

δ - α cell-to-cell interactions modulate pancreatic islet Ca^{2+} oscillation modes

4 Huixia Ren^{1,2,3,7}, Yanjun Li^{4,7}, Beichen Xie^{1,2,7}, Weiran Qian⁴, Yi Yu¹, Tianyi Chang³,
5 Xiaojing Yang^{1,2}, Kim Sneppen⁶, Liangyi Chen^{2,4}, Chao Tang^{1,2*}

¹Center for Quantitative Biology, Peking University, Beijing 100871, China

²Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China

³Chinese Institutes for Medical Research and Capital Medical University, Beijing 100069,

China

⁴Institute of Molecular Medicine, Peking University, Beijing 100871, China

⁵Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China

⁶Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

⁷These authors contributed equally

*Correspondence: tangc@pku.edu.cn

Requests for materials should be addressed to Chao Tang (email: tangc@pku.edu.cn)

20 **SUMMARY**

21 Glucose-induced pancreatic islet hormone release is tightly coupled with oscillations
22 in cytoplasmic free Ca^{2+} concentration of islet cells, which is regulated by a complex
23 interplay between intercellular and intracellular signaling. δ cells, which entangle with α
24 cells located at the islet periphery, are known to be important paracrine regulators. However,
25 the role of δ cells in regulating Ca^{2+} oscillation pattern remains unclear. Here we show that
26 δ - α cell-to-cell interactions are the source of variability in glucose-induced Ca^{2+} oscillation
27 pattern. Somatostatin secreted from δ cells prolonged the islet's oscillation period in an
28 α cell mass-dependent manner. Pharmacological and optogenetic perturbations of δ - α
29 interactions led islets to switch between fast and slow Ca^{2+} oscillations. Continuous
30 adjustment of δ - α coupling strength caused the fast oscillating islets to transition to mixed
31 and slow oscillations. We developed a mathematical model, demonstrating that the fast-
32 mixed-slow oscillation transition is a Hopf bifurcation. Our findings provide a
33 comprehensive understanding of how δ cells modulate islet Ca^{2+} dynamics and reveal the
34 intrinsic heterogeneity of islets due to the structural composition of different cell types.

35

36 **Keywords:** Islet, Ca^{2+} oscillation, δ cell, β cell, α cell, paracrine regulation, microfluidic chip

37

38 **Highlights**

39

40 ● Somatostatin slows down islet Ca^{2+} oscillations in an α cell mass-dependent manner.

41 ● Pharmacological and optogenetic perturbations of δ - α interaction cause islet Ca^{2+}

42 oscillation mode switching.

43 ● Continuous tuning of δ - α interaction strength induces fast-mixed-slow oscillation

44 transition successively.

45 ● Mathematical modeling shows the fast-mixed-slow oscillation transition as a Hopf

46 bifurcation.

47

48

49 **Introduction**

50 An organ consists of multiple cells of different types, the interaction among which is critical
51 for the complex function it performs. Understanding how the different cell types coordinate
52 to orchestrate the organ function is also crucial for revealing the cause of dysfunction in
53 these multicellular networks¹. Pancreatic islets are a prototypical example of such a system,
54 whose function is to regulate the blood sugar level via the secretion of hormones (insulin
55 and glucagon)².

56

57 A pancreatic islet is mainly comprised of three cell types: β , α and δ , which make up
58 approximately 80%, 15% and 5% of the total cell population, respectively³. Functionally,
59 hormone secretion from an islet cell is closely coupled to the oscillation in the cell's
60 cytoplasmic free Ca^{2+} concentration⁴⁻⁶. Various Ca^{2+} oscillation patterns have been
61 observed in islets, including fast (~20 seconds) oscillation, slow (~5 minutes) oscillation
62 and mixed oscillations of fast and slow⁷⁻⁹. Frequency-modulated oscillations of cytosolic
63 Ca^{2+} are thought to play a crucial role in insulin secretion⁶, and their dysfunction is
64 associated with aging¹⁰ and diabetes¹¹⁻¹³.

65

66 In an islet, the insulin secreting β cells are extensively coupled via connexin36 (Cx36) gap
67 junction and display a more homogeneous response¹⁴. Notably, regular fast oscillation of
68 β cells mainly exists in intact islets¹⁵. In isolated single β cells, the Ca^{2+} oscillation is
69 typically slow with irregular fast and display high heterogeneity^{9,15,16}. The differences in
70 behavior between cells in isolated and intact islet environment highlight the importance of
71 cell-cell interactions within the islet.

72

73 The α cells secrete glucagon which can stimulate islet cells' hormone secretion by elevating
74 their cAMP level through $\text{G}_{s/q}$ signaling¹⁷. Pharmacological studies found that glucagon
75 accelerates the oscillation frequency in both islet^{4,18,19} and isolated β cells²⁰ by increasing
76 β cell's cytosolic cAMP level and facilitating its endoplasmic reticulum Ca^{2+} release.
77 Supporting this finding, islets in SERCA3 (ATPase sarcoplasmic/endoplasmic reticulum
78 Ca^{2+} transporting 3) knockout mice lost fast Ca^{2+} oscillation²¹. The δ cells exhibit dendrite-
79 like structure which can communicate with many neighboring α and β cells to act as
80 efficient regulators of activity²². δ cells secrete somatostatin, which inhibits insulin secretion
81 from β cells by decreasing their cAMP level through G_i signaling²³. Somatostatin also
82 inhibits glucagon secretion from α cells by activating G_i -coupled Sstr2²⁴⁻²⁶. Somatostatin
83 knockout mice exhibit significantly elevated basal and glucose-stimulated glucagon
84 secretion²⁷. Moreover, the short bioactive half-life of somatostatin suggests its inhibitory
85 action through paracrine signaling²². These findings suggest that islet's oscillation
86 frequency may depend on the paracrine interactions in islets.

87

88 In this study, we investigate the critical role of δ - α cell-to-cell interaction in modulating the
89 islet Ca^{2+} oscillation modes. We used a microfluidic platform which provides a controllable
90 and stable perfusion environment for high-throughput imaging of intact islets. In
91 combination with the α cell-labeled transgenic mice, this platform allowed for a systematic
92 investigation for our purpose. We found that α cells are key to inducing fast Ca^{2+} oscillations,

93 while δ cells are crucial for recovering β cells' slow Ca^{2+} oscillations by inhibiting α cells.
94 Pharmacological and optogenetic perturbations confirmed that δ - α cell interactions
95 generate tunable islet oscillation patterns. Furthermore, continuous parameter tuning
96 demonstrated that balanced regulations of α and δ cells could induce mixed (fast and slow)
97 Ca^{2+} oscillations. Hopf bifurcation refers to the appearance or disappearance of a periodic
98 solution from an equilibrium as a control parameter crosses a critical value. Combined with
99 a mathematical model, we showed that the transition is a Hopf bifurcation resulting from
100 the paracrine interaction between α and δ cells.

101

102 **RESULTS**

103 **High-throughput Imaging of Ca²⁺ Activity and 3D Structural Composition of Islets**

104 Simultaneous imaging of islet Ca²⁺ activity and its 3D cell composition enables
105 investigation of the islets' intrinsic heterogeneity due to structural composition of different
106 cell types. To achieve this goal in a high-throughput manner, we designed a microfluidic
107 chip (Fig. 1a and Methods). This device enabled the simultaneous comparison of eight
108 islets from two sets of observations, each consisting of a flexible combination of up to five
109 perfusion solutions. To determine the cell composition in islets, we generated a triple
110 transgenic mouse line (*Glu-Cre*⁺; *tdTomato*^{ff}; *GCaMP6f*⁺) by crossbreeding of *GCaMP6f*⁺
111 and *Glu-Cre*⁺; *tdTomato*^{ff} mice. Using two-photon microscopy, we identified individual α
112 cells and measured the islet diameter while recording the islet's Ca²⁺ signal using spinning
113 disk microscopy (Fig. 1b-c and Methods).

114

115 **Glucagon Accelerates and Somatostatin Slows Down Ca²⁺ Oscillation**

116 Under high glucose stimulation, pancreatic islets exhibit a conserved and α cell mass
117 dependent activity pattern. The first response to the elevated glucose concentration from
118 3 to 10 mM (3G to 10G) was a pronounced Ca²⁺ peak followed by regular oscillations,
119 which were slow in islets with <40 α cells (Figs. 2a-c, 100-400 s per cycle, see Methods
120 for detailed oscillation spectrum analysis) and fast in the remaining islets (10-40 s per
121 cycle). Furthermore, adding glucagon (100 nM) to the media uniformly transformed islets'
122 activity into fast Ca²⁺ oscillations, regardless of the number of α cells (Fig. 2c). In contrast,
123 somatostatin (1 μ M) slowed down the Ca²⁺ oscillations in islets with <100 α cells. However,
124 α -cell abundant islets maintained fast Ca²⁺ oscillations at 1 μ M somatostatin concentration.
125 Moreover, the order of adding glucagon and somatostatin did not affect the results (Fig.
126 2b). It is worth noting that the oscillation periods of the islets before and after the
127 perturbation followed a bimodal distribution. While without/with perturbation larger islets
128 tended to oscillate faster, there were no significant differences (Fig. 2d). These findings
129 demonstrated that glucagon and somatostatin could have a dominating influence on the
130 glucose-stimulated islet's Ca²⁺ oscillation mode.

131

132 **Glucagon-Elevated cAMP Blocks Somatostatin-Induced Slow Ca²⁺ Oscillation**

133 Somatostatin tuned islet Ca²⁺ oscillation in an α cell mass dependent manner, which
134 suggests a kind of integration of glucagon and somatostatin pathways in the β cells. We
135 further asked whether glucagon can block somatostatin's modulation of β cells. Indeed,
136 islets undergoing somatostatin-mediated slow Ca²⁺ oscillation showed fast Ca²⁺ oscillation
137 when treated with 100 nM glucagon (Figs. 3a-b). Glucagon activates Gs/q-coupled
138 GLP1Rs (Glucagon-like peptide-1 receptors) and GCGRs (glucagon receptors) to maintain
139 β cell's cAMP level¹⁷. Thus, we investigated whether glucagon blocks somatostatin's
140 modulation of β cell by elevating its cAMP level. Glucagon-treated islets exhibited elevated
141 whole islet cAMP levels, while somatostatin-treated islets displayed decreased cAMP
142 levels (Fig. 3c). Treatment with 12 μ M forskolin resulted in fast Ca²⁺ oscillation in islets
143 undergoing somatostatin-mediated slow Ca²⁺ oscillation (Figs. S2e-f, 287 s for 10G with
144 somatostatin and 18 s for 10G with somatostatin and forskolin). These results suggest that
145 glucagon and somatostatin pathways converge to control β cell cAMP level in opposing

146 ways to tune the Ca^{2+} dynamics.

147

148 **δ Cell Limits Glucagon Secretion from α Cell and Slows Down Ca^{2+} Oscillation**

149 δ cell is essential for slow Ca^{2+} oscillation and α cell for fast. We next set out to determine
150 whether δ cells reduce the islet Ca^{2+} oscillation frequency via inhibiting α cells. Sstr2 is
151 exclusively expressed in α cells and is required for somatostatin mediated glucagon
152 secretion inhibition^{24–26}. Therefore, we assessed how selective blockage of Sstr2
153 influenced islets showing 10G-stimulated slow and fast Ca^{2+} oscillations. In the presence
154 of selective Sstr2 antagonist CYN-154806²⁸ (CYN, 100 nM), islets showing slow Ca^{2+}
155 oscillation transformed to fast oscillation, and recovered to slow oscillation after washout
156 (Figs. 3d-e). For islets showing fast oscillation, CYN perfusion did not significantly change
157 the period (Figs. 3h and 3i). Interestingly, after washout, these islets spontaneously
158 switched into slow oscillation in approximately 30 minutes (Figs. 3h and 3i, washout 10G
159 period 87 s). These data indicated that the glucose-stimulated Ca^{2+} oscillation mode may
160 spontaneously change in a same islet. Either depletion or insufficient glucagon secretion
161 can cause spontaneously slowdown. We assessed the cause of slow Ca^{2+} oscillation by
162 adding a second round of CYN (20 min after a fast-to-slow mode switch). As shown in Figs.
163 3h and 3i, CYN reactivated the fast Ca^{2+} oscillation, and the islets recovered to slow
164 oscillation after washout. Consistently, the application of CYN increased cAMP level (Fig.
165 3f) and stimulated endogenous glucagon secretion (Fig. 3g). These results indicated that
166 the inhibition of α cells by δ cells led to insufficient glucagon secretion, resulting in slow
167 Ca^{2+} oscillation in islet β cells.

168

169 Next, we studied how δ cells affect the α and β cell Ca^{2+} activities using *Glu-Cre*⁺;
170 *GCaMP6f*^{+/+}; *Ins2-RCaMP1.07* islets. α and β cells exhibited synchronized activation, with
171 α cells activating 25 s after β cells. Adding CYN evoked fast α and β Ca^{2+} oscillation (Figs.
172 3j and 3k). However, the reduction in Ca^{2+} oscillation period did not affect the delay of α
173 cells (22 s with CYN), which faithfully recapitulated the effect of adding glucagon¹⁹. Our
174 findings suggested that CYN liberated α cells from δ cells, leading to fast islet Ca^{2+}
175 oscillation.

176

177 **Optogenetic Inhibition and Relief of δ Cells Switch Islet between Fast and Slow Ca^{2+} 178 Oscillations**

179 To exert precise temporal control over δ cells, we employed *Sst-Cre*^{+/−}; *Ai35*^{+/+} mouse islets
180 in which the δ cells expressed light-sensitive proton pumps (Fig. S3a)²⁹. In these islets,
181 with the 561 nm light being on or off, the δ cells can be turn off or on. During the 5-10
182 minutes light exposure, the islets switched from slow to fast oscillation with a period of
183 approximately 20 s (Figs. 4a, 4c and Video 1). When the light was turned off, the islets
184 returned to slow oscillation with a period of around 40-150 s. We fitted the Hill function to
185 the time-dependent oscillation period change after turning on/off the light (Figs. 4b and 4d)
186 and found that the period was reduced by an average of 69 s, with a delay of 126 s (light
187 on). Conversely, when the light was turned off, the period increased by an average of 63
188 s, with a delay of 209 s. In control islets isolated from *Sst-Cre*^{+/−} and *Ai35*^{+/+} mice, the 561
189 nm light had no significant effect or slightly prolonged the oscillation period (Figs. 4e and

190 S3b). The optogenetic inhibition and relief of δ cells caused islets to switch between fast
191 and slow oscillations. These results highlight the importance of δ cells to generate tunable
192 islet oscillation patterns.

193

194 **Continuous Tuning of Parameters Reveals an Intermediate Oscillation Mode**
195 **between Fast and Slow**

196 To understand the conditions under which distinct Ca^{2+} oscillation modes occur, we applied
197 gradient somatostatin concentrations (30, 70, and 100 nM) to islets with decreasing α cell
198 number.

199

200 Under 10 mM glucose stimulation, the islets with abundant α cells showed stable fast
201 oscillation, with a single peak distribution in the period (Figs. 5a and 5b, blue, mean value
202 is ~ 20 s). Elevated somatostatin concentration initially induced mixed oscillations of fast
203 and slow, with a bimodal period distribution (Figs. 5a and 5b, yellow, mean values are ~ 20
204 s and ~ 180 s). Further increase in somatostatin concentration induced slow oscillation with
205 single peak distribution (Figs. 5a and 5b, red, mean value is ~ 200 s). This indicated that
206 gradual increase in somatostatin can lead to two types of transition successively in the islet
207 oscillation mode - fast to mixed and then to slow.

208

209 Interestingly, the same rule applies to the α cell number parameter. Under 10 mM glucose
210 stimulation, islets with abundant α cells ($> 24.5\%$) showed fast oscillation (a single peak
211 distribution of period). However, islets with a moderate number of α cells (4% - 24.5%)
212 exhibited mixed oscillations (a bimodal distribution of period). When the number of α cells
213 is lower than 4%, islets showed pure slow oscillation (a single peak distribution of period).
214 In summary, the islets exhibited fast, mixed and slow oscillations as the number of α cells
215 in the islet decreased.

216

217 **A Mathematical Model of Islet Ca^{2+} Oscillation**

218 The α cells secrete glucagon, stimulating hormone secretion in islet cells by elevating their
219 cAMP level¹⁷. δ cells, on the other hand, release somatostatin, inhibiting islet cells'
220 hormone secretion by decreasing their cAMP level²³. Through simultaneous cAMP/ Ca^{2+}
221 imaging, we observed a correlation between islet Ca^{2+} frequencies and the cAMP level
222 controlled by glucagon and somatostatin (Figs. 6a and 6b). Somatostatin inhibited cAMP
223 level, leading to slow Ca^{2+} oscillation in the islet. In contrast, forskolin and glucagon
224 increased cAMP level, resulting in fast Ca^{2+} oscillation. Following washout, cAMP level
225 recovered, and the islet returned to slow oscillation. Thus, we assumed that α and δ cells
226 together control the islet Ca^{2+} oscillation modes by tuning cAMP levels (Fig. 6c). The model
227 accounted for the opposing influence of α and δ cells on intracellular cAMP levels using a

228 Hill equation $\frac{\alpha^h}{\alpha^h + K(\delta)^h}$. δ cells right shifted α cells' activation threshold $K(\delta)$ (Fig. 2a),
229 specifically using $K(\delta) = \delta$. Since we observed that islet's Ca^{2+} oscillation periods
230 exhibited a bimodal distribution (Figs. 2a and 5b), we assumed that the activity of β cells
231 includes a fast oscillation part (ω_α) influenced by cAMP/glucagon and a slow oscillation
232 part (ω) by default. The combination coefficient of these two parts is countered by

233 somatostatin ($\frac{\alpha^h}{\alpha^h + \delta^h}$). The activity of α and δ cells was governed by cAMP-dependent
234 production, basal secretion, and degradation. The equations are as follows and Table 1:

235
$$\tau \frac{d\alpha}{dt} = A \left(\frac{\alpha^h}{\alpha^h + \delta^h} + 0.1 \right) - \alpha \quad (1)$$

236
$$5\tau \frac{d\delta}{dt} = \frac{\alpha^h}{\alpha^h + \delta^h} + 0.1 + \delta_e - \delta \quad (2)$$

237
$$\tau \frac{d\beta}{dt} = \frac{\alpha^h}{\alpha^h + K(\delta)^h} \frac{1 - \cos(\omega_\alpha t)}{2} + \frac{1}{3} \left(1 - \frac{\alpha^h}{\alpha^h + K(\delta)^h} \right) \frac{1 - \cos(\omega t)}{2} - \beta \quad (3)$$

238 The parameters A and δ_e represented α cell number and exogenous somatostatin
239 concentration, respectively. Note that the system's behavior mainly depends on the
240 coupling between α and δ cells and their relative activity (i.e., cAMP level) characterizes β
241 cell oscillation patterns.

242 By adjusting the α cell number (A) or exogenous somatostatin concentration (δ_e), our
243 model displayed a transition from fast to mixed to slow oscillation (Figs. 6d and 6f). This
244 transition came from a Hopf bifurcation, which is the appearance and disappearance of a
245 periodic orbit through a fixed point as parameter varies (Figs. 6e and 6g, fixed point -
246 periodic orbit - fixed point). When the α cell was active (large A or small δ_e), the model
247 showed a high cAMP state fixed point with higher α cell activity than δ cell activity and the
248 β cell exhibited fast oscillation (Figs. 6d and 6f, first row). When the α cell was inactive
249 (small A or large δ_e), the model presented a low cAMP state fixed point with lower α cell
250 activity than δ cell activity (Figs. 6d and 6f, third row), and the β cell exhibited slow
251 oscillation. When the α cell was moderately active, due to the coupling with the δ cell, the
252 system showed an alternating high and low cAMP state, and the β cell exhibited mixed
253 oscillations (Figs. 6d and 6f, second row). Here the model suggests that the mixed
254 oscillation is a result of a balanced paracrine coupling between α and δ cells.

255

256 Discussion

257 In a mouse islet, δ cells represent only a small percentage (~5%), but they have an
258 intriguing spatial distribution. δ cells are intermingled with α cells and occupy the periphery
259 of the islet, enveloping the β cells in the core³⁰⁻³². The present study demonstrates that δ
260 cells play a role in tuning the oscillation modes. Our pharmacological and optogenetic
261 experiments showed that the interaction between δ and α cells is the main origin of
262 variability in islets' oscillation patterns.

263

264 Combined with a model where β cells oscillate slowly by default, glucagon induces faster
265 oscillations by elevating cAMP. This effect can be countered by somatostatin, which
266 restores β cells' default slow oscillations. This is consistent with a recent study showing
267 that transit chemical inhibition of δ cell in intact islets accelerates oscillation²³. We note that
268 a recent paper showed islets with δ cell ablation oscillated slowly in response to glucose³³.
269 These slow Ca^{2+} oscillations appear to be the default state of β cells, independent of
270 somatostatin (Fig.5 bottom islet).

271

273 Interestingly, despite the structural and compositional diversity of islets, the oscillation
274 period presents a bimodal distribution with center peaks of ~20 s and ~200 s. Similar
275 results have also been reported in previous studies^{21,34,35}. Moreover, although there is
276 apparent heterogeneity in Ca^{2+} activities across different islets, each individual islet
277 exhibited a conserved Ca^{2+} oscillation pattern. The tight dependence on the α cell mass
278 suggests that the diverse paracrine environment leads to distinct oscillation modes. The
279 mechanisms by which continuous variations in structure elicit discrete activity patterns
280 require further exploration.

281

282 Pharmacological perturbation of paracrine interactions causes bidirectional mode
283 switching within the same islet. The addition of glucagon or blocking somatostatin (Sstr2
284 blocker CYN) leads to a switch from slow-to-fast mode. On the other hand, blocking
285 glucagon (using Gcgr and Glp1r blockers, MK0893 and Ex9¹⁹) or adding somatostatin
286 causes a switch from fast to slow mode. Induction of slow-to-fast switching is relatively
287 easy (100 nM glucagon) and complete (independent of α cell mass) in the perturbation
288 experiment. In contrast, inducing the fast-to-slow transition is relatively difficult (1 μM
289 somatostatin), incomplete (dependent of α cell mass) and typically with a time delay.
290 Moreover, by using the somatostatin sensor³⁶, we observed that the endogenous
291 somatostatin concentration can reach $>1 \mu\text{M}$ (Fig. S1b). 100 nM somatostatin induced an
292 incompetent transition from fast to slow/mixed oscillations and 1 μM somatostatin induced
293 a larger slow spectrum (Fig. S1c and S1d). This suggests that islet cells could be tightly
294 controlled by the accumulated somatostatin concentration – given that complete blocking
295 is difficult and recovery experiments are easy.

296

297 Recent studies have found that somatostatin can directly affect the Ca^{2+} activity of β cells²³,
298 indicating that there are two levels of integration of δ - α signaling - the regulation of
299 endogenous glucagon level in islets and the balance of cAMP level in β cells. Our study
300 found that Sstr2 antagonists have a significant effect on islet Ca^{2+} activity. In contrast, the
301 group treated with the Sstr3 antagonist MK4256 did not exhibit significant differences on
302 oscillation frequency (see Figs. S2a and S2b). Interestingly, we observed that with 100 nM
303 exogenous somatostatin, MK4256 increased the oscillation frequency (see Figs. S2c and
304 S2d). This difference suggests an uneven endogenous somatostatin concentration.
305 Moreover, the acceleration does not appear to be mediated via glucagon, as it persists
306 even with the introduction of ex9 (see Figs. S2i and S2j). This suggests that the regulation
307 of endogenous glucagon secretion is a primary integration mechanism. This is consistent
308 with recent reports indicating that glucagon secretion is indirectly inhibited by somatostatin
309 at high glucose levels, as revealed by K_{ATP} channel blocker³⁷.

310

311 Our optogenetic interference revealed that a minority of δ cells can switch the majority of
312 islet cells' Ca^{2+} oscillation modes. An interesting question arises regarding the upstream
313 signal of δ cells. Single-cell sequencing has found that δ cells have a unique receptor
314 expression pattern^{38,39}, including selective expression of the ghrelin receptor^{26,38}. Further
315 investigation using pharmacological perturbation and in vivo Ca^{2+} imaging studies are

316 needed to better understand the role of δ cells and the design principle of the pancreatic
317 islet^{40,41}.

318
319 Previous studies have shown that glucagon promotes adenylyl cyclase-catalyzed
320 generation, leading to elevated cAMP level^{17,42}. Conversely, somatostatin reduces cAMP
321 level through inhibiting adenylyl cyclase⁴³. Stimulation of cAMP induces fast Ca^{2+}
322 oscillation^{44,45}. Thus, glucagon insufficiency, somatostatin accumulation, or a combination
323 of both could cause the oscillation mode transition. In this study, we noticed the relieve of
324 endogenous glucagon via CYN lead to a spontaneous fast-to-slow Ca oscillation modes
325 switch (~30 mins delay). Further studies could be conducted to comprehend the
326 mechanism underlying that process.

327
328 Studies from 1994⁸ to 2022²³ have consistently reported that large islets appeared to be
329 more resistant to the loss of fast oscillation during pharmacological perturbation. In light of
330 the heterogeneity observed in the somatostatin's action in this study, it is likely that it is due
331 to the large intra-islet α cell mass, rather than insufficient drug penetration.

332

333

334 **Acknowledgements**

335 We are grateful to Erik Gylfe, Anders Tengholm and Palle Serup for helpful discussions.
336 We thank Chunxiong Luo and Shujing Wang for their help with the microfluidic chip design.
337 We thank the Imaging Core Facility and the State Key Laboratory of Membrane Biology
338 for assistance with two-photon microscopy. We thank Dr. Ye Liang for providing the
339 technical support of Imaris software. This work was supported by grants from the National
340 Natural Science Foundation of China (12090053, 32088101), The National Key Research
341 and Development Program of China (2018YFA0900700, 2021YFF1200500). H.R. was
342 supported by the Boya Postdoctoral Fellowship of Peking University. B.X. was supported
343 by the Postdoctoral Fellowship of Peking-Tsinghua Center for Life Science.

344

345

346 **Tables**

347

h	5
ω_α	$\frac{2\pi}{20}$
ω	$\frac{2\pi}{180}$
τ	10

348 **Table 1 Parameters value in mathematical model.**

349

350

351

352

353 **Methods**

354 **Animals**

355 The study was conducted according to the guidelines of the Declaration of Helsinki and
356 approved by the Ethics Committee of Peking University (protocol code #IMM-ChenLY-1).
357 All animal experiments were conducted following the institutional guidelines for
358 experimental animals at Peking University, which were approved by the AAALAC. Mice
359 were housed with a 12-h on/12-h off light cycle, 20-24 °C ambient temperature and 40-
360 70% humidity. *Ins1-Cre*^{+/−}; *GCaMP6f*^{+/−} mice were generated by crossbreeding *Ins1-Cre*
361 mice (Jackson Laboratory, Strain #:026801) with *Rosa26-GCaMP6f*^{fl}^{ox} mice (Jackson
362 Laboratory, Strain #:028865). Experiment shown in Fig.3a, 3b, 3d, 3e, 3h, 3i, S1a-c and
363 S2a-j used islets isolated from *Ins1-Cre*^{+/−}; *GCaMP6f*^{+/−} mice. *Ella-Cre*^{+/−}; *GCaMP6f*^{+/−} mice
364 were generated by crossbreeding *Ella-Cre* mice (Jackson Laboratory, Strain #:003314)
365 with *Rosa26-GCaMP6f*^{fl}^{ox} mice. *GCaMP6f*^{+/−} mice were generated by multiply rounds
366 crossbreeding of *Ella-Cre*^{+/−}; *GCaMP6f*^{+/−} mice until spontaneous germline recombination was
367 detected. The missing of stop codon between flox sites was confirmed by PCR using
368 template tail DNA extracted from *Ella-Cre*^{+/−}; *GCaMP6f*^{+/−} mice. *Glu-Cre*^{+/−}; *tdTomato*^{f/f}
369 mice were generated by crossbreeding *Glu-Cre* mice⁴⁶ with *Rosa26-tdTomato*^{fl}^{ox} mice (Jackson
370 Laboratory, Strain #:007909). *Glu-Cre*^{+/−}; *tdTomato*^{f/f}; *GCaMP6f*^{+/−} were generated by
371 crossbreeding *Glu-Cre*^{+/−}; *tdTomato*^{f/f} mice with *GCaMP6f*^{+/−} mice. Experiment shown in
372 Fig.1b-c, 2a-d, 5a-b used islets isolated from *Glu-Cre*^{+/−}; *tdTomato*^{f/f}; *GCaMP6f*^{+/−} mice. *Glu-*
373 *Cre*^{+/−}; *GCaMP6f*^{+/−}; *Ins2-RCaMP1.07* mice has been reporter¹⁹. *Sst-Cre*^{+/−}; *Ai35*^{f/f} mice were
374 generated by crossbreeding *Sst-Cre* mice (Jackson Laboratory, Strain #:013044) with
375 *Rosa26- Ai35*^{fl}^{ox} mice (Jackson Laboratory, Strain #:012735). We confirmed the labeling
376 accuracy by immunofluorescence (Fig. S4). Analysis of *tdTomato*-expressing cells
377 revealed that 96.7% were positive for somatostatin (1st row, n = 123 cells), 8.1% were
378 positive for insulin (2nd row, n = 37 cells) and 0% were positive for glucagon (3rd row, n =
379 118 cells). The labelling efficiency for somatostatin is 83% in *Sst-Cre*^{+/−}; *tdTomato*^{f/f} mice.
380 *Ella-Cre*^{+/−}; *jRGECO1a*^{+/−} mice were generated by crossbreeding *Ella-Cre* mice (Jackson
381 Laboratory, Strain #:003314) with *Rosa26-jRGECO1a*^{fl}^{ox} mice (Cat. NO. NM-KI-215001,
382 Shanghai Model Organisms Center, Inc.). All mice were genotyped by PCR using template
383 tail DNA extracted by the TIANamp Genomic DNA Kit (DP304, TIANGEN). Mice were PCR
384 genotyped with 2x EasyTaq® PCR SuperMix (AS111, TRANSGEN). Genotyping primers
385 and protocols are available at Jackson Laboratory's website. Mice were maintained in one
386 cage with a light/dark cycle of 12 h and administered chow diet ad libitum. Both female and
387 male mice aged 8-20 weeks were used in the study.

388 **Immunofluorescence of single islet cells**

389 Immunofluorescence experiment and analysis of *Sst-Cre* mice was performed as
390 previously described^{47,48}. *Sst-Cre*^{+/−}; *tdTomato*^{f/f} islets were dissociation into single-cells
391 with 0.25% trypsin-EDTA (25300-062, Gibco) for 3 min at 37°C followed by briefly shaking
392 and stopped by the culture medium. The cells were centrifuged at 94 g for 5 min and
393 suspended by culture medium. The cell suspension was plated on coverslips in the poly-
394 L-lysine-coated Glass Bottom Dish (D35-14-1-N, Cellvis) and cultured overnight. Then the
395 cells were fixed in 4% PFA (Paraformaldehyde Fix Solution) for 40 min before
396 permeabilization in PBS, 0.3% Triton-100X for 2 h, and blocking in PBS, 5% BSA, 0.15%

397 Triton-100X for 1 h at room temperature. The samples were incubated for 2 h at 4°C in a
398 guinea pig anti-insulin antibody (1:200, A0564, Dako), a rabbit anti-somatostatin antibody
399 (1:500, GTX133119, GeneTex) and a mouse anti-glucagon antibody (1:500, G2654, Sigma)
400 separately. The islets were then incubated for 1h at 4 °C with Goat anti-Guinea pig
401 immunoglobulin G (IgG) (H+L) secondary antibody (DyLight™ 488) (1:1000, SA5-10094,
402 Invitrogen), Donkey Anti-Rabbit IgG H&L (Alexa Fluor 488) (1:1000, ab150073, abcam),
403 Goat anti-Mouse IgG H&L (Alexa Fluor 488) (1:1000, A32766, Invitrogen).

404

405 **Islet Isolation**

406 Mice were euthanized, and freshly-prepared collagenase P solution (0.5 mg/ml) was
407 injected into the pancreas via the common bile duct. The perfused pancreas was digested
408 at 37 °C for 15 min, and the islets were handpicked under a stereoscopic microscope. After
409 isolation (defined as day 0), the islets were cultured overnight in RPMI-1640 medium
410 (11879020, Gibco) containing 10% fetal bovine serum (10099141C, Gibco), 8 mM D-
411 glucose, 100 unit/ml penicillin and 100 mg/ml streptomycin for overnight culture
412 (generally at 5 p.m. at day 0). They were maintained at 37°C and 5% CO₂ in a culture
413 incubator before the imaging experiments. Imaging experiments were performed on day 1
414 and 2 (10 a.m. – 10 p.m.). The time between islet isolation and the experiment typically
415 were 17 – 53 h.

416

417 **Microfluidic Chips**

418 Microfluidic chips were fabricated by using the elastomer polydimethylsiloxane (PDMS)⁴⁹.
419 Briefly, we used the photo-polymerizable epoxy resin (SU8 3050) to make a positive relief
420 master, and the PDMS mold was cured on the master. PDMS mold was removed from the
421 master as the channeled substrate. Then we used an air plasma treatment to bond the
422 PDMS mold with a glass slide (70 x 105 x 10 mm, Xinxiang Vic Science & Education Co.,
423 Ltd.). The islet trapping region was designed as a stair-like channel, using five different
424 thicknesses of SU-8 photoresist. The circular ports in the chip are color-coded according
425 to their function (Fig. 1a). The chip features eight independent inlet ports for loading and
426 trapping islets. The left input solutions are evenly separated into channels 1, 2, 3, and 4,
427 while the right input solutions are evenly separated into channels 5, 6, 7, and 8. To trap
428 islets of different sizes, the heights of this region were designed to be 40, 80, 110, 150 and
429 300 μ m. Before imaging, we degassed the chip and all the solutions with a vacuum pump
430 for 5 min to achieve stable hour-long imaging. The microfluidic chip was pre-filled with
431 KRBB solution (125 mM NaCl, 5.9 mM KCl, 2.56 mM CaCl₂, 1.2 mM MgCl₂, 1 mM L-
432 glutamine, 25 mM HEPES, 0.1% BSA, pH 7.4) containing 3 mM D-glucose before use.
433 Then we injected the islet into the microfluidic chip using a 10 μ L pipette from the islet inlet
434 shown in Fig.1a. The degassed solutions were loaded into 10 ml syringes with needles
435 25G x 20 mm. The syringe connected to the chip through the PA single-lumen tube
436 (0.45*0.8 mm, Shenzhen Kaist Medical Technology Co., LTD) with the reagent inlet. During
437 the imaging, the islet in the microfluidic chip was kept at 37°C and 5% CO₂ on the

438 microscope stage during imaging. The reagents were automatically pumped into the
439 microfluidic chip with a flow rate of 1600 μ l/hour (each islet obtained a flow rate of 400
440 μ l/hour) by the TS-1B syringe pump (LongerPump), which was controlled by software
441 written in MATLAB. Such device enabled the simultaneous comparison of two sets of
442 observations – each consisted of a flexible combination of up to five perfusion solutions.
443

444 **Fluorescent Imaging of Ca^{2+} Signal and 3D Structural Composition**

445 We used a Dragonfly 200 series (Andor) with a Zyla4.2 sCMOS camera (Andor, 2048 x
446 2048 pixels, and each pixel size was 6.5 μ m x 6.5 μ m) and Fusion software. All channels
447 were collected with a 10x/0.85 NA Microscope Objective (Warranty Leica HCX PL APO).
448 Four fields of view were combined each time. Thus, the actual imaging field of view is 5.3
449 mm x 1.3 mm (the imaging zone of the chip is 5 mm x 1 mm). The sampling time resolution
450 was 4.5 s. For 4% transmission of 488 nm illumination (200 mW), the exposure was set to
451 50 ms. A single bandpass filter with a center wavelength of 525 nm (band width 50 nm)
452 was used to collect the GCaMP6f emission. We used Olympus FVMPE-RS Multiphoton
453 Excitation Microscope (using dual pulsed two-photon far-red lasers for deep tissue
454 imaging) with GaAsP PMTs (FV30-AGAPD). The signal was collected with a water
455 immersion objective for multi-photon 25X/1.05, W.D. 2.0mm (XLPLN25XWMP2). The
456 GCaMP6f signal was excited at laser's wavelength 920 nm and collected through green
457 barrier filter (495-540 nm). The tdTomato signal was excited at laser's wavelength 1045
458 nm and collected through red barrier filter (575-645 nm). The spots function in Imaris9.7
459 was used for a cell identification and counting (with the parameter of 10 μ m cell diameter).
460 In this study, we utilized a two-photon microscope to capture the 3D islet image in Fig.1b
461 and quantify the number of α cells in Figs. 2a-d. For all the recording Ca^{2+} and cAMP
462 signals, we used a spinning disk microscope, representing an optical section layer.
463

464 **Adenovirus Infection and cAMP Imaging**

465 For cAMP imaging, the *Ella-Cre⁺;jRGECO1a^{f/+}* mice islets were infected after isolation with
466 recombinant adenoviruses (pAdeno-MCMV-G-Flamp2⁵⁰) by 1 h exposure in 200 μ l culture
467 medium (approximately 4×10^6 plaque forming units (PFU)/islet), followed by addition of
468 regular medium and further culture for 16-20 h before use. All fluorescence images were
469 acquired using spinning-disc confocal microscopy (10x objective, Dragonfly) at time
470 resolution of 4.5 s per frame. Note the cAMP sensor driven by CMV promoter was
471 introduced to islets by adenovirus, without specificity for cAMP sensor expression. The
472 cAMP signal represented the mean fluorescent intensity changes from the sensor-positive
473 cells across the whole islet. Considering the cell ratio, we interpret the cAMP signal as
474 originating from β cells.
475

476 **Hormone Concentration Detection**

477 The effluent from each channel of microfluidic ship was continuously collected every 15min
478 and frozen at -20°C. Insulin was measured using a mouse insulin AlphaLISA Kit (product
479 No.:AL3184, PerkinElmer) or an insulin ELISA kit (10-113-01, Mercodia AB, Sweden).
480 Glucagon was measured using a glucagon ELISA kit (10-1281-01, Mercodia AB, Sweden).
481

482 **Oscillation Spectrum Analysis**

483 **CWT analysis**

484 CWT (continuous wavelet transformation) analyzes signals jointly in time and frequency.
485 The continuous wavelet transformation compared a signal with shifted and scaled copies
486 of a basic wavelet. We used the analytic Morse (3,60) wavelet with period limits from 10
487 s to 600 s as the continuous wavelet transform filter bank. The number of voices per
488 octave (a doubling) was 10 (interpolate 10 frequencies every period doubling). The
489 continuous wavelet transformation returned a matrix *cwt* of 60 rows and *T* columns of an
490 input time series with *T* timepoints. Each row of *cwt* represented the spectrum for a
491 specific frequency, such as row 1 for 10 s, row 11 for 20 s, row 21 for 40 s, row 60 for
492 600 s and row 27 for 60 s.

493

494 **Removing edge-effect artifacts**

495 The cone of influence region in matrix *cwt* affected by edge-effect artifacts was set zero
496 (effects arise from areas where the stretched wavelets extend beyond the edges of the
497 observation interval). The processed matrix *cwt* was an accurate time-frequency
498 representation of the data (second row of Fig. S1a).

499

500 **Spectral distribution of the input time series**

501 Matrix *cwt* was further binarized and used for subsequent analysis (third row of Fig. S1a).
502 The sum of each row of *cwt* gave the spectral distribution of the input time series. As it's
503 shown in the right panel of the second row of Fig. S1a. The spectral distribution typically
504 followed a bimodal distribution – with a fast peak near 18 s and a slow peak near 242 s.
505

506

507 **Reference**

- 508 1. Jackson, M. D. B., Duran-Nebreda, S. & Bassel, G. W. Network-based approaches to quantify
509 multicellular development. *J. R. Soc. Interface* **14**, 20170484 (2017).
- 510 2. Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies
511 comparison of islet architecture and composition. *Islets* **2**, 135–145 (2010).
- 512 3. Da Silva Xavier, G. The Cells of the Islets of Langerhans. *J. Clin. Med.* **7**, 54 (2018).
- 513 4. Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A. & Hellman, B. Synchronous
514 oscillations of cytoplasmic Ca^{2+} and insulin release in glucose-stimulated pancreatic islets. *J. Biol.*
515 *Chem.* **269**, 8749–8753 (1994).
- 516 5. Nunemaker, C. S. *et al.* Glucose Modulates $[\text{Ca}^{2+}]_i$ Oscillations in Pancreatic Islets via Ionic
517 and Glycolytic Mechanisms. *Biophys. J.* **91**, 2082–2096 (2006).
- 518 6. Berggren, P.-O. *et al.* Removal of Ca^{2+} channel beta3 subunit enhances Ca^{2+} oscillation
519 frequency and insulin exocytosis. *Cell* **119**, 273–284 (2004).
- 520 7. Valdeolmillos, M., Santos, R. M., Contreras, D., Soria, B. & Rosario, L. M. Glucose-induced
521 oscillations of intracellular Ca^{2+} concentration resembling bursting electrical activity in single
522 mouse islets of Langerhans. *FEBS Lett.* **259**, 19–23 (1989).
- 523 8. Liu, Y., Tengholm, A., Grapengiesser, E., Hellman, B. & Gylfe, E. Origin of slow and fast
524 oscillations of Ca^{2+} in mouse pancreatic islets. *J. Physiol.* **508**, 471–481 (1998).
- 525 9. Zhang, M., Goforth, P., Bertram, R., Sherman, A. & Satin, L. The Ca^{2+} Dynamics of Isolated
526 Mouse β -Cells and Islets: Implications for Mathematical Models. *Biophys. J.* **84**, 2852–2870 (2003).
- 527 10. Li, L. *et al.* Defects in β -Cell Ca^{2+} Dynamics in Age-Induced Diabetes. *Diabetes* **63**, 4100–
528 4114 (2014).
- 529 11. Corbin, K. L., Waters, C. D., Shaffer, B. K., Verrilli, G. M. & Nunemaker, C. S. Islet
530 Hypersensitivity to Glucose Is Associated With Disrupted Oscillations and Increased Impact of
531 Proinflammatory Cytokines in Islets From Diabetes-Prone Male Mice. *Endocrinology* **157**, 1826–
532 1838 (2016).
- 533 12. Lang, D. A., Matthews, D. R., Burnett, M. & Turner, R. C. Brief, Irregular Oscillations of
534 Basal Plasma Insulin and Glucose Concentrations in Diabetic Man. *Diabetes* **30**, 435–439 (1981).
- 535 13. Colsoul, B. *et al.* Loss of high-frequency glucose-induced Ca^{2+} oscillations in pancreatic islets
536 correlates with impaired glucose tolerance in $Trpm5^{-/-}$ mice. *Proc. Natl. Acad. Sci.* **107**, 5208–
537 5213 (2010).
- 538 14. Michaels, R. L. & Sheridan, J. D. Islets of Langerhans: Dye Coupling Among
539 Immunocytochemically Distinct Cell Types. *Science* **214**, 801–803 (1981).
- 540 15. Gilon, P., Jonas, J. C. & Henquin, J. C. Culture duration and conditions affect the oscillations
541 of cytoplasmic calcium concentration induced by glucose in mouse pancreatic islets. *Diabetologia*
542 **37**, 1007–1014 (1994).
- 543 16. Dryselius, S., Grapengiesser, E., Hellman, B. & Gylfe, E. Voltage-dependent entry and
544 generation of slow Ca^{2+} oscillations in glucose-stimulated pancreatic β -cells. *Am. J. Physiol.-*
545 *Endocrinol. Metab.* **276**, E512–E518 (1999).
- 546 17. Capozzi, M. E. *et al.* β Cell tone is defined by proglucagon peptides through cAMP signaling.
547 *JCI Insight* **4**, e126742 (2019).
- 548 18. Henquin, J. C. & Meissner, H. P. The Ionic, Electrical, and Secretory Effects of Endogenous
549 Cyclic Adenosine Monophosphate in Mouse Pancreatic B Cells: Studies with Forskolin*.
550 *Endocrinology* **115**, 1125–1134 (1984).

551 19. Ren, H. *et al.* Pancreatic α and β cells are globally phase-locked. *Nat. Commun.* **13**, 3721 (2022).

552 20. Grapengiesser, E., Gylfe, E. & Hellman, B. Cyclic AMP as a determinant for glucose induction
553 of fast Ca^{2+} oscillations in isolated pancreatic beta-cells. *J. Biol. Chem.* **266**, 12207–12210 (1991).

554 21. Beauvois, M. C. *et al.* Glucose-induced mixed $[\text{Ca}^{2+}]_c$ oscillations in mouse β -cells are
555 controlled by the membrane potential and the SERCA3 Ca^{2+} -ATPase of the endoplasmic reticulum.
556 *Am. J. Physiol.-Cell Physiol.* **290**, C1503–C1511 (2006).

557 22. Brereton, M. F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, Delta- and PP-cells: Are They the
558 Architectural Cornerstones of Islet Structure and Co-ordination? *J. Histochem. Cytochem.* **63**, 575–
559 591 (2015).

560 23. Dickerson, M. T. *et al.* Gi/o protein-coupled receptor inhibition of beta-cell electrical
561 excitability and insulin secretion depends on Na^+/K^+ ATPase activation. *Nat. Commun.* **13**, 6461
562 (2022).

563 24. Strowski, M. Z., Parmar, R. M., Blake, A. D. & Schaeffer, J. M. Somatostatin Inhibits Insulin
564 and Glucagon Secretion via Two Receptor Subtypes: An in Vitro Study of Pancreatic Islets from
565 Somatostatin Receptor 2 Knockout Mice*. *Endocrinology* **141**, 111–117 (2000).

566 25. Kailey, B. *et al.* SSTR2 is the functionally dominant somatostatin receptor in human pancreatic
567 β - and α -cells. *Am. J. Physiol.-Endocrinol. Metab.* **303**, E1107–E1116 (2012).

568 26. DiGruccio, M. R. *et al.* Comprehensive alpha, beta and delta cell transcriptomes reveal that
569 ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets.
570 *Mol. Metab.* **5**, 449–458 (2016).

571 27. Hauge-Evans, A. C. *et al.* Somatostatin Secreted by Islet δ -Cells Fulfills Multiple Roles as a
572 Paracrine Regulator of Islet Function. *Diabetes* **58**, 403–411 (2009).

573 28. Feniuk, W., Jarvie, E., Luo, J. & Humphrey, P. P. A. Selective somatostatin sst2 receptor
574 blockade with the novel cyclic octapeptide, CYN-154806. *Neuropharmacology* **39**, 1443–1450
575 (2000).

576 29. Madisen, L. *et al.* A toolbox of Cre-dependent optogenetic transgenic mice for light-induced
577 activation and silencing. *Nat. Neurosci.* **15**, 793–802 (2012).

578 30. Unger, R. H. & Orci, L. Paracrinology of islets and the paracrinopathy of diabetes. *Proc. Natl.*
579 *Acad. Sci.* **107**, 16009–16012 (2010).

580 31. Kim, A. *et al.* Islet architecture: A comparative study. *Islets* **1**, 129–136 (2009).

581 32. Cabrera, O. *et al.* The unique cytoarchitecture of human pancreatic islets has implications for
582 islet cell function. *Proc. Natl. Acad. Sci.* **103**, 2334–2339 (2006).

583 33. Huang, J. L. *et al.* Paracrine signalling by pancreatic δ cells determines the glycaemic set point
584 in mice. *Nat. Metab.* **6**, 61–77 (2024).

585 34. Nunemaker, C. S. *et al.* Individual Mice Can Be Distinguished by the Period of Their Islet
586 Calcium Oscillations. *Diabetes* **54**, 3517–3522 (2005).

587 35. Nunemaker, C. S. *et al.* Glucose Metabolism, Islet Architecture, and Genetic Homogeneity in
588 Imprinting of $[\text{Ca}^{2+}]_i$ and Insulin Rhythms in Mouse Islets. *PLoS ONE* **4**, e8428 (2009).

589 36. Wang, H. *et al.* A tool kit of highly selective and sensitive genetically encoded neuropeptide
590 sensors. *Science* **382**, eabq8173 (2023).

591 37. Singh, B. *et al.* KATP channel blockers control glucagon secretion by distinct mechanisms: A
592 direct stimulation of α -cells involving a $[\text{Ca}^{2+}]_c$ rise and an indirect inhibition mediated by
593 somatostatin. *Mol. Metab.* **53**, 101268 (2021).

594 38. Adriaenssens, A. E. *et al.* Transcriptomic profiling of pancreatic alpha, beta and delta cell

595 populations identifies delta cells as a principal target for ghrelin in mouse islets. *Diabetologia* **59**,
596 2156–2165 (2016).

597 39. Muraro, M. J. *et al.* A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell Syst.* **3**,
598 385–394.e3 (2016).

599 40. Sánchez-Andrés, J. V., Gomis, A. & Valdeolmillos, M. The electrical activity of mouse
600 pancreatic beta-cells recorded in vivo shows glucose-dependent oscillations. *J. Physiol.* **486**, 223–
601 228 (1995).

602 41. Fernandez, J. & Valdeolmillos, M. Synchronous glucose-dependent $[Ca^{2+}]_i$ oscillations in
603 mouse pancreatic islets of Langerhans recorded in vivo. *FEBS Lett.* **477**, 33–36 (2000).

604 42. Hellman, B. Pulsatility of insulin release – a clinically important phenomenon. *Ups. J. Med.*
605 *Sci.* **114**, 193–205 (2009).

606 43. Dorflinger, L. J. & Schonbrunn, A. Somatostatin inhibits vasoactive intestinal peptide-
607 stimulated cyclic adenosine monophosphate accumulation in GH pituitary cells. *Endocrinology* **113**,
608 1541–1550 (1983).

609 44. Elliott, A. D., Ustione, A. & Piston, D. W. Somatostatin and insulin mediate glucose-inhibited
610 glucagon secretion in the pancreatic α -cell by lowering cAMP. *Am. J. Physiol.-Endocrinol. Metab.*
611 **308**, E130–E143 (2015).

612 45. Tengholm, A. & Gylfe, E. cAMP signalling in insulin and glucagon secretion. *Diabetes Obes.*
613 *Metab.* **19**, 42–53 (2017).

614 46. Quoix, N. *et al.* The GluCre-ROSA26EYFP mouse: A new model for easy identification of
615 living pancreatic α -cells. *FEBS Lett.* **581**, 4235–4240 (2007).

616 47. Zhao, J. *et al.* In vivo imaging of β -cell function reveals glucose-mediated heterogeneity of β -
617 cell functional development. *eLife* **8**, e41540 (2019).

618 48. Wang, Y. *et al.* An optical method to evaluate both mass and functional competence of
619 pancreatic α - and β -cells. *J. Cell Sci.* *jcs.184523* (2016) doi:10.1242/jcs.184523.

620 49. McDonald, J. C. *et al.* Fabrication of microfluidic systems in poly(dimethylsiloxane).
621 *Electrophoresis* **21**, 27–40 (2000).

622 50. Liu, W., Liu, C., Ren, P.-G., Chu, J. & Wang, L. An Improved Genetically Encoded
623 Fluorescent cAMP Indicator for Sensitive cAMP Imaging and Fast Drug Screening. *Front.*
624 *Pharmacol.* **13**, 902290 (2022).

625

626

1 **Figure legends**

2 **Fig. 1 Microfluidic chip for imaging multiple islets**

3 a) Upper panel: Illustration of the microfluidic chip designed for islet Ca^{2+} imaging. The
4 red box indicates the imaging zone. The blue circular ports serve as reagent inlets, the
5 green circular ports function as islet inlets, and the yellow circular ports serve as
6 reagent outlets. Bottom panel: A bright-field image displaying the imaging zone, where
7 8 islets have been loaded.

8 b) 3D projection of *Glu-Cre⁺; tdTomato^{f/+}; GCaMP6f⁺* islets. α cells expressing tdTomato
9 proteins are highlighted in red, while all islet cells expressing GCaMP6f protein are
10 shown in green. The red number indicates the count of α cells, and the green number
11 represents the islet diameter.

12 c) Z-stack images of *Glu-Cre⁺; tdTomato^{f/+}; GCaMP6f⁺* islets. The number indicates the
13 depth.

14

15

16

17 **Fig. 2 Glucagon and Somatostatin Switch Ca^{2+} Oscillation mode between Slow and**
18 **Fast**

19 a) Scatter plot of islet's α cell number (tdTomato positive cell number) and mean islet Ca^{2+}
20 oscillation period under 10G stimulation (black dots), 100 nM glucagon (blue dots) and
21 1 μM somatostatin (red dots) ($n = 37$ islets from 5 mice in 5 independent isolations).
22 Half-filled dots indicate the islets with mixed oscillations. The islets labeled with yellow
23 edge dots were shown in (b).

24 b) Mean islet Ca^{2+} traces with 3G and 10G stimulation, and in addition of 100 nM glucagon
25 (blue) and 1 μM somatostatin (red). The number of α cells (tdTomato positive cells) and
26 the diameter of the islet are shown on the left.

27 c) Ca^{2+} oscillation periods for islets with <10 , 10-40, 40-100 and >100 α cells.
28 Quantification of data in a). Bars represent mean \pm s.e.m. (standard error of mean).

29 d) Ca^{2+} oscillation period for islets diameter 80-150 μm , 150-200 μm and 200-260 μm .
30 Asterisks denote significance as 0.12 (n.s.), 0.0332 (*), 0.0021 (**), 0.0002 (***) and
31 <0.0001 (****).

32

33

34

35 **Fig. 3 Somatostatin Limits Endogenous Glucagon Secretion and Slows Down Islet
36 Ca²⁺ Oscillation**

37 a) Recordings of whole islet Ca²⁺ signal with 10G, 1 uM somatostatin and 100 nM
38 glucagon stimulation. Representative mean Ca²⁺ trace of whole islet under the
39 stimulations of 10G, 1 uM somatostatin, 100 nM glucagon in present at 1 uM
40 somatostatin, sequentially.

41 b) Oscillation period before treatment (black, mean period 58 s), after somatostatin (red,
42 mean period 150 s), and after somatostatin + glucagon (blue, mean period 31 s). Data
43 represents n = 18 islets from 4 mice).

44 c) Mean cAMP levels under different conditions: with 10G (black, 60%, normalized
45 against the mean 3G level), 100 nM glucagon (blue, 174%), and 1 uM somatostatin
46 (red, 20%). Data represents n = 11 islets from 3 C57BL/6J mice.

47 d) Recordings of whole islet Ca²⁺ signal with 10G and 100 nM CYN stimulation (slow
48 islets).

49 e) Oscillation period before treatment, after CYN and washing out (mean 10G period 113
50 s, mean CYN period 14 s, and washout mean 10G period 132 s, n = 8 islets from 4
51 mice). Error bars in all panels depict SDs.

52 f) Mean cAMP levels observed with different conditions: 10G (black, 38%, normalized
53 against the mean 3G level), 100 nM CYN (yellow, 80%), and washing out (red, 30%).
54 Data is based on n = 10 islets from 4 C57BL/6J mice.

55 g) Secreted glucagon concentration for islets under 3G (grey, 5.6 pM), 10G (black, 1.3
56 pM) and 100 nM CYN (yellow, 9.6 pM). Data is based on n = 4 islets from 3 C57BL/6J
57 mice (each islet measured for 30 min, 10 min per collection).

58 h) Top: Recordings of whole islet Ca²⁺ signal (fast islets). The perfusion protocol was 10
59 min 3G, 40 min 10G, 20 min 100 nM CYN, 40 min 10G, 20 min 100 nM CYN, 40 min
60 10G and 15 min KCl. Bottom: Continuous wavelet transformation (CWT, see Methods)
61 of whole islet Ca²⁺ signal. The Y-axis shows the CWT coefficients for periods ranging
62 from 10 to 600 s. The color bar codes the CWT coefficients.

63 i) Scatter plots of islet Ca²⁺ oscillation period before and after washout of CYN. Left: 1st
64 round of CYN added before mode switch to slow oscillation (10G period 21 s, CYN
65 period 19 s, n = 7 islets from 3 mice). Right: 2nd round of CYN added after mode switch
66 (10G period 104 s, 100 nM CYN period 18 s, and washout 10G period 147 s, n = 7
67 islets from 3 mice).

68 j) Recordings of mean Ca²⁺ activity of α (green) and β (red) cells under 10G stimulation
69 without and with CYN (10 min) in microfluidic chip. The islets were isolated from *Glu-*
70 *Cre*⁺; *GCaMP6f*^{+/}; *Ins2-RCaMP1.07* mice. Shadow indicates the standard deviation of
71 each cell type.

72 k) Period, waiting time of α cells ($T_{\beta\alpha}$) from experiments under 10G stimulation with and
73 without CYN treatment (10G period was 104 s, 100 nM CYN period was 28 s, n = 17
74 (10G) and 76 cycles (CYN) from 4 islets in 3 *Glu-Cre*⁺; *GCaMP6f*^{+/}; *Ins2-RCaMP1.07*
75 mice).

76

77

78

79 **Fig. 4 Optogenetic Inhibition of δ Cells Induces Fast Ca^{2+} Oscillation**

80 a) Recordings of whole islet Ca^{2+} signals from $\text{Sst-Cre}^{+/-};\text{Ai35}^{f/+}$ mouse islets. The red
81 shadow shows the 5 min 561 nm light-on window (see Methods).

82 b) Oscillation period with 561 nm light on (red dots) and off (black dots). The time turning
83 light on/off is marked as 0 s. The red/black curves fit the light on/off periods with
84 inhibitory/stimulatory hill function (see Methods). The top/bottom row corresponds to
85 the top/bottom trace in (a).

86 c) Oscillation period before (black) and after (red) 561 nm light on for 6 islets from Sst-
87 $\text{Cre}^{+/-};\text{Ai35}^{f/+}$ mice. Error bars in all panels depict SDs.

88 d) Fitted parameters P , P_0 , and D in inhibitory (red)/stimulatory (black) hill function.

89 e) Oscillation period before (black) and after (red) 561 nm light on for islets from $\text{Ai35}^{f/+}$
90 (left) and $\text{Sst-Cre}^{+/-}$ mice (right).

91

92 **Fig. 5 The Transition of Fast-Mixed-Slow Oscillations**

93 a) Left panel: Maximum intensity projection of islets showing α cell (TdTomato)
94 distribution. The numbers indicate the percentage of α cell area and the islet diameter.
95 Islets are arranged from top to bottom based on decreasing α cell number. Right panel:
96 Recordings of whole islet Ca^{2+} signal with 10G and different somatostatin concentration
97 (30 nM, 70 nM and 100 nM somatostatin). Shadow represents the fast (blue), mixed
98 (yellow) and slow (red) Ca^{2+} oscillation.

99 b) Oscillation period distribution for islet showing fast (blue), mixed (yellow) and slow (red)
100 Ca^{2+} oscillation. Each row corresponds to the same islet in a). Numbers indicate the
101 peak Ca^{2+} oscillation period.

102

103

104

105

106 **Fig. 6 Mathematical Model of Islet Fast, Slow and Mixed Oscillation**

107 a) Whole islet Ca^{2+} (green) and cAMP (red) signal before treatment, after 100 nM
108 somatostatin, 120 nM forskolin and 100 nM glucagon perturbation. Islets were
109 isolated from *Ella-Cre⁺;jRGECO1a^{f/+}* mice.

110 b) Mean Ca^{2+} oscillation period and mean cAMP amplitude before treatment, after
111 somatostatin (n = 5 islets from 3 mice), 120 nM forskolin (n = 5 islets from 3 mice)
112 and 100 nM glucagon (n = 4 islets from 3 mice) perturbation. Error bars in all panels
113 depict SEMs.

114 c) Schematic of islet model.

115 d) Activity traces of β cell (black, left panel), α cell (blue, right panel) and δ cell (yellow,
116 right panel) with decreasing α cell mass. Parameter A for α cell mass and δ_e for
117 exogenous somatostatin.

118 e) Phase planes of the islet model. Nullcline of α cell equation is denoted by blue line.
119 Nullcline of the δ cell equation is denoted by dash yellow line. The intersections of the
120 nullclines are the positions of the fixed points. When A is 2, the fixed point is stable
121 (high cAMP state). When A is 1, the fixed point is unstable and surrounded by a
122 stable limit cycle (oscillated cAMP state). When A is 0.1, the fixed point is stable (low
123 cAMP state).

124 f) Same as b with elevated somatostatin concentration (δ_e).

125 g) Same as c. When δ_e is 0, the fixed point is stable (high cAMP state). When δ_e is 0.2,
126 the fixed point is unstable and surrounded by a stable limit cycle (oscillated cAMP
127 state). When δ_e is 0.5, the fixed point is stable (low cAMP state).

128

129

130

131

132

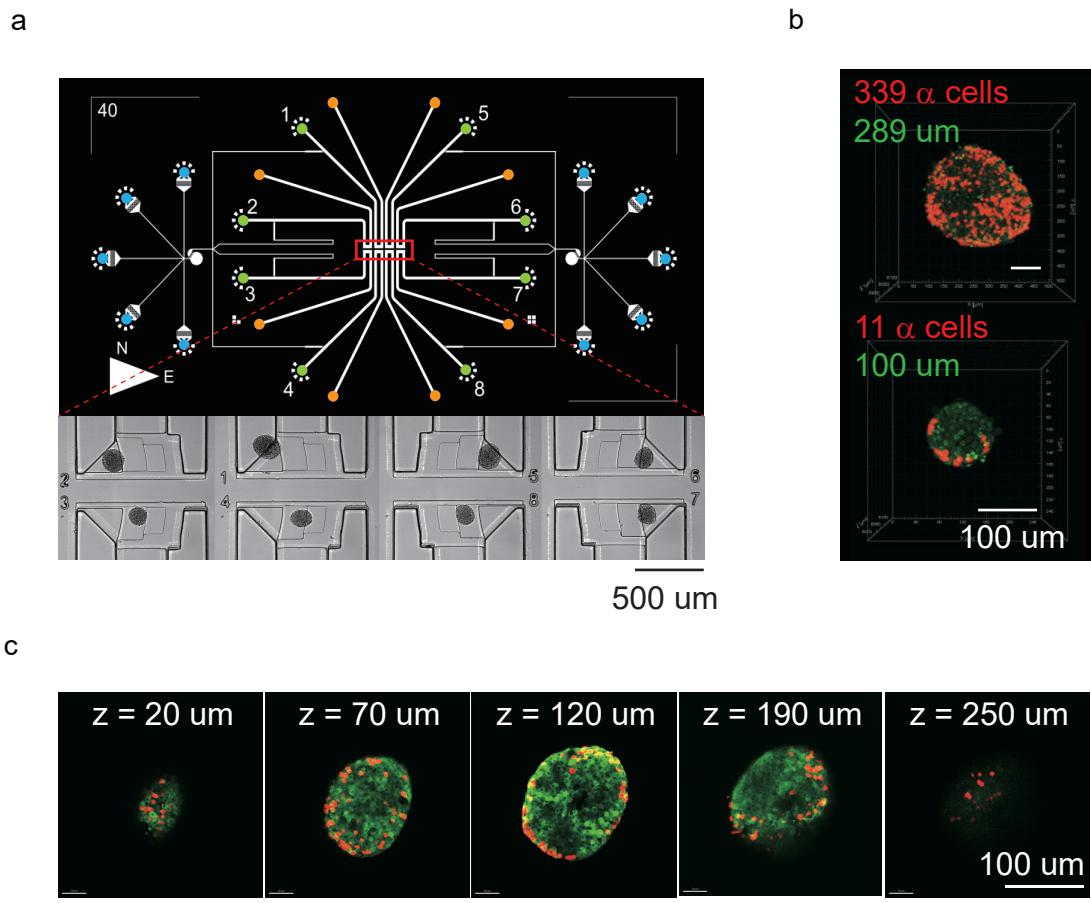


Fig. 1

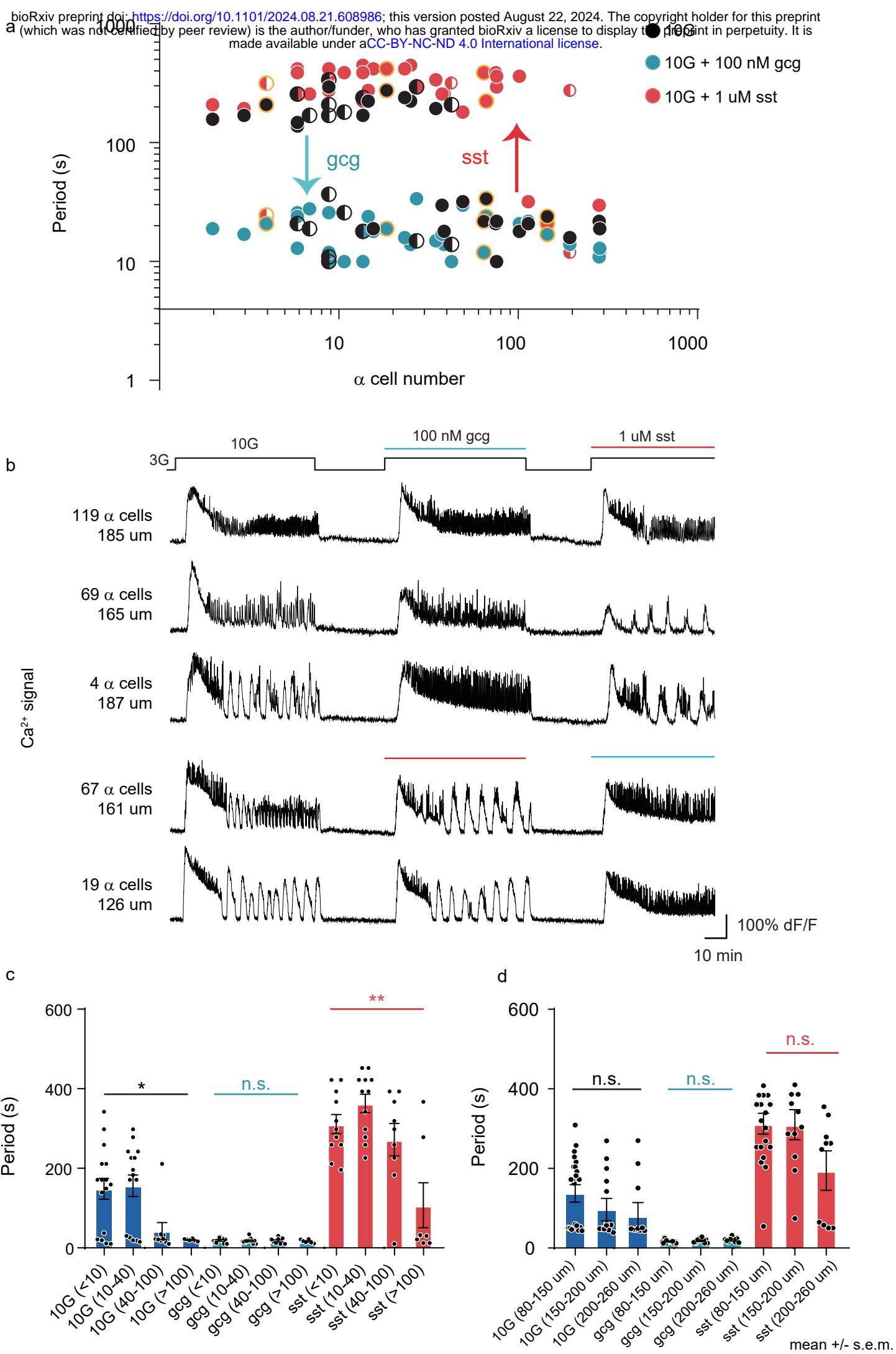


Fig. 2

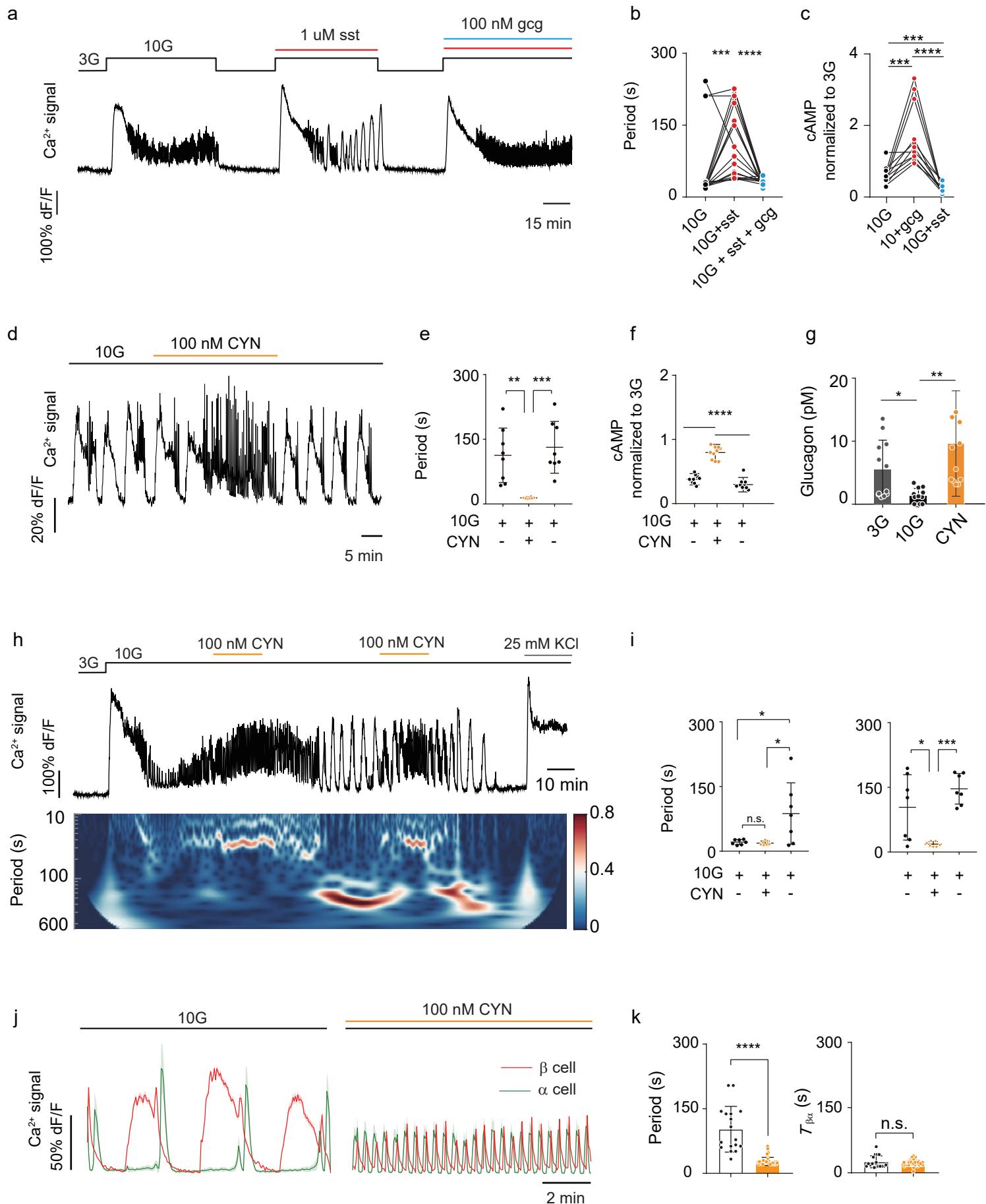


Fig. 3

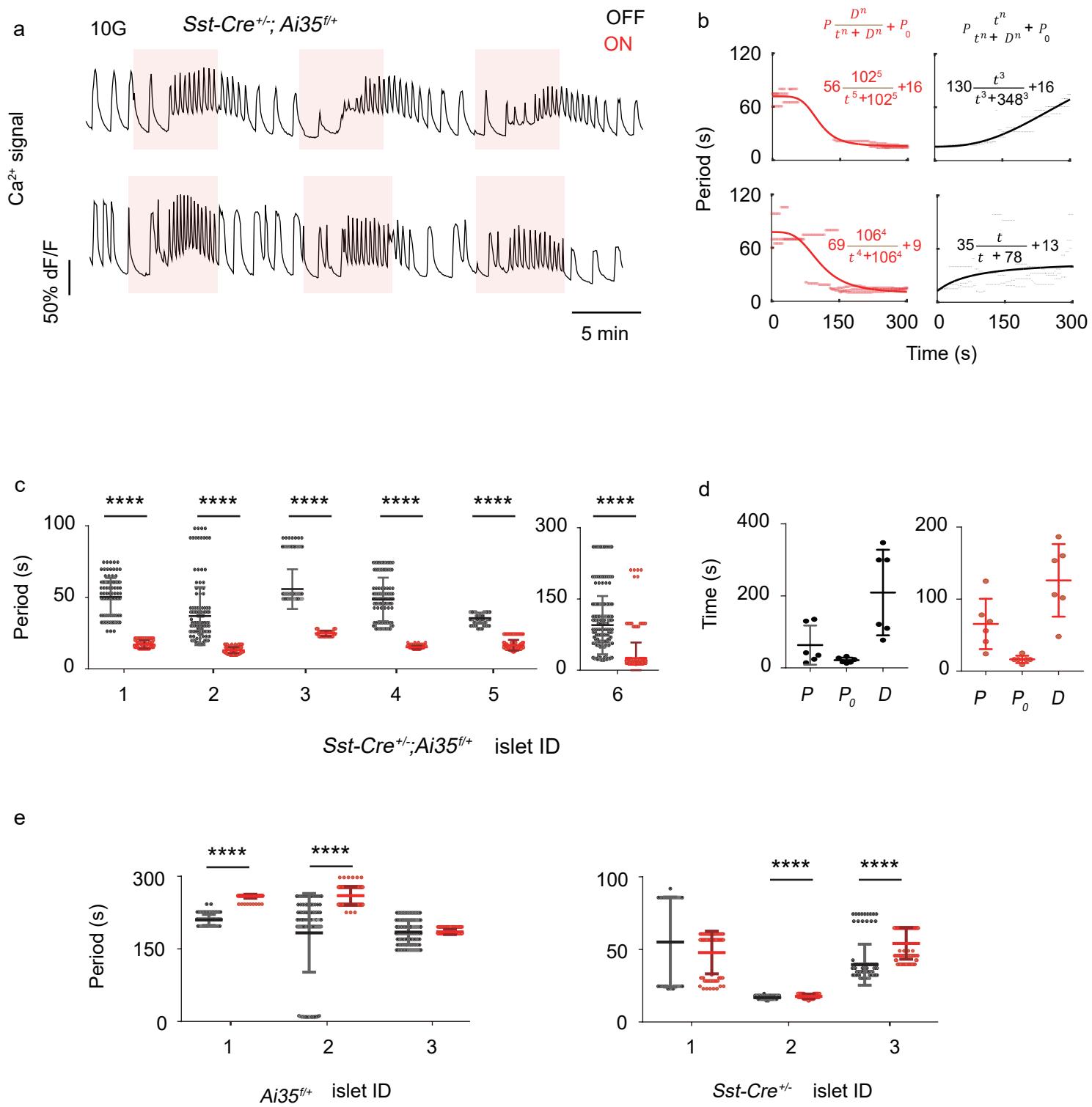


Fig. 4

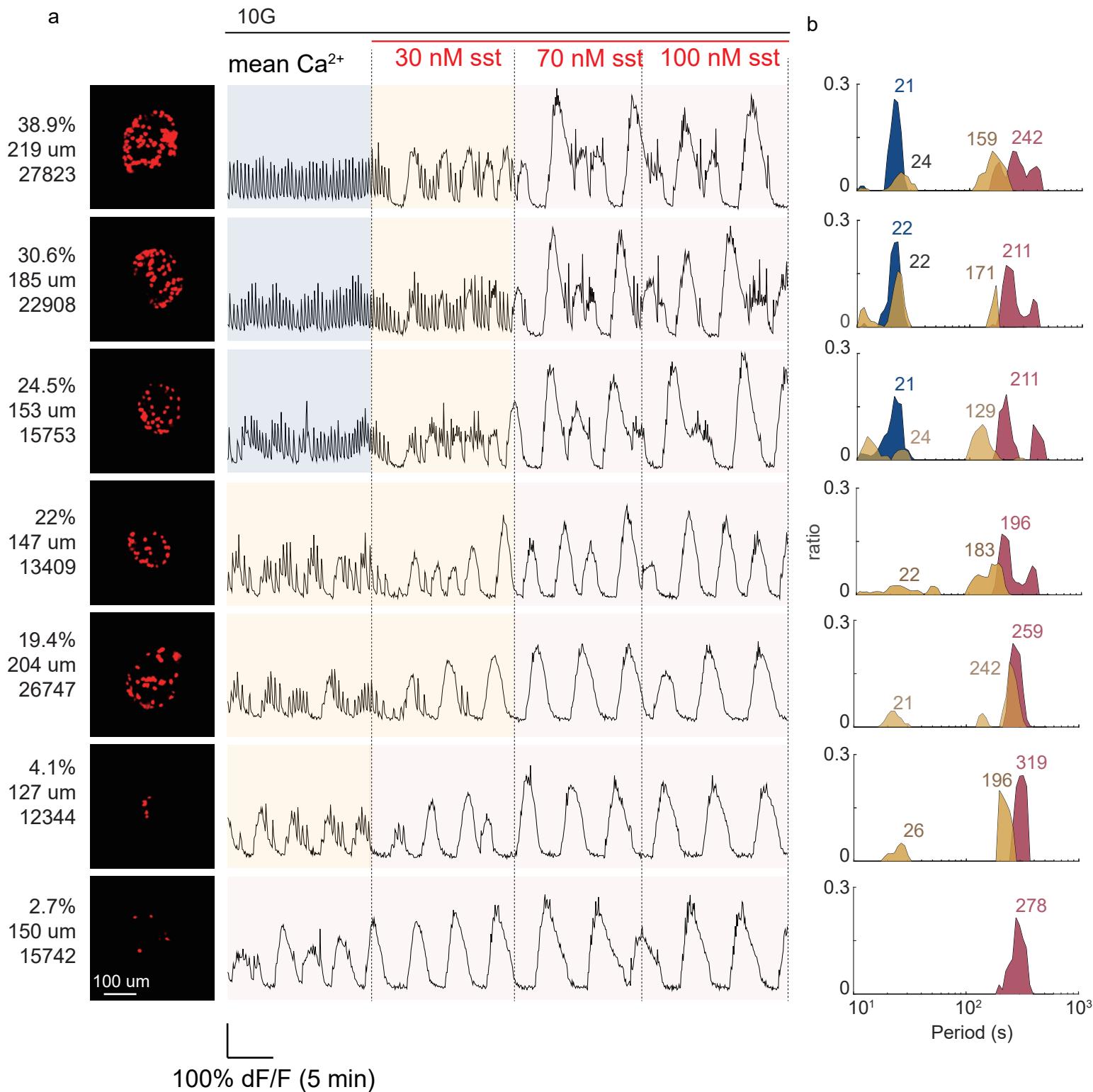


Fig. 5

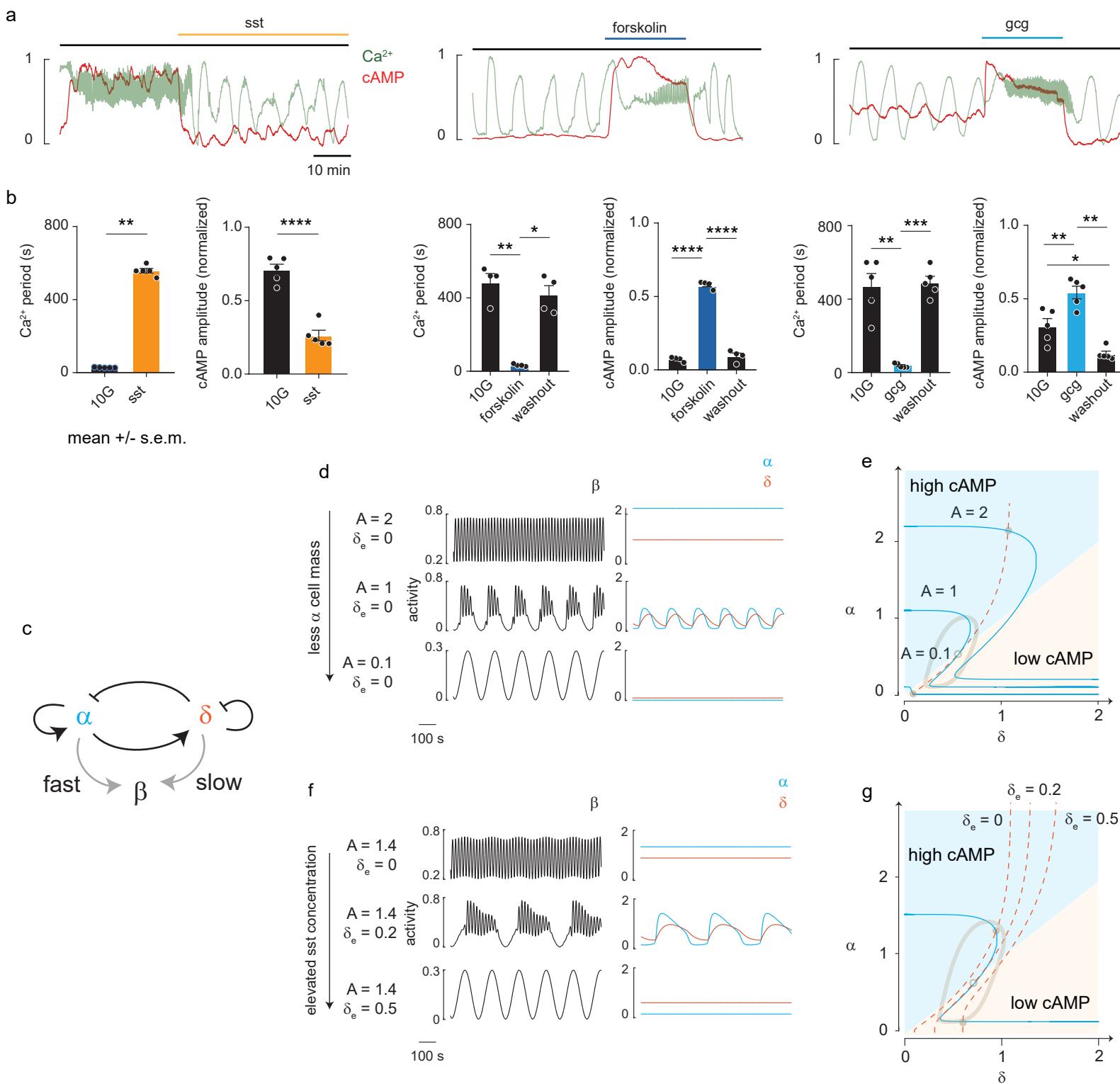


Fig. 6