

1 **Structure, substrate selectivity determinants and membrane interactions of a Glutamate-
2 specific TAXI TRAP binding protein rom *Vibrio cholerae*.**

3 Joseph F.S. Davies¹, Andrew Daab¹, Nicholas Massouh¹, Corey Kirkland¹, Bernadette
4 Strongitharm³, Andrew Leech³, Marta Farré¹, Gavin H. Thomas² and Christopher Mulligan¹.

5 ¹School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK.

6 ²Department of Biology & York Biomedical Research Institute (YBRI), University of York, York,
7 UK.

8 ³Technology Facility, Department of Biology, University of York, York, UK

9

10 To whom correspondence should be addressed: c.mulligan@kent.ac.uk.

11

12 **Abstract**

13 Tripartite ATP independent periplasmic (TRAP) transporters are widespread in prokaryotes
14 and are responsible for the transport of a variety of different ligands, primarily organic acids.

15 TRAP transporters are secondary active transporters that employ a substrate binding protein
16 to bind and present the substrate to membrane embedded translocation component. TRAP

17 transporters can be divided into two subclasses; DctP-type and TAXI type, which share the
18 same overall architecture and requirement of the SBP for transport, but their SBPs share no

19 similarity. The DctP-type transporters are very well studied and have been shown to transport
20 a range of compounds including dicarboxylates, keto acids, sugar acids. However, the TAXI

21 type transporters are relatively poorly understood, with the range of transportable
22 compounds still to be discovered and selectivity requirements for binding unknown. To

23 address these shortfalls in our understanding, we have structurally and biochemically
24 characterized VC0430 from *Vibrio cholerae* revealing it to be a monomeric high affinity

25 glutamate binding protein. VC0430 is stereoselective, binding the L-isomer preferentially, and
26 can also bind L-glutamine and L-pyroglutamate, but with low affinity relative to L-glutamate.

27 Structural characterization of ligand bound VC0430 reveals details of the binding site and
28 biophysical characterization of binding site mutant reveal the substrate binding

29 determinants, which differ substantially from the DctP-type TRAPs. Finally, we have analysed
30 *in silico* the interaction between VC0430 and its cognate membrane component revealing an
31 architecture hitherto unseen. To our knowledge, this is the first transporter in *V. cholerae* to

32 be identified as specific to glutamate, which plays a key role in osmoadaptation of *V. cholerae*,
33 making this transporter a potential therapeutic target.

34

35 **Introduction**

36 The ability to take up extracellular solutes is essential for bacteria to thrive in an
37 environmental niche or adapt to changing conditions. Prokaryotes have developed many
38 transport systems that vary based on the substrates they transport, the energy source they
39 use, the rate of transport required, and the affinity for their substrate. Many transporter
40 families are secondary active transporters and utilize electrochemical gradients across the
41 membrane (usually Na^+ ions or protons). While most secondary active transporters are
42 composed only of integral membrane protein components, some transporter families have
43 recruited a substrate binding protein (SBP) that imparts directionality to transport and
44 provides substrate affinities often in the nanomolar range, ideal for scavenging scarce
45 nutrients¹.

46 Tripartite ATP-independent periplasmic (TRAP) transporters are a large family of SBP-
47 dependent secondary-active transporters that are found exclusively in prokaryotes to
48 catalyze the uptake of a variety of substrates, primarily organic anions, across the cytoplasmic
49 membrane^{2,3}. A defining feature of TRAP transporters is the obligate utilization of an SBP,
50 which is either found in the periplasm or attached to the outer leaflet of the cytoplasmic
51 membrane, where it binds and delivers substrate to the membrane component. The
52 membrane-embedded component of TRAP transporters consists of either two separate
53 unequally sized integral membrane proteins, or a fusion of these two proteins into a single
54 polypeptide with distinct domains².

55 TRAP transporters can be divided into two subtypes; the DctP-type, named after the first
56 TRAP transporter characterized, which was specific to dicarboxylates⁴, and the TRAP-
57 associated extracytoplasmic immunogenic (TAXI)-type, named due to the immunogenic
58 properties of the first one identified in *Bacillus abortus*^{5,6}. While the membrane components
59 of each of these TRAP subtypes share substantial sequence identity suggesting a shared
60 lineage and likely the same overall fold, the subtype-specific SBPs bear no relation to each
61 other⁶.

62 The vast majority of our understanding of TRAP transporter structure and function comes
63 from the characterization of DctP-type TRAP transporters^{4,7–20}, most prominently, a sialic
64 acid-specific member from *Haemophilus influenzae*, SiaPQM (HiSiaP is the SBP and HiSiaQM
65 is the fused membrane component)^{3,20–26}. Work from multiple labs on a variety of TRAP SBPs
66 has revealed that, like SBPs from ATP-binding cassette (ABC) transporters, they utilize a venus
67 flytrap type mechanism, in which the binding of ligand to the open *apo* state triggers closure
68 of the two α/β globular domains around the substrate²⁷. In addition, structural and
69 phylogenetic analysis of DctP-type SBPs has revealed the presence of an extremely well
70 conserved arginine residue in the binding site that makes a critical salt bridge with the ligand,
71 which in almost all cases is an organic acid^{26–28}. Functional reconstitution of SiaPQM from *H.*
72 *influenzae*, *Photobacterium profundum* and *Vibrio cholerae* revealed that these transporters,
73 and likely all DctP-type TRAPs use a Na^+ gradient to power transport^{19–22}.

74 While there are dozens of DctP-type SBP structures available revealing a broad range of
75 substrates^{1,2,16}, it was not until recently that experimentally derived structures of the
76 membrane components were elucidated^{19,20,24}. Structural analysis of HiSiaQM from *H.*
77 *influenzae* and *P. profundum* has revealed important details regarding the interaction
78 between the membrane component and the SBPs and the overall architecture of the
79 membrane component. As previously predicted²⁹, TRAP transporters share the same fold as
80 members of the divalent anion Na^+ symporter (DASS) family^{30–33}, and both employ an
81 elevator-like mechanism to transport substrate across the membrane^{31,34,35}.

82 Compared to the DctP-type TRAPs, TAXI-TRAP transporters are relatively poorly studied
83 despite being widespread in prokaryotes, and they differ in several ways. As with DctP-type
84 TRAP transporters, TAXI-TRAPs are found in both bacteria and archaea, but TAXIs are the *only*
85 type of TRAP transporter found in archaea, suggesting that TAXIs are the more ancient of the
86 two subtypes⁶. In addition, while the DctP-type transporter membrane components can be
87 composed of two separate polypeptides or a fusion of the two, TAXI-TRAP membrane
88 components are only ever a single fused polypeptide. Finally, functional reconstitution of an
89 α -ketoglutarate specific TAXI from *Proteus mirabilis* reveals that, instead of being driven by
90 Na^+ electrochemical gradient as for the characterized DctP-type TRAPs, this TAXI is powered
91 by a H^+ gradient, which is a significant mechanistic schism in the family³⁶.

92 In contrast to DctP-type TRAPs, there are no published structures of TAXI membrane
93 components, and there is only one published TAXI SBP structure, a glutamate or glutamine
94 binding protein (TtGluBP) from *Thermus thermophilus*³⁷. However, the identity of the bound
95 substrate was ambiguous and there was no further investigation into binding determinants.
96 There is also an unpublished structure of a TAXI SBP from *Erlichia Chaffeensis* (4DDD) in the
97 PDB, which has a glycerol molecule and chloride ion bound in the vicinity of the binding site,
98 but it is not clear whether these are substrates. A TAXI transporter from *Azoarcus* sp. CIB has
99 been shown to transport orthophthalate³⁸, and phenotypic analysis of a TAXI gene knockout
100 in *Psychrobacter arcticus* suggest it is involved in the uptake of butyrate, glutamate, fumarate,
101 and acetate³⁹. This limited number of examples hints that TAXIs can also transport a range of
102 substrates akin to the DctP-type TRAPs. To provide more insight into the substrate range,
103 structural arrangement and key binding determinants of TAXI SBPs, we have obtained the
104 structure of VC0430 from the human pathogen *V. cholerae*, determined the substrate
105 specificity and affinity, and ascertained the effects of binding site mutation on ligand
106 interactions. We have also investigated the interaction between the SBP and membrane
107 components using modelling approaches revealing a hitherto unreported interfacial
108 arrangement for any TRAP transporter.

109 **Methods**

110 Molecular Biology

111 Site-directed mutagenesis was performed using the Quikchange II kit (Agilent) or using KOD
112 Hot-start DNA polymerase (Merck) followed by DpnI treatment. All plasmids and mutants
113 were sequence verified prior to use.

114 Expression of VC0430

115 To overexpress VC0430 for the periplasmic localization and ESI-MS analysis, the gene
116 encoding VC0430 was expressed in BL21 (DE3) from a pET20b plasmid with the gene in-frame
117 with a cleavable N-terminal PelB signal sequence and a C-terminal His₆ tag. For all other
118 analyses, the gene encoding VC0430 was overexpressed in BL21 (DE3) transformed with a
119 pET-based plasmid with the gene in frame with an N-terminal FLAG/His₁₀ tag
120 (pETnHisVC0430) in place of the signal peptide (first 30 residues,
121 MKEGKFMSPKIIKMGAIAAAVIGSGVASA)⁴⁰.

122 BL21(DE3) pETnHisVC0430 was grown in LB media supplemented with 50 µg/ml kanamycin
123 and incubated at 37°C until an OD of 0.6-0.8 was reached, at which point expression was
124 induced by addition of 1 mM IPTG. The induced cells were incubated overnight at 37°C,
125 harvested by centrifugation at 4000 rcf for 20 min, resuspended in Purification Buffer (PB, 50
126 mM Tris, pH 8, 200 mM NaCl, 5% v/v glycerol), and lysed by 3 passes through a cell disruptor
127 (Avestin). The lysate was clarified by centrifugation at 20000 xg for 20 min at 4°C. BL21(DE3)
128 pET20bVC0430 was treated similarly, except cells were grown at 25°C, cells were induced at
129 and OD of 0.4 and cells were lysed using a French pressure cell.

130 Purification of VC0430

131 The periplasmically located VC0430 that was used for ESI-MS analysis was purified by applying
132 the clarified lysate to N-NTA resin (Qiagen), washing the resin with Wash Buffer (WB, PB
133 containing 20 mM imidazole), and then eluting bound VC0430 with PB containing 300 mM
134 imidazole. Eluted protein was further purified using size exclusion chromatography SEC prior
135 to analysis. N-terminally FLAG/His-tagged VC0430, which was used for all other analysis, was
136 denatured during the purification process to remove any pre-bound ligand. Clarified lysate
137 was incubated with Ni-NTA resin, which was then washed with 30 column volumes (CV) of
138 WB + 2 M guanidinium chloride (GdmCl) to denature the protein. Protein was refolded by
139 subsequent washes with 4 CV WB + 1.5 M GdmCl, 4 CV WB + 1 M GdmCl, 4 CV WB + 0.5 M

140 GdmCl and finally 8 CV WB. Refolded protein was eluted with PB + 300 mM imidazole. The
141 FLAG/His tag was cleaved for binding analysis and crystallography by incubation with TEV
142 protease for 4 hours at room temperature before reapplying the mixture to Ni-NTA resin and
143 collecting the tag-free VC0430 in the flowthrough. For the protein used for crystallography,
144 VC0430 was further purified using size exclusion chromatography with an Superdex 200
145 Increase 10/300 GL column (GE Healthcare).

146 Oligomeric state analysis using SEC standards

147 For molecular weight measurements, Ni-NTA purified VC0430 was concentrated and applied
148 to an Superdex 200 Increase column at a flowrate of 0.5 ml/min with SEC buffer (50 mM Tris,
149 pH 7.5). The calibration curve was generated by analysing SEC standards (Thermo Scientific)
150 under than same conditions as VC0430. The partition coefficient (K_{av}) for the standards and
151 VC0430 using the equation: $K_{av} = (V_e - V_o) / (V_t - V_o)$, where V_e is the elution volume, V_o is the
152 column void volume, and V_t is the total column volume.

153 Differential scanning fluorimetry (DSF)

154 To perform DSF, 5 μ M protein was mixed with substrate (0, 1, or 15 mM) and 2.5x SYPRO
155 Orange dye (ThermoFisher), and made up to a total volume of 50 μ l with DSF buffer (50 mM
156 Tris pH 8, 20 mM NaCl). Using a QuantStudio 3 RT-PCR thermocycler (Invitrogen), the DSF
157 samples were incubated at 5°C for 1 min, then the temperature increased to 95°C in 1°C
158 increments, holding at each temperature for 10 s. The reporter dye setting used was set to
159 SYBR. Melt curve data were exported to Microsoft Excel and GraphPad Prism for analysis and
160 presentation.

161 Tryptophan fluorescence spectroscopy

162 All tryptophan fluorescence assays were performed using a Cary Eclipse fluorimeter (Agilent).
163 Fluorescence emission spectra were collected using 0.5 μ M VC0430 in 50 mM Tris, pH 7.4, at
164 20°C, exciting at 295 nm wavelength with an emission range of 300-400 nm, slit widths set to
165 10 nm, and medium PMT voltage. Data were smoothed using a Savitzky-Golay smoothing
166 factor of 15 for the initial emission scans. Ligand titrations were performed using time-based
167 acquisition with λ_{ex} of 295 nm, λ_{em} of 330 nm, excitation and emission slit widths of 5 and
168 10 nm, respectively. Following baseline fluorescence collection for 30 s, the fluorescence
169 change for each addition of ligand was measured for 20s, which was averaged to calculate

170 the Δ fluorescence for each addition. Binding curves were analysed using GraphPad prism and
171 Kd values were obtained by fitting the curves to a one site total binding model.

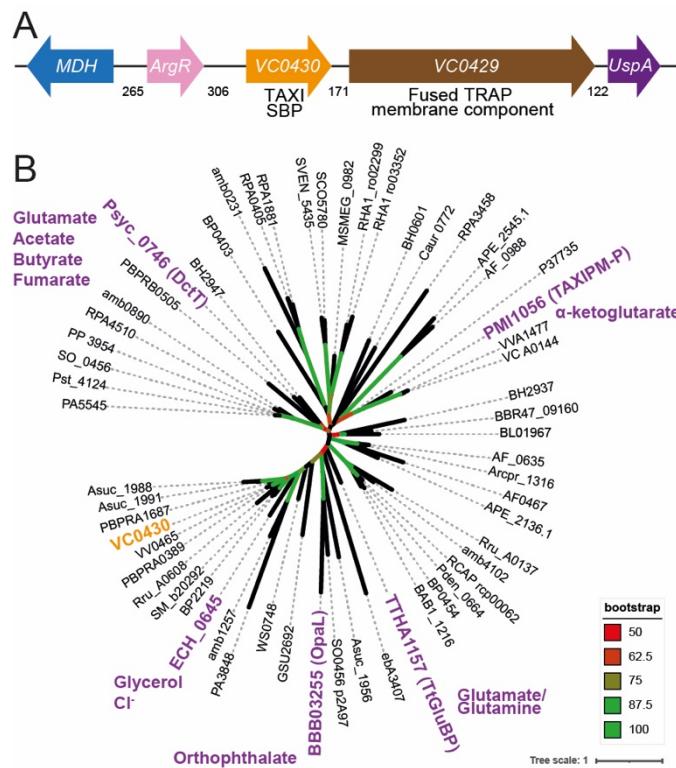
172 Mass spectrometry

173 For mass spectrometry, SEC-purified VC0430 was dialysed against 50 mM sodium phosphate,
174 pH 8, dialysed against water, and then concentrated prior to analysis. Electrospray mass
175 spectrometry was performed using the API Qstar mass spectrometer using an ionspray
176 source. To determine the mass for the unliganded protein, 1 μ M VC0430 was made up in
177 acetonitrile and 0.1% formic acid. To determine the mass of the protein with bound ligand,
178 10 μ M VC0430 was made up in 25 mM ammonium acetate, pH 4.5 and 3% (v/v) methanol.
179 Raw m/z data were deconvoluted using Bayesian Protein Reconstruction routine.

180 Protein crystallography

181 VC0430 (15 mg/ml final concentration) was incubated with 0.5 mM L-glutamate before being
182 mixed in a 1:1 ratio with 2.4 M sodium malonate at pH 7.0 and (JCSG+ Condition F9 with no
183 changes made to the solution), over a well of the same buffer in a hanging drop vapor
184 diffusion plate. For x-ray diffraction, the crystals were then picked using a 0.3-0.4 μ m nylon
185 loop. The crystals were immediately flash frozen in liquid nitrogen. X-ray diffraction
186 experiments were conducted at Diamond Light Source using the macromolecular beam i04
187 with a wavelength of 0.9537 Angstroms. Data was collected over a 360° rotation of the omega
188 axis, collecting images at 0.1 degrees. The full statistics for the crystals can be found in
189 Supplementary Table 2. In brief, the crystals diffracted to approximately 1.7 Angstroms with
190 a CC1/2 of 1.0 over the data range. The crystals had a space group of R32 and the data
191 collected were used to solve the structure using the Diamond Light Source automated
192 pipeline. The data were indexed, integrated and scaled by the by xia2 3dii pipeline⁴¹. The
193 processed data was then used for molecular replacement model obtain through
194 AlphaFold2⁴²) and autobuilding using Dimple⁴³. The initial structure consisted of 300 built-in
195 residues; additional building, additional residue and water placement was performed using
196 Coot; and Phenix was used for refinement and automated water placement^{44,45}.

197 Bioinformatics

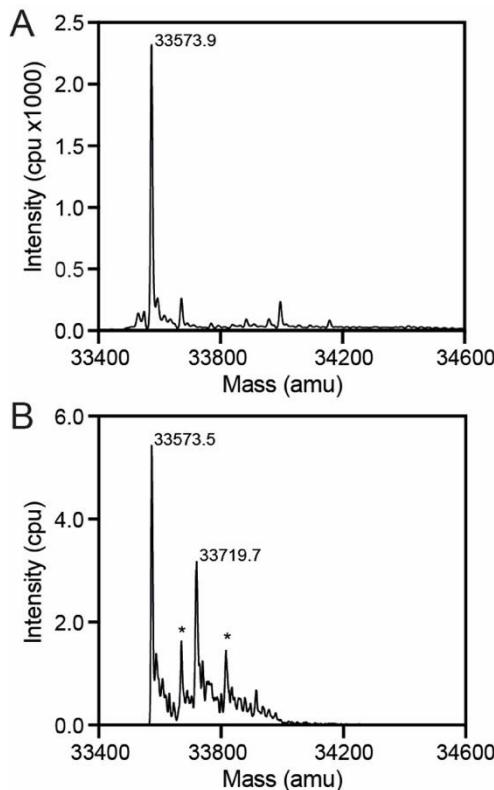

198 A total of 59 TAXI amino acid sequences from a wide range of species were obtained from
199 Uniprot and aligned using MAFFT from EMBL-EBI⁴⁶. The alignment was visualized in Geneious
200 Prime 2022.2.1 (<https://www.geneious.com>) and consensus residues were highlighted. To

201 construct the maximum-likelihood phylogenetic tree, alignment gaps at the N- and C-
202 terminus were trimmed. A phylogenetic tree was created using IQ-TREE with 1,000 replicates
203 of ultra-fast bootstrapping approximation⁴⁷. The unrooted consensus tree was then visualized
204 using the Interactive Tree of Life (iTol) tool⁴⁸.

205 **Results**

206 Bioinformatic analysis of VC0430

207 To characterize VC0430, we first sought to identify its ligand. As a starting point, we analyzed
208 the genome context of *VC0430*, to see if characterized co-regulated genes could provide clues
209 to the identity of the ligand; a strategy used to much success previously^{9,15}. As expected, the
210 gene encoding VC0430 is adjacent to the gene encoding its cognate membrane component,
211 *Vc0429* (Fig. 1A). The TRAP transporter genes are downstream of 2 other genes, *argR* and
212 *mdh* which encode an arginine repressor and malate dehydrogenase, respectively (Fig. 1A)⁴⁹.
213 Arginine and malate both contain carboxyl groups, which is a common feature of known TRAP
214 ligands, raising the possibility that they are substrates of the transporter, but the lack of
215 support for coregulation between these genes and the TRAP genes diminishes the strength
216 of this prediction. The gene downstream of the TRAP genes encodes universal stress protein
217 (UspA); the association between TRAP transporters and UspA has been noted previously^{2,50},
218 and while they appear to influence TRAP transporter function, their physiological role and
219 mechanism are not known⁵⁰.

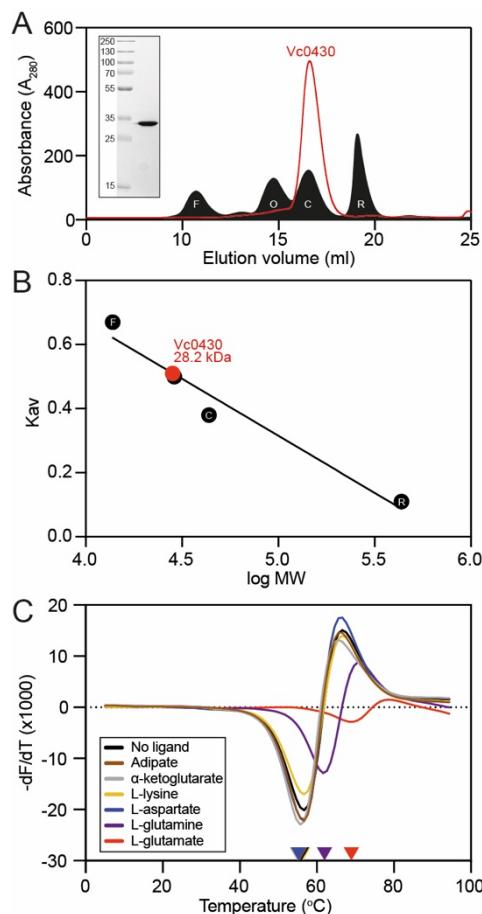

233 **Figure 1. Genome context and phylogenetic analysis of VC0430. A)** Genome context of
234 *VC0430*. Numbers indicate the number of intergenic basepairs. **B)** Phylogenetic tree of 59
235 homologues of *VC0430* (locus tag for each protein is displayed). The TAXI SBPs that have been
236 characterized to any degree have been highlighted in purple and the known or predicted

237 substrate(s) is indicated. VC0430 in orange is the subject of this study. The accompanying
238 sequence alignment is presented in Supplementary figure 1.

239
240 An alternative approach to predict the substrate of orphan transporters is to see if any closely
241 related SBPs are characterized because they may bind the same or related ligands. To perform
242 this analysis, we collected and aligned the amino acid sequences of 59 TAXI SBPs from a
243 variety of organisms, making sure to include any characterized TAXI SBPs (Fig. 1B). The
244 phylogenetic tree produced by this alignment revealed several clades. However, when the
245 positions of the TAXIs with known or predicted substrates were mapped onto the tree, none
246 were sufficiently closely related to VC0430 to permit any predictions (Fig. 1B). In the absence
247 of strong evidence for the identity of VC0430's ligand from bioinformatic approaches, we
248 sought to identify the ligand experimentally. As SBPs generally have a high affinity for their
249 cognate ligand, SBPs can retain the bound ligand during the purification process if that ligand
250 is present in the expression strain. Therefore, we decided to identify VC0430's ligand by
251 expressing and purifying the protein and screening for the cognate ligand using mass
252 spectrometry, an approach used previously to de-orphanise SBPs^{9,15,16}.

253
254 VC0430 is monomeric and interacts with both glutamate and glutamine
255 To identify any ligands bound to VC0430 using this mass spectrometry approach, we
256 overproduced VC0430 in *E. coli* BL21 (DE3) with an N-terminal cleavable signal peptide and a
257 C-terminal His₆-tag, which would translocate the protein to the periplasm, and facilitate
258 purification, respectively. We purified VC0430 in one step with immobilized metal affinity
259 chromatography (IMAC) and subjected to it to mass spectrometry analysis under denaturing
260 conditions, revealing a mass of 33573.9 Da, which correlates well with the predicted mass of
261 the mature protein with the C-terminal affinity tag (33578 Da, Fig. 2A). While the vast majority
262 of structurally characterized TRAP SBPs are monomeric, there are some notable exceptions
263 that form stable dimers⁵¹. However, the close correlation of the mass of denatured VC0430
264 with the predicted mass indicates that VC0430 is monomeric. Under more native conditions,
265 we observed 2 major peaks in the mass spectrum, the first with a mass of 33573.5 which is
266 essentially identical to the mass for the denatured protein suggesting it corresponds to the
267 *apo* protein (Fig. 2B). The second major peak had a mass of 33719.7, which we reasoned
268 corresponded to ligand bound VC0430 (Fig. 2B). Calculating the difference between the 2

269 major MS peaks under native conditions revealed a mass difference of 146.2 (± 2 Da),
270 providing us with an approximate mass of the bound ligand; an important clue in its
271 identification. Two smaller peaks were present that were spaced 98 Da from each of the main
272 peaks suggesting that they are phosphate adducts (Fig. 2B).



287 **Figure 2. Identification of ligand mass using mass spectrometry. A)** Denaturing MS analysis
288 of VC0430 reveals a single peak corresponding to a mass of 33573.9 Da. **B)** Native MS analysis
289 of VC0430 reveals major peaks corresponding masses of 33573.9 and 33719.7, which
290 represent the *apo* and ligand bound VC0430, respectively. Peaks labelled with an *
291 correspond with phosphate adducts of the major peaks.

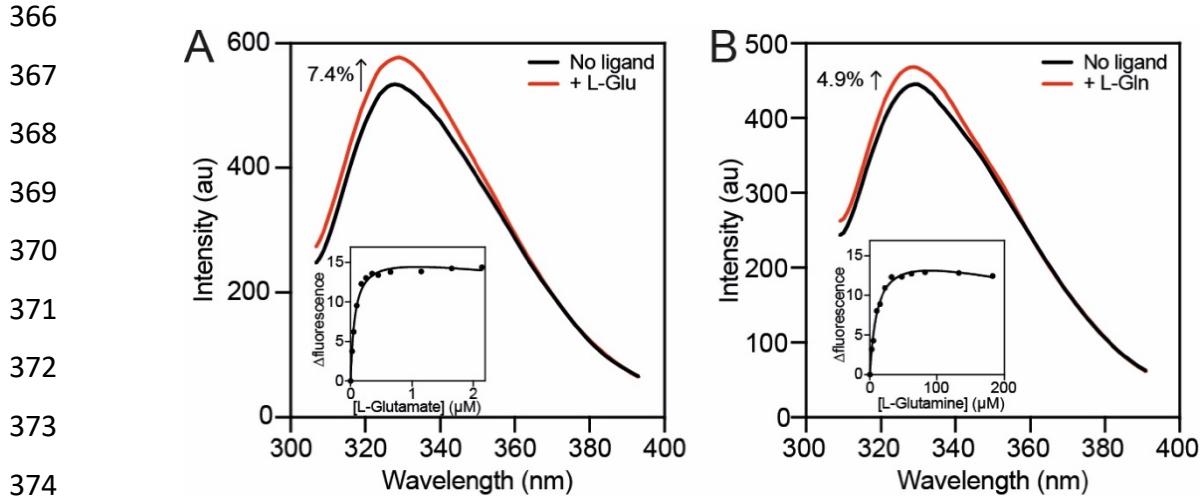
292
293 Armed with the approximate mass of the ligand (144-148 Da), we narrowed the list of
294 potential compounds further by restricting our search to metabolites present in *E. coli* using
295 the EcoCyc⁵². This search resulted in a list of 51 different compounds (Supplementary table
296 1).

297 To increase our yield of VC0430 for structural and biochemical studies, we changed
298 expression construct and replaced the N-terminal signal peptide with a TEV-cleavable
299 decahistidine tag, thus leading to cytoplasmic expression. VC0430 was overexpressed using
300 this new construct and purified using IMAC and size exclusion chromatography (SEC), which

301 revealed a single band in SDS-PAGE and a sharp, symmetrical peak in the SEC, indicative of
302 well folded and stable protein (Fig. 3A). We compared the elution volume of VC0430 from the
303 SEC column to standards with known molecular weights (Fig. 3A). Analysis of the calibration
304 curve revealed that VC0430 has a mass of 28.2 kDa (Fig. 3B), which is slightly smaller than the
305 molecular weight predicted from the amino acid sequence (35.9 kDa), but it demonstrates
306 that VC0430 exists as a monomer in solution, strongly supporting our mass spectrometry
307 data.

324 **Figure 3. Purification, analytical size exclusion chromatography and ligand binding of**
325 **VC0430. A)** SEC elution profile of VC0430 (red line) compared to the profiles of 4 standards
326 (filled black trace); ferritin (F, 10.67 ml elution volume), ovalbumin (O, 14.71 ml), carbonic
327 anhydrase (C, 16.52 ml), and ribonuclease A (R, 19.08 ml). **B)** Molecular weight calibration
328 curve showing Kav as a function of the log MW of the 4 standards from **A** (black circles, labels
329 are the same as in **A**). Comparison of the VC0430's Kav reveals a MW of 28.2 kDa. **C)**
330 Derivatives of the unfolding curves (dF/dT) for VC0430 in the absence of ligand and the
331 presence of 1 mM adipate, α -ketoglutarate, L-aspartate, L-glutamate, L-glutamine and L-
332 lysine. Coloured arrow on the X-axis indicate the apparent protein Tm under those conditions.

333


334 To screen our list of compounds to see which could bind to VC0430, we used differential
335 scanning fluorimetry (DSF). In this assay, protein is thermally denatured in the presence of
336 SYPRO Orange dye, the fluorescence of which increases as it binds to the hydrophobic core
337 of the protein that is revealed during denaturation. DSF provides a read-out of the melting
338 temperature (T_m) of the protein, which often increases upon ligand binding, thus providing a
339 convenient way of detecting interactions.

340 Using DSF, we first screened the most conveniently available compounds from our EcoCyc-
341 derived list of potential ligands; adipate, α -ketoglutarate, L-aspartate, L-glutamate, L-
342 glutamine and L-lysine. Analysis of the first derivative of the fluorescence as a function of the
343 temperature (dF/dT) for VC0430 alone revealed a T_m of 57.6°C (Fig. 3C). In the presence of 1
344 mM L-aspartate, L-lysine, α -ketoglutarate or adipate, we observed no change in VC0430's T_m
345 suggesting that these compounds do not bind (Fig. 3C). However, upon addition of 1 mM L-
346 glutamate and L-glutamine, we observed a substantial rightward-shift of the melt peak, with
347 a T_m increase of 11.3°C and 5.6°C, respectively, indicating that both L-glutamate and L-
348 glutamine bind to VC0430 (Fig. 3C).

349 Determining the binding affinity of VC0430

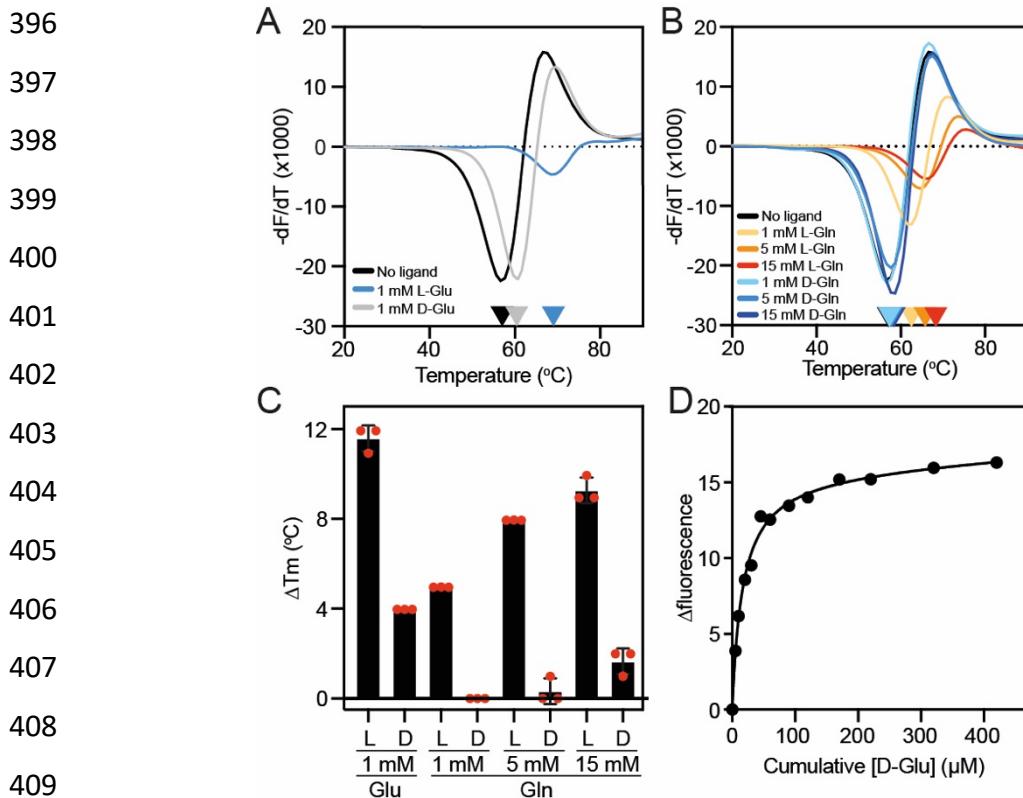
350 To provide support for L-glutamate and L-glutamine being ligands of VC0430, we determined
351 VC0430's binding affinity for each compound using intrinsic tryptophan fluorescence. When
352 excited at 295 nm, VC0430 exhibited a characteristic tryptophan emission spectrum between
353 300-400 nm with an emission maximum of ~330 nm (Fig. 4A and B, black line). Upon addition
354 of 5 μ M L-glutamate we observed a substantial 7.4% enhancement of the fluorescence at 330
355 nm, and a smaller 4.9% enhancement upon addition of 100 μ M L-glutamine, indicative of
356 binding (Fig. 4A and B, red line). To determine the binding affinities for L-glutamate and L-
357 glutamine, we monitored the dose-dependent enhancement of fluorescence in the presence
358 of increasing concentrations of each ligand (Fig. 4A and B, inset). Fitting the curves to one site
359 binding model revealed dissociation constants (K_d) of $0.10 \pm 0.05 \mu$ M and 18.53 ± 6.78 for L-
360 glutamate and L-glutamine, respectively. These K_d values are consistent with the affinities
361 measured for other DctP-type TRAPS SBPs and the other TAXI SBP that has been
362 characterized^{2,36}. As these data suggest that L-glutamate is the preferred ligand for VC0430,
363 we propose that VC0430 should be designated VcGluP (with the cognate membrane

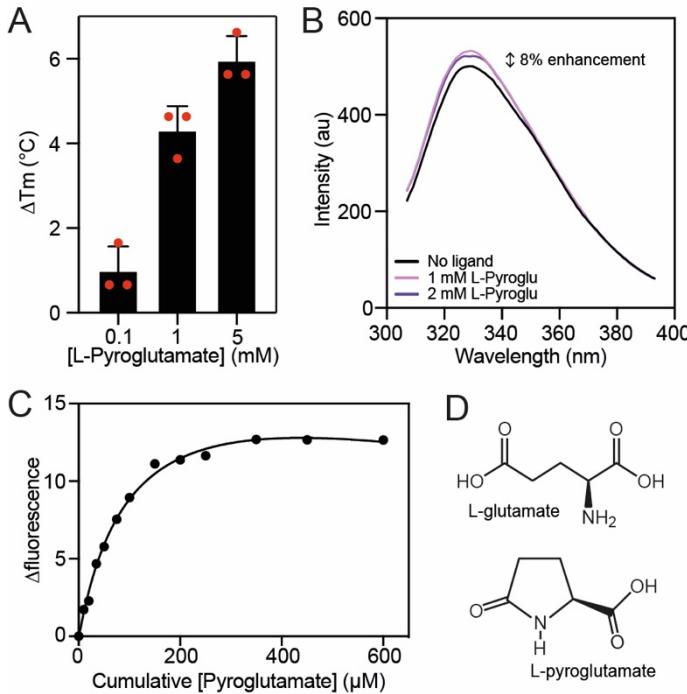
364 component Vc0429 designated VcGluQM), to remain consistent with the naming of DctP-type
365 TRAP transporters.

375 **Figure 4. Ligand binding affinity determination using intrinsic tryptophan fluorescence.**
376 Fluorescence emission scans of VcGluP in absence of ligand (black lines) and in the presence
377 of **A)** 5 μ M L-glutamate and **B)** 100 μ M L-glutamine (red lines). *Inset:* representative L-
378 glutamate (A) and L-glutamine (B) binding curves for VcGluP showing hyperbolic dose
379 response. Single data sets are shown, but assays were performed at least 3 times with
380 equivalent outcomes.

381
382 VcGluP stereoselectively binds its ligands
383 Having identified that VcGluP binds both L-glutamate and L-glutamine, we next assessed
384 VcGluP's stereoselectivity for these ligands by evaluating its ability to bind D-glutamate and
385 D-glutamine. DSF analysis revealed that, while L-glutamate induces a sizeable 11.6°C increase
386 in thermostability of VcGluP, 1 mM D-glutamate induces lower but above background
387 stabilization of 4.0°C (Fig. 5A and C). D-glutamine has minimal effects on VcGluP stabilization,
388 only inducing ~1.7°C stabilization upon addition of 15 mM (Fig. 5B and C). To provide further
389 insight into the stereoselectivity, we determined the binding affinity for the D-enantiomers
390 using tryptophan fluorescence revealing a K_d of $24.5 \pm 10.6 \mu$ M for D-glutamate (Fig 5D).
391 However, a K_d for D-glutamine could not be determined due to lack of fluorescence
392 enhancement. These data demonstrate that L-glutamate is VcGluP's preferred ligand, but it
393 is still able to bind the D enantiomer with an affinity in the range seen for other SBPs.

394
395




Figure 5. Assessing the stereoselectivity of VcGluP. Derivatives of the unfolding curves (dF/dT) for VC0430 in the absence of ligand and the presence of **A)** 1 mM L- and D-glutamate, and **B)** 1, 5 and 15 mM L- and D-glutamine. **C)** Thermostabilisation of VcGluP in the presence of L- and D-glutamate and glutamine. Error bars represent standard deviation and individual data points are shown as red circles. **D)** Representative binding curve for D-glutamate binding to VcGluP.

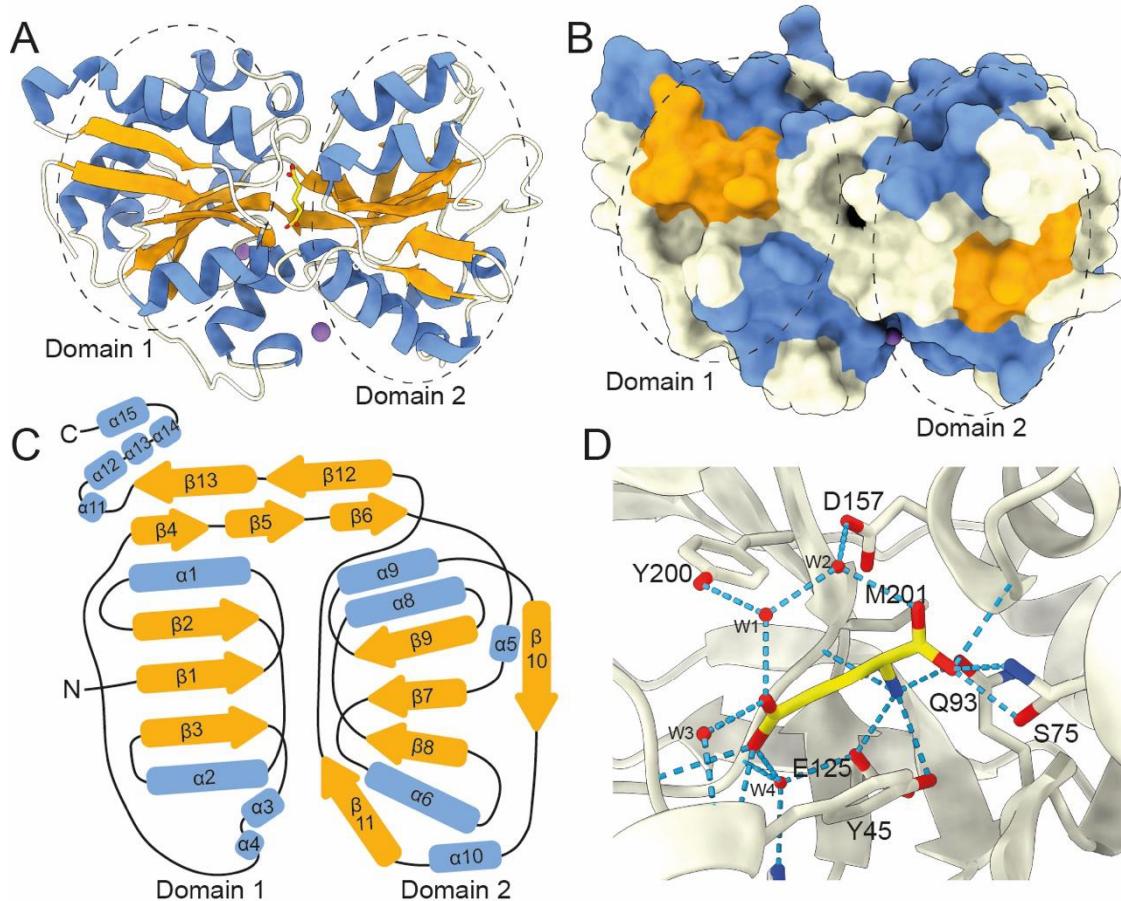
416

417 L-pyroglutamate is a low affinity ligand of VcGluP

418 Due to the high affinity for L-glutamate exhibited by VcGluP and evidence of 4 other
419 transporter-related SBPs binding the similar molecule L-pyroglutamate^{13,16}, we tested
420 whether VcGluP could also bind L-pyroglutamate. DSF screening revealed that addition of L-
421 pyroglutamate enhanced VcGluP's stability in a dose-dependent manner (Fig. 6A), suggesting
422 an interaction. In support of this, we observed 8% enhancement in VcGluP's intrinsic
423 tryptophan fluorescence upon addition of 1 mM L-pyroglutamate, which did not increase
424 upon further additions, suggesting saturable binding (Fig. 6B). We investigated the affinity of
425 L-pyroglutamate binding using tryptophan fluorescence revealing a K_d of $73.54 \pm 27.93 \mu\text{M}$
426 (Fig. 6C). Therefore, while the affinity for L-pyroglutamate is >700 times lower than the affinity for

427 L-glutamate, VcGluP can clearly bind L-pyroglutamate, which is surprising considering the
428 pronounced chemical differences between the two ligands (Fig. 6D).

441 **Figure 6. VcGluP can also bind L-pyroglutamate.** **A)** Thermostabilisation of VcGluP in the
442 presence of 0.1, 1 and 5 mM L-pyroglutamate. Error bars represent standard deviation and
443 individual data points are shown as red circles. **B)** Fluorescence emission scans of VcGluP in
444 the presence and absence of L-pyroglutamate. **C)** Representative binding curve for L-
445 pyroglutamate binding to VcGluP. **D)** Chemical structures of L-glutamate and L-
446 pyroglutamate.


447

448 Structural characterization of L-glu bound VcGluP reveals binding site residues.

449 To investigate the selectivity determinants of VcGluP, we solved the structure of VcGluP in
450 the presence of L-glutamate to 1.7 Å, using molecular replacement (Fig. 7a). The refined
451 model contains residues 29-328, which equates to all of the 299 residues of mature VcGluP.
452 VcGluP is composed of 2 α/β domains connected by a hinge composed of antiparallel β -sheets
453 (residues 116-131 and 255-267). Domain 1 is composed of amino acids 29-115 and 268-328,
454 and domain 2 consists of residues 132-254. Each domain contains 3 central parallel β -sheets
455 bracketed by α -helices. Comparison with other SBP structures reveals that VcGluP belongs to
456 Cluster F⁵³. In addition, each domain contains a disulfide bond; Cys53-Cys67 in domain 1
457 which connects a1 with B2, and Cys191-Cys216 in domain 2 that connects a8 and a9, although
458 density for this disulfide is missing likely though radiation damage (Fig. 7C). We also identified

459 3 Na⁺ ions bound to the surface of the protein (Fig. 7, purple spheres), although due to their
460 distance from the binding site, we predict that these are functionally irrelevant interactions
461 and merely a consequence of the 2.4 M sodium malonate used during crystallisation.
462 During refinement, we identified non-protein density in the cleft between the two domains,
463 which we assign to L-glutamate, which was present at 0.5 mM during crystallization (Fig. 7).
464 As expected, in the presence of ligand, VcGluP adopts a closed conformation wherein the two
465 domains completely envelope the ligand binding site (Fig. 7B).
466 Analysis of the ligand binding site reveals that L-glutamate is coordinated by VcGluP via a
467 hydrogen bonding network composed of direct mainchain and sidechain interactions, and
468 indirectly through coordinated water molecules (Fig. 7D). The α -carboxyl group of the bound
469 L-glutamate makes sidechain and mainchain interactions with S75, mainchain interactions
470 with G156 and hydrogen bonds to a water molecule, which is itself coordinated by the D157
471 sidechain. The amino group is coordinated by hydrogen bonding interactions with the side
472 chains of Y45, Q93 and E125, and the mainchain of M201. The side chain carboxyl of the ligand
473 makes mainchain interactions with V44 and Y45, and hydrogen bonds to several water
474 molecules that are coordinated by S40, Y200, Y46, H123, G203 and E125. The positioning of
475 Y45 and Y200 either side of the binding site likely also provides additional hydrophobic
476 interactions with the ligand.

477
478
479
480
481
482
483
484
485

486 **Figure 7. Structural characterisation of L-glutamate bound VcGluP.** **A)** Cartoon
487 representation of VcGluP coloured according to secondary structure, α -helices in blue, β -
488 sheets in orange, loops in white. The bound L-glutamate is shown in yellow in the central
489 cavity and the Na^+ ions are purple spheres. Domains 1 and 2 are demarcated by dashed lines.
490 **B)** Surface representaiton of VcGluP coloured and in same pose as in A). The lack of solvent
491 accessibility to the binding site indicates VcGluP is in the closed state. **C)** Topology map of
492 VcGluP, coloured as in A). **D)** Ligand binding site of VcGluP showing the interactions with the
493 bounds L-glutamate.

494

495 Biochemical characterisation of binding site residue contributions.

496 To investigate the binding determinants of VcGluP, we mutated the binding site residues Y45,
497 S75, Q93, E125, Y200, M201 to alanine, expressed and purified them, and assessed the impact
498 of these mutations on ligand binding using DSF and tryptophan fluorescence. Each VcGluP
499 variant was overproduced and purified, and their stability was initially assessed using DSF.
500 While there was some variation in T_m under *apo* conditions for the different variants, the
501 presence of a characteristic melt curve suggested they were all folded and stable

502 (Supplementary figure 2A). We next used tryptophan fluorescence emission scans to screen
503 for ligand binding by the mutants (Supplementary figure 2B). Addition of L-glutamate induced
504 enhancement of fluorescence for all the mutants indicating that all of them can bind ligand.
505 However, while maximum fluorescence enhancement could be achieved with only 50 μ M L-
506 glutamate or less for Y45A, S75A, E125A, Y200A and M201A mutants, a higher concentration
507 was required to saturate Q93A, indicating diminished affinity for this mutant (Supplementary
508 figure 2B).

509 Using the dose-responsive fluorescence change for each mutant, we determined their Kds for
510 the primary ligand L-glutamate using tryptophan fluorescence. Our titrations revealed that all
511 6 mutants exhibited a reduced affinity for L-glutamate compared to wildtype (Table 1). The
512 most deleterious mutations were Y45A and Q93A, which reduced affinity 158 and 749-fold,
513 respectively, followed by S75A, which had 10-fold lower affinity. E125A, Y200A and M201A
514 had relatively modest effects on affinity, reducing it by ~3-fold or less (Table 1).

515

516 **Table 1. Equilibrium binding affinities for VcGluP wildtype and binding site mutants.** FC is
517 the fold change in Kd compared to wildtype, n indicates the number of replicates performed,
518 and error indicated is the standard deviation. Values are colour coded to indicate the extent
519 of Kd change for a mutant compared to wildtype (red being most deleterious, blue being a
520 mild effect, and orange being middling).

Variant	Glu Kd (μ M)	FC	n	Gln Kd (μ M)	FC	n	Pyroglu Kd (mM)	FC	n
WT	0.10 \pm 0.05	-	11	18.53 \pm 6.79	-	6	0.07 \pm 0.03	-	10
Y45A	15.82 \pm 1.58	158	5	8665.33 \pm 2603.74	468	6	2.87 \pm 0.09	41	5
S75A	0.99 \pm 0.14	9.9	5	96.07 \pm 38.94	5	7	0.65 \pm 0.06	9.2	5
Q93A	74.93 \pm 17.78	749	10	ND	ND	5	30.60 \pm 10.20	428	5
E125A	0.27 \pm 0.11	2.7	6	36.75 \pm 13.91	2	9	0.18 \pm 0.013	2.6	6
Y200A	0.10 \pm 0.47	0	8	23.57 \pm 8.78	ND	8	0.12 \pm 0.02	1.7	3
M201A	0.33 \pm 0.10	3.3	5	48.64 \pm 15.69	2.6	9	0.36 \pm 0.01	5.1	4

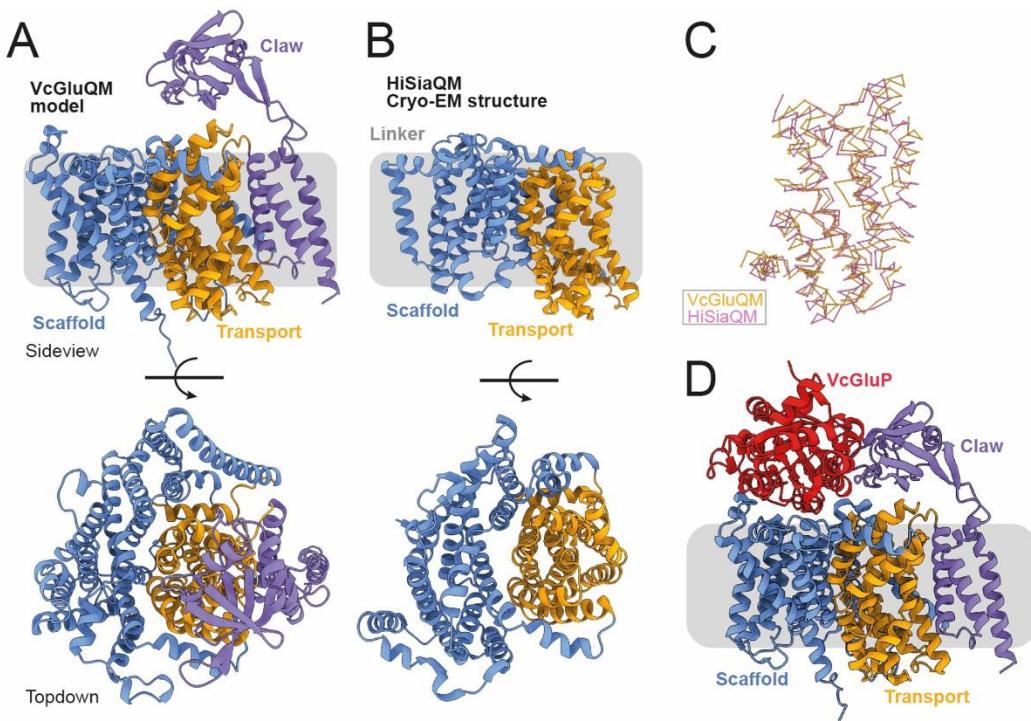
521

522 We also used tryptophan fluorescence to determine the mutants' affinities for L-glutamine
523 and L-pyroglutamate and observed the same pattern with Y45A and Q93A reducing the
524 affinity the most, and E125A, Y200A and M201A having relatively little to no effect.
525 Interestingly, the fold change in affinity is essentially the same for each mutant's interaction

526 with the 3 ligands, aside from Y45A where we observed 468-fold change for L-glutamine, but
527 only 158-fold change for L-glutamate and 41-fold change for L-pyroglutamate (Table 1).

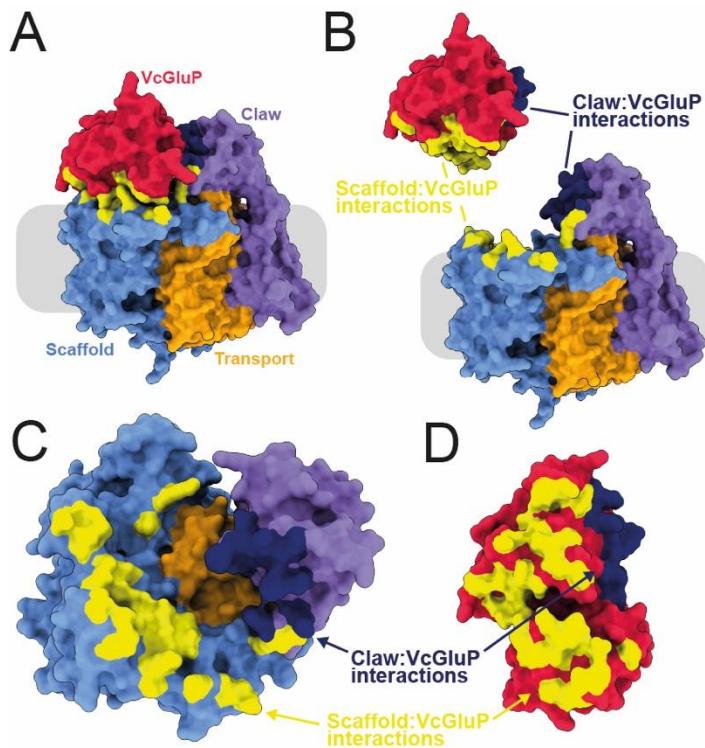
528

529 **Modelling the VcGluP-VcGluQM interaction reveals novel claw domain**


530 There are currently no experimentally derived structures of TAXI membrane components, so
531 to investigate the interaction between VcGluP with its cognate membrane component
532 VcGluQM, we obtained the model of VcGluQM using Alphafold2⁴². The model produced by
533 Alphafold2 shared many core features identified in the cryo-EM structure of HiSiaQM²⁴, which
534 is a membrane component from a DctP-type TRAP transporter. Both proteins consist of a
535 transport or ‘elevator’ domain and the clearly separable scaffold or ‘stator’ domain (Fig. 8A
536 and B). Most of the structural differences in these core domains appear to be localized to the
537 stator, with the VcGluQM stator predicted to be somewhat larger than the one in HiSiaQM
538 (Fig. 8A and B). However, there is substantial structural conservation in the transport
539 domains, which superimpose very well with an RMSD of ~4 Å over 230 residues (Fig. 8C).
540 These structural similarities may not be surprising because both proteins belong to the TRAP
541 transporter family. However, they share a remarkably low amino acid sequence identity of
542 7.9% (calculated using AlignMe⁵⁴). In addition to the low level of identity, VcGluQM is 221
543 amino acids longer than HiSiaQM, the majority of which comes from a 185 amino acid C-
544 terminal extension in VcGluQM. This extension (which we will refer to as the ‘claw’ domain)
545 folds into a globular domain belonging to the uncharacterized DUF3394 protein family, is
546 located on the periplasmic side of the membrane, and is mainly composed of β-sheets (Fig.
547 8). The positioning of the claw domain suggests that it likely comes into direct contact with
548 VcGluP. To investigate this interaction, we modelled the holocomplex VcGluPQM using
549 Colabfold⁵⁵, which revealed that, as with the models of HiSiaPQM²⁴, the SBP forms multiple
550 interactions with the membrane component (Fig. 9). However, the model of VcGluPQM
551 suggests that the C-terminal claw domain also plays a role in stabilizing the docking of the SBP
552 with the membrane component (Fig. 9).

553

554 When modelled independently using Alphafold2, VcGluP adopts a closed state identical to
555 our crystal structure (Supplementary figure 3A). However, superimposition of our crystal
556 structure of the closed, liganded VcGluP and the VcGluP structure predicted during the
557 modelling of the holocomplex with Colabfold reveals that the ligand-free VcGluP in the


558 holocomplex model adopts an open state (Supplementary figure 3B, C and D). With the caveat
559 that these observations are based partially on structural models and require experimental
560 validation, it is tempting to speculate that VcGluP's open state observed in the Colabfold
561 model is induced by interaction with the membrane component, and may represent a
562 transitional stage of the transport cycle.

563

576 **Figure 8. Structural model of VcGluQM and the predicted interactions with VcGluP. A)** Side
577 view and top-down view of the structural model of VcGluQM generated by AlphaFold2. The
578 transport or 'elevator' domain is coloured orange, the scaffold is blue, with the light blue
579 indicating the position of the 'Q' domain, the linker helix is grey, and the claw domain is
580 colored light purple. **B)** Side view and top-down view of the Cryo-EM structure of HiSiaQM,
581 colored the same as for VcGluQM in A). **C)** Superimposition of the chain traces of the transport
582 domains of VcGluQM (orange) and HiSiaQM (pink). **D)** Cartoon representation and **E)** surface
583 representation of the Colabfold model of the holocomplex VcGluPQM, colored as in A) and
584 with VcGluP colored red.

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

Figure 9. Interfacial interactions between VcGluP and VcGluQM. **A)** Surface representation of VcGluPQM colored as in Figure 8. Interactions between the scaffold domain and VcGluQM are in yellow and the interaction between VcGluP and the claw domain are in dark blue. **B)** Same as A) but interface has been exploded. **C)** Top-down view of VcGluQM showing interfacial contacts, and **D)** bottom-up view of VcGluP showing interfacial contacts.

606 **Discussion**

607 In this work, we have structurally characterized a TAXI TRAP SBP from the human pathogen
608 *V. cholerae* and performed in-depth analysis of the substrate binding determinants. We have
609 shown that VcGluP preferentially binds glutamate and can also bind glutamine with a
610 micromolar affinity. Glutamate uptake plays a key role in osmoadaptability of this human
611 pathogen and to the best of our knowledge, this is the only experimentally validated
612 glutamate transporter identified in *V. cholerae*. We have demonstrated that ligand binding
613 involves interactions with side chains and an extensive water network. In addition, we have
614 shown that a glutamine and tyrosine are *the* critical ligand binding residues, and VcGluP lacks
615 a functionally important binding site arginine residue, which is a hallmark of DctP-type TRAP
616 SBPs. Analysis of Alphafold2-based models of the membrane component suggests a unique
617 arrangement hitherto unseen for TRAP transporters, in which a C-terminal extension forms a
618 globular periplasmic domain and makes numerous interactions with the SBP.

619 This work is the first to investigate the functional contributions of binding site residues in a
620 TAXI TRAP transporter SBP. Characterization of the substrate range and selectivity of DctP-
621 type TRAP transporter SBPs has revealed that they can bind to a diverse range of compounds,
622 the majority of which contain at least one carboxyl group^{2,16}. The numerous structures of
623 DctP-type SBPs has revealed that the carboxyl group of the ligand is coordinated by an
624 arginine sidechain, which is highly conserved in DctP-type SBPs and serves as a selectivity
625 filter for binding²⁶. Our structure and binding site characterization of VcGluP has revealed that
626 no arginine (or lysine) plays a role in the substrate binding site, revealing a key difference
627 between the two TRAP sub-families.

628 Binding of L-glutamate by VcGluP is facilitated by a range of sidechain interactions (Fig. 7). In
629 addition, an extensive water network also provides several key interactions (Fig. 7D), which
630 is a feature observed previously in other TRAP SBP binding sites⁵⁶. From our structure, we
631 identified 6 residues potentially involved in ligand binding; Y45, S75, Q93, E125, Y200 and
632 M201. However, we found that binding affinity was only severely diminished when Y45 and
633 Q93 were mutated to alanine, reducing the affinity by ~150 and ~750-fold (Table 1),
634 respectively, suggesting these residues are the key binding determinants for VcGluP.

635 Comparison of VcGluP's binding site reveals that it is virtually identical to the binding site of
636 TtGluBP (TTHA1157)³⁷. While both protein belong to Cluster F⁵³, the identical binding site was
637 unexpected considering they did not coalesce on our phylogenetic tree and are only 38%

638 identical to each other (Fig. 1). A feature of both TtGluBP and VcGluP is the positioning of 2
639 tyrosine residues either side of the glutamate (Y45 and Y200 in VcGluP)³⁷. BugE, from the
640 tripartite tricarboxylate transporter (TTT) family of binding protein-dependent secondary
641 active transporters, also binds glutamate, and exhibits the same overall architecture all SBPs
642 share⁵⁷. While there is no sequence similarity between the VcGluP and BugE, and the overall
643 binding site composition is different, both proteins use aromatic residues (Phe in BugE and
644 Tyr in VcGluP) to sandwich the aliphatic chain of the glutamate providing hydrophobic
645 interactions (Fig. 7D)⁵⁷. Aromatic residues are also prominent in the binding site of the
646 pyroglutamate-specific DctP-type TRAP transporters from *Bordetella pertussis*, Dct6 and Dct7,
647 but in these proteins the aromatic residues are a combination of tryptophan and tyrosine¹³.
648 To support the importance of these aromatic residues, the equivalent residue to Y45 is found
649 in 78% of the TAXI sequences in our alignment (Supplementary figure 1). The equivalent
650 residue to Y200 is only found in 20% of sequences reflective of its negligible contribution to
651 binding (Table 1). The residue that appeared to contribute most significantly to binding, Q93,
652 is found in 54% of the sequences in our alignment (Supplementary figure 1), suggesting this
653 is possibly a variable site that will change allow different TAXIs to accommodate different
654 ligands. However, more information on the range of ligands and the binding determinants of
655 TAXI SBPs is required to evaluate this.

656 The cryo-EM structures of DctP-type TRAP membrane components have revealed important
657 insight into the transport mechanism of TRAP transporters and have confirmed previous
658 predictions^{19,24,29}. We currently lack any experimental structures of TAXI-TRAP membrane
659 components. While we show here that they are predicted to largely resemble DctP-type TRAP
660 membrane components, the low sequence identity between DctP- and TAXI-type membrane
661 components will likely result in mechanistic differences. Indeed, significant divergence has
662 also been observed by the TAXI-TRAP from *P. mirabilis* using a H⁺ gradient, unlike the Na⁺-
663 driven DctP-type TRAP transporters that have been characterized³⁶. Investigation into the
664 predicted structure of VcGluQM revealed that it is substantially larger than the structurally
665 characterized DctP-type TRAP membrane components (Fig. 8). Most of the size difference
666 between VcGluQM and HiSiaQM is accounted for by VcGluQM's periplasmic globular C-
667 terminal extension that is predicted to interact with the SBP (Fig. 9). This extension has not
668 been reported for any DctP-type TRAP transporters, suggesting it is a TAXI-specific addition.
669 However, it is highly reminiscent of the similar domain in the maltose ABC transporter,

670 MalEFGK2, but However, the claw domain does not appear to be a general feature of TAXI
671 TRAP membrane components either. Analysis of the Alphafold2-derived models of the
672 membrane components associated with the 59 TAXI transporters in our phylogenetic tree
673 reveals that only the TAXI TRAP transporters in the vicinity of VcGluP are predicted to have
674 this claw domain. All other TAXI transporters in our tree, if they have an associated membrane
675 component gene, lack this claw domain in their membrane components.

676 The function of the claw domain is currently unknown, but one possibility is that it enhances
677 the affinity between the SBP and membrane component. Recently, analysis of the TAXI family
678 revealed that a large proportion of TAXI SBPs are lipoproteins that are fused via a cysteine to
679 a lipid headgroup³⁶. This membrane tethering would substantially increase the local SBP
680 concentration and overcome a low affinity interaction between SBP and membrane
681 component. Analysis of VcGluP's sequence using SignalP 6.0 reveals that it is predicted with
682 99.9% confidence to contain a Sec/SPI signal peptide⁵⁸, meaning that VcGluP would move
683 unrestricted in the periplasm rather than being tethered to the membrane. Therefore, in this
684 case, the claw domain may simply be stabilizing the interaction between the membrane
685 component and an untethered SBP. However, further investigation into the spread of the
686 claw domain and how it correlates with membrane tethering is required.

687 In this work, we have shown that VcGluPQM is likely an L-glutamate transporter from the
688 Gram negative, halophilic intestinal pathogen *Vibrio cholerae* which still poses a significant
689 threat to human life, especially in lower income countries⁵⁹. As *V. cholerae* naturally inhabits
690 estuarine environments, it undergoes substantial fluctuations in the ionic strength of the
691 growth media during its lifecycle, which requires a robust response to avoid cell lysis. While
692 glutamate is itself a known osmolyte⁶⁰, and its uptake by *V. cholerae* increases under elevated
693 osmotic pressure⁶¹, it is actually used as precursor for ectoine, which is one of the main
694 compatible solutes used by *V. cholerae*⁶². Therefore, glutamate uptake via VcGluPQM likely
695 contributes substantially to osmoadaptability allowing the pathogen to survive in elevated
696 external osmolarity during niche adaptation and in the intestine during infection⁶².

697 Here, we have characterized VcGluP, a TAXI TRAP SBP from *V. cholerae*, the first
698 experimentally validated glutamate transporter identified in this pathogen. This work has
699 shed new light on the binding determinants of TAXI transporters, provided new insight into
700 the protein:protein interactions of binding protein dependent transporters, and has identified
701 a transporter in a human pathogen that likely influences its environmental adaptability.

702

703 **Acknowledgements**

704 We thank Lowri Williams and Rosie Young for technical assistance. This work was financially
705 supported by the BBSRC SoCoBio doctoral training partnership and a BBSRC responsive mode
706 grant (BB/V007424/1) awarded to CM. This work is dedicated to the memory of Bernie
707 Strongitharm.

708

709 **Author contributions**

710 NM and JFSD and CM purified the proteins. CK performed the bioinformatic analysis. JFSD
711 collected all binding assay data. AL and BS performed the mass spec analysis. AD and JFSD
712 collect and processed the X-ray data and built the atomic models. AD, JFSD and CM analyzed
713 the structures. MFB, GHT and CM supervised the research. CM wrote the manuscript. All
714 authors read and edited the manuscript.

715

716 **Data availability statement**

717 X-ray structures have been deposited in the Protein Data Bank. PDB ID: 8S4J.

718

719 **Competing interests**

720 The authors confirm no competing interests.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735 **References**

- 736 1. Rosa, L. T., Bianconi, M. E., Thomas, G. H. & Kelly, D. J. Tripartite ATP-Independent
737 Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From
738 Uptake to Pathogenicity. *Frontiers in cellular and infection microbiology* **8**, 33 (2018).
- 739 2. Mulligan, C., Fischer, M. & Thomas, G. H. Tripartite ATP-independent periplasmic (TRAP)
740 transporters in bacteria and archaea. *FEMS microbiology reviews* **35**, 68–86 (2011).
- 741 3. Mulligan, C., Kelly, D. J. & Thomas, G. H. Tripartite ATP-independent periplasmic
742 transporters: application of a relational database for genome-wide analysis of transporter
743 gene frequency and organization. *Journal of molecular microbiology and biotechnology*
744 **12**, 218–226 (2007).
- 745 4. Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. TRAP transporters: a
746 new family of periplasmic solute transport systems encoded by the dctPQM genes of
747 *Rhodobacter capsulatus* and by homologs in diverse gram-negative bacteria. *J Bacteriol*
748 **179**, 5482–5493 (1997).
- 749 5. Mayfield, J. E. *et al.* The cloning, expression, and nucleotide sequence of a gene coding
750 for an immunogenic *Brucella abortus* protein. *Gene* **63**, 1–9 (1988).
- 751 6. Kelly, D. J. & Thomas, G. H. The tripartite ATP-independent periplasmic (TRAP)
752 transporters of bacteria and archaea. *FEMS microbiology reviews* **25**, 405–424 (2001).
- 753 7. Adnan, F. *et al.* TRAP transporter TakP: a key player in the resistance against selenite-
754 induced oxidative stress in *Rhodobacter sphaeroides*. *Microbiol Res* **252**, 126828 (2021).
- 755 8. Deka, R. K. *et al.* Structural, Bioinformatic, and In Vivo Analyses of Two *Treponema*
756 *pallidum* Lipoproteins Reveal a Unique TRAP Transporter. *Journal of molecular biology*
757 **416**, 678–696 (2012).

758 9. Herman, R. *et al.* The *Salmonella enterica* serovar *Typhimurium* virulence factor STM3169
759 is a hexuronic acid binding protein component of a TRAP transporter. *Microbiology* **166**,
760 981–987 (2020).

761 10. Kuhlmann, S. I., Terwisscha Van Scheltinga, A. C., Bienert, R., Kunte, H.-J. & Ziegler, C.
762 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-
763 Transporter TeaABC from *Halomonas elongata*. *Biochemistry* **47**, 9475–9485 (2008).

764 11. Meinert, C., Senger, J., Witthohn, M., Wübbeler, J. H. & Steinbüchel, A. Carbohydrate
765 uptake in *Advenella mimigardefordensis* strain DPN7^T is mediated by periplasmic sugar
766 oxidation and a TRAP-transport system: Carbohydrate uptake in *Advenella*
767 *mimigardefordensis*. *Molecular Microbiology* **104**, 916–930 (2017).

768 12. Rabus, R., Jack, D. L., Kelly, D. J. & Saier, M. H. TRAP transporters: an ancient family
769 of extracytoplasmic solute-receptor-dependent secondary active transporters.
770 *Microbiology* **145**, 3431–3445 (1999).

771 13. Rucktooa, P. *et al.* Crystal structures of two *Bordetella pertussis* periplasmic
772 receptors contribute to defining a novel pyroglutamic acid binding DctP subfamily. *J Mol
773 Biol* **370**, 93–106 (2007).

774 14. Schäfer, L. *et al.* Crystal structure of the sugar acid-binding protein CxaP from a TRAP
775 transporter in *Advenella mimigardefordensis* strain DPN7^T. *FEBS J* **288**, 4905–4917
776 (2021).

777 15. Thomas, G. H., Southworth, T., León-Kempis, M. R., Leech, A. & Kelly, D. J. Novel
778 ligands for the extracellular solute receptors of two bacterial TRAP transporters.
779 *Microbiology (Reading)* **152**, 187–198 (2006).

780 16. Vetting, M. W. *et al.* Experimental Strategies for Functional Annotation and
781 Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased
782 Panning of Metabolomes. *Biochemistry* **54**, 909–931 (2015).

783 17. Zhao, J. & Binns, A. N. Involvement of *Agrobacterium tumefaciens* Galacturonate
784 Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene
785 Expression. *FEBS J* **82**, 1136–1146 (2016).

786 18. Bisson, C. *et al.* The structural basis for high-affinity uptake of lignin-derived
787 aromatic compounds by proteobacterial TRAP transporters. *FEBS J* **289**, 436–456 (2022).

788 19. Davies, J. S. *et al.* Structure and mechanism of a tripartite ATP-independent
789 periplasmic TRAP transporter. *Nat Commun* **14**, 1120 (2023).

790 20. Currie, M. J. *et al.* Structural and biophysical analysis of a *Haemophilus influenzae*
791 tripartite ATP-independent periplasmic (TRAP) transporter. *Elife* **12**, RP92307 (2024).

792 21. Mulligan, C., Leech, A. P., Kelly, D. J. & Thomas, G. H. The Membrane Proteins SiaQ
793 and SiaM Form an Essential Stoichiometric Complex in the Sialic Acid Tripartite ATP-
794 independent Periplasmic (TRAP) Transporter SiaPQM (VC1777-1779) from *Vibrio*
795 *cholerae*. *The Journal of biological chemistry* **287**, 3598–3608 (2012).

796 22. Mulligan, C. *et al.* The substrate-binding protein imposes directionality on an
797 electrochemical sodium gradient-driven TRAP transporter. *Proceedings of the National
798 Academy of Sciences of the United States of America* **106**, 1778–1783 (2009).

799 23. Peter, M. F. *et al.* Triggering Closure of a Sialic Acid TRAP Transporter Substrate
800 Binding Protein through Binding of Natural or Artificial Substrates. *Journal of molecular
801 biology* **433**, 166756 (2021).

802 24. Peter, M. F. *et al.* Structural and mechanistic analysis of a tripartite ATP-independent
803 periplasmic TRAP transporter. *Nat Commun* **13**, 4471 (2022).

804 25. Severi, E. *et al.* Sialic acid transport in *Haemophilus influenzae* is essential for
805 lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite
806 ATP-independent periplasmic transporter. *Mol Microbiol* **58**, 1173–1185 (2005).

807 26. Fischer, M. *et al.* Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an
808 Arginine-mediated Selectivity Filter for High Affinity Substrate Binding. *J Biol Chem* **290**,
809 27113–27123 (2015).

810 27. Fischer, M., Zhang, Q. Y., Hubbard, R. E. & Thomas, G. H. Caught in a TRAP:
811 substrate-binding proteins in secondary transport. *Trends in Microbiology* **18**, 471–478
812 (2010).

813 28. Müller, A. *et al.* Conservation of structure and mechanism in primary and secondary
814 transporters exemplified by SiaP, a sialic acid binding virulence factor from *Haemophilus*
815 *influenzae*. *J Biol Chem* **281**, 22212–22222 (2006).

816 29. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of
817 residue–residue interactions across protein interfaces using evolutionary information.
818 *eLife* **3**, 1061–21 (2014).

819 30. Mancusso, R., Gregorio, G. G., Liu, Q. & Wang, D. N. Structure and mechanism of a
820 bacterial sodium-dependent dicarboxylate transporter. *Nature* **491**, 622–626 (2012).

821 31. Sauer, D. B. *et al.* Structural basis for the reaction cycle of DASS dicarboxylate
822 transporters. *eLife* **9**, 213 (2020).

823 32. Sauer, D. B. *et al.* Structure and inhibition mechanism of the human citrate
824 transporter NaCT. *Nature* **591**, 157–161 (2021).

825 33. Mulligan, C., Fitzgerald, G. A., Wang, D. N. & Mindell, J. A. Functional
826 characterization of a Na⁺-dependent dicarboxylate transporter from *Vibrio cholerae*. *The*
827 *Journal of general physiology* **143**, 745–759 (2014).

828 34. Mulligan, C. *et al.* The bacterial dicarboxylate transporter VcINDY uses a two-domain
829 elevator-type mechanism. *Nature Structural & Molecular Biology* **23**, 256–263 (2016).

830 35. Peter, M. F. *et al.* Conformational coupling of the sialic acid TRAP transporter
831 HiSiaQM with its substrate binding protein HiSiaP. *Nat Commun* **15**, 217 (2024).

832 36. Roden, A., Engelin, M. K., Pos, K. M. & Geertsma, E. R. Membrane-anchored
833 substrate binding proteins are deployed in secondary TAXI transporters. *Biological
834 Chemistry* **404**, 715–725 (2023).

835 37. Takahashi, H., Inagaki, E., Kuroishi, C. & Tahirov, T. H. Structure of the *Thermus
836 thermophilus* putative periplasmic glutamate/glutamine-binding protein. *Acta Crystallogr
837 D Biol Crystallogr* **60**, 1846–1854 (2004).

838 38. Sanz, D., García, J. L. & Díaz, E. Expanding the current knowledge and
839 biotechnological applications of the oxygen-independent ortho-phthalate degradation
840 pathway. *Environmental microbiology* **22**, 3478–3493 (2020).

841 39. Bakermans, C., Sloup, R. E., Zarka, D. G., Tiedje, J. M. & Thomashow, M. F.
842 Development and use of genetic system to identify genes required for efficient low-
843 temperature growth of *Psychrobacter arcticus* 273-4. *Extremophiles* **13**, 21–30 (2009).

844 40. Love, J. *et al.* The New York Consortium on Membrane Protein Structure (NYCOMPS):
845 a high-throughput platform for structural genomics of integral membrane proteins.
846 *Journal of structural and functional genomics* **11**, 191–199 (2010).

847 41. Winter, G. *xia2* : an expert system for macromolecular crystallography data
848 reduction. *J Appl Crystallogr* **43**, 186–190 (2010).

849 42. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature
850* **596**, 583–589 (2021).

851 43. Wojdyr, M., Keegan, R., Winter, G. & Ashton, A. *it DIMPLE - a pipeline for the rapid*
852 *generation of difference maps from protein crystals with putatively bound ligands. Acta*
853 *Crystallographica Section A* **69**, s299 (2013).

854 44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. *Features and development of*
855 *Coot. Acta Crystallogr D Biol Crystallogr* **66**, 486–501 (2010).

856 45. Liebschner, D. *et al.* *Macromolecular structure determination using X-rays, neutrons*
857 *and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol* **75**, 861–877
858 (2019).

859 46. Madeira, F. *et al.* *Search and sequence analysis tools services from EMBL-EBI in*
860 *2022. Nucleic Acids Research* **50**, W276–W279 (2022).

861 47. Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. *IQ-TREE: A Fast and*
862 *Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies.*
863 *Molecular Biology and Evolution* **32**, 268–274 (2015).

864 48. Letunic, I. & Bork, P. *Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic*
865 *tree display and annotation. Nucleic Acids Research* **49**, W293–W296 (2021).

866 49. Lim, D. B., Oppenheim, J. D., Eckhardt, T. & Maas, W. K. *Nucleotide sequence of the*
867 *argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Proc*
868 *Natl Acad Sci U S A* **84**, 6697–6701 (1987).

869 50. Schweikhard, E. S., Kuhlmann, S. I., Kunte, H.-J., Grammann, K. & Ziegler, C. M.
870 *Structure and function of the universal stress protein TeaD and its role in regulating the*
871 *ectoine transporter TeaABC of Halomonas elongata DSM 2581(T). Biochemistry* **49**, 2194–
872 2204 (2010).

873 51. Gonin, S. *et al.* Crystal structures of an Extracytoplasmic Solute Receptor from a
874 TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a
875 cation for alpha-keto acid binding. *BMC Struct Biol* **7**, 11 (2007).

876 52. Keseler, I. M. *et al.* The EcoCyc Database in 2021. *Front Microbiol* **12**, 711077 (2021).

877 53. Scheepers, G. H., Lycklama A Nijeholt, J. A. & Poolman, B. An updated structural
878 classification of substrate-binding proteins. *FEBS Lett* **590**, 4393–4401 (2016).

879 54. Stamm, M., Staritzbichler, R., Khafizov, K. & Forrest, L. R. AlignMe--a membrane
880 protein sequence alignment web server. *Nucleic Acids Res* **42**, W246-251 (2014).

881 55. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat Methods*
882 **19**, 679–682 (2022).

883 56. Darby, J. F. *et al.* Water Networks Can Determine the Affinity of Ligand Binding to
884 Proteins. *J Am Chem Soc* **141**, 15818–15826 (2019).

885 57. Huvent, I. *et al.* Structural analysis of *Bordetella pertussis* BugE solute receptor in a
886 bound conformation. *Acta Crystallogr D Biol Crystallogr* **62**, 1375–1381 (2006).

887 58. Teufel, F. *et al.* SignalP 6.0 predicts all five types of signal peptides using protein
888 language models. *Nat Biotechnol* **40**, 1023–1025 (2022).

889 59. Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in
890 endemic countries. *PLoS Negl Trop Dis* **9**, e0003832 (2015).

891 60. Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress.
892 *Microbiol Rev* **53**, 121–147 (1989).

893 61. Munro, P. M. & Gauthier, M. J. Uptake of glutamate by *Vibrio cholerae* in media of
894 low and high osmolarity, and in seawater. *Lett Appl Microbiol* **18**, 197–199 (1994).

895 62. Pflughoef, K. J., Kierek, K. & Watnick, P. I. Role of Ectoine in *Vibrio cholerae*
896 Osmoadaptation. *Appl Environ Microbiol* **69**, 5919–5927 (2003).

897

898

899 **Supplementary information**

900

901 **Supplementary table 1.** List of *E. coli* metabolites between 144-148 Da. Data obtained from
902 EcoCyc.org.

Compound Name	Mol. Wt.
2-oxoglutarate	144.084
5,6-dihydroxyuracil	144.087
2-oxoglutaramate	144.107
adipate	144.127
keto- ω -methylpantoyl lactone	144.127
5-hydroxy-6-hydrothymine	144.13
ethyl-2-methylacetooacetate	144.17
dehydrolysine	144.173
N-methyl-DL-aspartate	145.115
(S)-2-aceto-2-hydroxybutanoate	145.135
2-dehydropantoate	145.135
3-hydroxy-3-methyl-2-oxopentanoate	145.135
4-hydroxy-2-oxohexanoate	145.135
5-hydroxypipecolate	145.158
8-hydroxyquinoline	145.16
(S)-4-amino-4,5-dihydro-2-thiophenecarboxylate	145.176
γ -butyrobetaine	145.201
(3R)-oxaloglycolate	146.056
(R)-2-hydroxyglutarate	146.099
(R)-citramalate	146.099
(S)-2-hydroxyglutarate	146.099
(S)-citramalate	146.099
(Z)-3-ureidoacrylate peracid	146.102
uracil glycol	146.102
(2S, 3S)-3-methylaspartate	146.122
2-methylaspartate	146.122
D-glutamate	146.122
L-glutamate	146.122
N-hydroxy-N-isopropylloxamate	146.122
D-galactal	146.143
a coumarin	146.145
D-glutamine	146.146
glycylsarcosine	146.146
L-alanyl-glycine	146.146
L-glutamine	146.146
ethyl-(2R)-methyl-(3S)-hydroxybutanoate	146.186
5,6-dimethylbenzimidazole	146.191

tetraethylammonium	146.295
calcium chloride dihydrate	147.016
phosphonocytosine	147.05
N-oxalylglycine	147.087
2-dehydro-3-deoxy-D-pentonate	147.107
O-acetyl-L-serine	147.13
(R)-2,3-dihydroxy-3-methylpentanoate	147.15
(R)-pantoate	147.15
cinnamate	147.153
4-(methylsulfanyl)-2-oxobutanoate	147.168
(R)- β -lysine	147.197
2,5-diaminohexanoate	147.197
D-lysine	147.197
L-lysine	147.197

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

921 **Supplementary Table 2. Data collection and refinement statistics.**

922 Statistics for the highest-resolution shell are shown in parentheses.

	Vc0430 Bound to L-Glutamate
Wavelength	
Resolution range	69.64 - 1.7 (1.761 - 1.7)
Space group	R 3 2 :H
Unit cell	126.66 126.66 180.28 90 90 120
Total reflections	1242043 (122113)
Unique reflections	61144 (6061)
Multiplicity	20.3 (20.1)
Completeness (%)	99.99 (99.98)
Mean I/sigma (I)	26.31 (3.42)
Wilson B-factor	27.60
R-merge	0.06415 (0.9057)
R-meas	0.0658 (0.9292)
R-pim	0.01456 (0.2063)
CC1/2	1 (0.917)
CC*	1 (0.978)
Reflections used in refinement	61140 (6066)
Reflections used for R-free	3035 (317)
R-work	0.1902 (0.3618)
R-free	0.2136 (0.3516)
CC (work)	0.969 (0.824)
CC (free)	0.964 (0.809)
Number of non-hydrogen atoms	2698
macromolecules	2425
ligands	15
solvent	258
Protein residues	300
RMS(bonds)	0.007
RMS(angles)	0.96
Ramachandran favored (%)	96.97
Ramachandran allowed (%)	3.03
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	1.52
Clashscore	1.65
Average B-factor	28.09
macromolecules	26.92
ligands	27.41
solvent	39.12

923

924

925

926

927

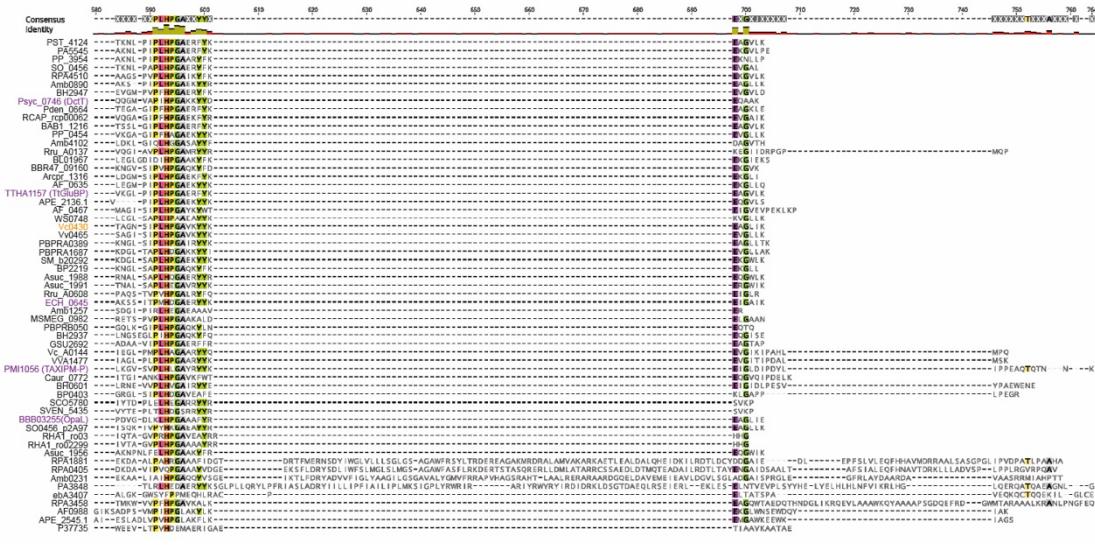
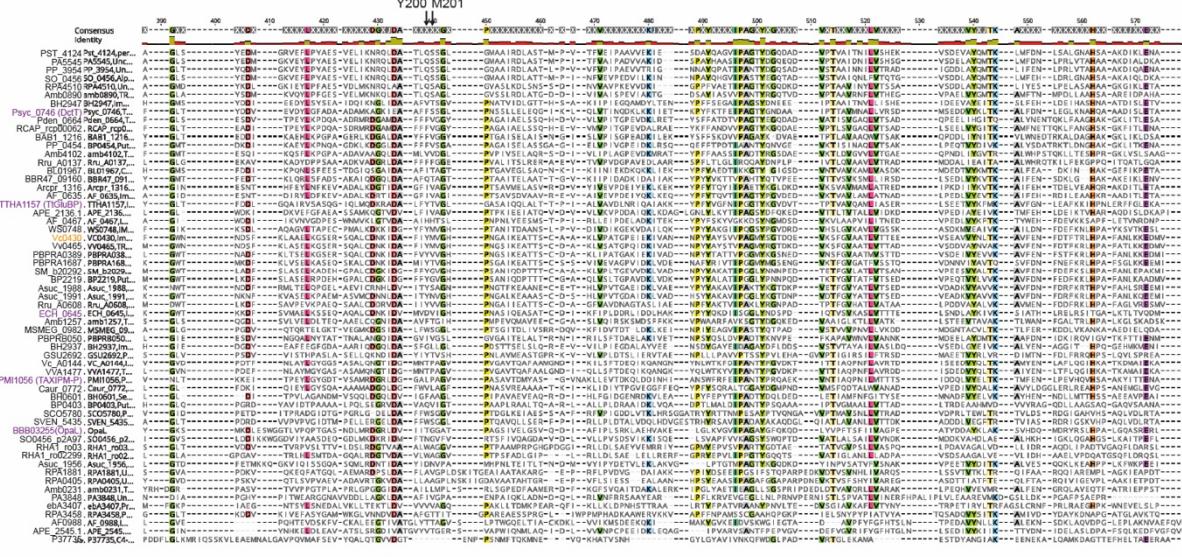
928

929

930

931

932



933

934

953 Supplementary figure 1 (cont)

954

955

956

956 **Supplementary Figure 1: Multiple sequence alignment of 33 TAX/SB3. Sequence**
957 alignment to accompany the cladogram in Figure 1. Protein names are colour coded to
958 match the tree in Figure 1 and the binding site residues mutated to alanine are indicated
959 with an arrow.

960

961

962

963

964

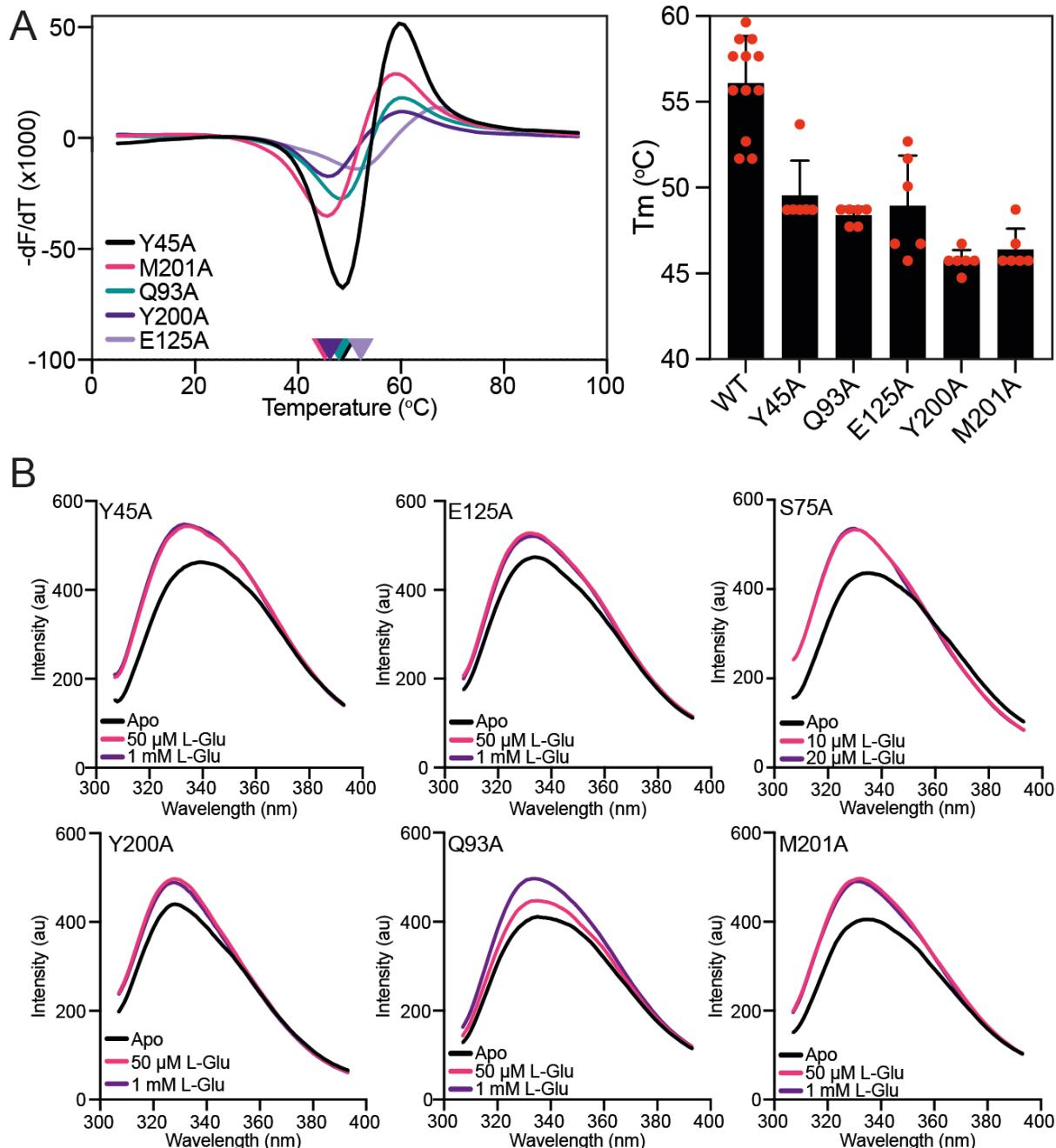
965

966

967

968

969


970

971

57

972 **Supplementary figure 2**

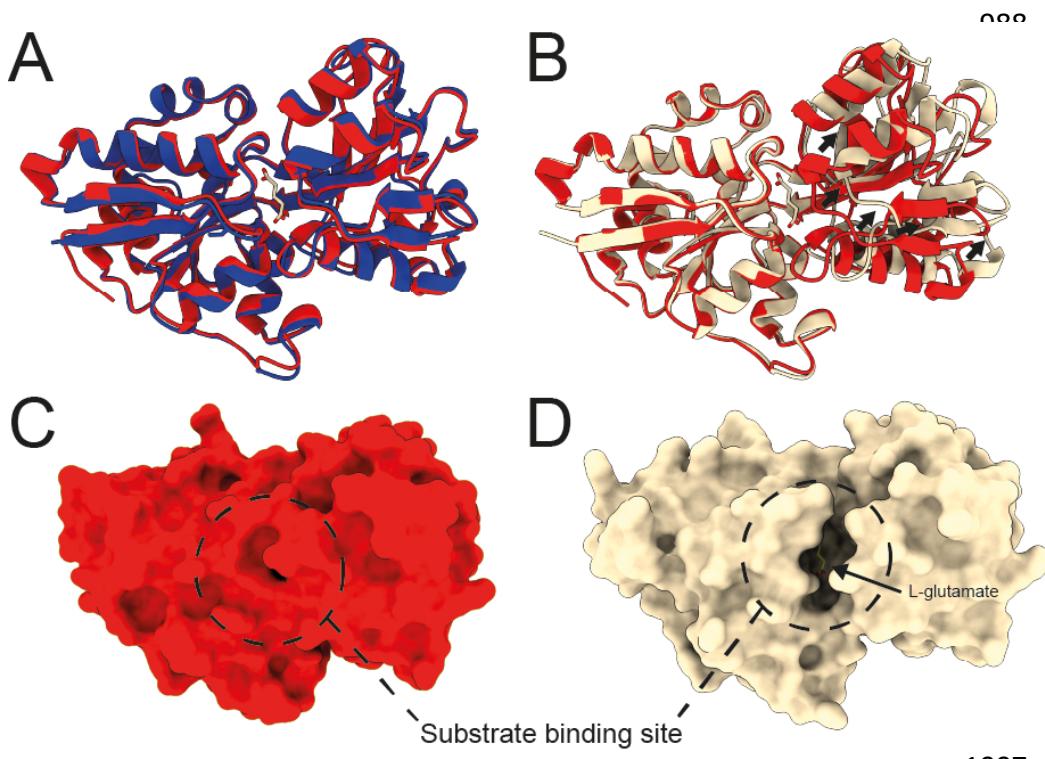
973

974

975 **Supplementary figure 2. Thermostability and tryptophan fluorescence analysis of VcGluP**

976

977 **binding site mutants. A)** Melting temperature of each VcGluP binding site mutant. Left
978 panel: representative DSF data for each VcGluP binding site mutant in the absence of
979 substrate. Right panel: the T_m of each binding site mutant derived from the DSF assay. Error
980 bars represent standard deviation and individual datapoints are shown in red. **B)** Emission
981 scans of each mutant with excitation wavelength of 295 nm in the presence and absence of
982 L-glutamate.


983

984

985

986 **Supplementary figure 3.**

987

1008 **Supplementary figure 3. Structural alignments of VcGluP structural models. A)**
1009 Superimposition of the cartoon representations of VcGluP crystal structure (red) or
1010 AlphaFold2 model (blue). **B)** Superimposition of the cartoon representations of VcGluP crystal
1011 structure (red) or model derived from VcGluPQM Colabfold model (wheat). **C)** Surface
1012 representation of the VcGluP crystal structure showing no access to binding site. **D)** Surface
1013 representation of the VcGluP derived from the VcGluPQM Colabfold model showing a solvent
1014 accessible binding site.
1015