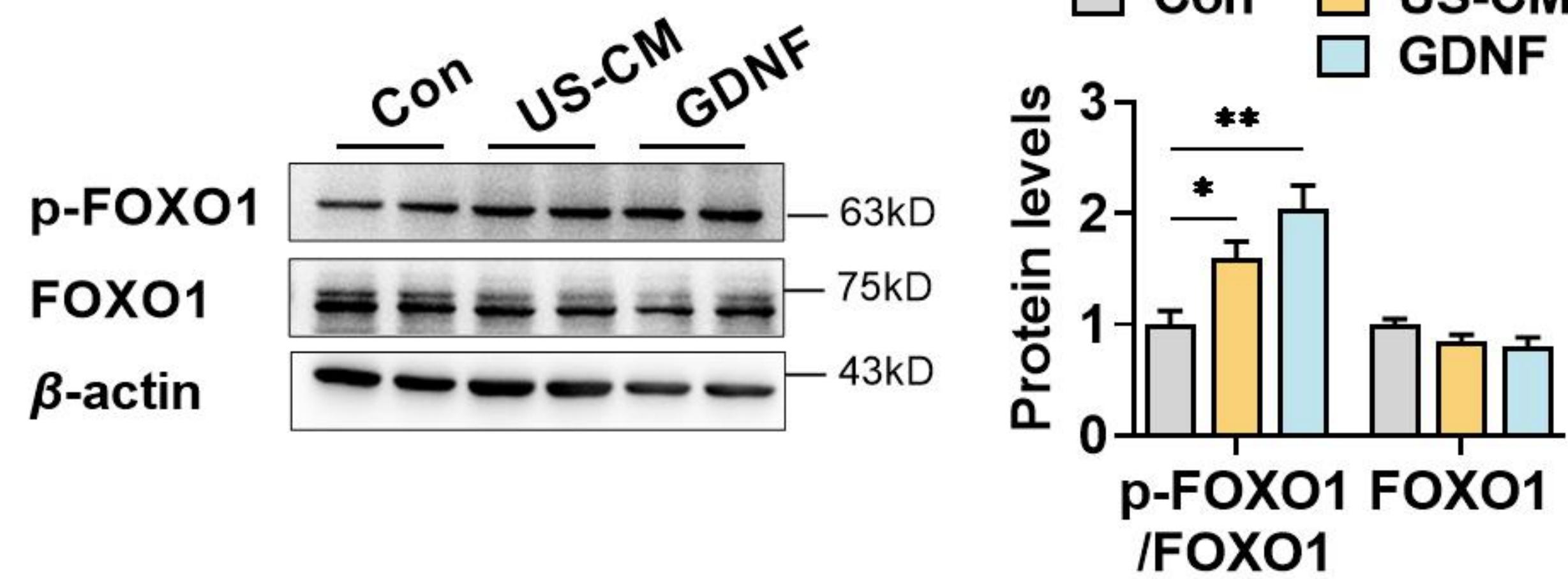
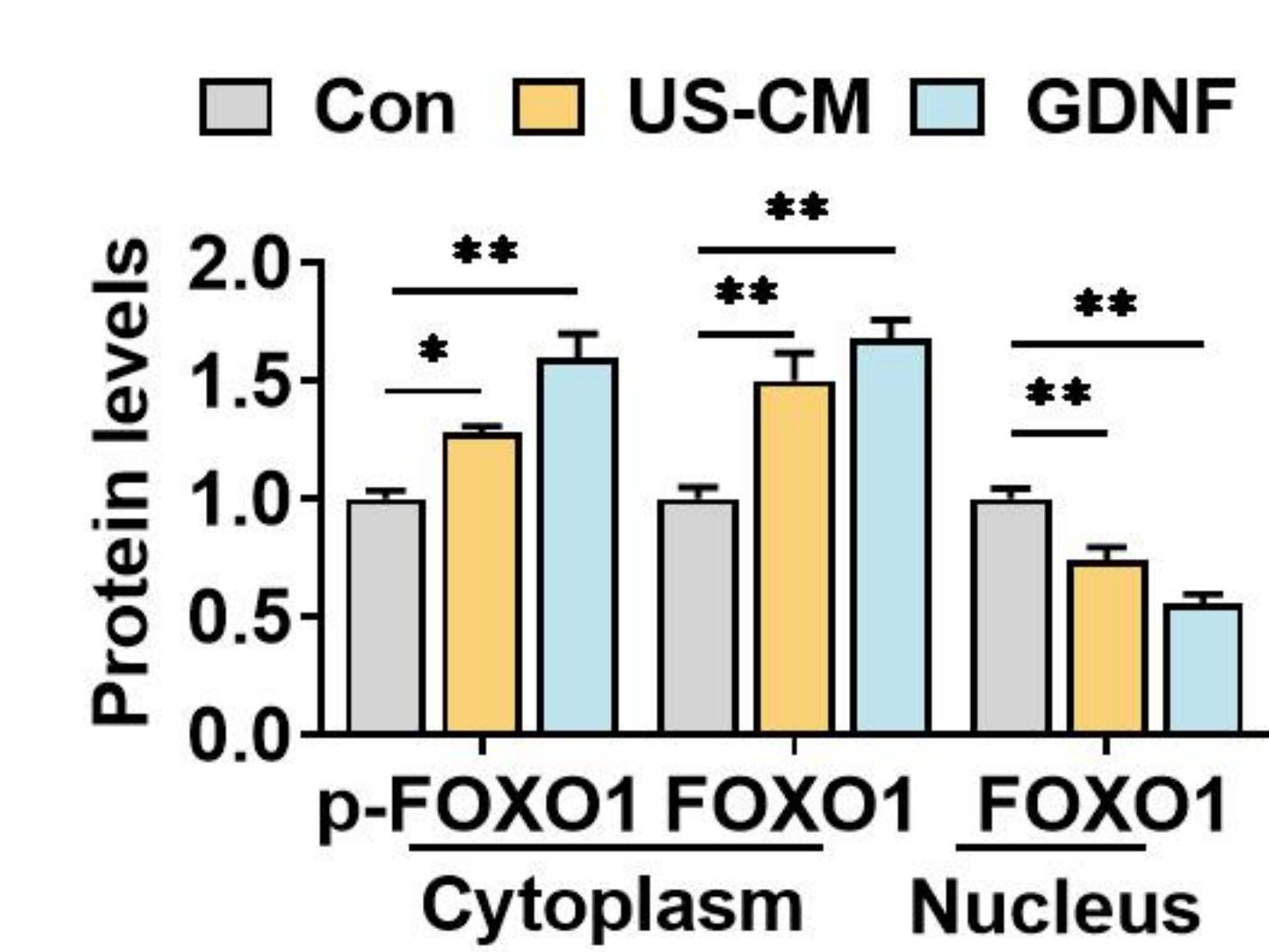
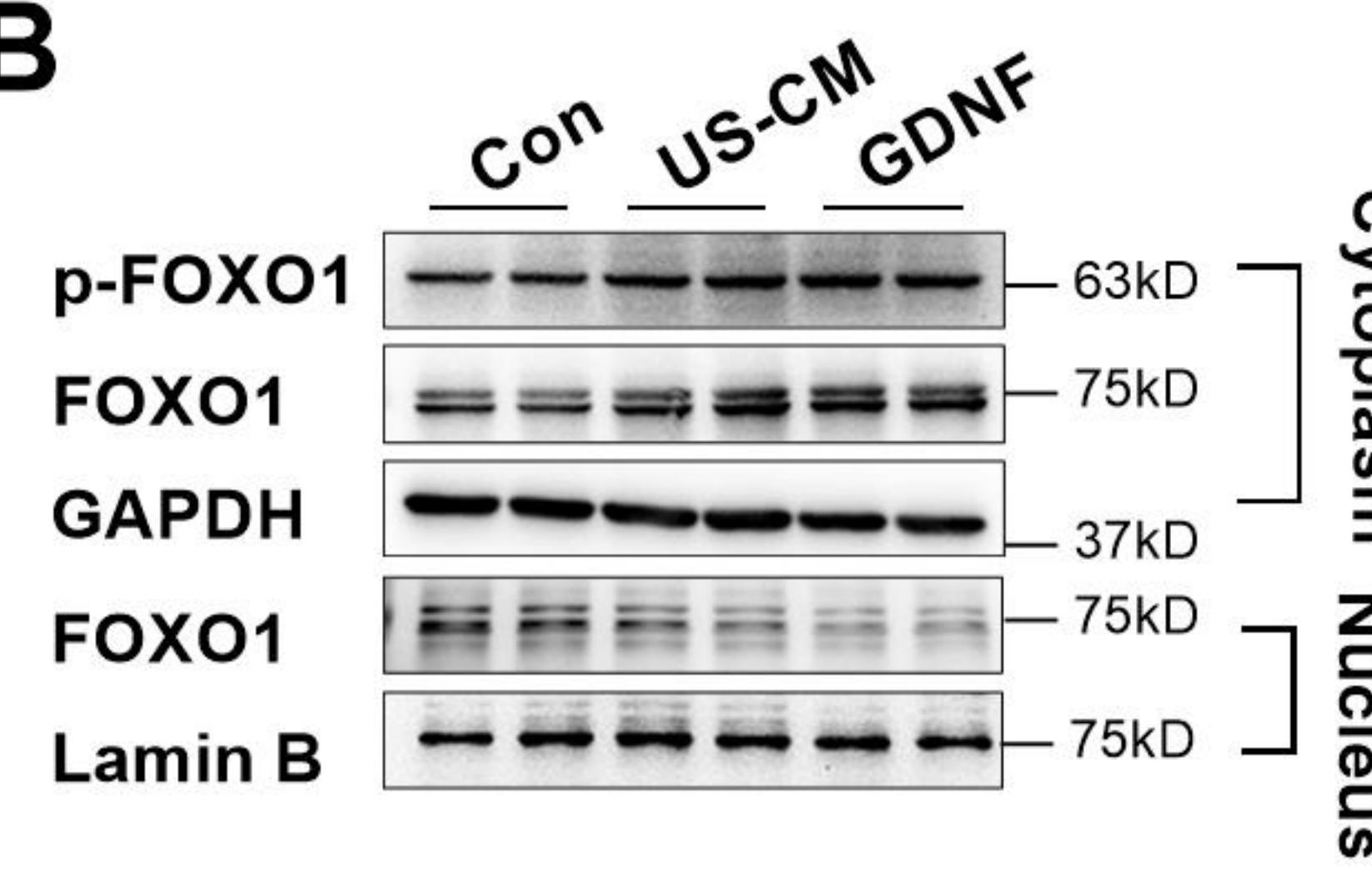
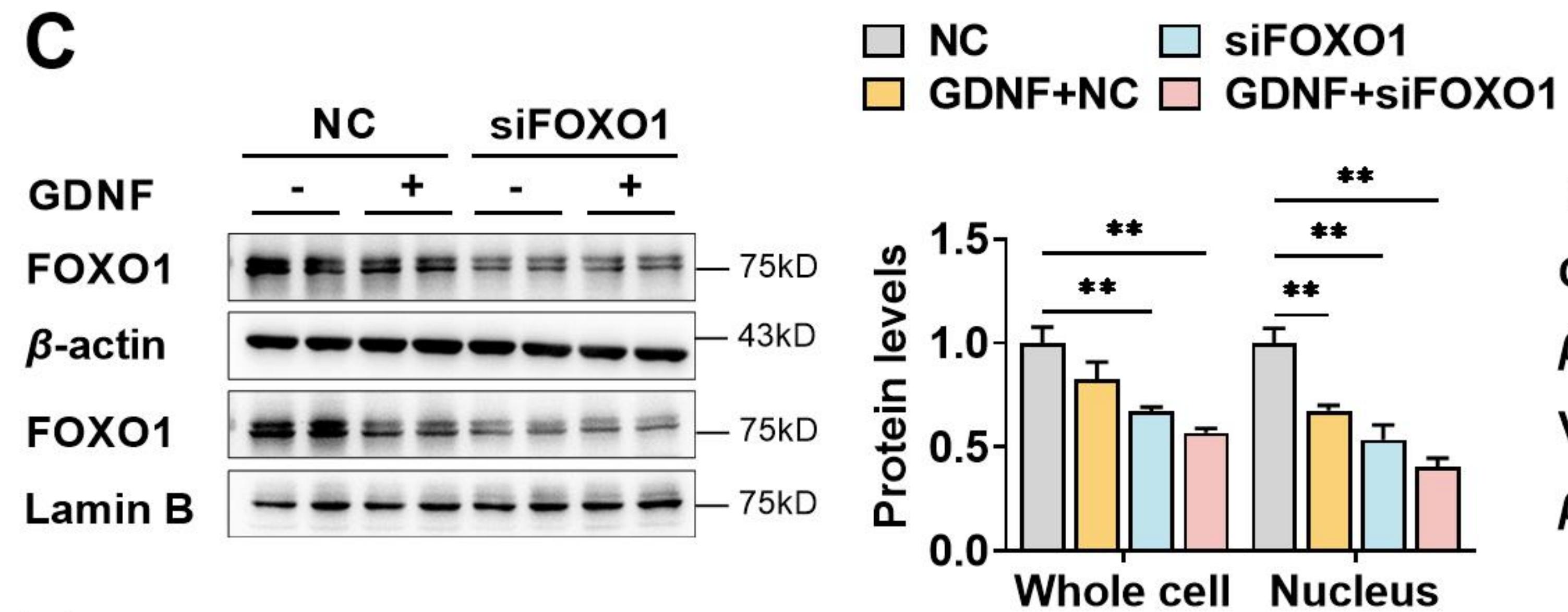
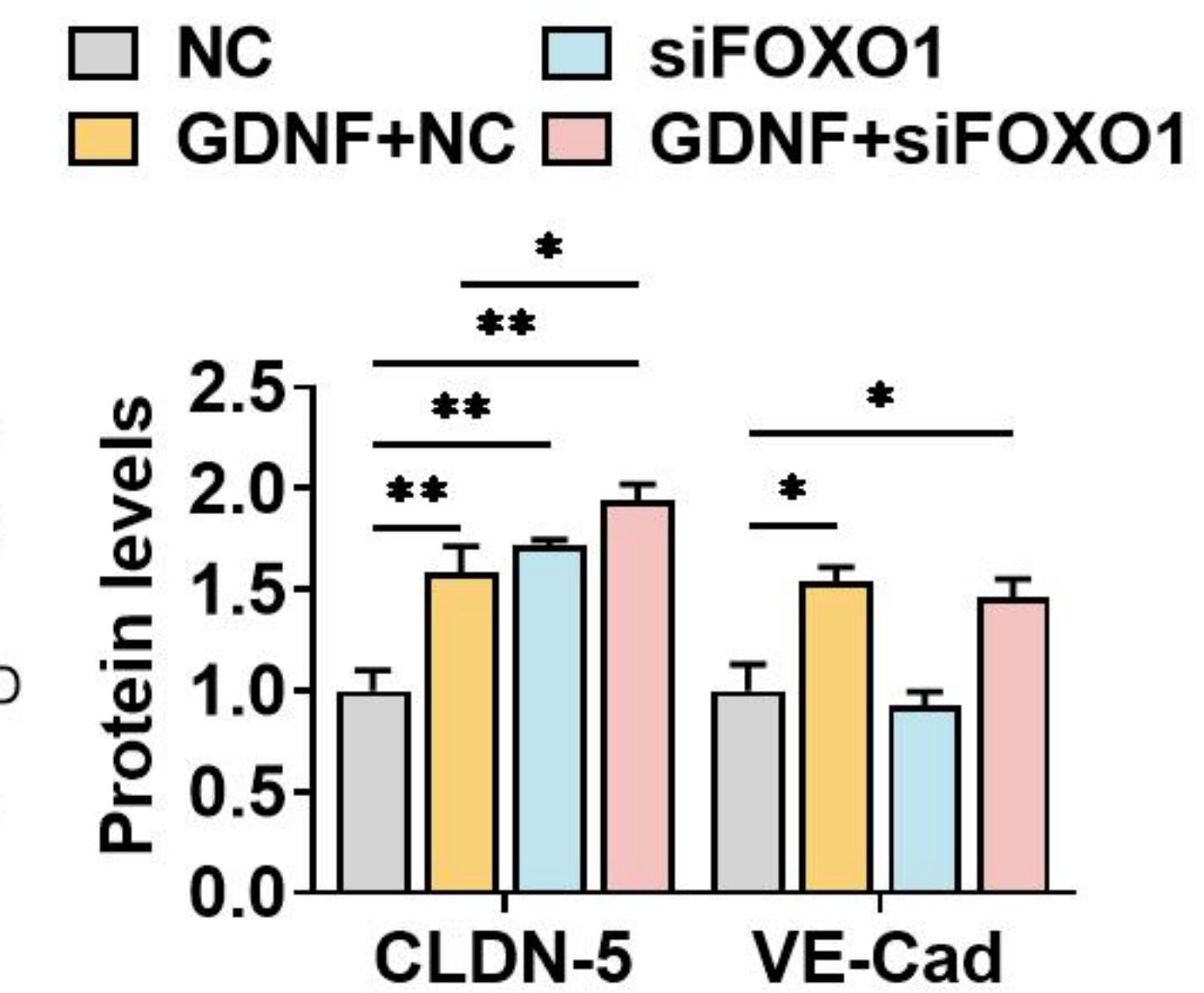
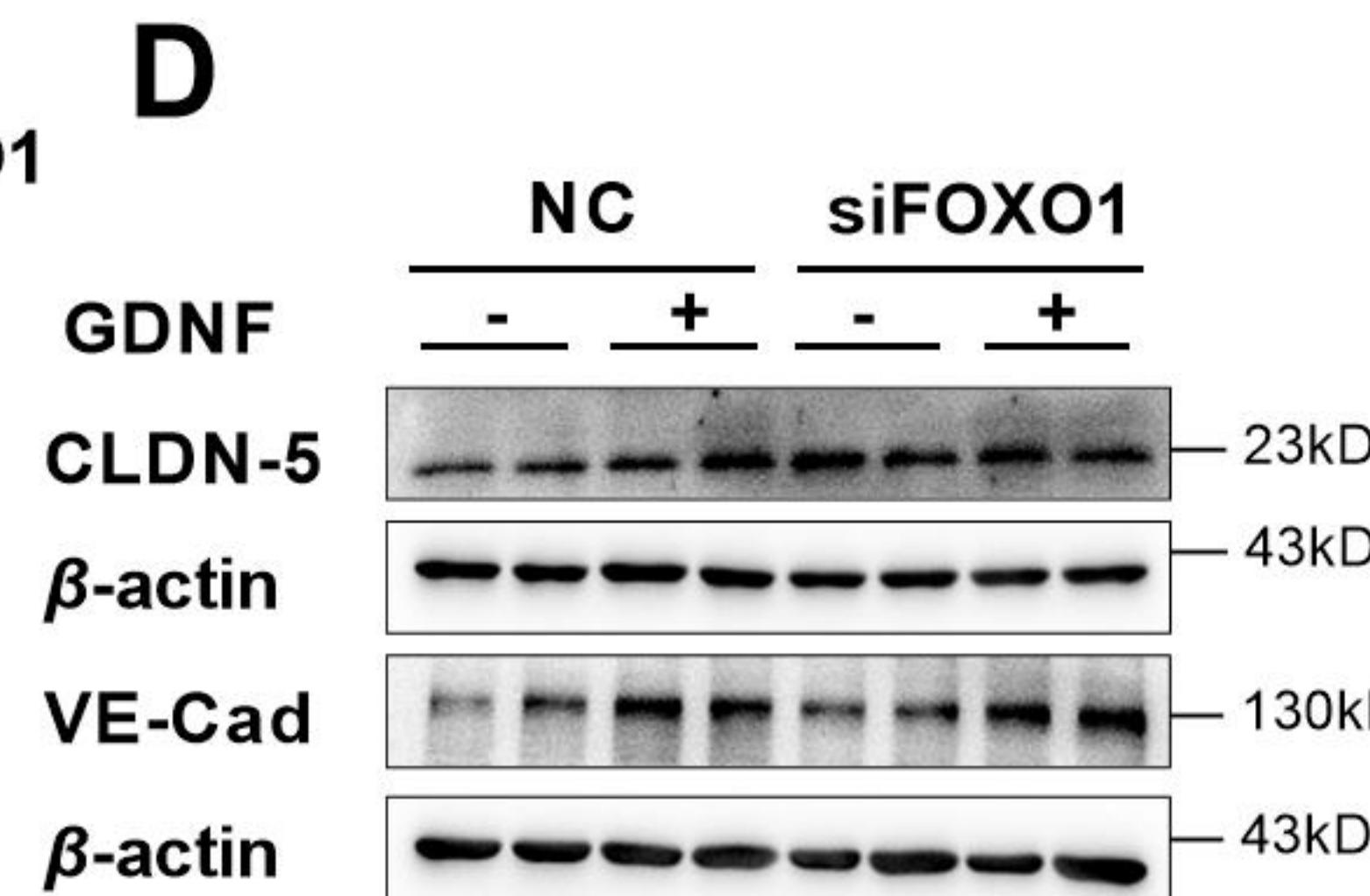
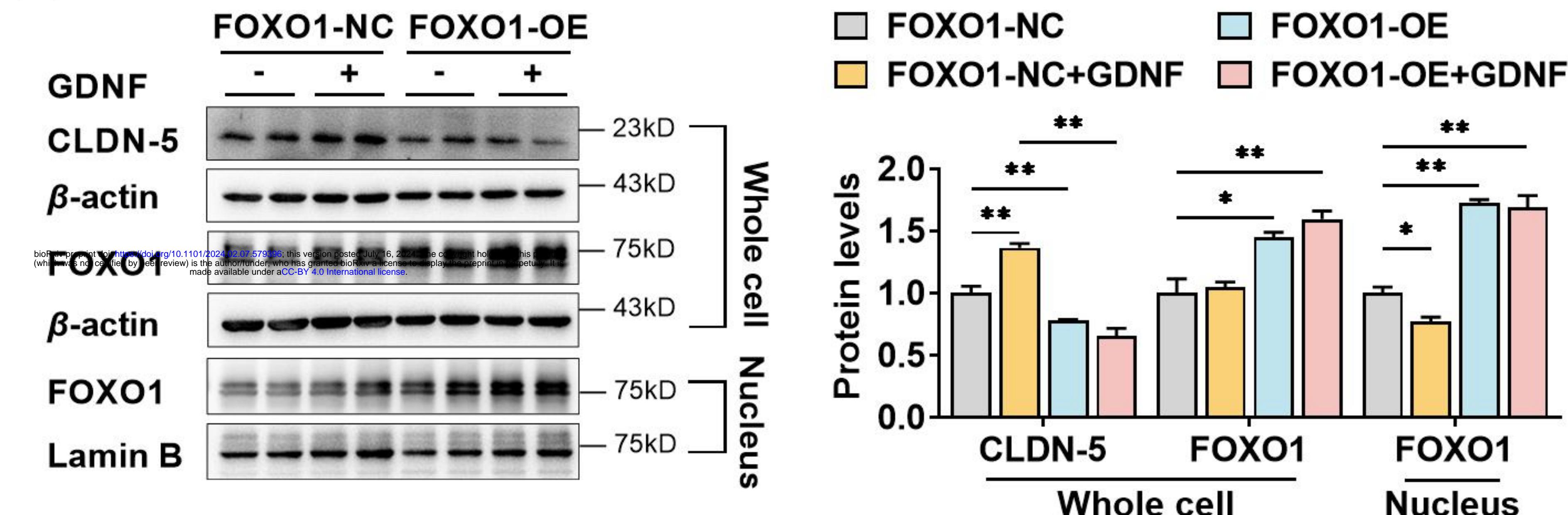
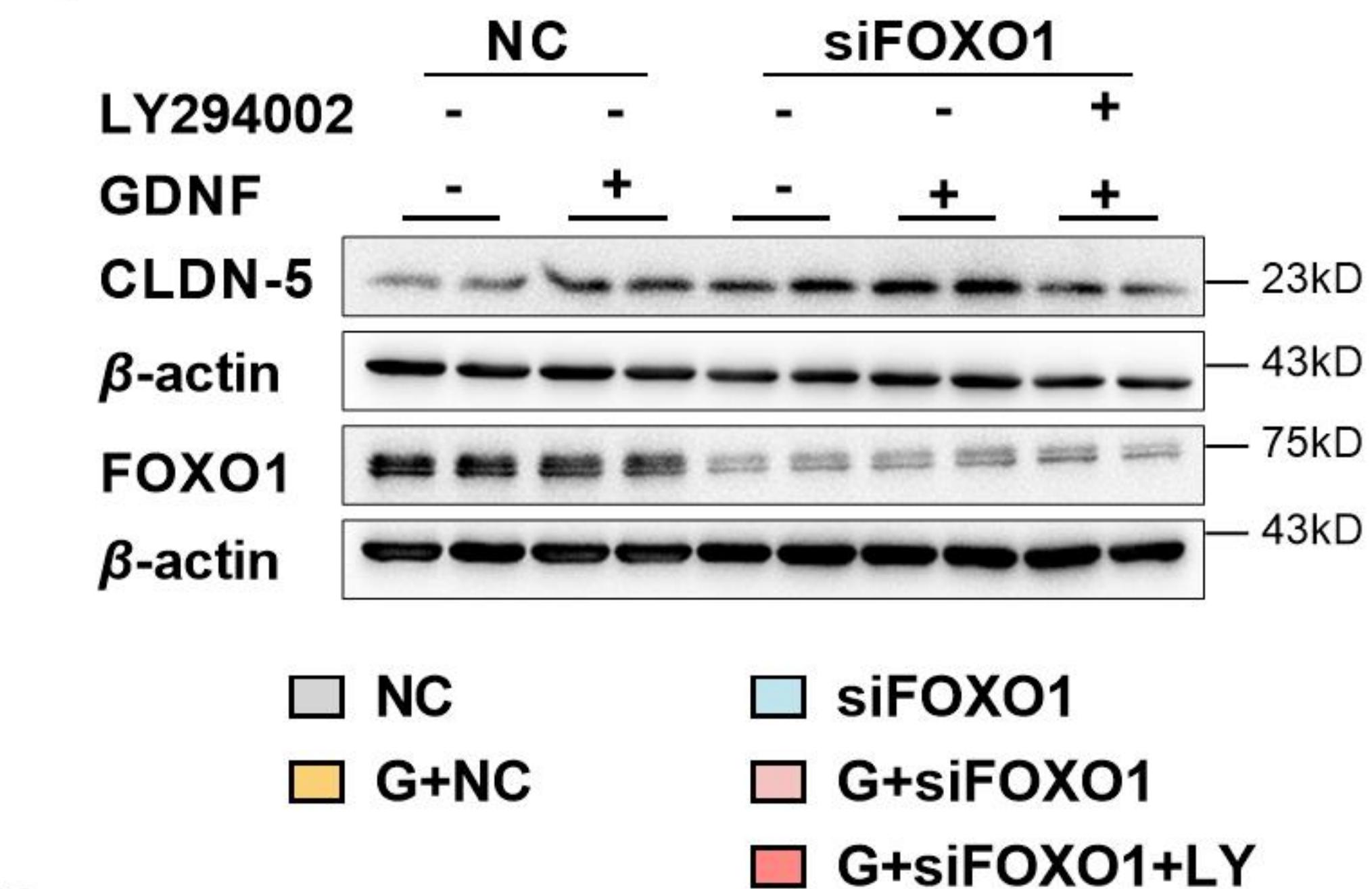
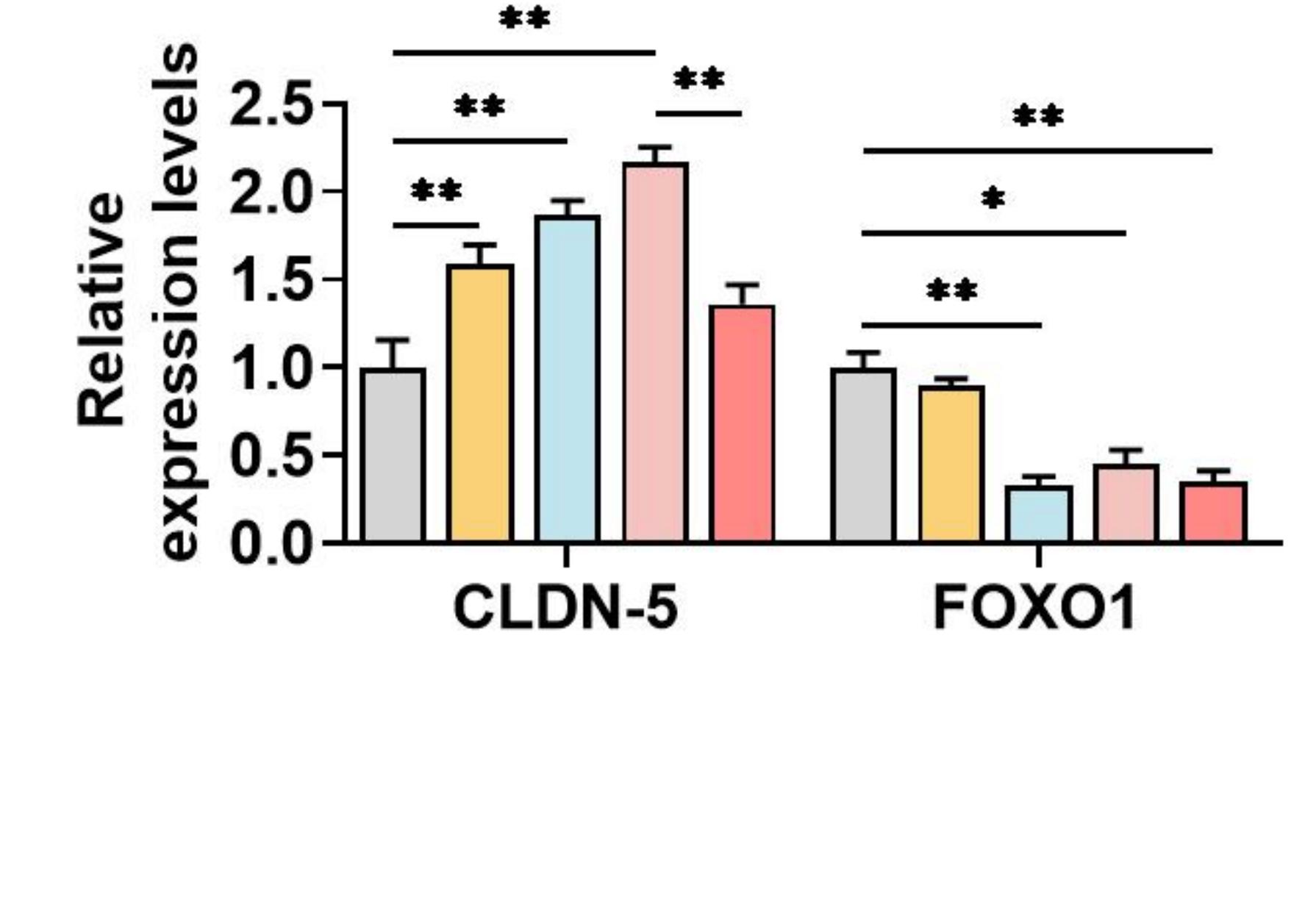
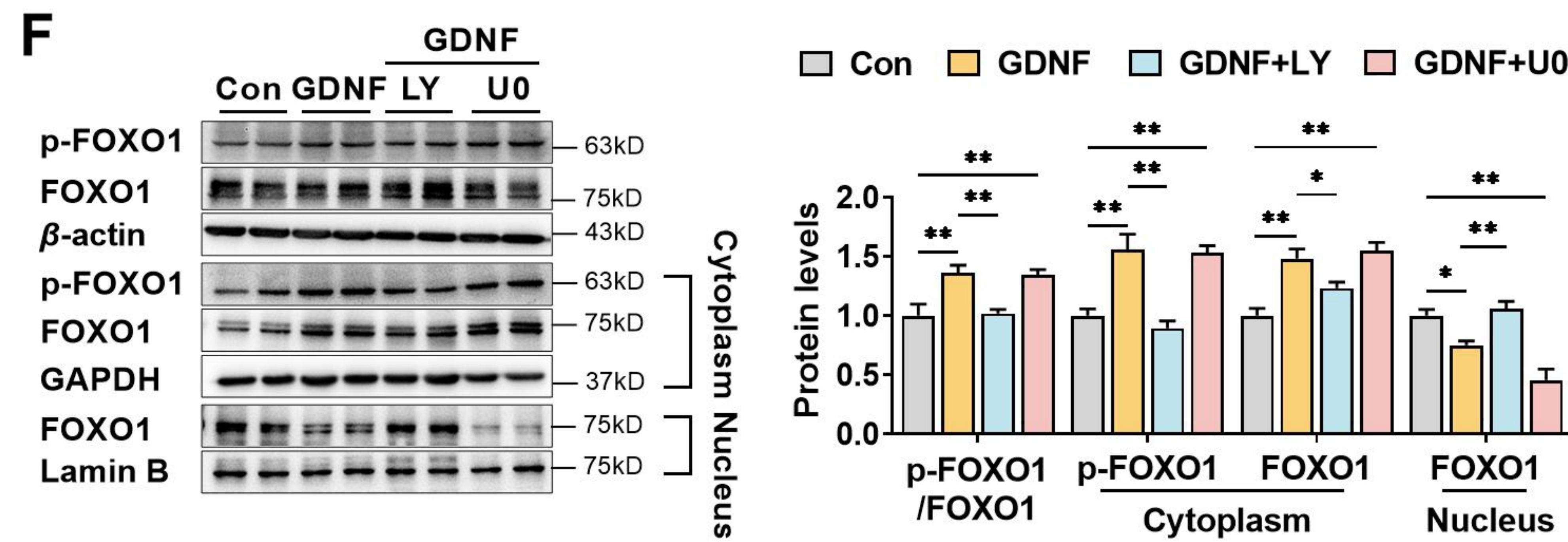
1279 **Figure 4—figure supplement 1**



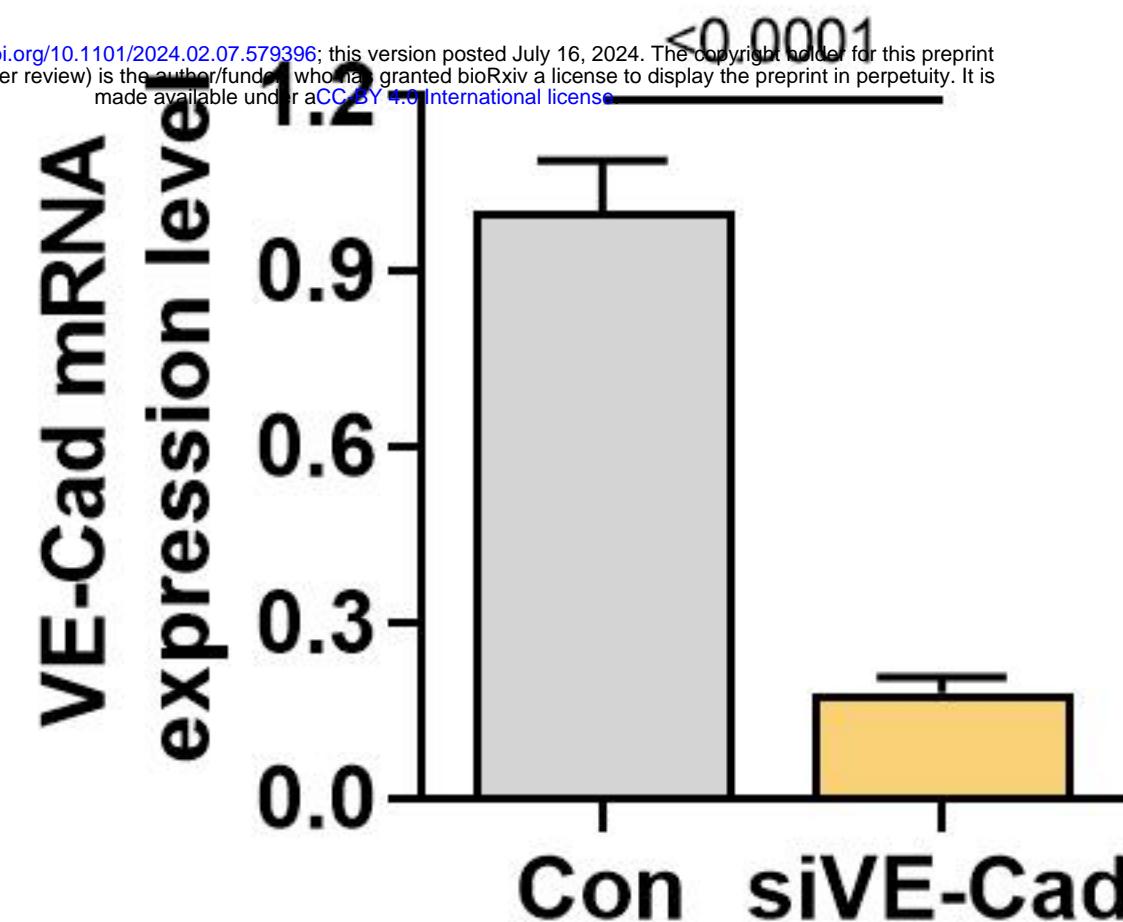
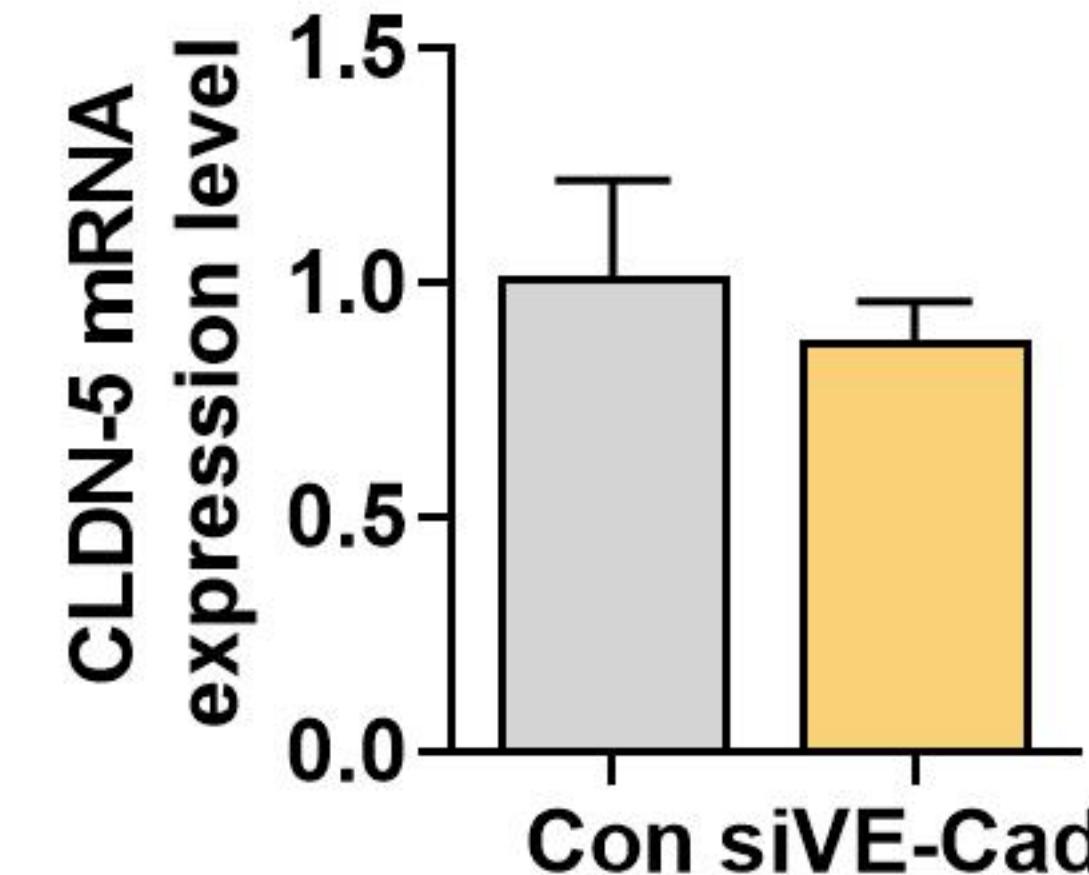
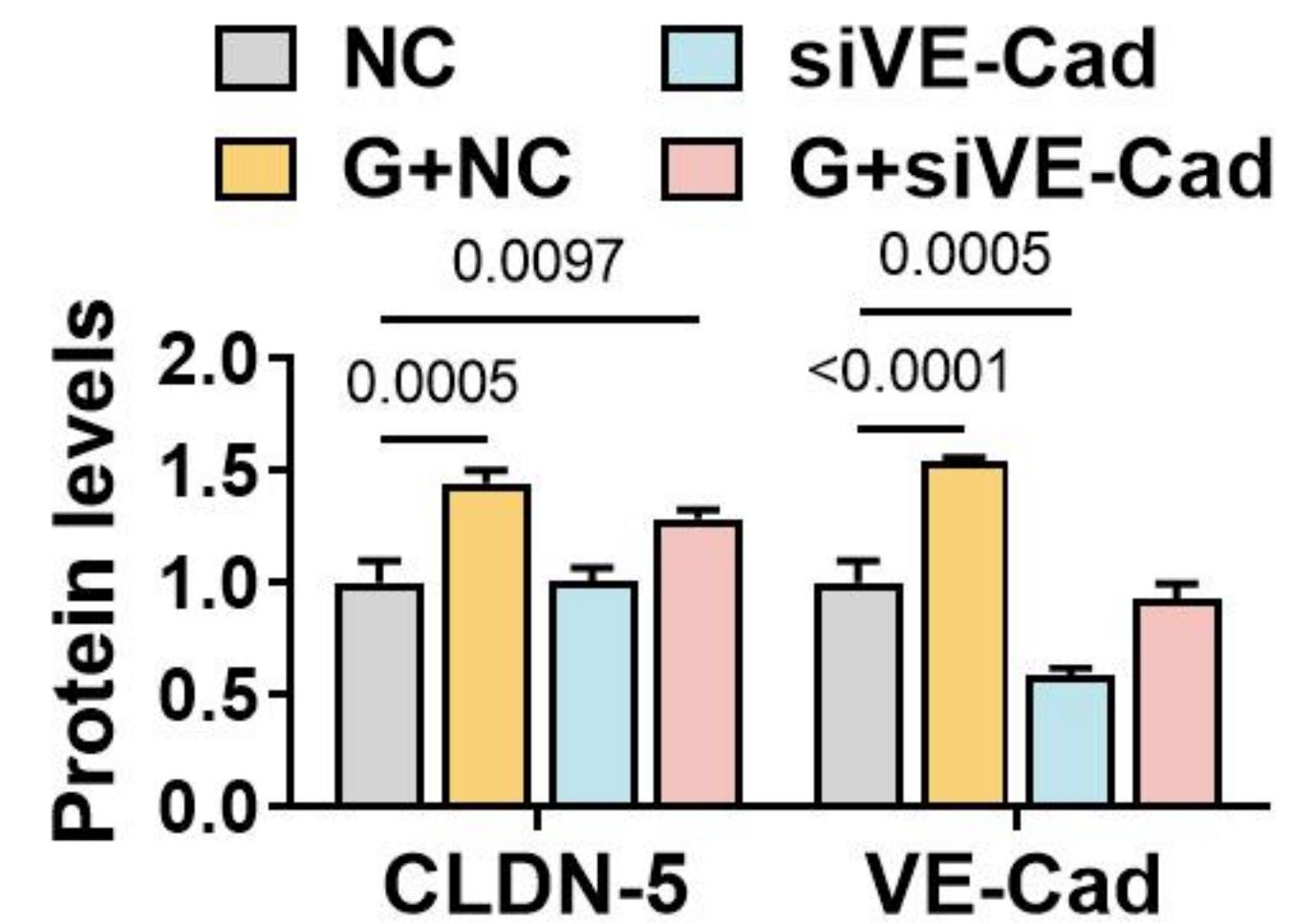
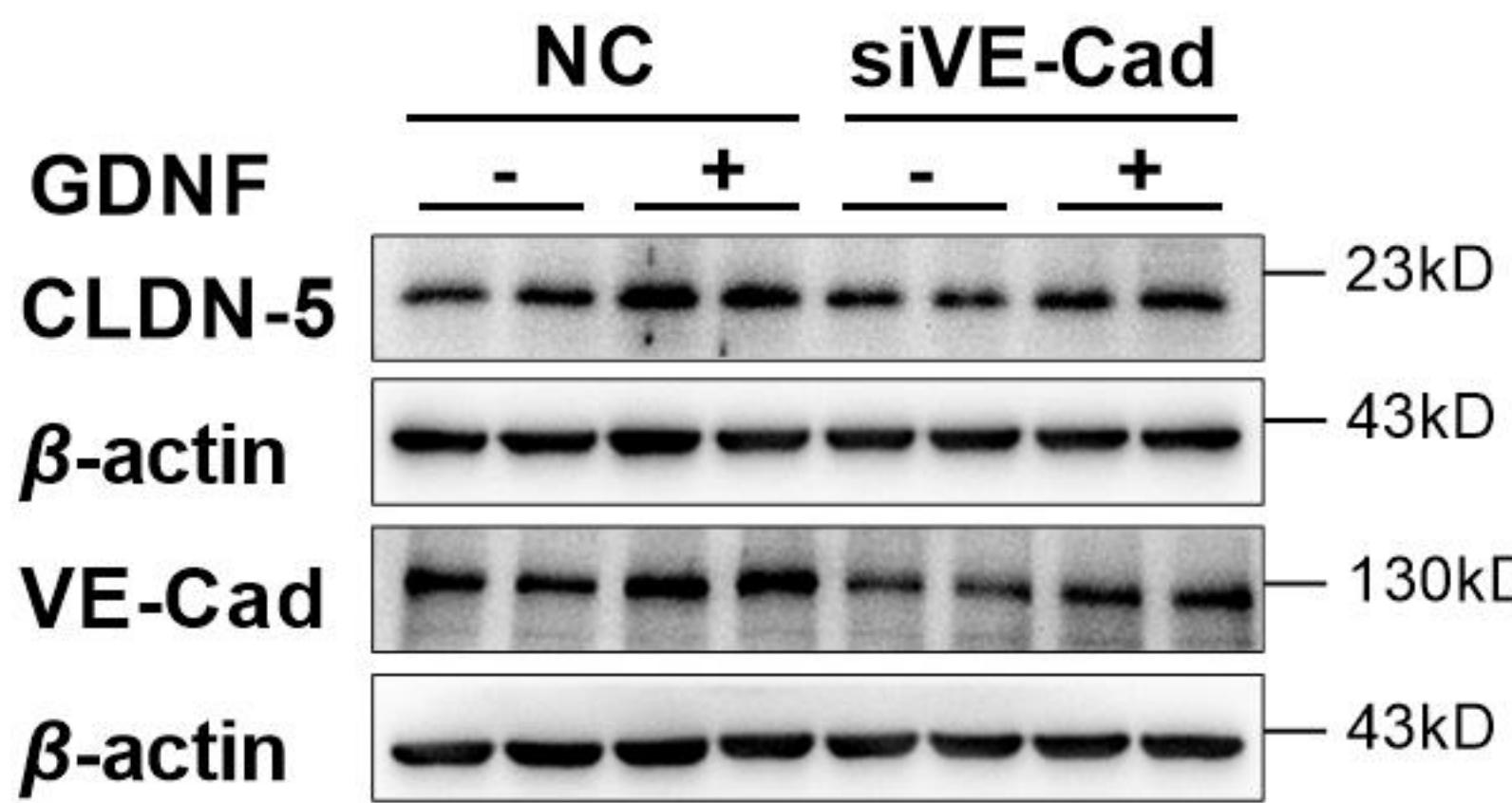



1280

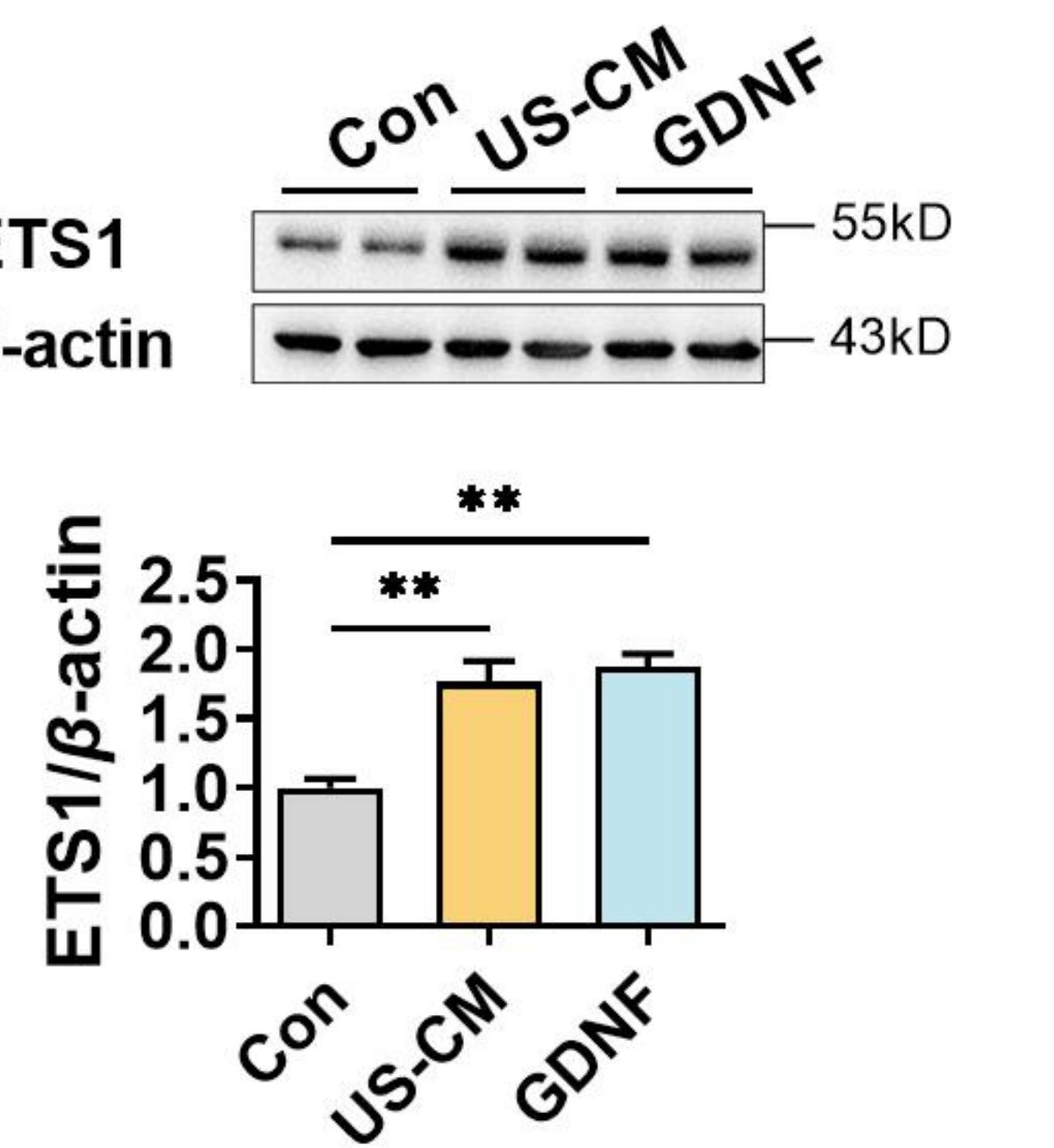
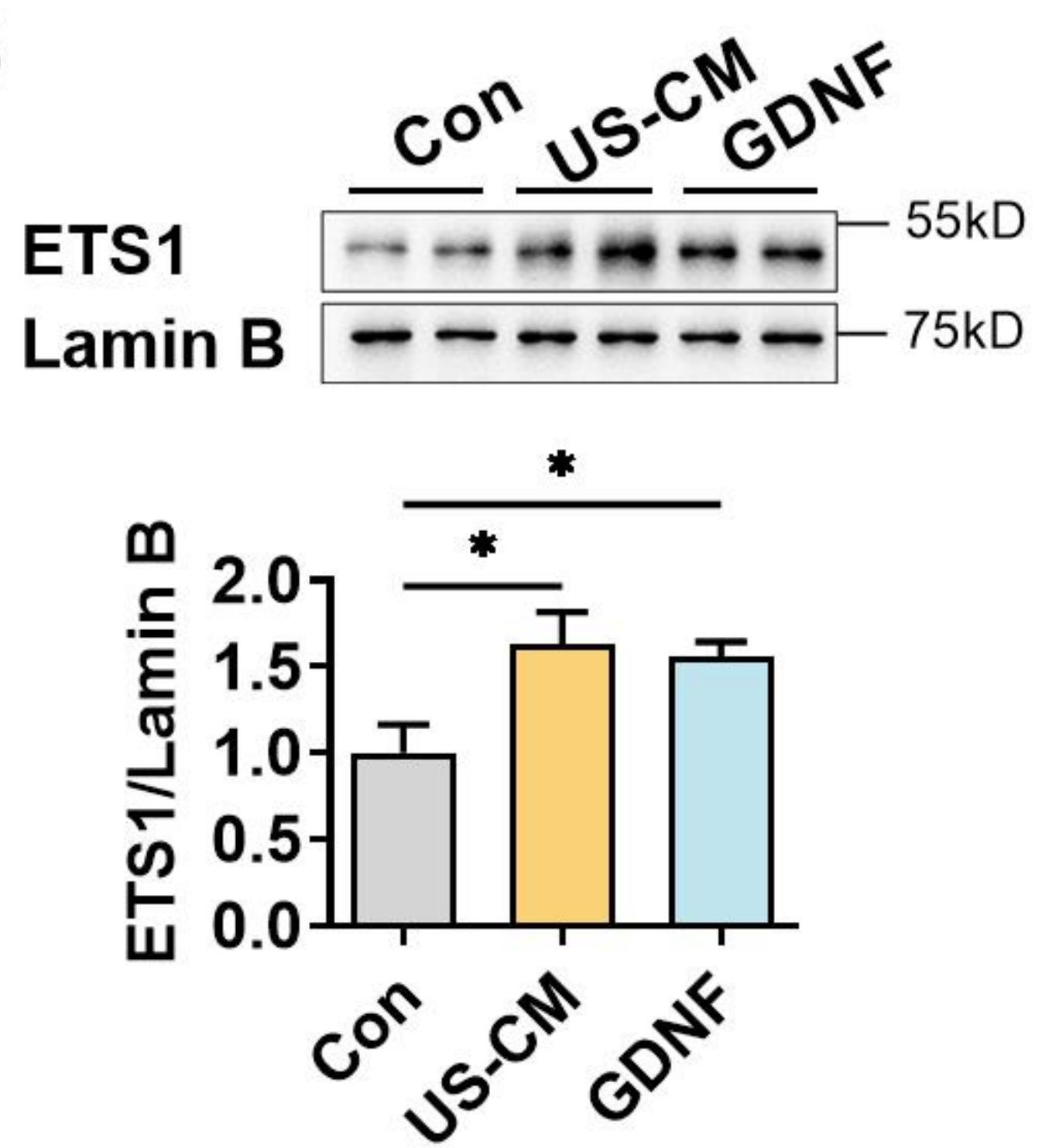
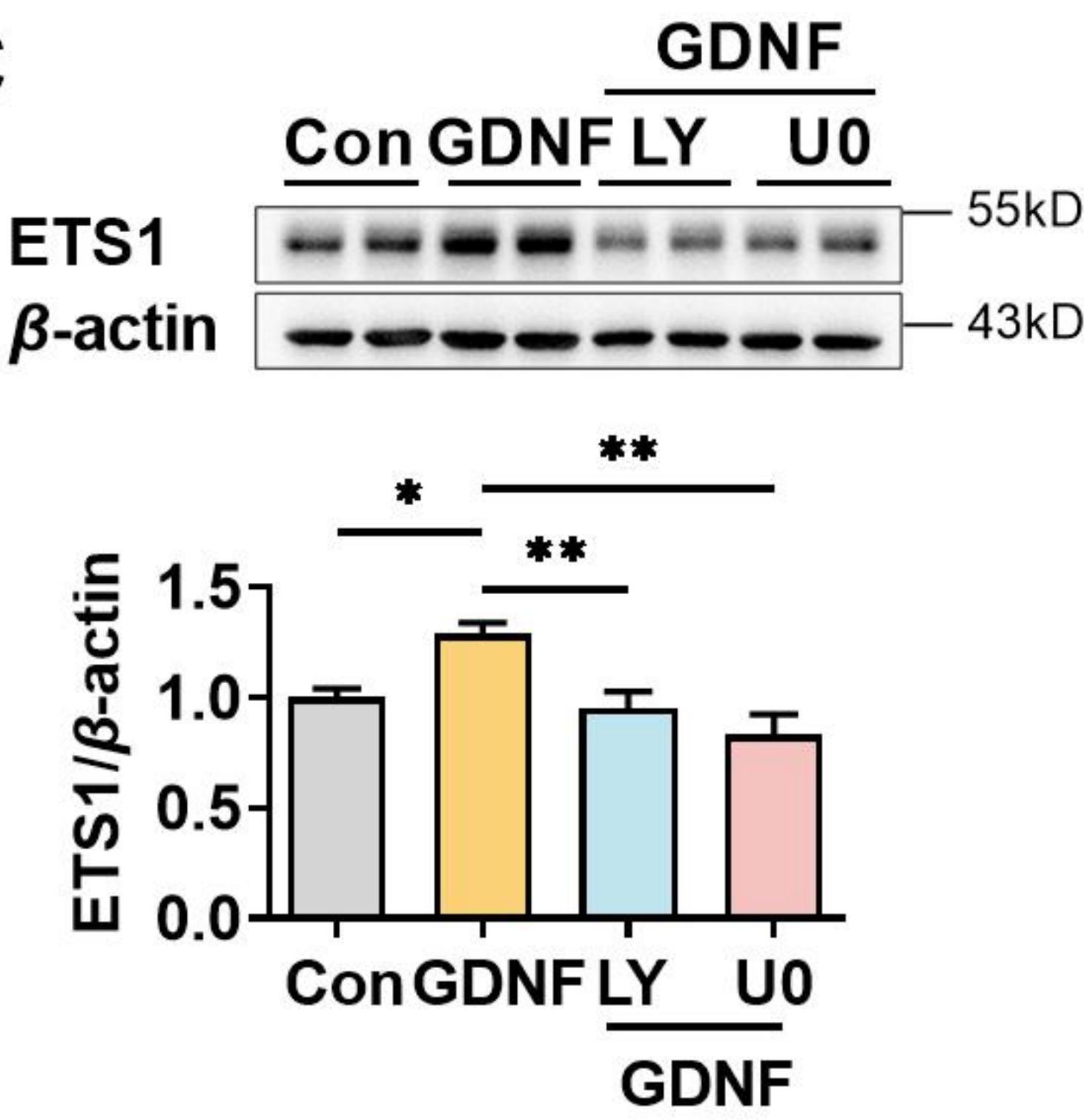
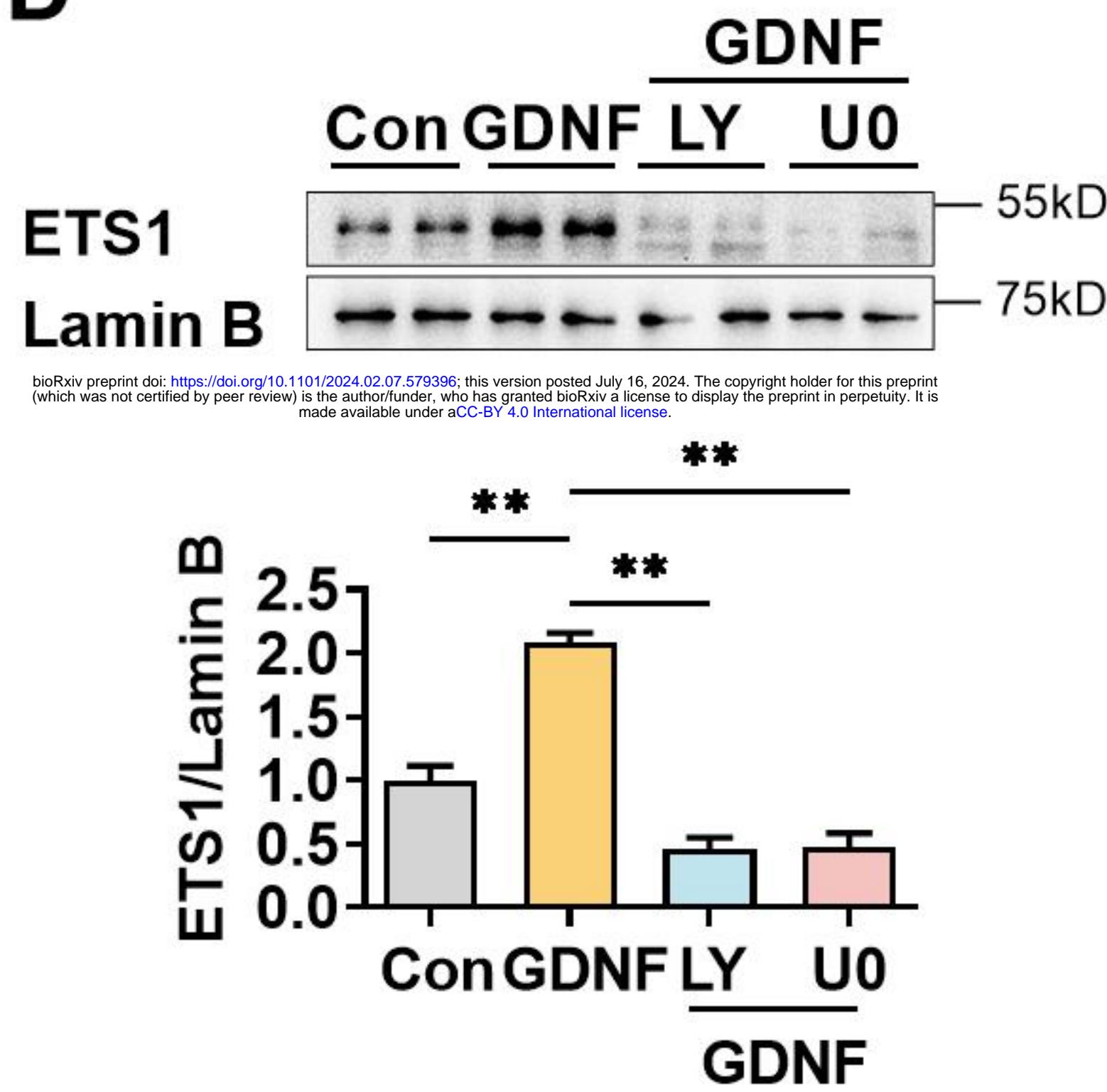
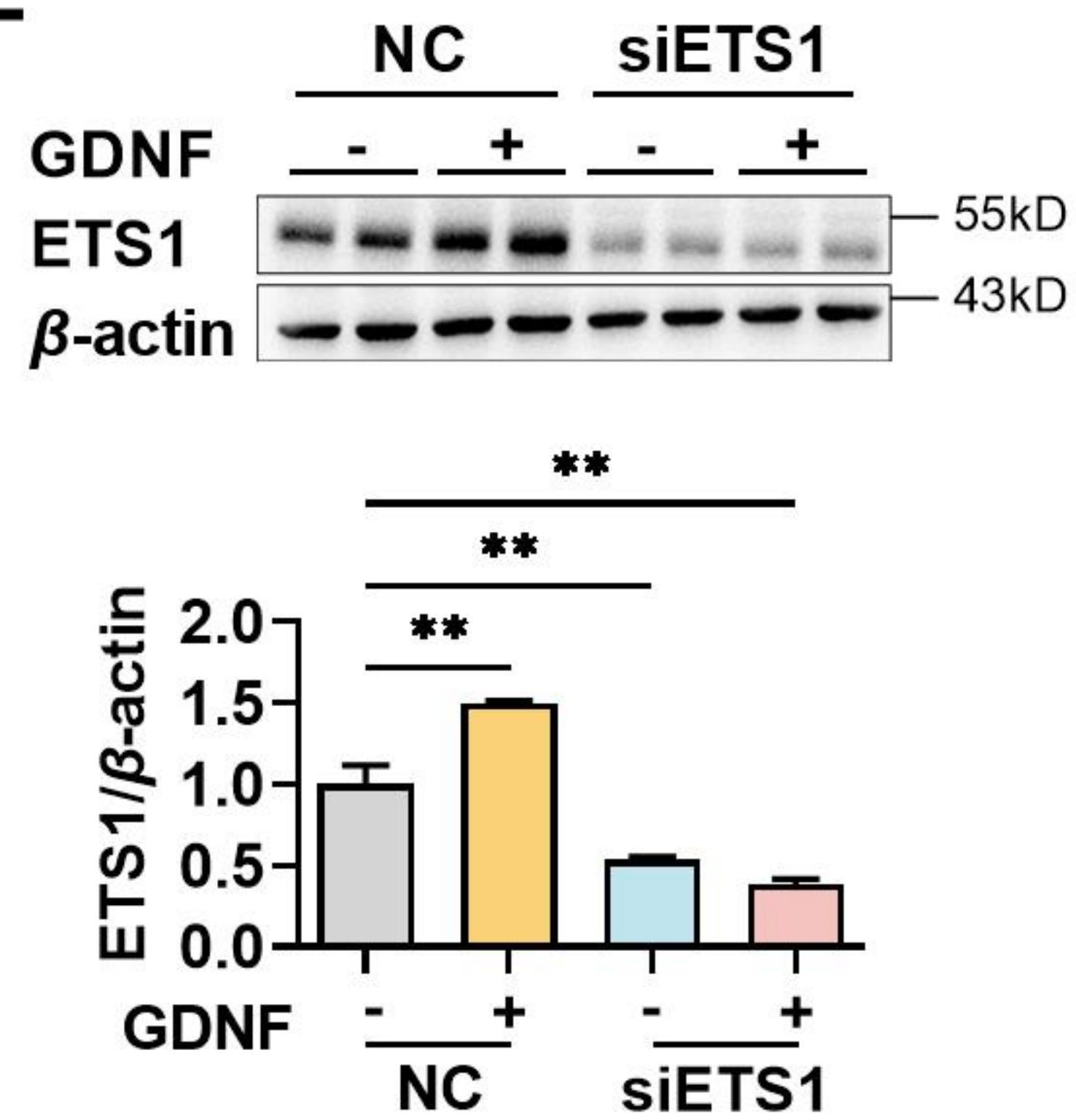
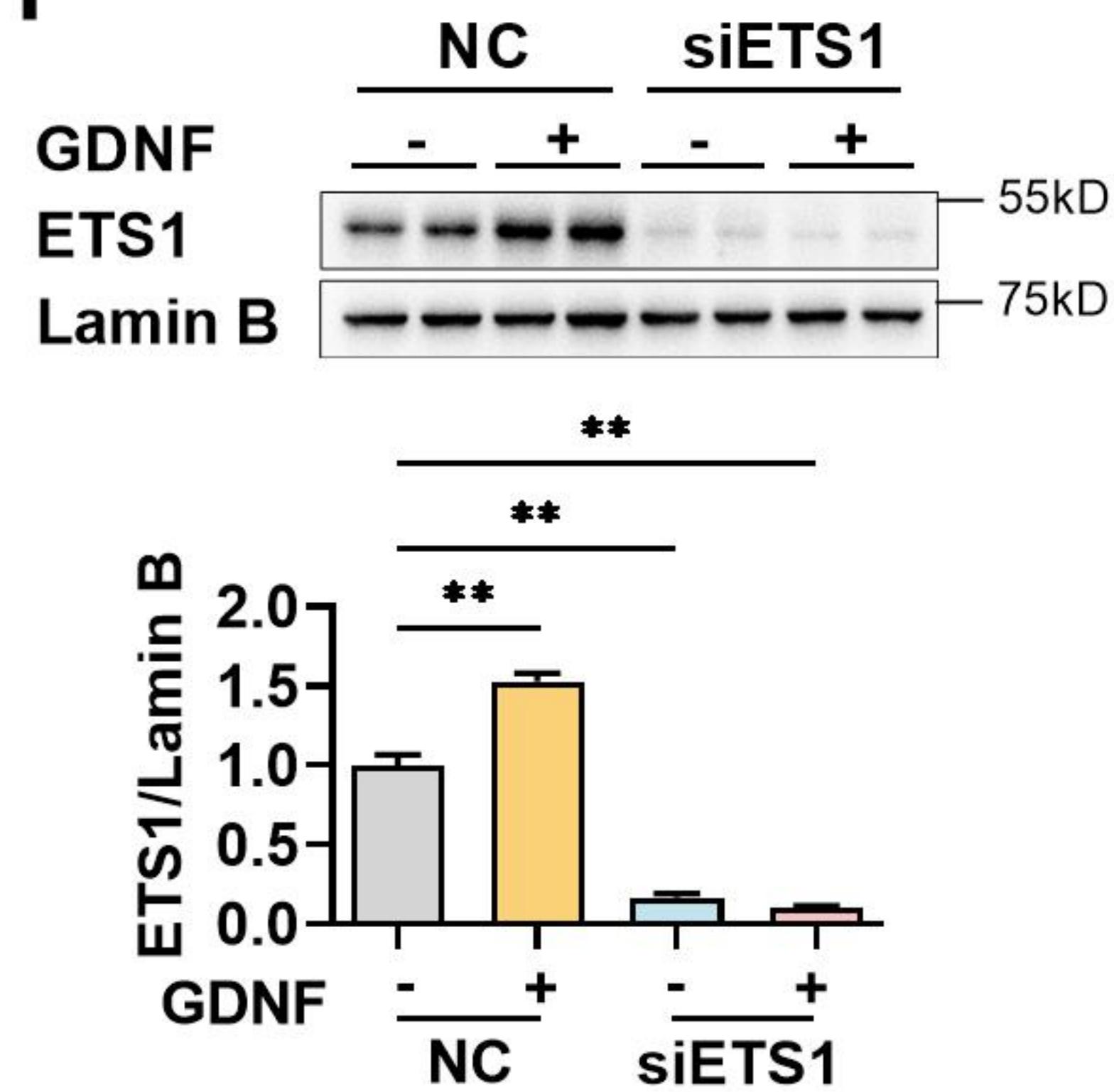
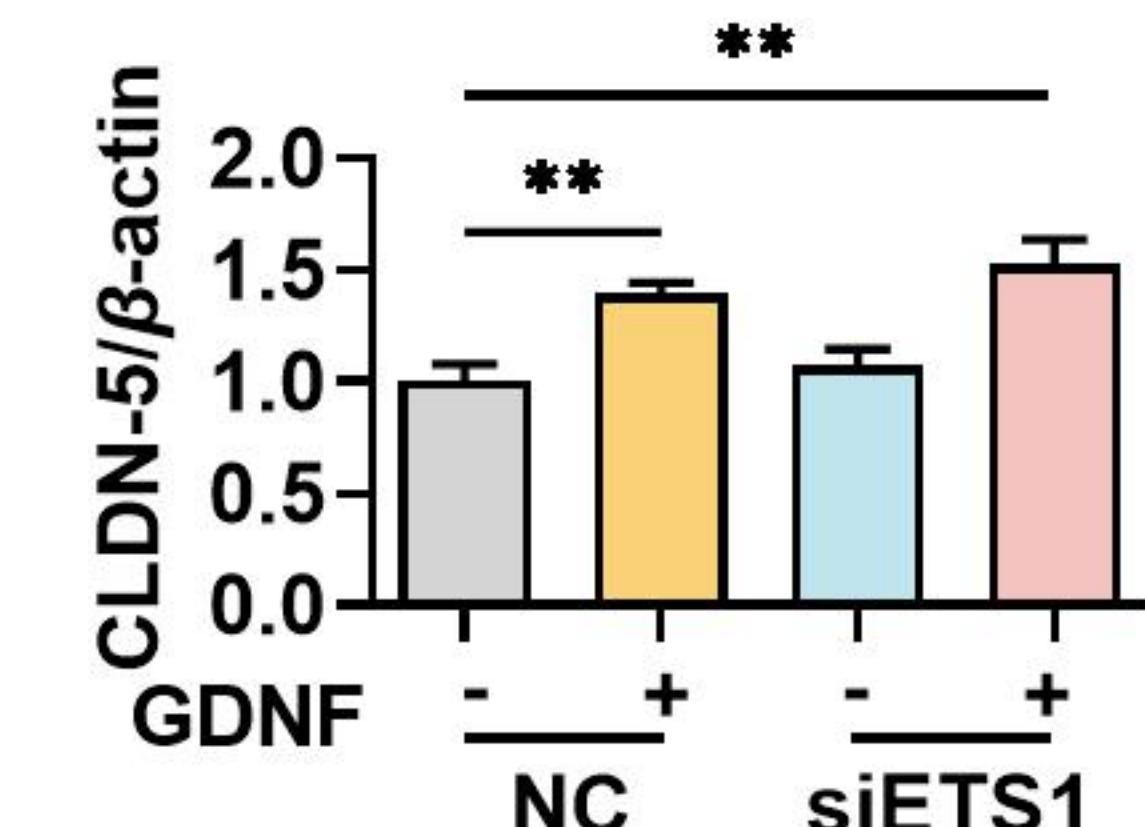
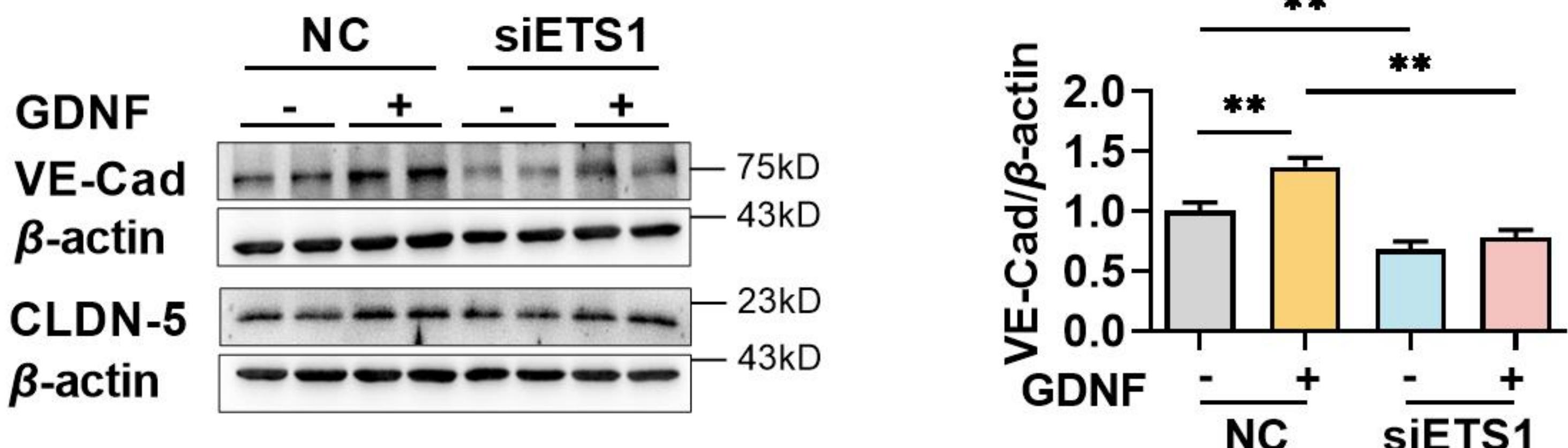

1281 **Figure 4—figure supplement 1: The contribution of VE-Cadherin on the GDNF-induced**
1282 **claudin-5 expression.** Effects of the VE-Cadherin siRNA (siVE-Cad) on mRNA expression
1283 of VE-cadherin (A) and claudin-5 (B). Effects of siVE-Cad and GDNF on claudin-5 and
1284 VE-cadherin protein expression (C). NC: negative control plasmids. The above data are
1285 shown as the mean \pm SEM. Four biological replicates per group. Two technical replicates for
1286 A and B and one technical replicate for C. Statistical significance was determined using
1287 unpaired Student's t-test or one-way ANOVA test followed by Fisher's LSD test.
1288










- 1289 **Figure 1-Source data1**
1290 The western blot raw images in Figure 1
1291 **Figure 1-Source data2**
1292 The labeled western blot images in Figure 1
1293 **Figure 1-Source data3**
1294 Excel file containing summary data and data analysis of Figure 1
1295 **Figure 2-Source data1**
1296 The western blot raw images in Figure 2
1297 **Figure 2-Source data2**
1298 The labeled western blot images in Figure 2
1299 **Figure 2-Source data3**
1300 Excel file containing summary data and data analysis of Figure 2
1301 **Figure 3-Source data1**
1302 The western blot raw images in Figure 3
1303 **Figure 3-Source data2**
1304 The labeled western blot images in Figure 3
1305 **Figure 3-Source data3**
1306 Excel file containing summary data and data analysis of Figure 3
1307 **Figure 4-Source data1**
1308 The western blot raw images in Figure 4
1309 **Figure 4-Source data2**
1310 The labeled western blot images in Figure 4
1311 **Figure 4-Source data3**
1312 Excel file containing summary data and data analysis of Figure 4
1313 **Figure 5-Source data1**
1314 The western blot raw images in Figure 5
1315 **Figure 5-Source data2**
1316 The labeled western blot images in Figure 5
1317 **Figure 5-Source data3**
1318 Excel file containing summary data and data analysis of Figure 5
1319 **Figure 6-Source data1**

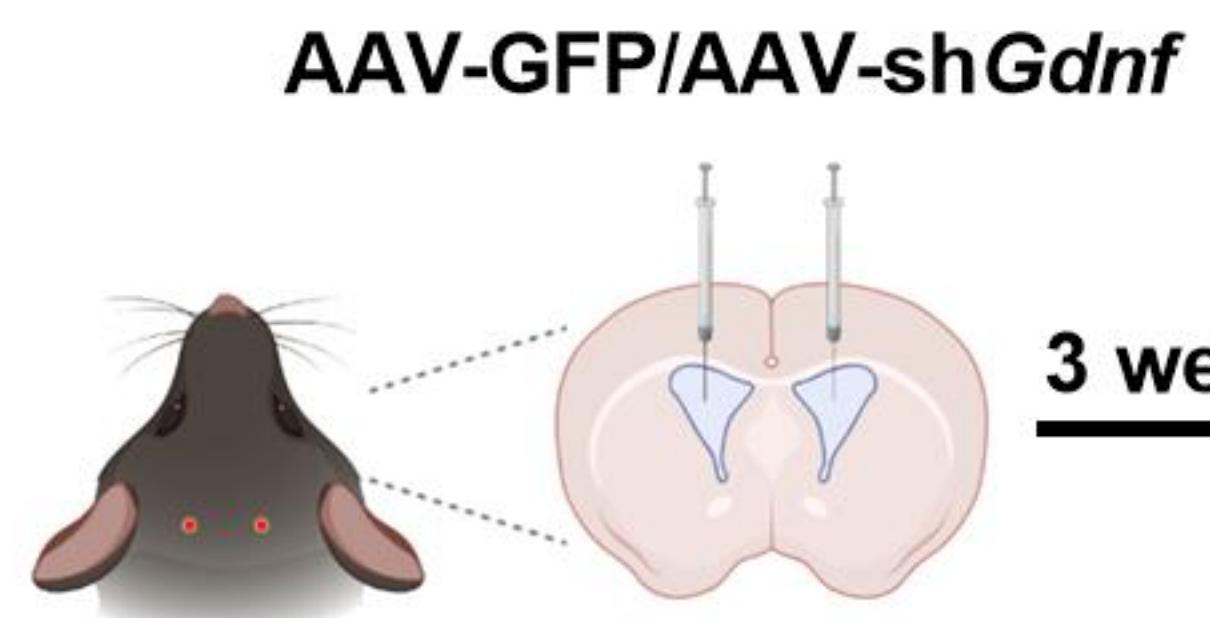
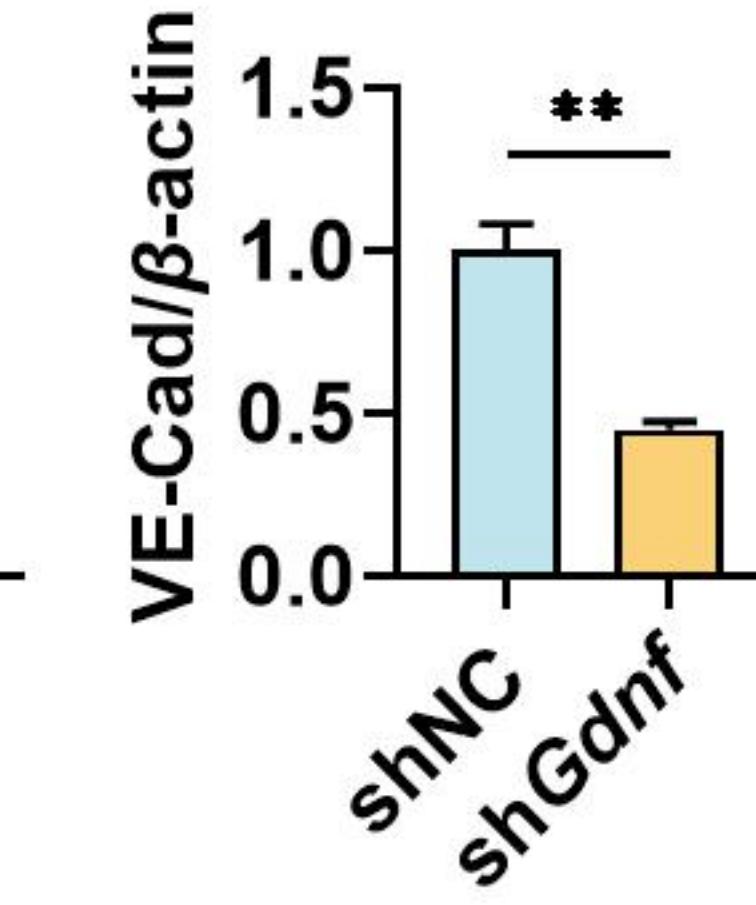
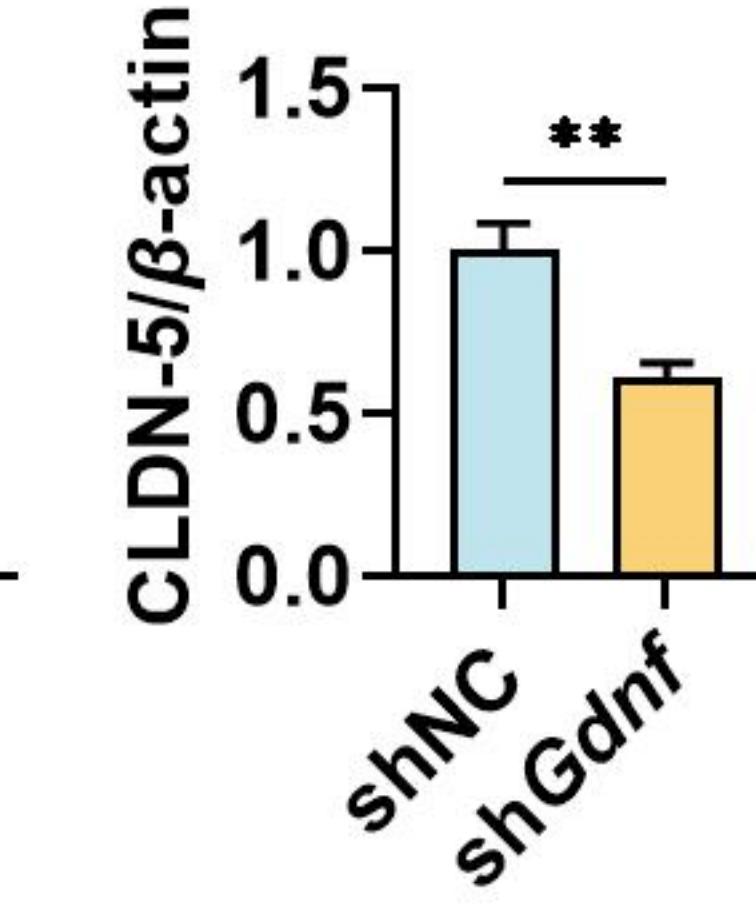
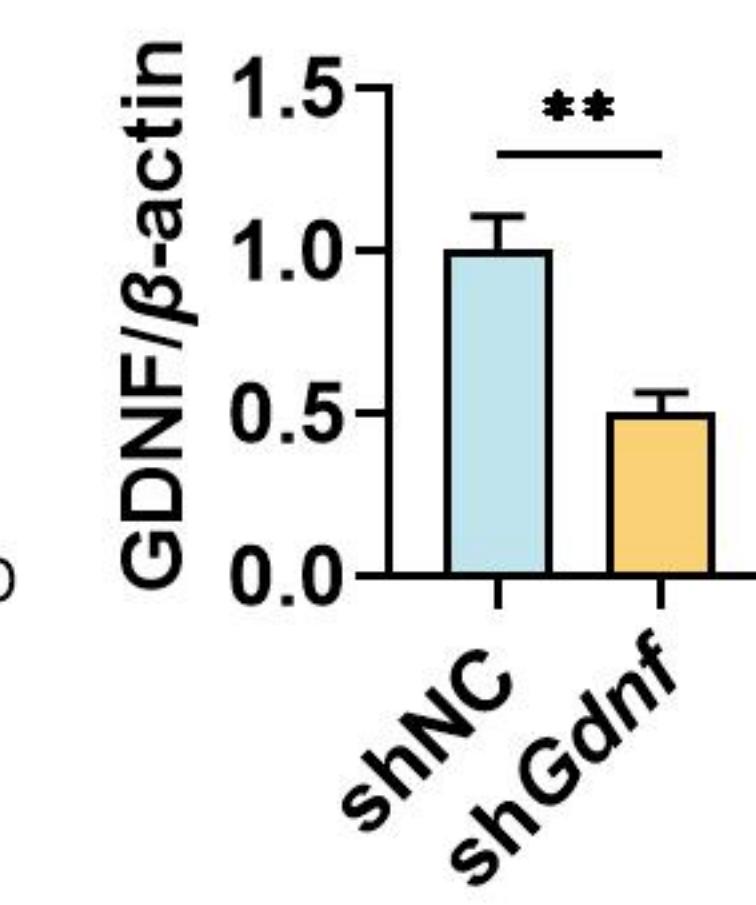
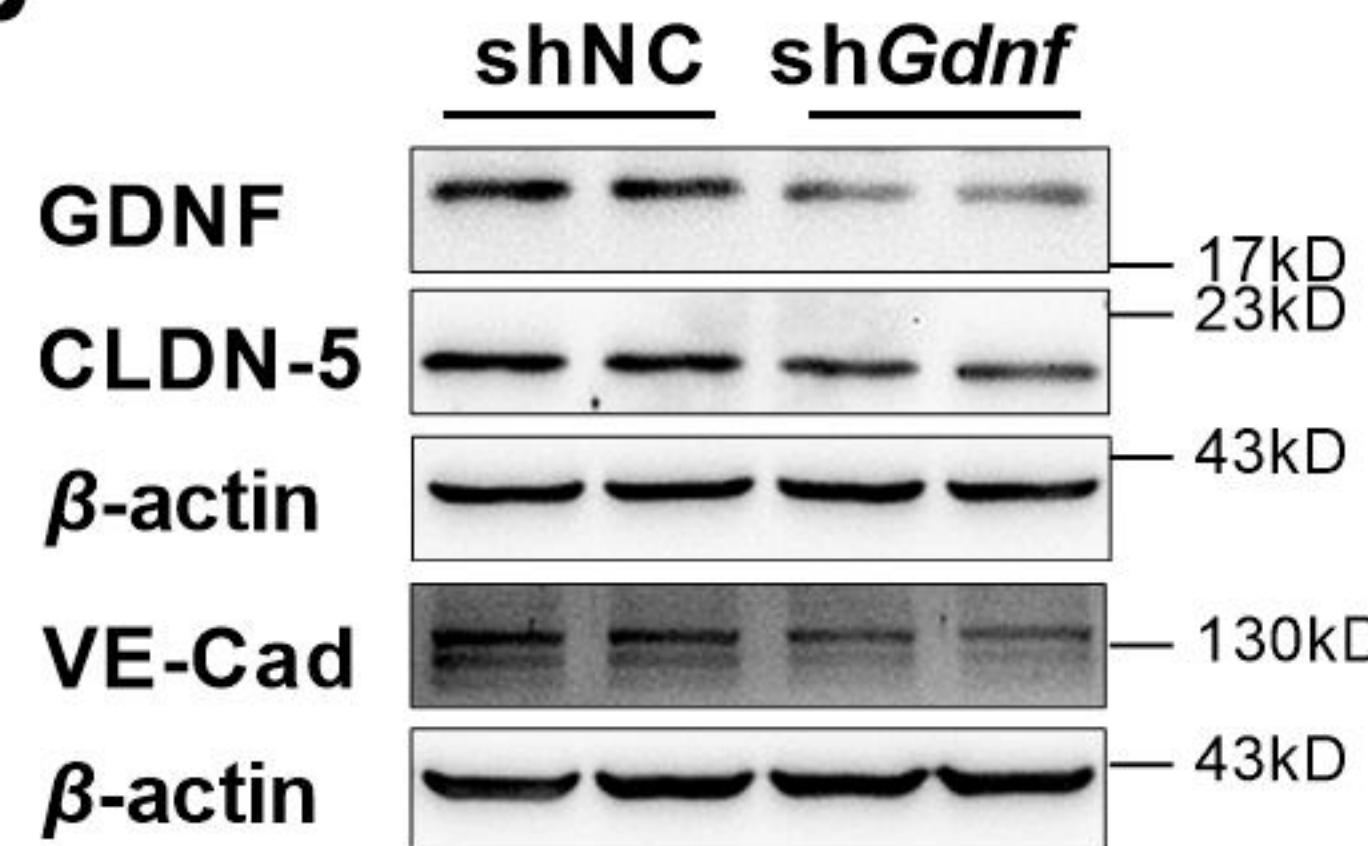
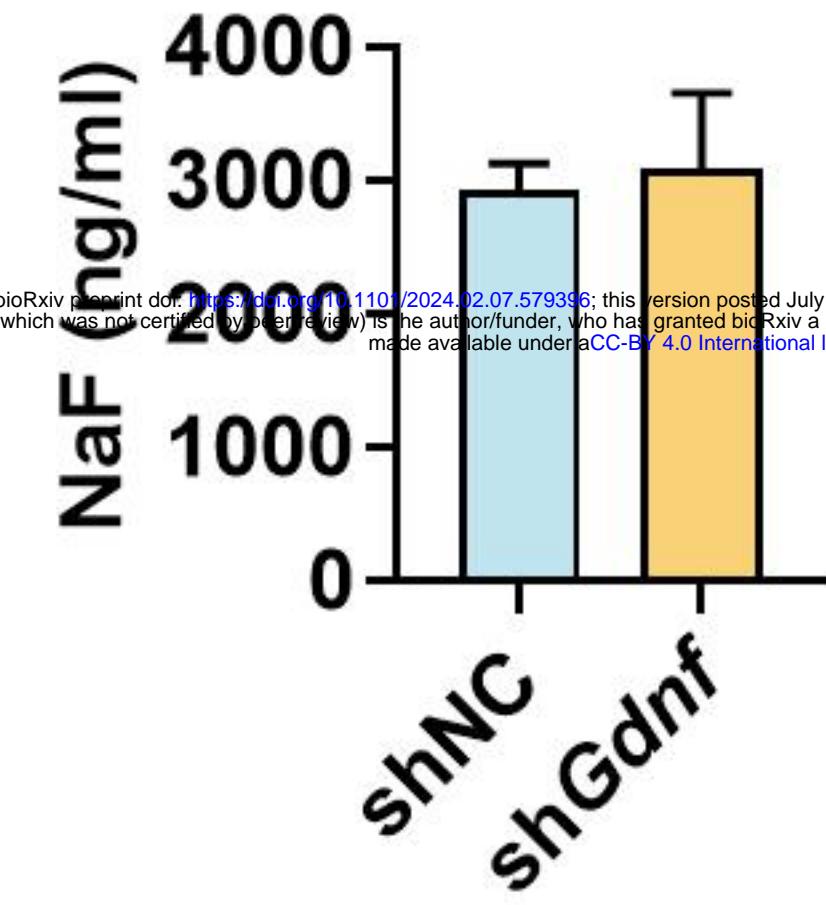
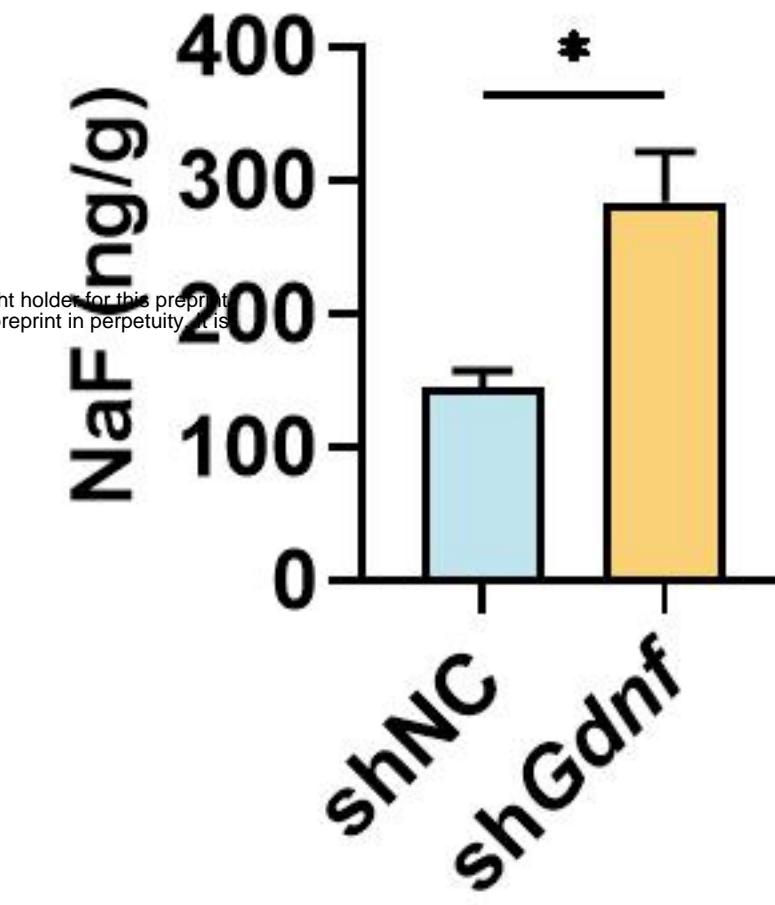
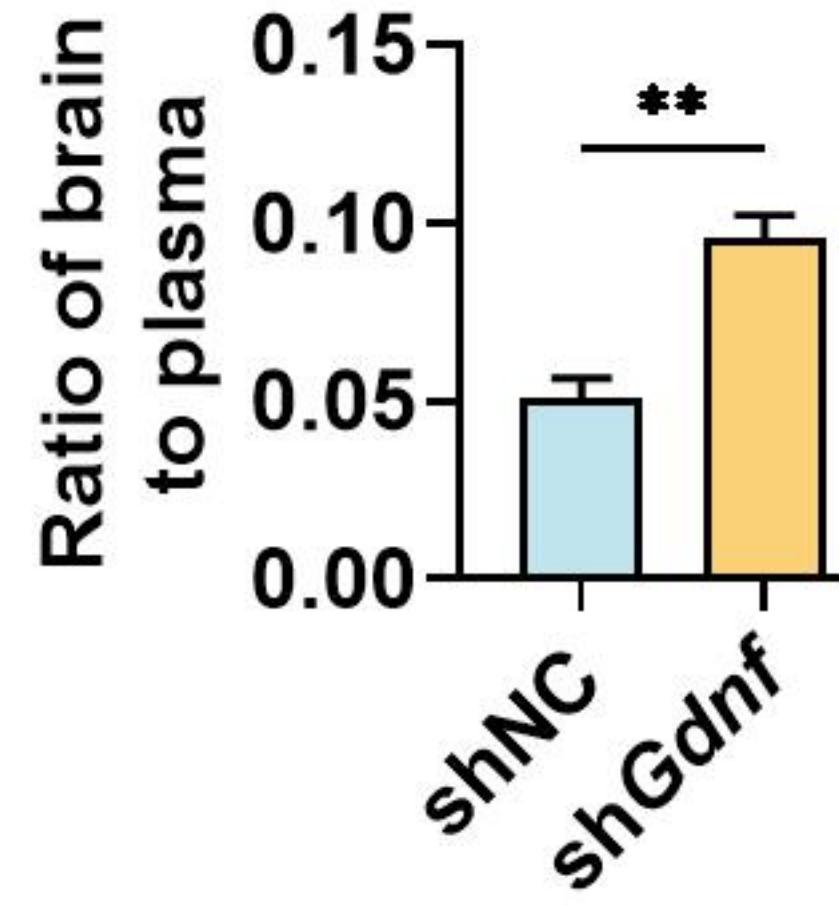
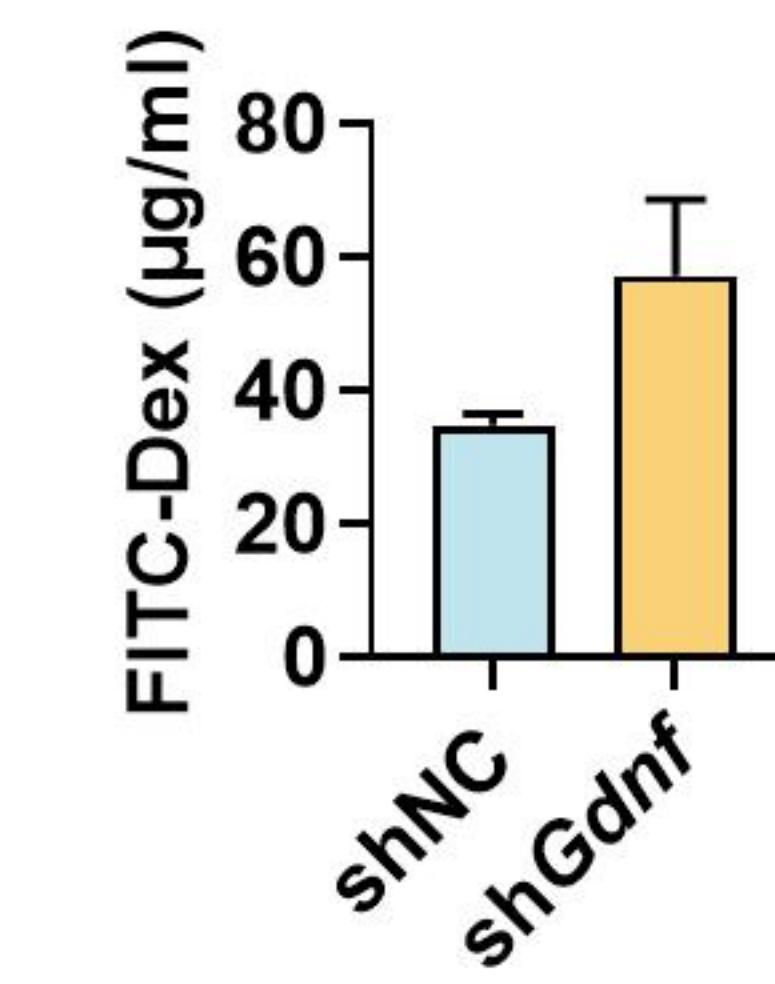
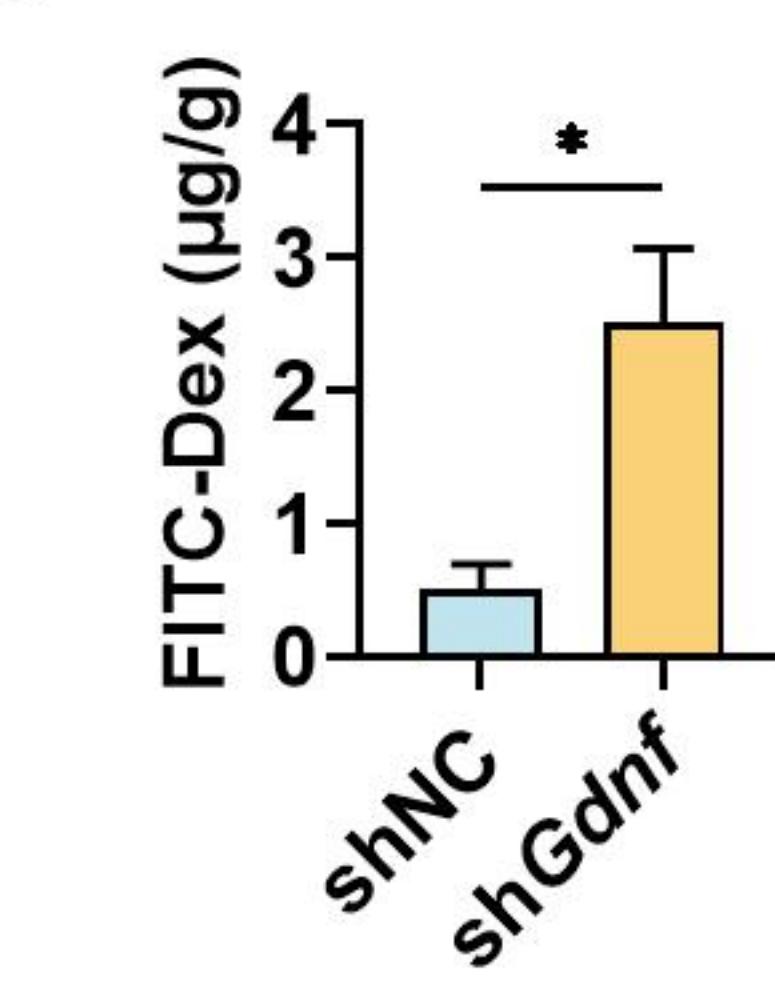
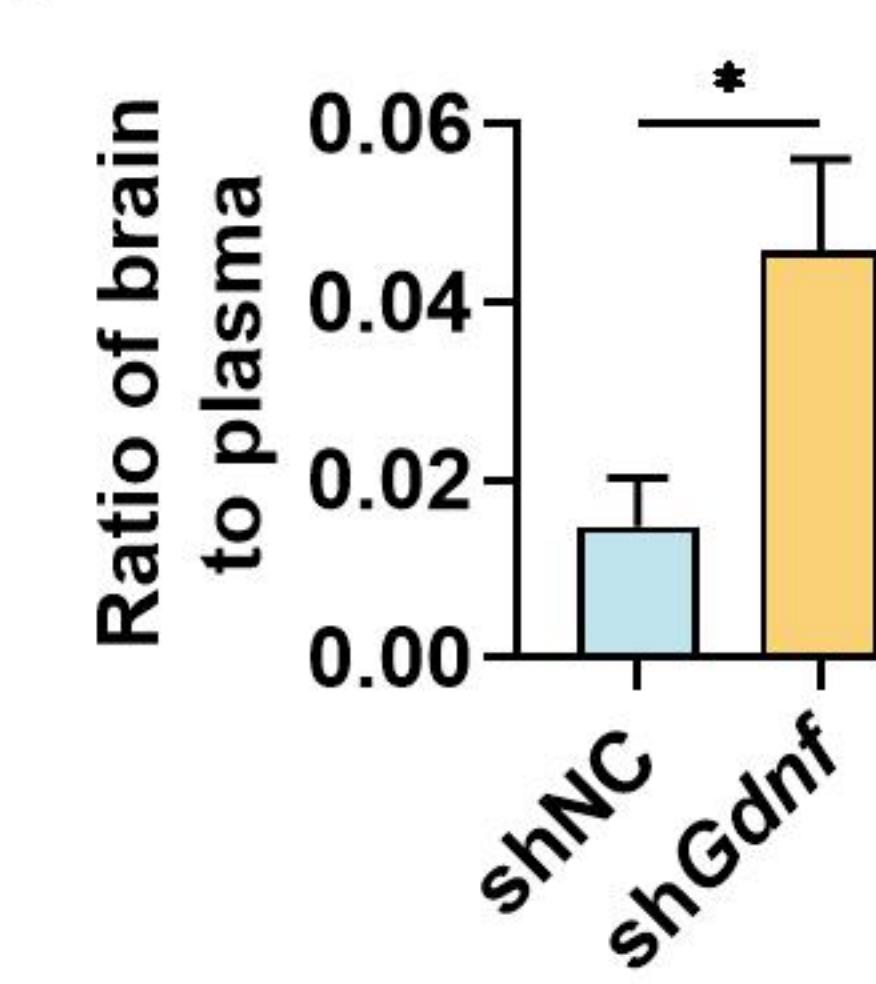
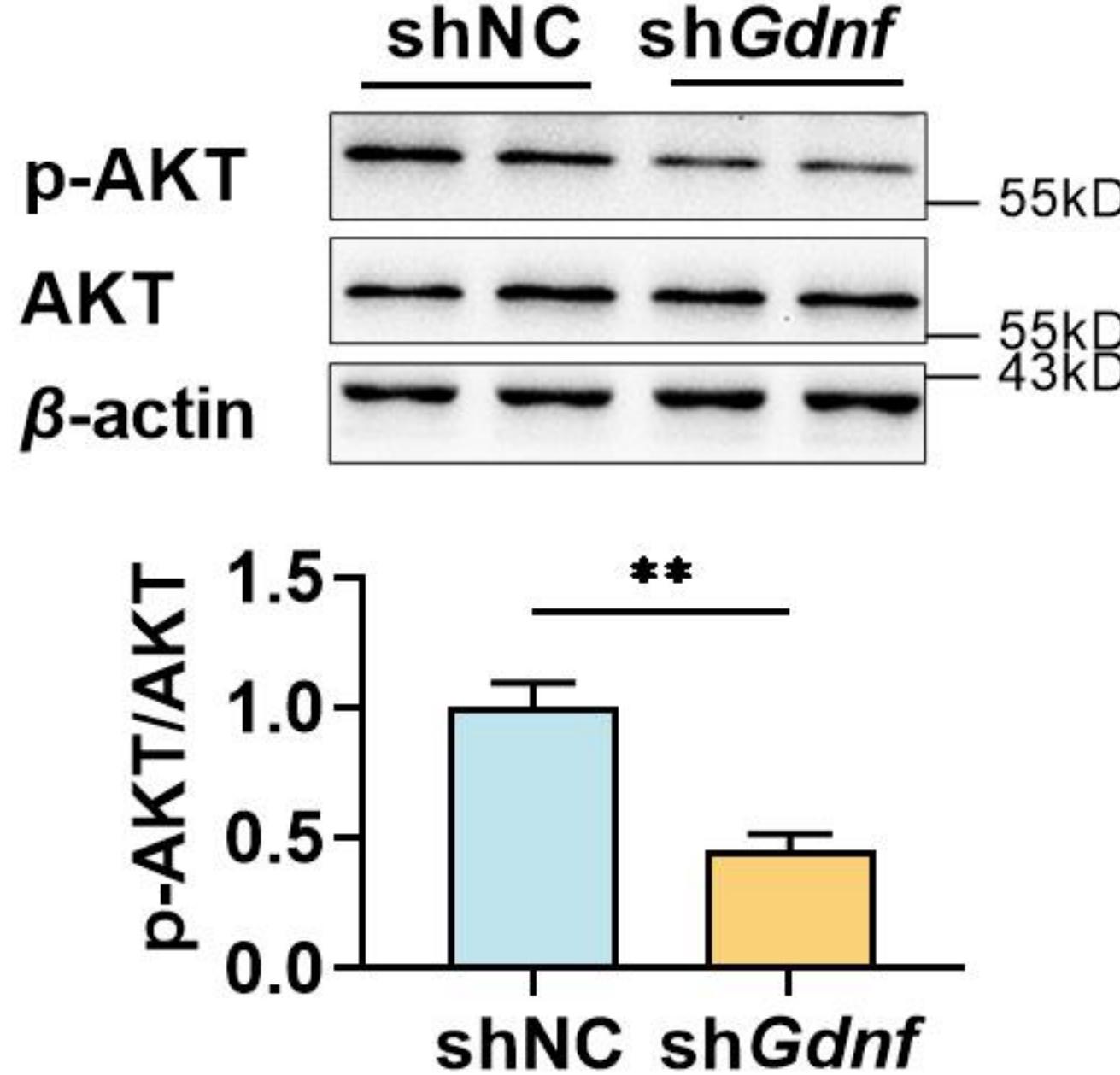
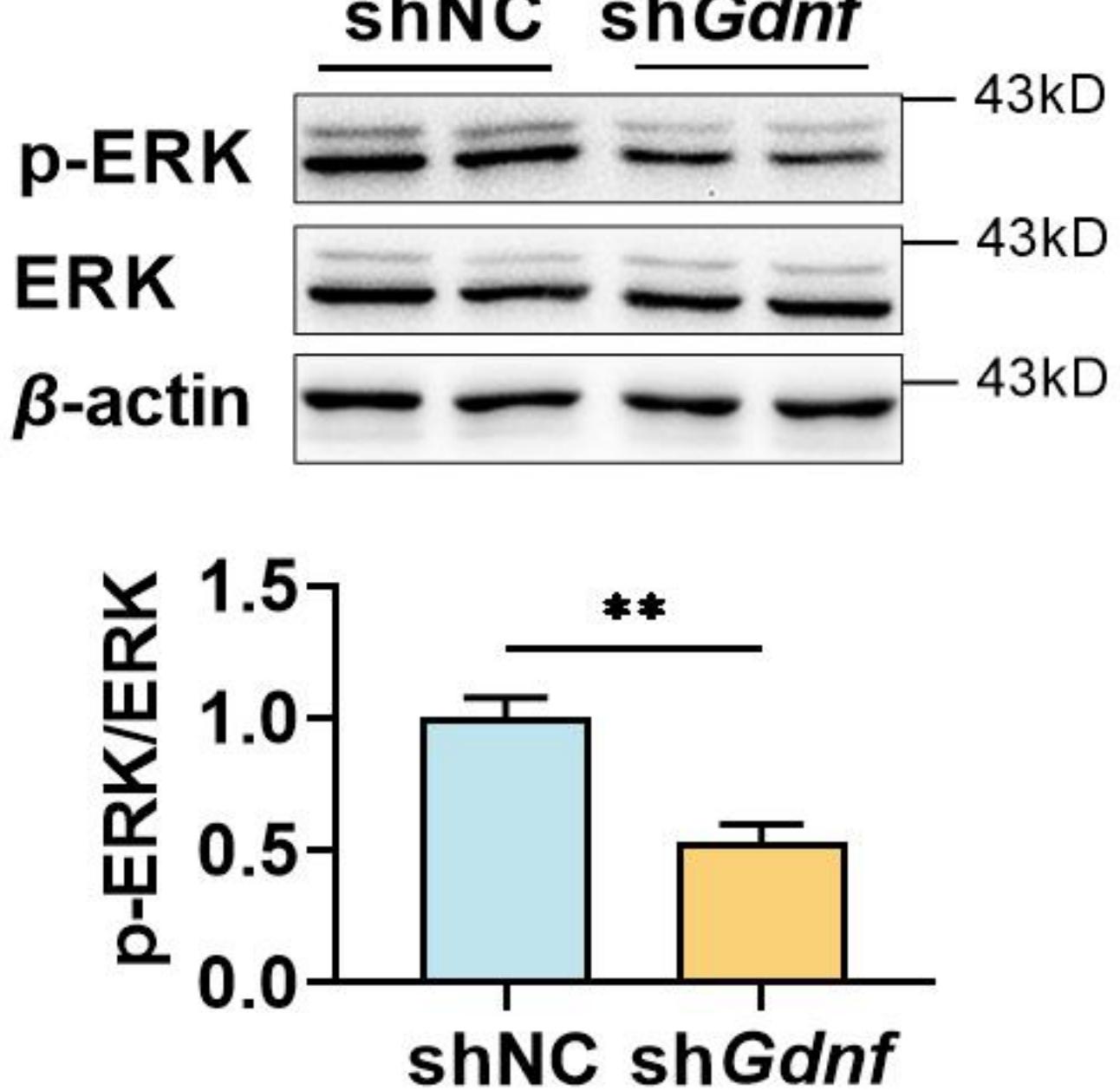
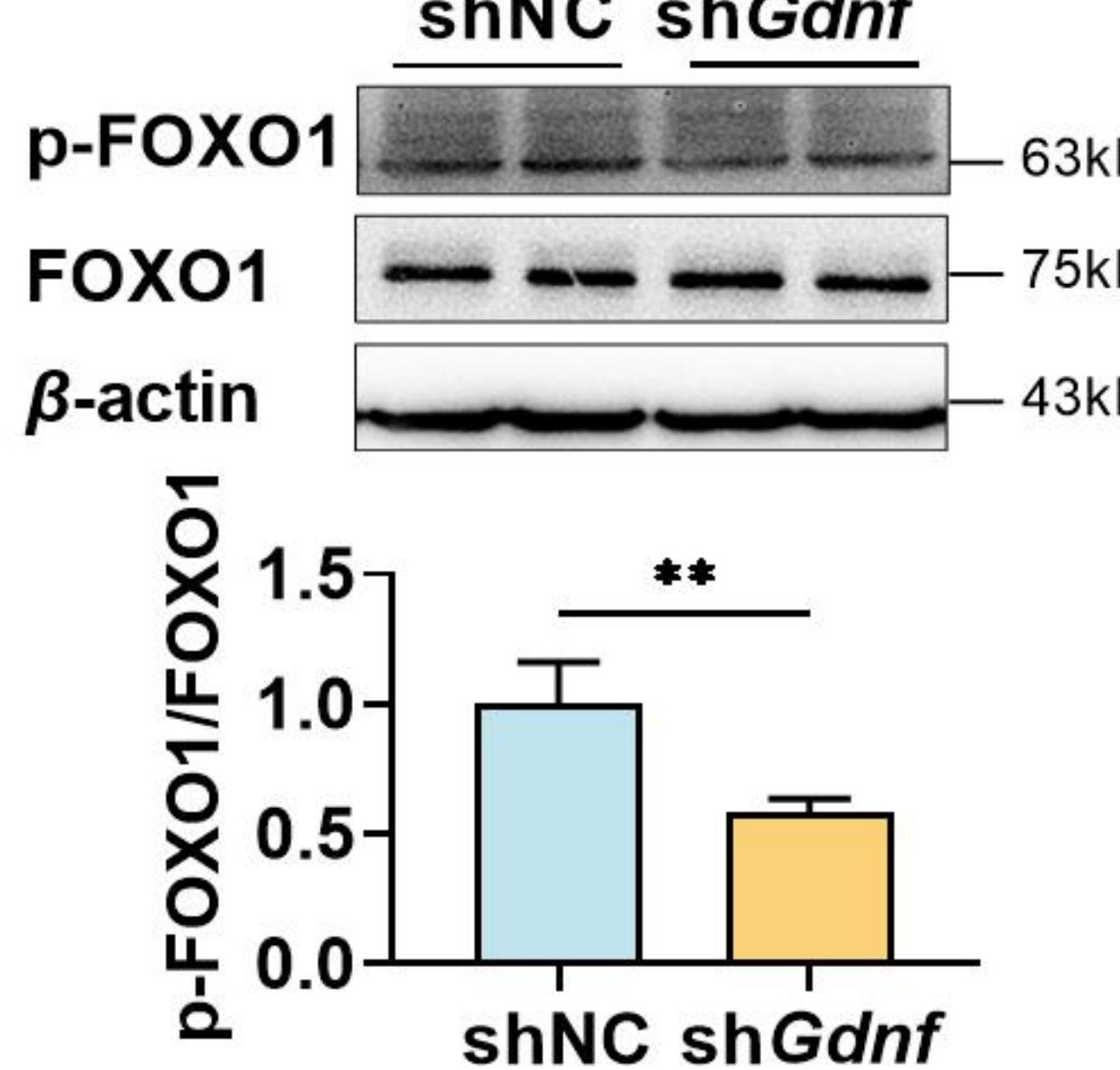
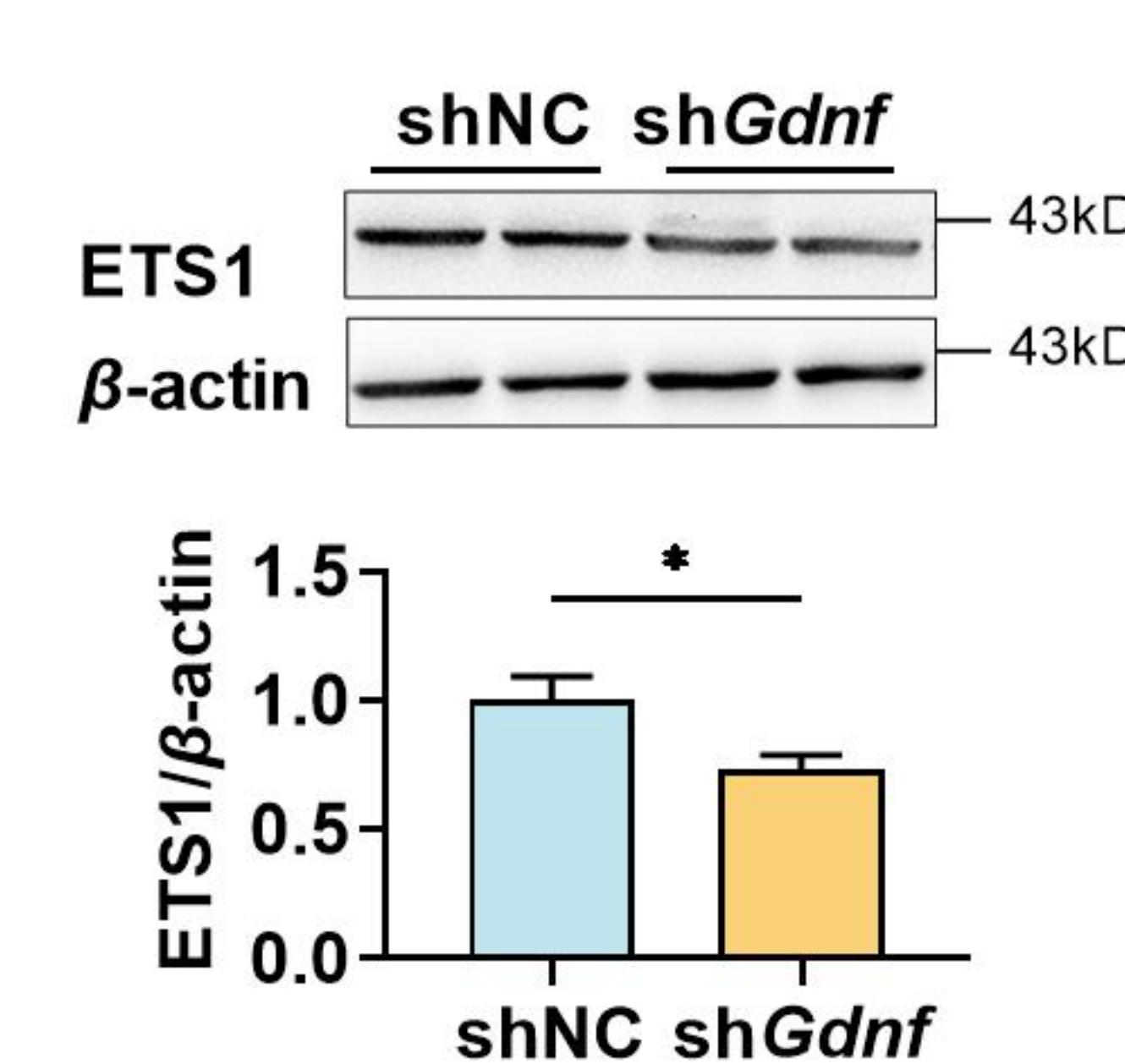










- 1320 The western blot raw images in Figure 6
- 1321 **Figure 6-Source data2**
- 1322 The labeled western blot images in Figure 6
- 1323 **Figure 6-Source data3**
- 1324 Excel file containing summary data and data analysis of Figure 6
- 1325 **Table 1-Source data1**
- 1326 The apparent permeability coefficients of 18 tested drugs from mono or triple culture BBB
- 1327 model

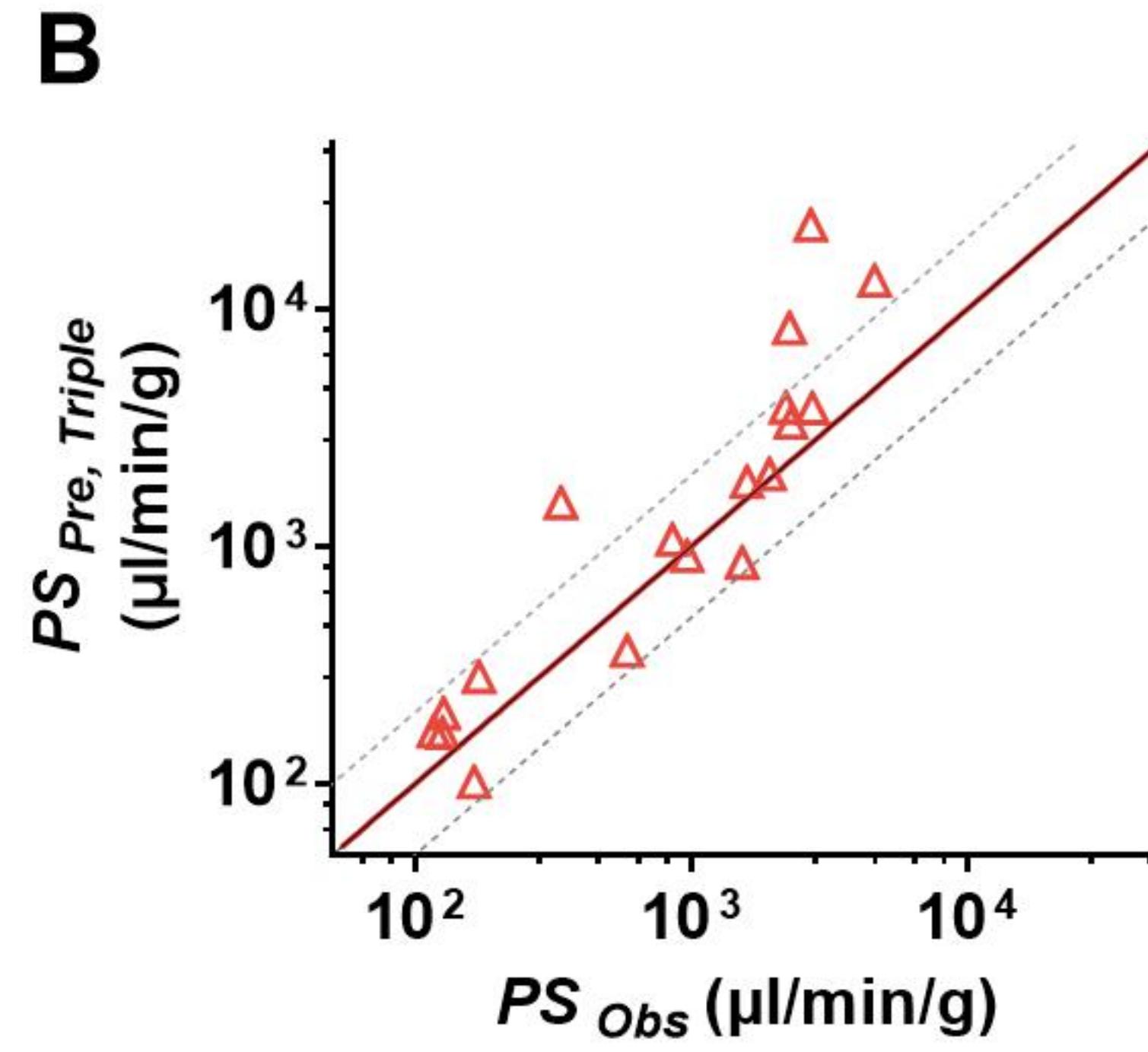
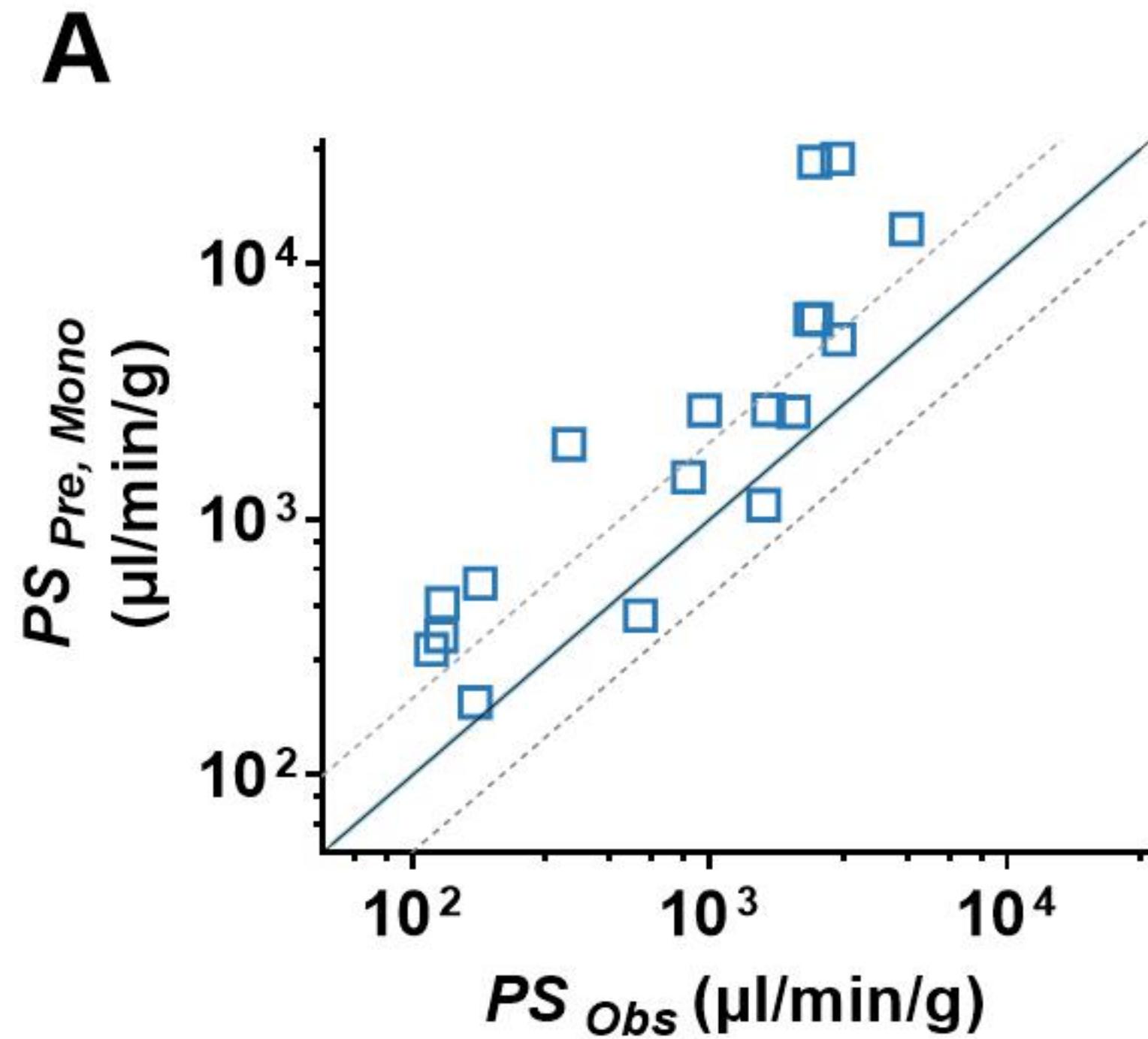
A

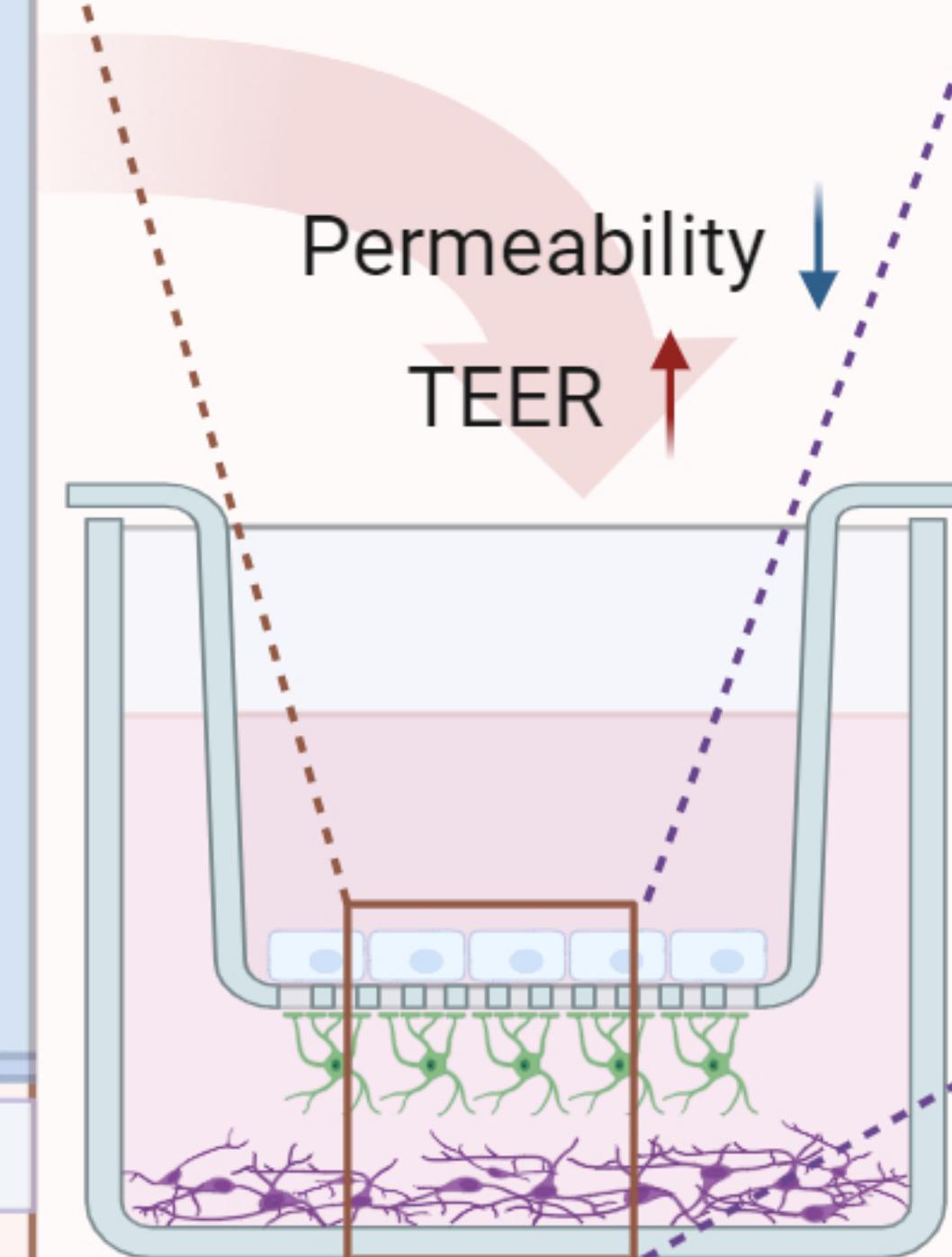
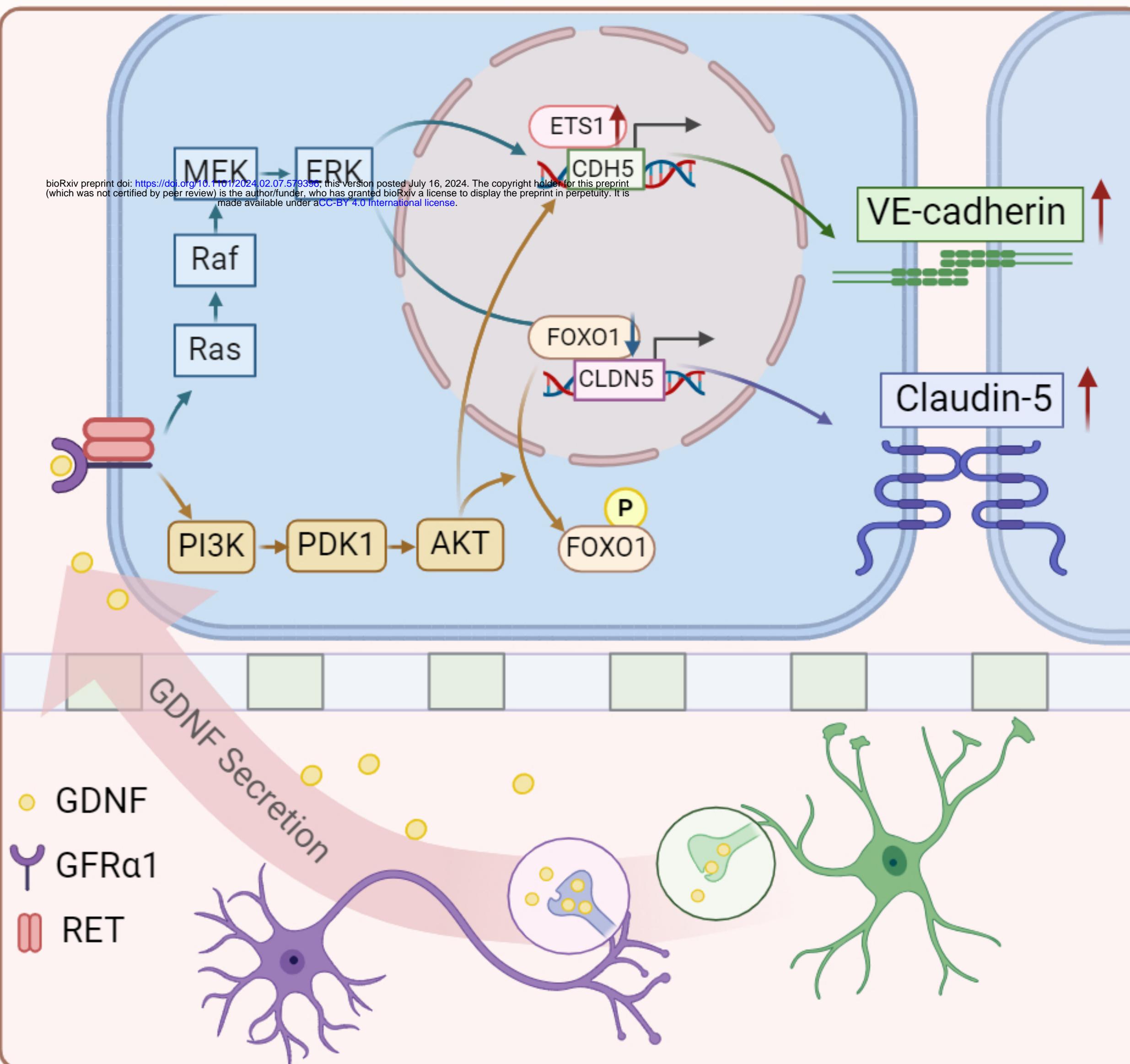








A**B****C****D****E****F****G****H**

A**B****C****D****E****G****F**

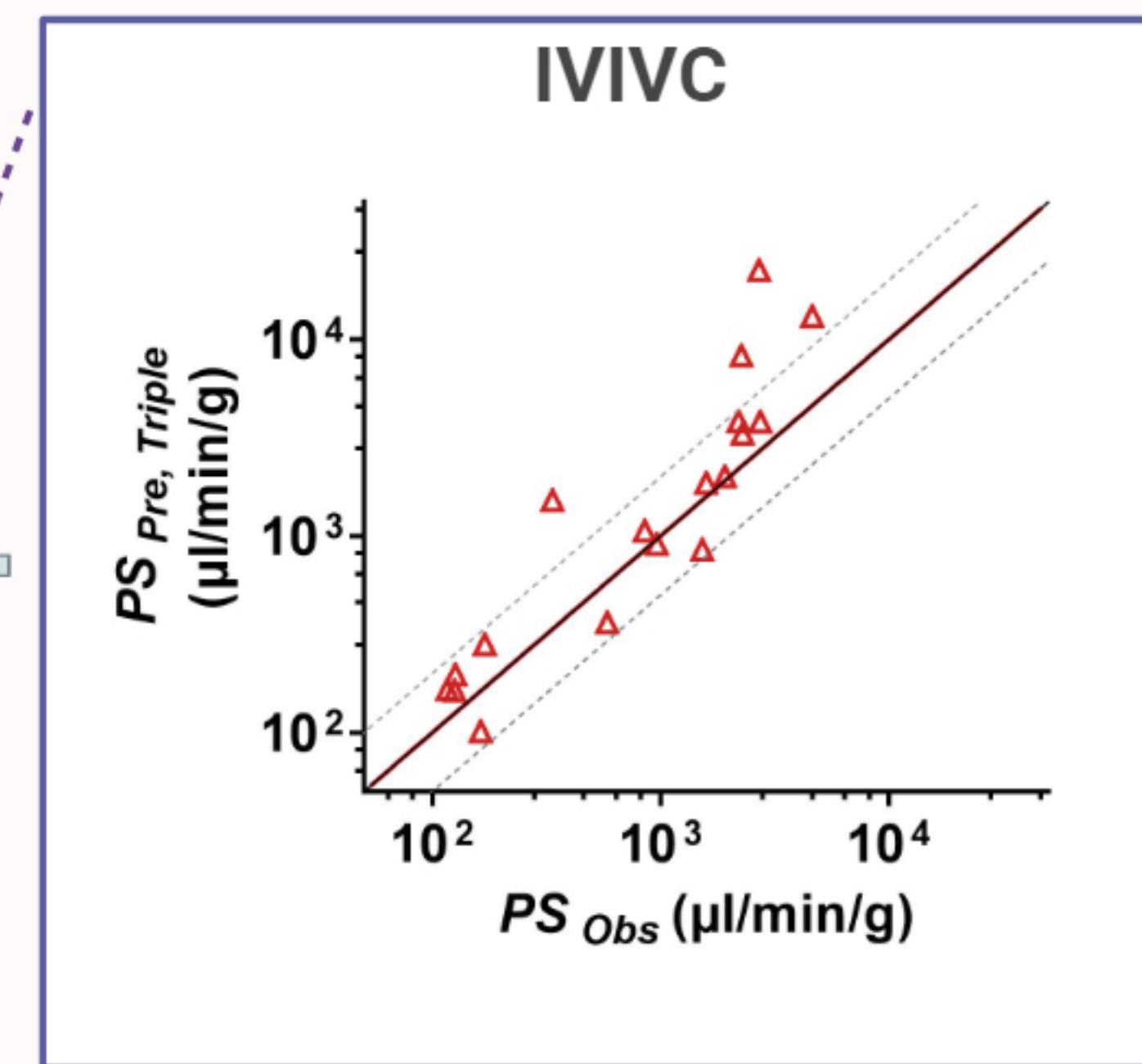















A



bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.07.579396>; this version posted July 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

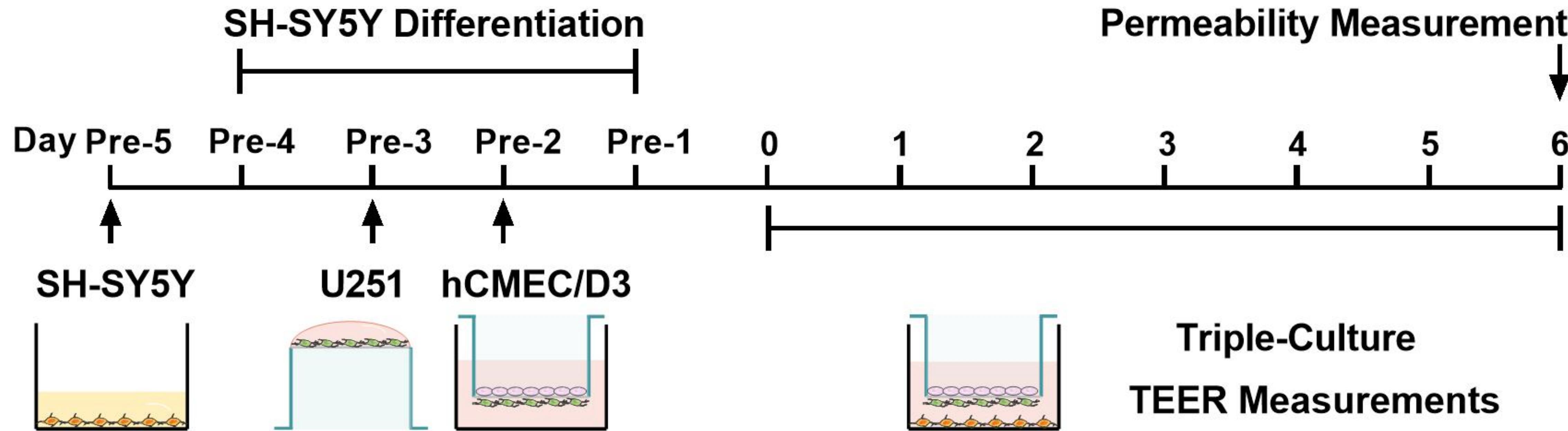
B**C**



A**B****C****D****E****F****G**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.07.579396>; this version posted July 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A**B****C****D****E****F****G****H****I****J****K****L**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.07.579350>; this version posted July 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Triple co-culture
BBB Model

hCMEC/D3

U251

SH-SY5Y

