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7

Abstract Many proteins contain more than one folded domain, and such modular multi-domain proteins8

help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics,9

it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations.10

Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an11

accurate description of the global conformational properties in solution. We show that the accuracy of a12

one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are13

represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at14

the position of the C� atoms. We also show that if the interaction sites are located at the centre of mass of the15

residue, we obtain good agreement between simulations and experiments across a wide range of proteins.16

We then optimize our previously described CALVADOS model using this centre-of-mass representation, and17

validate the resulting model using independent data. Finally, we use our revised model to simulate phase18

separation of both disordered and multi-domain proteins, and to examine how the stability of folded19

domains may differ between the dilute and dense phases. Our results provide a starting point for20

understanding interactions between folded and disordered regions in proteins, and how these regions affect21

the propensity of proteins to self-associate and undergo phase separation.22

23

Introduction24

Multi-domain proteins (MDPs) consist of more than one folded domain that are often connected by linkers or25

longer intrinsically disordered regions (IDRs), and make up a large fraction (around 50%) of the proteomes in26

eukaryotic and prokaryotic organisms (Han et al., 2007; Van Der Lee et al., 2014). Like intrinsically disordered27

proteins (IDPs), MDPs can display large-amplitudemotions that may play prominent roles in biomolecular func-28

tions like signalling, catalysis and regulation (Mackereth and Sattler, 2012; Van Der Lee et al., 2014; Delaforge29

et al., 2016; Bondos et al., 2021).30

The biological functions of MDPs depend both on the properties of the folded domains and the disordered31

regions, and so characterizing the conformational ensembles can be key to understanding how these proteins32

function. In many cases, the folded and disordered regions are studied separately, but the folded domains33

might affect the conformational properties of the disordered regions (Mittal et al., 2018; Taneja and Hole-34

house, 2021) and the disordered regions may also affect the properties of the folded domains (Yu and Sukenik,35

2023). For example, there is a complex interplay between the folded and disordered regions in the RNA-binding36

protein hnRNPA1, that affects its conformational ensemble in solution and its propensity to undergo phase sep-37

aration (Martin et al., 2021b). However, describing the conformational ensembles ofMDPs in solution generally38

requires a combination of biophysical experiments and molecular dynamics (MD) simulations (Thomasen and39

Lindorff-Larsen, 2022).40

All-atom MD simulations have been used to generate conformational ensembles of IDPs and MDPs and41

to study intra- and inter-domain interactions (Zheng et al., 2020; Sekiyama et al., 2022). Such simulations,42

however, are often limited by the large system sizes and long time scales which limit efficient sampling of43

these dynamic proteins. Coarse-grained (CG) models may increase the sampling efficiency by reducing the44

number of particles in the simulation systems (Neri et al., 2005; Monticelli et al., 2008; Bereau and Deserno,45

2009; Gopal et al., 2010). The accuracy, transferability, and efficiency of such models, however, depend on46
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the degree of coarse-graining and the parameterization strategy (Heo and Feig, 2024). One commonly used47

model is the Martini force field, which uses a four-to-one mapping scheme with explicit solvent (Souza et al.,48

2021). Different versions of Martini have been modified to produce improved ensembles of IDPs and MDPs49

(Benayad et al., 2020; Thomasen et al., 2022, 2023). For IDPs, there has in the last years been extensive work50

using even coarsermodels where each amino acid residue is represented by a single bead. The interaction sites51

are generally located at the C� position and separated by bonds that are 0.38 nm long, and we therefore here52

term these C� models. Several relatedmodels rely on a similar functional form to the HPSmodel introduced by53

Dignon et al. (2018) and may include bonded terms, an Ashbaugh-Hatch potential (Ashbaugh and Hatch, 2008)54

for shorter-range interactions and a Debye-Hückel electrostatic screening potential. Such models have for55

example been used to study the conformational ensembles and interactions within and between IDPs (Dignon56

et al., 2018; Joseph et al., 2021; Regy et al., 2021; Dannenhoffer-Lafage and Best, 2021; Wessén et al., 2022;57

Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al., 2023).58

Coarse-grained models developed for IDPs do not represent the stability of folded proteins well, because59

the finely balanced energy contributions from individual backbone and side-chain interactions are not cap-60

tured by the reduced representation. As a consequence, additional (often harmonic) restraints are applied61

to maintain the folded configurations in folded proteins and MDPs (Souza et al., 2021; Borges-Araújo et al.,62

2023). Even when applying such restraints to models developed for IDPs, extra attention needs to be paid63

to interactions related to folded domains since it is still unclear whether the models are fully transferable to64

MDPs. In particular, C�-based one-bead-per-residue mappings do not account for the specific orientations of65

side chains in folded proteins (Kolinski and Skolnick, 1998). For example, hydrophobic residues, whose side66

chains are ‘tucked away’ in the hydrophobic core of the protein, may be exposed at the surface of the protein67

in a C� based representation. One approach to help overcome this problem is to use a different or scaled set of68

force field parameters for interactions that involve folded regions (Kim and Hummer, 2008; Dignon et al., 2018;69

Krainer et al., 2021). Another possible solution is the introduction of more terms in the energy function to70

better describe long-range interactions (Li et al., 2012; Tan et al., 2023) or to introduce anisotropic interactions71

(Sieradzan et al., 2022).72

As an alternative, other coarse-grained models represent a residue by more than one bead to represent73

backbone side chain orientations and interactions (Pappu et al., 1996; Hyeon et al., 2006; Maity et al., 2022;74

Zhang et al., 2022; Sieradzan et al., 2022;Mugnai et al., 2023; Zhang et al., 2023; Yamada et al., 2023). In some75

of these models, one bead is placed at C� and the other one is at the centre of mass (COM) of side chain atoms.76

In this way, side chain interactions can be explicitly taken into account, improving the simulated dynamical77

behaviour of folded protein simulations and model transferability. In previous studies, this strategy has been78

used to study conformational ensembles of IDPs or unfolding pathways of proteins (Hyeon et al., 2006;Mugnai79

et al., 2023). While effective, using multi-bead-per-residue models increases the time to sample configurations80

in simulations, and requires the determination of a larger number of force field parameters.81

We have previously developed and applied an automated procedure to optimize the ‘stickiness’ parameters82

(�) in a one-bead-per-residue model by improving the agreement with experimental small-angle X-ray scatter-83

ing (SAXS) and paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) data for a large84

set of IDPs (Norgaard et al., 2008; Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023). The most recent CALVA-85

DOS (Coarse-graining Approach to Liquid-liquid phase separation Via an Automated Data-driven Optimisation86

Scheme) model (CALVADOS 2) was further tuned to describe phase behaviour of multi-chain conformational87

ensembles of IDPs from simulations by reducing the range of non-ionic interactions (Tesei and Lindorff-Larsen,88

2023).89

Here, we explore the use of the CALVADOS model for simulations of MDPs. We find that when the CAL-90

VADOS 2 parameters are used in simulations of MDPs with interaction sites at the C� positions, the resulting91

structures in some cases show excessive interactions between the folded domains, leading to compact en-92

sembles that do not agree with SAXS data. To remedy this problem, we describe a strategy where interaction93

sites in folded regions are located at the COM of the residue, and show that simulations with this model result94

in substantially improved agreement with experiments. We optimize the parameters in CALVADOS using the95

COM representation to derive a refined set of CALVADOS parameters (CALVADOS 3). When we combine the96

COM representation of folded domains with harmonic restraints between residues in the folded domains and97

the CALVADOS 3 parameters we obtain good agreement with experimental data on single-chain properties of98

MDPs and IDPs. Finally, we show how this model may be used to study the interactions between folded and99

disordered regions in proteins that undergo phase separation, and how the stability of folded domains might100

change during phase separation.101
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Figure 1. Simulations of MDPs and IDPs using a C� representation, COM representation or side-chain centre-of-mass (SCCOM) representation. Location of the
interaction sites in a �-sheet when using (A) a C� representation, (C) a COM representation, and (E) a SCCOM representation. Comparison between simulated and
experimental Rg values for IDPs (orange) and MDPs (green) using (B) the CALVADOS2C� model (CALVADOS 2 parameters and a C� representation for both folded anddisordered regions), (D) the CALVADOS2COM model (CALVADOS 2 parameters and a COM representation for the interaction sites in the folded regions), and (F) the
CALVADOS2SCCOM model (CALVADOS 2 parameters and a SCCOM representation for the interaction sites in the folded regions). The region labelled ‘GS-proteins’ in
panel B contains a number of proteins consisting of pairs of �-sheet-rich fluorescent protein connected by glycine-serine linkers (Moses et al., 2024). Pearson
correlation coefficients (r) and relative mean signed deviation rMSD = ⟨(Rg,sim −Rg,exp)∕Rg,exp⟩ are reported in the legend, and errors represent standard errors of themean calculated using bootstrapping. A negative rMSD value indicates that the calculated radii of gyration are systematically lower than the experimental values.
The black diagonal lines in panel B, D and F indicate y = x.

Results102

A modified representation improves accuracy for multi-domain proteins103

We first evaluated the accuracy of the original CALVADOS 2 model for simulations of MDPs. We therefore used104

the CALVADOS 2 parameters (Tesei and Lindorff-Larsen, 2023) and a C� representation to run simulations of105

56 IDPs and 14 MDPs (Table S1, Table S2, Table S3). In all systems, the interaction sites are located at the C�106

positions in both folded and disordered regions; for the MDPs, we applied an additional elastic network model107

to keep domains intact during simulations (Figure 1A, see Methods). We term this combination of the force108

field parameters (CALVADOS 2) and the C� representation of the interaction sites in the folded domains as109

CALVADOS2C� . As expected and reported previously (Tesei and Lindorff-Larsen, 2023), we found that simula-110

tions of IDPs with CALVADOS2C� resulted in good agreement between experimental and calculated values of111

Rg (Figure 1B). In contrast, we foundmore substantial differences between experimental and calculated values112

of Rg for several MDPs (Figure 1B). In particular, we found that the Rg was underestimated for several MDPs113

including a series of two fluorescent proteins connected by Gly-Ser linkers of different lengths (here termed114

GS-proteins; Moses et al. (2024)). This observation was confirmed by calculations of the relative mean signed115

deviation, rMSD, between experimental and calculated values of Rg that shows that these are on average un-116

derestimated by 18% in the MDPs (Figure 1B).117

As a first attempt at creating a model for both IDPs and MDPs, we used our previously described protocol118

(Norgaard et al., 2008; Tesei et al., 2021b) to optimize the � stickiness parameters of the CALVADOS model119

targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs. The resulting � values were generally120

smaller than those in CALVADOS 2 (Figure S1A) in line with the finding that the MDPs were too compact us-121

ing CALVADOS 2. Nevertheless, it was also clear that this new parameter set made the agreement worse for122

disordered proteins (Figure S1B-E) and did not result in a satisfactory model to describe both IDPs and MDPs.123

We instead hypothesized that the compaction of several MDPs was a result of placing the interaction sites124

at the C� positions in the folded domains. In particular for �-sheet-containing proteins, this geometry would125

mean that residues whose side chains are buried inside the folded domain are represented by interaction126

sites located closer to the protein surface (Figure 1A); thus buried hydrophobic residues might appear as sol-127

vent exposed. We therefore constructed a new model where the interaction sites within folded regions were128

placed at the COM of the residue (Figure 1C) and constrained by harmonic restraints; when used with the129

CALVADOS 2 parameters, we term this model CALVADOS2COM. We stress that only the bead locations in the130

folded domains differ between the CALVADOS2C� and CALVADOS2COM models; residues in disordered regions131

are represented by one bead centred on the C� positions in both models. In the absence of folded domains,132

CALVADOS2COM and CALVADOS2C� are thus identical and simulations with the two models gave comparable133

results (Figure 1B and D). In contrast, simulations of theMDPs with CALVADOS2COM were in substantially better134

agreement with experiments than simulations with CALVADOS2C� as evidenced e.g. by an increase in Pearson135

correlation coefficient from 0.5 to 0.95 and an increase in rMSD from -18% to 0% (Figure 1B and D). In addition136

to the COM representation, we also examined whether a side-chain centre-of-mass (SCCOM) representation,137

shifting bead positions of buried residues further away from the surface, could yield even more accurate Rg138
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Figure 2. Energy calculations reveal substantial inter-domain interactions. We calculated interaction energy maps (of the Ashbaugh-Hatch term in the force field)
from simulations using (A) the CALVADOS2C� model and (B) the CALVADOS2COM model. We show only a subset of the map representing interactions between the
first (residues 1–226 on the y-axis) and second (residues 256–470 on the x-axis) folded domains. (C) Examples of structures of GS0 with the same Rg as the averageover simulations using CALVADOS2C� (left) and CALVADOS2COM (right). The starting structure of the simulations is shown in the middle, where green and orange
parts are the two fluorescent proteins connected by a flexible linker (grey). The regions that interact strongly in the CALVADOS2C� simulations are coloured blue.

predictions than the COM representation (Figure 1E). We performed single chain simulations with the CALVA-139

DOS 2 parameters and the SCCOM representation (CALVADOS2SCCOM) and found that CALVADOS2SCCOM on140

average resulted in an overestimation of the Rg of MDPs of 11% (Figure 1D and F). As an alternative solution to141

decrease the too strong interactions between folded domains, it has previously been suggested to scale down142

interactions between pairs of folded domains (by a factor of 0.7) and between folded domains and disordered143

regions (by a factor of 0.84 = √

0.7) (Krainer et al., 2021). While applying this rescaling to CALVADOS 2 (termed144

CALVADOS2C�70%) led to improved agreement with experiments, the improvement was smaller than when145

using the COM representation, and the simulations had a remaining bias towards underestimating the radii of146

gyration (Figure S2). Therefore, we proceeded by using the COM representation in this study.147

To examine in more detail why the CALVADOS2C� model resulted in more compact conformations of MDPs148

than CALVADOS2COM, we calculated the time-averaged non-ionic (Ashbaugh-Hatch) interaction energies be-149

tween residues of different folded domains. For this analysis we selected GS0, a construct with two fluorescent150

proteins separated by a 29-residue-long linker (Moses et al., 2024), since the Rg value of GS0 deviates substan-151

tially from experiments in simulations with CALVADOS2C� (Figure 1B). In the energy maps, we see evidence of152

substantial inter-domain interactions between residue 140–230 of one fluorescent protein and residue 340–153

440 of the other (Figure 2A). In contrast, these domain-domain interactions are not observed when simulating154

with COM representation (Figure 2B). The comparison of the two energy maps thus supports the hypothesis155

that the too compact conformations of MDPs in simulations with CALVADOS2C� result from inter-domain at-156

tractions that are decreased in the COM representation (Figure 2C).157

Optimizing CALVADOS using a centre-of-mass representation158

Having shown that the COM representation gave an improved description of MDPs while preserving the ac-159

curacy when simulating IDPs, we proceeded to optimize the CALVADOS model further. We used our iterative160

Bayesian optimization scheme (Norgaard et al., 2008; Tesei et al., 2021b) to optimize the � stickiness parame-161

ters of the CALVADOS model targeting simultaneously SAXS and NMR data on 56 IDPs and 14 MDPs (Table S1,162

Table S2, Table S3). In these simulations we used the COM representation of the folded domains and we thus163

term the final model CALVADOS3COM to represent both the force field and the COM representation of the164

folded regions. The resulting � values in CALVADOS3COM are similar to those in CALVADOS 2 (Figure 3 and Fig-165

ure S3). We found that simulations of IDPs with CALVADOS3COM and CALVADOS2COM gave similar agreement166

to SAXS experiments. Likewise, we found a similar agreement for the MDPs (Figure 1D, Figure 3B and C).167

Having optimized �, we validated the CALVADOS3COM model on 25 IDPs and 9 MDPs (Table S4, Table S5)168

that were not used in training for any of the models (Figure 4). For the 25 IDPs we found good agreement for169

all three models (CALVADOS2C� , CALVADOS2COM and CALVADOS3COM) (Figure 4A–C). We note again that the170

COM representation is only applied to the folded domain. All IDPs have C� representations, so CALVADOS2C�171

and CALVADOS2COM are the same models for IDPs. In contrast, for MDPs we found that CALVADOS3COM and172

CALVADOS2COM perform substantially better thanCALVADOS2C� (Figure 4A-C). Our validation results thus show173
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that the CALVADOS3COM model gives improved agreement for simulations of MDPs while retaining the accu-174

racy of CALVADOS2C� for simulations of IDPs. Across the 34 independent test proteins we find ⟨�2Rg ⟩ values175

of 50, 22 and 15 for CALVADOS2C� , CALVADOS2COM and CALVADOS3COM, respectively (Figure S4), and both176

CALVADOS2COM and CALVADOS3COM have essentially no bias (rMSD≈0; Figure 4B and C).177

Simulations of phase separation of disordered and multi-domain proteins178

Weandothers havepreviously usedone-bead-per-residuemodels such as CALVADOS to study the self-association179

and phase separation of IDPs (Dignon et al., 2018; Tesei et al., 2021b; Joseph et al., 2021; Regy et al., 2021;180

Dannenhoffer-Lafage and Best, 2021;Wessén et al., 2022; Tesei and Lindorff-Larsen, 2023; Valdes-Garcia et al.,181

2023). In some cases, these models have also been used to study phase separation of proteins that contain182

a mixture of folded and disordered regions (Dignon et al., 2018; Conicella et al., 2020; Her et al., 2022). We183

therefore examined whether the CALVADOS3COM model could be used to study phase separation of both IDPs184

andMDPs. We usedmulti-chain simulations in a slab geometry (Dignon et al., 2018) to simulate the partitioning185

of proteins between a dilute and dense phase, and calculated the dilute phase concentration (the saturation186

concentration; csat) as a sensitive measure of the accuracy of the model. We first simulated 33 IDPs and found187

that simulations with CALVADOS3COM gave an agreement with experimental values of csat that is comparable188

to that of CALVADOS2C� (Table S6, Figure S5, Figure S6, Figure S7).189

We then proceeded to use CALVADOS3COM to study the phase separation of MDPs including hnRNPA1*190

(where * denotes that residues 259–264 have been deleted from full-length hnRNPA1), full-length FUS (FL_FUS)191

and other multi-domain proteins with experimental estimates of csat (Table S7;Wang et al. (2018);Martin et al.192

(2021b)). Simulations of hnRNPA1* with CALVADOS2C� , under conditions where the experimental dilute phase193

concentration is 0.17 mM, resulted in essentially all proteins in the dense phase (csat=0 mM; Figure 5A). In194

contrast, simulations using CALVADOS3COM resulted in a lower propensity to phase separate and a calculated195

value of csat=0.14±0.01 mM that is comparable to experiments (Figure 5B).196

To understand the origin of these differences we calculated interaction energy maps of the proteins in197

the dense phase. Experiments have shown that the LCD in hnRNPA1* (residues 186–320) plays a central198

role in driving phase separation (Molliex et al., 2015; Martin et al., 2021b), and we indeed found evidence199

for substantial LCD-LCD interactions in the dense phases in simulations with both CALVADOS2C� (Figure 5C)200

and CALVADOS3COM (Figure 5D). In the simulations with CALVADOS2C� we, however, also observed more sub-201

stantial interactions between the folded RRM (RNA recognition motif) domains (residues 14–97 and 105–185)202

and between the RRMs and the LCD. In simulations with CALVADOS3COM these interactions weremuch weaker,203

presumably explaining the increase of csat in these simulations.204

Having demonstrated that CALVADOS3COM provides a more accurate description of the phase behaviour of205

hnRNPA1* than CALVADOS2C� , we proceeded to perform simulations of several other MDPs for which we206

found estimates of csat in the literature (Figure 6, Figure S8, Figure S9). As for hnRNPA1*, we found that207

CALVADOS2C� substantially overestimates the tendency of these proteins to undergo phase separation (i.e.208

underestimate csat). The use of the COM representation in CALVADOS3COM decreases the protein-protein in-209

teractions, and thus substantially improves the agreement with experiments, though differences remain.210

Examining changes in folding stability in condensates211

Experiments have shown that the protein-rich environment of condensates canmodulate the stability of folded212

proteins or nucleic acids (Nott et al., 2015; Ruff et al., 2022; Chen et al., 2024; Ahmed et al., 2024). Inspired by213

these findings, we used the ability to simulate both folded and disordered regions with CALVADOS 3 to examine214

how partitioning into condensates may shift the folding equilibrium of a folded domain. As it is difficult to215

sample the folding-unfolding equilibrium by simulations, we studied it indirectly using a thermodynamic cycle216

that involves differences in partitioning of the folded and unfolded forms into a condensate (Nott et al., 2015).217

To demonstrate how CALVADOS 3 enables such analyses, we simulated the isolated RRM1 and RRM2 from218

hnRNPA1∗ (Figure 7A) in the presence of a condensate of the LCD of hnRNPA1∗ and calculated the free energies219

of partitioning of the RRMdomains in their native, folded state,ΔGNpart. Using the sameapproach, weperformed220

direct-coexistence simulations without applying harmonic networks to the RRMs to calculate the free energies221

of partitioning of the RMMs in their unfolded state,ΔGUpart. A comparison of the concentration profiles from our222

direct-coexistence simulations shows that the unfolded states accumulate in the condensate and are depleted223

from the dilute phase to a greater extent than the folded states (Figure 7B–C); We quantify this via a more224

negative free energy of partitioning, ΔGUpart < ΔGNpart (Figure 7D). The preference of the unfolded state for the225

condensate is particularly pronounced for RRM2, for which we estimate a two-fold decrease in the free energy226

of partitioning (ΔGUpart − ΔGNpart = −0.7 kcal/mol). From the thermodynamic cycle, this in turn means that the227

folding stability of RRM2 is 0.7 kcal/mol lower (less stable) in the condensate than in the dilute phase.228
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Figure 4. Validation of the CALVADOS3COM model using proteins that were not used during training. Comparison of
simulated and experimental Rg values on a validation set using (A) CALVADOS2C� , (B) CALVADOS2COM and (C) CALVADOS3COM.Pearson correlation coefficients (r) and rMSD are reported in the legend. The black diagonal lines indicate y = x.

7 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.02.03.578735doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.03.578735
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 0 50
z [nm]

10 2

100

102

104

Co
nc

. [
M

]

CALVADOS2C
csat: 0.0±0.0 mM

100 50 0 50 100
z [nm]

102

103

104

Co
nc

. [
M

]

CALVADOS3COM
csat: 0.14±0.01 mM

0 50 100 150 200 250 300
Chains in condensates

0

50

100

150

200

250

300

Ce
nt

ra
l c

ha
in

CALVADOS2C

0 50 100 150 200 250 300
Chains in condensates

0

50

100

150

200

250

300

Ce
nt

ra
l c

ha
in

CALVADOS3COM

20

10

0

10

20

u A
H
 [J

m
ol

1 ]

20

10

0

10

20

u A
H
 [J

m
ol

1 ]

A B C D

Figure 5. Phase coexistence simulations of hnRNPA1* using (A, C) CALVADOS2C� and (B, D) CALVADOS3COM. Simulations were performed at 293 K and an ionic
strength of 0.15 M. Equilibrium density profile of hnRNPA1* using (A) CALVADOS2C� and (B) CALVADOS3COM. csat calculated from density profiles are 0 mM and
0.14 mM, respectively. Average residue-residue interaction energies (the Ashbaugh-Hatch term in the force field) between the most central chain and the rest of the
condensate for (C) CALVADOS2C� and (D) CALVADOS3COM.
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Figure 6. Comparison between simulated and experimental csat values for MDPs using the CALVADOS3COM model (red) and
CALVADOS2C� (blue). The simulated proteins are hnRNPA1* (circle), hSUMO_hnRNPA1* (downward triangle), FL_FUS (upward
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Figure 7. Predicting the effect of the protein-rich environment of a condensate on the stability of folded domains. (A)
Structure of hnRNPA1∗ highlighting the low-complexity domain (grey) and RNA-recognition motifs 1 (blue) and 2 (red). (B)
Concentration profiles of the LCD (grey) and RRM1 in the native (blue) and unfolded (cyan) state. (C) Concentration profiles of
the LCD (grey) and RRM2 in the native (red) and unfolded (magenta) state. (D) Free energy of partitioning of RRM1 and RRM2
in native and unfolded states into condensates of the LCD. Data estimated from direct-coexistence simulations performed in
two independent replicates. Error bars in (D) represent the differences between the replicates.

To put these changes into context, we used a recently developedmachine learning approach (Cagiada et al.,229

2024) to predict the absolute protein folding stabilities of the isolated RRMs in the dilute phase, ΔGdil
N→U , and230

obtained 6.6 kcal/mol for RRM1 and 4.4 kcal/mol for RRM2. Using these values and assuming a two-statemodel,231

we estimate that the partitioning into the condensate has a negligible effect on the amount of unfolded state232

for RRM1; in contrast we predict a four-fold increase in the population of the unfolded state of RRM2 from233

exp(−ΔGdilN→U∕RT ) ≈ 1∕2000 to exp[−(ΔGdilN→U + ΔG
U
part − ΔG

N
part)∕RT ] ≈ 1∕500. Although substantial additional234

work is needed to examine the accuracy of CALVADOS 3 for quantifying differences in partitioning of folded and235

unfolded proteins into condensates, these data show a promising use of our model for predicting unfolding in236

condensates.237

Discussion238

In this work, we found that simulations with the CALVADOS2C� model, previously shown to represent single-239

chain and multi-chain properties of IDPs, underestimated the radii of gyration of MDPs. Changing the CGmap-240

ping method from C� to COM substantially improved the agreement with experimental data. This observation241

is in line with the finding that reconstruction of all-atom structures from a centre-of-mass representation is242

more accurate than from a C� representation (Heo and Feig, 2024). We reoptimized the ‘stickiness’ parame-243

ters in the context of a COM-based model based on experimental data for both IDPs and MDPs. The resulting244

CALVADOS3COM model provides a good description of both single- and multi-chain simulations of both IDPs245

and MDPs.246

The relatively low csat value calculated from slab simulations of hnRNPA1* with CALVADOS2C� further sup-247

ported that interactions between the folded domains are overestimated by C�-based models without any fur-248

ther modifications. Considering that the SCCOM-based model (CALVADOS2SCCOM) overestimated Rg of MDPs,249

we suggest that the COM-basedmodel (CALVADOS3COM) appears to strike a good balance, leading to improved250

values of csat forMDPs. Nevertheless, some systematic differences remain evenwith thismodel, which resulted251

in underestimates of csat for different constructs of the protein FUS. Together, our results show that the new252

parameter set and the centre-of-mass representation (CALVADOS3COM) retain the accuracy of CALVADOS 2 for253

IDPs, but improve the description of proteins with both disordered and folded domains. We therefore term this254

newmodel CALVADOS 3, with the implicit notion that this model is used with centre-of-mass representation of255

residues within folded regions. We note that an earlier version of this preprint (Cao et al., 2024) used a slightly256

different set of parameters, and we suggest to refer to that model as CALVADOS 3beta.257

When simulatingMDPs with CALVADOS 3we need to restrain the folded domains using harmonic restraints.258

In the currentworkwehavemanually determined the boundaries forwhich regions are considered to be folded,259
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though automated methods will be needed for large-scale applications. Tools for automatic predictions of260

domain boundaries exist (Holm and Sander, 1994; Lau et al., 2023) and might be combined with AlphaFold to261

set the harmonic restraints (Jussupow and Kaila, 2023).262

Despite these current limitations, we envision that the CALVADOS 3 model will enable detailed studies of263

the interactions within and between multi-domain proteins, and pave the way for proteome-wide simulation264

studies of full-length proteins similar to what has recently been achieved for IDRs (Tesei et al., 2024). We also265

envision that our approach to study changes in protein stability inside condensates can be used together with266

methods to predict absolute protein stability (Cagiada et al., 2024) to learn and expand our knowledge on the267

rules that underlie phase separation and changes in stability of folded, globular proteins (Ruff et al., 2022).268

Methods269

Description of the model270

Wemodelled each amino acid by one bead. We generated C�-beads for IDPs and assigned C� atom coordinates271

to bead positions for IDRs inmulti-domain proteins according to theirmodelled or experimental structures (see272

below, Simulations). For structured domains, we used the following rules for the different representations: we273

placed each bead position at the C� atom (C� representation), or the centre of mass calculated for all the atoms274

in a residue (COM representation), or the centre of mass calculated for only side chain atoms of a residue (SC-275

COM representation). The CALVADOS 3 energy function consists of bonded interactions, non-bonded interac-276

tions and an elastic network model as described below.277

Chain connectivity of the beads is described by a harmonic potential,278

ubond(r) = k(r − r0)2, (1)
with force constant k = 8033 kJ⋅mol−1⋅nm−2. The equilibrium distance r0 is set to 0.38 nm if two beads are both279

within IDRs, or the distance between two beads in the initial conformation if at least one bead is within a folded280

domain.281

For non-bonded interactions, we use a truncated and shifted Ashbaugh-Hatch (AH) and Debye-Hückel (DH)282

potential to model van der Waals and salt-screened electrostatic interactions, respectively. The Ashbaugh-283

Hatch potential is described by284

uAH(r) =
⎧

⎪

⎨

⎪

⎩

uLJ(r) − �uLJ(rc ) + �(1 − �), r ≤ 21∕6�

�[uLJ(r) − uLJ(rc )], 21∕6� < r < rc
0, r > rc

, (2)

where uLJ(r) is the Lennard-Jones (LJ) potential,285

uLJ(r) = 4�
[

(�
r

)12
−
(�
r

)6
]

, (3)
and where � = 0.8368 kJ⋅mol−1 and rc = 2.2 or 2 nm. Similar to previous work, we use rc = 2.2 nm during the286

optimization of CALVADOS3COM, and use 2 nm during validation and application (Tesei and Lindorff-Larsen,287

2023). Both � and � are calculated as the arithmetic averages of residue-specific bead size and stickiness, re-288

spectively. � values are van der Waals volumes calculated by Kim and Hummer (Kim and Hummer, 2008). �289

values are treated as free parameters and optimized iteratively through a Bayesian parameter-learning proce-290

dure as described previously (Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023) to minimize the differences291

in the simulated and experimental Rg and PRE data. In simulations where we scaled down interactions of292

folded domains (CALVADOS2C�70%)), we scaled down � to 0.7� for domain-domain interactions and to √

0.7�293

for domain-IDR interactions.294

The Debye-Hückel potential is described by295

uDH(r) =
qiqje2

4��0�r

exp(−r∕D)
r

, (4)
where q is the average amino acid charge number, e is the elementary charge, D =

√

1∕(8�Bcs) is the Debye296

length of an electrolyte solution of ionic strength cs, B(�r) is the Bjerrum length and �0 is vacuum permittiv-297

ity. Electrostatic interactions are truncated and shifted at the cutoff distance rc = 4 nm. The temperature-298

dependent dielectric constant of the implicit aqueous solution is modelled by the following empirical relation-299

ship (Akerlof and Oshry, 1950):300

�r(T ) =
5321
T

+ 233.76 − 0.9297×T + 1.417×10−3×T 2 − 8.292×10−7×T 3. (5)
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We use the Henderson-Hasselbalch equation to estimate the average charge of the histidine residues, as-301

suming a pKa value of 6 (Nagai et al., 2008).302

Weuse an elastic networkmodel (ENM)with a harmonic potential to restrain non-bonded pairs in the folded303

domains using304

uENM(r) = kd (r − r0)2. (6)
Here, the force constant kd is 700 kJ⋅mol−1⋅nm−2, r is the distance between beads and equilibrium distances r0305

are directly taken from the reference structures. We only apply the ENM to residue pairs with an r0 below a306

0.9 nm cutoff. We determine the predefined boundary of each domain inMDPs by visual inspection of the three-307

dimensional structures (Table S8). Each domain has a starting amino acid and an ending amino acid indicating308

the range of the domain. Only residue pairs within the same domain are restrained by this harmonic potential309

except for bonded pairs, which are restrained by the aforementioned bonded potential. All boundaries of310

MDPs are consistent with definitions in their experimental or simulation articles. In some cases, one domain311

could be discontinuous because of long loops within the domain so we exclude those regions when defining312

boundaries. Residues of �-helix, �-sheet and short loops in a structured domain are all restrained equally with313

the same force constant and cutoff distance. The application of ENM ensures that secondary structures within314

folded domains would not fluctuate substantially (Figure S10). Non-bonded interactions (Ashbaugh-Hatch and315

Debye-Hückel potential) are excluded for the restrained pairs.316

Simulations317

Wegenerated initial conformations of all IDPs as Archimedes’ spiralswith a distance of 0.38nmbetweenbonded318

beads. Atomistic structures of all MDPs used in optimization procedures, single-chain validation and slab sim-319

ulations either came from our recent work (Thomasen et al., 2023) or were modelled by superposing experi-320

mental domain structures (if available) on AlphaFold predictions (Jumper et al., 2021; Varadi et al., 2022). We321

then mapped all of these MDPs to CG structures based on different CG representations (C� , COM, SCCOM).322

We conducted Langevin dynamics simulations using OpenMM 7.6.0 (Eastman et al., 2017) in the NVT en-323

semble with an integration time step of 10 fs and friction coefficient of 0.01 ps−1. Single chains of N residues324

were simulated in a cubic box with a (N − 1)×0.38 + 4 nm box edge length under periodic boundary conditions.325

Each chain was simulated in 20 replicas for 6.3∼77.7 ns depending on the sequence length of the disordered326

regions (Tesei and Lindorff-Larsen, 2023; Tesei et al., 2024). Final trajectories had 4000 frames for each protein,327

excluding the initial 10 frames in each replica.328

Weperformeddirect-coexistence simulations in a cuboidal box using [Lx, Ly, Lz] = [17, 17, 300] and [15, 15, 150]nm329

to simulate multi-chains of Ddx4WT and the other IDPs, respectively. For MDPs, box sizes are shown in Ta-330

ble S7. To keep the condensates thick enough and reduce finite-size surface effects, we chose 150 chains for331

hnRNPA1* and 100 chains for all the other IDPs and MDPs (see also below). We generated each IDP chain as332

an Archimedes spiral with a distance of 0.38 nm between bonded beads in the xy-plane. Each spiral was placed333

along the z-axis with a 1.47 nm interval. To avoid steric clashes of densely packed MDP input structures, we334

chose the most compact conformation sampled by single-chain simulations with CALVADOS 2 parameters and335

corresponding CG representation as the initial conformation for each MDP chain. Before production simula-336

tions, we performed equilibrium runs where we used an external force to push each chain towards the centre337

of the box so that a condensate could be formed. We then continued to perform production simulations, sav-338

ing frames every 0.125 ns and discarded the first 150 ns before analysis. The slab in each frame was centred339

in the box and the equilibrium density profile �(z) was calculated by taking the averaged densities over the340

trajectories as previously described (Tesei and Lindorff-Larsen, 2023).341

To examine finite-size effects of the direct-coexistence simulations we performed additional simulations of342

hnRNPA1* varying both the box dimensions (Lx, Ly, Lz) and the number of chains. We calculated both dense343

and dilute phase concentrations from each simulation and find that unless we use a very small patch (Lx =344

Ly = 11 nm), the results are consistent (Figure S11, Figure S12, Table S9), in line with previous analyses of such345

finite-size effects (Dignon et al., 2018; Joseph et al., 2021). Convergence of the IDP simulations was assessed346

as previously described (Tesei et al., 2021b).347

To indicate the computational performance of single- and multi-chain CALVADOS simulations, we show348

the performance for systems of different sizes run either on an Intel Xeon Gold 6130 CPU (for single-chain349

simulations) on an NVIDIA Tesla V100 GPU (for multi-chain simulations) (Figure S13).350

To estimate the free energy of partitioning of RRM1 (residues 11–89) and RRM2 (residues 105–179) into con-351

densates of hnRNPA1∗ LCD (GS followed by residues 186–314), we performed direct-coexistence simulations352

at 298 K, pH 7.5, and 150 mM ionic strength, in a cuboidal box with sidelengths [Lx, Ly, Lz] = [15, 15, 150] nm.353

The structures of the native states of RRM1 and RRM2were based on the crystal structure (Shamoo et al., 1997)354

as previously described (Martin et al., 2021b). We performed two independent simulations, each 21 µs long,355

for each system and, after centering the LCD condensate in the middle of the box, calculated concentration356
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profiles along the z-axis using the last 20 µs of each trajectory. We estimated the free energies of partitioning357

as ΔGpart = RT ln (cdil ∕ ccon) where R is the gas constant and cdil and ccon are the average concentrations of358

the RRMs in the dilute phase and in the LCD condensate, respectively. The error on ΔGpart was estimated as359

the difference between the values from the two independent simulation replicas. Absolute folding stabilities360

of RRM1 and RRM2 were calculated using the Google Colab implementation of a recently described model for361

predicting absolute protein stability (Cagiada et al., 2024).362

Parameter optimization363

Our Bayesian Parameter-Learning Procedure (Tesei and Lindorff-Larsen, 2023) of the ‘stickiness’ parameters,364

�, aimed to minimize the following cost function:365

 (�) = ⟨�2Rg ⟩ + �⟨�
2PRE⟩ − � ln (P (�)). (7)

�2Rg and �2PRE denoting Rg and PRE differences between experiments and simulations are estimated as366

�2Rg =

(

Rexp
g − Rcalc

g

�exp
)2

(8)
and367

�2PRE = 1
NlabelsNres

Nlabels
∑

j

Nres
∑

i

(

Y exp
ij − Y calc

ij

�expij

)2

. (9)
Here P (�) is a statistical prior of � (Tesei et al., 2021b; Tesei and Lindorff-Larsen, 2023), �exp is the error on368

the experimental values, Y is PRE data, either Ipara∕Idia or Γ2 is calculated using the rotamer library approach369

implemented in DEER-PREdict (Tesei et al., 2021a),Nlabels is the number of spin-labeledmutants, andNres is the370

number of measured residues. The prior loss, � ln (P (�)), quantifies the difference between prior distribution371

P (�) and current � values (with min-max normalization at each step) to avoid overfitting. The coefficients are372

set to � = 0.1 and � = 0.08. � is not allowed to be negative but can be greater than 1.0 during optimization.373

We used a training set consisting of 56 IDPs and 14 MDPs to perform the optimization. All of those pro-374

teins were from our previous studies (Tesei and Lindorff-Larsen, 2023; Thomasen et al., 2023). A summary375

of the training data and other properties of different CALVADOS models is shown in the supporting material376

(Table S10). 51 IDPs and 14 MDPs in this training set were used for fitting against experimental SAXS Rg data377

and 5 IDPs were used for fitting against experimental PRE data (Table S1, Table S2, Table S3). We then used a378

validation set to validate the performances of our new optimizedmodels on reproducing experimentalRg . This379

validation set was composed of 25 IDPs and 9MDPs. 12 IDPs in this validation set were from our previous work380

and the rest (13 IDPs and 9 MDPs) were newly collected experimental Rg data in this work (Table S4, Table S5).381

We also collected nine MDPs with measured values of csat to examine the accuracy of the phase behaviour382

simulated with the models presented in this work (Table S7).383

The optimization procedure went through several cycles until convergence of the final total cost (|Δ| < 1,384

Δ is the difference of final total cost between the current and previous cycle, Equation 7). Within each cycle,385

we use the optimized � values from the previous cycle to perform new single-chain simulations (initial � values386

for the first cycle are CALVADOS 2 parameters, (Tesei and Lindorff-Larsen, 2023)), calculateRg and PRE for each387

frame and then nudge values in the � set iteratively to minimize the cost function (five residues are randomly388

subjected to small perturbations sampled from a Gaussian distribution with � = 0, � = 0.05). This trial � set (�k)389

is used to calculate the Boltzmannweights of each frame bywi = exp(−[U (ri, �k) − U (ri, �0)]∕kBT ), whereU is the390

AH potential, ri are coordinates of a conformation, kB is the Boltzmann constant and T is temperature. The re-391

sultingweights are thenused to calculate the effective fraction of framesby�eff = exp[−∑Nframes
i wi log(wi×Nframes)];392

if �eff ≥ 0.6, trial �k acceptance probability is determined by the Metropolis criterion, min{1, exp((�k−1)−(�k)
�k

)

},393

where �k is a unitless control parameter, its initial value is set to 0.1 and scaled down by 1% at each iteration394

until � < 10−8, which means a micro-cycle is complete. Within a cycle, a total of 10 micro-cycle are performed.395

In this work, the optimization procedure converged within three cycles. Therefore, we used the resulting �396

values from the third cycle as the final parameter set. We ran one additional optimization cycle to confirm the397

convergence of the training.398

Data and software availability399

Scripts anddata to reproduce thework are available via https://github.com/KULL-Centre/_2024_Cao_CALVADOSCOM.400
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Table S1. Experimental solution conditions and radii of gyration of IDPs included in the training set for the Bayesian
parameter-learning procedure.

Protein N Rg ± Err [nm] T [K] cs [M] pH Ref.
Hst5 24 1.38 ± 0.05 293.00 0.150 7.5 (Jephthah et al., 2019)
Hst52 48 1.87 ± 0.05 298.00 0.150 7.0 (Fagerberg et al., 2020)
p532070 62 2.39 ± 0.05 277.00 0.100 7.0 (Zhao et al., 2021)
ACTR 71 2.63 ± 0.1 278.00 0.200 7.4 (Kjaergaard et al., 2010)
Ash1 81 2.9 ± 0.05 293.00 0.150 7.5 (Martin et al., 2016; Jin and Gräter, 2021)
CTD2 83 2.614 ± 0.05 293.00 0.120 7.5 (Jin and Gräter, 2021)(Gibbs et al., 2017)]
Sic1 92 3.0 ± 0.4 293.00 0.200 7.5 (Gomes et al., 2020)
SH4UD 95 2.71 ± 0.04 293.15 0.216 8.0 (Shrestha et al., 2019)
ColNT 98 2.8 ± 0.033 277.00 0.433 7.6 (Johnson et al., 2017)
p15PAF 111 2.81 ± 0.1 298.00 0.150 7.0 (De Biasio et al., 2014)
hNL3cyt 119 3.15 ± 0.2 293.00 0.300 8.5 (Paz et al., 2008)
RNaseA 124 3.36 ± 0.1 298.00 0.150 7.5 (Riback et al., 2017)
+4D 137 2.72 ± 0.03 298.00 0.150 7.0 (Bremer et al., 2022)
-3R+3K 137 2.63 ± 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-6R+6K 137 2.79 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-10R+10K 137 2.85 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-4D 137 2.64 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+2R 137 2.62 ± 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
+12D 137 2.8 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+12E 137 2.85 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7K+12D 137 2.92 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7R 137 2.71 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-12F+12Y-10R 137 2.61 ± 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-10F+7R+12D 137 2.86 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+8D 137 2.69 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7K+12Db 137 2.56 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-9F+6Y 137 2.66 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-10R 137 2.67 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-9F+3Y 137 2.68 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-8F+4Y 137 2.71 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
+7F-7Y 137 2.72 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
-12F+12Y 137 2.6 ± 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
A1 137 2.76 ± 0.02 298.00 0.150 7.0 (Bremer et al., 2022)
-6R 137 2.57 ± 0.01 298.00 0.150 7.0 (Bremer et al., 2022)
aSyn140 140 3.55 ± 0.1 293.00 0.200 7.4 (Ahmed et al., 2021)
FhuA 144 3.34 ± 0.1 298.00 0.150 7.5 (Riback et al., 2017)
K27 167 3.7 ± 0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
K10 168 4.0 ± 0.1 288.00 0.150 7.4 (Mylonas et al., 2008)
K25 185 4.1 ± 0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
K32 198 4.2 ± 0.3 288.00 0.150 7.4 (Mylonas et al., 2008)
CAHSD 227 4.84 ± 0.2 293.00 0.070 7.0 (Hesgrove et al., 2021)
K23 254 4.9 ± 0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
tau35 255 4.64 ± 0.1 293.20 0.150 7.4 (Lyu et al., 2021)
CoRNID 271 4.7 ± 0.2 293.15 0.192 7.5 (Cordeiro et al., 2019)
K44 283 5.2 ± 0.2 288.00 0.150 7.4 (Mylonas et al., 2008)
PNt 334 5.11 ± 0.1 298.00 0.150 7.5 (Riback et al., 2017; Bowman et al., 2020)
PNtS1 334 4.92 ± 0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS4 334 5.34 ± 0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS5 334 4.87 ± 0.1 298.00 0.150 7.5 (Bowman et al., 2020)
PNtS6 334 5.26 ± 0.1 298.00 0.150 7.5 (Bowman et al., 2020)
GHRICD 351 6.0 ± 0.5 298.00 0.350 7.3 (Seiffert et al., 2020; Pesce et al., 2023)
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Table S2. Experimental solution conditions and PRE data included in the training set for the Bayesian parameter-learning
procedure.

Proteins N Nlabels !I∕2�[MHz] T [K] cs [M] pH Ref.
A2 155 2 850 298 0.005 5.5 (Ryan et al., 2018)
aSyn 140 5 700 283 0.200 7.4 (Dedmon et al., 2005)
OPN 220 10 800 298 0.150 6.5 (Kurzbach et al., 2016)
FUS 163 3 850 298 0.150 5.5 (Monahan et al., 2017)
FUS12E 164 3 850 298 0.150 5.5 (Monahan et al., 2017)

Table S3. Experimental solution conditions and radii of gyration of MDPs included in the training set for the Bayesian
parameter-learning procedure.

Protein N Rg ± Err [nm] T [K] cs [M] pH Ref.
THB_C2 137 1.91 ± 0.076 295.15 0.15 6.5 (Michie et al., 2016)
Ubq2 162 2.19 ± 0.18 293.00 0.33 8.0 (Jussupow et al., 2020)
Ubq3 228 2.62 ± 0.018 293.00 0.33 8.0 (Jussupow et al., 2020)
Gal3 250 2.91 ± 0.06 303.00 0.04 7.0 (Lin et al., 2017)
TIA1 275 2.75 ± 0.05 293.15 0.10 6.0 (Sonntag et al., 2017)
Ubq4 304 3.19 ± 0.092 293.00 0.33 8.0 (Jussupow et al., 2020)
hnRNPA1* 314 3.12 ± 0.078 293.15 0.15 7.5 (Martin et al., 2021b)
hSUMO_hnRNPA1* 433 3.37 ± 0.13 293.15 0.10 7.5 (Martin et al., 2021b)
GS0 470 3.2 ± 0.044 293.15 0.15 7.4 (Moses et al., 2024)
GS8 486 3.37 ± 0.036 293.15 0.15 7.4 (Moses et al., 2024)
GS16 502 3.45 ± 0.06 293.15 0.15 7.4 (Moses et al., 2024)
GS24 518 3.57 ± 0.075 293.15 0.15 7.4 (Moses et al., 2024)
GS32 534 3.75 ± 0.097 293.15 0.15 7.4 (Moses et al., 2024)
GS48 566 4.11 ± 0.21 293.15 0.15 7.4 (Moses et al., 2024)
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Table S4. Experimental solution conditions and radii of gyration of IDPs included in the validation set.

Protein N Rg ± Err [nm] T [K] cs [M] pH Ref.
ChiZ164 67 2.42 ± 0.01 293.00 0.0650 7.0 (Hicks et al., 2020)
DomainV 67 2.43 ± 0.024 288.15 0.1985 7.0 (Chan-Yao-Chong et al., 2019)
DSS1 71 2.5 ± 0.1 288.00 0.1700 7.4 (Pesce et al., 2023)
BMAL1P624A 98 2.77 ± 0.09 283.25 0.1540 7.2 (Garg et al., 2019)
VWF 103 3.08 ± 0.03 293.00 0.1530 7.4 (del Amo-Maestro et al., 2021)
p27Cv56 107 2.328 ± 0.1 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv14 107 2.936 ± 0.13 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv78 107 2.211 ± 0.03 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv31 107 2.81 ± 0.18 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv44 107 2.492 ± 0.13 293.00 0.0950 7.2 (Das et al., 2016)
p27Cv15 107 2.915 ± 0.1 293.00 0.0950 7.2 (Das et al., 2016)
PTMA 111 3.7 ± 0.2 288.00 0.1600 7.4 (Pesce et al., 2023)
GON7 114 3.18 ± 0.04 283.00 0.2110 6.5 (Arrondel et al., 2019)
NHE6cmdd 116 3.2 ± 0.2 288.00 0.1700 7.4 (Pesce et al., 2023)
hKISS1 120 3.47 ± 0.05 283.15 0.1590 7.0 (Ibáñez de Opakua et al., 2017)
TtASR1 141 3.31 ± 0.08 293.15 0.1500 7.3 (Hamdi et al., 2017)
HvASR1 143 3.51 ± 0.09 293.15 0.1500 7.3 (Hamdi et al., 2017)
TIF2NRID 150 3.74 ± 0.092 283.15 0.1750 6.8 (Senicourt et al., 2021)
ED4 163 4.06 ± 0.11 293.15 0.1530 7.4 (Gondelaud et al., 2021)
ANAC046 167 3.6 ± 0.3 298.00 0.1400 7.0 (Pesce et al., 2023)
PARCL 180 3.43 ± 0.065 293.15 0.1700 7.5 (Ostendorp et al., 2022)
N_FATZ1 191 3.45 ± 0.062 293.15 0.1920 7.5 (Sponga et al., 2021)
D91_FATZ1 209 4.0 ± 0.1 293.00 0.1800 7.5 (Sponga et al., 2021)
cDAXX 246 4.75 ± 0.05 293.00 0.1300 8.0 (Schmit et al., 2019)
ED3 373 6.51 ± 0.15 293.15 0.1530 7.4 (Gondelaud et al., 2021)

Table S5. Experimental solution conditions and radii of gyration of MDPs included in the validation set.

Protein N Rg ± Err [nm] T [K] cs [M] pH Ref.
SH4UD_SH3_SH2 264 3.28 ± 0.06 293.15 0.216 8.0 (Gurumoorthy et al., 2023)
H46 381 4.15 ± 0.05 283.00 0.163 6.5 (Elena-Real et al., 2023)
TDP43W2A 415 4.11 ± 0.04 293.15 0.312 8.0 (Wright et al., 2020)
PCPE 424 4.04 ± 0.11 293.15 0.506 7.4 (Bernocco et al., 2003)
NiV_V 457 6.97 ± 0.02 293.15 0.232 8.0 (Salladini et al., 2017)
HeV_V 458 6.86 ± 0.03 293.15 0.232 8.0 (Salladini et al., 2017)
D14 483 3.9 ± 0.17 283.15 0.156 7.5 (Hajizadeh et al., 2018)
S4FL 552 4.7 ± 0.1 283.15 0.169 7.2 (Gomes et al., 2021)
ChiAM 682 4.73 ± 0.077 293.15 0.282 8.0 (Mazurkewich et al., 2020)
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Table S6. IDPs and experimental conditions used for slab simulations in this work.

Proteins N cs [M] pH T [K] csat,exp [µM] Ref.
LAF1 176 0.15 7.5 293 44.0 (Schuster et al., 2020)
LAF1D2130 166 0.15 7.5 293 275.0 (Schuster et al., 2020)
LAF1shuf 176 0.15 7.5 293 6.0 (Schuster et al., 2020)
A1S150 131 0.15 7.0 293 218.1 (Martin et al., 2021a)
A1S200 131 0.20 7.0 293 159.8 (Martin et al., 2021a)
A1S300 131 0.30 7.0 293 93.4 (Martin et al., 2021a)
A1S500 131 0.50 7.0 293 66.5 (Martin et al., 2021a)
-12F+12Y 137 0.15 7.0 293 60.3 (Bremer et al., 2022)
+4D 137 0.15 7.0 277 4.5 (Bremer et al., 2022)
-6R 137 0.15 7.0 277 7.1 (Bremer et al., 2022)
A1 137 0.15 7.0 293 102.2 (Bremer et al., 2022)
+2R 137 0.15 7.0 277 18.0 (Bremer et al., 2022)
+8D 137 0.15 7.0 277 18.7 (Bremer et al., 2022)
-14N+14Q 137 0.15 7.0 293 171.6 (Bremer et al., 2022)
-10G+10S 137 0.15 7.0 293 268.1 (Bremer et al., 2022)
+7F-7Y 137 0.15 7.0 293 209.0 (Bremer et al., 2022)
-20G+20S 137 0.15 7.0 293 469.4 (Bremer et al., 2022)
-23S+23T 137 0.15 7.0 293 342.2 (Bremer et al., 2022)
-8F+4Y 137 0.15 7.0 277 63.2 (Bremer et al., 2022)
-3R+3K 137 0.15 7.0 277 83.1 (Bremer et al., 2022)
-4D 137 0.15 7.0 277 88.8 (Bremer et al., 2022)
-9F+3Y 137 0.15 7.0 277 115.0 (Bremer et al., 2022)
+23G-23S 137 0.15 7.0 293 46.1 (Bremer et al., 2022)
+23G-23S+7F-7Y 137 0.15 7.0 293 194.0 (Bremer et al., 2022)
+23G-23S-12F+12Y 137 0.15 7.0 293 6.5 (Bremer et al., 2022)
-30G+30S 137 0.15 7.0 293 841.8 (Bremer et al., 2022)
FUS 163 0.15 5.5 297 105.0 (Murthy et al., 2019)
A2 155 0.01 5.5 297 15.0 (Ryan et al., 2021)
Ddx4WT 236 0.13 6.5 297 230.0 (Brady et al., 2017)
allF 137 0.15 7.0 293 250.0 (Alshareedah et al., 2023)
allY 137 0.15 7.0 293 85.0 (Alshareedah et al., 2023)
allW 137 0.15 7.0 293 1.0 (Alshareedah et al., 2023)
FUS_long 216 0.15 7.0 285 46 (Farag et al., 2023)

Table S7. Multi-domain proteins and experimental conditions used for slab simulations in this work.

Proteins N cs [M] pH T [K] csat,exp [µM] Box [nm] Ref.
hnRNPA1* 314 0.15 7.5 293 173.0 [20, 20, 270] (Martin et al., 2021b)
hnRNPA3 381 0.116 7.4 298 6 [25, 25, 190] (Kar et al., 2022)
hSUMO_hnRNPA1* 433 0.15 7.5 293 136.2 [25, 25, 190] (Martin et al., 2021b)
FL_FUS 526 0.15 7.4 293 5.5 [20, 20, 270] (Wang et al., 2018)
GFP_FUS 764 0.15 7.4 293 4.9 [25, 25, 300] (Wang et al., 2018)
SNAP_FUS 708 0.15 7.4 293 5.9 [25, 25, 300] (Wang et al., 2018)
SNAP_FUS_PLDY2F_RBDR2K 710 0.15 7.4 293 69.4 [29, 29, 340] (Wang et al., 2018)
SNAP_FUS_PLDY2F 710 0.15 7.4 293 36.6 [25, 25, 300] (Wang et al., 2018)
FUS_PLDY2F_RBDR2K 528 0.15 7.4 293 32.0 [25, 25, 340] (Wang et al., 2018)
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Table S8. Domain boundaries of MDPs used in this study for the Bayesian parameter-learning procedure and validation. Brackets indicate the first and last residue
of the domain, respectively. Nested brackets indicate subdomains (restrained) separated by long linkers (unrestrained).

Protein N Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Domain 7
THB_C2 137 [6, 42] [50, 137]
Ubq2 162 [11, 82] [87, 158]
Ubq3 228 [1, 72] [77, 148] [153, 224]
Gal3 250 [117, 250]
SH4UD_SH3_SH2 264 [94, 150] [166, 258]
TIA1 275 [6, 82] [95, 172] [190, 275]
Ubq4 304 [1, 72] [77, 148] [153, 224] [229, 300]
hnRNPA1* 314 [11, 89] [105, 179]
H46 381 [140, 355]
TDP43W2A 415 [5, 77] [107, 177] [193, 260] [321, 329]
PCPE 424 [12, 125] [134, 249] [293, 412]
hSUMO_hnRNPA1* 433 [44, 114] [132, 209] [224, 298]
NiV_V 457 [406, 457]
HeV_V 458 [404, 456]
GS0 470 [1, 226] [256, 470]
D14 483 [31, 121] [157, 246] [265, 354] [400, 479]
GS8 486 [1, 226] [272, 486]
hSUMO_TIA1PrLD 492 [32, 102] [114, 186] [212, 287] [321, 389]
GS16 502 [1, 226] [288, 502]
GS24 518 [1, 226] [304, 518]
FL_FUS 526 [286, 368] [423, 451]
FUS_PLDY2F_RBDR2K 528 [288, 370] [425, 453]
GS32 534 [1, 226] [320, 534]
S4FL 552 [15, 138] [[287, 294],

[323, 466],
[492, 542]]

GS48 566 [1, 226] [352, 566]
ChiAM 682 [8, 89] [92, 172] [178, 257] [266, 356] [359, 462] [471, 567] [578, 668]
SNAP_FUS 708 [286, 368] [423, 451] [[537, 564], [586, 701]]
SNAP_FUS_PLDY2F_RBDR2K 710 [288, 370] [425, 453] [[539, 566], [588, 703]]
SNAP_FUS_PLDY2F 710 [288, 370] [425, 453] [[539, 566], [588, 703]]
GFP_FUS 764 [286, 368] [423, 451] [529, 755]

Table S9. Analysis of the system size effects on slab simulation of hnRNPA1*. The protein concentration is fixed throughout all simulation configurations and is
above the experimental saturation concentration. ND: In simulations with 150 chains and box size [11.0, 11.0, 900] nm we did not observe a stable condensed phase.

Number of chains & Box size [nm] Simulation length [µs] Dilute phase conc. [mM] Dense phase conc. [mM]
Varying (Lx, Ly) 45 chains & [11.0, 11.0, 270] 10 0.3±0.1 12.0±0.2

75 chains & [14.1, 14.1, 270] 10 0.19±0.02 12.62±0.02
300 chains & [28.3, 28.3, 270] 10 0.18±0.01 12.37±0.02
450 chains & [34.6, 34.6, 270] 5 0.104±0.008 12.32±0.02

Varying Lz 45 chains & [20.0, 20.0, 81] 10 0.16±0.02 11.62±0.05
75 chains & [20.0, 20.0, 135] 10 0.15±0.01 12.34±0.03
300 chains & [20.0, 20.0, 540] 10 0.10±0.01 12.51±0.02
450 chains & [20.0, 20.0, 810] 5 0.08±0.01 12.48±0.03

Varying (Lx, Ly, Lz) 150 chains & [11.0, 11.0, 900] 10 ND ND
150 chains & [14.1, 14.1, 540] 10 0.17±0.03 12.5±0.1
150 chains & [28.3, 28.3, 135] 10 0.16±0.01 12.11±0.03
150 chains & [34.6, 34.6, 90] 10 0.17±0.01 10.79±0.06
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Table S10. Summary of CALVADOS models. The number of IDPs and MDPs, and cutoff distance for the AH potential used during optimization, cutoff distance of AH
potential for validation (production) simulations, and references are shown.

models IDPs MDPs cutoff_optimization [nm] cutoff_production [nm] Ref.
CALVADOS 1 48 0 4.0 4.0 (Tesei et al., 2021b)
CALVADOS 2 56 0 2.4 2.0 (Tesei and Lindorff-Larsen, 2023)
CALVADOS 3 (CALVADOS3COM) 56 14 2.2 2.0 this study
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Figure S1. Optimizing the � parameters using a C� representation for folded domains. (A) Comparison between � values from CALVADOS 2 (blue) and optC� (red).Comparison between simulated and experimental Rg values for IDPs (orange) and MDPs (green) using optC� in (B) the training set and (C) the validation set. Pearsoncorrelation coefficients (r) and rMSD are reported in the legend. The black diagonal lines indicate y = x. Relative difference between experimental and simulated Rgvalues from optC� (red), CALVADOS2C� (blue) and CALVADOS2COM (blue hatched) in (D) the training set and (E) the validation set. ⟨�2Rg ⟩ values across IDPs and MDPs
are reported in the legend. Error bars show the experimental error divided by Rg,exp. Results from CALVADOS2C� and CALVADOS2COM are presented as the same
data in Figure S4 and Figure 3.
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Figure S7. Equilibrium density profiles of slab simulations of 33 IDPs using CALVADOS3COM. The red horizontal lines indicate experimental saturation concentrations.
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Figure S8. Time evolution of the protein concentration profiles from slab simulations of 9 MDPs using CALVADOS3COM parameters. A more intense colour intensity
indicates higher protein concentration.
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Figure S9. Equilibrium density profiles of slab simulations of nine MDPs using CALVADOS3COM. The red horizontal lines indicate experimental saturation
concentrations.
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Figure S10. Simulated Rg of domains restrained by elastic network model. Domains in a protein are indicated by D0, D1, D2, etc. Multi-domain proteins in the
training set, validation set and slab simulations set are shown.
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Figure S11. Time evolution of the protein concentration profiles from slab simulations of hnRNPA1* using CALVADOS3COM parameters for analysis of finite-size
effects. A more intense colour intensity indicates higher protein concentration. The units of the box sizes are nm.
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Figure S12. Equilibrium density profiles of slab simulations of hnRNPA1* using CALVADOS3COM for analysis of finite-size effects. The red horizontal lines indicate
experimental saturation concentrations. The units of the box sizes are nm.
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Figure S13. Simulation performance of CALVADOS 3 model on IDPs (orange) and MDPs (green) for (A) single-chain simulations on an Intel Xeon Gold 6130 CPU and
(B) multi-chain simulations on an NVIDIA Tesla V100 GPU.
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