

1 A coarse-grained model for 2 disordered and multi-domain 3 proteins

4 **Fan Cao¹, Søren von Bülow¹, Giulio Tesei¹, Kresten Lindorff-Larsen^{1*}**

*For correspondence:
lindorff@bio.ku.dk (KL-L)

5 ¹Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein
6 Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark

7

8 **Abstract** Many proteins contain more than one folded domain, and such modular multi-domain proteins
9 help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics,
10 it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations.
11 Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an
12 accurate description of the global conformational properties in solution. We show that the accuracy of a
13 one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are
14 represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at
15 the position of the C_α atoms. We also show that if the interaction sites are located at the centre of mass of the
16 residue, we obtain good agreement between simulations and experiments across a wide range of proteins.
17 We then optimize our previously described CALVADOS model using this centre-of-mass representation, and
18 validate the resulting model using independent data. Finally, we use our revised model to simulate phase
19 separation of both disordered and multi-domain proteins, and to examine how the stability of folded
20 domains may differ between the dilute and dense phases. Our results provide a starting point for
21 understanding interactions between folded and disordered regions in proteins, and how these regions affect
22 the propensity of proteins to self-associate and undergo phase separation.

23 **Introduction**

24 Multi-domain proteins (MDPs) consist of more than one folded domain that are often connected by linkers or
25 longer intrinsically disordered regions (IDRs), and make up a large fraction (around 50%) of the proteomes in
26 eukaryotic and prokaryotic organisms (Han *et al.*, 2007; Van Der Lee *et al.*, 2014). Like intrinsically disordered
27 proteins (IDPs), MDPs can display large-amplitude motions that may play prominent roles in biomolecular func-
28 tions like signalling, catalysis and regulation (Mackereth and Sattler, 2012; Van Der Lee *et al.*, 2014; Delaforge
29 *et al.*, 2016; Bondos *et al.*, 2021).

30 The biological functions of MDPs depend both on the properties of the folded domains and the disordered
31 regions, and so characterizing the conformational ensembles can be key to understanding how these proteins
32 function. In many cases, the folded and disordered regions are studied separately, but the folded domains
33 might affect the conformational properties of the disordered regions (Mittal *et al.*, 2018; Taneja and Hole-
34 house, 2021) and the disordered regions may also affect the properties of the folded domains (Yu and Sukenik,
35 2023). For example, there is a complex interplay between the folded and disordered regions in the RNA-binding
36 protein hnRNP A1, that affects its conformational ensemble in solution and its propensity to undergo phase sep-
37 aration (Martin *et al.*, 2021b). However, describing the conformational ensembles of MDPs in solution generally
38 requires a combination of biophysical experiments and molecular dynamics (MD) simulations (Thomassen and
39 Lindorff-Larsen, 2022).

40 All-atom MD simulations have been used to generate conformational ensembles of IDPs and MDPs and
41 to study intra- and inter-domain interactions (Zheng *et al.*, 2020; Sekiyama *et al.*, 2022). Such simulations,
42 however, are often limited by the large system sizes and long time scales which limit efficient sampling of
43 these dynamic proteins. Coarse-grained (CG) models may increase the sampling efficiency by reducing the
44 number of particles in the simulation systems (Neri *et al.*, 2005; Monticelli *et al.*, 2008; Bereau and Deserno,
45 2009; Gopal *et al.*, 2010). The accuracy, transferability, and efficiency of such models, however, depend on

47 the degree of coarse-graining and the parameterization strategy (*Heo and Feig, 2024*). One commonly used
48 model is the Martini force field, which uses a four-to-one mapping scheme with explicit solvent (*Souza et al.,*
49 *2021*). Different versions of Martini have been modified to produce improved ensembles of IDPs and MDPs
50 (*Benayad et al., 2020; Thomasen et al., 2022, 2023*). For IDPs, there has in the last years been extensive work
51 using even coarser models where each amino acid residue is represented by a single bead. The interaction sites
52 are generally located at the C_{α} position and separated by bonds that are 0.38 nm long, and we therefore here
53 term these C_{α} models. Several related models rely on a similar functional form to the HPS model introduced by
54 (*Dignon et al. (2018)* and may include bonded terms, an Ashbaugh-Hatch potential (*Ashbaugh and Hatch, 2008*)
55 for shorter-range interactions and a Debye-Hückel electrostatic screening potential. Such models have for
56 example been used to study the conformational ensembles and interactions within and between IDPs (*Dignon*
57 *et al., 2018; Joseph et al., 2021; Regy et al., 2021; Dannenhoffer-Lafage and Best, 2021; Wessén et al., 2022;*
58 *Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al., 2023*).

59 Coarse-grained models developed for IDPs do not represent the stability of folded proteins well, because
60 the finely balanced energy contributions from individual backbone and side-chain interactions are not cap-
61 tured by the reduced representation. As a consequence, additional (often harmonic) restraints are applied
62 to maintain the folded configurations in folded proteins and MDPs (*Souza et al., 2021; Borges-Araújo et al.,*
63 *2023*). Even when applying such restraints to models developed for IDPs, extra attention needs to be paid
64 to interactions related to folded domains since it is still unclear whether the models are fully transferable to
65 MDPs. In particular, C_{α} -based one-bead-per-residue mappings do not account for the specific orientations of
66 side chains in folded proteins (*Kolinski and Skolnick, 1998*). For example, hydrophobic residues, whose side
67 chains are 'tucked away' in the hydrophobic core of the protein, may be exposed at the surface of the protein
68 in a C_{α} based representation. One approach to help overcome this problem is to use a different or scaled set of
69 force field parameters for interactions that involve folded regions (*Kim and Hummer, 2008; Dignon et al., 2018;*
70 *Krainer et al., 2021*). Another possible solution is the introduction of more terms in the energy function to
71 better describe long-range interactions (*Li et al., 2012; Tan et al., 2023*) or to introduce anisotropic interactions
72 (*Sieradzan et al., 2022*).

73 As an alternative, other coarse-grained models represent a residue by more than one bead to represent
74 backbone side chain orientations and interactions (*Pappu et al., 1996; Hyeon et al., 2006; Maity et al., 2022;*
75 *Zhang et al., 2022; Sieradzan et al., 2022; Mugnai et al., 2023; Zhang et al., 2023; Yamada et al., 2023*). In some
76 of these models, one bead is placed at C_{α} and the other one is at the centre of mass (COM) of side chain atoms.
77 In this way, side chain interactions can be explicitly taken into account, improving the simulated dynamical
78 behaviour of folded protein simulations and model transferability. In previous studies, this strategy has been
79 used to study conformational ensembles of IDPs or unfolding pathways of proteins (*Hyeon et al., 2006; Mugnai*
80 *et al., 2023*). While effective, using multi-bead-per-residue models increases the time to sample configurations
81 in simulations, and requires the determination of a larger number of force field parameters.

82 We have previously developed and applied an automated procedure to optimize the 'stickiness' parameters
83 (λ) in a one-bead-per-residue model by improving the agreement with experimental small-angle X-ray scatter-
84 ing (SAXS) and paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) data for a large
85 set of IDPs (*Norgaard et al., 2008; Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023*). The most recent CALVA-
86 DOS (Coarse-graining Approach to Liquid-liquid phase separation Via an Automated Data-driven Optimisation
87 Scheme) model (CALVADOS 2) was further tuned to describe phase behaviour of multi-chain conformational
88 ensembles of IDPs from simulations by reducing the range of non-ionic interactions (*Tesei and Lindorff-Larsen,*
89 *2023*).

90 Here, we explore the use of the CALVADOS model for simulations of MDPs. We find that when the CAL-
91 VADOS 2 parameters are used in simulations of MDPs with interaction sites at the C_{α} positions, the resulting
92 structures in some cases show excessive interactions between the folded domains, leading to compact en-
93 sembles that do not agree with SAXS data. To remedy this problem, we describe a strategy where interaction
94 sites in folded regions are located at the COM of the residue, and show that simulations with this model result
95 in substantially improved agreement with experiments. We optimize the parameters in CALVADOS using the
96 COM representation to derive a refined set of CALVADOS parameters (CALVADOS 3). When we combine the
97 COM representation of folded domains with harmonic restraints between residues in the folded domains and
98 the CALVADOS 3 parameters we obtain good agreement with experimental data on single-chain properties of
99 MDPs and IDPs. Finally, we show how this model may be used to study the interactions between folded and
100 disordered regions in proteins that undergo phase separation, and how the stability of folded domains might
101 change during phase separation.

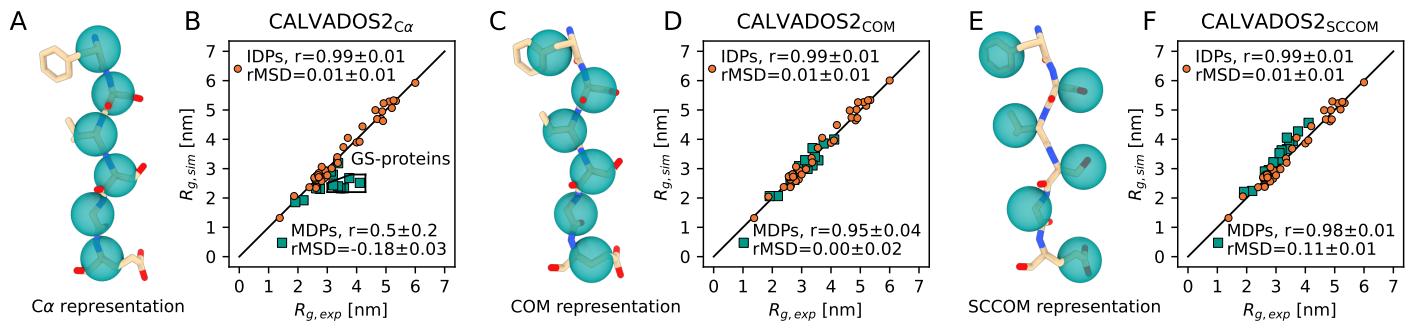


Figure 1. Simulations of MDPs and IDPs using a C_α representation, COM representation or side-chain centre-of-mass (SCCOM) representation. Location of the interaction sites in a β -sheet when using (A) a C_α representation, (C) a COM representation, and (E) a SCCOM representation. Comparison between simulated and experimental R_g values for IDPs (orange) and MDPs (green) using (B) the CALVADOS2 $_{C\alpha}$ model (CALVADOS 2 parameters and a C_α representation for both folded and disordered regions), (D) the CALVADOS2 $_{COM}$ model (CALVADOS 2 parameters and a COM representation for the interaction sites in the folded regions), and (F) the CALVADOS2 $_{SCCOM}$ model (CALVADOS 2 parameters and a SCCOM representation for the interaction sites in the folded regions). The region labelled 'GS-proteins' in panel B contains a number of proteins consisting of pairs of β -sheet-rich fluorescent protein connected by glycine-serine linkers (Moses *et al.*, 2024). Pearson correlation coefficients (r) and relative mean signed deviation rMSD = $((R_{g,\text{sim}} - R_{g,\text{exp}})/R_{g,\text{exp}})$ are reported in the legend, and errors represent standard errors of the mean calculated using bootstrapping. A negative rMSD value indicates that the calculated radii of gyration are systematically lower than the experimental values. The black diagonal lines in panel B, D and F indicate $y = x$.

102 Results

103 A modified representation improves accuracy for multi-domain proteins

104 We first evaluated the accuracy of the original CALVADOS 2 model for simulations of MDPs. We therefore used
 105 the CALVADOS 2 parameters (Tesei and Lindorff-Larsen, 2023) and a C_α representation to run simulations of
 106 56 IDPs and 14 MDPs (Table S1, Table S2, Table S3). In all systems, the interaction sites are located at the C_α
 107 positions in both folded and disordered regions; for the MDPs, we applied an additional elastic network model
 108 to keep domains intact during simulations (Figure 1A, see Methods). We term this combination of the force
 109 field parameters (CALVADOS 2) and the C_α representation of the interaction sites in the folded domains as
 110 CALVADOS2 $_{C\alpha}$. As expected and reported previously (Tesei and Lindorff-Larsen, 2023), we found that simula-
 111 tions of IDPs with CALVADOS2 $_{C\alpha}$ resulted in good agreement between experimental and calculated values of
 112 R_g (Figure 1B). In contrast, we found more substantial differences between experimental and calculated values
 113 of R_g for several MDPs (Figure 1B). In particular, we found that the R_g was underestimated for several MDPs
 114 including a series of two fluorescent proteins connected by Gly-Ser linkers of different lengths (here termed
 115 GS-proteins; Moses *et al.* (2024)). This observation was confirmed by calculations of the relative mean signed
 116 deviation, rMSD, between experimental and calculated values of R_g that shows that these are on average un-
 117 derestimated by 18% in the MDPs (Figure 1B).

118 As a first attempt at creating a model for both IDPs and MDPs, we used our previously described protocol
 119 (Norgaard *et al.*, 2008; Tesei *et al.*, 2021b) to optimize the λ stickiness parameters of the CALVADOS model
 120 targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs. The resulting λ values were generally
 121 smaller than those in CALVADOS 2 (Figure S1A) in line with the finding that the MDPs were too compact us-
 122 ing CALVADOS 2. Nevertheless, it was also clear that this new parameter set made the agreement worse for
 123 disordered proteins (Figure S1B-E) and did not result in a satisfactory model to describe both IDPs and MDPs.

124 We instead hypothesized that the compaction of several MDPs was a result of placing the interaction sites
 125 at the C_α positions in the folded domains. In particular for β -sheet-containing proteins, this geometry would
 126 mean that residues whose side chains are buried inside the folded domain are represented by interaction
 127 sites located closer to the protein surface (Figure 1A); thus buried hydrophobic residues might appear as sol-
 128 vent exposed. We therefore constructed a new model where the interaction sites within folded regions were
 129 placed at the COM of the residue (Figure 1C) and constrained by harmonic restraints; when used with the
 130 CALVADOS 2 parameters, we term this model CALVADOS2 $_{COM}$. We stress that only the bead locations in the
 131 folded domains differ between the CALVADOS2 $_{C\alpha}$ and CALVADOS2 $_{COM}$ models; residues in disordered regions
 132 are represented by one bead centred on the C_α positions in both models. In the absence of folded domains,
 133 CALVADOS2 $_{COM}$ and CALVADOS2 $_{C\alpha}$ are thus identical and simulations with the two models gave comparable
 134 results (Figure 1B and D). In contrast, simulations of the MDPs with CALVADOS2 $_{COM}$ were in substantially better
 135 agreement with experiments than simulations with CALVADOS2 $_{C\alpha}$ as evidenced e.g. by an increase in Pearson
 136 correlation coefficient from 0.5 to 0.95 and an increase in rMSD from -18% to 0% (Figure 1B and D). In addition
 137 to the COM representation, we also examined whether a side-chain centre-of-mass (SCCOM) representation,
 138 shifting bead positions of buried residues further away from the surface, could yield even more accurate R_g

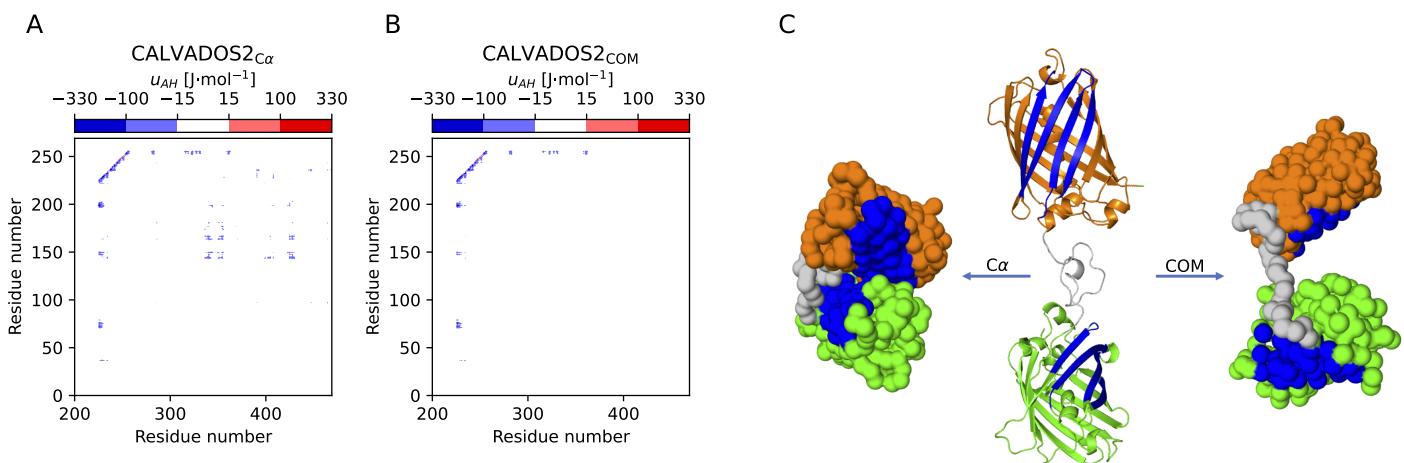


Figure 2. Energy calculations reveal substantial inter-domain interactions. We calculated interaction energy maps (of the Ashbaugh-Hatch term in the force field) from simulations using (A) the CALVADOS2_{C α} model and (B) the CALVADOS2_{COM} model. We show only a subset of the map representing interactions between the first (residues 1–226 on the y-axis) and second (residues 256–470 on the x-axis) folded domains. (C) Examples of structures of GS0 with the same R_g as the average over simulations using CALVADOS2_{C α} (left) and CALVADOS2_{COM} (right). The starting structure of the simulations is shown in the middle, where green and orange parts are the two fluorescent proteins connected by a flexible linker (grey). The regions that interact strongly in the CALVADOS2_{C α} simulations are coloured blue.

139 predictions than the COM representation (Figure 1E). We performed single chain simulations with the CALVA-
 140 DOS 2 parameters and the SCCOM representation (CALVADOS2_{SCCOM}) and found that CALVADOS2_{SCCOM} on
 141 average resulted in an overestimation of the R_g of MDPs of 11% (Figure 1D and F). As an alternative solution to
 142 decrease the too strong interactions between folded domains, it has previously been suggested to scale down
 143 interactions between pairs of folded domains (by a factor of 0.7) and between folded domains and disordered
 144 regions (by a factor of $0.84 = \sqrt{0.7}$) (Krainer *et al.*, 2021). While applying this rescaling to CALVADOS 2 (termed
 145 CALVADOS2_{C α} 70%) led to improved agreement with experiments, the improvement was smaller than when
 146 using the COM representation, and the simulations had a remaining bias towards underestimating the radii of
 147 gyration (Figure S2). Therefore, we proceeded by using the COM representation in this study.

148 To examine in more detail why the CALVADOS2_{C α} model resulted in more compact conformations of MDPs
 149 than CALVADOS2_{COM}, we calculated the time-averaged non-ionic (Ashbaugh-Hatch) interaction energies
 150 between residues of different folded domains. For this analysis we selected GS0, a construct with two fluorescent
 151 proteins separated by a 29-residue-long linker (Moses *et al.*, 2024), since the R_g value of GS0 deviates substan-
 152 tially from experiments in simulations with CALVADOS2_{C α} (Figure 1B). In the energy maps, we see evidence of
 153 substantial inter-domain interactions between residue 140–230 of one fluorescent protein and residue 340–
 154 440 of the other (Figure 2A). In contrast, these domain-domain interactions are not observed when simulating
 155 with COM representation (Figure 2B). The comparison of the two energy maps thus supports the hypothesis
 156 that the too compact conformations of MDPs in simulations with CALVADOS2_{C α} result from inter-domain at-
 157 tractions that are decreased in the COM representation (Figure 2C).

158 Optimizing CALVADOS using a centre-of-mass representation

159 Having shown that the COM representation gave an improved description of MDPs while preserving the ac-
 160 curacy when simulating IDPs, we proceeded to optimize the CALVADOS model further. We used our iterative
 161 Bayesian optimization scheme (Norgaard *et al.*, 2008; Tesei *et al.*, 2021b) to optimize the λ stickiness parame-
 162 ters of the CALVADOS model targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs (Table S1,
 163 Table S2, Table S3). In these simulations we used the COM representation of the folded domains and we thus
 164 term the final model CALVADOS3_{COM} to represent both the force field and the COM representation of the
 165 folded regions. The resulting λ values in CALVADOS3_{COM} are similar to those in CALVADOS 2 (Figure 3 and Fig-
 166 ure S3). We found that simulations of IDPs with CALVADOS3_{COM} and CALVADOS2_{COM} gave similar agreement
 167 to SAXS experiments. Likewise, we found a similar agreement for the MDPs (Figure 1D, Figure 3B and C).

168 Having optimized λ , we validated the CALVADOS3_{COM} model on 25 IDPs and 9 MDPs (Table S4, Table S5)
 169 that were not used in training for any of the models (Figure 4). For the 25 IDPs we found good agreement for
 170 all three models (CALVADOS2_{C α} , CALVADOS2_{COM} and CALVADOS3_{COM}) (Figure 4A–C). We note again that the
 171 COM representation is only applied to the folded domain. All IDPs have C α representations, so CALVADOS2_{C α}
 172 and CALVADOS2_{COM} are the same models for IDPs. In contrast, for MDPs we found that CALVADOS3_{COM} and
 173 CALVADOS2_{COM} perform substantially better than CALVADOS2_{C α} (Figure 4A–C). Our validation results thus show

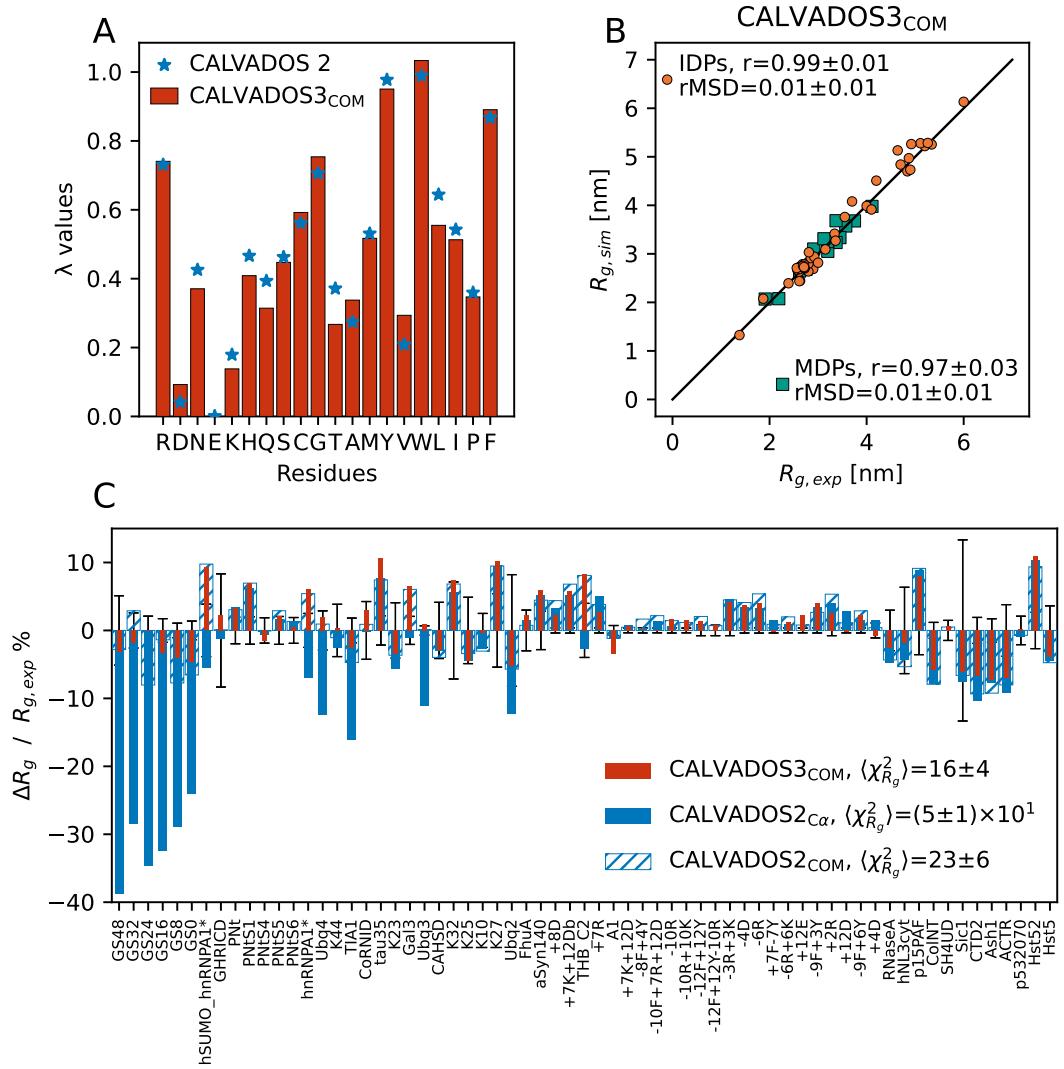


Figure 3. Optimizing the λ parameters using a COM representation for folded domains. (A) Comparison between λ values from CALVADOS 2 (blue) and CALVADOS3_{COM} (red). (B) Comparison between simulated and experimental R_g values for IDPs (orange) and MDPs (green) using CALVADOS3_{COM}. Pearson correlation coefficients (r) and rMSE are reported in the legend. The black diagonal line indicates $y = x$. (C) Relative difference between experimental and simulated R_g values from CALVADOS3_{COM} (red), CALVADOS2_{C α} (blue) and CALVADOS2_{COM} (blue hatched). $\langle \chi^2_{R_g} \rangle$ values across IDPs and MDPs in training set are reported in the legend. Error bars show the experimental error divided by $R_{g,\text{exp}}$.

174 that the CALVADOS3_{COM} model gives improved agreement for simulations of MDPs while retaining the accuracy of CALVADOS2_{C α} for simulations of IDPs. Across the 34 independent test proteins we find $\langle \chi_{R_g}^2 \rangle$ values
175 of 50, 22 and 15 for CALVADOS2_{C α} , CALVADOS2_{COM} and CALVADOS3_{COM}, respectively (*Figure S4*), and both
176 CALVADOS2_{COM} and CALVADOS3_{COM} have essentially no bias (rMSD≈0; *Figure 4B* and C).

178 **Simulations of phase separation of disordered and multi-domain proteins**

179 We and others have previously used one-bead-per-residue models such as CALVADOS to study the self-association
180 and phase separation of IDPs (*Dignon et al., 2018; Tesei et al., 2021b; Joseph et al., 2021; Regy et al., 2021;*
181 *Dannenhoffer-Lafage and Best, 2021; Wessén et al., 2022; Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al.,*
182 *2023*). In some cases, these models have also been used to study phase separation of proteins that contain
183 a mixture of folded and disordered regions (*Dignon et al., 2018; Conicella et al., 2020; Her et al., 2022*). We
184 therefore examined whether the CALVADOS3_{COM} model could be used to study phase separation of both IDPs
185 and MDPs. We used multi-chain simulations in a slab geometry (*Dignon et al., 2018*) to simulate the partitioning
186 of proteins between a dilute and dense phase, and calculated the dilute phase concentration (the saturation
187 concentration; c_{sat}) as a sensitive measure of the accuracy of the model. We first simulated 33 IDPs and found
188 that simulations with CALVADOS3_{COM} gave an agreement with experimental values of c_{sat} that is comparable
189 to that of CALVADOS2_{C α} (*Table S6, Figure S5, Figure S6, Figure S7*).

190 We then proceeded to use CALVADOS3_{COM} to study the phase separation of MDPs including hnRNPA1*
191 (where * denotes that residues 259–264 have been deleted from full-length hnRNPA1), full-length FUS (FL_FUS)
192 and other multi-domain proteins with experimental estimates of c_{sat} (*Table S7; Wang et al. (2018); Martin et al.*
193 *(2021b)*). Simulations of hnRNPA1* with CALVADOS2_{C α} , under conditions where the experimental dilute phase
194 concentration is 0.17 mM, resulted in essentially all proteins in the dense phase ($c_{sat}=0$ mM; *Figure 5A*). In
195 contrast, simulations using CALVADOS3_{COM} resulted in a lower propensity to phase separate and a calculated
196 value of $c_{sat}=0.14\pm0.01$ mM that is comparable to experiments (*Figure 5B*).

197 To understand the origin of these differences we calculated interaction energy maps of the proteins in
198 the dense phase. Experiments have shown that the LCD in hnRNPA1* (residues 186–320) plays a central
199 role in driving phase separation (*Mollie et al., 2015; Martin et al., 2021b*), and we indeed found evidence
200 for substantial LCD-LCD interactions in the dense phases in simulations with both CALVADOS2_{C α} (*Figure 5C*)
201 and CALVADOS3_{COM} (*Figure 5D*). In the simulations with CALVADOS2_{C α} we, however, also observed more sub-
202 stantial interactions between the folded RRM (RNA recognition motif) domains (residues 14–97 and 105–185)
203 and between the RRMs and the LCD. In simulations with CALVADOS3_{COM} these interactions were much weaker,
204 presumably explaining the increase of c_{sat} in these simulations.

205 Having demonstrated that CALVADOS3_{COM} provides a more accurate description of the phase behaviour of
206 hnRNPA1* than CALVADOS2_{C α} , we proceeded to perform simulations of several other MDPs for which we
207 found estimates of c_{sat} in the literature (*Figure 6, Figure S8, Figure S9*). As for hnRNPA1*, we found that
208 CALVADOS2_{C α} substantially overestimates the tendency of these proteins to undergo phase separation (i.e.
209 underestimate c_{sat}). The use of the COM representation in CALVADOS3_{COM} decreases the protein-protein in-
210 teractions, and thus substantially improves the agreement with experiments, though differences remain.

211 **Examining changes in folding stability in condensates**

212 Experiments have shown that the protein-rich environment of condensates can modulate the stability of folded
213 proteins or nucleic acids (*Nott et al., 2015; Ruff et al., 2022; Chen et al., 2024; Ahmed et al., 2024*). Inspired by
214 these findings, we used the ability to simulate both folded and disordered regions with CALVADOS 3 to examine
215 how partitioning into condensates may shift the folding equilibrium of a folded domain. As it is difficult to
216 sample the folding-unfolding equilibrium by simulations, we studied it indirectly using a thermodynamic cycle
217 that involves differences in partitioning of the folded and unfolded forms into a condensate (*Nott et al., 2015*).

218 To demonstrate how CALVADOS 3 enables such analyses, we simulated the isolated RRM1 and RRM2 from
219 hnRNPA1* (*Figure 7A*) in the presence of a condensate of the LCD of hnRNPA1* and calculated the free energies
220 of partitioning of the RRM domains in their native, folded state, ΔG_{part}^N . Using the same approach, we performed
221 direct-coexistence simulations without applying harmonic networks to the RRMs to calculate the free energies
222 of partitioning of the RRMs in their unfolded state, ΔG_{part}^U . A comparison of the concentration profiles from our
223 direct-coexistence simulations shows that the unfolded states accumulate in the condensate and are depleted
224 from the dilute phase to a greater extent than the folded states (*Figure 7B–C*). We quantify this via a more
225 negative free energy of partitioning, $\Delta G_{part}^U < \Delta G_{part}^N$ (*Figure 7D*). The preference of the unfolded state for the
226 condensate is particularly pronounced for RRM2, for which we estimate a two-fold decrease in the free energy
227 of partitioning ($\Delta G_{part}^U - \Delta G_{part}^N = -0.7$ kcal/mol). From the thermodynamic cycle, this in turn means that the
228 folding stability of RRM2 is 0.7 kcal/mol lower (less stable) in the condensate than in the dilute phase.

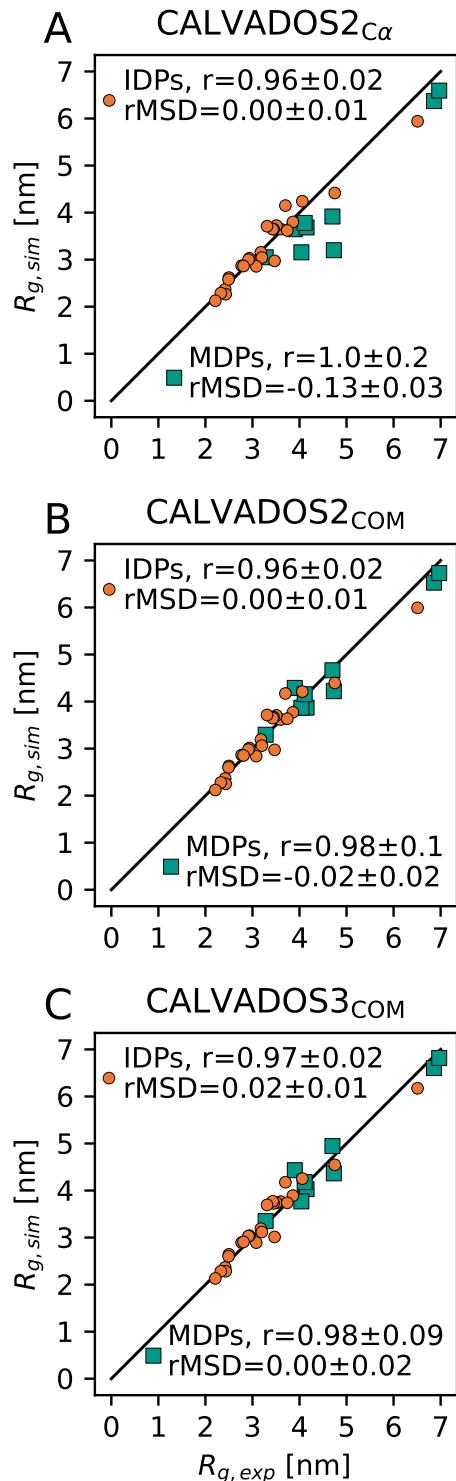


Figure 4. Validation of the CALVADOS3_{COM} model using proteins that were not used during training. Comparison of simulated and experimental R_g values on a validation set using (A) CALVADOS2_{C α} , (B) CALVADOS2_{COM} and (C) CALVADOS3_{COM}. Pearson correlation coefficients (r) and rMSE are reported in the legend. The black diagonal lines indicate $y = x$.

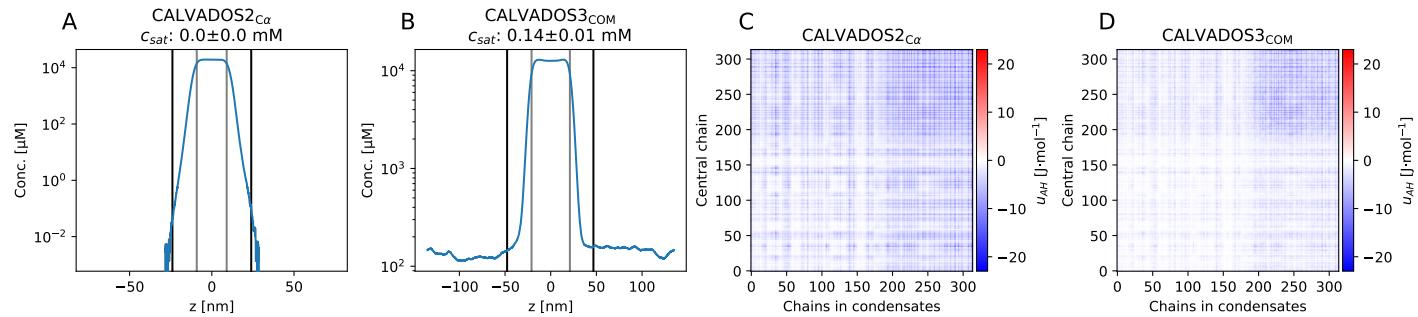


Figure 5. Phase coexistence simulations of hnRNPA1* using (A, C) CALVADOS2_{C α} and (B, D) CALVADOS3_{COM}. Simulations were performed at 293 K and an ionic strength of 0.15 M. Equilibrium density profile of hnRNPA1* using (A) CALVADOS2_{C α} and (B) CALVADOS3_{COM}. c_{sat} calculated from density profiles are 0 mM and 0.14 mM, respectively. Average residue-residue interaction energies (the Ashbaugh-Hatch term in the force field) between the most central chain and the rest of the condensate for (C) CALVADOS2_{C α} and (D) CALVADOS3_{COM}.

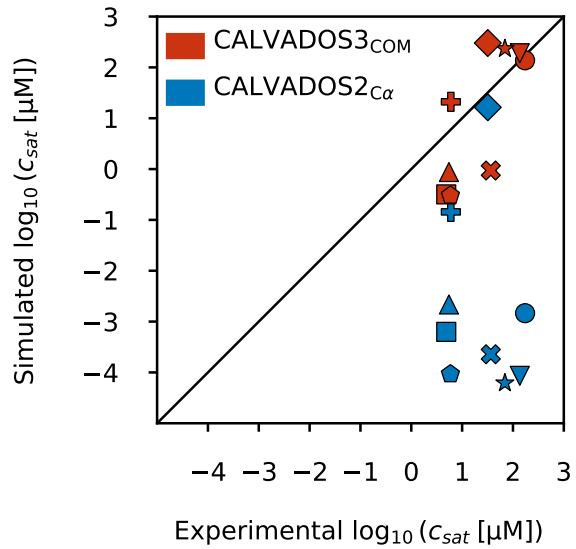


Figure 6. Comparison between simulated and experimental c_{sat} values for MDPs using the CALVADOS3_{COM} model (red) and CALVADOS2_{C α} (blue). The simulated proteins are hnRNPA1* (circle), hSUMO_hnRNPA1* (downward triangle), FL_FUS (upward triangle), GFP_FUS (square), SNAP_FUS (pentagon), SNAP_FUS_PLDY2F_RBDR2K (star), SNAP_FUS_PLDY2F (x symbol), FUS_PLDY2F_RBDR2K (diamond) and hnRNPA3 (plus symbol). The black diagonal line indicates $y = x$.

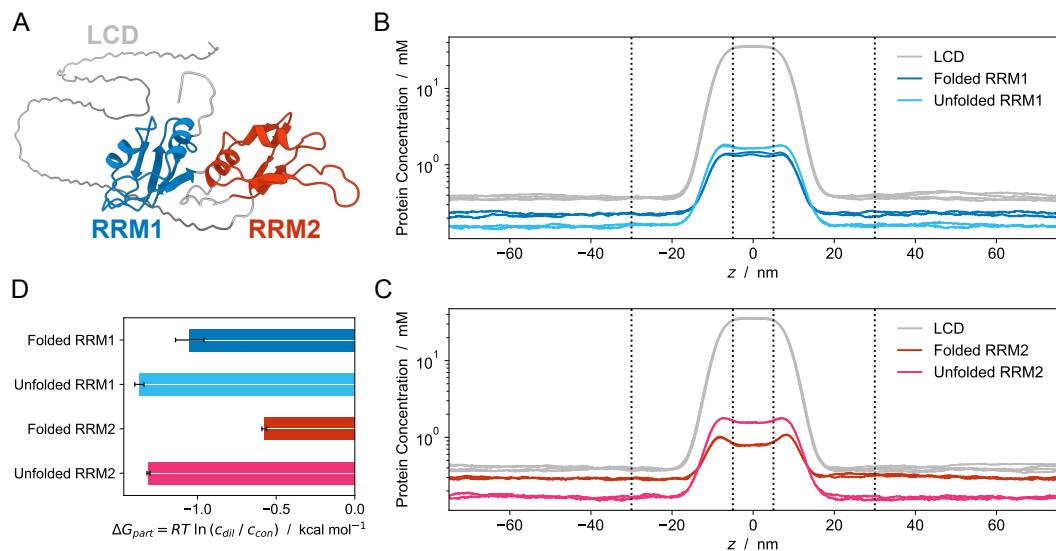


Figure 7. Predicting the effect of the protein-rich environment of a condensate on the stability of folded domains. (A) Structure of hnRNPA1* highlighting the low-complexity domain (grey) and RNA-recognition motifs 1 (blue) and 2 (red). (B) Concentration profiles of the LCD (grey) and RRM1 in the native (blue) and unfolded (cyan) state. (C) Concentration profiles of the LCD (grey) and RRM2 in the native (red) and unfolded (magenta) state. (D) Free energy of partitioning of RRM1 and RRM2 in native and unfolded states into condensates of the LCD. Data estimated from direct-coexistence simulations performed in two independent replicates. Error bars in (D) represent the differences between the replicates.

229 To put these changes into context, we used a recently developed machine learning approach (*Cagiada et al.*,
 230 2024) to predict the absolute protein folding stabilities of the isolated RRM1 and RRM2 in the dilute phase, $\Delta G_{N \rightarrow U}^{\text{dil}}$, and
 231 obtained 6.6 kcal/mol for RRM1 and 4.4 kcal/mol for RRM2. Using these values and assuming a two-state model,
 232 we estimate that the partitioning into the condensate has a negligible effect on the amount of unfolded state
 233 for RRM1; in contrast we predict a four-fold increase in the population of the unfolded state of RRM2 from
 234 $\exp(-\Delta G_{N \rightarrow U}^{\text{dil}}/RT) \approx 1/2000$ to $\exp[-(\Delta G_{N \rightarrow U}^{\text{dil}} + \Delta G_{\text{part}}^U - \Delta G_{\text{part}}^N)/RT] \approx 1/500$. Although substantial additional
 235 work is needed to examine the accuracy of CALVADOS 3 for quantifying differences in partitioning of folded and
 236 unfolded proteins into condensates, these data show a promising use of our model for predicting unfolding in
 237 condensates.

238 Discussion

239 In this work, we found that simulations with the CALVADOS2_{C_α} model, previously shown to represent single-
 240 chain and multi-chain properties of IDPs, underestimated the radii of gyration of MDPs. Changing the CG map-
 241 ping method from C_α to COM substantially improved the agreement with experimental data. This observation
 242 is in line with the finding that reconstruction of all-atom structures from a centre-of-mass representation is
 243 more accurate than from a C_α representation (*Heo and Feig, 2024*). We reoptimized the ‘stickiness’ parame-
 244 ters in the context of a COM-based model based on experimental data for both IDPs and MDPs. The resulting
 245 CALVADOS3_{COM} model provides a good description of both single- and multi-chain simulations of both IDPs
 246 and MDPs.

247 The relatively low c_{sat} value calculated from slab simulations of hnRNPA1* with CALVADOS2_{C_α} further sup-
 248 ported that interactions between the folded domains are overestimated by C_α-based models without any fur-
 249 ther modifications. Considering that the SCCOM-based model (CALVADOS2_{SCCOM}) overestimated R_g of MDPs,
 250 we suggest that the COM-based model (CALVADOS3_{COM}) appears to strike a good balance, leading to improved
 251 values of c_{sat} for MDPs. Nevertheless, some systematic differences remain even with this model, which resulted
 252 in underestimates of c_{sat} for different constructs of the protein FUS. Together, our results show that the new
 253 parameter set and the centre-of-mass representation (CALVADOS3_{COM}) retain the accuracy of CALVADOS 2 for
 254 IDPs, but improve the description of proteins with both disordered and folded domains. We therefore term this
 255 new model CALVADOS 3, with the implicit notion that this model is used with centre-of-mass representation of
 256 residues within folded regions. We note that an earlier version of this preprint (*Cao et al., 2024*) used a slightly
 257 different set of parameters, and we suggest to refer to that model as CALVADOS 3beta.

258 When simulating MDPs with CALVADOS 3 we need to restrain the folded domains using harmonic restraints.
 259 In the current work we have manually determined the boundaries for which regions are considered to be folded,

260 though automated methods will be needed for large-scale applications. Tools for automatic predictions of
261 domain boundaries exist (*Holm and Sander, 1994; Lau et al., 2023*) and might be combined with AlphaFold to
262 set the harmonic restraints (*Jussupow and Kaila, 2023*).

263 Despite these current limitations, we envision that the CALVADOS 3 model will enable detailed studies of
264 the interactions within and between multi-domain proteins, and pave the way for proteome-wide simulation
265 studies of full-length proteins similar to what has recently been achieved for IDRs (*Tesei et al., 2024*). We also
266 envision that our approach to study changes in protein stability inside condensates can be used together with
267 methods to predict absolute protein stability (*Cagiada et al., 2024*) to learn and expand our knowledge on the
268 rules that underlie phase separation and changes in stability of folded, globular proteins (*Ruff et al., 2022*).

269 Methods

270 Description of the model

271 We modelled each amino acid by one bead. We generated C_α -beads for IDPs and assigned C_α atom coordinates
272 to bead positions for IDRs in multi-domain proteins according to their modelled or experimental structures (see
273 below, Simulations). For structured domains, we used the following rules for the different representations: we
274 placed each bead position at the C_α atom (C_α representation), or the centre of mass calculated for all the atoms
275 in a residue (COM representation), or the centre of mass calculated for only side chain atoms of a residue (SC-
276 COM representation). The CALVADOS 3 energy function consists of bonded interactions, non-bonded interactions
277 and an elastic network model as described below.

278 Chain connectivity of the beads is described by a harmonic potential,

$$u_{\text{bond}}(r) = k(r - r_0)^2, \quad (1)$$

279 with force constant $k = 8033 \text{ kJ}\cdot\text{mol}^{-1}\cdot\text{nm}^{-2}$. The equilibrium distance r_0 is set to 0.38 nm if two beads are both
280 within IDRs, or the distance between two beads in the initial conformation if at least one bead is within a folded
281 domain.

282 For non-bonded interactions, we use a truncated and shifted Ashbaugh-Hatch (AH) and Debye-Hückel (DH)
283 potential to model van der Waals and salt-screened electrostatic interactions, respectively. The Ashbaugh-
284 Hatch potential is described by

$$u_{\text{AH}}(r) = \begin{cases} u_{\text{LJ}}(r) - \lambda u_{\text{LJ}}(r_c) + \epsilon(1 - \lambda), & r \leq 2^{1/6}\sigma \\ \lambda[u_{\text{LJ}}(r) - u_{\text{LJ}}(r_c)], & 2^{1/6}\sigma < r < r_c \\ 0, & r > r_c \end{cases}, \quad (2)$$

285 where $u_{\text{LJ}}(r)$ is the Lennard-Jones (LJ) potential,

$$u_{\text{LJ}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right], \quad (3)$$

286 and where $\epsilon = 0.8368 \text{ kJ}\cdot\text{mol}^{-1}$ and $r_c = 2.2$ or 2 nm. Similar to previous work, we use $r_c = 2.2$ nm during the
287 optimization of CALVADOS3_{COM}, and use 2 nm during validation and application (*Tesei and Lindorff-Larsen, 2023*). Both σ and λ are calculated as the arithmetic averages of residue-specific bead size and stickiness, re-
288 spectively. σ values are van der Waals volumes calculated by Kim and Hummer (*Kim and Hummer, 2008*). λ
289 values are treated as free parameters and optimized iteratively through a Bayesian parameter-learning proce-
290 dure as described previously (*Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023*) to minimize the differences
291 in the simulated and experimental R_g and PRE data. In simulations where we scaled down interactions of
292 folded domains (CALVADOS2_{C α} 70%), we scaled down ϵ to 0.7ϵ for domain-domain interactions and to $\sqrt{0.7}\epsilon$
293 for domain-IDR interactions.

294 The Debye-Hückel potential is described by

$$u_{\text{DH}}(r) = \frac{q_i q_j e^2}{4\pi\epsilon_0\epsilon_r} \frac{\exp(-r/D)}{r}, \quad (4)$$

295 where q is the average amino acid charge number, e is the elementary charge, $D = \sqrt{1/(8\pi B c_s)}$ is the Debye
296 length of an electrolyte solution of ionic strength c_s , $B(\epsilon_r)$ is the Bjerrum length and ϵ_0 is vacuum permittiv-
297 ity. Electrostatic interactions are truncated and shifted at the cutoff distance $r_c = 4$ nm. The temperature-
298 dependent dielectric constant of the implicit aqueous solution is modelled by the following empirical relation-
299 ship (*Akerlof and Oshry, 1950*):

$$\epsilon_r(T) = \frac{5321}{T} + 233.76 - 0.9297 \times T + 1.417 \times 10^{-3} \times T^2 - 8.292 \times 10^{-7} \times T^3. \quad (5)$$

301 We use the Henderson-Hasselbalch equation to estimate the average charge of the histidine residues, as-
302 suming a pK_a value of 6 (*Nagai et al., 2008*).

303 We use an elastic network model (ENM) with a harmonic potential to restrain non-bonded pairs in the folded
304 domains using

$$u_{\text{ENM}}(r) = k_d(r - r_0)^2. \quad (6)$$

305 Here, the force constant k_d is 700 $\text{kJ}\cdot\text{mol}^{-1}\cdot\text{nm}^{-2}$, r is the distance between beads and equilibrium distances r_0
306 are directly taken from the reference structures. We only apply the ENM to residue pairs with an r_0 below a
307 0.9 nm cutoff. We determine the predefined boundary of each domain in MDPs by visual inspection of the three-
308 dimensional structures (*Table S8*). Each domain has a starting amino acid and an ending amino acid indicating
309 the range of the domain. Only residue pairs within the same domain are restrained by this harmonic potential
310 except for bonded pairs, which are restrained by the aforementioned bonded potential. All boundaries of
311 MDPs are consistent with definitions in their experimental or simulation articles. In some cases, one domain
312 could be discontinuous because of long loops within the domain so we exclude those regions when defining
313 boundaries. Residues of α -helix, β -sheet and short loops in a structured domain are all restrained equally with
314 the same force constant and cutoff distance. The application of ENM ensures that secondary structures within
315 folded domains would not fluctuate substantially (*Figure S10*). Non-bonded interactions (Ashbaugh-Hatch and
316 Debye-Hückel potential) are excluded for the restrained pairs.

317 **Simulations**

318 We generated initial conformations of all IDPs as Archimedes' spirals with a distance of 0.38 nm between bonded
319 beads. Atomistic structures of all MDPs used in optimization procedures, single-chain validation and slab sim-
320 ulations either came from our recent work (*Thomassen et al., 2023*) or were modelled by superposing experi-
321 mental domain structures (if available) on AlphaFold predictions (*Jumper et al., 2021; Varadi et al., 2022*). We
322 then mapped all of these MDPs to CG structures based on different CG representations (C_α , COM, SCCOM).

323 We conducted Langevin dynamics simulations using OpenMM 7.6.0 (*Eastman et al., 2017*) in the NVT en-
324 semble with an integration time step of 10 fs and friction coefficient of 0.01 ps^{-1} . Single chains of N residues
325 were simulated in a cubic box with a $(N - 1) \times 0.38 + 4$ nm box edge length under periodic boundary conditions.
326 Each chain was simulated in 20 replicas for 6.3~77.7 ns depending on the sequence length of the disordered
327 regions (*Tesei and Lindorff-Larsen, 2023; Tesei et al., 2024*). Final trajectories had 4000 frames for each protein,
328 excluding the initial 10 frames in each replica.

329 We performed direct-coexistence simulations in a cuboidal box using $[L_x, L_y, L_z] = [17, 17, 300]$ and $[15, 15, 150]$ nm
330 to simulate multi-chains of Ddx4WT and the other IDPs, respectively. For MDPs, box sizes are shown in *Ta-
331 ble S7*. To keep the condensates thick enough and reduce finite-size surface effects, we chose 150 chains for
332 hnRNPA1* and 100 chains for all the other IDPs and MDPs (see also below). We generated each IDP chain as
333 an Archimedes spiral with a distance of 0.38 nm between bonded beads in the xy-plane. Each spiral was placed
334 along the z-axis with a 1.47 nm interval. To avoid steric clashes of densely packed MDP input structures, we
335 chose the most compact conformation sampled by single-chain simulations with CALVADOS 2 parameters and
336 corresponding CG representation as the initial conformation for each MDP chain. Before production simula-
337 tions, we performed equilibrium runs where we used an external force to push each chain towards the centre
338 of the box so that a condensate could be formed. We then continued to perform production simulations, sav-
339 ing frames every 0.125 ns and discarded the first 150 ns before analysis. The slab in each frame was centred
340 in the box and the equilibrium density profile $\rho(z)$ was calculated by taking the averaged densities over the
341 trajectories as previously described (*Tesei and Lindorff-Larsen, 2023*).

342 To examine finite-size effects of the direct-coexistence simulations we performed additional simulations of
343 hnRNPA1* varying both the box dimensions (L_x, L_y, L_z) and the number of chains. We calculated both dense
344 and dilute phase concentrations from each simulation and find that unless we use a very small patch ($L_x = L_y = 11$ nm), the results are consistent (*Figure S11, Figure S12, Table S9*), in line with previous analyses of such
345 finite-size effects (*Dignon et al., 2018; Joseph et al., 2021*). Convergence of the IDP simulations was assessed
346 as previously described (*Tesei et al., 2021b*).

347 To indicate the computational performance of single- and multi-chain CALVADOS simulations, we show
348 the performance for systems of different sizes run either on an Intel Xeon Gold 6130 CPU (for single-chain
349 simulations) or an NVIDIA Tesla V100 GPU (for multi-chain simulations) (*Figure S13*).

350 To estimate the free energy of partitioning of RRM1 (residues 11–89) and RRM2 (residues 105–179) into con-
351 densates of hnRNPA1* LCD (GS followed by residues 186–314), we performed direct-coexistence simulations
352 at 298 K, pH 7.5, and 150 mM ionic strength, in a cuboidal box with sidelengths $[L_x, L_y, L_z] = [15, 15, 150]$ nm.
353 The structures of the native states of RRM1 and RRM2 were based on the crystal structure (*Shamoo et al., 1997*)
354 as previously described (*Martin et al., 2021b*). We performed two independent simulations, each 21 μs long,
355 for each system and, after centering the LCD condensate in the middle of the box, calculated concentration

357 profiles along the z -axis using the last 20 μ s of each trajectory. We estimated the free energies of partitioning
358 as $\Delta G_{\text{part}} = RT \ln(c_{\text{dil}} / c_{\text{con}})$ where R is the gas constant and c_{dil} and c_{con} are the average concentrations of
359 the RRM s in the dilute phase and in the LCD condensate, respectively. The error on ΔG_{part} was estimated as
360 the difference between the values from the two independent simulation replicas. Absolute folding stabilities
361 of RRM1 and RRM2 were calculated using the Google Colab implementation of a recently described model for
362 predicting absolute protein stability (Cagiada *et al.*, 2024).

363 Parameter optimization

364 Our Bayesian Parameter-Learning Procedure (Tesei and Lindorff-Larsen, 2023) of the 'stickiness' parameters,
365 λ , aimed to minimize the following cost function:

$$\mathcal{L}(\lambda) = \langle \chi_{R_g}^2 \rangle + \eta \langle \chi_{\text{PRE}}^2 \rangle - \theta \ln(P(\lambda)). \quad (7)$$

366 $\chi_{R_g}^2$ and χ_{PRE}^2 denoting R_g and PRE differences between experiments and simulations are estimated as

$$\chi_{R_g}^2 = \left(\frac{R_g^{\text{exp}} - R_g^{\text{calc}}}{\sigma^{\text{exp}}} \right)^2 \quad (8)$$

367 and

$$\chi_{\text{PRE}}^2 = \frac{1}{N_{\text{labels}} N_{\text{res}}} \sum_j^{N_{\text{labels}}} \sum_i^{N_{\text{res}}} \left(\frac{Y_{ij}^{\text{exp}} - Y_{ij}^{\text{calc}}}{\sigma_{ij}^{\text{exp}}} \right)^2. \quad (9)$$

368 Here $P(\lambda)$ is a statistical prior of λ (Tesei *et al.*, 2021b; Tesei and Lindorff-Larsen, 2023), σ^{exp} is the error on
369 the experimental values, Y is PRE data, either $I_{\text{para}}/I_{\text{dia}}$ or Γ_2 is calculated using the rotamer library approach
370 implemented in DEER-PREdict (Tesei *et al.*, 2021a), N_{labels} is the number of spin-labeled mutants, and N_{res} is the
371 number of measured residues. The prior loss, $\theta \ln(P(\lambda))$, quantifies the difference between prior distribution
372 $P(\lambda)$ and current λ values (with min-max normalization at each step) to avoid overfitting. The coefficients are
373 set to $\eta = 0.1$ and $\theta = 0.08$. λ is not allowed to be negative but can be greater than 1.0 during optimization.

374 We used a training set consisting of 56 IDPs and 14 MDPs to perform the optimization. All of those pro-
375 teins were from our previous studies (Tesei and Lindorff-Larsen, 2023; Thomasen *et al.*, 2023). A summary
376 of the training data and other properties of different CALVADOS models is shown in the supporting material
377 (Table S10). 51 IDPs and 14 MDPs in this training set were used for fitting against experimental SAXS R_g data
378 and 5 IDPs were used for fitting against experimental PRE data (Table S1, Table S2, Table S3). We then used a
379 validation set to validate the performances of our new optimized models on reproducing experimental R_g . This
380 validation set was composed of 25 IDPs and 9 MDPs. 12 IDPs in this validation set were from our previous work
381 and the rest (13 IDPs and 9 MDPs) were newly collected experimental R_g data in this work (Table S4, Table S5).
382 We also collected nine MDPs with measured values of c_{sat} to examine the accuracy of the phase behaviour
383 simulated with the models presented in this work (Table S7).

384 The optimization procedure went through several cycles until convergence of the final total cost ($|\Delta \mathcal{L}| < 1$),
385 $\Delta \mathcal{L}$ is the difference of final total cost between the current and previous cycle, Equation 7). Within each cycle,
386 we use the optimized λ values from the previous cycle to perform new single-chain simulations (initial λ values
387 for the first cycle are CALVADOS 2 parameters, (Tesei and Lindorff-Larsen, 2023)), calculate R_g and PRE for each
388 frame and then nudge values in the λ set iteratively to minimize the cost function (five residues are randomly
389 subjected to small perturbations sampled from a Gaussian distribution with $\mu = 0, \sigma = 0.05$). This trial λ set (λ_k)
390 is used to calculate the Boltzmann weights of each frame by $w_i = \exp(-[U(r_i, \lambda_k) - U(r_i, \lambda_0)]/k_B T)$, where U is the
391 AH potential, r_i are coordinates of a conformation, k_B is the Boltzmann constant and T is temperature. The re-
392 sulting weights are then used to calculate the effective fraction of frames by $\phi_{\text{eff}} = \exp(-\sum_i^{N_{\text{frames}}} w_i \log(w_i \times N_{\text{frames}}))$;
393 if $\phi_{\text{eff}} \geq 0.6$, trial λ_k acceptance probability is determined by the Metropolis criterion, $\min\{1, \exp\left(\frac{\mathcal{L}(\lambda_{k-1}) - \mathcal{L}(\lambda_k)}{\xi_k}\right)\}$,
394 where ξ_k is a unitless control parameter, its initial value is set to 0.1 and scaled down by 1% at each iteration
395 until $\xi < 10^{-8}$, which means a micro-cycle is complete. Within a cycle, a total of 10 micro-cycles are performed.
396 In this work, the optimization procedure converged within three cycles. Therefore, we used the resulting λ
397 values from the third cycle as the final parameter set. We ran one additional optimization cycle to confirm the
398 convergence of the training.

399 Data and software availability

400 Scripts and data to reproduce the work are available via https://github.com/KULL-Centre/_2024_Cao_CALVADOSCOM.

401 Acknowledgments

402 We acknowledge the use of computational resources from Computerome 2.0, the ROBUST Resource for Biomolec-
403 ular Simulations (supported by the Novo Nordisk Foundation; NNF18OC0032608) and the Biocomputing Core
404 Facility at the Department of Biology, University of Copenhagen. This research was supported by the PRISM
405 (Protein Interactions and Stability in Medicine and Genomics) centre funded by the Novo Nordisk Foundation
406 (NNF18OC0033950, to K.L.-L.), and CSC (China scholarship council, 202206340019). SB is a recipient of an EMBO
407 postdoctoral fellowship (ALTF 810-2022).

408 References

409 Ahmed MC, Skaanning LK, Jussupow A, Newcombe EA, Kragelund BB, Camilloni C, Langkilde AE, Lindorff-Larsen K. Refinement
410 of α -synuclein ensembles against SAXS data: Comparison of force fields and methods. *Frontiers in molecular biosciences*.
411 2021; 8:654333.

412 Ahmed R, Liang M, Hudson RP, Rangadurai AK, Huang SK, Forman-Kay JD, Kay LE. Atomic resolution map of the solvent
413 interactions driving SOD1 unfolding in CAPRIN1 condensates. *bioRxiv*. 2024; <https://www.biorxiv.org/content/early/2024/05/02/2024.04.29.591724>; doi: [10.1101/2024.04.29.591724](https://doi.org/10.1101/2024.04.29.591724).

415 Akerlof G, Oshry H. The dielectric constant of water at high temperatures and in equilibrium with its vapor. *Journal of the
416 American Chemical Society*. 1950; 72(7):2844-2847.

417 Alshareedah I, Borchers W, Cohen S, Farag M, Singh A, Bremer A, Pappu R, Mittag T, Banerjee P. Sequence-specific interactions
418 determine viscoelastic moduli and aging dynamics of protein condensates. . 2023; .

419 del Amo-Maestro L, Sagar A, Pompach P, Goulas T, Scavenius C, Ferrero DS, Castrillo-Briceno M, Taulés M, Enghild JJ, Bernadó
420 P, et al. An integrative structural biology analysis of von Willebrand factor binding and processing by ADAMTS-13 in solution.
421 *Journal of Molecular Biology*. 2021; 433(13):166954.

422 Arrondel C, Missouri S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, et al. Defects in t6A
423 tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. *Nature communications*. 2019;
424 10(1):3967.

425 Ashbaugh HS, Hatch HW. Natively unfolded protein stability as a coil-to-globule transition in charge/hydrophathy space. *Journal
426 of the American Chemical Society*. 2008; 130(29):9536-9542.

427 Benayad Z, von Bülow S, Stelzl LS, Hummer G. Simulation of FUS protein condensates with an adapted coarse-grained model.
428 *Journal of Chemical Theory and Computation*. 2020; 17(1):525-537.

429 Bereau T, Deserno M. Generic coarse-grained model for protein folding and aggregation. *The Journal of chemical physics*.
430 2009; 130(23):06B621.

431 Bernocco S, Steglitz BM, Svergun DI, Petoukhov MV, Ruggiero F, Ricard-Blum S, Ebel C, Geourjon C, Deléage G, Font B, et al. Low
432 resolution structure determination shows procollagen C-proteinase enhancer to be an elongated multidomain glycoprotein.
433 *Journal of Biological Chemistry*. 2003; 278(9):7199-7205.

434 Bondos SE, Dunker AK, Uversky VN. On the roles of intrinsically disordered proteins and regions in cell communication and
435 signaling. *Cell Communication and Signaling*. 2021; 19(1):88.

436 Borges-Araújo L, Patmanidis I, Singh AP, Santos LH, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L,
437 et al. Pragmatic Coarse-Graining of Proteins: Models and Applications. *Journal of Chemical Theory and Computation*. 2023;
438 19(20):7112-7135.

439 Bowman MA, Riback JA, Rodriguez A, Guo H, Li J, Sosnick TR, Clark PL. Properties of protein unfolded states suggest broad
440 selection for expanded conformational ensembles. *Proceedings of the National Academy of Sciences*. 2020; 117(38):23356-
441 23364.

442 Brady JP, Farber PJ, Sekhar A, Lin YH, Huang R, Bah A, Nott TJ, Chan HS, Baldwin AJ, Forman-Kay JD, et al. Structural and hydro-
443 dynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. *Proceedings of
444 the National Academy of Sciences*. 2017; 114(39):E8194-E8203.

445 Bremer A, Farag M, Borchers WM, Peran I, Martin EW, Pappu RV, Mittag T. Deciphering how naturally occurring sequence
446 features impact the phase behaviours of disordered prion-like domains. *Nature Chemistry*. 2022; 14(2):196-207.

447 Cagiada M, Ovchinnikov S, Lindorff-Larsen K. Predicting absolute protein folding stability using generative models. *bioRxiv*.
448 2024; p. 2024-02. doi: [10.1101/2024.03.14.584940](https://doi.org/10.1101/2024.03.14.584940).

449 Cao F, von Bülow S, Tesei G, Lindorff-Larsen K. A coarse-grained model for disordered and multi-domain proteins. *bioRxiv*.
450 2024; p. 2024-02. doi: [10.1101/2024.02.03.578735v2](https://doi.org/10.1101/2024.02.03.578735v2).

451 Chan-Yao-Chong M, Deville C, Pinet L, Van Heijenoort C, Durand D, Ha-Duong T. Structural characterization of N-WASP domain
452 V using MD simulations with NMR and SAXS data. *Biophysical Journal*. 2019; 116(7):1216-1227.

453 **Chen R**, Glauninger H, Kahan DN, Shangguan J, Sachleben JR, Riback JA, Drummond DA, Sosnick TR. HDX-MS finds that partial
454 unfolding with sequential domain activation controls condensation of a cellular stress marker. *Proceedings of the National
455 Academy of Sciences*. 2024; 121(13):e2321606121.

456 **Conicella AE**, Dignon GL, Zerze GH, Schmidt HB, D'Ordine AM, Kim YC, Rohatgi R, Ayala YM, Mittal J, Fawzi NL. TDP-43 α -
457 helical structure tunes liquid-liquid phase separation and function. *Proceedings of the National Academy of Sciences*. 2020;
458 117(11):5883-5894.

459 **Cordeiro TN**, Sibille N, Germain P, Barthe P, Boulahouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, et al. Interplay
460 of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression. *Structure*. 2019;
461 27(8):1270-1285.

462 **Dannenhoffer-Lafage T**, Best RB. A data-driven hydrophobicity scale for predicting liquid-liquid phase separation of proteins.
463 *The Journal of Physical Chemistry B*. 2021; 125(16):4046-4056.

464 **Das RK**, Huang Y, Phillips AH, Kriwacki RW, Pappu RV. Cryptic sequence features within the disordered protein p27kip1 regulate
465 cell cycle signaling. *Proceedings of the National Academy of Sciences*. 2016; 113(20):5616-5621.

466 **De Biasio A**, de Opakua AI, Cordeiro TN, Villate M, Merino N, Sibille N, Lelli M, Diercks T, Bernadó P, Blanco FJ. p15PAF is an
467 intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins. *Biophysical
468 journal*. 2014; 106(4):865-874.

469 **Dedmon MM**, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM. Mapping long-range interactions in α -synuclein
470 using spin-label NMR and ensemble molecular dynamics simulations. *Journal of the American Chemical Society*. 2005;
471 127(2):476-477.

472 **Delaforge E**, Milles S, Huang Jr, Bouvier D, Jensen MR, Sattler M, Hart DJ, Blackledge M. Investigating the role of large-scale
473 domain dynamics in protein-protein interactions. *Frontiers in Molecular Biosciences*. 2016; 3:54.

474 **Dignon GL**, Zheng W, Kim YC, Best RB, Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model.
475 *PLoS computational biology*. 2018; 14(1):e1005941.

476 **Eastman P**, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simonett AC, Harrigan MP, Stern CD, et al.
477 OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. *PLoS computational biology*. 2017;
478 13(7):e1005659.

479 **Elena-Real CA**, Sagar A, Urbanek A, Popović M, Morató A, Estaña A, Fournet A, Doucet C, Lund XL, Shi ZD, et al. The structure of
480 pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. *Nature structural & molecular biology*. 2023;
481 30(3):309-320.

482 **Fagerberg E**, Måansson LK, Lenton S, Skepö M. The effects of chain length on the structural properties of intrinsically disordered
483 proteins in concentrated solutions. *The Journal of Physical Chemistry B*. 2020; 124(52):11843-11853.

484 **Farag M**, Borcherds WM, Bremer A, Mittag T, Pappu RV. Phase separation of protein mixtures is driven by the interplay of
485 homotypic and heterotypic interactions. *Nature communications*. 2023; 14(1):5527.

486 **Garg A**, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, Tenzer S, Sönnichsen C, Wolf E. Structural and mechanistic insights
487 into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. *Journal of
488 Biological Chemistry*. 2019; 294(45):16604-16619.

489 **Gibbs EB**, Lu F, Portz B, Fisher MJ, Medellin BP, Laremore TN, Zhang YJ, Gilmour DS, Showalter SA. Phosphorylation induces
490 sequence-specific conformational switches in the RNA polymerase II C-terminal domain. *Nature communications*. 2017;
491 8(1):15233.

492 **Gomes GNW**, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradiaru CC. Conformational en-
493sembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. *Journal of the American
494 Chemical Society*. 2020; 142(37):15697-15710.

495 **Gomes T**, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Conformational landscape of multidomain SMAD
496 proteins. *Computational and Structural Biotechnology Journal*. 2021; 19:5210-5224.

497 **Gondelaud F**, Boukil M, Le Fèvre A, Miele AE, Chiroi F, Duclos B, Liwo A, Ricard-Blum S. Extended disorder at the cell surface:
498 The conformational landscape of the ectodomains of syndecans. *Matrix Biology Plus*. 2021; 12:100081.

499 **Gopal SM**, Mukherjee S, Cheng YM, Feig M. PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that
500 preserves near-atomistic accuracy. *Proteins: Structure, Function, and Bioinformatics*. 2010; 78(5):1266-1281.

501 **Gurumoorthy V**, Shrestha UR, Zhang Q, Pingali SV, Boder ET, Urban VS, Smith JC, Petridis L, O'Neill H. Disordered Domain Shifts
502 the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein c-Src. *Biomacromolecules*.
503 2023; 24(2):714-723.

504 **Hajizadeh NR**, Pieprzyk J, Skopintsev P, Flayhan A, Svergun DI, Löw C. Probing the architecture of a multi-PDZ domain protein:
505 Structure of PDZK1 in solution. *Structure*. 2018; 26(11):1522-1533.

506 Hamdi K, Salladini E, O'Brien DP, Brier S, Chenal A, Yacoubi I, Longhi S. Structural disorder and induced folding within two
507 cereal, ABA stress and ripening (ASR) proteins. *Scientific reports*. 2017; 7(1):15544.

508 Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J. The folding and evolution of multidomain proteins. *Nature Reviews
509 Molecular Cell Biology*. 2007; 8(4):319–330.

510 Heo L, Feig M. One bead per residue can describe all-atom protein structures. *Structure*. 2024; 32(1):97–111.

511 Her C, Phan TM, Jovic N, Kapoor U, Ackermann BE, Rizuan A, Kim YC, Mittal J, Debelouchina GT. Molecular interactions underlying
512 the phase separation of HP1 α : role of phosphorylation, ligand and nucleic acid binding. *Nucleic Acids Research*. 2022;
513 50(22):12702–12722.

514 Hesgrove CS, Nguyen KH, Biswas S, Childs CA, Shraddha K, Medina BX, Alvarado V, Yu F, Sukenik S, Malferrari M, et al. Tardigrade
515 CAHS Proteins Act as Molecular Swiss Army Knives to Mediate Desiccation Tolerance Through Multiple Mechanisms. *bioRxiv*.
516 2021; p. 2021–08.

517 Hicks A, Escobar CA, Cross TA, Zhou HX. Sequence-dependent correlated segments in the intrinsically disordered region of
518 ChiZ. *Biomolecules*. 2020; 10(6):946.

519 Holm L, Sander C. Parser for protein folding units. *Proteins: Structure, Function, and Bioinformatics*. 1994; 19(3):256–268.

520 Hyeon C, Dima RI, Thirumalai D. Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins.
521 *Structure*. 2006; 14(11):1633–1645.

522 Jephthah S, Staby L, Kragelund B, Skepö M. Temperature dependence of intrinsically disordered proteins in simulations: What
523 are we missing? *Journal of chemical theory and computation*. 2019; 15(4):2672–2683.

524 Jin F, Gräter F. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. *PLoS computational biology*. 2021; 17(5):e1008939.

526 Johnson CL, Solovyova AS, Hecht O, Macdonald C, Waller H, Grossmann JG, Moore GR, Lakey JH. The two-state prehensile tail
527 of the antibacterial toxin colicin N. *Biophysical Journal*. 2017; 113(8):1673–1684.

528 Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell KO, Espinosa JR, Garaizar A, Colleparo-Guevara R. Physics-driven coarse-
529 grained model for biomolecular phase separation with near-quantitative accuracy. *Nature Computational Science*. 2021;
530 1(11):732–743.

531 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al.
532 Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021; 596(7873):583–589.

533 Jussupow A, Kaila VR. Effective Molecular Dynamics from Neural Network-Based Structure Prediction Models. *Journal of
534 Chemical Theory and Computation*. 2023; 19(7):1965–1975.

535 Jussupow A, Messias AC, Stehle R, Geerlof A, Solbak SM, Paissoni C, Bach A, Sattler M, Camilloni C. The dynamics of linear
536 polyubiquitin. *Science advances*. 2020; 6(42):eabc3786.

537 Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R, Majumdar A, Krainer G, Franzmann TM, Alberti S, Seidel CA, et al. Phase-
538 separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. *Proceedings of
539 the National Academy of Sciences*. 2022; 119(28):e2202222119.

540 Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. *Journal
541 of molecular biology*. 2008; 375(5):1416–1433.

542 Kjaergaard M, Nørholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB. Temperature-dependent struc-
543 tural changes in intrinsically disordered proteins: Formation of α -helices or loss of polyproline II? *Protein Science*. 2010;
544 19(8):1555–1564.

545 Kolinski A, Skolnick J. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. *Proteins:
546 Structure, Function, and Bioinformatics*. 1998; 32(4):475–494.

547 Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiškýtė G, Czekalska MA,
548 et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. *Nature com-
549 munications*. 2021; 12(1):1085.

550 Kurzbach D, Vanas A, Flamm AG, Tarnoczi N, Kontaxis G, Maltar-Strmečki N, Widder K, Hinderberger D, Konrat R. Detection
551 of correlated conformational fluctuations in intrinsically disordered proteins through paramagnetic relaxation interference.
552 *Physical Chemistry Chemical Physics*. 2016; 18(8):5753–5758.

553 Lau AM, Kandathil SM, Jones DT. Merizo: a rapid and accurate protein domain segmentation method using invariant point
554 attention. *Nature Communications*. 2023; 14(1):8445.

555 Li W, Terakawa T, Wang W, Takada S. Energy landscape and multiroute folding of topologically complex proteins adenylate
556 kinase and 2ouf-knot. *Proceedings of the National Academy of Sciences*. 2012; 109(44):17789–17794.

557 Lin YH, Qiu DC, Chang WH, Yeh YQ, Jeng US, Liu FT, Huang Jr. The intrinsically disordered N-terminal domain of galectin-3
558 dynamically mediates multisite self-association of the protein through fuzzy interactions. *Journal of Biological Chemistry*.
559 2017; 292(43):17845–17856.

560 Lyu C, Da Vela S, Al-Hilaly Y, Marshall KE, Thorogate R, Svergun D, Serpell LC, Pastore A, Hanger DP. The disease associated
561 tau35 fragment has an increased propensity to aggregate compared to full-length tau. *Frontiers in Molecular Biosciences*.
562 2021; 8:779240.

563 Mackereth CD, Sattler M. Dynamics in multi-domain protein recognition of RNA. *Current opinion in structural biology*. 2012;
564 22(3):287–296.

565 Maity H, Baidya L, Reddy G. Salt-induced transitions in the conformational ensembles of intrinsically disordered proteins. *The
566 Journal of Physical Chemistry B*. 2022; 126(32):5959–5971.

567 Martin EW, Harmon TS, Hopkins JB, Chakravarthy S, Incicco JJ, Schuck P, Soranno A, Mittag T. A multi-step nucleation process
568 determines the kinetics of prion-like domain phase separation. *Nature communications*. 2021; 12(1):4513.

569 Martin EW, Holehouse AS, Grace CR, Hughes A, Pappu RV, Mittag T. Sequence determinants of the conformational properties
570 of an intrinsically disordered protein prior to and upon multisite phosphorylation. *Journal of the American Chemical Society*.
571 2016; 138(47):15323–15335.

572 Martin EW, Thomasen FE, Milkovic NM, Cuneo MJ, Grace CR, Nourse A, Lindorff-Larsen K, Mittag T. Interplay of folded do-
573 mains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. *Nucleic acids research*. 2021;
574 49(5):2931–2945.

575 Mazurkewich S, Helland R, Mackenzie A, Eijsink VG, Pope PB, Brändén G, Larsbrink J. Structural insights of the enzymes from
576 the chitin utilization locus of *Flavobacterium johnsoniae*. *Scientific Reports*. 2020; 10(1):13775.

577 Michie KA, Kwan AH, Tung CS, Guss JM, Trehella J. A highly conserved yet flexible linker is part of a polymorphic protein-
578 binding domain in myosin-binding protein C. *Structure*. 2016; 24(11):2000–2007.

579 Mittal A, Holehouse AS, Cohan MC, Pappu RV. Sequence-to-conformation relationships of disordered regions tethered to
580 folded domains of proteins. *Journal of molecular biology*. 2018; 430(16):2403–2421.

581 Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. Phase separation by low complexity domains
582 promotes stress granule assembly and drives pathological fibrillization. *Cell*. 2015; 163(1):123–133.

583 Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN, Zerze GH, O'Meally R, Dignon GL, Conicella AE, Zheng W, et al. Phospho-
584 rylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. *The EMBO journal*. 2017;
585 36(20):2951–2967.

586 Monticelli L, Kandasamy SK, Periole X, Larson RG, Tielemans DP, Marrink SJ. The MARTINI coarse-grained force field: extension
587 to proteins. *Journal of chemical theory and computation*. 2008; 4(5):819–834.

588 Moses D, Guadalupe K, Yu F, Flores E, Perez AR, McAnelly R, Shamoony NM, Kaur G, Cuevas-Zepeda E, Merg AD, et al. Structural
589 biases in disordered proteins are prevalent in the cell. *Nature Structural & Molecular Biology*. 2024; p. 1–10.

590 Mugnai ML, Chakraborty D, Kumar A, Nguyen HT, Zeno W, Stachowiak JC, Straub JE, Thirumalai D. Sizes, conformational
591 fluctuations, and SAXS profiles for Intrinsically Disordered Proteins. *bioRxiv*. 2023; p. 2023–04.

592 Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL. Molecular interactions underlying liquid- liquid phase
593 separation of the FUS low-complexity domain. *Nature structural & molecular biology*. 2019; 26(7):637–648.

594 Mylonas E, Hascher A, Bernado P, Blackledge M, Mandelkow E, Svergun DI. Domain conformation of tau protein studied by
595 solution small-angle X-ray scattering. *Biochemistry*. 2008; 47(39):10345–10353.

596 Nagai H, Kuwabara K, Carta G. Temperature dependence of the dissociation constants of several amino acids. *Journal of
597 Chemical & Engineering Data*. 2008; 53(3):619–627.

598 Neri M, Anselmi C, Cascella M, Maritan A, Carloni P. Coarse-grained model of proteins incorporating atomistic detail of the
599 active site. *Physical review letters*. 2005; 95(21):218102.

600 Norgaard AB, Ferkinghoff-Borg J, Lindorff-Larsen K. Experimental parameterization of an energy function for the simulation
601 of unfolded proteins. *Biophysical journal*. 2008; 94(1):182–192.

602 Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, et al.
603 Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. *Molecular
604 cell*. 2015; 57(5):936–947.

605 Ibáñez de Opakua A, Merino N, Villate M, Cordeiro TN, Ormaza G, Sánchez-Carbayo M, Diercks T, Bernadó P, Blanco FJ. The
606 metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. *PLoS One*.
607 2017; 12(2):e0172507.

608 Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries CM, Svergun DI, et al. In-
609 trinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be
610 regulated by mutating the PLD. *Journal of Biological Chemistry*. 2022; 298(12).

611 Pappu RV, Schneller WJ, Weaver DL. Electrostatic multipole representation of a polypeptide chain: an algorithm for simulation
612 of polypeptide properties. *Journal of computational chemistry*. 1996; 17(8):1033–1055.

613 Paz A, Zeev-Ben-Mordehai T, Lundqvist M, Sherman E, Mylonas E, Weiner L, Haran G, Svergun DI, Mulder FA, Sussman JL, et al.
614 Biophysical characterization of the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3.
615 *Biophysical Journal*. 2008; 95(4):1928–1944.

616 Pesce F, Newcombe EA, Seiffert P, Tranchant EE, Olsen JG, Grace CR, Kragelund BB, Lindorff-Larsen K. Assessment of models
617 for calculating the hydrodynamic radius of intrinsically disordered proteins. *Biophysical Journal*. 2023; 122(2):310–321.

618 Regy RM, Thompson J, Kim YC, Mittal J. Improved coarse-grained model for studying sequence dependent phase separation
619 of disordered proteins. *Protein Science*. 2021; 30(7):1371–1379.

620 Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM, Hinshaw JR, Kaye EB, Freed KF, Clark PL, Sosnick TR. Innovative
621 scattering analysis shows that hydrophobic disordered proteins are expanded in water. *Science*. 2017; 358(6360):238–
622 241.

623 Ruff KM, Choi YH, Cox D, Ormsby AR, Myung Y, Ascher DB, Radford SE, Pappu RV, Hatters DM. Sequence grammar underlying
624 the unfolding and phase separation of globular proteins. *Molecular cell*. 2022; 82(17):3193–3208.

625 Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J, Fawzi NL. Mechanistic view of hn-
626 RNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation.
627 *Molecular cell*. 2018; 69(3):465–479.

628 Ryan VH, Perdikari TM, Naik MT, Saueressig CF, Lins J, Dignon GL, Mittal J, Hart AC, Fawzi NL. Tyrosine phosphorylation regulates
629 hnRNPA2 granule protein partitioning and reduces neurodegeneration. *The EMBO Journal*. 2021; 40(3):e105001.

630 Salladini E, Delauzun V, Longhi S. The Henipavirus V protein is a prevalently unfolded protein with a zinc-finger domain involved
631 in binding to DDB1. *Molecular BioSystems*. 2017; 13(11):2254–2267.

632 Schmit JD, Bouchard JJ, Martin EW, Mittag T. Protein network structure enables switching between liquid and gel states. *Journal
633 of the American Chemical Society*. 2019; 142(2):874–883.

634 Schuster BS, Dignon GL, Tang WS, Kelley FM, Ranganath AK, Jahnke CN, Simpkins AG, Regy RM, Hammer DA, Good MC, et al.
635 Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. *Proceedings of the National Academy of Sciences*. 2020; 117(21):11421–11431.

637 Seiffert P, Bugge K, Nygaard M, Haxholm GW, Martinsen JH, Pedersen MN, Arleth L, Boomsma W, Kragelund BB. Orchestration
638 of signaling by structural disorder in class 1 cytokine receptors. *Cell Communication and Signaling*. 2020; 18:1–30.

639 Sekiyama N, Takaba K, Maki-Yonkura S, Akagi Ki, Ohtani Y, Immura K, Terakawa T, Yamashita K, Inaoka D, Yonkura K, et al.
640 ALS mutations in the TIA-1 prion-like domain trigger highly condensed pathogenic structures. *Proceedings of the National
641 Academy of Sciences*. 2022; 119(38):e2122523119.

642 Senicourt L, Le Maire A, Allemand F, Carvalho JE, Guee L, Germain P, Schubert M, Bernadó P, Bourguet W, Sibille N. Structural
643 insights into the interaction of the intrinsically disordered co-activator TIF2 with retinoic acid receptor heterodimer (RXR/RAR).
644 *Journal of molecular biology*. 2021; 433(9):166899.

645 Shamoo Y, Krueger U, Rice L, Williams K, Steitz T. Crystal structure of the two RNA binding domains of human hnRNP A1 at
646 1.75 Å resolution. *Nature structural biology*. 1997; 4(3):215–222.

647 Shrestha UR, Juneja P, Zhang Q, Gurumoorthy V, Borreguero JM, Urban V, Cheng X, Pingali SV, Smith JC, O'Neill HM, et al. Generation
648 of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation.
649 *Proceedings of the National Academy of Sciences*. 2019; 116(41):20446–20452.

650 Sieradzan AK, Czaplewski C, Krupa P, Mozolewska MA, Karczyńska AS, Lipska AG, Lubecka EA, Gołaś E, Wirecki T, Makowski
651 M, et al. Modeling the structure, dynamics, and transformations of proteins with the UNRES force field. *Protein folding:
652 Methods and protocols*. 2022; p. 399–416.

653 Sonntag M, Jagtap PKA, Simon B, Appavou MS, Geerlof A, Stehle R, Gabel F, Hennig J, Sattler M. Segmental, Domain-Selective
654 Perdeuteration and Small-Angle Neutron Scattering for Structural Analysis of Multi-Domain Proteins. *Angewandte Chemie*.
655 2017; 129(32):9450–9453.

656 Souza PC, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks BM, Wassenaar TA,
657 et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. *Nature methods*. 2021; 18(4):382–388.

658 Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polansky A,
659 De Almeida Ribeiro E, et al. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated
660 condensates with α-actinin. *Science advances*. 2021; 7(22):eabg7653.

661 Tan C, Niitsu A, Sugita Y. Highly Charged Proteins and Their Repulsive Interactions Antagonize Biomolecular Condensation.
662 JACS Au. 2023; 3(3):834–848.

663 Taneja I, Holehouse AS. Folded domain charge properties influence the conformational behavior of disordered tails. Current
664 Research in Structural Biology. 2021; 3:216–228.

665 Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interac-
666 tion range. Open Research Europe. 2023; 2(94):94.

667 Tesei G, Martins JM, Kunze MB, Wang Y, Crehuet R, Lindorff-Larsen K. DEER-PREdict: Software for efficient calculation of spin-
668 labeling EPR and NMR data from conformational ensembles. PLOS Computational Biology. 2021; 17(1):e1008551.

669 Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disor-
670 dered proteins from optimization of single-chain properties. Proceedings of the National Academy of Sciences. 2021;
671 118(44):e2111696118.

672 Tesei G, Trolle Al, Jonsson N, Betz J, Knudsen FE, Pesce F, Johansson KE, Lindorff-Larsen K. Conformational ensembles of the
673 human intrinsically disordered proteome. Nature. 2024; 626(8000):897–904.

674 Thomasen FE, Lindorff-Larsen K. Conformational ensembles of intrinsically disordered proteins and flexible multidomain
675 proteins. Biochemical Society Transactions. 2022; 50(1):541–554.

676 Thomasen FE, Pesce F, Roesgaard MA, Tesei G, Lindorff-Larsen K. Improving Martini 3 for disordered and multidomain proteins.
677 Journal of Chemical Theory and Computation. 2022; 18(4):2033–2041.

678 Thomasen FE, Skaalum T, Kumar A, Srinivasan S, Vanni S, Lindorff-Larsen K. Recalibration of protein interactions in Martini 3.
679 bioRxiv. 2023; p. 2023–05.

680 Valdes-Garcia G, Heo L, Lapidus LJ, Feig M. Modeling concentration-dependent phase separation processes involving peptides
681 and RNA via residue-based coarse-graining. Journal of Chemical Theory and Computation. 2023; 19(2):669–678.

682 Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al.
683 Classification of intrinsically disordered regions and proteins. Chemical reviews. 2014; 114(13):6589–6631.

684 Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al. AlphaFold
685 Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy
686 models. Nucleic acids research. 2022; 50(D1):D439–D444.

687 Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnle M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, et al. A molecu-
688 lar grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018; 174(3):688–699.

689 Wessén J, Das S, Pal T, Chan HS. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation
690 of Protein-Like Heteropolymers with Short-and Long-Spatial-Range Interactions. The Journal of Physical Chemistry B. 2022;
691 126(45):9222–9245.

692 Wright GS, Watanabe TF, Amporndanai K, Plotkin SS, Cashman NR, Antonyuk SV, Hasnain SS. Purification and structural char-
693 acterization of aggregation-prone human TDP-43 involved in neurodegenerative diseases. Iscience. 2020; 23(6):101159.

694 Yamada T, Miyazaki Y, Harada S, Kumar A, Vanni S, Shinoda W. Improved protein model in SPICA force field. Journal of Chemical
695 Theory and Computation. 2023; 19(23):8967–8977.

696 Yu F, Sukenik S. Structural preferences shape the entropic force of disordered protein ensembles. The Journal of Physical
697 Chemistry B. 2023; .

698 Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase
699 Separation. Journal of the American Chemical Society. 2023; .

700 Zhang Y, Liu X, Chen J. Toward accurate coarse-grained simulations of disordered proteins and their dynamic interactions.
701 Journal of Chemical Information and Modeling. 2022; 62(18):4523–4536.

702 Zhao J, Blayney A, Liu X, Gandy L, Jin W, Yan L, Ha JH, Canning AJ, Connelly M, Yang C, et al. EGCG binds intrinsically disordered
703 N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nature communications. 2021; 12(1):986.

704 Zheng W, Dignon GL, Jovic N, Xu X, Regy RM, Fawzi NL, Kim YC, Best RB, Mittal J. Molecular details of protein condensates
705 probed by microsecond long atomistic simulations. The Journal of Physical Chemistry B. 2020; 124(51):11671–11679.

Table S1. Experimental solution conditions and radii of gyration of IDPs included in the training set for the Bayesian parameter-learning procedure.

Protein	N	$R_g \pm \text{Err}$ [nm]	T [K]	c_s [M]	pH	Ref.
Hst5	24	1.38 ± 0.05	293.00	0.150	7.5	(Jephthah <i>et al.</i> , 2019)
Hst52	48	1.87 ± 0.05	298.00	0.150	7.0	(Fagerberg <i>et al.</i> , 2020)
p532070	62	2.39 ± 0.05	277.00	0.100	7.0	(Zhao <i>et al.</i> , 2021)
ACTR	71	2.63 ± 0.1	278.00	0.200	7.4	(Kjaergaard <i>et al.</i> , 2010)
Ash1	81	2.9 ± 0.05	293.00	0.150	7.5	(Martin <i>et al.</i> , 2016; Jin and Gräter, 2021)
CTD2	83	2.614 ± 0.05	293.00	0.120	7.5	(Jin and Gräter, 2021)(Gibbs <i>et al.</i> , 2017)]
Sic1	92	3.0 ± 0.4	293.00	0.200	7.5	(Gomes <i>et al.</i> , 2020)
SH4UD	95	2.71 ± 0.04	293.15	0.216	8.0	(Shrestha <i>et al.</i> , 2019)
CoINT	98	2.8 ± 0.033	277.00	0.433	7.6	(Johnson <i>et al.</i> , 2017)
p15PAF	111	2.81 ± 0.1	298.00	0.150	7.0	(De Biasio <i>et al.</i> , 2014)
hNL3cyt	119	3.15 ± 0.2	293.00	0.300	8.5	(Paz <i>et al.</i> , 2008)
RNaseA	124	3.36 ± 0.1	298.00	0.150	7.5	(Riback <i>et al.</i> , 2017)
+4D	137	2.72 ± 0.03	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-3R+3K	137	2.63 ± 0.02	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-6R+6K	137	2.79 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-10R+10K	137	2.85 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-4D	137	2.64 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+2R	137	2.62 ± 0.02	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+12D	137	2.8 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+12E	137	2.85 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+7K+12D	137	2.92 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+7R	137	2.71 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-12F+12Y-10R	137	2.61 ± 0.02	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-10F+7R+12D	137	2.86 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+8D	137	2.69 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+7K+12Db	137	2.56 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-9F+6Y	137	2.66 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-10R	137	2.67 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-9F+3Y	137	2.68 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-8F+4Y	137	2.71 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
+7F-7Y	137	2.72 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-12F+12Y	137	2.6 ± 0.02	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
A1	137	2.76 ± 0.02	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
-6R	137	2.57 ± 0.01	298.00	0.150	7.0	(Bremer <i>et al.</i> , 2022)
aSyn140	140	3.55 ± 0.1	293.00	0.200	7.4	(Ahmed <i>et al.</i> , 2021)
FhuA	144	3.34 ± 0.1	298.00	0.150	7.5	(Riback <i>et al.</i> , 2017)
K27	167	3.7 ± 0.2	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
K10	168	4.0 ± 0.1	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
K25	185	4.1 ± 0.2	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
K32	198	4.2 ± 0.3	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
CAHSD	227	4.84 ± 0.2	293.00	0.070	7.0	(Hesgrave <i>et al.</i> , 2021)
K23	254	4.9 ± 0.2	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
tau35	255	4.64 ± 0.1	293.20	0.150	7.4	(Lyu <i>et al.</i> , 2021)
CoRNID	271	4.7 ± 0.2	293.15	0.192	7.5	(Cordeiro <i>et al.</i> , 2019)
K44	283	5.2 ± 0.2	288.00	0.150	7.4	(Mylonas <i>et al.</i> , 2008)
PNt	334	5.11 ± 0.1	298.00	0.150	7.5	(Riback <i>et al.</i> , 2017; Bowman <i>et al.</i> , 2020)
PNtS1	334	4.92 ± 0.1	298.00	0.150	7.5	(Bowman <i>et al.</i> , 2020)
PNtS4	334	5.34 ± 0.1	298.00	0.150	7.5	(Bowman <i>et al.</i> , 2020)
PNtS5	334	4.87 ± 0.1	298.00	0.150	7.5	(Bowman <i>et al.</i> , 2020)
PNtS6	334	5.26 ± 0.1	298.00	0.150	7.5	(Bowman <i>et al.</i> , 2020)
GHRICD	351	6.0 ± 0.5	298.00	0.350	7.3	(Seiffert <i>et al.</i> , 2020; Pesce <i>et al.</i> , 2023)

Table S2. Experimental solution conditions and PRE data included in the training set for the Bayesian parameter-learning procedure.

Proteins	N	N_{labels}	$\omega_I/2\pi[\text{MHz}]$	T [K]	c_s [M]	pH	Ref.
A2	155	2	850	298	0.005	5.5	(Ryan et al., 2018)
aSyn	140	5	700	283	0.200	7.4	(Dedmon et al., 2005)
OPN	220	10	800	298	0.150	6.5	(Kurzbach et al., 2016)
FUS	163	3	850	298	0.150	5.5	(Monahan et al., 2017)
FUS12E	164	3	850	298	0.150	5.5	(Monahan et al., 2017)

Table S3. Experimental solution conditions and radii of gyration of MDPs included in the training set for the Bayesian parameter-learning procedure.

Protein	N	$R_g \pm \text{Err}$ [nm]	T [K]	c_s [M]	pH	Ref.
THB_C2	137	1.91 ± 0.076	295.15	0.15	6.5	(Michie et al., 2016)
Ubq2	162	2.19 ± 0.18	293.00	0.33	8.0	(Jussupow et al., 2020)
Ubq3	228	2.62 ± 0.018	293.00	0.33	8.0	(Jussupow et al., 2020)
Gal3	250	2.91 ± 0.06	303.00	0.04	7.0	(Lin et al., 2017)
TIA1	275	2.75 ± 0.05	293.15	0.10	6.0	(Sonntag et al., 2017)
Ubq4	304	3.19 ± 0.092	293.00	0.33	8.0	(Jussupow et al., 2020)
hnRNPA1*	314	3.12 ± 0.078	293.15	0.15	7.5	(Martin et al., 2021b)
hSUMO_hnRNPA1*	433	3.37 ± 0.13	293.15	0.10	7.5	(Martin et al., 2021b)
GS0	470	3.2 ± 0.044	293.15	0.15	7.4	(Moses et al., 2024)
GS8	486	3.37 ± 0.036	293.15	0.15	7.4	(Moses et al., 2024)
GS16	502	3.45 ± 0.06	293.15	0.15	7.4	(Moses et al., 2024)
GS24	518	3.57 ± 0.075	293.15	0.15	7.4	(Moses et al., 2024)
GS32	534	3.75 ± 0.097	293.15	0.15	7.4	(Moses et al., 2024)
GS48	566	4.11 ± 0.21	293.15	0.15	7.4	(Moses et al., 2024)

Table S4. Experimental solution conditions and radii of gyration of IDPs included in the validation set.

Protein	N	$R_g \pm \text{Err}$ [nm]	T [K]	c_s [M]	pH	Ref.
ChiZ164	67	2.42 ± 0.01	293.00	0.0650	7.0	(Hicks <i>et al.</i> , 2020)
DomainV	67	2.43 ± 0.024	288.15	0.1985	7.0	(Chan-Yao-Chong <i>et al.</i> , 2019)
DSS1	71	2.5 ± 0.1	288.00	0.1700	7.4	(Pesce <i>et al.</i> , 2023)
BMAL1P624A	98	2.77 ± 0.09	283.25	0.1540	7.2	(Garg <i>et al.</i> , 2019)
VWF	103	3.08 ± 0.03	293.00	0.1530	7.4	(del Amo-Maestro <i>et al.</i> , 2021)
p27Cv56	107	2.328 ± 0.1	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
p27Cv14	107	2.936 ± 0.13	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
p27Cv78	107	2.211 ± 0.03	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
p27Cv31	107	2.81 ± 0.18	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
p27Cv44	107	2.492 ± 0.13	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
p27Cv15	107	2.915 ± 0.1	293.00	0.0950	7.2	(Das <i>et al.</i> , 2016)
PTMA	111	3.7 ± 0.2	288.00	0.1600	7.4	(Pesce <i>et al.</i> , 2023)
GON7	114	3.18 ± 0.04	283.00	0.2110	6.5	(Arrondel <i>et al.</i> , 2019)
NHE6cmdd	116	3.2 ± 0.2	288.00	0.1700	7.4	(Pesce <i>et al.</i> , 2023)
hKISS1	120	3.47 ± 0.05	283.15	0.1590	7.0	(Ibáñez de Opakua <i>et al.</i> , 2017)
TtASR1	141	3.31 ± 0.08	293.15	0.1500	7.3	(Hamdi <i>et al.</i> , 2017)
HvASR1	143	3.51 ± 0.09	293.15	0.1500	7.3	(Hamdi <i>et al.</i> , 2017)
TIF2NRID	150	3.74 ± 0.092	283.15	0.1750	6.8	(Senicourt <i>et al.</i> , 2021)
ED4	163	4.06 ± 0.11	293.15	0.1530	7.4	(Gondelaud <i>et al.</i> , 2021)
ANAC046	167	3.6 ± 0.3	298.00	0.1400	7.0	(Pesce <i>et al.</i> , 2023)
PARCL	180	3.43 ± 0.065	293.15	0.1700	7.5	(Ostendorp <i>et al.</i> , 2022)
N_FATZ1	191	3.45 ± 0.062	293.15	0.1920	7.5	(Sponga <i>et al.</i> , 2021)
D91_FATZ1	209	4.0 ± 0.1	293.00	0.1800	7.5	(Sponga <i>et al.</i> , 2021)
cDAXX	246	4.75 ± 0.05	293.00	0.1300	8.0	(Schmit <i>et al.</i> , 2019)
ED3	373	6.51 ± 0.15	293.15	0.1530	7.4	(Gondelaud <i>et al.</i> , 2021)

Table S5. Experimental solution conditions and radii of gyration of MDPs included in the validation set.

Protein	N	$R_g \pm \text{Err}$ [nm]	T [K]	c_s [M]	pH	Ref.
SH4UD_SH3_SH2	264	3.28 ± 0.06	293.15	0.216	8.0	(Gurumoorthy <i>et al.</i> , 2023)
H46	381	4.15 ± 0.05	283.00	0.163	6.5	(Elena-Real <i>et al.</i> , 2023)
TDP43W2A	415	4.11 ± 0.04	293.15	0.312	8.0	(Wright <i>et al.</i> , 2020)
PCPE	424	4.04 ± 0.11	293.15	0.506	7.4	(Bernocco <i>et al.</i> , 2003)
NIV_V	457	6.97 ± 0.02	293.15	0.232	8.0	(Salladini <i>et al.</i> , 2017)
HeV_V	458	6.86 ± 0.03	293.15	0.232	8.0	(Salladini <i>et al.</i> , 2017)
D14	483	3.9 ± 0.17	283.15	0.156	7.5	(Hajizadeh <i>et al.</i> , 2018)
S4FL	552	4.7 ± 0.1	283.15	0.169	7.2	(Gomes <i>et al.</i> , 2021)
ChiAM	682	4.73 ± 0.077	293.15	0.282	8.0	(Mazurkewich <i>et al.</i> , 2020)

Table S6. IDPs and experimental conditions used for slab simulations in this work.

Proteins	N	c_s [M]	pH	T [K]	$c_{sat,exp}$ [μ M]	Ref.
LAF1	176	0.15	7.5	293	44.0	(Schuster et al., 2020)
LAF1D2130	166	0.15	7.5	293	275.0	(Schuster et al., 2020)
LAF1shuf	176	0.15	7.5	293	6.0	(Schuster et al., 2020)
A1S150	131	0.15	7.0	293	218.1	(Martin et al., 2021a)
A1S200	131	0.20	7.0	293	159.8	(Martin et al., 2021a)
A1S300	131	0.30	7.0	293	93.4	(Martin et al., 2021a)
A1S500	131	0.50	7.0	293	66.5	(Martin et al., 2021a)
-12F+12Y	137	0.15	7.0	293	60.3	(Bremer et al., 2022)
+4D	137	0.15	7.0	277	4.5	(Bremer et al., 2022)
-6R	137	0.15	7.0	277	7.1	(Bremer et al., 2022)
A1	137	0.15	7.0	293	102.2	(Bremer et al., 2022)
+2R	137	0.15	7.0	277	18.0	(Bremer et al., 2022)
+8D	137	0.15	7.0	277	18.7	(Bremer et al., 2022)
-14N+14Q	137	0.15	7.0	293	171.6	(Bremer et al., 2022)
-10G+10S	137	0.15	7.0	293	268.1	(Bremer et al., 2022)
+7F-7Y	137	0.15	7.0	293	209.0	(Bremer et al., 2022)
-20G+20S	137	0.15	7.0	293	469.4	(Bremer et al., 2022)
-23S+23T	137	0.15	7.0	293	342.2	(Bremer et al., 2022)
-8F+4Y	137	0.15	7.0	277	63.2	(Bremer et al., 2022)
-3R+3K	137	0.15	7.0	277	83.1	(Bremer et al., 2022)
-4D	137	0.15	7.0	277	88.8	(Bremer et al., 2022)
-9F+3Y	137	0.15	7.0	277	115.0	(Bremer et al., 2022)
+23G-23S	137	0.15	7.0	293	46.1	(Bremer et al., 2022)
+23G-23S+7F-7Y	137	0.15	7.0	293	194.0	(Bremer et al., 2022)
+23G-23S-12F+12Y	137	0.15	7.0	293	6.5	(Bremer et al., 2022)
-30G+30S	137	0.15	7.0	293	841.8	(Bremer et al., 2022)
FUS	163	0.15	5.5	297	105.0	(Murthy et al., 2019)
A2	155	0.01	5.5	297	15.0	(Ryan et al., 2021)
Ddx4WT	236	0.13	6.5	297	230.0	(Brady et al., 2017)
allF	137	0.15	7.0	293	250.0	(Alshareedah et al., 2023)
allY	137	0.15	7.0	293	85.0	(Alshareedah et al., 2023)
allW	137	0.15	7.0	293	1.0	(Alshareedah et al., 2023)
FUS_long	216	0.15	7.0	285	46	(Farag et al., 2023)

Table S7. Multi-domain proteins and experimental conditions used for slab simulations in this work.

Proteins	N	c_s [M]	pH	T [K]	$c_{sat,exp}$ [μ M]	Box [nm]	Ref.
hnRNPA1*	314	0.15	7.5	293	173.0	[20, 20, 270]	(Martin et al., 2021b)
hnRNPA3	381	0.116	7.4	298	6	[25, 25, 190]	(Kar et al., 2022)
hSUMO_hnRNPA1*	433	0.15	7.5	293	136.2	[25, 25, 190]	(Martin et al., 2021b)
FL_FUS	526	0.15	7.4	293	5.5	[20, 20, 270]	(Wang et al., 2018)
GFP_FUS	764	0.15	7.4	293	4.9	[25, 25, 300]	(Wang et al., 2018)
SNAP_FUS	708	0.15	7.4	293	5.9	[25, 25, 300]	(Wang et al., 2018)
SNAP_FUS_PLDY2F_RBDR2K	710	0.15	7.4	293	69.4	[29, 29, 340]	(Wang et al., 2018)
SNAP_FUS_PLDY2F	710	0.15	7.4	293	36.6	[25, 25, 300]	(Wang et al., 2018)
FUS_PLDY2F_RBDR2K	528	0.15	7.4	293	32.0	[25, 25, 340]	(Wang et al., 2018)

Table S8. Domain boundaries of MDPs used in this study for the Bayesian parameter-learning procedure and validation. Brackets indicate the first and last residue of the domain, respectively. Nested brackets indicate subdomains (restrained) separated by long linkers (unrestrained).

Protein	N	Domain 1	Domain 2	Domain 3	Domain 4	Domain 5	Domain 6	Domain 7
THB_C2	137	[6, 42]	[50, 137]					
Ubq2	162	[11, 82]	[87, 158]					
Ubq3	228	[1, 72]	[77, 148]	[153, 224]				
Gal3	250	[117, 250]						
SH4UD_SH3_SH2	264	[94, 150]	[166, 258]					
TIA1	275	[6, 82]	[95, 172]	[190, 275]				
Ubq4	304	[1, 72]	[77, 148]	[153, 224]	[229, 300]			
hnRNPA1*	314	[11, 89]	[105, 179]					
H46	381	[140, 355]						
TDP43W2A	415	[5, 77]	[107, 177]	[193, 260]	[321, 329]			
PCPE	424	[12, 125]	[134, 249]	[293, 412]				
hSUMO_hnRNPA1*	433	[44, 114]	[132, 209]	[224, 298]				
NiV_V	457	[406, 457]						
HeV_V	458	[404, 456]						
GS0	470	[1, 226]	[256, 470]					
D14	483	[31, 121]	[157, 246]	[265, 354]	[400, 479]			
GS8	486	[1, 226]	[272, 486]					
hSUMO_TIA1PrLD	492	[32, 102]	[114, 186]	[212, 287]	[321, 389]			
GS16	502	[1, 226]	[288, 502]					
GS24	518	[1, 226]	[304, 518]					
FL_FUS	526	[286, 368]	[423, 451]					
FUS_PLDY2F_RBDR2K	528	[288, 370]	[425, 453]					
GS32	534	[1, 226]	[320, 534]					
S4FL	552	[15, 138]	[[287, 294], [323, 466], [492, 542]]					
GS48	566	[1, 226]	[352, 566]					
ChiAM	682	[8, 89]	[92, 172]	[178, 257]	[266, 356]	[359, 462]	[471, 567]	[578, 668]
SNAP_FUS	708	[286, 368]	[423, 451]	[[537, 564], [586, 701]]				
SNAP_FUS_PLDY2F_RBDR2K	710	[288, 370]	[425, 453]	[[539, 566], [588, 703]]				
SNAP_FUS_PLDY2F	710	[288, 370]	[425, 453]	[[539, 566], [588, 703]]				
GFP_FUS	764	[286, 368]	[423, 451]	[529, 755]				

Table S9. Analysis of the system size effects on slab simulation of hnRNPA1*. The protein concentration is fixed throughout all simulation configurations and is above the experimental saturation concentration. ND: In simulations with 150 chains and box size [11.0, 11.0, 900] nm we did not observe a stable condensed phase.

	Number of chains & Box size [nm]	Simulation length [μs]	Dilute phase conc. [mM]	Dense phase conc. [mM]
Varying (L_x, L_y)	45 chains & [11.0, 11.0, 270]	10	0.3±0.1	12.0±0.2
	75 chains & [14.1, 14.1, 270]	10	0.19±0.02	12.62±0.02
	300 chains & [28.3, 28.3, 270]	10	0.18±0.01	12.37±0.02
	450 chains & [34.6, 34.6, 270]	5	0.104±0.008	12.32±0.02
Varying L_z	45 chains & [20.0, 20.0, 81]	10	0.16±0.02	11.62±0.05
	75 chains & [20.0, 20.0, 135]	10	0.15±0.01	12.34±0.03
	300 chains & [20.0, 20.0, 540]	10	0.10±0.01	12.51±0.02
	450 chains & [20.0, 20.0, 810]	5	0.08±0.01	12.48±0.03
Varying (L_x, L_y, L_z)	150 chains & [11.0, 11.0, 900]	10	ND	ND
	150 chains & [14.1, 14.1, 540]	10	0.17±0.03	12.5±0.1
	150 chains & [28.3, 28.3, 135]	10	0.16±0.01	12.11±0.03
	150 chains & [34.6, 34.6, 90]	10	0.17±0.01	10.79±0.06

Table S10. Summary of CALVADOS models. The number of IDPs and MDPs, and cutoff distance for the AH potential used during optimization, cutoff distance of AH potential for validation (production) simulations, and references are shown.

models	IDPs	MDPs	cutoff_optimization [nm]	cutoff_production [nm]	Ref.
CALVADOS 1	48	0	4.0	4.0	(Tesei <i>et al.</i> , 2021b)
CALVADOS 2	56	0	2.4	2.0	(Tesei and Lindorff-Larsen, 2023)
CALVADOS 3 (CALVADOS3 _{COM})	56	14	2.2	2.0	this study

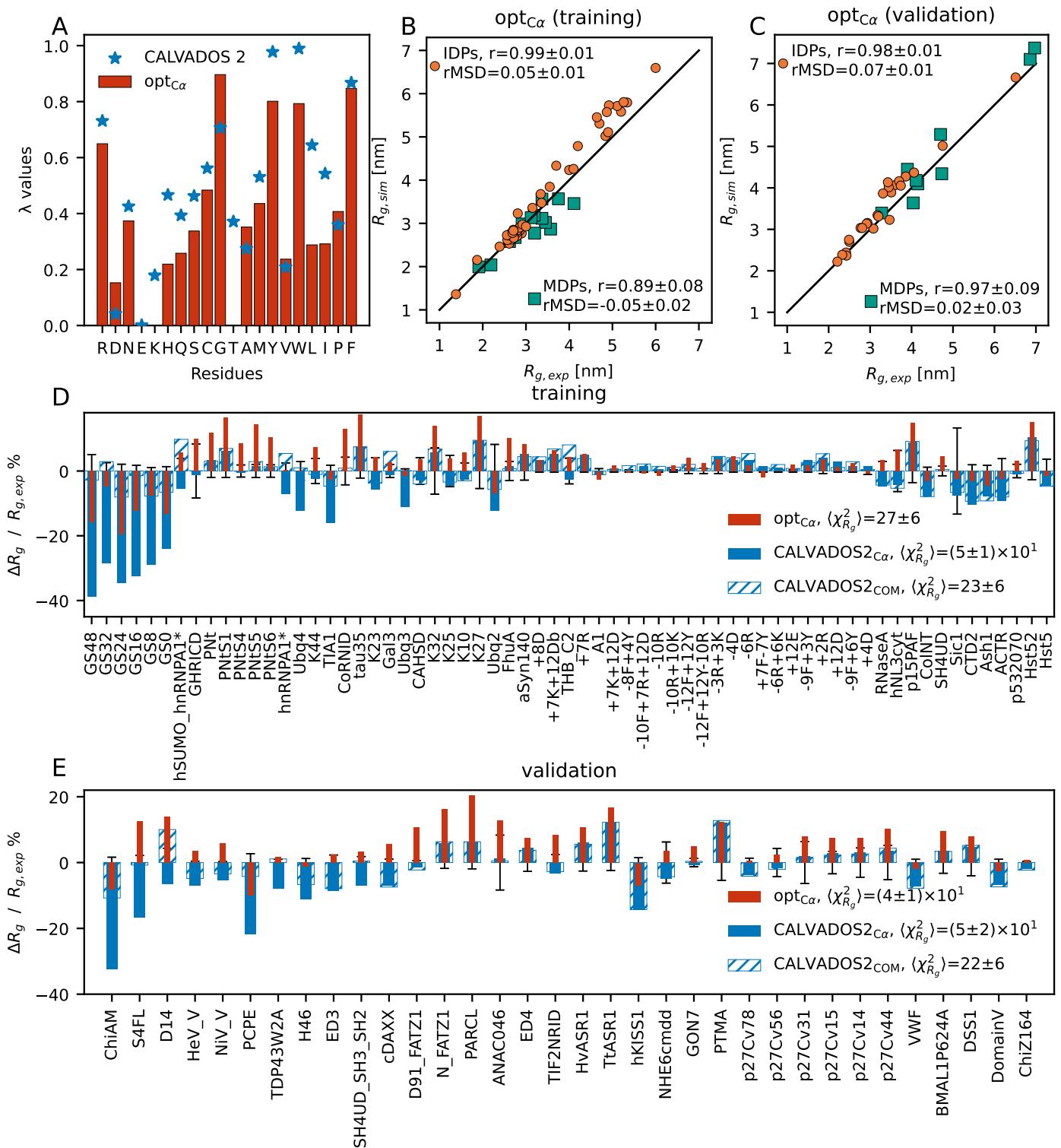


Figure S1. Optimizing the λ parameters using a $C\alpha$ representation for folded domains. (A) Comparison between λ values from CALVADOS 2 (blue) and $\text{opt}_{C\alpha}$ (red). Comparison between simulated and experimental R_g values for IDPs (orange) and MDPs (green) using $\text{opt}_{C\alpha}$ in (B) the training set and (C) the validation set. Pearson correlation coefficients (r) and rMSD are reported in the legend. The black diagonal lines indicate $y = x$. Relative difference between experimental and simulated R_g values from $\text{opt}_{C\alpha}$ (red), CALVADOS2 $_{C\alpha}$ (blue) and CALVADOS2 $_{\text{COM}}$ (blue hatched) in (D) the training set and (E) the validation set. $\langle \chi^2_{R_g} \rangle$ values across IDPs and MDPs are reported in the legend. Error bars show the experimental error divided by $R_{g, \text{exp}}$. Results from CALVADOS2 $_{C\alpha}$ and CALVADOS2 $_{\text{COM}}$ are presented as the same data in [Figure S4](#) and [Figure 3](#).

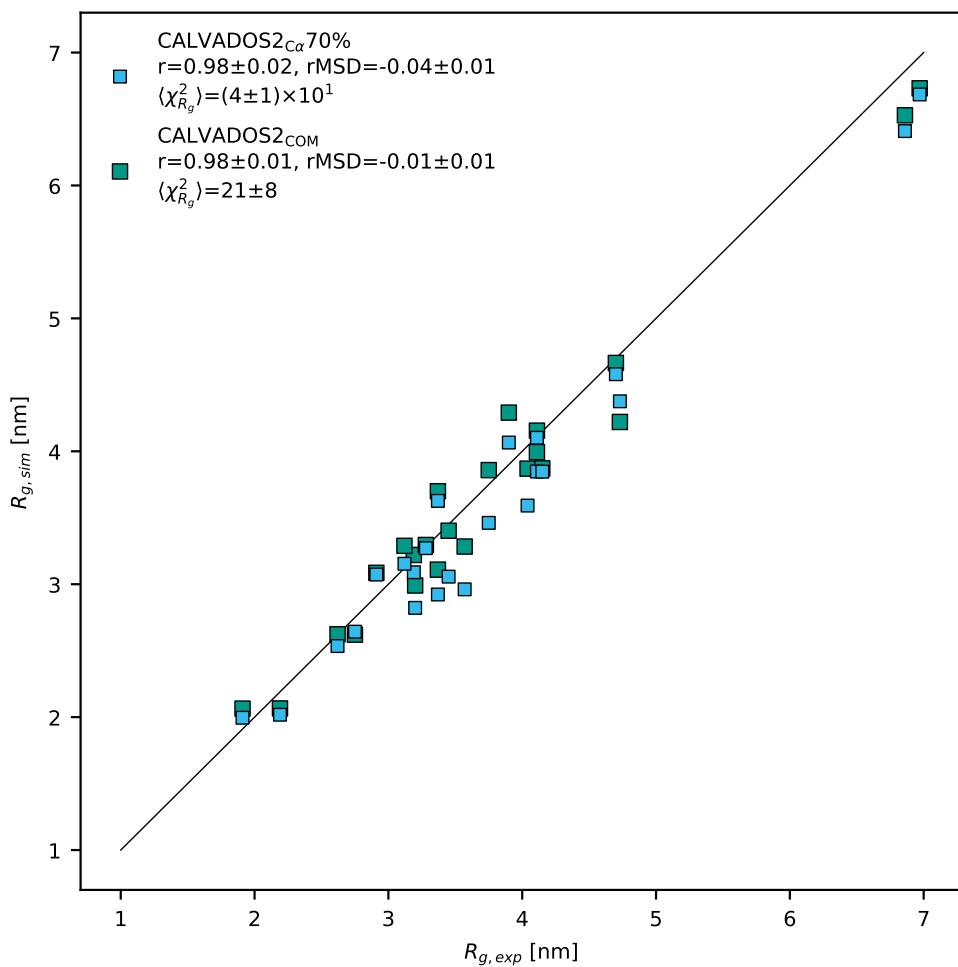


Figure S2. Comparison between simulated and experimental R_g values for all MDPs in the training and validation set using $CALVADOS2_{C\alpha} 70\%$ (cyan) and $CALVADOS2_{COM}$ (green). Pearson correlation coefficients (r), rMSD and $\langle \chi^2_{R_g} \rangle$ values are reported in the legend. The black diagonal line indicates $y = x$.

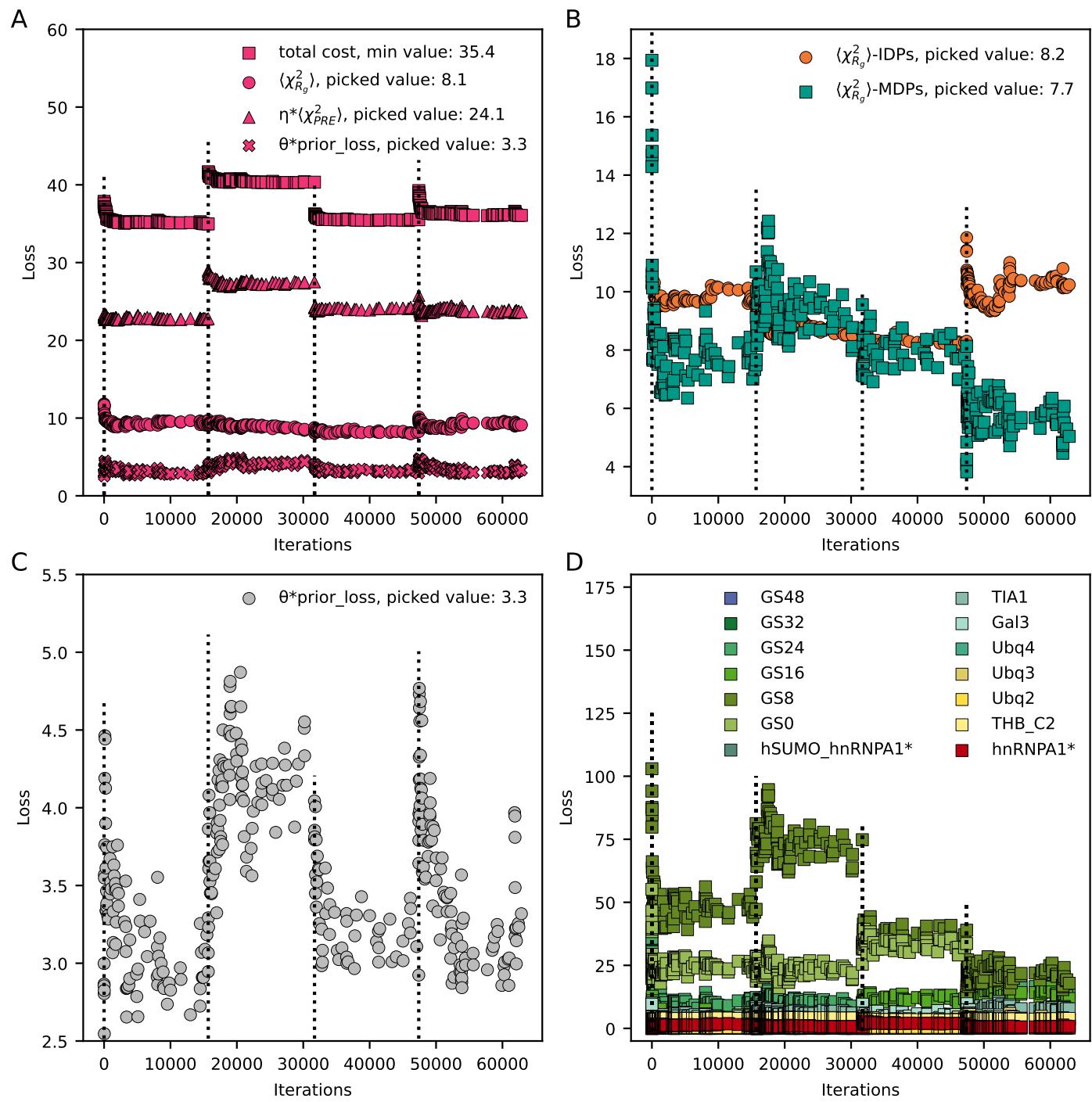


Figure S3. Optimization based on COM representation. The dotted lines indicate the starting points for each cycle. The minimal total cost was used to determine the final λ set and the corresponding values of each term are shown in the legends. (A) Evolution of the total cost (square), $\langle \chi_{R_g}^2 \rangle$ (circle), $\eta^* \langle \chi_{PRE}^2 \rangle$ (triangle) and prior loss (cross) in the optimization, with $\theta = 0.08$ and $\eta = 0.1$. (B) Evolution of $\langle \chi_{R_g}^2 \rangle$ contributed from IDPs (orange) and MDPs (green), respectively. (C) Evolution of prior loss. (D) Evolution of $\chi_{R_g}^2$ for each MDP during optimization.

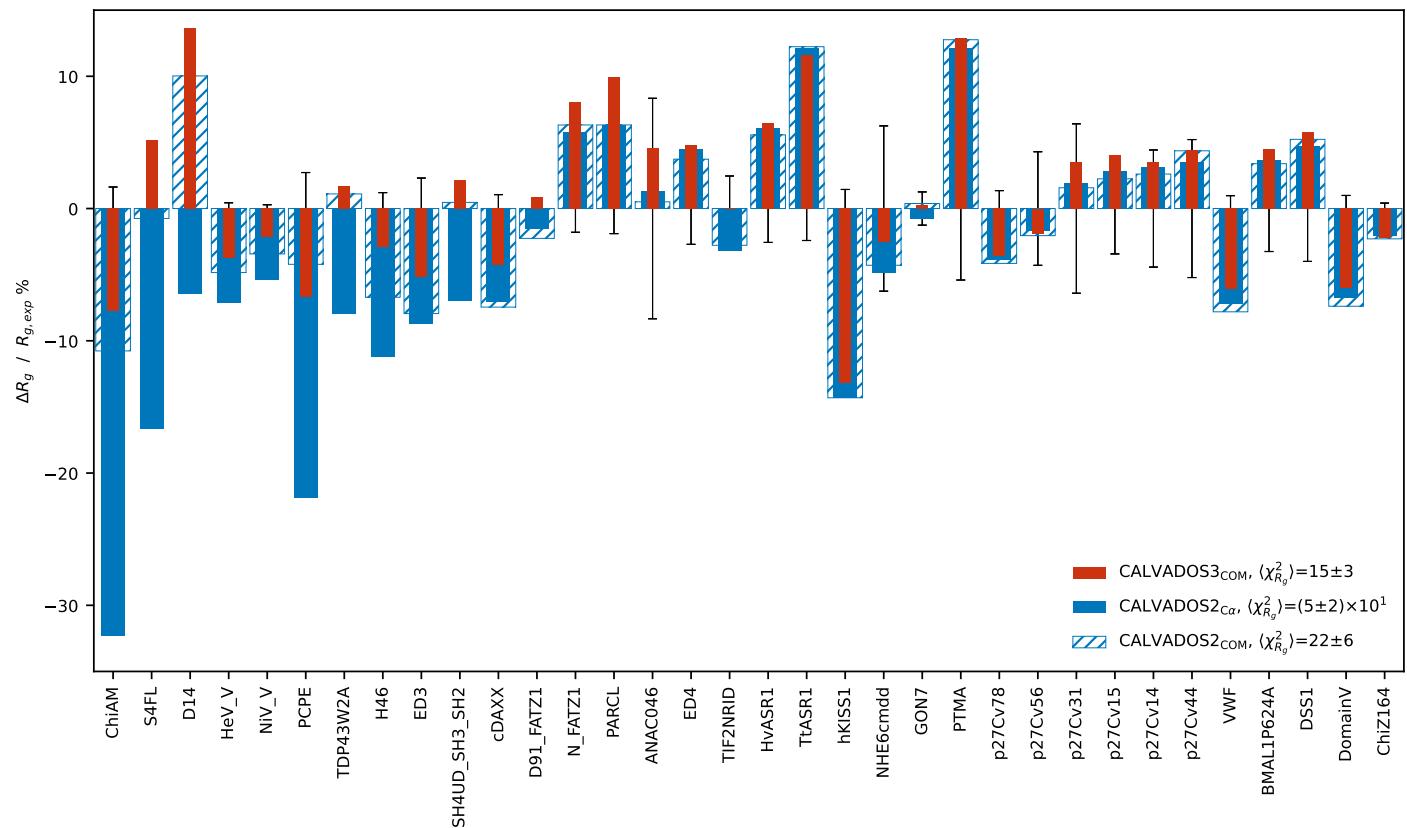


Figure S4. Relative difference between experimental and simulated R_g values from CALVADOS3_{COM} (red), CALVADOS2_{C α} (blue) and CALVADOS2_{COM} (blue hatched). $\langle \chi^2_{R_g} \rangle$ values across IDPs and MDPs in validation set are reported in the legend. Error bars show the experimental error divided by $R_{g, \text{exp}}$.

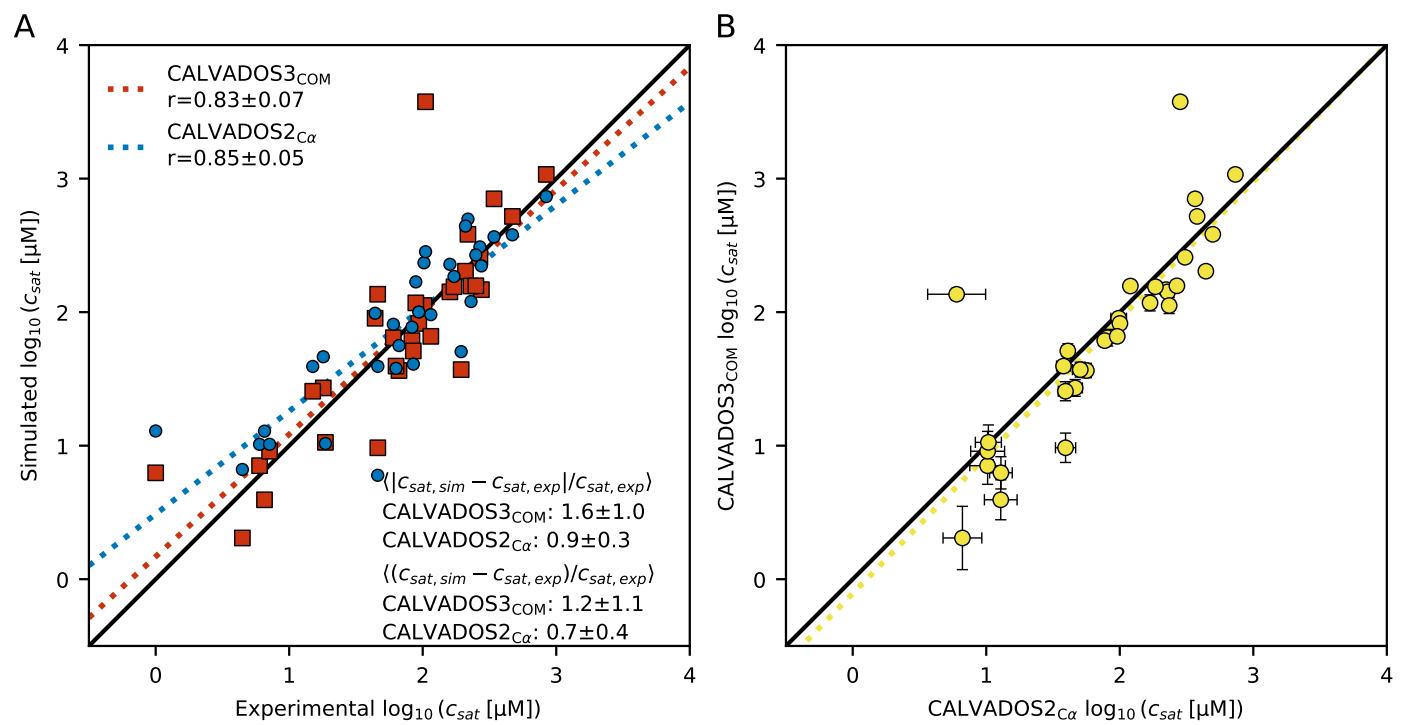


Figure S5. (A) Correlation between c_{sat} from simulations yielded by CALVADOS3_{COM} (red) or CALVADOS2_{C α} (blue) and experiments for IDPs. (B) Correlation of simulated c_{sat} between CALVADOS3_{COM} and CALVADOS2_{C α} for the same set of IDPs. Error bars show the error propagation with logarithm from simulated c_{sat} . The black diagonal lines indicate $y = x$. The dotted lines indicate the corresponding linear regression.

CALVADOS3_{COM}

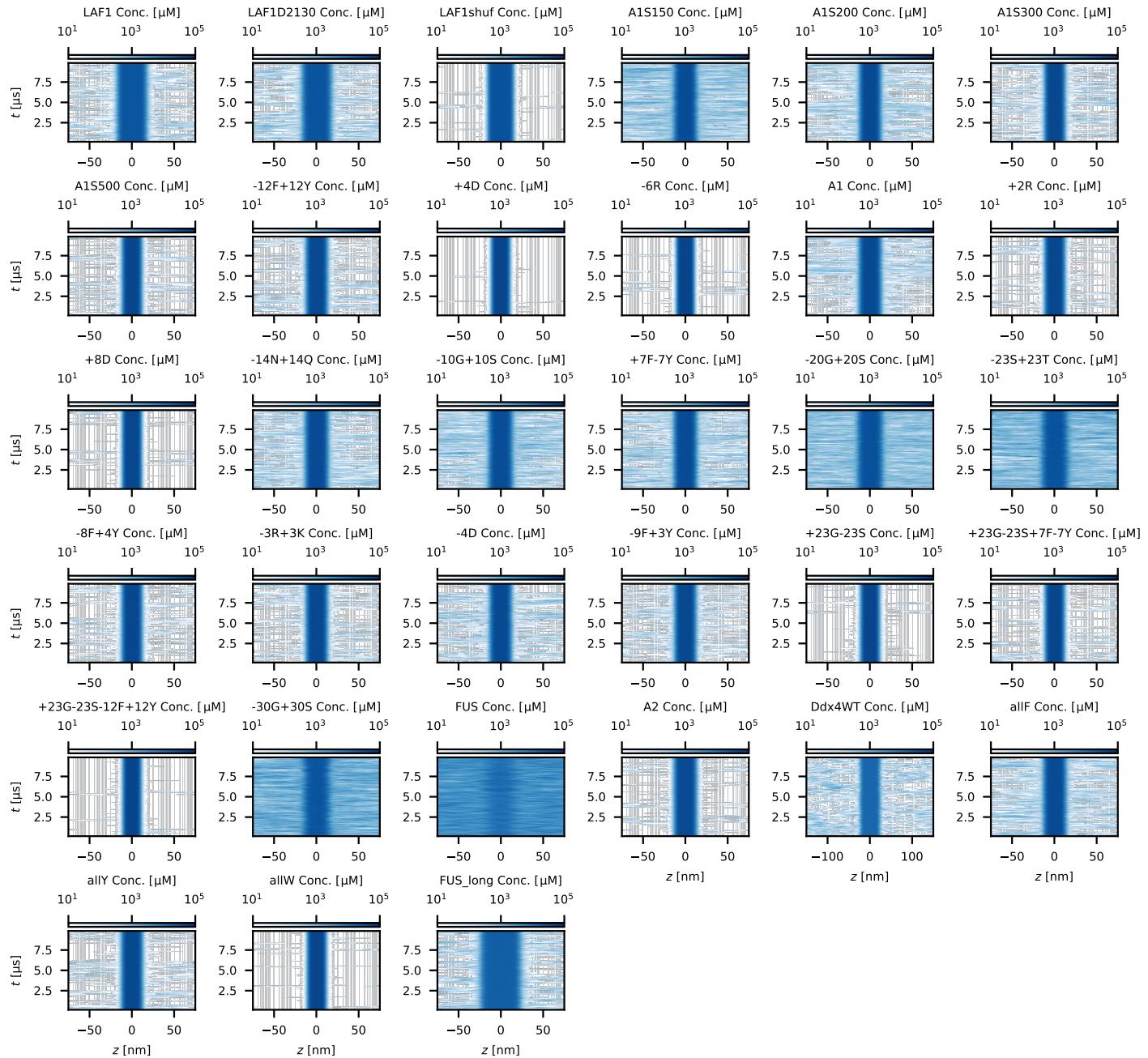


Figure S6. Time evolution of the protein concentration profiles from slab simulations of 33 IDPs using CALVADOS3_{COM} parameters. A more intense colour intensity indicates higher protein concentration.

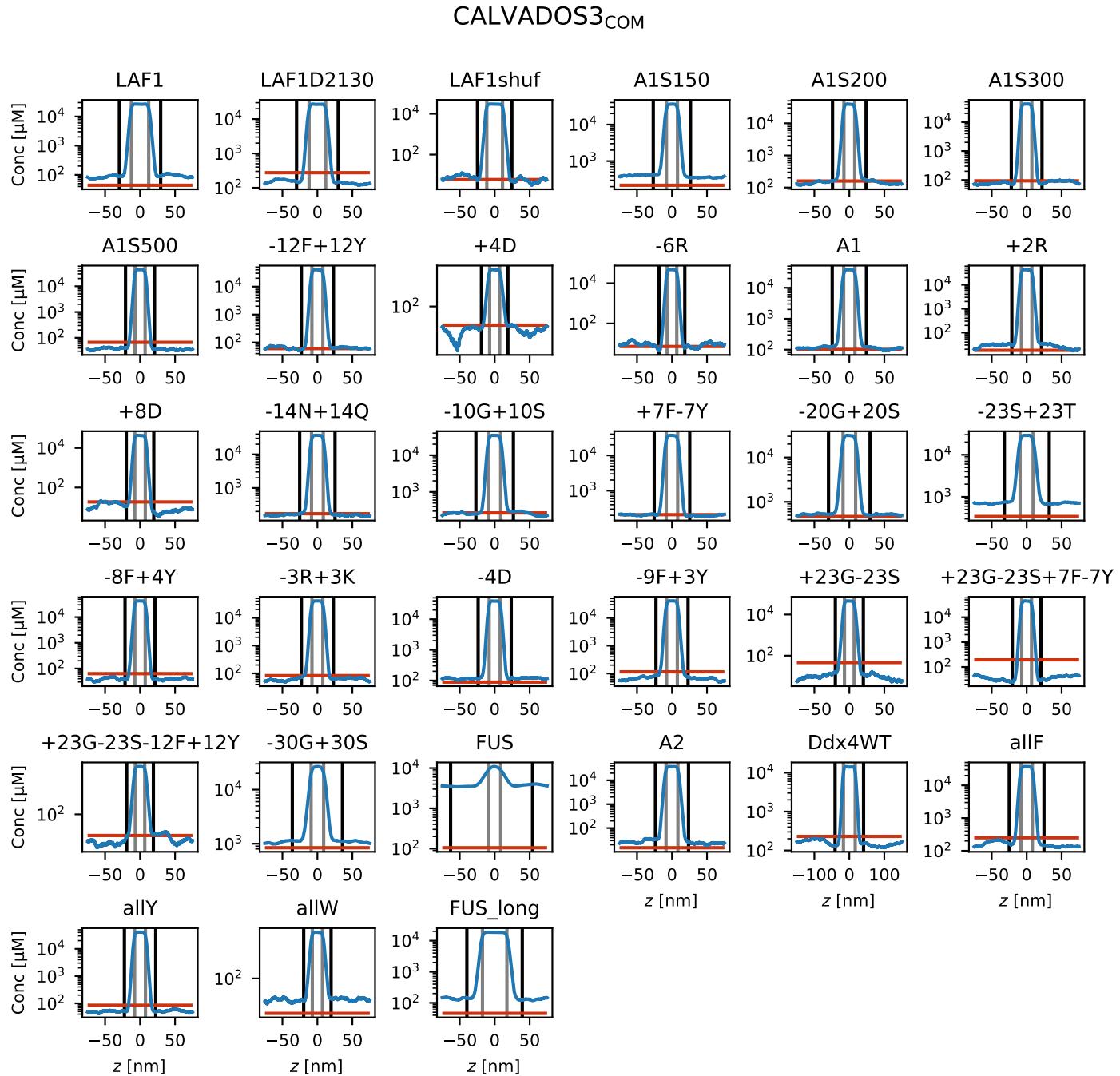


Figure S7. Equilibrium density profiles of slab simulations of 33 IDPs using CALVADOS3_{COM}. The red horizontal lines indicate experimental saturation concentrations.

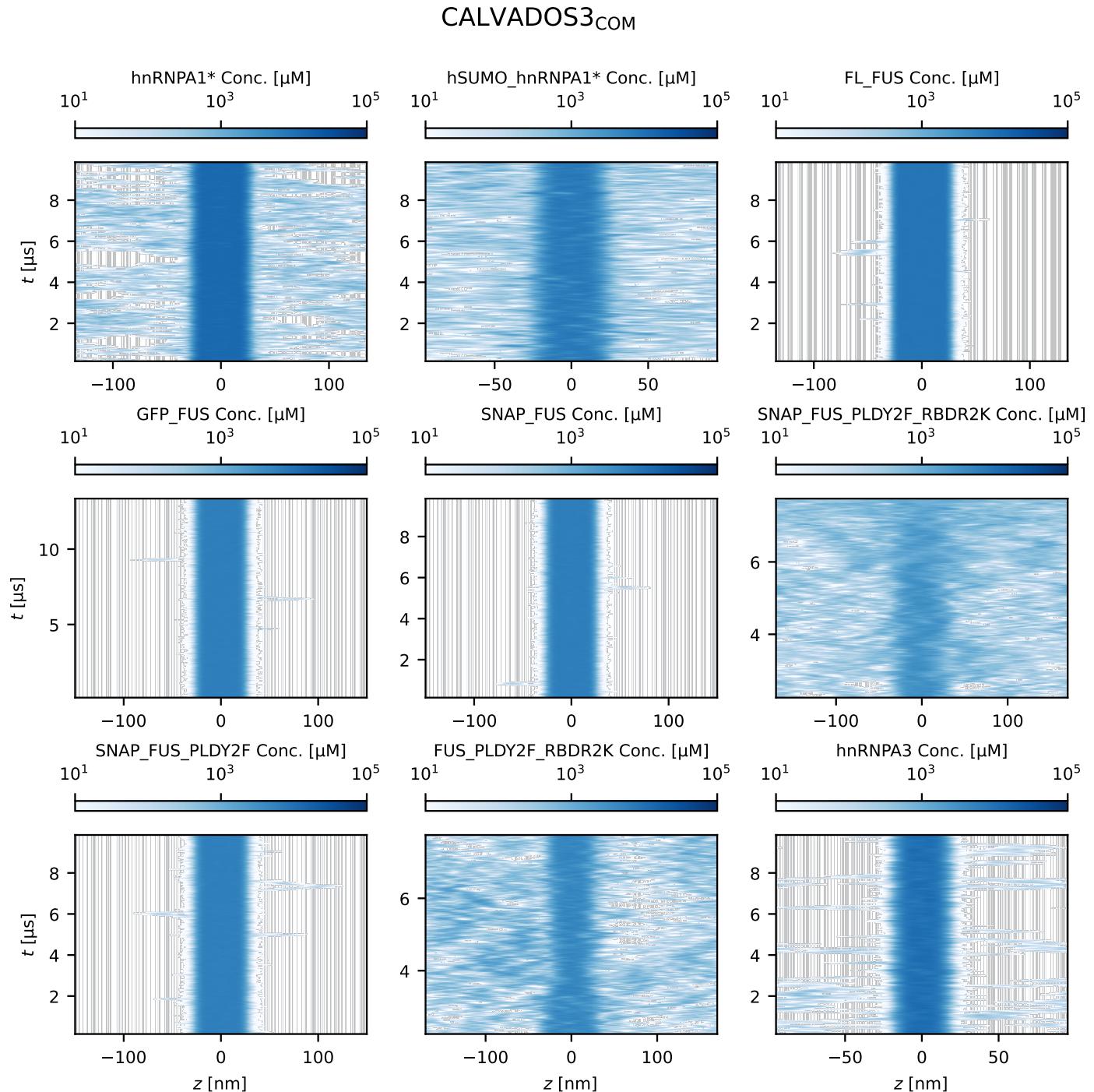


Figure S8. Time evolution of the protein concentration profiles from slab simulations of 9 MDPs using CALVADOS3_{COM} parameters. A more intense colour intensity indicates higher protein concentration.

CALVADOS3_{COM}

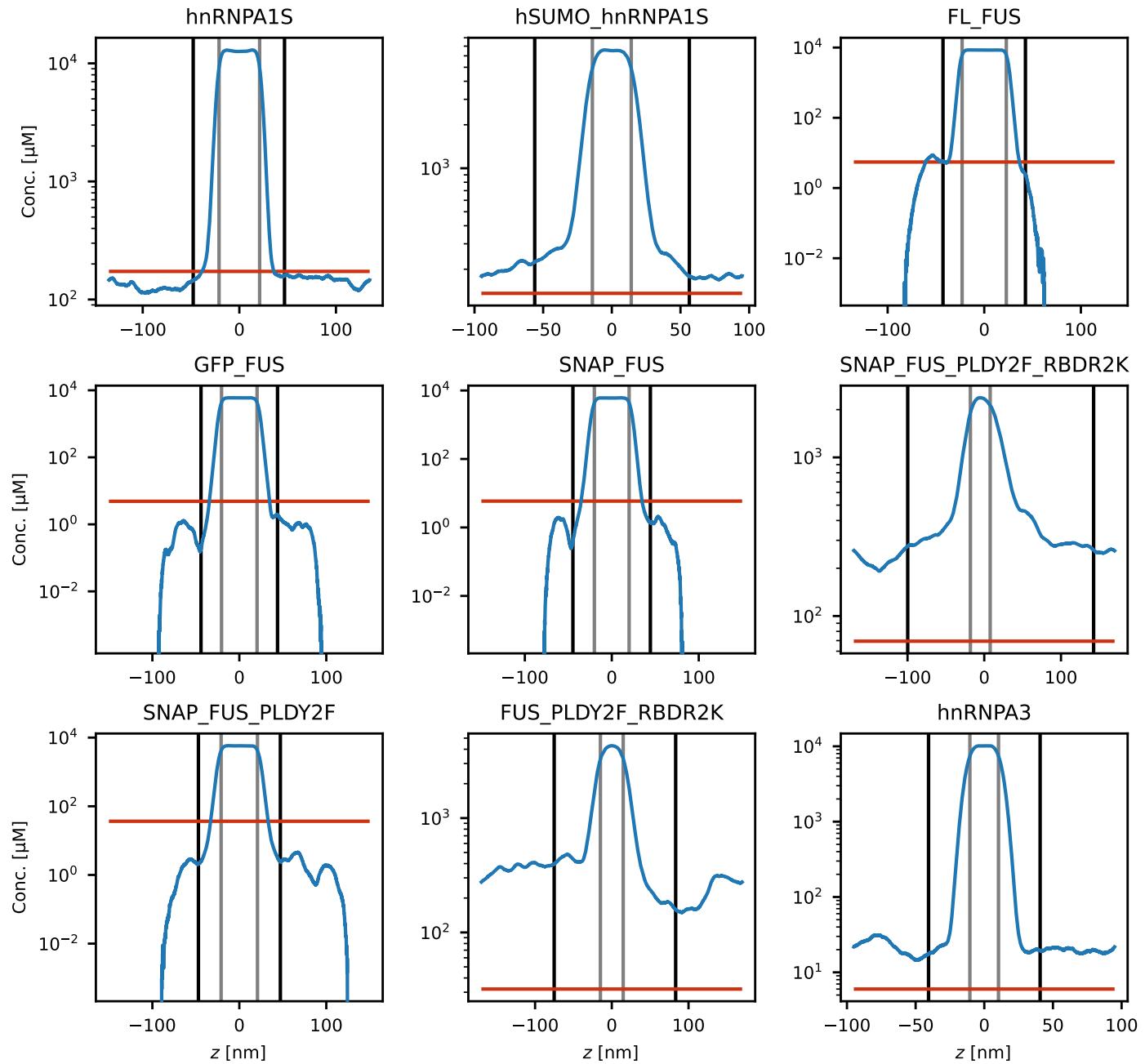


Figure S9. Equilibrium density profiles of slab simulations of nine MDPs using CALVADOS3_{COM}. The red horizontal lines indicate experimental saturation concentrations.

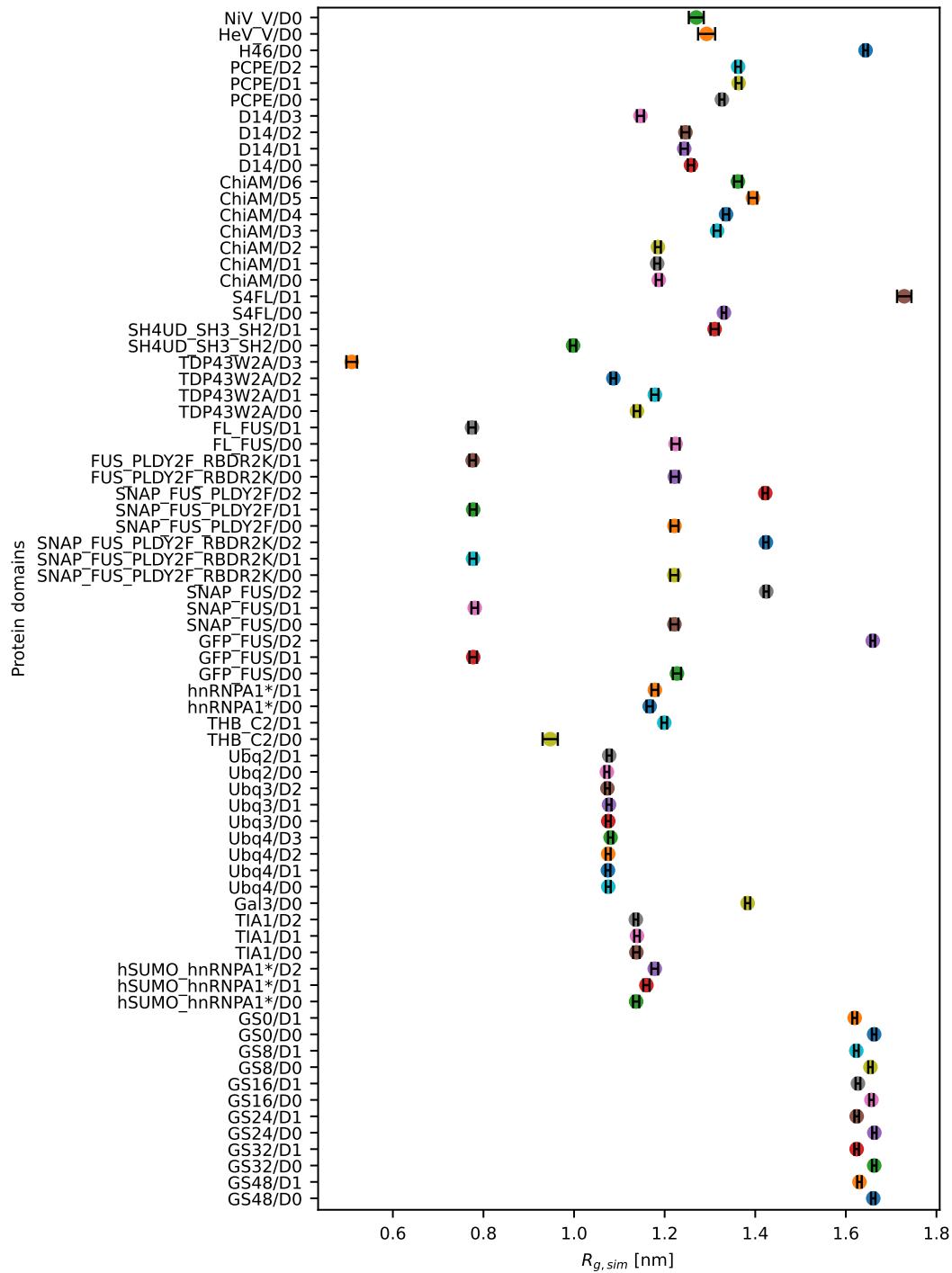


Figure S10. Simulated R_g of domains restrained by elastic network model. Domains in a protein are indicated by D0, D1, D2, etc. Multi-domain proteins in the training set, validation set and slab simulations set are shown.

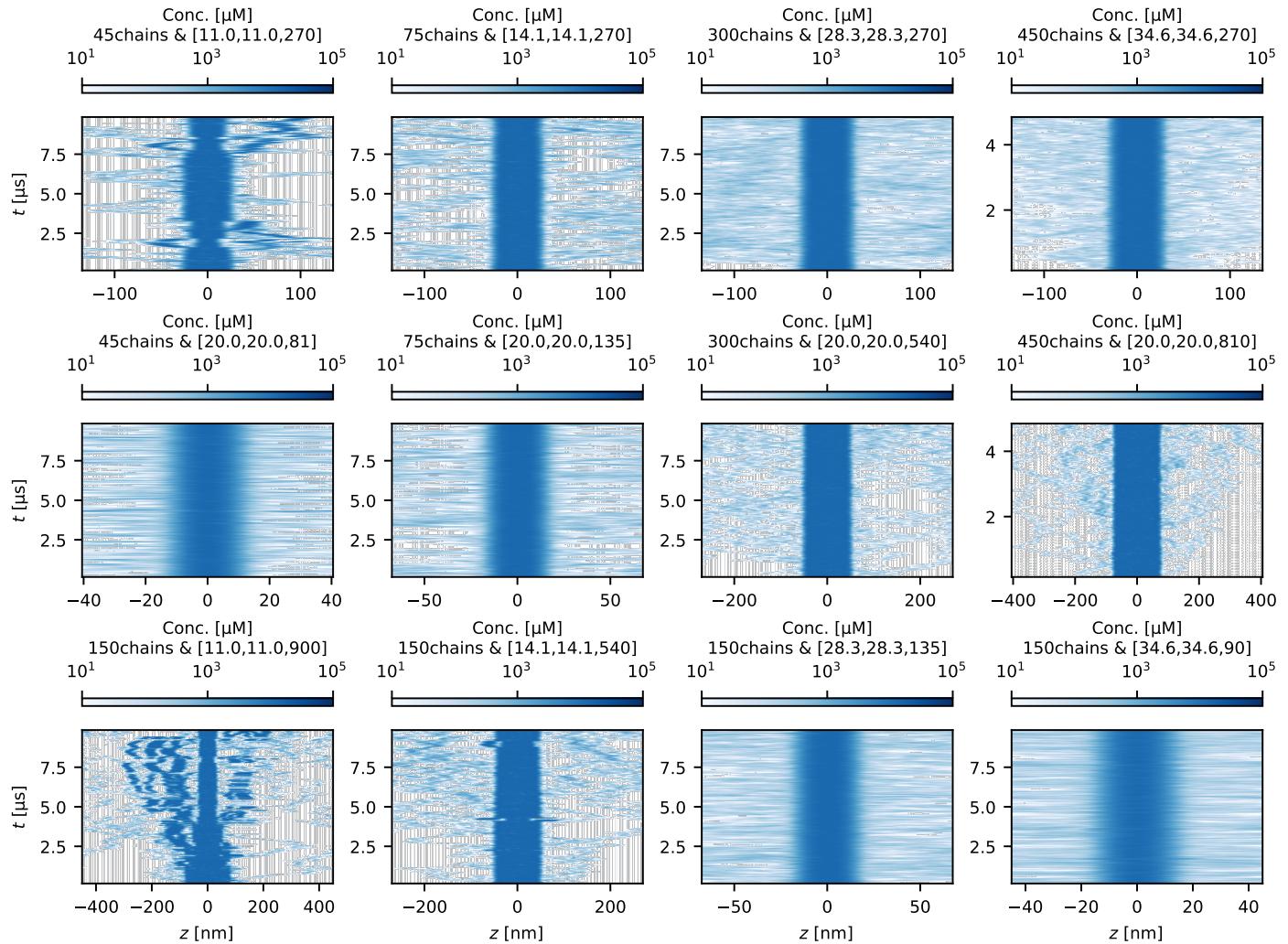


Figure S11. Time evolution of the protein concentration profiles from slab simulations of hnRNPA1* using CALVADOS3_{COM} parameters for analysis of finite-size effects. A more intense colour intensity indicates higher protein concentration. The units of the box sizes are nm.

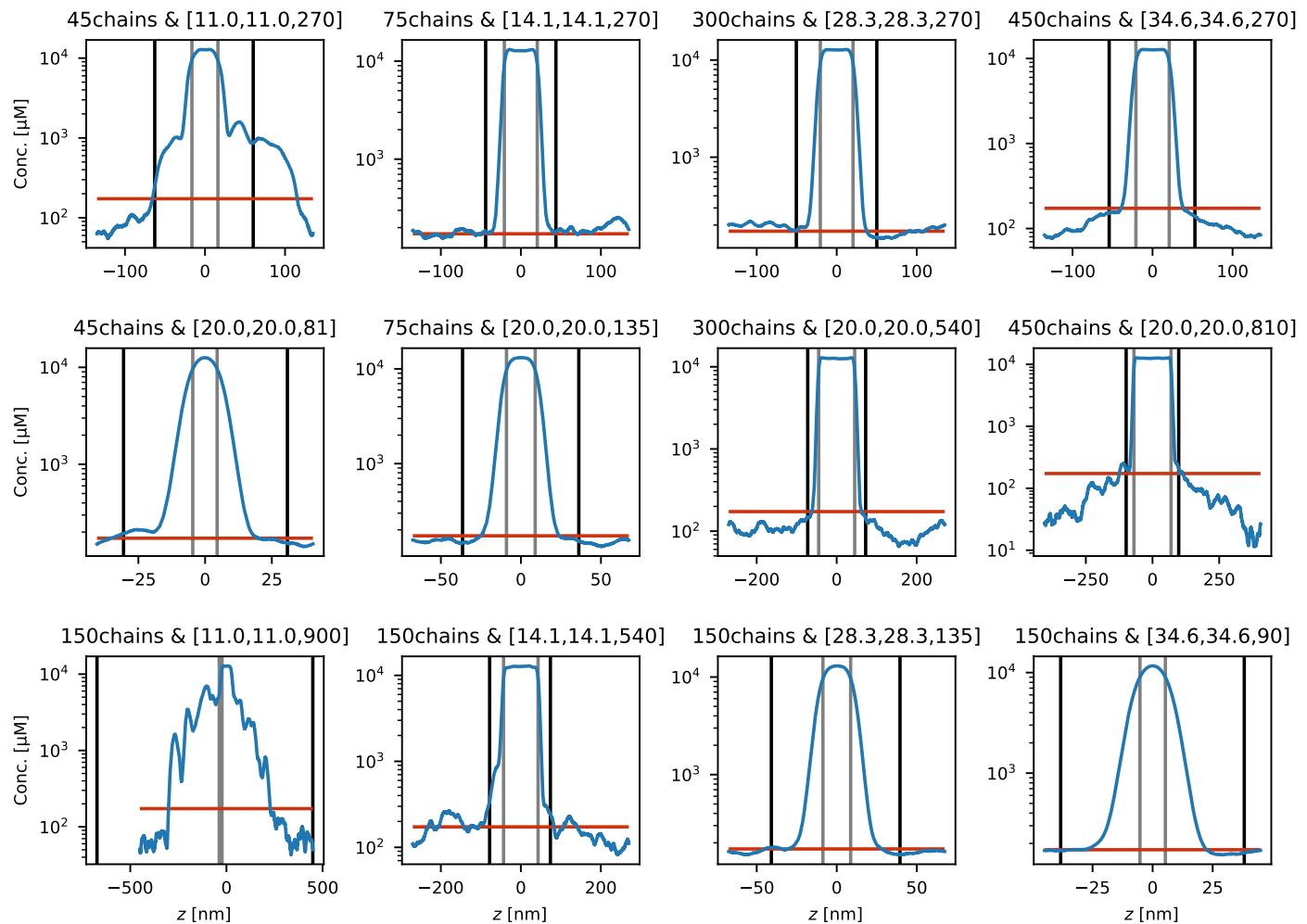


Figure S12. Equilibrium density profiles of slab simulations of hnRNPA1* using CALVADOS3_{COM} for analysis of finite-size effects. The red horizontal lines indicate experimental saturation concentrations. The units of the box sizes are nm.

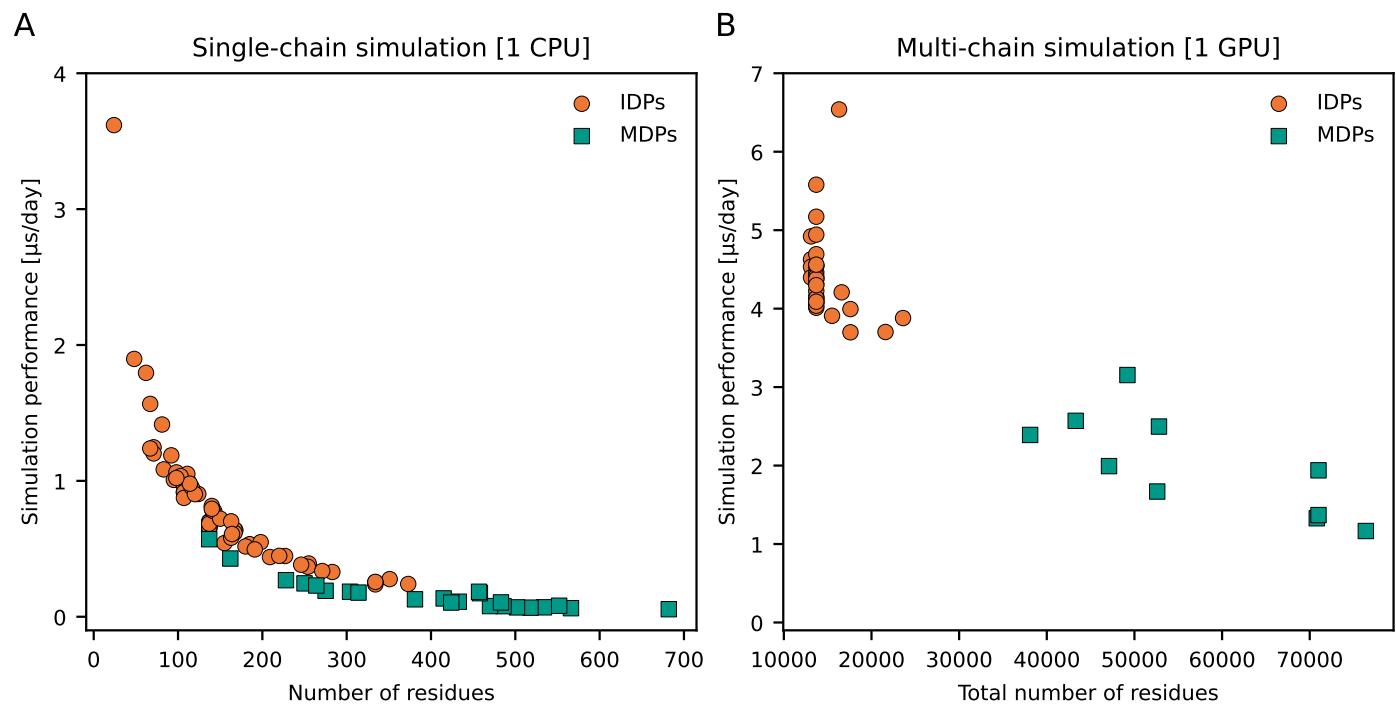


Figure S13. Simulation performance of CALVADOS 3 model on IDPs (orange) and MDPs (green) for (A) single-chain simulations on an Intel Xeon Gold 6130 CPU and (B) multi-chain simulations on an NVIDIA Tesla V100 GPU.