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Abstract

Cell-cell interaction (CCI) analyses are an indispensable tool for harnessing the detail and depth of spatial and single-
cell transcriptomics datasets by inferring inter-cellular communications, but no methods to integrate CCI results across
samples exist currently. To address this, we have developed a computational pipeline, Multimodal CCI (MMCCI), to
statistically integrate and analyze CCI results from existing popular CCI tools. We benchmarked MMCCI’s integration
on single-cell spatial datasets and found it to be highly accurate compared to simpler methods. We utilized MMCCI’s
integration and downstream biological analyses to uncover global and differential interaction patterns in multimodal aging
brain and melanoma spatial datasets.
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Background

Spatial transcriptomics (ST) is a molecular profiling technique

that maps RNA sequencing with spatial information to access

spatial gene expression patterns. This information can provide

deep biological insights into many applications including

neuroscience and cancer research [1, 2]. A valuable method

to utilise ST data is cell-cell interaction (CCI) analysis, which

aims to decipher the intricate communication networks within

tissues and understand how cells interact in their spatial

context. Multiple computational tools exist for inferring and

analyzing intercellular communication networks in single-cell

RNA-sequencing (scRNA-seq) and ST data such as stLearn,

CellChat, Squidpy, CellPhoneDB, NATMI, and NicheNet

[3, 4, 5, 6, 7, 8]. Tools such as stLearn and CellChat take spatial

information into account, limiting the inferred communications

to between only nearby cells or spots, whereas Squidpy,

CellPhoneDB and NATMI infer communications between any

given cells or spots and are thus prone to false discoveries, which

is a major challenge in CCI analyses. Tools such as scDiffcom

and COMUNET perform additional downstream analyses on

interaction networks such as differential LR interactions and

CCI. [9, 10].

For single cell data, integrative analysis of multiple

modalities has shown to uncover complex and functionally

important molecular and cellular mechanisms [11]. ST

technologies such as CosMx and Xenium provide single cell

resolution at the cost of only being able to detect a smaller

panel of genes or proteins, while Visium and bin80 STOmics

(bin80 produces equivalent size to Visium spot at 55um wide)

are able to sequence the entire transcriptome, but each Visium

spot (55um wide) captures the expression of often one to

ten cells [12, 13, 14, 15]. We posit that integration of these

orthogonal technologies can therefore enable detection of a large

number of spatially proximate LR pairs while still retaining the

specificity of single cell spatial methods, providing deep insights

into biological processes that are otherwise unachievable from

any one technology alone. However, qualitative or ’average-

based’ analyses are vulnerable to false positives and single-

sample bias, and there are currently no methods to integrate

CCI results from multiple samples across shared or different

transcriptomic modalities.

Therefore, we introduce MMCCI as a statistical framework

for multimodal CCI integration. MMCCI is based on the

assumption that the integration of CCI results across different

spatial transcriptomics technologies or multiple samples will
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be able to filter false positive interactions while preserving

the true interactions, thereby constructing a more accurate

landscape of the complex intercellular communications than

any one sample or modality alone. As the first pipeline for

quantitatively integrating CCI results across transcriptomic

platforms and from multiple samples, MMCCI is able to provide

highly confident CCI results through statistical meta-analysis,

combining p-values for each interaction across each sample, as

well as batch-effect correction, adjusting for unwanted technical

differences between samples both within and across modalities.

MMCCI provides a wide range of novel functionalities,

including:

• First tool for statistical integration and meta-analysis

of multimodal spatial and single-cell transcriptomics CCI

results from existing popular CCI tools.

• Comparative analysis of integrated or individual cell-type

networks between different groups to identify the differences

in cell-cell LR interactions between biological conditions.

• Novel tools for delving into specific interactions and the

biological pathways involved through enrichment analysis,

including cell-type pair LR querying and clustering of LRs

based on cell-type networks to help infer clear biological

patterns from complex CCI results.

• Analyzing cell types and LR pairs involved in specific

biological pathways enriched in CCI results, thereby

enabling hypothesis testing about the roles of cells and LRs

involved in such pathways.

• Spatial clustering of cells/spots based on LR interaction

scores to observe anatomical regions with similar interaction

patterns, providing novel LR signatures for defining tissue

regions.

Results

MMCCI integrates and analyses CCI results from
multimodal datasets
MMCCI’s integration pipeline, shown in Fig. 1a aims to

combine the interactions discovered in individual samples

from existing popular CCI tools, such as stLearn, CellChat,

CellPhoneDB, Squidpy, NATMI, and NicheNet, in order to

identify global interaction patterns across multiple samples

across multiple modalities. This integration pipeline can work

across samples from either a single modality, or from samples

across multiple modalities, such as combining scRNA-seq data

and spatial transcriptomics data from different technologies like

Visium and Xenium. MMCCI’s set of downstream analyses aim

to provide clear biological insights from the deep and complex

CCI results through Enrichr pathway analysis, differential CCI

network analysis, cell-type LR interaction querying, and CCI

network and interaction score clustering (Fig. 1b). Fig. 1c

shows a simple example of how the cell type interactions for a

single LR pair, HLA-B:KIR2DL3, across three simulated spatial

breast cancer samples are integrated into a single network,

capturing the overall cell type interaction pattern. MMCCI’s

integration is able to do this for every LR pair across all

samples. The integration and analysis pipelines are outlined

in depth in the Methods section.

Benchmarking and validation of MMCCI integration
on single-cell whole-transcriptome spatial pancreas
data
To validate the integration method, the latest and publicly

available CosMx single-cell spatial, whole-transcriptome

pancreas data consisting of 18 FOVs was used. The stLearn

CCI results were compared to the MMCCI integration of the

CCI results for each FOV across a number of quantitative and

qualitative metrics (Fig. 2a) [12]. The CCI result of the entire

sample was used as the “ground truth” as this contained the

exact number of cell-type interactions for each LR pair across

the whole sample as well as p-values for each interaction based

on the background expression across the whole sample. The

aim of the integration method was to match the integrated

FOV CCI results to the whole sample CCI results as closely

as possible, as this would show that the integration neither

filters out important interactions nor retains false positive

interactions which can be challenging when interaction counts

and their p-values for specific LR pairs can vary greatly between

samples when cell-type proportions and gene expression across

samples vary. The heatmaps in Fig. 2a, which show the

interaction counts from one cell type to another, are nearly

identical between the whole and integrated, showing that

MMCCI integration preserves the global LR interaction count

proportions. Fig. 2b shows similar results, this time showing

how the LR interaction counts per cell-type in the integrated

(green line) are much closer to the whole (blue line) when

compared to each individual FOV (dotted red lines) and the

average across the FOVs (dark red line). Fig. 2c shows that

the integrated results are significantly more similar to the whole

at the individual LR level when compared to the average for

each LR pair across all FOVs. The data followed a normal

distribution according to SciPy’s “normaltest”, and a between-

groups t-test indicated a p-value of < 0.0001 [16]. Fig. 2d

shows how for two given sender-receiver cell types, ductal to

ductal cells (a pair with a high number of interactions that are

consistent across all the FOVs) and delta to beta cells (a pair

with a low number of interactions with high variation across

the FOVs), the top LR pairs and proportions are similar. Sup.

Fig. 1 shows these same plots, but for each FOV, showing

how MMCCI is able to integrate these interactions across many

FOVs with high accuracy even when there is a large amount

of variation between samples. Overall, these results are able

to show that MMCCI’s integration method is accurate when

taking even a large number of samples with a high number of

cells and genes.

MMCCI integration and comparative analysis on
multimodal spatial aging brain datasets
Next, MMCCI integration and downstream analyses were

performed on the stLearn CCI results from our eight Visium

mouse brain samples (four aged and four young) and four

STOmics mouse brain samples (two aged and two young) (Fig.

3). These replicate samples were first integrated by technology

and age group. The resulting four combined samples were again

integrated by age group, resulting in one aged and one young

mouse integrated network. Prior to integration, interactions

between many cell types were observed interacting in individual

samples, making it unclear which interactions were falsely

identified and which were biological. After integration, only

statistically significant interactions across the samples were

retained (Fig. 3).
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Fig. 1. Overview of MMCCI’s integration method and analyses. a. Spatial or single-cell transcriptomics samples are individually processed through one

of many different CCI tools. The CCI results from each sample is integrated into one CCI result through MMCCI integration. b. MMCCI’s downstream

analyses. Shown at the top, Enrichr pathway analysis is run on the LR-pairs from the integrated result to identify significant biological pathways and

the LR interactions involved. Shown from the bottom left to right, MMCCI also provides analysis functions including differential CCI analysis with

statistical testing, LR pair querying and ranking for a sender-receiver cell-type pair, clustering of LR pairs with similar cell-type networks, and clustering

of sample spots with similar interaction scores. c. An example of how MMCCI’s integration functions. Each spatial transcriptomics sample (simulated

from scRNA-seq breast cancer) is run through a CCI algorithm (stLearn in this example). The integration of a single LR pair (HLA-B:KIR2DL3) is shown

along with cell-type and LR co-expression spatial plots for each sample. The thicker arrows in the integrated result represents stronger interactions.

MMCCI provides quantitative and qualitative differential
interaction network analyses

A core feature of MMCCI is its pipeline for comparing cell-type

interaction networks between different groups, highlighting how

the roles of different cell-types and their interactions change

in different biological conditions. For our aging dataset, the

overall interaction networks for aged and young brain samples

were constructed and the difference between these overall

networks was calculated and run through MMCCI’s network

permutation testing (see Methods section) to identify cell-type

pair interactions that were significantly different between the

aged and young samples, shown as the darker coloured edges

in Fig. 4a. The lighter coloured edges show the differences

that were not statistically significant (p-value > 0.05). The

dissimilarity score between the overall aged and young networks

was 0.232, which indicates that nearly a quarter of the network

edges are significantly different between the age groups.

Interactions within ependymal cells were shown to decrease

significantly with age, while interactions between astrocytes

and neurons significantly increased with age. This reflects

the current understanding that the ependymal layer thins

during aging and reactive astrocytes proliferate and interpose

themselves within the ependymal cell layer [17, 18]. Therefore,

our findings are consistent with previous reports that

interactions both within astrocytes and between astrocytes and

neurons should increase with age [19, 20]. Interactions within

oligodendrocytes were also shown to decrease with age.

To establish the specific LR interactions that changed

significantly in different sender and receiver cell types between

age groups, MMCCI’s LR pair network dissimilarity ranking

was run on the integrated aged and young samples (Fig.

4b). The most dissimilar pair, Vimentin (Vim)-Cd44, showed

interactions mostly within and between neurons, astrocytes,

and oligodendrocytes in the aged brain, while in the young

brain, there were no interactions with astrocytes, but more

ependymal cell interactions (Fig. 4b). Vim is a known

astrocyte marker, expressed in ependymal cells in healthy

brains and in reactive astrocytes in aging [21, 22]. Cd44 is an

astro-mesenchymal marker, so this interaction was expected to

change with age, with Vim release shifting from ependymal

to astrocytes during aging [23]. For the second example, the

A2m-Lrp1 pair was detected to interact between neurons,

oligodendrocytes, astrocytes, and ependymal cells in the aged

brain, but had no interactions with astrocytes in the young

brain. This LR pair has been shown to potentially associated

with Alzheimer’s disease [24, 25].

These differential comparison methods can be applied to any

samples, integrated or not, to quantitatively and qualitatively

compare different biological groups. Samples can be compared

at the whole network level or at the individual LR and cell-type

level, providing valuable answers into any important biological

questions involving differential analysis.

MMCCI queries LR interactions between specific cell-type
pairs

To obtain deeper insights into specific cell-type sender-receiver

pairs, MMCCI provides functions for querying LR pairs and
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Fig. 2. Benchmarking of MMCCI integration on CosMx human pancreas dataset. a. The entire sample was run through the CCI tool, stLearn, and

compared to the MMCCI integration of each of the 18 FOVs run separately through stLearn. The heatmap of the global interaction counts for both

the whole and integrated results are shown (right). b. Barplot of cell-type counts for the whole sample along with line plots showing the scaled CCI-

LR interaction counts for each cell type for the whole pancreas (blue), MMCCI integrated FOVs (green), averaged FOVs (dark red), and individual

FOVs (dotted red). c. The CCI matrix similarity scores per LR compared to the whole pancreas for MMCCI integrated and averaged across FOVs. d.

Comparison of the top LR pairs and their proportions interacting in both the whole sample and MMCCI integrated result between ductal cells, which

is a cell-type pair with a high number of interactions in the whole sample, and from delta to beta cells, which is a cell-type pair with a lower number

of interactions in the whole sample.
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Fig. 3. Integration of stLearn CCI results from aged and young mouse brain spatial transcriptomics samples. a. Cell-type spatial plots and overall

stLearn interaction network plots of individual Visium (left) and STOmics (right) aged mouse brain results. The network with a (*) is the aged sample

used in Fig. 4f. Below, the overall within-technology integration network of aged Visium (left) and aged STOmics (right) is shown along with the overall

between-technology integration network of all aged samples (middle), which was used as the aged brain integrated sample for downstream analyses. In

the network plots, the inner circle of the node shows the cell type and the outer ring shows if the cell type is sending more interactions (red) or receiving

more interactions (blue) b. Similarly, young samples are shown.

their proportions involved in specific CCIs and can perform

pathway analysis on these pairs. Since the interactions from

astrocytes to neurons were significantly increased in the aged

brain, this set of interactions was queried to find the LR

pairs involved along with their relative interaction strength,

quantified by their interaction score proportion in that sender-

receiver cell-type pair (Fig. 4c). These results show that not

only did the overall strength of the interactions between the

cell types increase in age, but so did the number of LR pairs as

well. We found many different LR pairs interacting in the aged

group compared to the young group.

In many of these interactions, predominantly in the

aging brain, Lrp1, a multifunctional cell surface receptor,

was involved [26]. In the young brain, Midkine (Mdk), a
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Fig. 4. Downstream analysis of aged and young mouse brain CCI results. a. Overall network difference plot between aged and young, where significant

edges are coloured and labeled with their p-value. The color of the edge indicates the age group that the interaction is increased in and the thickness

of the edge indicates how much stronger the edge is upregulated in that age group. Edges with a p-value < 0.05 are darker in colour. b. Barplot of LR

pairs (bottom right) with the most dissimilar cell-type interaction networks between aged and young with two LR pair’s networks for the integrated

aged and young samples shown as chord plots. Chord plots are used to show the interacting cell types and the color of the chord indicates the cell type

that is acting as mostly a sender. Spatial cell-type and Vim-Cd44 expression plots for an aged and a young Visium sample are shown. c. Barplot of

top LR pairs interacting from astrocytes to neurons and their proportion of their interaction strength, shown for both aged and young. The number of

LR pairs interacting from astrocytes to neurons in both aged groups is shown above the barplots. Created with BioRender.com. d. A pair of summed

networks of clustered LR pairs from the integrated aged and young samples, where LR pairs with similar networks are clustered together, along with

GSEA pathway analysis using Enrichr with the KEGG 2021 Human and MSigDB Hallmark 2020 databases. e. LR pairs with their summed networks

involved in the complement pathway in the integrated aged sample and the Wnt signaling pathway in the young integrated sample. f. LR interaction

score clustering results for an aged and a young Visium brain sample with bar plots showing the cell-type proportions of each cluster.
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neurotrophic growth factor that is involved in growth and

proliferation during embryogenesis, was one of the active

ligands, while in aging, the serpin family became the

predominant ligands acting on Lrp1 [27]. In the young, another

top ligand, Itgav, has been reported to play an important role

in neurovascular cell adhesion in brain angiogenesis [28]. This

analysis in MMCCI can provide interpretable results to address

biological questions involving specific interacting cell types.

MMCCI clusters LR pairs with similar cell-type networks

To summarise the large number of interactions, MMCCI

provides a LR network clustering algorithm, which in this

case was applied on the integrated aged and young samples

separately. This analysis identifies and groups LR pairs with

similar cell-type networks under the assumption that each

cluster of LR pairs are likely to have similar biological

roles. Further, Enrichr analysis was run on each cluster to

find the pathways involved in the interactions between cell

types in a particular cluster (Fig. 4d). The selected aged

cluster in Fig. 4d grouped LR pairs with similar interaction

networks predominately in astrocytes, oligodendrocytes, and

neurons, and we found pathways related to inflammatory

response, complement, not present in the young cluster that

are significant components of the astrocyte to neuron and

oligodendrocyte interaction in aging [29]. The selected young

cluster grouped LR pairs with similar interaction networks in

neurons, and discovered neurodevelopmental pathways such as

angiogenesis, axon guidance, and neuroactive LR interactions.

These results show analyzing a specific cluster of LR pairs can

reveal specific and relevant biological pathways.

MMCCI identifies LR pairs and cell-type interaction
networks involved in specific aging-related pathways

To look deeper into specific biological pathways, MMCCI

provides functions to identify and rank the LRs involved in

user-specified pathways from Encrichr and create cell-type

networks for the given pathways. In this aging dataset, LR

pair networks involved in the complement and Wnt signaling

pathways were extracted from the aged and young integrated

samples respectively and summed, allowing the visualisation

of the cell types involved and the relative strengths of the LR

pairs involved (Fig. 4e). In the aged complement pathway,

interactions between astrocytes, neurons, oligodendrocytes

were the strongest, with neurons acting overall as more of

a receiver. Lrp1, a protein found predominantly on neurons

and reactive astrocytes, was the most common receptor

in the top complement interactions [30]. This receptor,

particularly through interactions with A2m, is known to be

involved in Alzheimer’s disease pathogenesis [24]. The young

Wnt/β-catenin pathway had interactions in oligodendrocytes,

ependymal cells, and neurons, which is expected as this

pathway is known to have an important role in neuron

development and myelin formation [31, 32]. These results

demonstrate how MMCCI’s unique and powerful CCI pathway

analysis can offer useful insights into the cell types and LR pairs

involved in specific biological pathways.

MMCCI spatially clusters cells/spots with similar LR
interaction scores

MMCCI also offers the functionality to identify spatial

communities based on common LR pair interactions by

performing LR interaction clustering. Applying this to the

aging brain dataset, we can cluster tissue regions similar to

standard cell/spot clustering, but using LR interaction scores,

which are based on the coexpression of the ligand and receptor

in each spot and its neighbouring spots, calculated by stLearn

CCI results for each individual sample. This is different to

common clustering methods using gene expression. The plots

in Fig. 4f correspond to the two marked samples in Fig. 3a,

3b, where we found the interacting cell-types, and in Fig. 4f

we can visualise the spatial location where those cell-types are

interacting. The stacked bar plots show the proportions of each

cell-type in different clusters, revealing in this comparison how

there are far more astrocytes in the aged sample and they are

involved in many different clusters, meaning they are involved

in a wide range of interactions (Fig. 4f). These resulting

clusters can be used for many other downstream analyses, such

as finding marker LR pairs for each cluster. This function allows

a new type of clustering to be performed on spatial data, which

can provide valuable insights into where certain interactions are

occurring spatially.

MMCCI integration and pathway analysis of
multimodal spatial melanoma datasets
We applied MMCCI integration to our multimodal spatial

cutaneous melanoma dataset, which comprised ten patients,

four of which had Visium and CosMx samples and six with

only Xenium samples, in order to collate a set of interactions

that are significant across patients and technologies. We then

investigated the cell types and LR pairs involved in important

melanoma-related biological pathways.

For patients with matched Visium and CosMx data, samples

were integrated at patient-level. Notably, individual CosMx

and Visium samples demonstrated high intra-sample variability,

with cell-cell interactions identified between all cell types. Many

of these interactions were identified in only one of the two

modalities and were thus likely to be circumstantial rather than

biological; averaging these data across regions of interest would

lead to distortion of the final dataset. In contrast, patient-level

integration through MMCCI enabled exclusion of these ’false

positive’ interactions while retaining the fibroblast, vascular,

and immune cell-cell interactions consistently present across all

samples (Fig. 5a).

Samples were also integrated at technology-level to generate

composite samples/networks for each of the Visium, CosMx,

and Xenium modalities; each of these was in turn aggregated

using MMCCI into one final integrated sample/network (Fig.

5b). This integrated multimodal sample/network was highly

similar to the integrated patient-level samples, highlighting

the potential of the Xenium samples in validating the other

technologies’ findings. This between-technology integrated

sample was used for all the further downstream analyses. These

integration results highlight the ability of MMCCI’s multimodal

integration pipeline to pull a significant set of interactions out

of an inconsistent or noisy set of CCI results.

MMCCI provides LR pairs and biological pathways
involved in specific cell types

To understand the biological processes involved in the

interactions occurring between particular cell types of

interest, we analysed the Enrichr pathways of the LR

pairs interacting across three different sender-receiver cell-

type pairs (Fig. 5d). Enrichment analysis identified a high

level of interactions between tumour-associated fibroblasts

and endothelial cells, involving the COL1A1 and COL1A2

ligands. These interactions, characterized by the binding of
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Fig. 5. Integration and analysis of multimodal human melanoma CCI results. a. CCI integration results for a patient, where one Visium (pink) and

two CosMx (yellow) samples of the same patient were integrated together (red). b. Within-technology integration results for four Visium (pink), eight

CosMx (yellow), and six Xenium (blue) samples, along with between-technology integration of all samples (red). The integrated sample (bordered)

is employed for all subsequent downstream analyses. c. Two representative melanoma spatial plots, showing the difference between the single-cell

resolution image-based technologies, CosMx and Xenium, and the non-single cell spatial sequencing-based technology, Visium. For the CosMx sample,

the transcripts for COL1A1 (magenta) and CD44 (yellow) are plotted to show the resolution of these imaging-based technologies. d. Three examples of

LR pairs and their proportions that are interacting from a selected sender to a receiver cell type pair, followed by pathway analysis of the LR pairs using

Enrichr with the KEGG 2021 Human and MSigDB Hallmark 2020 databases. e. LR pairs from the integrated sample involved in different cancer-related

pathways and the cell-type network of these LRs.
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Type I collagens to endothelial CD44 and ITGB1 receptors,

are key mediators of ECM remodelling, which in turn

facilitates melanoma cell invasion and epithelial-mesenchymal

transition (EMT) [33, 34]. Correspondingly, pathway analysis

demonstrated upregulation of gene pathways representing

focal adhesion, ECM-receptor interaction, and epithelial-

mesenchymal transition in the fully integrated sample/network

(Fig. 5d).

Interactions from natural killer and T cells to myeloid cells

included the leukocyte adhesion molecules ICAM3 and ITGB2,

the NF-κB activators TNF1A and LTB, and the MIF-CD74

LR pair [35]. The pathway analysis consequently indicated

upregulation of cell adhesion molecule signalling and the pro-

inflammatory JAK-STAT and NF-κB pathways (Fig. 5d),

highlighting the capacity of MMCCI to capture the immune

response to melanoma at spatial resolution and with respect

to specific cell types. MIF-CD74 remained the primary ligand-

receptor pair for myeloid-endothelial cell interactions, and this

interaction was previously demonstrated to promote melanoma

cell survival through IL-8 and ERK-mediated signalling [36].

Pathway analysis demonstrated upregulation of leukocyte

migration and adhesion pathways, as well as EMT in the

context of enriched PI3K-Akt signaling (Fig. 5d). These

results show how analyzing specific cell-type interactions can

provide insights and important hypotheses about the cell-cell

interactions in specific tumours that may be obscured when

considering only the bulked or global interactions in a sample.

MMCCI identifies LR pairs and cell-type networks
involved in specific melanoma pathways

To further interrogate the LR pairs and cell-types involved

in specific cancer-related pathways, we performed a subset

analysis on integrated CCI results corresponding to three

selected pathways. Enrichr pathway analysis was applied to

specify the LR pairs involved in each included pathway.

The PI3K-Akt signaling pathway was characterized by

interactions between Type I collagens and integrin receptors

(Fig. 5e), indicating a CAF-driven milieu that predisposes

to ECM remodelling and consequent EMT [37, 38]. This

was complemented by the TGF-β signaling pathway, which

involved enrichment of the TGFB1-TGFBR2 LR pair across

multiple cell types: both homotypic endothelial and myeloid

cell interactions as well as sender-receiver interactions from

endothelial cells to fibroblasts and myeloid cells (Fig. 5e).

These findings align with the established roles of TGF-β

signaling in promoting EMT and inducing differentiation of

tumour-associated macrophages. [39, 40].

For LR pairs implicated in EMT, the COL1A1 and

COL1A2 ligands and the CD44, ITGA1, ITGA5, and ITGB1

receptors were most frequently represented, as were the

mesenchymal proteins VIM and FN1 (Fig. 5e). The majority of

interactions were between fibroblasts to keratinocytes, myeloid

cells, and endothelial cells, which corroborates the established

contribution of cancer-associated fibroblasts (CAFs) to pro-

EMT signaling in the tumour microenvironment (Fig. 5e)

[41, 42]. This type of analysis provided by MMCCI can

be applied with any pathway related to the user’s dataset

and is able to expand on current pathway analysis pipelines

by generating a cell type network and ranking the LRs by

interaction proportion for a given pathway.

Investigating integration performance across CCI
methods using simulated data
To benchmark MMCCI’s performance across multiple CCI

tools, both spatial and non-spatial, we integrated three

simulated breast cancer spatial samples that were run through

four different CCI methods - stLearn, CellChat, NATMI and

Squidpy (Sup. Fig. 2). For each CCI tool, the integrated

result was able to compile a clearer picture of the interactions

as a whole across the samples, where consistent interactions are

made stronger and inconsistent interactions are made weaker in

the integrated results.

Each sample had cell types with neighbors common across

all the samples as well as neighbors unique to that sample. This

allowed us to confirm whether integration could recover the

known ground truth from the simulated data, which were the

cell types adjacent to each other in the majority of the samples

(for example, B and T cells). This approach also improved

detection and exclusion of false positive interactions, such as

cell types that were proximate in only one of the samples and

were distal/exclusive in remaining samples (e.g., endothelial

and stromal cells). In both simulated and biological data, we

observed that MMCCI successfully removed the false positive

interactions while retaining the true interactions across several

spatial and non-spatial CCI methods. We also found that using

stLearn CCI on multiple samples and integrating with MMCCI

resulted in the highest performance with detecting expected

biological interactions while filtering false interactions [3], an

observation that can be attributed to the underlying algorithm

that stLearn uses, which utilizes spatial information in the

analysis to find more confident interactions.

Discussion

MMCCI was developed as a fast, comprehensive, and open-

source Python package for integrating cell-cell interactions from

multimodal transcriptomics datasets, along with a downstream

analysis toolset for exploring the biological interactions in

single samples as well as MMCCI-integrated results. MMCCI

is the first platform that enables integration of CCI networks

from multiple samples and modalities, strengthening the

concordance of the inferred interactions. MMCCI integrates,

analyzes and visualizes outputs from multiple CCI tools,

including stLearn, CellPhoneDB, Squidpy, CellChat, and

NATMI. Recently, CellCommuNet was developed to integrate

scRNA-seq samples before running CCI analysis, but unlike

MMCCI, it does not integrate the CCI results themselves and

is also limited to non-spatial scRNA-seq samples [43]. LIANA

is a different tool that runs multiple CCI methods on a single

sample and calculates a consensus rank for interactions [44].

However, this is also different to MMCCI in that it only

processes a single scRNA-seq sample rather than integrating

different samples together.

Validating MMCCI’s integration method on spatial single-

cell whole-transcriptome CosMx human pancreas data by

comparing the MMCCI integrated CCI results of each FOV to

the CCI results of the whole sample, we showed that MMCCI’s

integration is significantly more accurate to the ground truth

than averaging the CCI results across the FOVs (Fig. 2). Not

only were CCIs common across the FOVs integrated accurately,

but also rare CCIs with high variation across FOVs (Sup. Fig.

1). Benchmarking the integration method on simulated spatial

breast cancer samples on four different CCI methods showed

that MMCCI is able to successfully integrate CCI results from
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both spatial and non-spatial methods and preserve important

cell-type interactions across the three samples (Sup. Fig. 2b).

Applying MMCCI’s integration and downstream analyses

pipeline on stLearn CCI results from multimodal brain and

melanoma data, we show the effectiveness of using MMCCI

to statistically integrate CCIs both within and between

technologies. MMCCI accurately identifies the frequency and

distribution of canonical mediators and cell-cell interactions

involved in specific biological pathways by integrating CCI

results across multiple samples and modalities. Data from each

individual sample harbours some insight into the true biological

cell-cell communications, but analyzing a single sample is

prone to producing false discoveries or missing some important

information. This advantage of MMCCI integration is clearly

seen in the melanoma single-patient integration, shown in

Fig. 5a. Individually, the CosMx samples report putative

interactions between all cell-types, many of which are likely

falsely detected or not biologically relevant. While the Xenium

samples are more targeted, they omit a number of expected

interactions, such as those between natural killer (NK) cells, T

cells, and melanocytes. Integration resolves this discrepancy to

generate a clear, consistent, and biologically pertinent profile of

the interactions underlying thin primary melanoma. Through

the integration of multiple CCI results from different samples

using MMCCI, we can gain a deeper understanding with higher

confidence about the intercellular interactions occurring in

normal physiology and disease.

MMCCI was able to provide relevant biological insights into

the multimodal aging mouse brain and melanoma datasets that

may have been overlooked if only one sample or transcriptional

modality was analyzed. A clear example of this is that

biologically important interactions with vascular cells are

missing in many of the Visium brain samples, but after

integration with STOmics samples, these are preserved (Fig.

3). Many important interactions in the aging brain were

observed in the integrated results. Mainly, astrocytes were

shown to become more active, not only increasing their

overall interaction strength but also the LR pairs involved

in the interactions, which is consistent with the current

understanding of the roles of astrocytes becoming more

reactive in aging, contributing to neuroinflammation and the

complement pathways [45, 19, 20, 21, 22, 23, 46, 47, 48]. The

thinning of the ependymal layer expected in aging was also

shown by the observed decrease in ependymal interactions in

aging [17, 18]. As well, many neuron development pathways

were observed in the young samples which were not present

in the aged. Overall, MMCCI allows for deep insight to the

molecular mechanisms involved in aging in the central nervous

system.

In primary cutaneous melanoma, MMCCI was able to

synthesize data from complementary ST technologies to

delineate the contributions of Akt-mediated extracellular

remodelling and TGF-β signalling in promoting epithelial-

mesenchymal transition within the stromal milieu [49]. Single-

sample analyses captured interactions across all cell types,

restricting interpretation of the findings; however, MMCCI

filtered through these to obtain consistent CCIs across the

melanoma dataset. Notably, MMCCI highlighted the broad

activity of fibroblast-associated Type I collagen ligands across

multiple receptors and gene pathways, including targeting of

both endothelial and myeloid cells [50, 51]. Another example

of a pertinent CCI observed in the integrated sample involves

the macrophage migration inhibitory factor (MIF)-CD74 LR

pair. MIF-CD74 interaction promotes melanoma cell survival

through recruitment and activation of the PI3K/Akt signalling

pathway, and it is a promising candidate for targeted therapy

[52, 53, 54]. Overall, MMCCI enabled precise exploration

of the complex network of interactions within the tumour

microenvironment, particularly with respect to the role of

fibroblasts in ECM remodelling, EMT, and PI3K-Akt signaling.

This highlights the utility of the MMCCI pipeline in meta-

analysis of multi-sample and multi-modality data to infer

biologically significant interactions with a higher degree of

confidence than from any one sample or modality alone.

While MMCCI offers a range of new and important, there

are limitations that need consideration during implementation.

Imaging-based technologies often detect fewer interactions that

would be expected biologically as a result of having a lower

number of proteins/genes in the panel. Because of this, a future

direction of CCI result integration could explore the option

to impute missing genes/proteins. However, this is not always

a significant limitation as the gene panels are often selected

based on biological relevance to the type of sample, so the

integrated results still provide valuable insight into the relevant

biological pathways. Alternatively, users can also focus on data

integration for just the genes/proteins that are shared across

platforms. Users can also select parameters to control for the

integration weights between modalities that take into account

the omission of genes/proteins in the panels. Meanwhile,

sequencing-based technologies can measure more genes, but

are often not yet able to provide single-cell resolution. The

low resolution means that while many LR pair interactions are

able to be inferred, the cell-types involved are less specific and

lack the precision of imaging-based technologies.Through the

integration of CCI results from multiple samples, MMCCI is

able to use the advantages of both imaging- and sequencing-

based spatial transcriptomics to construct a clearer picture

of the biological interactions across multiple samples and

technologies.

Overall, the MMCCI package provides novel integration

method for statistical meta-analysis of multi-sample or

multimodal CCI results. MMCCI’s flexible integration pipeline

allows for samples to be integrated more strictly to filter

to only highly confident interactions across the samples, or

for the integration to include rarer interactions that are

significant in only a subset of the samples, which makes

the pipeline robust to cancer samples where there is tumour

heterogeneity between samples and important interactions are

not removed due to being rare. MMCCI is the first tool that

can integrate both spatial and non-spatial CCI results from

different transcriptomic modalities and CCI methods together,

and will prove relevant to future analyses in the rapidly evolving

field of spatial transcriptomics.

Conclusion

We have developed a new algorithm, MMCCI, which is

the first tool for statistical integration and meta-analysis of

multimodal spatial transcriptomics and scRNA-seq CCI results

from different tools. We have benchmarked MMCCI integration

pipeline on spatial single-cell whole-transcriptome human

pancreas data and verified that its accuracy outperforms simply

averaging CCI results across samples. MMCCI integration

and downstream analysis was applied to multimodal brain

and melanoma spatial transcriptomics datasets to uncover

the cell-types and LR pairs involved in complex aging and

cancer related pathways. We provide the MMCCI software
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as an open-source package and have included detailed usage

instructions, aiming to facilitate robust CCI analyses in the

broader community.

Methods

1. Upstream data processing

1.1. Deconvolution

For the aging brain samples, we generated Visium and STOmics

data and annotated cell types using RCTD with the Allen

Brain Atlas as a single cell reference for deconvolution [55, 56].

For the melanoma samples, we generated Visium, CosMx and

Xenium data, followed by automated cell-type annotation by

deconvolution and label transferring using an in-house single

cell skin cancer reference. Specifically, for Visium data, we used

RCTD for finding cell-type compositions of spots which contain

1 - 10 cells, and for the single cell resolution CosMx and Xenium

data, we used Seurat V4 Label Transfer for direct single cell to

single cell annotation [57].

1.2. stLearn cell-cell interaction analysis

Cell-cell interactions for the pancreas, brain and melanoma

samples were computed using stLearn, a CCI inference method

that takes spatial information into account [3]. We first filtered

out genes that were not present in more than three spots

and performed counts per cell normalization. stLearn performs

ligand-receptor analysis, in which each spot or cell receives

an interaction score from its immediate neighboring spots for

each LR pair. The LR pair database used in stLearn was

from connectomeDB2020 [7], but other databases can also

be applied. This score is used for MMCCI’s LR interaction

clustering. Importantly, stLearn also predicts significant cell-

cell interactions, generating a network of communicating cell-

types represented as a matrix per LR pair where the weights

are the number of significantly interacting spots or cells, along

with a p-value for each weight. This data is used by MMCCI

to perform integration and is the format used by most of the

integration, analysis and visualization functions. CCI results

obtained from other methods are converted to this format by

MMCCI for compatibility with the package.

2. Integration method
Sample integration (Sup. Fig. 3) is split into two sections,

within-technology and between technology integration, which

can both be run separately.

2.1. Within-technology integration

This step performs CCI integration of samples within a

technology by accounting for differing sample sizes, reflected

by the number of spots/cells in each sample (1.1 of Sup.

Fig. 3). Each sample’s LR pair interaction matrices are scaled

based on the number of spots/cells in that sample (sample-

size scaling). Each weight in each LR matrix is multiplied by

this scaling factor. This is required to control for samples with

a disproportionate number of spots, ensuring that each sample

has an equal weighting within each technology as a sample with

more spots will generally have more interactions.

An integrated sample for a given technology is then created

by running a LR-level integration function (Equ. 1 - 2) with

each sample arising from that technology (1.2 of Sup. Fig.

3). The CCI integration works by first creating a list of LR

pairs to be included in the integrated sample by either taking

the common LR pairs if there are two samples to integrate, or

by taking the LRs present in at least half the samples if there

are more than two samples to integrate (Equ. 1). The option is

given in the package to select other methods for selecting which

LR pairs to integrate including using LR pairs present in all

samples, the majority of samples, or at least one sample. Each

LR pair in sample k has a cell-type adjacency matrix which

has an interaction score for that LR pair for cell-type i to cell-

type j, represented as LRk
i,j and referred to in this paper as an

interaction. Then for each LR pair in that list, the integrated

network for that pair is calculated by combining the networks

of each sample, creating a matrix where each interaction is the

geometric mean of that interaction in all the samples where the

score is not 0 (Equ. 2). If more than half of the samples have

an score of 0 for a given interaction, it will have an integrated

score of 0 for that interaction.

S
1...n

= n samples to be integrated

LRs =

common LRs in S1, S2, if n = 2

LRs present in ≥ 50% S1...n, if n > 2

(1)

For LR
1...m ∈ LRs,

LR
integrated
i,j =

 n

√∏n
k=1 LRk

i,j for LRk
i,j ̸= 0

0 if ≥ 50% LR1...m
i,j = 0

(2)

Non-significant interaction scores in each LR matrix are

then set to zero. The p-value of an interaction for a sample

is provided from the CCI analysis performed on the sample,

and the integrated p-value across all samples for an interaction

of an LR pair between two cell-types is calculated as outlined

in section 2.3 of the Methods.

2.2. Between-technology integration

The integrated CCI values for each sample of each technology

are then normalized by a scaling factor, calculated by averaging

the arithmetic mean of the values across all the LR pairs per

technology (2.1 of Sup. Fig. 3). This ensures that a high

number of interactions detected through one specific technology

are not over-represented in the integrated sample.

A final integrated sample is then created by running

the LR-level integration function as in the within-technology

integration (2.2 of Sup. Fig. 3). After this, the overall network

of interactions, an overview of the cell-type interactions in the

sample, is calculated by scaling the values in each LR matrix so

that they sum to one to ensure equal weighting of all LR pairs,

and then computing the mean of all the matrices. Creating

an overall network can also be done in other points of the

integration to easily visualize the overall interaction network

of an integrated or non-integrated sample.

Again, the p-values across all samples used in the integration

can be combined as outlined in section 2.3 of the methods.

These p-values can be used to filter insignificant interactions in

the integrated sample.

2.3. Meta-analysis: a statistical framework for integration

Meta-analysis is a statistical technique to combine the results

from multiple different studies addressing a similar question.

Most of the CCI algorithms that MMCCI is able to integrate

provide p-values for every interaction score, which are

integrated to calculate a final p-value for each interaction in the
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integrated results. We used Stouffer’s method to integrate p-

values from CCI results of different samples, which converts p-

values to z-scores before combining them together [58, 59]. The

z-scores are calculated using the inverse cumulative distribution

function of p-values (Equ. 3), integrated (Equ. 4), and then

converted back into a p-value using the cumulative distribution

function (Equ. 5). This meta-analysis improves the robustness

and accuracy of MMCCI’s integration method.

Zi = ϕ
−1

(1 − pi) (3)

Zcombined =

∑k
i=1 Zi√

k
(4)

pcombined = 1 − ϕ(Zcombined) (5)

3. Downstream analyses

3.1. Dissimilarity scoring

The dissimilarity score shown in (Sup. Fig. 3 and Equ. 6),

has been based off of a similar metric introduced in COMUNET

[10]. To compute a dissimilarity score between two matrices, we

first ensure that they have the same interacting cell types by

imputing an interaction score of zero to the missing cells in the

matrix with fewer cell types. For any two cell-type adjacency

matrices, M1 and M2, the continuous dissimilarity score, S,

is calculated by taking the absolute difference between the

weights of each sender-receiver cell-type pair of the two matrices

divided by the sum of the weights. The binary dissimilarity

score, F , is calculated as 1 if the two cells of the matrices

have a different number of significantly interacting spots, or

otherwise 0. Finally, these two dissimilarity scores are added

for each LR-pair using a blending factor, λ, and this score is

divided by the square of the number of cell-types, giving the

dissimilarity score, D. D is an approximate representation of

the proportion of the network that is different, and for most

cases this difference is around 0−0.2 due to many edges having

a weight of 0 in both networks as it is rare to find LR pairs that

interact between all cell-types in a sample.

D
M1,M2 =

N∑
i=1

N∑
j=1

(λSM1,M2

i,j + (1 − λ)FM1,M2

i,j )

N2
, (6)

For S (Equ. 7), the denominator adds the wM1

i,j and wM2

i,j

and these are subtracted in the numerator, due to which S is

lower for interactions with same numerator, where both values

are non-zero compared to one of them being zero. So, F (Equ.

8) helps in increasing D in cases where there are many non-

zero interactions, as S will be lower for two non-zero values

with the same difference as two values where one is zero. This

can lead to D being lower than expected in comparison to two

networks each with only a few interactions. By default, we set

λ = 0.5 to equally weigh the two scoring metrics. The effects

of changing λ across different LR pairs is shown in Sup. Fig.

2c. For networks with many edges that change slightly, the

dissimilarity is higher when F is weighted higher, whereas in

networks where there are some edges in one and none in the

other, there is no difference between F and S.

S
M1,M2

i,j =


|wM1

i,j −w
M2
i,j |

w
M1
i,j +w

M2
i,j

if wM1

i,j + wM2

i,j ̸= 0,

0 otherwise
(7)

F
M1,M2

i,j =

1 if wM1

i,j ̸= wM2

i,j ,

0 otherwise
(8)

N = number of cell types

λ = blending factor

M1,M2 = two matrices of dimensions N × N

3.2. Differential CCI permutation testing

CCI results provide a network of the different interacting cell-

types. The edge represents the number of cells/spots involved

in the interaction. Here, the permutation test is used to

find significantly different interactions between two networks.

The overall integrated interactions for samples across two

groups are first normalized separately so that the interaction

count matrix sums to 1 and then the difference between

the two matrices is calculated. Next, permutation testing is

performed by repeatedly shuffling the values along both rows

and columns, and then observing how often the differences in

shuffled matrices are bigger than the true differences, returning

a p-value to identify which specific interactions between two

cell-types are statistically higher than the background. This can

also be done instead to calculate the differences between any

two networks, such as a comparing a single LR pair between two

different groups or comparing between two different LR pairs

in a sample.

3.3. LR network clustering

For the LR network clustering represented in Fig. 1b, we

calculated a pairwise dissimilarity score matrix for each LR

pair (Equ. 6 - 8). Using this matrix, we calculated a

distance matrix using “pdist” and “squareform” from the

SciPy package [16]. The distance matrix was normalized using

min-max normalization. We then computed the PCA of the

dissimilarity matrix and used the first two components along

with the distance matrix for clustering of the LR networks.

This function allows the user to perform either hierarchical or

k-means clustering, and finds the optimal number of clusters

unless stated otherwise.

3.4. LR interaction clustering

This method is only currently available for individual ST

samples processed through stLearn, but can be applied to CCI

results for any method that gives an LR interaction matrix for

each spot. LR interactions were scored from stLearn, which

give a score for each LR pair for each spot. The calculation was

based on the interactions of LRs within a spatial distance up to

250µm. Shown in Equ. 9, stLearn calculates a location-specific

LR score for each spot, S with spatial neighbours, N [3].

LRscore =
1

2
(mean(ExprL,S|N × [ER,S > 0])) +

mean(ExprR,S|N × [EL,S > 0])

(9)

LR interaction clustering helps to identify groups of cells

that are interacting through similar LR pairs. These scores

are pre-processed and clustered using the Scanpy spatial
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transcriptomics analysis pipeline for Leiden clustering [60].

Each cluster denotes a spatial interaction module involving

interaction of multiple cell-types, formed based on LRs having

similar interaction scores. The stacked barplot indicates the

proportion of the interacting cell-types in each cluster. An

example is shown in Fig. 4f.

3.5. Cell-cell LR pair querying

LR pairs can be queried given a sender and receiver cell

type and then ranked based on the proportion of the total

number of interactions for the given sender and receiver. This

is represented in Fig. 1f.

3.6. Pathway analysis

Pathway analysis is performed using GSEApy, a Python

package that can perform gene set enrichment analysis using

Enrichr [61]. LRs used for analysis are split into the ligand

and receptor and are added to a gene list to be run through

GSEApy’s Enrichr pipeline, which can be used with any

specified Enrichr databases. In this pipeline, both mouse

and human genes can be inputted and will be automatically

accounted for. Individual pathways can be further analyzed by

subsetting a CCI result to only LR pairs that have at least one

or both genes involved in the pathway, and then a cell-type

network can be plotted as well as the LRs involved and their

relative proportion.

4. Visualizations

4.1. Network visualizations

Network graph plotting is performed using NetworkX, examples

of which are in Fig. 3 [62]. Nodes have an outer ring color scale

based on whether that cell type is sending (red) or receiving

(blue) more interactions. When plotting a network difference

plot, p-values from the permutation testing can also be given

and edges with significant p values are plotted as purple if they

are higher in the first group or green if lower, along with the

p-value shown on the edge. As an alternative visualization,

network chord plots are included and were adapted from the

stLearn package [3].

5. CCI output conversions
For broad applications, MMCCI has wrapper functions included

in the package that allow conversion of multiple different

CCI pipelines. Currently, stLearn, CellPhoneDB, Squidpy,

CellChat, and NATMI outputs can be converted to be

compatible with MMCCI’s pipeline and samples from different

CCI methods can be integrated together. The MMCCI pipeline

is outlined in Fig. 1 and Sup. Fig. 3.

6. In-house spatial transcriptomics data generation
The brain and melanoma datasets were generated in-house,

while the CosMx Human Pancreas FFPE Dataset was a

publicly available dataset from NanoString and the scRNA-seq

breast cancer was sourced from a study by Karaayaz et al. that

was publicly available [63].

6.1. Brain samples

Young (3 months) and aged (20–24 months) C57BL/6 mice (all

female and housed in the same animal facility) were sacrificed

for organ harvest between 8am and 9am to avoid molecular

changes related to differences in circadian rhythm. Only healthy

animals were processed; mice bearing tumors or displaying any

internal alterations (e.g., enlarged spleen, inflamed liver etc.)

were excluded.

For Visium spatial gene expression, the tissue sections

were placed on the pre-equilibrated Visium Spatial Tissue

Optimisation Slide (10X Genomics, cat no.3000394) and Visium

Spatial Gene Expression Slide (10X Genomics, cat no.2000233).

The Visium library was constructed according to the Visium

Spatial Gene Expression User Guide (CG000239 Rev B, 10X

Genomics).

For STOmics, the tissue sections were placed on Stereo-

seq chips (BGI STOmics, cat no. 211SP118). The tissue

permeabilization was optimized according to STOmics Stereo-

seq Permeabilization User Manual (Version A0). The STOmics

library preparation was carried out as described in STOmics

Stereo-seq Transcriptomics User Manual (Version A0).

6.2 Melanoma samples

Six formalin-fixed, paraffin-embedded (FFPE) primary cutaneous

melanoma samples were obtained from a matched case-

case series of human patients with thin melanoma [64]

for downstream Xenium spatial transcriptomics. Tissue

preparation for Xenium in situ gene expression was carried

out as described in the Tissue Preparation Guide (CG000578

Rev C, 10X Genomics). In short, six 5 µm FFPE sections

were multiplexed on one Xenium Slide (10X Genomics, cat

no.3000941) to maximize the usage of the capture area

while minimizing batch effect. The detailed onboard image

processing, decoding and cell segmentation protocols have been

described in Janesick. et al., 2023 [13].

An additional eight primary melanoma samples from four

patients were selected for single-cell CosMx RNA sequencing,

which were processed by NanoString; of these, four had

adjacent sections available for concomitant Visium Spatial

Gene Expression.

7. Benchmarking

7.1. Benchmarking on pancreas data

The CosMx Human Pancreas FFPE Dataset from NanoString

was used to benchmark MMCCI’s integration method as an

example with single-cell whole transcriptome spatial data. This

dataset consisted of 18 field of views (FOVs), but could also

be combined together into one sample. Because of this, both

the whole sample and each FOV individually were processed

through the standard stLearn CCI pipeline, and MMCCI was

used to integrated the CCI results of each FOV. The integrated

results from MMCCI were then compared to the CCI results

of the whole sample, which was the ground truth, to quantify

the accuracy of MMCCI’s integration method. This pipeline is

shown in Fig. 2a.

The similarity score used as the metric in Fig. 2c was

calculated for each LR pair by comparing the CCI matrices

of both samples to the whole. This was calculated by taking

the proportion of the number of cells in the matrices that there

either was or wasn’t an interaction commonly in both matrices.

7.2. Benchmarking on simulated breast cancer data

The simulated spatial breast cancer data was generated using

a scRNA-seq breast cancer dataset. The gene expression

distribution in each of the cell types was estimated by fitting

a negative binomial distribution, and this was used to generate

10,000 simulated cells of each cell type [65] (Sup. Fig. 2a).

The spatial data was generated by pooling cells of specific types

together to simulate Visium data and in a way such that they
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followed a set of rules about which cells should and should

not neighbour (Sup. Fig. 2b). These three simulated spatial

samples, each with a set of cell types that did and did not

neighbor, were then run through stLearn, CellChat, NATMI,

and Squidpy CCI analysis and then integrated using MMCCI

(Sup. Fig 2b). All CCI tools used connectomeDB2020 as

the LR database [7]. The individual and MMCCI integrated

cell-type interaction networks were generated for the HLA-

B:KIR2DL3 LR pair to show how the integration method works

at the LR pair level (Fig. 1c).
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Sup. Fig. 1. Top LR pairs and their proportions interacting in each of the individual human pancreas FOVs between ductal cells (low variation between

FOVs), and from delta to beta cells (high variation between FOVs). The results of all FOVs integrated are shown in Fig. 3d.
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Sup. Fig. 2. Simulated benchmarking data and dissimilarity score visualization. a. UMAP plots showing cell types in the original scRNA-seq and

the simulated spatial breast cancer data. b. Spatial plots of simulated spatial breast cancer samples (left). Benchmarking results of running within-

technology integration on simulated spatial breast cancer samples (1, 2, 3) that have been run through different spatial (stLearn and CellChat) and

non-spatial (NATMI and Squidpy) CCI methods. All simulated samples have B and T cells spatially separated from luminal and mesenchymal cells

(left). Each sample has a unique combination of two out of stromal cells, macrophages, and endothelial cells. Sample one excludes endothelial cells,

sample two macrophages, and three stromal cells. Chord plots show the integrated (left) and unintegrated (right) results for each technology and are

used to show the cell types that are interacting. c. Line plot showing how changing the value of lambda in the dissimilarity score function impacts the

value of the dissimilarity score across different LR pair examples (formula is shown).
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Sup. Fig. 3. Overview of the integration pathway showing pipeline for integration within (left) and between (right) technologies. 1.1 shows the within-

technology normalisation based on number of cells/spots (spotssi
) to get a scale factor (Fsi

). 1.2 shows the integration within a technology. Stacked

tables indicate a sample, which is made up of a set of LR matrices. 2.1. shows the normalization between technologies, by calculating a technology scale

factor (Fti ). 2.2 shows the integration between technologies into a final integrated sample. LR cell-type interaction p-values from each individual sample

(psi
) are integrated using Stouffer’s method. Created with BioRender.com.
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