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ABSTRACT

The brain expresses activity in complex spatiotemporal patterns, reflected in the influence of
spatially ~ distributed cytoarchitectural, biochemical, and genetic properties. The
correspondence between these multimodal “brain maps” may reflect underlying causal
pathways and is hence a topic of substantial interest. However, these maps possess intrinsic
smoothness (spatial autocorrelation, SA) which can inflate spurious cross-correlations, leading
to false positive associations. Identifying true associations requires knowledge about the
distribution of correlations that arise by chance in the presence of SA. This null distribution
can be generated from an ensemble of surrogate brain maps that preserve the intrinsic SA but
break the correlations between maps. The present work introduces the “eigenstrapping”
method, which uses a spectral decomposition of cortical and subcortical surfaces in terms of
geometric eigenmodes, and then randomly rotating these modes to produce SA-preserving
surrogate brain maps. It is shown that these surrogates appropriately represent the null
distribution of chance pairwise correlations, with similar or superior false positive control to
current state-of-the-art procedures. Eigenstrapping is fast, eschews the need for parametric
assumptions about the nature of a map’s SA, and works with maps defined on smooth surfaces
with or without a boundary. Moreover, it generalizes to broader classes of null models than
existing techniques, offering a unified approach for inference on cortical and subcortical maps,

spatiotemporal processes, and complex patterns possessing higher-order correlations.
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MAIN TEXT

Interest in spatial patterns of cortical activity, cellular and microstructural composition,
molecular architecture, and network connectivity of the brain has surged in recent years '°. An
important challenge in this field is to measure the similarity between two or more such “brain
maps” while excluding spurious relationships arising from chance. Correlations between
different maps may reflect the influence of spatially patterned gene expression on
cytoarchitecture or neuronal activity, hence motivating further mechanistic investigation 37
However, cortical regions that are close together tend to possess similar features, the causes of
which may be biological (such as a gradual change in gene expression) or methodological (due
to the spatial smoothing that is applied in the analyses of most imaging modalities). These
effects combine to endow brain maps with a spatial autocorrelation (SA) that typically has an
extent of tens of mm >80, The presence of such within-map correlations reduces the true
degrees of freedom when testing for pairwise associations between maps, hence amplifying
spurious associations. Null hypotheses of the correspondence between maps, i.e., the
distribution of “chance” in map-to-map correlations, need to preserve SA to control Type I
error 3!, This is not a trivial undertaking in the presence of complex statistical dependencies

within and between maps '2.

There are several methods that can generate surrogate maps that maintain SA while
randomizing the association between maps, hence providing suitable “null models”. Most of
these null models fall into two broad classes: 1) direct spatial permutation, commonly known

as the “Spin Test” 10-13-16

, whereby maps in the neocortex are projected onto a sphere, randomly
rotated, then projected back to the cortical surface; and 2) parameterized spatial randomization,

such as “Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity” (BrainSMASH),
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whereby surrogate maps are drawn from a random (Gaussian) process and smoothed to match
the empirical SA with parametric models that approximate the original statistical structure %7,
However, both classes have drawbacks: the Spin Test provides incomplete coverage of the
cortex because it rotates missing data in the medial wall (i.e., vertices within the subcortex and
anatomically inferior to the cingulate) onto the map (see Fig. 5 for a demonstration). In
addition, the Spin Test has thus far not been extended to volumetric maps, precluding its use
in the subcortex. The Spin Test also preserves the original spatial relationships between all
points, only rotating them to different locations. This form of randomization yields a restricted
null space with an assumption that no higher-order spatial structure exists within the original
map. Higher-order spatial effects occur frequently in biological systems including neural
processes in visual cortex, which reflect the complex statistical dependences in natural scenes
1821 Estimating the null space to identify these more complex spatial effects requires a
randomization of higher-order statistical dependencies. Conversely, generating spatial nulls
with spatial parametric techniques such as BrainSMASH ® requires extensive parameter

optimization and is computationally intensive !'!

. Moreover, these methods rest upon
assumptions of stationarity on brain maps, drawing randomness from stationary Gaussian
processes. Cortical activity frequently violates these assumptions, exhibiting long-tailed
statistics and nonlinear spatiotemporal properties 2227, At high levels of SA, both of these
methods fail tests of Type I error, with false positive rates 2—10 times higher than expected !!.

This inflation can be particularly problematic for inference on very smooth, lower-resolution

maps, such as those generated with brain transcriptomics or positron emission tomography.

To improve on the current state of null models, we turn to geometric basis sets. These basis
sets —known as geometric eigenmodes — support the decomposition of complex spatial patterns

from coarse to fine wavelengths. Geometry constrains the behavior of many complex systems,
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including the brain, where it influences large-scale dynamics such as standing and travelling
waves 28732 Geometric eigenmodes have increasingly been used to model and describe these
diverse aspects of brain activity and structure 373°. Geometric basis sets are essentially
spherical harmonics generalized to non-spherical surfaces and can be derived by application of
the Laplace-Beltrami operator (LBO) 4. Notably, for the present purposes, the LBO projects
spatial data into an orthogonal subspace where the data representation (the eigenmode
coefficients) are decorrelated and hence exchangeable, similar to the Fourier or wavelet
transforms “%#!, This allows constrained randomization of spatial data on irregular surfaces
without disrupting (two-point) spatial correlations when the data are back-projected into the
original spatial domain. Appropriate eigenmode randomization can thus yield a geometric
surrogate map preserving the SA of the original data while randomizing the location and

higher-order properties of the map.

Here, we introduce eigenstrapping, a method of generating random brain maps with preserved
SA for null hypothesis testing. By leveraging the mathematical properties of the LBO,
eigenstrapping provides a method to perform rigorous statistical inference of cortical and
subcortical associations and surface or volumetric maps for a broad range of research questions.
We show that eigenstrapping has distinct advantages over existing methods for producing
surrogate brain maps, including stronger false positive rate (FPR) control, relatively low
computational burden, generalizability to a broad class of spatial processes, use in both cortical
and subcortical maps, and applicability to complex spatial and spatiotemporal processes '°. We
provide an open-source Python-based package that is deployable to commonly utilized

neuroimaging formats 2.
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RESULTS

We first describe the method for decomposing a brain map into cortical eigenmodes. The
method of constrained randomization through rotation of these eigenmodes is then provided.
We next show how reconstructing a map from these rotated modes produces SA-preserving
surrogate maps. Ensembles of these surrogates obtained through repeated random eigenmode
rotation yields a null distribution for spurious associations between smooth maps, which we
benchmark against the Spin Test and BrainSMASH methods. We end with an exposition of the
randomization of more complex (ternary and quaternary) correlations by eigenmode rotation

and the relevance of this to probe brain maps for complex textural properties.

Eigenmode decomposition and group-based rotation

An eigenmode decomposition on a discretized surface x with N vertices yields N-1 orthogonal
eigenmodes which can be ordered by their corresponding eigenvalues. These modes allow a
spectral decomposition of a spatial pattern y from coarse to fine wavelengths (i.e., spatial
frequencies) 33443, In the spherical case, the eigenmodes are called spherical harmonics and
occur in groups of modes with identical (degenerate) eigenvalues. Each harmonic group thus
describes a set of orthogonal spatial patterns expressed on the sphere that have the same
characteristic wavelength. The folds, gyri, and non-spherical distortions of the cortical
geometry perturb this structure, but the eigenvalue separation between groups of modes is
approximately preserved, particularly at spatial scales relevant for whole brain maps, allowing

one to use similar groupings 334,
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Formally, an empirical brain map y(x) on a discrete surface x with N vertices is decomposed

into a linear combination of geometric eigenmodes,

y) =

A=0 u=—-A

G A

(Bautan®) + €62, 0
where G is the total number of groups used in the decomposition and there are 2A + 1 modes
in each group. B, is the linear coefficient (weighting) of mode ¥4, in group A with eigenvalue

Aay (see Fig. 1A). These coefficients are estimated by integration of the modes with the data y

on the surface x (see Methods) #**°. The residual error €;(x) decreases in amplitude as the
number of groups G used in the decomposition increases, vanishing if the decomposition is
complete; that is, if the full complement of N — 1 modes is used. Individual modes within a
group A are orthogonal by virtue of their relative orientation, whilst the groups themselves are
also orthogonal due to their differing characteristic wavelengths. We use this orthogonality
between groups to resample modes without disrupting the spatial spectra and hence smoothness

of the map y. A more detailed description is provided in Methods.

Spherical harmonics within groups possess identical characteristic spatial frequencies
(eigenvalues) while the groups themselves are invariant under rotation. Geometric eigenmodes
adapt to the folds and undulations of the cortical surface. As a consequence, geometric mode
groups are not rotationally invariant and modes within a group possess similar but not identical
spatial frequencies. To rotate geometric eigenmodes within groups, it is thus necessary to
normalize their eigenvalues to have equal value, equivalent to mapping the modes onto an n-

dimensional sphere z,
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paa(z) = L) @

Anu

where ¢, is the equivalent spherical representation of 15 ,. The number of modes in a group

and hence the dimension of the sphere remains n = 2A + 1 (Supplementary Table S1).

As aresult of this normalization, all spherical modes within a group have identical eigenvalues
denoted {pq = &pp = -+ &pn- To perform eigenstrapping, groups of spherical modes are rotated

by taking the matrix multiplication with a random rotation matrix R(6,) °,

Pru(2) = Pau(2)R(6,), (3)
where the prime denotes rotation by a random angle 8 and A is the group number. This group-
based rotation ensures that spherical modes within groups retain their orthogonality. This
process is repeated with an independent random rotation applied to each group, breaking the

original angular alignment of modes in different groups.

Rotated spherical modes ¢, ,(2z) are then mapped back to the cortical geometry, yielding

rotated geometric eigenmodes,

lp,Au(x) = ¢’AH(Z) /1/\[1,' (4')

A surrogate brain map y’(x) is then obtained from these rotated eigenmodes,
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G A

Y@ =) D (Bruthhn®) + 6@, )

A=0 u=-A

where 35, are the same coefficients from Eq. (1) (Fig. 1C). The surrogate error term € (x) is
derived from simple random permutation of the error term €, (x) from Eq. (1) (see Methods
and Supplementary Information-S1). To preserve the amplitude distribution of the empirical
data, an optional amplitude-adjustment step can be performed (Fig. 1C — top left;
Supplementary Information-S2). The resampling procedure is illustrated in Fig. 1B for the first

non-zero eigengroup, A = 1.
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Fig. 1. The eigenstrapping method to generate surrogates that preserve spatial autocorrelation. (A) Eigenmode
decomposition: coefficients 8, are derived from the generalized linear model (GLM; Eq. 1). A total number of
modes is chosen such that the residual error in the GLM is negligible. (B) Eigenmode rotation: Eigenmodes are
partitioned into eigengroups A (of size n = 2A + 1) and normalized by their eigenvalues 4, to yield spherical
eigenmodes ¢,, with identical eigenvalues §,,. This is analogous to transformation from an n-dimensional
ellipsoid with axes 1,,to an n-dimensional sphere with axes §,. The equality of ¢ (i.e., degeneracy; Fig. S1)
permits rotation of ¢, by a random rotation matrix R(8), resulting in rotated spherical eigenmodes ¢ ,. These
modes are multiplied by \/m to project them back to the ellipsoid, resulting in rotated modes 3, in groups A.
(C) Surrogate maps: The GLM with original coefficients £ is multiplied by rotated modes 1’ across all Au

yielding a surrogate brainmap y’. An optional amplitude adjustment step (rescaling; see Supplementary

10
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Information-S2) is applied to the reconstructed data (in red; original data in blue). Residuals can be permuted and

added back into the resulting surrogate map y’ (see Supplementary Information-S1).

Statistical properties of surrogate maps generated from rotated eigenmodes

To test the performance of this procedure, we generated eigenstrapping surrogate maps of task-
evoked fMRI data on the fs-LR-32k surface of 255 unrelated healthy individuals from the
Human Connectome Project 47 (HCP; emotion, see Supplementary Table S2 for a list of tasks).
This was compared to surrogates generated from SA-naive random permutation of vertices. An
example target map (HCP; gambling) is compared to an example contrast emotion map in Fig.
2A with Pearson’s correlation r = 0.249. Example surrogate maps using an eigenmode
decomposition with 6000 modes visually capture the smoothness of the original data (Fig. 2B).
Quantifying the SA of these maps using the variogram, a measure of local smoothness ® shows
that eigenstrapping (Fig. 2C, blue) preserves the empirical SA to very small spatial separations
(<1 mm). In contrast, SA-naive random permutations whiten the surrogates, producing
relatively flat SA (Fig. 2C, red). An ensemble of 1000 eigenstrapped surrogate maps exhibits
a broad, zero-centered distribution of correlations with a target empirical map (Fig. 2D, blue;
gambling), hence yielding a wider distribution than SA-naive random permutations (Fig. 2D,
red). Notably, eigenstrapped surrogate maps are on average uncorrelated with each other,

yielding a broad, zero-centered pairwise-correlation distribution (Fig. 2E).

11
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Fig. 2. Statistical properties of eigenstrapped surrogates of fMRI data. (A) An example HCP task contrast map
(Contrast map; left) was correlated with a target contrast map (7arget map; right) from the same participant in
another task condition at || =0.249. Each map is colored by task contrast weight. (B) Four example eigenstrapped
surrogates of the contrast map (panel A, left). (C) The variogram from 0 to 30 mm spatial separation with the
average of 1000 SA-naive surrogates (Random; red circles), and the average and standard deviation of 1000
eigenstrapping surrogates (Eigenstrapping; blue line and shading, respectively) against the contrast map
(Empirical). (D) Correlation of SA-naive (red) and eigenstrapping (blue) surrogates with the target fMRI map.
The correlation of the target map to the contrast map |r| = 0.249 is shown with the dashed black line. In this case,
the correlation lies outside the null distribution and it thus considered statistically significant. (D) Pairwise

correlation of SA-naive (red) and eigenstrapping (blue) surrogates.
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Control of false positives in simulated brain maps

We next tested the efficacy of eigenstrapping in controlling Type I error, benchmarked against
a ground truth from simulated brain maps. Simulated maps were generated with Gaussian
random fields (GRFs) that have parametrically varying SA 4 with smoothness parameter
(Fig. 3; see Methods and Supplementary Information-S4). We simulated pairs of GRF maps
with predetermined cross-correlations of || = 0.15+0.005 and a cortical resolution of 10,242
vertices in the fsaverage5 standard space. The relatively weak correlation of |r| = 0.15 lies
outside the null distribution for pairs of cortical maps that possess weak SA (low @), but falls
within the null, consistent with a chance association, for pairs of smooth cortical maps (high
a) 8!, Smoothness was tuned from a = 0.0 (no SA) to @ = 4.0 (high SA) in steps of 0.5 with
1000 pairs of GRFs generated at each step (Fig. 3A-B; Fig. S4). This procedure yielded 9000

total pairs with pairwise cross-correlations centered at 0.15 (range 0.145-0.155).

We used eigenstrapping to derive a significance value for the cross-correlation of the simulated
pairs of cortical maps and compared it to random, SA-naive surrogates of the same maps. 1000
surrogate maps were derived from one map in each GRF pair using eigenstrapping (Fig. 3A,
blue) with fixed numbers of modes based on the SA (Fig. 3B). The eigenstrapped surrogates
and the other map in the GRF pair were correlated, forming a correlation distribution across a
levels (Fig. 3C). The choice of modes was tailored empirically against the average GRF
variogram, which is 2500 at ¢ = 0.0-1.0, 1500 at « = 1.5, 500 at @ = 2.0, 200 at a = 2.5-3.5,
and 50 at @ = 4.0. At high SA (a > 1.5), the variogram is preserved with relatively few modes
(corresponding to 0.05-1.5% of all modes on the surface) following amplitude adjustment
(Supplementary Information-S2). This was compared to SA-naive random surrogates, obtained

by randomly permuting the data (Figure 2A; red). These distributions were then used to
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estimate the two-tailed p-value for the original correlation of the GRF pair. As SA increases,
the distribution of the correlation between eigenstrapped surrogates widens (Fig. 2C) until the
inter-map correlation of 0.15 falls within the tail of the distribution at @ > 2. The p-value
increases accordingly (i.e., the -logio(p) drops) becoming greater than 0.05 for a > 2 (-logio(p)
< 1.3; Fig. 2D). This analysis thus shows that a chance cross-correlation of |r| = 0.15 is
common among smooth brain maps. The distribution of correlations remains narrow for all
randomized surrogates (Fig. 2D; red) and the original correlation remains well outside the

distribution for all a (that is, the null is too precisely represented by SA-naive nulls).

We next assessed the false positive rate (FPR) of eigenstrapping against those of the Spin Test
and BrainSMASH (the two most cited methods for spatial null models) by randomly swapping
one map from each of the pairs from the analysis in Fig. 2A-D. Since the correlations between
these randomly paired maps will be zero centered, the FPR should be equal to or below the
chosen statistical alpha —i.e., < 5% FPR at p <0.05. Eigenstrapping yields an FPR close to the
expected 5% for low SA (a < 1.5, Fig. 2E). As SA increased to a level visually consistent with
the smoothness of empirical brain maps (a« > 1.5), eigenstrapping performs below expected at
3.9% (a = 1.5), expected at 5.0% (a = 2.0), then increases to 8.6% (a =2.5), and 11.3% (a =
3.0). At higher levels of SA (smoother than typically seen empirically), the FPR rises to 12.3%
(@ =3.5)and 12.6% (a = 4.0). For the same test, the Spin Test yields slightly higher FPR than
eigenstrapping across all high SA regimes (Fig. 2E in yellow). The BrainSMASH method
shows much higher FPR than both the Spin Test and eigenstrapping, reaching 29.2% at a = 2.0

and 38.4% at a = 4.0 (Fig. 2E in green).

14
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Fig. 3. Eigenstrapping control of false positives. (A) Gaussian random fields (GRFs) with varying SA were used
to generate pairs of cortical maps with absolute Pearson correlation |r| = 0.15+0.005. Two GRF maps are plotted
at o = 2 alongside random (red) and eigenstrapping (blue) exemplar surrogates. Rightmost panel shows exemplar
histogram of SA-randomizing surrogate (red) and eigenstrapping surrogate (blue) correlations. Dashed line shows
the ground-truth correlation of the GRF pair. (B) GRFs are plotted with a increasing from 0.0 to 4.0. Variograms
derived from the generated maps demonstrate the increase in SA with increase in @ (bottom panel). The choice of
modes for eigenstrapping of each a-pair was tailored to the best visual fit of surrogate to empirical variograms.
(C) Average null distributions of eigenstrapping for different levels of SA, normalized between 0 and 1. (D) Mean
and standard deviation of two-tailed p-values of 1000 surrogates (SA-randomizing: red; eigenstrapping: blue) per
9000 GRF pairs as a function of SA. Black dashed line shows significance at p = 0.05 (-logio(p) = 1.3). Null
hypotheses are rejected above this line, not rejected below this line. (E) Each line indicates false positive rate
(FPR) of null method as a function of spatial autocorrelation (Eigenstrapping: blue; Spin Test: yellow;
BrainSMASH: green). Mean FPRs after 20 randomized sets are shown in solid lines. Shaded areas around solid

lines correspond to standard deviations. The black dashed line corresponds to expected FPR of < 5%.

We further quantify the SA-preserving property of eigenstrapping by calculating Moran’s 7, a
measure of global SA *, for each GRF and surrogate map (Fig. S5-6). In contrast to the

variogram, which captures two-point correlations as a function of distance, Moran’s / provides
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a single composite summary of SA 3°. Eigenstrapping preserves Moran’s [ for all levels of

smoothness & (see Supplementary Information-S5).

Null hypothesis testing of associations between empirical brain maps

A primary goal of using surrogate brain maps is to identify significant associations between
effects expressed on the cortical mantle — where a ground truth is lacking — such as the
correlation between the spatial pattern of a gene’s expression and spatially distributed
activation patterns or cortical morphology 3--!. We next explored associations between the
first principal component (PC1) of gene expression >2 (Fig. 4A, left) with well-validated surface
maps (Fig. 4A, middle) of function (the principal gradient of cognitive terms from functional
activation studies; Neurosynth) 3%, structure (the average ratio of Tl-weighted to T2-

) 4735, and intrinsic functional

weighted MRI) 7%, morphology (average cortical thickness
connectivity (the first principal component of resting-state functional connectivity) °. We
performed inference on these associations using surrogates derived from eigenstrapped
surrogates (blue) and compared the results to the BrainSMASH (green) and Spin Test (yellow)

methods. Empirical correlations were z-scored to quantify the relative effect size and statistical

significance of each null (Fig. 4B).

The correlations of each of these maps to gene expression vary considerably in magnitude and
sign (see red diamonds in Fig. 4B). The association of the cognitive gradient to the gene
expression map is the weakest (Fig. 4B, left; Neurosynth gradient). Notably, the null is only
rejected for the BrainSMASH test (z = 2.55, p = 0.008) whereas the nulls derived from the two
other methods possess wider tails which enclose the empirical correlation (eigenstrapping z =

1.14, p =0.39; Spin test z = 1.71; p = 0.062). All other associations are statistically significant
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(i.e., p < 0.05) when using any of the nulls, although the correlation distributions are
consistently narrowest for the BrainSMASH test, yielding larger z-statistics for the T1w/T2w
ratio (eigenstrapping z = 4.18, BrainSMASH z = 5.69, Spin Test z = 4.18), cortical thickness
(eigenstrapping z = -4.10, BrainSMASH z = -5.34, Spin Test z = -3.59), and the functional

gradient (eigenstrapping z = -2.42; BrainSMASH z = -3.86, Spin Test z = -2.90).
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Fig. 4. Null hypothesis testing of associations between empirical brain maps. (A) Examining the association of

the first principal gradient (PC1) of cortical gene expression (left) with four example target maps (center). The
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exemplar surrogates per method are plotted on the left hemisphere of the inflated fsaverage surface. Inference on
these associations was performed using three SA-preserving surrogate methods (eigenstrapping: blue;
BrainSMASH: green; Spin Test: yellow) (B) Correlations with source brain map (first principal gradient of gene
expression) of target brain maps (Neurosynth gradient, TIw/T2w ratio, Cortical thickness, and Functional
gradient) in red; surrogate correlations to source map plotted with rainclouds 37 (eigenstrapping: blue;
BrainSMASH: green; Spin Test: yellow). Empirical correlations of source/target pairs are given by red-bordered
(non-significant, pg,, > 0.05) or red-filled (significant, pg,, < 0.05) diamonds. All p-values are family-wise

error corrected 5.

The narrower tails of the BrainSMASH method are notable and could be due to a whitening
effect on the SA, which is evident in the noisier visual appearance of these nulls (Fig. 4A,
middle; Fig. S7A). Although the SA is preserved to the width of the kernel, a lack of
smoothness is present at larger separation distances (i.e., the variogram is flatter; Fig. S7B).
This issue does not arise with the eigenstrapped nulls (Fig. S7C). Very long-wavelength SA
(captured by the eigenspectrum) is preserved with eigenstrapping but degraded by the
BrainSMASH test (Fig. S7D-E). Although the Spin Test preserves the SA, the rotation of the
medial wall is evident — the black marker on the Spin Test surrogate (Fig. 4A: Spin-permuted,
rightmost brain map) indicates the non-data (NaNs) from the medial wall that are rotated onto
the cortical surface. This issue is avoided by eigenstrapping, as eigenmodes are rotated in the

eigenspace z, rather than the cortical surface x.

Generating subcortical surrogate maps

Characterizing subcortical activity and cortical-subcortical interactions is of substantial current
interest >1°6-39-64 We extended eigenstrapping to volumetric data to enable significance testing
of associations between and within subcortical structures. As a demonstration, we constructed

tetrahedral meshes of three subcortical structures (thalamus, hippocampus, and striatum; see
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Methods) and applied eigenstrapping to these discretized surfaces. The process for generation
of eigenstrapping surrogate maps in subcortical and volumetric spaces is identical to the
process for cortical surfaces once a mesh has been derived. In brief, subcortical (tetrahedral)
geometric eigenmodes are transformed to the spherical representation and randomly rotated,
then transformed back, producing subcortical surrogate maps with matched SA as in Eq. (2).
As an example, we derived maps of cortico-subcortical associations (known as “functional
connectivity gradients”, see Supplementary Information-S6 for details), which capture the
principal variations of functional connectivity between subcortical and cortical voxels. For
present purposes, this method yields smoothly varying patterns projected onto thalamus,

hippocampus, and striatum, from which we derive eigenstrapped surrogates (Fig. SA).

The application of eigenstrapping to these structures generates subcortical surrogates that
preserve the variety of SA in these data (Fig. 5B). Eigenstrapping preserves empirical SA
(change in Moran’s I; Al) more accurately than BrainSMASH with optimized parameters (Fig.
5C). Specifically, the changes in Moran’s / was significantly lower in eigenstrapping surrogates
compared with BrainSMASH surrogates across all subcortical structures (thalamus: Student’s
T-statistic (7) = 42.24, p < 0.0005, degrees of freedom (d.f.) =1998; hippocampus: T = 12.27,
p <0.0005, d.f. = 1998; striatum: T = -11.46, p < 0.0005, d.f- = 1998). Note that the Spin Test
cannot currently generate surrogates of volumetric maps, so it could not be compared with the

eigenstrapping and BrainSMASH results in these subcortical structures.
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Fig. 5. Subcortical surrogate maps with spatial autocorrelation. (A) Cortico-subcortical connectivity gradients
(empirical data) in left thalamus (left), hippocampus (middle), and striatum (right) and 3 example surrogates
generated using eigenstrapping. Number of modes used were 700, 100, and 300 for thalamus, hippocampus, and
striatum, respectively, and all surrogates had amplitude adjustment applied. Thalamus surrogates also had

residuals permuted. Axes of subcortical projections are given by red arrows: S: superior; A: anterior; M: medial,
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L: lateral. (B) Variograms of subcortical principal gradients (black) and 1000 surrogates (blue) across the three
subcortical structures. (C) Change in Moran’s [ (A]) for difference in SA within principal gradients. Rainclouds
of 1000 surrogates of eigenstrapping (blue) shown against BrainSMASH (green) for each subcortical structure.
Black bars denote T-tests performed between each null method Al. Stars correspond to significance level of two-

sided p-values of T-tests: ***: p <0.005; **: p <0.01; *: p <0.05; n.s.: p > 0.05.

Higher-order spatial correlations and complex textural features

While SA captures the linear, two-point smoothness of a pattern, many spatial maps possess
higher order correlations, with ternary (three-point) and quaternary (four-point) relationships
that cannot be predicted from knowledge of standard (two-point) correlations. These complex
textures arise in systems showing accumulative and thermochemical processes such as soils ©,
alloys ®, and gene enrichment in plants ¢’. Ternary and quaternary effects are also present in

18,19,21

natural scenes %, where they are central to human visual perception and associated
) y

responses in visual cortex 2.

Many effects expressed on the cortex arise from complex biophysical processes. It is hence
possible that many cortical maps, such as ocular dominance stripes, possess complex textural
properties. Establishing their presence requires a surrogate method that preserves low order
(binary) correlations but randomizes higher-order (ternary, quaternary, efc.) correlations. As a
proof of principle, we project a human face, a canonical multiscale natural scene, to the cortex
(Fig. 6A). The Spin Test rotates this cortical map and distorts but does not disrupt the complex
textural relationships when projected back to the grid (Fig. 6A, bottom). It thus provides an
insufficiently deep randomization of the original map. In contrast, eigenstrapping preserves

two-point correlations (first-order smoothness) but visually randomizes these more complex
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cross-scale properties (Fig. 6A, top) due to the randomization of effects across independently

rotated scales (eigengroups).

To test this effect more formally, we discretized the images using local texture patterns (local
ternary patterns; LTP %), which classify values (-1: black, 0: gray, 1: white) based on the
similarity of a local neighborhood to a central pixel (Fig. 6B, see Methods). Both
eigenstrapping and the Spin Test preserve the variogram and the eigenspectrum of the face
(Fig. 6C-D) but only eigenstrapped surrogates disrupt these textural properties (Fig. 6E). The
difference between the methods’ proportion ALTP is substantial (T =237.81, p < 0.0005, d.f.
= 1998). Eigenstrapping thus presents a unique method to generate a null distribution for

identifying complex textural properties in brain maps.
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Fig. 6. Eigenstrapping randomizes complex textural features in a natural scene. (A) A grayscale image of a natural
scene (an artificially generated face) projected to the cortex. 1000 surrogates generated from eigenstrapping (blue)
or the Spin Test (yellow). Luminance values are z-scored and kept constant throughout the analysis. Surrogates
are then projected back to the square grid. (B) Grid-projected images are discretized using local texture patterns
(local ternary patterns; LTP %), which classify values (-1: black, 0: gray, 1: white) based on the similarity of a
local neighborhood to a central pixel. (C) The variogram of the eigenstrapping surrogates follows the empirical
curve from very fine to coarse spatial scales. (D) The average modal power spectra of the surrogates are nearly

identical (Pearson’s » = 0.949) and reproduce the empirical power spectrum (gray) (Pearson’s » = 0.62 and 0.50
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for eigenstrapping and Spin Test, respectively). (E) The proportion change in local ternary patterns

empirical Y, LTP—surrogate ), LTP

(ALTP =

— ) for each surrogate method.
empirical ), LTP

DISCUSSION

We present a method to generate surrogate brain maps by resampling geometric basis sets.
Eigenstrapping can yield a very large number of surrogate data realizations for even small
surfaces such as subcortical structures, while closely preserving the spatial smoothness of the
original data. These additional realizations explore a deeper null space than other methods,
generating surrogate maps that preserve two-point correlations but randomize more complex
textural properties. Unlike the Spin Test, eigenstrapping avoids the “medial wall problem” (see
Supplementary Information-S7) and can be extended to subcortical structures. In comparison
with BrainSMASH, eigenstrapping preserves the full spatial power spectrum, preserving
spatial correlations well beyond the spatial smoothing kernel that lies at the core of the
BrainSMASH method. For this reason, eigenstrapping preserves the Moran’s local [ statistic
more faithfully than the BrainSMASH test and does not require parametric assumptions or
extensive parameter tuning, with eigenstrapping only having one free parameter (the number
of modes used for decomposition in Eq. 1). Improvements over the current state-of-the-art are
summarized in Table 1. We provide an open-access Python package, which implements the

method for both surface and volumetric maps 7°.

By rotating spatial modes within groups and re-inserting the coefficients from the original
eigenmode decomposition, eigenstrapping preserves the average amplitude of each spatial

41

frequency, and as such is a natural extension of time series phase randomization *' and

wavestrapping ’172, to spatial data on curved and folded surfaces. We show that eigenstrapping
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permutes higher order (ternary) properties of spatial maps, just as phase randomization
permutes comparable nonlinear properties in time-series data. Though it is generally accepted
that the brain expresses nonlinear activity #2773, the presence and putative function of
nonlinear properties of brain maps is an empirical question for which we provide the inferential

tools.

Eigenstrapping lends itself to an extension to spatiotemporal data, again by importing a
technique from multivariate phase randomization of time series data 7'""*: Applying the same
random rotation of each eigengroup across whole brain volumes acquired sequentially through
time preserves temporal properties of each point-wise timeseries and spatial relationships
between timeseries, while randomizing all other spatial properties. Excursions outside this
spatiotemporal null would be informative regarding complex physiological processes, such as

28,31,32,36,39,75

the presence of travelling waves and metastable dynamics 2>2%39, More broadly,

any metric sensitive to time-dependent functional connectivity could be employed to detect
t 76—83.

non-trivial fluctuations in brain state, which are of substantial current interes

Demonstrating these effects will be the subject of future work.

Identifying a suitable orthogonal transformation that removes the complex correlations within
spatiotemporal data is key to nonparametric methods, as this allows rotation of the phases of

basis functions without degrading the correlations of the original data 385

. Resampling
methods for null hypothesis testing of neuroimaging data have previously employed the
discrete wavelet transform for this endeavor 7>86, However, while wavelet-based resampling
methods are suitable for data on regular two-dimensional grids (such as fMRI slices) 7, the
geometric distortions induced by cortical curvature place limitations on the application of

59

wavelet-based methods to contemporary surface-based analyses °°. Obtaining geometric
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eigenmodes from the LBO is a natural extension of orthogonal basis decompositions to curved
surfaces and, as shown here, yield surrogate brain maps that preserve SA and provide good
control of false positives. A related approach, known as Moran spectral randomization (MSR),
first weights vertex connectivity of the surface (usually using the inverse of the pairwise
distance matrix) and then estimates the graph Laplacian of this matrix. The ensuing
eigenfunctions of the generalized eigenvalue problem for the Laplacian are then used to
decompose a map on the surface (similar to Eq. 1). Surrogate maps are derived by randomly
flipping the (positive or negative) sign of the coefficients 7. This process yields 2"71
surrogates, where n is the total number of eigenfunctions, far fewer than arising from free
rotation of geometric eigengroups as in this paper, which is (G — 1)!. Moreover, if the spatial
map loads onto a small number of the eigenfunctions, as often happens, flipping the sign of the
coefficient yields surrogates that are strongly (anti-)correlated to the original data, producing

multimodal null distributions 8. As a result, the MSR achieves poorer FPR in similar tests '!.

Geometric eigenmodes and their associated eigenvalues are obtained by solving the Helmholtz
equation on a discrete cortical mesh (see Methods). As such, geometric eigenmodes play a

30.33.34 and morphology . In particular,

crucial role in generative models of brain activity
physiologically derived neural field models % are separable into their temporal and spatial
components under very broad assumptions 3*-**. The spatial component of a broad class of
neural field models satisfies the Helmholtz equation, yielding the geometric modes that we
presently employ. These modes thus capture how geometry constrains large-scale neural
activity 43. The temporal component of neural field models assigns damped oscillations to each
eigenmode (higher frequencies are associated with eigenmodes with shorter characteristic

wavelengths). Although we use geometric eigenmodes for a specific statistical purpose, this

deeper connection to neural field theory (NFT) could assist in linking the statistical inference
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that eigenstrapping affords to deeper causal inference. For example, finding a significant
excursion of cortical activity from an eigenstrapped null could motivate exploration of linear
resonance or nonlinear excitation of NFT, extending prior work from a purely temporal to a

spatiotemporal framework %!,

Eigenstrapping is a very versatile approach, being applicable to both surface- and volume-
based analyses. It is also fast for most applications, with 200500 modes being adequate to
randomize common neuroimaging datasets, such as smoothed fMRI maps, while preserving
intrinsic spatial structure. We also note that incremental rotation of eigengroups (applying a
series of random but small rotations) would allow one to track the gradual randomization of a

2

brain map through a complex morphospace °2, similar to the approach recently applied to

93

synthetic brain networks °> and natural images 2°. In sum, eigenstrapping offers a flexible

methodology for null hypothesis testing in modern neuroscience.
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METHODS

Derivation of geometric eigenmodes

Cortical eigenmodes were derived from a triangular mesh of a population-averaged template
left hemisphere pial surface with vertices x ** (fs-LR-32k template space with 32,492 vertices
per hemisphere >>%: Fig. 1A, gray cortical surface. fSaverage5 template space with 10,242
vertices per hemisphere °%). The eigenmodes and associated eigenvalues are obtained by

solving the Helmholtz equation,

vzl/)n (x) = _Anlpn (x), (5)

where V? is the Laplace Beltrami Operator (LBO) which generalizes the Laplacian to the

94,96

curved surface where n = 0,1,2, ... indices the eigenmodes. The geometric modes

Yn=apy = {¢0,0(x),wll_l(x),lpl_o(x), ...lpA_#(x)} have corresponding eigenvalues A,_,, =
{/10,0, A—1, A0 s Any (x)}, where the index of mode 1 becomes group A and number u. When
the Helmholtz equation is applied to study waves, the eigenvalues are typically denoted by 4 =
k? where k is known as the wave number 33. These groups increase in size monotonically
according to the multiplicity factor n = 2A + 1 and decrease in spatial wavelength with group
(Fig. S10). The integer u in each group A ranges from —A < 0 < A. The eigenmodes 1, (x)
form a complete set of orthonormal basis functions, hence supporting the decomposition of a

surface map into space-varying components with coefficients £ (as in Eq. 1).

The Laplace-Beltrami operator (LBO) is a generalization of the Laplacian on a sphere z to
functions defined on arbitrary smooth surfaces such as the cortex x. On the sphere, the solutions

to Eq. (5) are identical to spherical harmonics, which are denoted Y;,,, (z) with eigenvalues &;,,,.
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Note that spherical harmonics occur in groups / which are rotationally invariant, hence with
identical eigenvalues &;,,, = &;,, where n # m index these degenerate, within-group harmonics.
In the non-spherical case (e.g., on the cortex), eigenvalues A5, # Aa, where v # p and are no

longer degenerate (Fig. S1).

Perturbation theory can be used to express LBO eigenfunctions 1;,,, and eigenvalues A;,,, on
non-spherical surfaces in terms of first order perturbations of the spherical harmonics 3*. For

the geometric eigenvalues from Eq. (5) this corresponds to

Alm = glm + lefllmr (6)

where &, is the unperturbed (spherical harmonic) eigenvalue and &'y, is the first order
perturbation with coefficient (;,,,. Hence, this expresses eigenmodes and their eigenvalues as
a first order perturbation of spherical harmonics. We use the indexing n = Ap with group A
and mode number p in the geometric (cortical and subcortical) case, and 1 = lim in the

spherical case to disambiguate geometric eigenmodes and spherical harmonics.

Crucially, the geometric eigenvalues within groups are perturbed by differing amounts because
of the symmetry breaking transformation of the sphere onto the folded cortex. That is, the
perturbation €);,,, # €;,, and thus the eigenvalues 4;,, # 4;;, when m # n. Fig. SI shows the
first 16 eigenvalues obtained by solving Eq. (5) on increasingly folded cortices from a spherical
representation (far left; p = 0) to a fully folded cortex (far right; p = 1) using FreeSurfer %4,
as a function of folding p. As p increases, the average eigenvalue within groups A remains

nearly constant (exactly so for the zeroth group A = 0) while the eigenvalues for individual
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modes demonstrate perturbed energies, splitting but not crossing with modes from adjacent

groups.

Eigenstrapping proceeds by rotating these geometric eigenmodes collectively within groups,
hence maintaining within-group orthogonality while achieving rotations across spatial scales
(perturbing higher-order patterns, in contrast to the Spin Test). To achieve this without
distorting the associated eigenvalue energies of different modes within a group, we restore the
symmetry of eigenvalues within groups through renormalization. This renormalization can be
recast as a mapping of geometric modes on the surface of a hypothetical ellipsoid with

dimension n = 2A + 1 and axes A,, to spherical modes on an n-dimensional (hyper)sphere

with axes &, (Eq. 2). That is, the first non-constant spherical harmonic (and modal) group
forms the surface of a 3D sphere, while the second group forms the surface of a 5D sphere, and

SO On.

The composition of these eigengroups and the geometric properties of each ellipsoid are crucial
to the eigenstrapping approach. The approximate wavelength on the cortex can be calculated

for each cortical eigengroup as 488

21R,

—. (7)
[L(+ D]z

wavelength =

The wavelengths for a sphere of radius R; ® 67 mm (approximately the radius of the
fsaverage5 population-average template used in this study) are listed in Supplementary Table
1, along with eigengroup membership for the first 1000 modes. The linear relationship of

eigengroup membership and the relationship of wavelength to group is given in Fig. S10. Fig.
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S10 also shows the group size for the first 100 eigengroups, corresponding to the first 10000

modes.

Once transformed to an n-dimensional sphere with discrete grid points z, each spherical mode

¢, (2) can be expressed as a weighted sum of spherical harmonics Y, (2),

bap = D Cruam Yim @), ®
I m

where Cy,m are coefficients of this expansion of spherical eigenmodes ¢,,(2) in terms of

spherical harmonics Y, (z). For low order modes, the terms on the RHS are predominated by
harmonics from the same group as the spherical eigenmodes, that is Cy,, > Cyy, for groups [ #
A 3. For higher modes, there is greater “leakage” from adjacent groups °7. Note that geometric
eigenmodes can be more complex than their corresponding spherical harmonics, such as
differing numbers of positive and negative domains within the same group. However, the
Courant Nodal Line Theorem limits the complexity of the resulting modes by restricting the
number of separate regions that can have positive or negative sign to at most »n for the nth

eigenmode .

Having mapped the modes to the sphere, the ensuing spherical eigenmodes ¢, can be rotated

in blocks of size n = 2A + 1 to yield new modes with the same characteristic wavelength.
Rotating all modes within each block by a common angle ensures they remain orthogonal to

each other.
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Rotation of spherical modes

Rotation of spherical modes ¢ is the matrix multiplication of mode groups of size {Z X n},
where Z is the number of vertices in the abstract (hyper-)sphere z and n is the number of modes

in that group, by a random rotation matrix R(8,) **% of size {n x n},

Pru(@) = dau(DR(6,)M. 9

where 8, is the random angle, drawn randomly for the A-th group. Eq. (9) is performed on all
groups, resulting in unbiased rotations of modes that preserves eigenvalue energies and within-
and between-group orthogonality. To generate random rotation matrices on the sphere z, we
draw from the Haar distribution for the special orthogonal group SO(n) %8, where n is the
number of modes in the group A. This is performed in practice by taking random selections of

SO(n) using the scipy.stats.special_ortho group Python function *°.
Generalized linear model for generating surrogate maps

An empirical brain map y(x) on spatial location x with components {x,y,z} can be
decomposed as a weighted sum of geometric modes ¥, (Eq. 1). The weightings, or

coefficients, S, of this sum can be obtained by integrating over the cortical surface 34444,

Bas = f Y)Y, (X)dx. (10)
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ﬁAp.
) BA,U.

Average normalized modal coefficients BA# = for HCP data (used in Fig. 1) are plotted

in Fig. S11.

Eigenstrapping algorithm

The algorithm for rotating eigengroups and creating randomized, SA-preserving surrogate

brain maps (the eigenstrapping algorithm; Algorithm 1) can be outlined in pseudocode, as

follows:

Algorithm 1 Eigenstrapping algorithm

Estimate coefficients 8 from brain map y using Eq. (10)
Index groups A « total number of groups (G)

Initialize new modes array ¥’

fori =1:G do

generate random rotation matrix R™" « S0 (n)

1

— 2
¢i,u - lpi,u)li,”

¢;,u = ¢i,u - R

1

Vi = il
¥ = (i}
end for
Surrogate map y' = Y’
(optional) y' amplitude adjusted < y'[sort(y')] = y[sort(y)]

(optional) y' = y' + perm(e)
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Note that the operator () refers to ‘new’, or ‘prime’, not the first derivative or the transpose.

Eigenvalues A, and eigenmodes 5, were derived from the left f5-LR-32k and fsaverage5

pial surfaces using a numerical finite element method and the Lanzcos algorithm of the
Implicitly Restarted Arnoldi Method in ARPACK ! as implemented in the ShapeDNA Python
package 01192 (https://github.com/Deep-MI/LaPy). These surfaces consist of 32,492 and
10,242 vertices, respectively. For Figs. 1-2 (on the fs-LR-32k pial surface), we computed up to
the first 6,000 modes to test the algorithm, which corresponds to approximately 18.5% of the
complete set of surface modes. For Fig. 3 in the simulated maps (on the fsaverage5 pial
surface), we computed up to the first 2500 modes, corresponding to approximately 2.5% of all
surface modes. In simulated maps that resembled brain data (1.5 = a > 3.0), the first 200 to
1000 modes were adequate to produce surrogate maps with the same SA structure
(corresponding to 0.2 to 1.0% of all surface modes). All cortical surfaces had the medial wall
removed (cut and turned into a Neumann boundary) prior to deriving eigenvalues and modes,
except as addressed in the texture analysis section (Methods: Local texture patterns; Fig. 6).
The Neumann boundary forces the derivative at the normal to the boundary to zero. This
boundary condition was chosen rather than the Dirichlet condition due to its better

minimization of boundary effects 10102,

There are several advantages of this method:
1) Because modes are generalizable representations of real-valued functions on the
surface, they can produce surrogate brain maps from any surface that is utilized in
imaging analyses (e.g., cortical maps across the entire developmental spectrum as

well as from different species).
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2) Volumetric modes can be calculated using tetrahedral meshes that represent
volumetric space and projected back to volume space. Thus, null maps can also be
derived for volume maps as well as surface maps. This is important as subcortical
spatiotemporal maps are a topic of substantial growing interest 3%-61:62:64.103,

3) As boundary effects are minimized !, modes can be derived without the presence
of the medial wall, as they were in all cortical analyses in this paper, or for an
arbitrarily-sized patch of brain for region-of-interest analysis, such as insular or
hippocampal maps %194,

4) One can derive a number of rotated modes ¥’ on any finite mesh to draw from and
create practically infinitely many different surrogate maps at will. The computation
time of Alg. (1) was calculated for different surfaces and total numbers of modes in
Fig. S9.

5) Incontrast to modes derived from the graph Laplacian of the surface distance matrix
(i.e., for MSR ¥7), geometric eigenmodes can be smoothly rotated. This permits a
far larger space of nulls than MSR and avoids producing nulls that are strongly

(anti-)correlated with the original data 8.

Depth of decomposition and treatment of residuals

The eigenmode decomposition Eq. (1) is complete for a total of N-/ modes when performed
on a spatial mesh with N vertices. Accordingly, the residual term &;(x) in Eq. (1) approaches
zero (within numerical accuracy). However, for a highly resolved cortical mesh (e.g., 32,492
vertex points for fs-LR-32k), a complete representation carries a substantial computational
burden. In practice, the error term becomes small for substantially fewer eigenmodes than the

above limit. Retaining the variance of the error ¢ is important to preserve the power and
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variogram of the original data (Fig. S2A). However, simply adding the original error yields
surrogate data that is correlated with the original data (Fig. S2B-C) when the number of modes
is not sufficiently high enough. This is because exactly the same error term £(x) is present in
all surrogate realizations. Randomly permuting the residual to yield a surrogate residual &’
ensures the correlation between data and surrogate (and between surrogates) is zero-centered.
However, if the error term is too large, this process will whiten the data, distorting the
variogram (Fig. S3). In practice, we found that selection of eigenmodes sufficient to balance
parsimony with accuracy (i.e., preserving the variogram and ensuring a zero centered
correlation between y and y’) is an important parameter to optimize — ranging from 50-2000
in the GRF analysis (Fig. 2) to 6000 in the HCP data (Fig. 1). For the smaller subcortical
meshes, between 100-700 eigenmodes were sufficient (Fig. 5). As a rule of thumb, it is
recommended that 200-500 modes be sufficient for most smoothed fMRI data. With
parcellated or very smooth data, fewer modes are required. Tools have been provided for the

user to fit the number of modes to the empirical SA in the Python toolbox 2.

HCP data

The Human Connectome Project (HCP) provides well-documented and robust activation maps

for each of its task conditions °>1%°, We downloaded activation maps in CIFTI format in fs-LR-

32k standard space from 255 unrelated subjects for the social cognition task, motor task,

gambling task, working memory task, language task, emotion task, and relational task,

accessing 47 task contrasts in total (see Supplementary Information-S3).

Gaussian random fields
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The statistical properties of eigenstrapping were benchmarked against a known relationship
using parametric simulations of Gaussian random fields (GRFs), adopting a previous approach
1 Simulated brain maps were derived by generating pairs of 3D multivariate Gaussian
distributions with Pearson correlation tuned to » = 0.15 £ 0.005. These ensembles of pairs were
generated with nine different levels SA across by modifying the slope of the pair’s power
spectral density (a = 0.0-4.0 in increments of 0.5, where 0.0 indicates random Gaussian noise).
The pairs of GRFs were projected to the fsaverage5 cortical mesh using FreeSurfer
mri_vol2surf. The medial wall was removed (i.e., set to NaN), and the resulting brain maps
were only included for further analysis if the intra-pair correlation fell within the target range
of r. At each level of SA, we generated 1000 pairs, resulting in 9000 total pairs of maps with

correlations from 0.145-0.155 (see Supplementary Information-S4).

Null comparison — Spin Test

The Spin Test randomizes the alignment between two cortical surface maps through rotation
by a random angle '°, and is useful for computing SA-corrected p-values when making
statistical inferences on dense cortical brain maps. To compare eigenstrapping to the null brain
maps generated using the Spin Test, we used the Python implementation of the method in the
neuromaps toolbox °. Any statistics drawn from Spin Test generated maps excluded the rotated
medial wall (as NaNs) as the standard implementation. As the spin test can only produce null
maps of the cortical surface, we used another method for comparison of both cortical surface

measures and volumetric measures, namely, the BrainSMASH method, outlined below.

In contrast to the single spin per surrogate property of the Spin Test, rotations within

eigenstrapping are applied group-wise to separate spherical eigenspaces, greatly increasing the
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true degrees of freedom. Notably, for every surrogate realized by the Spin Test, free rotation
of geometric eigengroups permits (G — 1)! realizations. These extra realizations explore a
deeper null space, where higher-order correlations are disrupted while still preserving

smoothness of the original map.

Null comparison — BrainSMASH

The Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity (BrainSMASH) method
uses geostatistical methods to derive randomized brain maps that replicate the empirical map’s
SA 8. The steps that the BrainSMASH tool uses is as follows: 1) randomly permute the values
in a target brain map; and 2) smooth and rescale the permuted map to recover the SA structure
of the target brain map. This is performed through rescaling of values in several spatial levels
of linear fits of Gaussian, exponential, or logarithmic distributions. To generate null brain maps
using the BrainSMASH method, we wused the Python implementation from

https://github.com/murraylab/brainsmash. The dense sampling algorithm

(brainsmash.mapgen.Sampled) was used for all analyses in this study. As the method allows
for different fits to the variogram depending on parameters given, optimized parameters were

chosen based on visual assessment of best fit to the original variogram.

Cortico-subcortical functional connectivity patterns

We used resting-state functional connectivity patterns (“gradients”) to examine the capacity of

eigenstrapping to identify cortical-subcortical effects. Resting-state data from the HCP were

sampled on tetrahedral meshes (thalamus, hippocampus, and the striatum - consisting of the

caudate, putamen, and nucleus accumbens areas). These structures were generated from
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binarized images of 25% probability thresholds of the Harvard-Oxford subcortical atlas of each
region %6719 Unlike the cortex, which can be modeled as a 2D sheet, subcortical volumes are
solid 3D objects. We therefore calculated the modes using tetrahedral meshes rather than

triangular meshes to account for the full 3D geometry of these structures 92,

Cortico-subcortical functional gradients were derived from diffusion map embedding of HCP
resting-state fMRI (see Supplementary Information-S6). The first non-zero gradient for each
subcortical structure (corresponding to the second eigenvector in Eq. S5) was derived from the
Laplacian of the group-averaged resting state functional connectivity matrix of HCP data in
MNI152 space. Eigenmodes were derived on the tetrahedral mesh, resampled to volumetric

space, then rotated, yielding SA-preserving surrogate subcortical maps (Fig. 5).

Local texture patterns

A variety of spatial images and processes, such as natural scenes, possess complex spatial
features that cannot be fully captured using standard first-order statistics (two-point
correlations, or spatial autocorrelation) 8. We refer to these higher order effects as textures to
emphasize the complex arrangement of spatial features above low level smoothness. Local
texture patterns (local ternary patterns; LTPs) %° were analyzed to quantify the effect of
eigenstrapping on the presence of these features in natural scenes. By discretizing an image
into three values (-1, 0, 1), LTPs can be used to detect complex, textural effects such as facial

features.

A 1024x1024 pixel grayscale image of a face (derived from ', Natural scene) was projected

to the fsaverage5 cortical surface (10,242 vertices) using a simple (inverse)-stereographic
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projection (Fig. 6A, Projection to cortex). The edges of the image joined at the central sulcus.
Eigenstrapping (blue) with 5000 modes solved on the cortical surface (including the medial
wall) was used to produce 1000 surrogates. The Spin Test (yellow) was used to rotate the data
on the cortical surface 1000 times, producing 1000 rotated surrogates. The medial wall was
included in this analysis in order to preserve the original luminance histogram and distortion
induced by the projection. Cortical data (original image and surrogates) were then projected to
the grid (Back-projection) by inverting the initial projection, interpolating with a bilinear spline
across non-data pixels induced by projection to the grid. Central pixels ¢; with index i were

discretized into three values LTP; = (—1,0,1) by a threshold k on 8-neighbor pixels p;

1, ifp;>c¢+k
LTPL = 0, lfpl > C; — k. (11)
-1 lfpl <ci— k

We used a threshold of k = 5 which is commonly used for face detection algorithms ¢%!!!, Each
pixel then had a value ranging from -8 to 8, which were then thresholded to positive non-zero
values, indicating a common feature to a particular 9-pixel neighborhood. Each of these values
were summed, producing a single LTP (3, LTP) for each image. If the feature of interest (the
face) is disrupted, then the LTP will be different to the original image. The proportion change

in LTP (ALTP) can be quantified by the equation,

empirical ), LTP — surrogate ), LTP
ALTP = — . (12)
empirical ), LTP

This value was derived for each surrogate and summarized in Fig. 6E. To test for a difference
in the impact of the two surrogate methods’ on complex patterns, a Student’s 7-test was

performed on ALTP of each method and two-tailed p-values derived.
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CODE AVAILABILITY

All code and data to reproduce the results of the paper as well as the eigenstrapping method

itself is openly available at https:/github.com/SNG-newy/eigenstrapping/ and *2.

Documentation on the method’s practical usage is also available from the same location. Raw

and preprocessed HCP data can be accessed at https://db.humanconnectome.org/.
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Table 1. Comparison of eigenstrapping to other null models.

Metric Surface Eigenstrapping Spin Test BrainSMASH
Computation time  Cortical! 103 seconds* 10* seconds
Volumetric? Cannot perform  10° seconds

volumetric nulls

Spatial Cortical®

autocorrelation Volumetric* Cannot perform  0.0041
volumetric nulls

False positive Cortical 13.5% 36.3%

rate’

Feature Eigenstrapping Spin Test BrainSMASH

Statistical assumption of spatial Non-stationary Stationary Stationary

autocorrelation

Disruption of higher-order effects v x v

Parallel maps® v x ¥ x

Morphospaces’ v x x

Cortico-subcortical connectivity v x v

! Average magnitude of computation time of 1000 surrogates on fsaverage5 surface using 1 CPU thread in log-
seconds.

2Average magnitude of computation time of 1000 surrogates of striatum volume using 1 CPU thread in log-
seconds.

*Magnitude of mean change in Moran’s / in cortical maps at & = 3 (Fig. 3).

“Mean change in Moran’s / in cortico-subcortical gradients in Fig. 5.

SFalse positive rate at & = 3.

®By fixing randomization of topology at the first volume, fMRI can be resampled at each subsequent volume

thereby examining which fluctuations arise by chance and what brain activity is significant.
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"Partial randomization of topology can occur by rotating iteratively or at specific modal wavelengths, exploring
the spatial dependencies and topological morphospace of the original data.

*Future development will implement speed-ups of the algorithm e.g., through memory-mapped matrices and
reducing computational overhead.

"The rotations of the Spin Test could be fixed, but due to the sizable loss of vertices during medial wall insertion,

it is less than ideal for providing a fully complete 4D null.

54


https://doi.org/10.1101/2024.02.07.579070
http://creativecommons.org/licenses/by-nc/4.0/

