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Abstract

Cell-cell interaction (CCI) analyses are an indispensable tool for harnessing the detail and depth of spatial and single-
cell transcriptomics datasets by inferring inter-cellular communications, but no methods to integrate CCI results across
samples exist currently. To address this, we have developed a computational pipeline, Multimodal CCI (MMCCI), to
statistically integrate and analyze CCI results from existing popular CCI tools. We benchmarked MMCCT’s integration
on single-cell spatial datasets and found it to be highly accurate compared to simpler methods. We utilized MMCCTI’s
integration and downstream biological analyses to uncover global and differential interaction patterns in multimodal aging
brain and melanoma spatial datasets.
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Background For single cell data, integrative analysis of multiple

. . . . . . modalities has shown to uncover complex and functionally
Spatial transcriptomics (ST) is a molecular profiling technique K i
. . L. . important molecular and cellular mechanisms [11]. ST
that maps RNA sequencing with spatial information to access . . . .
. R .. X . technologies such as CosMx and Xenium provide single cell
spatial gene expression patterns. This information can provide i X
resolution at the cost of only being able to detect a smaller

panel of genes or proteins, while Visium and bin80 STOmics
(bin80 produces equivalent size to Visium spot at 55um wide)

deep biological insights into many applications including
neuroscience and cancer research [1, 2]. A valuable method

to utilise ST data is cell-cell interaction (CCI) analysis, which K K .
are able to sequence the entire transcriptome, but each Visium

spot (55um wide) captures the expression of often one to
ten cells [12, 13, 14, 15]. We posit that integration of these
orthogonal technologies can therefore enable detection of a large

aims to decipher the intricate communication networks within
tissues and understand how cells interact in their spatial
context. Multiple computational tools exist for inferring and
analyzing intercellular communication networks in single-cell
RNA-sequencing (scRNA-seq) and ST data such as stLearn,
CellChat, Squidpy, CellPhoneDB, NATMI, and NicheNet
[3, 4, 5, 6, 7, 8]. Tools such as stLearn and CellChat take spatial
information into account, limiting the inferred communications

number of spatially proximate LR pairs while still retaining the
specificity of single cell spatial methods, providing deep insights
into biological processes that are otherwise unachievable from
any one technology alone. However, qualitative or ’average-
based’ analyses are vulnerable to false positives and single-

to between only nearby cells or spots, whereas Squidpy, K .
. L sample bias, and there are currently no methods to integrate
CellPhoneDB and NATMI infer communications between any . .
R . . . CCI results from multiple samples across shared or different
given cells or spots and are thus prone to false discoveries, which . R .
. . . . transcriptomic modalities.
is a major challenge in CCI analyses. Tools such as scDiffcom

Therefore, we introduce MMCCI as a statistical framework
for multimodal CCI integration. MMCCI is based on the
assumption that the integration of CCI results across different

and COMUNET perform additional downstream analyses on
interaction networks such as differential LR interactions and

CCI. ]9, 10]. . . . . . R
spatial transcriptomics technologies or multiple samples will
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be able to filter false positive interactions while preserving
the true interactions, thereby constructing a more accurate
landscape of the complex intercellular communications than
any one sample or modality alone. As the first pipeline for
quantitatively integrating CCI results across transcriptomic
platforms and from multiple samples, MMCCI is able to provide
highly confident CCI results through statistical meta-analysis,
combining p-values for each interaction across each sample, as
well as batch-effect correction, adjusting for unwanted technical
differences between samples both within and across modalities.

MMCCI provides a wide range of novel functionalities,
including:

e First tool for statistical integration and meta-analysis
of multimodal spatial and single-cell transcriptomics CCI
results from existing popular CCI tools.

e Comparative analysis of integrated or individual cell-type
networks between different groups to identify the differences
in cell-cell LR interactions between biological conditions.

e Novel tools for delving into specific interactions and the
biological pathways involved through enrichment analysis,
including cell-type pair LR querying and clustering of LRs
based on cell-type networks to help infer clear biological
patterns from complex CCI results.

e Analyzing cell types and LR pairs involved in specific

thereby

enabling hypothesis testing about the roles of cells and LRs

biological pathways enriched in CCI results,

involved in such pathways.

e Spatial clustering of cells/spots based on LR interaction
scores to observe anatomical regions with similar interaction
patterns, providing novel LR signatures for defining tissue
regions.

Results

MMCCI integrates and analyses CCI results from
multimodal datasets

MMCCT’s integration pipeline, shown in Fig. 1la aims to
combine the interactions discovered in individual samples
from existing popular CCI tools, such as stLearn, CellChat,
CellPhoneDB, Squidpy, NATMI, and NicheNet, in order to
identify global interaction patterns across multiple samples
across multiple modalities. This integration pipeline can work
across samples from either a single modality, or from samples
across multiple modalities, such as combining scRNA-seq data
and spatial transcriptomics data from different technologies like
Visium and Xenium. MMCCT’s set of downstream analyses aim
to provide clear biological insights from the deep and complex
CCI results through Enrichr pathway analysis, differential CCI
network analysis, cell-type LR interaction querying, and CCI
network and interaction score clustering (Fig. 1b). Fig. 1lc
shows a simple example of how the cell type interactions for a
single LR pair, HLA-B:KIR2DL3, across three simulated spatial
breast cancer samples are integrated into a single network,
capturing the overall cell type interaction pattern. MMCCI’s
integration is able to do this for every LR pair across all
samples. The integration and analysis pipelines are outlined
in depth in the Methods section.

¢ qlperpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Benchmarking and validation of MMCCI integration
on single-cell whole-transcriptome spatial pancreas
data

To validate the integration method, the latest and publicly
available CosMx single-cell spatial, whole-transcriptome
pancreas data consisting of 18 FOVs was used. The stLearn
CCI results were compared to the MMCCI integration of the
CCI results for each FOV across a number of quantitative and
qualitative metrics (Fig. 2a) [12]. The CCI result of the entire
sample was used as the “ground truth” as this contained the
exact number of cell-type interactions for each LR pair across
the whole sample as well as p-values for each interaction based
on the background expression across the whole sample. The
aim of the integration method was to match the integrated
FOV CCI results to the whole sample CCI results as closely
as possible, as this would show that the integration neither
filters out important interactions nor retains false positive
interactions which can be challenging when interaction counts
and their p-values for specific LR pairs can vary greatly between
samples when cell-type proportions and gene expression across
samples vary. The heatmaps in Fig. 2a, which show the
interaction counts from one cell type to another, are nearly
identical between the whole and integrated, showing that
MMCCI integration preserves the global LR interaction count
proportions. Fig. 2b shows similar results, this time showing
how the LR interaction counts per cell-type in the integrated
(green line) are much closer to the whole (blue line) when
compared to each individual FOV (dotted red lines) and the
average across the FOVs (dark red line). Fig. 2c shows that
the integrated results are significantly more similar to the whole
at the individual LR level when compared to the average for
each LR pair across all FOVs. The data followed a normal
distribution according to SciPy’s “normaltest”, and a between-
groups t-test indicated a p-value of < 0.0001 [16]. Fig. 2d
shows how for two given sender-receiver cell types, ductal to
ductal cells (a pair with a high number of interactions that are
consistent across all the FOVs) and delta to beta cells (a pair
with a low number of interactions with high variation across
the FOVs), the top LR pairs and proportions are similar. Sup.
Fig. 1 shows these same plots, but for each FOV, showing
how MMCCI is able to integrate these interactions across many
FOVs with high accuracy even when there is a large amount
of variation between samples. Overall, these results are able
to show that MMCCTI’s integration method is accurate when
taking even a large number of samples with a high number of
cells and genes.

MMCCI integration and comparative analysis on
multimodal spatial aging brain datasets

Next, MMCCI integration and downstream analyses were
performed on the stLearn CCI results from our eight Visium
mouse brain samples (four aged and four young) and four
STOmics mouse brain samples (two aged and two young) (Fig.
3). These replicate samples were first integrated by technology
and age group. The resulting four combined samples were again
integrated by age group, resulting in one aged and one young
mouse integrated network. Prior to integration, interactions
between many cell types were observed interacting in individual
samples, making it unclear which interactions were falsely
identified and which were biological. After integration, only
statistically significant interactions across the samples were
retained (Fig. 3).
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Fig. 1. Overview of MMCCTI’s integration method and analyses. a. Spatial or single-cell transcriptomics samples are individually processed through one
of many different CCI tools. The CCI results from each sample is integrated into one CCI result through MMCCI integration. b. MMCCI’s downstream
analyses. Shown at the top, Enrichr pathway analysis is run on the LR-pairs from the integrated result to identify significant biological pathways and

the LR interactions involved. Shown from the bottom left to right, MMCCI also provides analysis functions including differential CCI analysis with

statistical testing, LR pair querying and ranking for a sender-receiver cell-type pair, clustering of LR pairs with similar cell-type networks, and clustering

of sample spots with similar interaction scores. e¢. An example of how MMCCT’s integration functions. Each spatial transcriptomics sample (simulated

from scRNA-seq breast cancer) is run through a CCI algorithm (stLearn in this example). The integration of a single LR pair (HLA-B:KIR2DL3) is shown

along with cell-type and LR co-expression spatial plots for each sample. The thicker arrows in the integrated result represents stronger interactions.

MMCCI provides quantitative and qualitative differential
interaction network analyses
A core feature of MMCCI is its pipeline for comparing cell-type
interaction networks between different groups, highlighting how
the roles of different cell-types and their interactions change
in different biological conditions. For our aging dataset, the
overall interaction networks for aged and young brain samples
were constructed and the difference between these overall
networks was calculated and run through MMCCI’s network
permutation testing (see Methods section) to identify cell-type
pair interactions that were significantly different between the
aged and young samples, shown as the darker coloured edges
in Fig. 4a. The lighter coloured edges show the differences
that were not statistically significant (p-value > 0.05). The
dissimilarity score between the overall aged and young networks
was 0.232, which indicates that nearly a quarter of the network
edges are significantly different between the age groups.
Interactions within ependymal cells were shown to decrease
significantly with age, while interactions between astrocytes
This reflects
the current understanding that the ependymal layer thins

and neurons significantly increased with age.

during aging and reactive astrocytes proliferate and interpose
themselves within the ependymal cell layer [17, 18]. Therefore,
that
interactions both within astrocytes and between astrocytes and

our findings are consistent with previous reports
neurons should increase with age [19, 20]. Interactions within
oligodendrocytes were also shown to decrease with age.

To establish the specific LR interactions that changed

significantly in different sender and receiver cell types between

age groups, MMCCI’s LR pair network dissimilarity ranking
was run on the integrated aged and young samples (Fig.
4b). The most dissimilar pair, Vimentin (Vim)-Cd44, showed
interactions mostly within and between neurons, astrocytes,
and oligodendrocytes in the aged brain, while in the young
brain, there were no interactions with astrocytes, but more
4b). Vim
expressed in ependymal cells in healthy

ependymal cell interactions (Fig. is a known
astrocyte marker,
brains and in reactive astrocytes in aging [21, 22]. Cd44 is an
astro-mesenchymal marker, so this interaction was expected to
change with age, with Vim release shifting from ependymal
to astrocytes during aging [23]. For the second example, the
A2m-Lrpl pair was detected to interact between neurons,
oligodendrocytes, astrocytes, and ependymal cells in the aged
brain, but had no interactions with astrocytes in the young
brain. This LR pair has been shown to potentially associated
with Alzheimer’s disease [24, 25].

These differential comparison methods can be applied to any
samples, integrated or not, to quantitatively and qualitatively
compare different biological groups. Samples can be compared
at the whole network level or at the individual LR and cell-type
level, providing valuable answers into any important biological
questions involving differential analysis.

MMCCI queries LR interactions between specific cell-type
pairs

To obtain deeper insights into specific cell-type sender-receiver
pairs, MMCCI provides functions for querying LR pairs and
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Fig. 2. Benchmarking of MMCCI integration on CosMx human pancreas dataset. a. The entire sample was run through the CCI tool, stLearn, and
compared to the MMCCI integration of each of the 18 FOVs run separately through stLearn. The heatmap of the global interaction counts for both

the whole and integrated results are shown (right). b. Barplot of cell-type counts for the whole sample along with line plots showing the scaled CCI-
LR interaction counts for each cell type for the whole pancreas (blue), MMCCI integrated FOVs (green), averaged FOVs (dark red), and individual
FOVs (dotted red). ¢. The CCI matrix similarity scores per LR compared to the whole pancreas for MMCCI integrated and averaged across FOVs. d.
Comparison of the top LR pairs and their proportions interacting in both the whole sample and MMCCI integrated result between ductal cells, which

is a cell-type pair with a high number of interactions in the whole sample, and from delta to beta cells, which is a cell-type pair with a lower number

of interactions in the

whole sample.
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Fig. 3. Integration of stLearn CCI results from aged and young mouse brain spatial transcriptomics samples. a. Cell-type spatial plots and overall

stLearn interaction network plots of individual Visium (left) and STOmics (right) aged mouse brain results. The network with a (*) is the aged sample

used in Fig. 4f. Below, the overall within-technology integration network of aged Visium (left) and aged STOmics (right) is shown along with the overall

between-technology integration network of all aged samples (middle), which was used as the aged brain integrated sample for downstream analyses. In

the network plots, the inner circle of the node shows the cell type and the outer ring shows if the cell type is sending more interactions (red) or receiving

more interactions (blue) b. Similarly, young samples are shown.

their proportions involved in specific CCIs and can perform
pathway analysis on these pairs. Since the interactions from
astrocytes to neurons were significantly increased in the aged
brain, this set of interactions was queried to find the LR
pairs involved along with their relative interaction strength,
quantified by their interaction score proportion in that sender-
receiver cell-type pair (Fig. 4c). These results show that not

only did the overall strength of the interactions between the
cell types increase in age, but so did the number of LR pairs as
well. We found many different LR pairs interacting in the aged
group compared to the young group.

In many of these interactions, predominantly in the
a multifunctional cell surface receptor,

In the young brain, Midkine (Mdk),

aging brain, Lrpl,
was involved [26].
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Fig. 4. Downstream analysis of aged and young mouse brain CCI results. a. Overall network difference plot between aged and young, where significant
edges are coloured and labeled with their p-value. The color of the edge indicates the age group that the interaction is increased in and the thickness
of the edge indicates how much stronger the edge is upregulated in that age group. Edges with a p-value < 0.05 are darker in colour. b. Barplot of LR
pairs (bottom right) with the most dissimilar cell-type interaction networks between aged and young with two LR pair’s networks for the integrated
aged and young samples shown as chord plots. Chord plots are used to show the interacting cell types and the color of the chord indicates the cell type
that is acting as mostly a sender. Spatial cell-type and Vim-Cd44 expression plots for an aged and a young Visium sample are shown. c. Barplot of
top LR pairs interacting from astrocytes to neurons and their proportion of their interaction strength, shown for both aged and young. The number of
LR pairs interacting from astrocytes to neurons in both aged groups is shown above the barplots. Created with BioRender.com. d. A pair of summed
networks of clustered LR pairs from the integrated aged and young samples, where LR pairs with similar networks are clustered together, along with
GSEA pathway analysis using Enrichr with the KEGG 2021 Human and MSigDB Hallmark 2020 databases. e. LR pairs with their summed networks
involved in the complement pathway in the integrated aged sample and the Wnt signaling pathway in the young integrated sample. f. LR interaction
score clustering results for an aged and a young Visium brain sample with bar plots showing the cell-type proportions of each cluster.
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neurotrophic growth factor that is involved in growth and
proliferation during embryogenesis, was one of the active
ligands, while in aging, the serpin family became the
predominant ligands acting on Lrpl [27]. In the young, another
top ligand, Itgav, has been reported to play an important role
in neurovascular cell adhesion in brain angiogenesis [28]. This
analysis in MMCCI can provide interpretable results to address

biological questions involving specific interacting cell types.

MMCCI clusters LR pairs with similar cell-type networks
To summarise the large number of interactions, MMCCI
provides a LR network clustering algorithm, which in this
case was applied on the integrated aged and young samples
separately. This analysis identifies and groups LR pairs with
similar cell-type networks under the assumption that each
cluster of LR pairs are likely to have similar biological
roles. Further, Enrichr analysis was run on each cluster to
find the pathways involved in the interactions between cell
types in a particular cluster (Fig. 4d). The selected aged
cluster in Fig. 4d grouped LR pairs with similar interaction
networks predominately in astrocytes, oligodendrocytes, and
neurons, and we found pathways related to inflammatory
response, complement, not present in the young cluster that
are significant components of the astrocyte to neuron and
oligodendrocyte interaction in aging [29]. The selected young
cluster grouped LR pairs with similar interaction networks in
neurons, and discovered neurodevelopmental pathways such as
angiogenesis, axon guidance, and neuroactive LR interactions.
These results show analyzing a specific cluster of LR pairs can
reveal specific and relevant biological pathways.

MMCCI identifies LR pairs and cell-type interaction
networks involved in specific aging-related pathways

To look deeper into specific biological pathways, MMCCI
provides functions to identify and rank the LRs involved in
user-specified pathways from Encrichr and create cell-type
networks for the given pathways. In this aging dataset, LR
pair networks involved in the complement and Wnt signaling
pathways were extracted from the aged and young integrated
samples respectively and summed, allowing the visualisation
of the cell types involved and the relative strengths of the LR
pairs involved (Fig. 4e). In the aged complement pathway,
interactions between astrocytes, neurons, oligodendrocytes
were the strongest, with neurons acting overall as more of
a receiver. Lrpl, a protein found predominantly on neurons
and reactive astrocytes, was the most common receptor
in the top complement interactions [30]. This receptor,
particularly through interactions with A2m, is known to be
involved in Alzheimer’s disease pathogenesis [24]. The young
Wnt/B-catenin pathway had interactions in oligodendrocytes,
ependymal cells, and neurons, which is expected as this
pathway is known to have an important role in neuron
development and myelin formation [31, 32]. These results
demonstrate how MMCCTI’s unique and powerful CCI pathway
analysis can offer useful insights into the cell types and LR pairs
involved in specific biological pathways.

MMCCI spatially clusters cells/spots with similar LR
interaction scores

MMCCI also offers the functionality to identify spatial
communities based on common LR pair interactions by
performing LR interaction clustering. Applying this to the
aging brain dataset, we can cluster tissue regions similar to
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standard cell/spot clustering, but using LR interaction scores,
which are based on the coexpression of the ligand and receptor
in each spot and its neighbouring spots, calculated by stLearn
CCI results for each individual sample. This is different to
common clustering methods using gene expression. The plots
in Fig. 4f correspond to the two marked samples in Fig. 3a,
3b, where we found the interacting cell-types, and in Fig. 4f
we can visualise the spatial location where those cell-types are
interacting. The stacked bar plots show the proportions of each
cell-type in different clusters, revealing in this comparison how
there are far more astrocytes in the aged sample and they are
involved in many different clusters, meaning they are involved
in a wide range of interactions (Fig. 4f). These resulting
clusters can be used for many other downstream analyses, such
as finding marker LR pairs for each cluster. This function allows
a new type of clustering to be performed on spatial data, which
can provide valuable insights into where certain interactions are
occurring spatially.

MMCCI integration and pathway analysis of
multimodal spatial melanoma datasets

We applied MMCCI integration to our multimodal spatial
cutaneous melanoma dataset, which comprised ten patients,
four of which had Visium and CosMx samples and six with
only Xenium samples, in order to collate a set of interactions
that are significant across patients and technologies. We then
investigated the cell types and LR pairs involved in important
melanoma-related biological pathways.

For patients with matched Visium and CosMx data, samples
were integrated at patient-level. Notably, individual CosMx
and Visium samples demonstrated high intra-sample variability,
with cell-cell interactions identified between all cell types. Many
of these interactions were identified in only one of the two
modalities and were thus likely to be circumstantial rather than
biological; averaging these data across regions of interest would
lead to distortion of the final dataset. In contrast, patient-level
integration through MMCCI enabled exclusion of these ’false
positive’ interactions while retaining the fibroblast, vascular,
and immune cell-cell interactions consistently present across all
samples (Fig. 5a).

Samples were also integrated at technology-level to generate
composite samples/networks for each of the Visium, CosMx,
and Xenium modalities; each of these was in turn aggregated
using MMCCI into one final integrated sample/network (Fig.
5b). This integrated multimodal sample/network was highly
similar to the integrated patient-level samples, highlighting
the potential of the Xenium samples in validating the other
technologies’ findings. This between-technology integrated
sample was used for all the further downstream analyses. These
integration results highlight the ability of MMCCI’s multimodal
integration pipeline to pull a significant set of interactions out
of an inconsistent or noisy set of CCI results.

MMCCI provides LR pairs and biological pathways
involved in specific cell types

To wunderstand the biological processes involved in the
interactions

occurring between particular cell types of

interest, we analysed the Enrichr pathways of the LR
pairs interacting across three different sender-receiver cell-
type pairs (Fig. 5d). Enrichment analysis identified a high
level of interactions between tumour-associated fibroblasts
and endothelial cells, involving the COL1Al and COL1A2

ligands. These interactions, characterized by the binding of
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Fig. 5. Integration and analysis of multimodal human melanoma CCI results. a. CCI integration results for a patient, where one Visium (pink) and
two CosMx (yellow) samples of the same patient were integrated together (red). b. Within-technology integration results for four Visium (pink), eight
CosMx (yellow), and six Xenium (blue) samples, along with between-technology integration of all samples (red). The integrated sample (bordered)
is employed for all subsequent downstream analyses. c. Two representative melanoma spatial plots, showing the difference between the single-cell
resolution image-based technologies, CosMx and Xenium, and the non-single cell spatial sequencing-based technology, Visium. For the CosMx sample,
the transcripts for COL1A1 (magenta) and CD44 (yellow) are plotted to show the resolution of these imaging-based technologies. d. Three examples of
LR pairs and their proportions that are interacting from a selected sender to a receiver cell type pair, followed by pathway analysis of the LR pairs using
Enrichr with the KEGG 2021 Human and MSigDB Hallmark 2020 databases. e. LR pairs from the integrated sample involved in different cancer-related
pathways and the cell-type network of these LRs.
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Type I collagens to endothelial CD44 and ITGBI1 receptors,
are key mediators of ECM remodelling, which in turn
facilitates melanoma cell invasion and epithelial-mesenchymal
transition (EMT) [33, 34]. Correspondingly, pathway analysis
demonstrated upregulation of gene pathways representing
focal adhesion, ECM-receptor interaction, and epithelial-
mesenchymal transition in the fully integrated sample/network
(Fig. 5d).

Interactions from natural killer and T cells to myeloid cells
included the leukocyte adhesion molecules ICAM3 and ITGB2,
the NF-kB activators TNF1A and LTB, and the MIF-CD74
LR pair [35]. The pathway analysis consequently indicated
upregulation of cell adhesion molecule signalling and the pro-
inflammatory JAK-STAT and NF-xB pathways (Fig. 5d),
highlighting the capacity of MMCCI to capture the immune
response to melanoma at spatial resolution and with respect
to specific cell types. MIF-CD74 remained the primary ligand-
receptor pair for myeloid-endothelial cell interactions, and this
interaction was previously demonstrated to promote melanoma
cell survival through IL-8 and ERK-mediated signalling [36].
Pathway analysis demonstrated upregulation of leukocyte
migration and adhesion pathways, as well as EMT in the
context of enriched PI3K-Akt signaling (Fig. 5d). These
results show how analyzing specific cell-type interactions can
provide insights and important hypotheses about the cell-cell
interactions in specific tumours that may be obscured when
considering only the bulked or global interactions in a sample.

MMCCI identifies LR pairs and cell-type networks
involved in specific melanoma pathways

To further interrogate the LR pairs and cell-types involved
in specific cancer-related pathways, we performed a subset
analysis on integrated CCI results corresponding to three
selected pathways. Enrichr pathway analysis was applied to
specify the LR pairs involved in each included pathway.
The PI3K-Akt signaling pathway was characterized by
interactions between Type I collagens and integrin receptors
(Fig. 5e), indicating a CAF-driven milieu that predisposes
to ECM remodelling and consequent EMT [37, 38]. This
was complemented by the TGF-S signaling pathway, which
involved enrichment of the TGFB1-TGFBR2 LR pair across
multiple cell types: both homotypic endothelial and myeloid
cell interactions as well as sender-receiver interactions from
endothelial cells to fibroblasts and myeloid cells (Fig. 5e).
These findings align with the established roles of TGF-8
signaling in promoting EMT and inducing differentiation of
tumour-associated macrophages. [39, 40].

For LR pairs implicated in EMT, the COL1A1l and
COL1A2 ligands and the CD44, ITGA1, ITGA5, and ITGB1
receptors were most frequently represented,
mesenchymal proteins VIM and FN1 (Fig. 5e). The majority of
interactions were between fibroblasts to keratinocytes, myeloid

as were the

cells, and endothelial cells, which corroborates the established
contribution of cancer-associated fibroblasts (CAFs) to pro-
EMT signaling in the tumour microenvironment (Fig. 5e)
[41, 42]. This type of analysis provided by MMCCI can
be applied with any pathway related to the user’s dataset
and is able to expand on current pathway analysis pipelines
by generating a cell type network and ranking the LRs by
interaction proportion for a given pathway.
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Investigating integration performance across CCI
methods using simulated data

To benchmark MMCCI’s performance across multiple CCI
tools, both spatial and non-spatial, we integrated three
simulated breast cancer spatial samples that were run through
four different CCI methods - stLearn, CellChat, NATMI and
Squidpy (Sup. Fig. 2). For each CCI tool, the integrated
result was able to compile a clearer picture of the interactions
as a whole across the samples, where consistent interactions are
made stronger and inconsistent interactions are made weaker in
the integrated results.

Each sample had cell types with neighbors common across
all the samples as well as neighbors unique to that sample. This
allowed us to confirm whether integration could recover the
known ground truth from the simulated data, which were the
cell types adjacent to each other in the majority of the samples
(for example, B and T cells). This approach also improved
detection and exclusion of false positive interactions, such as
cell types that were proximate in only one of the samples and
were distal/exclusive in remaining samples (e.g., endothelial
and stromal cells). In both simulated and biological data, we
observed that MMCCI successfully removed the false positive
interactions while retaining the true interactions across several
spatial and non-spatial CCI methods. We also found that using
stLearn CCI on multiple samples and integrating with MMCCI
resulted in the highest performance with detecting expected
biological interactions while filtering false interactions [3], an
observation that can be attributed to the underlying algorithm
that stLearn uses, which utilizes spatial information in the
analysis to find more confident interactions.

Discussion

MMCCI was developed as a fast, comprehensive, and open-
source Python package for integrating cell-cell interactions from
multimodal transcriptomics datasets, along with a downstream
analysis toolset for exploring the biological interactions in
single samples as well as MMCCI-integrated results. MMCCI
is the first platform that enables integration of CCI networks
from multiple samples and modalities, strengthening the
concordance of the inferred interactions. MMCCI integrates,
analyzes and visualizes outputs from multiple CCI tools,
including stLearn, CellPhoneDB, Squidpy, CellChat, and
NATMI. Recently, CellCommuNet was developed to integrate
scRNA-seq samples before running CCI analysis, but unlike
MMCCI, it does not integrate the CCI results themselves and
is also limited to non-spatial scRNA-seq samples [43]. LIANA
is a different tool that runs multiple CCI methods on a single
sample and calculates a consensus rank for interactions [44].
However, this is also different to MMCCI in that it only
processes a single scRNA-seq sample rather than integrating
different samples together.

Validating MMCCT’s integration method on spatial single-
cell whole-transcriptome CosMx human pancreas data by
comparing the MMCCI integrated CCI results of each FOV to
the CCI results of the whole sample, we showed that MMCCI’s
integration is significantly more accurate to the ground truth
than averaging the CCI results across the FOVs (Fig. 2). Not
only were CCIs common across the FOVs integrated accurately,
but also rare CCIs with high variation across FOVs (Sup. Fig.
1). Benchmarking the integration method on simulated spatial
breast cancer samples on four different CCI methods showed
that MMCCI is able to successfully integrate CCI results from
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both spatial and non-spatial methods and preserve important
cell-type interactions across the three samples (Sup. Fig. 2b).

Applying MMCCT’s integration and downstream analyses
pipeline on stLearn CCI results from multimodal brain and
melanoma data, we show the effectiveness of using MMCCI
to statistically integrate CCIs both within and between
technologies. MMCCI accurately identifies the frequency and
distribution of canonical mediators and cell-cell interactions
involved in specific biological pathways by integrating CCI
results across multiple samples and modalities. Data from each
individual sample harbours some insight into the true biological
cell-cell communications, but analyzing a single sample is
prone to producing false discoveries or missing some important
information. This advantage of MMCCI integration is clearly
seen in the melanoma single-patient integration, shown in
Fig. ba. Individually, the CosMx samples report putative
interactions between all cell-types, many of which are likely
falsely detected or not biologically relevant. While the Xenium
samples are more targeted, they omit a number of expected
interactions, such as those between natural killer (NK) cells, T
cells, and melanocytes. Integration resolves this discrepancy to
generate a clear, consistent, and biologically pertinent profile of
the interactions underlying thin primary melanoma. Through
the integration of multiple CCI results from different samples
using MMCCI, we can gain a deeper understanding with higher
confidence about the intercellular interactions occurring in
normal physiology and disease.

MMCCI was able to provide relevant biological insights into
the multimodal aging mouse brain and melanoma datasets that
may have been overlooked if only one sample or transcriptional
modality was analyzed. A clear example of this is that
biologically important interactions with vascular cells are
missing in many of the Visium brain samples, but after
integration with STOmics samples, these are preserved (Fig.
3). Many important interactions in the aging brain were
observed in the integrated results. Mainly, astrocytes were
shown to become more active, not only increasing their
overall interaction strength but also the LR pairs involved
in the interactions, which is consistent with the current
understanding of the roles of astrocytes becoming more
reactive in aging, contributing to neuroinflammation and the
complement pathways [45, 19, 20, 21, 22, 23, 46, 47, 48]. The
thinning of the ependymal layer expected in aging was also
shown by the observed decrease in ependymal interactions in
aging [17, 18]. As well, many neuron development pathways
were observed in the young samples which were not present
in the aged. Overall, MMCCI allows for deep insight to the
molecular mechanisms involved in aging in the central nervous
system.

In primary cutaneous melanoma, MMCCI was able to
synthesize data from complementary ST technologies to
delineate the contributions of Akt-mediated extracellular
remodelling and TGF-8 signalling in promoting epithelial-
mesenchymal transition within the stromal milieu [49]. Single-
sample analyses captured interactions across all cell types,
restricting interpretation of the findings; however, MMCCI
filtered through these to obtain consistent CClIs across the
melanoma dataset. Notably, MMCCI highlighted the broad
activity of fibroblast-associated Type I collagen ligands across
multiple receptors and gene pathways, including targeting of
both endothelial and myeloid cells [50, 51]. Another example
of a pertinent CCI observed in the integrated sample involves
the macrophage migration inhibitory factor (MIF)-CD74 LR
pair. MIF-CD74 interaction promotes melanoma cell survival
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through recruitment and activation of the PI3K/Akt signalling
pathway, and it is a promising candidate for targeted therapy
[52, 53, 54]. Overall, MMCCI enabled precise exploration
of the complex network of interactions within the tumour
microenvironment, particularly with respect to the role of
fibroblasts in ECM remodelling, EMT, and PI3K-Akt signaling.
This highlights the utility of the MMCCI pipeline in meta-
analysis of multi-sample and multi-modality data to infer
biologically significant interactions with a higher degree of
confidence than from any one sample or modality alone.

‘While MMCCI offers a range of new and important, there
are limitations that need consideration during implementation.
Imaging-based technologies often detect fewer interactions that
would be expected biologically as a result of having a lower
number of proteins/genes in the panel. Because of this, a future
direction of CCI result integration could explore the option
to impute missing genes/proteins. However, this is not always
a significant limitation as the gene panels are often selected
based on biological relevance to the type of sample, so the
integrated results still provide valuable insight into the relevant
biological pathways. Alternatively, users can also focus on data
integration for just the genes/proteins that are shared across
platforms. Users can also select parameters to control for the
integration weights between modalities that take into account
the omission of genes/proteins in the panels. Meanwhile,
sequencing-based technologies can measure more genes, but
are often not yet able to provide single-cell resolution. The
low resolution means that while many LR pair interactions are
able to be inferred, the cell-types involved are less specific and
lack the precision of imaging-based technologies.Through the
integration of CCI results from multiple samples, MMCCI is
able to use the advantages of both imaging- and sequencing-
based spatial transcriptomics to construct a clearer picture
of the biological interactions across multiple samples and
technologies.

Overall, the MMCCI package provides novel integration
method for statistical meta-analysis of multi-sample or
multimodal CCI results. MMCCT’s flexible integration pipeline
allows for samples to be integrated more strictly to filter
to only highly confident interactions across the samples, or
for the integration to include rarer interactions that are
significant in only a subset of the samples, which makes
the pipeline robust to cancer samples where there is tumour
heterogeneity between samples and important interactions are
not removed due to being rare. MMCCI is the first tool that
can integrate both spatial and non-spatial CCI results from
different transcriptomic modalities and CCI methods together,
and will prove relevant to future analyses in the rapidly evolving
field of spatial transcriptomics.

Conclusion

We have developed a new algorithm, MMCCI, which is
the first tool for statistical integration and meta-analysis of
multimodal spatial transcriptomics and scRNA-seq CCI results
from different tools. We have benchmarked MMCCI integration
pipeline on spatial single-cell whole-transcriptome human
pancreas data and verified that its accuracy outperforms simply
averaging CCI results across samples. MMCCI integration
and downstream analysis was applied to multimodal brain
and melanoma spatial transcriptomics datasets to uncover
the cell-types and LR pairs involved in complex aging and
cancer related pathways. We provide the MMCCI software


https://doi.org/10.1101/2024.02.28.582639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582639; this version posted August 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

as an open-source package and have included detailed usage
instructions, aiming to facilitate robust CCI analyses in the
broader community.

Methods

1. Upstream data processing

1.1. Deconvolution

For the aging brain samples, we generated Visium and STOmics
data and annotated cell types using RCTD with the Allen
Brain Atlas as a single cell reference for deconvolution [55, 56].
For the melanoma samples, we generated Visium, CosMx and
Xenium data, followed by automated cell-type annotation by
deconvolution and label transferring using an in-house single
cell skin cancer reference. Specifically, for Visium data, we used
RCTD for finding cell-type compositions of spots which contain
1 - 10 cells, and for the single cell resolution CosMx and Xenium
data, we used Seurat V4 Label Transfer for direct single cell to
single cell annotation [57].

1.2. stLearn cell-cell interaction analysis

Cell-cell interactions for the pancreas, brain and melanoma
samples were computed using stLearn, a CCI inference method
that takes spatial information into account [3]. We first filtered
out genes that were not present in more than three spots
and performed counts per cell normalization. stLearn performs
ligand-receptor analysis, in which each spot or cell receives
an interaction score from its immediate neighboring spots for
each LR pair. The LR pair database used in stLearn was
from connectomeDB2020 [7], but other databases can also
be applied. This score is used for MMCCI’s LR interaction
clustering. Importantly, stLearn also predicts significant cell-
cell interactions, generating a network of communicating cell-
types represented as a matrix per LR pair where the weights
are the number of significantly interacting spots or cells, along
with a p-value for each weight. This data is used by MMCCI
to perform integration and is the format used by most of the
integration, analysis and visualization functions. CCI results
obtained from other methods are converted to this format by
MMCCI for compatibility with the package.

2. Integration method

Sample integration (Sup. Fig. 3) is split into two sections,
within-technology and between technology integration, which
can both be run separately.

2.1. Within-technology integration

This step performs CCI integration of samples within a
technology by accounting for differing sample sizes, reflected
by the number of spots/cells in each sample (1.1 of Sup.
Fig. 3). Each sample’s LR pair interaction matrices are scaled
based on the number of spots/cells in that sample (sample-
size scaling). Each weight in each LR matrix is multiplied by
this scaling factor. This is required to control for samples with
a disproportionate number of spots, ensuring that each sample
has an equal weighting within each technology as a sample with
more spots will generally have more interactions.

An integrated sample for a given technology is then created
by running a LR-level integration function (Equ. 1 - 2) with
each sample arising from that technology (1.2 of Sup. Fig.
3). The CCI integration works by first creating a list of LR
pairs to be included in the integrated sample by either taking
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the common LR pairs if there are two samples to integrate, or
by taking the LRs present in at least half the samples if there
are more than two samples to integrate (Equ. 1). The option is
given in the package to select other methods for selecting which
LR pairs to integrate including using LR pairs present in all
samples, the majority of samples, or at least one sample. Each
LR pair in sample k has a cell-type adjacency matrix which
has an interaction score for that LR pair for cell-type 7 to cell-
type j, represented as LR?,]‘ and referred to in this paper as an
interaction. Then for each LR pair in that list, the integrated
network for that pair is calculated by combining the networks
of each sample, creating a matrix where each interaction is the
geometric mean of that interaction in all the samples where the
score is not 0 (Equ. 2). If more than half of the samples have
an score of 0 for a given interaction, it will have an integrated
score of 0 for that interaction.

Sl m=n samples to be integrated

ifn=2
ifn>2
(1)

common LRs in S, §2,

LRs .
LRs present in > 50% S* ™,

For LR'™ € LRs,

Tlp_y LRE,  for LR}, #0

integrated __
LR - : 1...m
0 if > 50% LR} ™ =0

(2)

Non-significant interaction scores in each LR matrix are
then set to zero. The p-value of an interaction for a sample
is provided from the CCI analysis performed on the sample,
and the integrated p-value across all samples for an interaction
of an LR pair between two cell-types is calculated as outlined
in section 2.3 of the Methods.

2.2. Between-technology integration

The integrated CCI values for each sample of each technology
are then normalized by a scaling factor, calculated by averaging
the arithmetic mean of the values across all the LR pairs per
technology (2.1 of Sup. Fig. 3). This ensures that a high
number of interactions detected through one specific technology
are not over-represented in the integrated sample.

A final integrated sample is then created by running
the LR-level integration function as in the within-technology
integration (2.2 of Sup. Fig. 3). After this, the overall network
of interactions, an overview of the cell-type interactions in the
sample, is calculated by scaling the values in each LR matrix so
that they sum to one to ensure equal weighting of all LR pairs,
and then computing the mean of all the matrices. Creating
an overall network can also be done in other points of the
integration to easily visualize the overall interaction network
of an integrated or non-integrated sample.

Again, the p-values across all samples used in the integration
can be combined as outlined in section 2.3 of the methods.
These p-values can be used to filter insignificant interactions in
the integrated sample.

2.8. Meta-analysis: a statistical framework for integration
Meta-analysis is a statistical technique to combine the results
from multiple different studies addressing a similar question.
Most of the CCI algorithms that MMCCI is able to integrate
provide p-values for every interaction score, which are

integrated to calculate a final p-value for each interaction in the


https://doi.org/10.1101/2024.02.28.582639
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582639; this version posted August 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

12 | Levi Hockey e

integrated results. We used Stouffer’s method to integrate p-
values from CCI results of different samples, which converts p-
values to z-scores before combining them together [58, 59]. The
z-scores are calculated using the inverse cumulative distribution
function of p-values (Equ. 3), integrated (Equ. 4), and then
converted back into a p-value using the cumulative distribution
function (Equ. 5). This meta-analysis improves the robustness
and accuracy of MMCCI’s integration method.

Zi=¢"'(1-pi) (3)
k
c 7
Zcombined = % (4)
Pcombined = 1 — (z)(Zcornbined) (5)

3. Downstream analyses

8.1. Dissimilarity scoring

The dissimilarity score shown in (Sup. Fig. 3 and Equ. 6),
has been based off of a similar metric introduced in COMUNET
[10]. To compute a dissimilarity score between two matrices, we
first ensure that they have the same interacting cell types by
imputing an interaction score of zero to the missing cells in the
matrix with fewer cell types. For any two cell-type adjacency
matrices, My and Ms, the continuous dissimilarity score, S,
is calculated by taking the absolute difference between the
weights of each sender-receiver cell-type pair of the two matrices
divided by the sum of the weights. The binary dissimilarity
score, F', is calculated as 1 if the two cells of the matrices
have a different number of significantly interacting spots, or
otherwise 0. Finally, these two dissimilarity scores are added
for each LR-pair using a blending factor, A, and this score is
divided by the square of the number of cell-types, giving the
dissimilarity score, D. D is an approximate representation of
the proportion of the network that is different, and for most
cases this difference is around 0 — 0.2 due to many edges having
a weight of 0 in both networks as it is rare to find LR pairs that
interact between all cell-types in a sample.

N N
S (ASMMe (1 ) MM
1

i
i=1j= »J

My, M, _
DM M — — G

M, M,
i,y and w;

For S (Equ. 7), the denominator adds the w
and these are subtracted in the numerator, due to which S is
lower for interactions with same numerator, where both values
are non-zero compared to one of them being zero. So, F' (Equ.
8) helps in increasing D in cases where there are many non-
zero interactions, as S will be lower for two non-zero values
with the same difference as two values where one is zero. This
can lead to D being lower than expected in comparison to two
networks each with only a few interactions. By default, we set
A = 0.5 to equally weigh the two scoring metrics. The effects
of changing A\ across different LR pairs is shown in Sup. Fig.
2c. For networks with many edges that change slightly, the
dissimilarity is higher when F is weighted higher, whereas in
networks where there are some edges in one and none in the
other, there is no difference between F' and S.

¢ Aﬂerpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

My _

Jw, ] w;‘?\ . M M,
— if w, ' +w,; 2 #0
M, ,M M My ¥ ¥ 5
S,i’jl 2= Wi j +w1_‘1 “d " (7)
0 otherwise
e M, M,
JYASYANED R R el W (8)
7 .
0 otherwise

N = number of cell types
A = blending factor

My, M> = two matrices of dimensions N x N

8.2. Differential CCI permutation testing

CCI results provide a network of the different interacting cell-
types. The edge represents the number of cells/spots involved
in the interaction. Here, the permutation test is used to
find significantly different interactions between two networks.
The overall integrated interactions for samples across two
groups are first normalized separately so that the interaction
count matrix sums to 1 and then the difference between
the two matrices is calculated. Next, permutation testing is
performed by repeatedly shuffling the values along both rows
and columns, and then observing how often the differences in
shuffled matrices are bigger than the true differences, returning
a p-value to identify which specific interactions between two
cell-types are statistically higher than the background. This can
also be done instead to calculate the differences between any
two networks, such as a comparing a single LR pair between two
different groups or comparing between two different LR pairs
in a sample.

8.8. LR network clustering

For the LR network clustering represented in Fig. 1b, we
calculated a pairwise dissimilarity score matrix for each LR
6 - 8).
distance matrix using “pdist” and “squareform” from the

pair (Equ. Using this matrix, we calculated a
SciPy package [16]. The distance matrix was normalized using
min-max normalization. We then computed the PCA of the
dissimilarity matrix and used the first two components along
with the distance matrix for clustering of the LR networks.
This function allows the user to perform either hierarchical or
k-means clustering, and finds the optimal number of clusters
unless stated otherwise.

3.4. LR interaction clustering

This method is only currently available for individual ST
samples processed through stLearn, but can be applied to CCI
results for any method that gives an LR interaction matrix for
each spot. LR interactions were scored from stLearn, which
give a score for each LR pair for each spot. The calculation was
based on the interactions of LRs within a spatial distance up to
250pum. Shown in Equ. 9, stLearn calculates a location-specific
LR score for each spot, S with spatial neighbours, N [3].

1
LRscore = i(mean(EprL,sw x [Er,s > 0])) + (©)
9

mean(Exprg, sy X [EL,s > 0])

LR interaction clustering helps to identify groups of cells
that are interacting through similar LR pairs. These scores
are pre-processed and clustered using the Scanpy spatial
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transcriptomics analysis pipeline for Leiden clustering [60].
Each cluster denotes a spatial interaction module involving
interaction of multiple cell-types, formed based on LRs having
similar interaction scores. The stacked barplot indicates the
proportion of the interacting cell-types in each cluster. An
example is shown in Fig. 4f.

3.5. Cell-cell LR pair querying

LR pairs can be queried given a sender and receiver cell
type and then ranked based on the proportion of the total
number of interactions for the given sender and receiver. This
is represented in Fig. 1f.

3.6. Pathway analysis

Pathway analysis is performed using GSEApy, a Python
package that can perform gene set enrichment analysis using
Enrichr [61]. LRs used for analysis are split into the ligand
and receptor and are added to a gene list to be run through
GSEApy’s Enrichr pipeline, which can be used with any
specified Enrichr databases. In this pipeline, both mouse
and human genes can be inputted and will be automatically
accounted for. Individual pathways can be further analyzed by
subsetting a CCI result to only LR pairs that have at least one
or both genes involved in the pathway, and then a cell-type
network can be plotted as well as the LRs involved and their
relative proportion.

4. Visualizations

4.1. Network visualizations

Network graph plotting is performed using NetworkX, examples
of which are in Fig. 3 [62]. Nodes have an outer ring color scale
based on whether that cell type is sending (red) or receiving
(blue) more interactions. When plotting a network difference
plot, p-values from the permutation testing can also be given
and edges with significant p values are plotted as purple if they
are higher in the first group or green if lower, along with the
p-value shown on the edge. As an alternative visualization,
network chord plots are included and were adapted from the
stLearn package [3].

5. CCI output conversions

For broad applications, MMCCI has wrapper functions included
in the package that allow conversion of multiple different
CCI pipelines. Currently, stLearn, CellPhoneDB, Squidpy,
CellChat, and NATMI outputs can be converted to be
compatible with MMCCT’s pipeline and samples from different
CCI methods can be integrated together. The MMCCI pipeline
is outlined in Fig. 1 and Sup. Fig. 3.

6. In-house spatial transcriptomics data generation
The brain and melanoma datasets were generated in-house,
while the CosMx Human Pancreas FFPE Dataset was a
publicly available dataset from NanoString and the scRNA-seq
breast cancer was sourced from a study by Karaayaz et al. that
was publicly available [63].

6.1. Brain samples

Young (3 months) and aged (20-24 months) C57BL/6 mice (all
female and housed in the same animal facility) were sacrificed
for organ harvest between 8am and 9am to avoid molecular
changes related to differences in circadian rhythm. Only healthy
animals were processed; mice bearing tumors or displaying any
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internal alterations (e.g., enlarged spleen, inflamed liver etc.)
were excluded.

For Visium spatial gene expression, the tissue sections
were placed on the pre-equilibrated Visium Spatial Tissue
Optimisation Slide (10X Genomics, cat n0.3000394) and Visium
Spatial Gene Expression Slide (10X Genomics, cat no.2000233).
The Visium library was constructed according to the Visium
Spatial Gene Expression User Guide (CG000239 Rev B, 10X
Genomics).

For STOmics, the tissue sections were placed on Stereo-
seq chips (BGI STOmics, cat no. 211SP118). The tissue
permeabilization was optimized according to STOmics Stereo-
seq Permeabilization User Manual (Version A0). The STOmics
library preparation was carried out as described in STOmics
Stereo-seq Transcriptomics User Manual (Version A0).

6.2 Melanoma samples
Six formalin-fixed, paraffin-embedded (FFPE) primary cutaneous
melanoma samples were obtained from a matched case-
case series of human patients with thin melanoma [64]
for downstream Xenium spatial transcriptomics. Tissue
preparation for Xenium in situ gene expression was carried
out as described in the Tissue Preparation Guide (CG000578
Rev C, 10X Genomics). In short, six 5 pm FFPE sections
were multiplexed on one Xenium Slide (10X Genomics, cat
no.3000941) to maximize the usage of the capture area
while minimizing batch effect. The detailed onboard image
processing, decoding and cell segmentation protocols have been
described in Janesick. et al., 2023 [13].

An additional eight primary melanoma samples from four
patients were selected for single-cell CosMx RNA sequencing,
which were processed by NanoString; of these, four had
adjacent sections available for concomitant Visium Spatial
Gene Expression.

7. Benchmarking

7.1. Benchmarking on pancreas data

The CosMx Human Pancreas FFPE Dataset from NanoString
was used to benchmark MMCCT’s integration method as an
example with single-cell whole transcriptome spatial data. This
dataset consisted of 18 field of views (FOVs), but could also
be combined together into one sample. Because of this, both
the whole sample and each FOV individually were processed
through the standard stLearn CCI pipeline, and MMCCI was
used to integrated the CCI results of each FOV. The integrated
results from MMCCI were then compared to the CCI results
of the whole sample, which was the ground truth, to quantify
the accuracy of MMCCTI’s integration method. This pipeline is
shown in Fig. 2a.

The similarity score used as the metric in Fig. 2c was
calculated for each LR pair by comparing the CCI matrices
of both samples to the whole. This was calculated by taking
the proportion of the number of cells in the matrices that there
either was or wasn’t an interaction commonly in both matrices.

7.2. Benchmarking on simulated breast cancer data

The simulated spatial breast cancer data was generated using
a scRNA-seq breast cancer dataset. The gene expression
distribution in each of the cell types was estimated by fitting
a negative binomial distribution, and this was used to generate
10,000 simulated cells of each cell type [65] (Sup. Fig. 2a).
The spatial data was generated by pooling cells of specific types
together to simulate Visium data and in a way such that they
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followed a set of rules about which cells should and should
not neighbour (Sup. Fig. 2b). These three simulated spatial
samples, each with a set of cell types that did and did not
neighbor, were then run through stLearn, CellChat, NATMI,
and Squidpy CCI analysis and then integrated using MMCCI
(Sup. Fig 2b). All CCI tools used connectomeDB2020 as
the LR database [7]. The individual and MMCCI integrated
cell-type interaction networks were generated for the HLA-
B:KIR2DL3 LR pair to show how the integration method works
at the LR pair level (Fig. 1c).
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Sup. Fig. 1. Top LR pairs and their proportions interacting in each of the individual human pancreas FOVs between ductal cells (low variation between
FOVs), and from delta to beta cells (high variation between FOVs). The results of all FOVs integrated are shown in Fig. 3d.
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