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Abstract Many proteins contain more than one folded domain, and such modular multi-domain proteins
help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics,
it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations.
Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an
accurate description of the global conformational properties in solution. We show that the accuracy of a
one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are
represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at
the position of the C, atoms. We also show that if the interaction sites are located at the centre of mass of the
residue, we obtain good agreement between simulations and experiments across a wide range of proteins.
We then optimize our previously described CALVADOS model using this centre-of-mass representation, and
validate the resulting model using independent data. Finally, we use our revised model to simulate phase
separation of both disordered and multi-domain proteins, and to examine how the stability of folded
domains may differ between the dilute and dense phases. Our results provide a starting point for
understanding interactions between folded and disordered regions in proteins, and how these regions affect
the propensity of proteins to self-associate and undergo phase separation.

Introduction

Multi-domain proteins (MDPs) consist of more than one folded domain that are often connected by linkers or
longer intrinsically disordered regions (IDRs), and make up a large fraction (around 50%) of the proteomes in
eukaryotic and prokaryotic organisms (Han et al., 2007; Van Der Lee et al., 2014). Like intrinsically disordered
proteins (IDPs), MDPs can display large-amplitude motions that may play prominent roles in biomolecular func-
tions like signalling, catalysis and regulation (Mackereth and Sattler, 2012; Van Der Lee et al., 2014; Delaforge
et al., 2016; Bondos et al., 2021).

The biological functions of MDPs depend both on the properties of the folded domains and the disordered
regions, and so characterizing the conformational ensembles can be key to understanding how these proteins
function. In many cases, the folded and disordered regions are studied separately, but the folded domains
might affect the conformational properties of the disordered regions (Mittal et al., 2018; Taneja and Hole-
house, 2021) and the disordered regions may also affect the properties of the folded domains (Yu and Sukenik,
2023). For example, there is a complex interplay between the folded and disordered regions in the RNA-binding
protein hnRNPA1, that affects its conformational ensemble in solution and its propensity to undergo phase sep-
aration (Martin et al., 2021b). However, describing the conformational ensembles of MDPs in solution generally
requires a combination of biophysical experiments and molecular dynamics (MD) simulations (Thomasen and
Lindorff-Larsen, 2022).

All-atom MD simulations have been used to generate conformational ensembles of IDPs and MDPs and
to study intra- and inter-domain interactions (Zheng et al., 2020; Sekiyama et al., 2022). Such simulations,
however, are often limited by the large system sizes and long time scales which limit efficient sampling of
these dynamic proteins. Coarse-grained (CG) models may increase the sampling efficiency by reducing the
number of particles in the simulation systems (Neri et al., 2005; Monticelli et al., 2008; Bereau and Deserno,
2009; Gopal et al., 2010). The accuracy, transferability, and efficiency of such models, however, depend on
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the degree of coarse-graining and the parameterization strategy (Heo and Feig, 2024). One commonly used
model is the Martini force field, which uses a four-to-one mapping scheme with explicit solvent (Souza et al.,
2021). Different versions of Martini have been modified to produce improved ensembles of IDPs and MDPs
(Benayad et al., 2020; Thomasen et al., 2022, 2023). For IDPs, there has in the last years been extensive work
using even coarser models where each amino acid residue is represented by a single bead. The interaction sites
are generally located at the C,, position and separated by bonds that are 0.38 nm long, and we therefore here
term these C, models. Several related models rely on a similar functional form to the HPS model introduced by
Dignon et al. (2018) and may include bonded terms, an Ashbaugh-Hatch potential (Ashbaugh and Hatch, 2008)
for shorter-range interactions and a Debye-Huckel electrostatic screening potential. Such models have for
example been used to study the conformational ensembles and interactions within and between IDPs (Dignon
et al., 2018; Joseph et al., 2021; Regy et al., 2021; Dannenhoffer-Lafage and Best, 2021; Wessén et al., 2022;
Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al., 2023).

Coarse-grained models developed for IDPs do not represent the stability of folded proteins well, because
the finely balanced energy contributions from individual backbone and side-chain interactions are not cap-
tured by the reduced representation. As a consequence, additional (often harmonic) restraints are applied
to maintain the folded configurations in folded proteins and MDPs (Souza et al., 2021; Borges-Aradjo et al.,
2023). Even when applying such restraints to models developed for IDPs, extra attention needs to be paid
to interactions related to folded domains since it is still unclear whether the models are fully transferable to
MDPs. In particular, C,-based one-bead-per-residue mappings do not account for the specific orientations of
side chains in folded proteins (Kolinski and Skolnick, 1998). For example, hydrophobic residues, whose side
chains are ‘tucked away' in the hydrophobic core of the protein, may be exposed at the surface of the protein
ina C, based representation. One approach to help overcome this problem is to use a different or scaled set of
force field parameters for interactions that involve folded regions (Kim and Hummer, 2008; Dignon et al., 2018;
Krainer et al., 2027). Another possible solution is the introduction of more terms in the energy function to
better describe long-range interactions (Li et al., 2012; Tan et al., 2023) or to introduce anisotropic interactions
(Sieradzan et al., 2022).

As an alternative, other coarse-grained models represent a residue by more than one bead to represent
backbone side chain orientations and interactions (Pappu et al., 1996; Hyeon et al., 2006; Maity et al., 2022;
Zhang et al., 2022; Sieradzan et al., 2022; Mugnai et al., 2023; Zhang et al., 2023; Yamada et al., 2023). In some
of these models, one bead is placed at C, and the other one is at the centre of mass (COM) of side chain atoms.
In this way, side chain interactions can be explicitly taken into account, improving the simulated dynamical
behaviour of folded protein simulations and model transferability. In previous studies, this strategy has been
used to study conformational ensembles of IDPs or unfolding pathways of proteins (Hyeon et al., 2006; Mugnai
et al., 2023). While effective, using multi-bead-per-residue models increases the time to sample configurations
in simulations, and requires the determination of a larger number of force field parameters.

We have previously developed and applied an automated procedure to optimize the ‘stickiness' parameters
(4) in a one-bead-per-residue model by improving the agreement with experimental small-angle X-ray scatter-
ing (SAXS) and paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) data for a large
set of IDPs (Norgaard et al., 2008; Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023). The most recent CALVA-
DOS (Coarse-graining Approach to Liquid-liquid phase separation Via an Automated Data-driven Optimisation
Scheme) model (CALVADOS 2) was further tuned to describe phase behaviour of multi-chain conformational
ensembles of IDPs from simulations by reducing the range of non-ionic interactions (Tesei and Lindorff-Larsen,
2023).

Here, we explore the use of the CALVADOS model for simulations of MDPs. We find that when the CAL-
VADOS 2 parameters are used in simulations of MDPs with interaction sites at the C, positions, the resulting
structures in some cases show excessive interactions between the folded domains, leading to compact en-
sembles that do not agree with SAXS data. To remedy this problem, we describe a strategy where interaction
sites in folded regions are located at the COM of the residue, and show that simulations with this model result
in substantially improved agreement with experiments. We optimize the parameters in CALVADOS using the
COM representation to derive a refined set of CALVADOS parameters (CALVADOS 3). When we combine the
COM representation of folded domains with harmonic restraints between residues in the folded domains and
the CALVADOS 3 parameters we obtain good agreement with experimental data on single-chain properties of
MDPs and IDPs. Finally, we show how this model may be used to study the interactions between folded and
disordered regions in proteins that undergo phase separation, and how the stability of folded domains might
change during phase separation.
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Figure 1. Simulations of MDPs and IDPs using a C, representation, COM representation or side-chain centre-of-mass (SCCOM) representation. Location of the
interaction sites in a g-sheet when using (A) a C, representation, (C) a COM representation, and (E) a SCCOM representation. Comparison between simulated and
experimental R, values for IDPs (orange) and MDPs (green) using (B) the CALVADOS2, model (CALVADOS 2 parameters and a C, representation for both folded and
disordered regions), (D) the CALVADOS2q,, model (CALVADOS 2 parameters and a COM representation for the interaction sites in the folded regions), and (F) the
CALVADOS2ccom model (CALVADOS 2 parameters and a SCCOM representation for the interaction sites in the folded regions). The region labelled ‘GS-proteins’ in
panel B contains a number of proteins consisting of pairs of g-sheet-rich fluorescent protein connected by glycine-serine linkers (Moses et al., 2024). Pearson
correlation coefficients () and relative mean signed deviation rMSD = ((Rgsim — Rgexp)/ Rgexp) are reported in the legend, and errors represent standard errors of the
mean calculated using bootstrapping. A negative rMSD value indicates that the calculated radii of gyration are systematically lower than the experimental values.
The black diagonal lines in panel B, D and F indicate y = x.

Results

A modified representation improves accuracy for multi-domain proteins

We first evaluated the accuracy of the original CALVADOS 2 model for simulations of MDPs. We therefore used
the CALVADOS 2 parameters (Tesei and Lindorff-Larsen, 2023) and a C, representation to run simulations of
56 IDPs and 14 MDPs (Table S1, Table S2, Table $3). In all systems, the interaction sites are located at the C,
positions in both folded and disordered regions; for the MDPs, we applied an additional elastic network model
to keep domains intact during simulations (Figure 1A, see Methods). We term this combination of the force
field parameters (CALVADOS 2) and the C, representation of the interaction sites in the folded domains as
CALVADOS2,. As expected and reported previously (Tesei and Lindorff-Larsen, 2023), we found that simula-
tions of IDPs with CALVADOS2, resulted in good agreement between experimental and calculated values of
R, (Figure 1B). In contrast, we found more substantial differences between experimental and calculated values
of R, for several MDPs (Figure 1B). In particular, we found that the R, was underestimated for several MDPs
including a series of two fluorescent proteins connected by Gly-Ser linkers of different lengths (here termed
GS-proteins; Moses et al. (2024)). This observation was confirmed by calculations of the relative mean signed
deviation, rMSD, between experimental and calculated values of R, that shows that these are on average un-
derestimated by 18% in the MDPs (Figure 1B).

As a first attempt at creating a model for both IDPs and MDPs, we used our previously described protocol
(Norgaard et al., 2008; Tesei et al., 2021b) to optimize the A stickiness parameters of the CALVADOS model
targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs. The resulting A values were generally
smaller than those in CALVADOS 2 (Figure S1A) in line with the finding that the MDPs were too compact us-
ing CALVADOS 2. Nevertheless, it was also clear that this new parameter set made the agreement worse for
disordered proteins (Figure S1B-E) and did not result in a satisfactory model to describe both IDPs and MDPs.

We instead hypothesized that the compaction of several MDPs was a result of placing the interaction sites
at the C, positions in the folded domains. In particular for g-sheet-containing proteins, this geometry would
mean that residues whose side chains are buried inside the folded domain are represented by interaction
sites located closer to the protein surface (Figure 1A); thus buried hydrophobic residues might appear as sol-
vent exposed. We therefore constructed a new model where the interaction sites within folded regions were
placed at the COM of the residue (Figure 1C) and constrained by harmonic restraints; when used with the
CALVADOS 2 parameters, we term this model CALVADOS2qy. We stress that only the bead locations in the
folded domains differ between the CALVADOS2, and CALVADOS2qy models; residues in disordered regions
are represented by one bead centred on the C, positions in both models. In the absence of folded domains,
CALVADOS2oy and CALVADOS2, are thus identical and simulations with the two models gave comparable
results (Figure 1B and D). In contrast, simulations of the MDPs with CALVADOS2q, Were in substantially better
agreement with experiments than simulations with CALVADOS2, as evidenced e.g. by an increase in Pearson
correlation coefficient from 0.5 to 0.95 and an increase in rMSD from -18% to 0% (Figure 1B and D). In addition
to the COM representation, we also examined whether a side-chain centre-of-mass (SCCOM) representation,
shifting bead positions of buried residues further away from the surface, could yield even more accurate R,
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Figure 2. Energy calculations reveal substantial inter-domain interactions. We calculated interaction energy maps (of the Ashbaugh-Hatch term in the force field)
from simulations using (A) the CALVADOS2, model and (B) the CALVADOS2n,, model. We show only a subset of the map representing interactions between the
first (residues 1-226 on the y-axis) and second (residues 256-470 on the x-axis) folded domains. (C) Examples of structures of GSO with the same R, as the average
over simulations using CALVADOS2, (left) and CALVADOS2qy (right). The starting structure of the simulations is shown in the middle, where green and orange
parts are the two fluorescent proteins connected by a flexible linker (grey). The regions that interact strongly in the CALVADOS2, simulations are coloured blue.

predictions than the COM representation (Figure 1E). We performed single chain simulations with the CALVA-
DOS 2 parameters and the SCCOM representation (CALVADOS2¢ccom) and found that CALVADOS2¢ccom ON
average resulted in an overestimation of the R, of MDPs of 11% (Figure 1D and F). As an alternative solution to
decrease the too strong interactions between folded domains, it has previously been suggested to scale down
interactions between pairs of folded domains (by a factor of 0.7) and between folded domains and disordered
regions (by a factor of 0.84 = \/(ﬁ) (Krainer et al., 2021). While applying this rescaling to CALVADOS 2 (termed
CALVADOS2.,70%) led to improved agreement with experiments, the improvement was smaller than when
using the COM representation, and the simulations had a remaining bias towards underestimating the radii of
gyration (Figure S2). Therefore, we proceeded by using the COM representation in this study.

To examine in more detail why the CALVADOS2, model resulted in more compact conformations of MDPs
than CALVADOS2qy, We calculated the time-averaged non-ionic (Ashbaugh-Hatch) interaction energies be-
tween residues of different folded domains. For this analysis we selected GSO0, a construct with two fluorescent
proteins separated by a 29-residue-long linker (Moses et al., 2024), since the R, value of GSO deviates substan-
tially from experiments in simulations with CALVADOS2, (Figure 1B). In the energy maps, we see evidence of
substantial inter-domain interactions between residue 140-230 of one fluorescent protein and residue 340-
440 of the other (Figure 2A). In contrast, these domain-domain interactions are not observed when simulating
with COM representation (Figure 2B). The comparison of the two energy maps thus supports the hypothesis
that the too compact conformations of MDPs in simulations with CALVADOS2, result from inter-domain at-
tractions that are decreased in the COM representation (Figure 2C).

Optimizing CALVADOS using a centre-of-mass representation
Having shown that the COM representation gave an improved description of MDPs while preserving the ac-
curacy when simulating IDPs, we proceeded to optimize the CALVADOS model further. We used our iterative
Bayesian optimization scheme (Norgaard et al., 2008; Tesei et al., 2021b) to optimize the A stickiness parame-
ters of the CALVADOS model targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs (Table S1,
Table 52, Table $3). In these simulations we used the COM representation of the folded domains and we thus
term the final model CALVADOS3\ to represent both the force field and the COM representation of the
folded regions. The resulting 4 values in CALVADOS3qy are similar to those in CALVADOS 2 (Figure 3 and Fig-
ure §3). We found that simulations of IDPs with CALVADOS3oy and CALVADOS2q gave similar agreement
to SAXS experiments. Likewise, we found a similar agreement for the MDPs (Figure 1D, Figure 3B and C).
Having optimized 4, we validated the CALVADOS3qy model on 25 IDPs and 9 MDPs (Table 54, Table S5)
that were not used in training for any of the models (Figure 4). For the 25 IDPs we found good agreement for
all three models (CALVADOS2,, CALVADOS2oy and CALVADOS3q\) (Figure 4A-C). We note again that the
COM representation is only applied to the folded domain. All IDPs have C, representations, so CALVADOS2¢,
and CALVADOS2q)y are the same models for IDPs. In contrast, for MDPs we found that CALVADOS3oy and
CALVADOS2 o\ perform substantially better than CALVADOS2,, (Figure 4A-C). Our validation results thus show
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Figure 3. Optimizing the 1 parameters using a COM representation for folded domains. (A) Comparison between 4 values
from CALVADOS 2 (blue) and CALVADOS3 oy (red). (B) Comparison between simulated and experimental R, values for IDPs
(orange) and MDPs (green) using CALVADOS3qy. Pearson correlation coefficients (r) and rMSD are reported in the legend.
The black diagonal line indicates y = x. (C) Relative difference between experimental and simulated R, values from
CALVADOS3 oy, (red), CALVADOS2, (blue) and CALVADOS2 ¢y, (blue hatched). (dg) values across IDPs and MDPs in training
set are reported in the legend. Error bars show the experimental error divided by Ry eyp-
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17a  that the CALVADOS3n) model gives improved agreement for simulations of MDPs while retaining the accu-
175 racy of CALVADOS2¢, for simulations of IDPs. Across the 34 independent test proteins we find (y2 ) values
176 Of 50, 22 and 15 for CALVADOS2(,, CALVADOS2n\ and CALVADOS3 o\, respectively (Figure S4), gnd both
177z CALVADOS2.oy and CALVADOS3o), have essentially no bias (rMSD~0; Figure 4B and C).

1zs  Simulations of phase separation of disordered and multi-domain proteins

179 We and others have previously used one-bead-per-residue models such as CALVADOS to study the self-association
180 and phase separation of IDPs (Dignon et al., 2018; Tesei et al., 2021b; Joseph et al., 2021; Regy et al., 2021;
181 Dannenhoffer-Lafage and Best, 2021; Wessén et al., 2022; Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al.,
182 2023). In some cases, these models have also been used to study phase separation of proteins that contain
183 a mixture of folded and disordered regions (Dignon et al., 2018; Conicella et al., 2020; Her et al., 2022). We
18a  therefore examined whether the CALVADOS3oy model could be used to study phase separation of both IDPs
1s5 and MDPs. We used multi-chain simulations in a slab geometry (Dignon et al., 2018) to simulate the partitioning
186 Of proteins between a dilute and dense phase, and calculated the dilute phase concentration (the saturation
187 concentration; cg5) as a sensitive measure of the accuracy of the model. We first simulated 33 IDPs and found
188 that simulations with CALVADOS3 oy gave an agreement with experimental values of ¢, that is comparable
180 to that of CALVADOS2, (Table S6, Figure S5, Figure S6, Figure S7).

190 We then proceeded to use CALVADOS3oy to study the phase separation of MDPs including hnRNPA1*
101 (where * denotes that residues 259-264 have been deleted from full-length hnRNPA1), full-length FUS (FL_FUS)
102 and other multi-domain proteins with experimental estimates of ¢, (Table S7; Wang et al. (2018); Martin et al.
103 (2021h)). Simulations of hnRNPA1* with CALVADOS2,,, under conditions where the experimental dilute phase
104 coNcentration is 0.17 mM, resulted in essentially all proteins in the dense phase (c;t=0 mM; Figure 5A). In
105 contrast, simulations using CALVADOS3q) resulted in a lower propensity to phase separate and a calculated
106 Vvalue of ¢4;=0.14+0.01 mM that is comparable to experiments (Figure 5B).

197 To understand the origin of these differences we calculated interaction energy maps of the proteins in
108 the dense phase. Experiments have shown that the LCD in hnRNPA1* (residues 186-320) plays a central
100 role in driving phase separation (Molliex et al., 2015; Martin et al., 2021b), and we indeed found evidence
200 for substantial LCD-LCD interactions in the dense phases in simulations with both CALVADOS2, (Figure 5C)
200 and CALVADOS3qy (Figure 5D). In the simulations with CALVADOS2, we, however, also observed more sub-
202 stantial interactions between the folded RRM (RNA recognition motif) domains (residues 14-97 and 105-185)
203 and between the RRMs and the LCD. In simulations with CALVADOS3qy these interactions were much weaker,
20a  presumably explaining the increase of ¢, in these simulations.

205 Having demonstrated that CALVADOS3 oy provides a more accurate description of the phase behaviour of
206 hnRNPA1* than CALVADOS2,, we proceeded to perform simulations of several other MDPs for which we
207 found estimates of ¢y, in the literature (Figure 6, Figure S8, Figure §9). As for hnRNPA1*, we found that
208 CALVADOS2, substantially overestimates the tendency of these proteins to undergo phase separation (i.e.
200 underestimate cg5). The use of the COM representation in CALVADOS3qy decreases the protein-protein in-
210 teractions, and thus substantially improves the agreement with experiments, though differences remain.

2 Examining changes in folding stability in condensates

212 Experiments have shown that the protein-rich environment of condensates can modulate the stability of folded
213 proteins or nucleic acids (Nott et al., 2015; Ruff et al., 2022; Chen et al., 2024; Ahmed et al., 2024). Inspired by
214 these findings, we used the ability to simulate both folded and disordered regions with CALVADOS 3 to examine
215 how partitioning into condensates may shift the folding equilibrium of a folded domain. As it is difficult to
216 sample the folding-unfolding equilibrium by simulations, we studied it indirectly using a thermodynamic cycle
217 that involves differences in partitioning of the folded and unfolded forms into a condensate (Nott et al., 2015).
218 To demonstrate how CALVADOS 3 enables such analyses, we simulated the isolated RRM1 and RRM2 from
210  hnRNPA1* (Figure 7A) in the presence of a condensate of the LCD of hnRNPA1* and calculated the free energies
220 Of partitioning of the RRM domains in their native, folded state, AGF’)"art. Using the same approach, we performed
221 direct-coexistence simulations without applying harmonic networks to the RRMs to calculate the free energies
222 of partitioning of the RMMs in their unfolded state, AGgart. A comparison of the concentration profiles from our
223 direct-coexistence simulations shows that the unfolded states accumulate in the condensate and are depleted
224 from the dilute phase to a greater extent than the folded states (Figure 7B-C); We quantify this via a more

225 negative free energy of partitioning, AGE{alrt < AGIg’art (Figure 7D). The preference of the unfolded state for the

226 condensate is particularly pronounced for RRM2, for which we estimate a two-fold decrease in the free energy
227 of partitioning (AGy,,, — AG),,, = —0.7 kcal/mol). From the thermodynamic cycle, this in turn means that the

228 folding stability of RRM2 is 0.7 kcal/mol lower (less stable) in the condensate than in the dilute phase.
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Figure 4. Validation of the CALVADOS3)y model using proteins that were not used during training. Comparison of
simulated and experimental R, values on a validation set using (A) CALVADOS2,, (B) CALVADOS2¢qy and (C) CALVADOS3 .
Pearson correlation coefficients (r) and rMSD are reported in the legend. The black diagonal lines indicate y = x.
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Figure 5. Phase coexistence simulations of hnRNPA1#* using (A, C) CALVADOS2., and (B, D) CALVADOS3uy. Simulations were performed at 293 K and an ionic
strength of 0.15 M. Equilibrium density profile of hnRNPA1* using (A) CALVADOS2, and (B) CALVADOS3 oy ¢sa: Calculated from density profiles are 0 mM and

0.14 mM, respectively. Average residue-residue interaction energies (the Ashbaugh-Hatch term in the force field) between the most central chain and the rest of the
condensate for (C) CALVADOS2, and (D) CALVADOS3qy.
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Figure 6. Comparison between simulated and experimental ¢, values for MDPs using the CALVADOS3y model (red) and
CALVADOS2, (blue). The simulated proteins are hnRNPA1* (circle), hSUMO_hnRNPA1* (downward triangle), FL_FUS (upward
triangle), GFP_FUS (square), SNAP_FUS (pentagon), SNAP_FUS_PLDY2F_RBDR2K (star), SNAP_FUS_PLDY2F (x symbol),
FUS_PLDY2F_RBDR2K (diamond) and hnRNPA3 (plus symbol). The black diagonal line indicates y = x.
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Figure 7. Predicting the effect of the protein-rich environment of a condensate on the stability of folded domains. (A)
Structure of hnRNPA1* highlighting the low-complexity domain (grey) and RNA-recognition motifs 1 (blue) and 2 (red). (B)
Concentration profiles of the LCD (grey) and RRM1 in the native (blue) and unfolded (cyan) state. (C) Concentration profiles of
the LCD (grey) and RRM2 in the native (red) and unfolded (magenta) state. (D) Free energy of partitioning of RRM1 and RRM2
in native and unfolded states into condensates of the LCD. Data estimated from direct-coexistence simulations performed in
two independent replicates. Error bars in (D) represent the differences between the replicates.

To put these changes into context, we used a recently developed machine learning approach (Cagiada et al.,
2024) to predict the absolute protein folding stabilities of the isolated RRMs in the dilute phase, AG?V‘LU, and
obtained 6.6 kcal/mol for RRM1 and 4.4 kcal/mol for RRM2. Using these values and assuming a two-state model,
we estimate that the partitioning into the condensate has a negligible effect on the amount of unfolded state
for RRM1; in contrast we predict a four-fold increase in the population of the unfolded state of RRM2 from
exp(—~AGYL,,/RT) ~ 1/2000 to exp[—(AGY, , + AGY,  — AG) )/RT] ~ 1/500. Although substantial additional
work is needed to examine the accuracy of CALVADOS 3 for quantifying differences in partitioning of folded and
unfolded proteins into condensates, these data show a promising use of our model for predicting unfolding in

condensates.

Discussion

In this work, we found that simulations with the CALVADOS2., model, previously shown to represent single-
chain and multi-chain properties of IDPs, underestimated the radii of gyration of MDPs. Changing the CG map-
ping method from C, to COM substantially improved the agreement with experimental data. This observation
is in line with the finding that reconstruction of all-atom structures from a centre-of-mass representation is
more accurate than from a C, representation (Heo and Feig, 2024). We reoptimized the ‘stickiness’ parame-
ters in the context of a COM-based model based on experimental data for both IDPs and MDPs. The resulting
CALVADOS3oy model provides a good description of both single- and multi-chain simulations of both IDPs
and MDPs.

The relatively low cg; value calculated from slab simulations of hnRNPA1* with CALVADOS2, further sup-
ported that interactions between the folded domains are overestimated by C,-based models without any fur-
ther modifications. Considering that the SCCOM-based model (CALVADOS2sccoy) Overestimated R, of MDPs,
we suggest that the COM-based model (CALVADOS3 ) appears to strike a good balance, leading to improved
values of ¢g,, for MDPs. Nevertheless, some systematic differences remain even with this model, which resulted
in underestimates of ¢, for different constructs of the protein FUS. Together, our results show that the new
parameter set and the centre-of-mass representation (CALVADOS3q)\) retain the accuracy of CALVADOS 2 for
IDPs, but improve the description of proteins with both disordered and folded domains. We therefore term this
new model CALVADOS 3, with the implicit notion that this model is used with centre-of-mass representation of
residues within folded regions. We note that an earlier version of this preprint (Cao et al., 2024) used a slightly
different set of parameters, and we suggest to refer to that model as CALVADOS 3beta.

When simulating MDPs with CALVADOS 3 we need to restrain the folded domains using harmonic restraints.
In the currentwork we have manually determined the boundaries for which regions are considered to be folded,
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though automated methods will be needed for large-scale applications. Tools for automatic predictions of
domain boundaries exist (Holm and Sander, 1994; Lau et al., 2023) and might be combined with AlphaFold to
set the harmonic restraints (Jussupow and Kaila, 2023).

Despite these current limitations, we envision that the CALVADOS 3 model will enable detailed studies of
the interactions within and between multi-domain proteins, and pave the way for proteome-wide simulation
studies of full-length proteins similar to what has recently been achieved for IDRs (Tesei et al., 2024). We also
envision that our approach to study changes in protein stability inside condensates can be used together with
methods to predict absolute protein stability (Cagiada et al., 2024) to learn and expand our knowledge on the
rules that underlie phase separation and changes in stability of folded, globular proteins (Ruff et al., 2022).

Methods

Description of the model

We modelled each amino acid by one bead. We generated C,-beads for IDPs and assigned C, atom coordinates
to bead positions for IDRs in multi-domain proteins according to their modelled or experimental structures (see
below, Simulations). For structured domains, we used the following rules for the different representations: we
placed each bead position at the C, atom (C, representation), or the centre of mass calculated for all the atoms
in a residue (COM representation), or the centre of mass calculated for only side chain atoms of a residue (SC-
COM representation). The CALVADOS 3 energy function consists of bonded interactions, non-bonded interac-
tions and an elastic network model as described below.

Chain connectivity of the beads is described by a harmonic potential,

Upond(F) = k(r — ro)?, (1

with force constant k = 8033 kJ-mol~!-nm~2, The equilibrium distance r, is set to 0.38 nm if two beads are both
within IDRs, or the distance between two beads in the initial conformation if at least one bead is within a folded
domain.

For non-bonded interactions, we use a truncated and shifted Ashbaugh-Hatch (AH) and Debye-Huckel (DH)
potential to model van der Waals and salt-screened electrostatic interactions, respectively. The Ashbaugh-
Hatch potential is described by

uy(r) = Auyy(rp) + e(1 = A), r<2Y
upn(r) = Aluyy(r) = uy (r)], 2o <r<r,, ©)
0, r>r,

where u(r) is the Lennard-jones (L)) potential,

wer=4e|(2)"- (2] @

and where ¢ = 0.8368 kJ-mol~! and r, = 2.2 or 2 nm. Similar to previous work, we use r, = 2.2 nm during the
optimization of CALVADOS3oum, and use 2 nm during validation and application (Tesei and Lindorff-Larsen,
2023). Both ¢ and 2 are calculated as the arithmetic averages of residue-specific bead size and stickiness, re-
spectively. ¢ values are van der Waals volumes calculated by Kim and Hummer (Kim and Hummer, 2008). A
values are treated as free parameters and optimized iteratively through a Bayesian parameter-learning proce-
dure as described previously (Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023) to minimize the differences
in the simulated and experimental R, and PRE data. In simulations where we scaled down interactions of
folded domains (CALVADOS2.,70%)), we scaled down e to 0.7¢ for domain-domain interactions and to \/ﬁe
for domain-IDR interactions.
The Debye-HUuckel potential is described by

4;4; e exp(—r/D)
4rege, r ’

upy(r) = (4)
where ¢ is the average amino acid charge number, e is the elementary charge, D = 1/1/(8zBc;) is the Debye
length of an electrolyte solution of ionic strength c,, B(e,) is the Bjerrum length and ¢, is vacuum permittiv-
ity. Electrostatic interactions are truncated and shifted at the cutoff distance r, = 4 nm. The temperature-
dependent dielectric constant of the implicit aqueous solution is modelled by the following empirical relation-
ship (Akerlof and Oshry, 1950):

€,(T) = % +233.76 — 0.9297xT + 1.417x1073XT? — 8.292x107"xT?. (5)
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301 We use the Henderson-Hasselbalch equation to estimate the average charge of the histidine residues, as-
302 suming a pK, value of 6 (Nagai et al., 2008).
303 We use an elastic network model (ENM) with a harmonic potential to restrain non-bonded pairs in the folded

s0sa domains using
ugam (r) = kg (r — 1) (6)

35 Here, the force constant k, is 700 kJ-mol~'-nm~2, r is the distance between beads and equilibrium distances r,
so6 are directly taken from the reference structures. We only apply the ENM to residue pairs with an r, below a
s07 0.9 nm cutoff. We determine the predefined boundary of each domain in MDPs by visual inspection of the three-
sos dimensional structures (Table $8). Each domain has a starting amino acid and an ending amino acid indicating
300 therange of the domain. Only residue pairs within the same domain are restrained by this harmonic potential
310 except for bonded pairs, which are restrained by the aforementioned bonded potential. All boundaries of
311 MDPs are consistent with definitions in their experimental or simulation articles. In some cases, one domain
s12  could be discontinuous because of long loops within the domain so we exclude those regions when defining
a1z boundaries. Residues of a-helix, p-sheet and short loops in a structured domain are all restrained equally with
31 the same force constant and cutoff distance. The application of ENM ensures that secondary structures within
a5 folded domains would not fluctuate substantially (Figure $10). Non-bonded interactions (Ashbaugh-Hatch and
sie  Debye-Huckel potential) are excluded for the restrained pairs.

sz Simulations

s1s  We generated initial conformations of all IDPs as Archimedes' spirals with a distance of 0.38 nm between bonded
319 beads. Atomistic structures of all MDPs used in optimization procedures, single-chain validation and slab sim-
320 ulations either came from our recent work (Thomasen et al., 2023) or were modelled by superposing experi-
321 mental domain structures (if available) on AlphaFold predictions (Jumper et al., 2021; Varadi et al., 2022). We
322 then mapped all of these MDPs to CG structures based on different CG representations (C,, COM, SCCOM).
323 We conducted Langevin dynamics simulations using OpenMM 7.6.0 (Eastman et al., 2017) in the NVT en-
324 semble with an integration time step of 10 fs and friction coefficient of 0.01 ps~!. Single chains of N residues
325 were simulated in a cubic box with a (N — 1)x0.38 + 4 nm box edge length under periodic boundary conditions.
326 Each chain was simulated in 20 replicas for 6.3~77.7 ns depending on the sequence length of the disordered
327 regions (Tesei and Lindorff-Larsen, 2023; Tesei et al., 2024). Final trajectories had 4000 frames for each protein,
s2s  excluding the initial 10 frames in each replica.

320 We performed direct-coexistence simulations in a cuboidal box using [L,, L,, L,] = [17,17,300] and [15, 15, 150] nm
330 to simulate multi-chains of Ddx4WT and the other IDPs, respectively. For MDPs, box sizes are shown in Ta-
;1 ble S7. To keep the condensates thick enough and reduce finite-size surface effects, we chose 150 chains for
332 hnRNPA1* and 100 chains for all the other IDPs and MDPs (see also below). We generated each IDP chain as
333 an Archimedes spiral with a distance of 0.38 nm between bonded beads in the xy-plane. Each spiral was placed
33a along the z-axis with a 1.47 nm interval. To avoid steric clashes of densely packed MDP input structures, we
335 chose the most compact conformation sampled by single-chain simulations with CALVADOS 2 parameters and
336 corresponding CG representation as the initial conformation for each MDP chain. Before production simula-
337 tions, we performed equilibrium runs where we used an external force to push each chain towards the centre
s3s  Of the box so that a condensate could be formed. We then continued to perform production simulations, sav-
330 ing frames every 0.125 ns and discarded the first 150 ns before analysis. The slab in each frame was centred
3a0 in the box and the equilibrium density profile p(z) was calculated by taking the averaged densities over the
a1 trajectories as previously described (Tesei and Lindorff-Larsen, 2023).

342 To examine finite-size effects of the direct-coexistence simulations we performed additional simulations of
3a3 hnRNPA1* varying both the box dimensions (L,, L, L,) and the number of chains. We calculated both dense
saa  and dilute phase concentrations from each simulation and find that unless we use a very small patch (L, =
sas L, =11 nm), the results are consistent (Figure S71, Figure S12, Table §9), in line with previous analyses of such
sas  finite-size effects (Dignon et al., 2018; Joseph et al., 2021). Convergence of the IDP simulations was assessed
3a7  as previously described (Tesei et al., 2021b).

348 To indicate the computational performance of single- and multi-chain CALVADOS simulations, we show
sa9  the performance for systems of different sizes run either on an Intel Xeon Gold 6130 CPU (for single-chain
350 simulations) on an NVIDIA Tesla V100 GPU (for multi-chain simulations) (Figure $13).

351 To estimate the free energy of partitioning of RRM1 (residues 11-89) and RRM2 (residues 105-179) into con-
3s2  densates of hnRNPA1* LCD (GS followed by residues 186-314), we performed direct-coexistence simulations
353 at 298 K, pH 7.5, and 150 mM ionic strength, in a cuboidal box with sidelengths [Ly, Ly, L.]=[15,15,150] nm.
3sa  The structures of the native states of RRM1 and RRM2 were based on the crystal structure (Shamoo et al., 1997)
3ss  as previously described (Martin et al., 2021b). We performed two independent simulations, each 21 ps long,
ss6 for each system and, after centering the LCD condensate in the middle of the box, calculated concentration
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ss7  profiles along the z-axis using the last 20 ps of each trajectory. We estimated the free energies of partitioning
358 aS AGpae = RT In(cqj / ccon) Where R is the gas constant and cg; and ¢, are the average concentrations of
sso  the RRMs in the dilute phase and in the LCD condensate, respectively. The error on AGp,. Was estimated as
se0 the difference between the values from the two independent simulation replicas. Absolute folding stabilities
se1 of RRM1 and RRM2 were calculated using the Google Colab implementation of a recently described model for
se2 predicting absolute protein stability (Cagiada et al., 2024).

;s Parameter optimization
sea Our Bayesian Parameter-Learning Procedure (Tesei and Lindorff-Larsen, 2023) of the ‘stickiness’ parameters,
ses 4, aimed to minimize the following cost function:

L) = (g, )+ 1xpge) = 0 (P (2). @)

366 an enotin an ifferences between experiments and simulations are estimated as
1% and yp.. denoting R, and PRE diff bet p ts and lat timated
8

s REXP _ ng:alc 2
TrRg=\ Qe @)
367 and )
Niabels Nres / y&*P _ ycalc
> 1 ij ij
Y = ——— A1) 9)
PRE Niabels Nres ; Z < o‘[.erp )

s3es Here P(J) is a statistical prior of A (Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023), c*P is the error on
seo  the experimental values, Y is PRE data, either I,5.5/14i5 OF I'; is calculated using the rotamer library approach
370 implemented in DEER-PREdict (Tesei et al., 2021a), N peis iS the number of spin-labeled mutants, and N, is the
sz number of measured residues. The prior loss, 1n(P(4)), quantifies the difference between prior distribution
372 P(A) and current 4 values (with min-max normalization at each step) to avoid overfitting. The coefficients are
373 setton=0.1and 6 =0.08. 1is not allowed to be negative but can be greater than 1.0 during optimization.

374 We used a training set consisting of 56 IDPs and 14 MDPs to perform the optimization. All of those pro-
375 teins were from our previous studies (Tesei and Lindorff-Larsen, 2023; Thomasen et al., 2023). A summary
sze  Of the training data and other properties of different CALVADOS models is shown in the supporting material
37z (Table S10). 51 IDPs and 14 MDPs in this training set were used for fitting against experimental SAXS R, data
sz and 5 IDPs were used for fitting against experimental PRE data (Table S1, Table S2, Table 53). We then used a
370 validation set to validate the performances of our new optimized models on reproducing experimental R,. This
3s0  Vvalidation set was composed of 25 IDPs and 9 MDPs. 12 IDPs in this validation set were from our previous work
sz and the rest (13 IDPs and 9 MDPs) were newly collected experimental R, data in this work (Table S4, Table S5).
32 We also collected nine MDPs with measured values of ¢y, to examine the accuracy of the phase behaviour
ss3  simulated with the models presented in this work (Table §7).

384 The optimization procedure went through several cycles until convergence of the final total cost (|AL| < 1,
3ss AL is the difference of final total cost between the current and previous cycle, Equation 7). Within each cycle,
3s6e We use the optimized A values from the previous cycle to perform new single-chain simulations (initial 4 values
ss7  forthefirst cycle are CALVADOS 2 parameters, (Tesei and Lindorff-Larsen, 2023)), calculate R, and PRE for each
sss frame and then nudge values in the 1 set iteratively to minimize the cost function (five residues are randomly
3s0  Subjected to small perturbations sampled from a Gaussian distribution with x = 0,6 = 0.05). This trial A set (4;)
390 s used to calculate the Boltzmann weights of each frame by w; = exp(—=[U(r;, 4,) — U(r;, 49)1/kgT), where U is the
31 AH potential, r; are coordinates of a conformation, kg is the Boltzmann constant and T is temperature. The re-
302 sulting weights are then used to calculate the effective fraction of frames by ¢q¢ = exp[— vaframes w; 10g(w; X Nrames);
303 if ¢hegr > 0.6, trial 4, acceptance probability is determined by the Metropolis criterion, min{1, exp (W) b
s0a  Where &, is a unitless control parameter, its initial value is set to 0.1 and scaled down by 1% at each ikteration
305 UNtil & < 1078, which means a micro-cycle is complete. Within a cycle, a total of 10 micro-cycle are performed.
306 In this work, the optimization procedure converged within three cycles. Therefore, we used the resulting 4
307 values from the third cycle as the final parameter set. We ran one additional optimization cycle to confirm the
398 convergence of the training.

o Data and software availability
s00 Scripts and data to reproduce the work are available via https:/ /github.com/KULL-Centre/ 2024 Cao CALVADOSCOM.
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Table S1. Experimental solution conditions and radii of gyration of IDPs included in the training set for the Bayesian
parameter-learning procedure.

Protein N R, Err [nm] T[K] ¢, [M]  pH Ref.
Hst5 24 1.38 £ 0.05 293.00 0.150 7.5 (Jephthah et al., 2019)
Hst52 48 1.87 £ 0.05 298.00 0.150 7.0 (Fagerberg et al., 2020)
p532070 62 2.39+0.05 277.00 0.100 7.0 (Zhao et al., 2021)
ACTR 71 2.63+0.1 278.00 0.200 7.4 (Kjaergaard et al., 2010)
Ash1 81 2.9+0.05 293.00 0.150 7.5 (Martin et al., 2016; Jin and Grdter, 2021)
CTD2 83 2.614+0.05 293.00 0.120 7.5 (Jin and Grditer, 2021)(Gibbs et al., 2017)]
Sic1 92 3.0+04 293.00 0.200 7.5 (Gomes et al., 2020)
SH4UD 95 2.71 £ 0.04 293.15 0.216 8.0 (Shrestha et al., 2019)
CoINT 98 2.8+0.033 277.00 0433 7.6 (Johnson et al., 2017)
p15PAF 111 2.81+£0.1 298.00 0.150 7.0 (De Biasio et al., 2014)
hNL3cyt 119 3.15+0.2 293.00 0.300 8.5 (Paz et al., 2008)
RNaseA 124 3.36+0.1 298.00 0.150 7.5 (Riback et al., 2017)
+4D 137 2.72+£0.03 298.00 0.150 7.0 (Bremer et al., 2022)
-3R+3K 137 2.63+0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-6R+6K 137 2.79 £0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-10R+10K 137 2.85+0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-4D 137 2.64 +0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+2R 137 2.62 +0.02 298.00 0.150 7.0 (Bremer et al., 2022)
+12D 137 2.8+0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+12E 137 2.85+0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7K+12D 137 2.92 +£0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7R 137 2.71 £0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-12F+12Y-10R 137 2.61+0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-10F+7R+12D 137 2.86 £ 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+8D 137 2.69 £ 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7K+12Db 137 2.56 +0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-9F+6Y 137 2.66 +0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-10R 137 2.67 £0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-9F+3Y 137 2.68 +0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-8F+4Y 137 2.71 £0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7F-7Y 137 2.72 +0.01 298.00 0.150 7.0 (Bremer et al., 2022)
S12F+12Y 137 2.6 £0.02 298.00 0.150 7.0 (Bremer et al., 2022)
Al 137 2.76 £ 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-6R 137 2.57 £0.01 298.00 0.150 7.0 (Bremer et al., 2022)
asyn140 140 3.55+0.1 293.00 0.200 7.4 (Ahmed et al., 2021)
FhuA 144 3.34+0.1 298.00 0.150 7.5 (Riback et al., 2017)
K27 167 3.7+0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
K10 168 4.0+0.1 288.00 0.150 7.4 (Mylonas et al., 2008)
K25 185 41+0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
K32 198 42+0.3 288.00 0.150 7.4 (Mylonas et al., 2008)
CAHSD 227 4.84+0.2 293.00 0.070 7.0 (Hesgrove et al., 2021)
K23 254 49+0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
tau35s 255 4.64 +0.1 29320 0.150 7.4 (Lyu et al., 2021)
CoRNID 271 47 +0.2 293.15 0.192 7.5 (Cordeiro et al., 2019)
K44 283 52+0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
PNt 334 5.11+£0.1 298.00 0.150 7.5 (Riback et al., 2017, Bowman et al., 2020)
PNtS1 334 492 +0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS4 334 5.34+0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS5 334 4.87 +0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS6 334 5.26 £ 0.1 298.00 0.150 7.5 (Bowman et al., 2020)
GHRICD 351 6.0+0.5 298.00 0.350 7.3 (Seiffert et al., 2020; Pesce et al., 2023)
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Table S2. Experimental solution conditions and PRE data included in the training set for the Bayesian parameter-learning

procedure.
Proteins N Nigpels @;/2z[MHz] T[K]l ¢, [M] pH Ref.
A2 155 2 850 298 0.005 5.5 (Ryan et al., 2018)
asyn 140 5 700 283 0200 74 (Dedmon et al., 2005)
OPN 220 10 800 298 0.150 6.5 (Kurzbach et al., 2016)
FUS 163 3 850 298 0.150 5.5 (Monahan et al., 2017)
FUS12E 164 3 850 298 0.150 5.5 (Monahan etal., 2017)

Table S3. Experimental solution conditions and radii of gyration of MDPs included in the training set for the Bayesian
parameter-learning procedure.

Protein N R, £ Err [nm] T[K] ¢, [M]  pH Ref.
THB_C2 137 1.91+£0.076  295.15 0.15 6.5 (Michie et al., 2016)
Ubg2 162 2.19+0.18 293.00 033 8.0 (Jussupow et al., 2020)
Ubg3 228 2.62+0.018  293.00 0.33 8.0 (Jussupow et al., 2020)
Gal3 250 2.91 £0.06 303.00 0.04 7.0 (Lin et al., 2017)
TIA1 275 2.75+0.05 293.15 0.10 6.0 (Sonntag et al., 2017)
Ubg4 304 3.19+£0.092  293.00 0.33 8.0 (Jussupow et al., 2020)
hnRNPA1* 314  3.12+0.078  293.15 0.15 7.5 (Martin et al., 2021b)
hSUMO_hnRNPA1* 433 3.37+£0.13 293.15 0.10 7.5 (Martin et al., 2021b)
GSO 470 3.2+0.044 293.15 0.15 7.4 (Moses et al., 2024)
GS8 486 3.37+0.036 293.15 0.15 7.4 (Moses et al., 2024)
GS16 502 3.45+0.06 293.15 0.15 7.4 (Moses et al., 2024)
GS24 518 3.57+0.075 293.15 0.15 7.4 (Moses et al., 2024)
GS32 534 3.75+0.097 293.15 0.15 7.4 (Moses et al., 2024)
GS48 566 411 +£0.21 293.15 0.15 7.4 (Moses et al., 2024)
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Table S4. Experimental solution conditions and radii of gyration of IDPs included in the validation set.

Protein N R, Err [nm] T[K] ¢ [M] pH Ref.
Chiz164 67 2.42 +0.01 293.00 0.0650 7.0 (Hicks et al., 2020)
DomainV 67 2.43+0.024 288.15 0.1985 7.0 (Chan-Yao-Chong et al., 2019)
DSS1 71 2.5+0.1 288.00 0.1700 7.4 (Pesce et al., 2023)
BMAL1P624A 98 2.77 +£0.09 283.25 0.1540 7.2 (Garg et al., 2019)
VWF 103 3.08 £ 0.03 293.00 0.1530 74 (del Amo-Maestro et al., 2021)
p27Cv56 107 2.328 £ 0.1 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv14 107 2.936+0.13 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv78 107 2.211+£0.03 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv31 107 2.81+0.18 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv44 107 2.492+0.13 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv15 107 2.915+0.1 293.00 0.0950 7.2 (Das et al., 2016)
PTMA 111 3.7+0.2 288.00 0.1600 7.4 (Pesce et al., 2023)
GON7 114 3.18 +0.04 283.00 0.2110 6.5 (Arrondel et al., 2019)
NHE6cmdd 116 3.2+0.2 288.00 0.1700 7.4 (Pesce et al., 2023)
hKISS1 120 3.47 +0.05 283.15 0.1590 7.0 (/bdiiez de Opakua et al., 2017)
TtASR1 141 3.31+0.08 293.15 0.1500 7.3 (Hamdi et al., 2017)
HVASR1 143 3.51 +0.09 293.15 0.1500 7.3 (Hamdi et al., 2017)
TIF2NRID 150 3.74+0.092 283.15 0.1750 6.8 (Senicourt et al., 2021)
ED4 163 4.06 £ 0.11 293.15 0.1530 7.4 (Gondelaud et al., 2021)
ANAC046 167 3.6+0.3 298.00 0.1400 7.0 (Pesce et al., 2023)
PARCL 180 3.43+0.065 293.15 0.1700 7.5 (Ostendorp et al., 2022)
N_FATZ1 191 3.45+0.062 293.15 0.1920 7.5 (Sponga et al., 2021)
D91_FATZ1 209 4.0+0.1 293.00 0.1800 7.5 (Sponga et al., 2021)
cDAXX 246 4.75 £ 0.05 293.00 0.1300 8.0 (Schmit et al., 2019)
ED3 373 6.51+0.15 293.15 0.1530 7.4 (Gondelaud et al., 2021)

Table S5. Experimental solution conditions and radii of gyration of MDPs included in the validation set.

Protein N R, + Err [nm] T [K] ¢, [M]  pH Ref.
SH4AUD_SH3_SH2 264 3.28 +0.06 293.15 0.216 8.0 (Gurumoorthy et al., 2023)
H46 381 415+ 0.05 283.00 0.163 6.5 (Elena-Real et al., 2023)
TDP43W2A 415 4.11+0.04 293.15 0.312 8.0 (Wright et al., 2020)
PCPE 424 4,04 £0.11 293.15 0506 74 (Bernocco et al., 2003)
NiV_V 457 6.97 £0.02 293.15 0.232 8.0 (Salladini et al., 2017)
HeV_V 458 6.86 + 0.03 293.15 0.232 8.0 (Salladini et al., 2017)
D14 483 39+0.17 283.15 0.156 7.5 (Hajizadeh et al., 2018)
S4FL 552 4.7 +£0.1 283.15 0.169 7.2 (Gomes et al., 2021)
ChiAM 682 4.73+0.077 293.15 0.282 8.0 (Mazurkewich et al., 2020)
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Table S6. IDPs and experimental conditions used for slab simulations in this work.

Proteins N ¢, Ml pH TIK] Csatexp [uM] Ref.
LAF1 176 015 7.5 293 44,0 (Schuster et al., 2020)
LAF1D2130 166 015 7.5 293 275.0 (Schuster et al., 2020)
LAF1shuf 176 015 7.5 293 6.0 (Schuster et al., 2020)
A1S150 131 0.15 7.0 293 218.1 (Martin et al., 2021a)
A1S5200 131 0.20 7.0 293 159.8 Martin et al., 2021a)
A1S300 131 030 7.0 293 934 Martin et al., 2021a)
A1S500 131 0.50 7.0 293 66.5 Martin et al., 2021a)
-12F+12Y 137 0.15 7.0 293 60.3 (Bremer et al., 2022)
+4D 137 015 7.0 277 4.5 (Bremer et al., 2022)
-6R 137 015 7.0 277 7.1 (Bremer et al., 2022)
A1l 137 0.15 7.0 293 102.2 (Bremer et al., 2022)
+2R 137 015 7.0 277 18.0 (Bremer et al., 2022)
+8D 137 015 7.0 277 18.7 (Bremer et al., 2022)
-14N+14Q 137 0.15 7.0 293 171.6 (Bremer et al., 2022)
-10G+10S 137 015 7.0 293 268.1 (Bremer et al., 2022)
+7F-7Y 137 015 7.0 293 209.0 (Bremer et al., 2022)
-20G+20S 137 0.15 7.0 293 469.4 (Bremer et al., 2022)
-235+23T 137 015 7.0 293 342.2 (Bremer et al., 2022)
-8F+4Y 137 015 7.0 277 63.2 (Bremer et al., 2022)
-3R+3K 137 0.15 7.0 277 83.1 (Bremer et al., 2022)
-4D 137 015 7.0 277 88.8 (Bremer et al., 2022)
-9F+3Y 137 015 7.0 277 115.0 (Bremer et al., 2022)
+23G-23S 137 0.15 7.0 293 46.1 (Bremer et al., 2022)
+23G-23S+7F-7Y 137 015 7.0 293 194.0 (Bremer et al., 2022)
+23G-23S-12F+12Y 137 0.15 7.0 293 6.5 (Bremer et al., 2022)
-30G+30S 137 0.15 7.0 293 841.8 (Bremer et al., 2022)
FUS 163  0.15 5.5 297 105.0 (Murthy et al., 2019)
A2 155  0.01 5.5 297 15.0 (Ryan et al., 2021)
Ddx4WT 236 013 6.5 297 230.0 (Brady et al., 2017)
allF 137 0.15 7.0 293 250.0 (Alshareedah et al., 2023)
ally 137 0.15 7.0 293 85.0 (Alshareedah et al., 2023)
allw 137 015 7.0 293 1.0 (Alshareedah et al., 2023)
FUS_long 216 0.15 7.0 285 46 (Farag et al., 2023)

Table S7. Multi-domain proteins and experimental conditions used for slab simulations in this work.

Proteins N ¢, [M]  pH TIK] Csat,exp [pM] Box [nm] Ref.
hnRNPA1* 314 0.15 7.5 293 173.0 [20, 20, 270] (Martin et al., 2021b)
hnRNPA3 381 0.116 7.4 298 6 [25, 25, 190] (Kar et al., 2022)
hSUMO_hnRNPA1* 433 0.15 7.5 293 136.2 [25,25,190] (Martin et al., 2021b)
FL_FUS 526 0.15 7.4 293 5.5 [20, 20, 270] (Wang et al., 2018)
GFP_FUS 764 0.15 7.4 293 4.9 [25, 25, 300] (Wang et al., 2018)
SNAP_FUS 708 0.15 7.4 293 5.9 [25, 25, 300] (Wang et al., 2018)
SNAP_FUS_PLDY2F_RBDR2K 710 0.15 7.4 293 69.4 [29, 29, 340] (Wang et al., 2018)
SNAP_FUS_PLDY2F 710 0.15 7.4 293 36.6 [25, 25, 300] (Wang et al., 2018)
FUS_PLDY2F_RBDR2K 528 0.15 7.4 293 32.0 [25, 25, 340] (Wang et al., 2018)
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Table S8. Domain boundaries of MDPs used in this study for the Bayesian parameter-learning procedure and validation. Brackets indicate the first and last residue
of the domain, respectively. Nested brackets indicate subdomains (restrained) separated by long linkers (unrestrained).

Protein N Domain 1 Domain 2 Domain 3 Domain4 Domain5 Domain6 Domain7
THB_C2 137 [6, 42] [50, 137]
Ubg2 162 [11, 82] [87, 158]
Ubg3 228 [1,72] [77, 148] [153, 224]
Gal3 250 [117,250]
SH4UD_SH3_SH2 264  [94, 150] [166, 258]
TIA1 275 [6, 82] [95,172] [190, 275]
Ubqg4 304 [1,72] [77,148] [153, 224] [229, 300]
hnRNPAT* 314 [11, 89] [105, 179]
H46 381 [140, 355]
TDP43W2A 415 [5, 77] [107,177] [193, 260] [321, 329]
PCPE 424 [12,125] [134, 249] [293, 412]
hSUMO_hnRNPA1* 433 [44, 114] [132, 209] [224, 298]
NiV_V 457  [406, 457]
HeV_V 458  [404, 456]
GSO 470 [1, 226] [256, 470]
D14 483 [31,121] [157, 246] [265, 354] [400, 479]
GS8 486 [1, 226] [272, 486]
hSUMO_TIA1PrLD 492 [32,102] [114, 186] [212, 287] [321, 389]
GS16 502 [1,226] [288, 502]
GS24 518 [1, 226] [304, 518]
FL_FUS 526 [286, 368] [423, 451]
FUS_PLDY2F_RBDR2K 528 [288, 370] [425, 453]
GS32 534 [1, 226] [320, 534]
SAFL 552 [15, 138] [[287, 294],
[323, 466],
[492, 542]]
GS48 566 [1, 226] [352, 566]
ChiAM 682 [8, 89] [92,172] [178, 257] [266,356] [359,462] [471,567] [578,668]
SNAP_FUS 708 [286, 368] [423, 451] [[537, 564], [586, 701]]
SNAP_FUS_PLDY2F RBDR2K 710 [288, 370] [425, 453] [[539, 566], [588, 703]]
SNAP_FUS_PLDY2F 710 [288,370] [425, 453] [[539, 566], [588, 703]]
GFP_FUS 764  [286, 368] [423, 451] [529, 755]

Table S9. Analysis of the system size effects on slab simulation of hnRNPA1*. The protein concentration is fixed throughout all simulation configurations and is
above the experimental saturation concentration. ND: In simulations with 150 chains and box size [11.0, 11.0, 900] nm we did not observe a stable condensed phase.

Number of chains & Box size [nm]  Simulation length [ps]  Dilute phase conc. [nM]  Dense phase conc. [mM]

Varying (L, L,) 45 chains &[11.0, 11.0, 270] 10 0.3+0.1 12.0+0.2
75 chains & [14.1, 14.1, 270] 10 0.19+0.02 12.62+0.02
300 chains & [28.3, 28.3, 270] 10 0.18+0.01 12.37+0.02
450 chains & [34.6, 34.6, 270] 5 0.104+0.008 12.32+0.02

Varying L, 45 chains & [20.0, 20.0, 81] 10 0.16+0.02 11.62+0.05
75 chains & [20.0, 20.0, 135] 10 0.15+0.01 12.34+0.03
300 chains & [20.0, 20.0, 540] 10 0.10+0.01 12.51+0.02
450 chains & [20.0, 20.0, 810] 5 0.08+0.01 12.48+0.03

Varying (L, L,,L;) 150 chains & [11.0, 11.0, 900] 10 ND ND
150 chains & [14.1, 14.1, 540] 10 0.17+0.03 12.5+0.1
150 chains & [28.3, 28.3, 135] 10 0.16+0.01 12.11+0.03
150 chains & [34.6, 34.6, 90] 10 0.17+0.01 10.79+0.06
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Table $10. Summary of CALVADOS models. The number of IDPs and MDPs, and cutoff distance for the AH potential used during optimization, cutoff distance of AH
potential for validation (production) simulations, and references are shown.

models IDPs  MDPs  cutoff_optimization [nm]  cutoff_production [nm] Ref.
CALVADOS 1 48 0 4.0 4.0 (Tesei et al., 2021b)
CALVADOS 2 56 0 2.4 2.0 (Tesei and Lindorff-Larsen, 2023)
CALVADOS 3 (CALVADOS3om) 56 14 2.2 2.0 this study
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Figure S1. Optimizing the 1 parameters using a Ca representation for folded domains. (A) Comparison between 4 values from CALVADOS 2 (blue) and opt, (red).
Comparison between simulated and experimental R, values for IDPs (orange) and MDPs (green) using optc, in (B) the training set and (C) the validation set. Pearson
correlation coefficients (r) and rMSD are reported in the legend. The black diagonal lines indicate y = x. Relative difference between experimental and simulated R,
values from opt, (red), CALVADOS2, (blue) and CALVADOS2ny, (blue hatched) in (D) the training set and (E) the validation set. (;(,2( ) values across IDPs and MDPs

are reported in the legend. Error bars show the experimental error divided by R

data in Figure $4 and Figure 3.

8.exp*

g
Results from CALVADOS2, and CALVADOS2q, are presented as the same
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Figure S2. Comparison between simulated and experimental R, values for all MDPs in the training and validation set using CALVADOS2,70% (cyan) and
CALVADOS2.qy (green). Pearson correlation coefficients (r), rMSD and (y% ) values are reported in the legend. The black diagonal line indicates y = x.
g
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Figure S6. Time evolution of the protein concentration profiles from slab simulations of 33 IDPs using CALVADOS3oy parameters. A more intense colour intensity
indicates higher protein concentration.
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Figure S7. Equilibrium density profiles of slab simulations of 33 IDPs using CALVADOS3.y. The red horizontal lines indicate experimental saturation concentrations.
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Figure S8. Time evolution of the protein concentration profiles from slab simulations of 9 MDPs using CALVADOS3o), parameters. A more intense colour intensity
indicates higher protein concentration.
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Figure S9. Equilibrium density profiles of slab simulations of nine MDPs using CALVADOS3y. The red horizontal lines indicate experimental saturation

concentrations.
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Figure $10. Simulated R, of domains restrained by elastic network model. Domains in a protein are indicated by DO, D1, D2, etc. Multi-domain proteins in the

training set, validation set and slab simulations set are shown.
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Figure S11. Time evolution of the protein concentration profiles from slab simulations of hnRNPA1* using CALVADOS3, parameters for analysis of finite-size
effects. A more intense colour intensity indicates higher protein concentration. The units of the box sizes are nm.
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Figure S12. Equilibrium density profiles of slab simulations of hnRNPA1* using CALVADOS3q\, for analysis of finite-size effects. The red horizontal lines indicate
experimental saturation concentrations. The units of the box sizes are nm.
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Figure S13. Simulation performance of CALVADOS 3 model on IDPs (orange) and MDPs (green) for (A) single-chain simulations on an Intel Xeon Gold 6130 CPU and
(B) multi-chain simulations on an NVIDIA Tesla V100 GPU.
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