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ABSTRACT 

The brain expresses activity in complex spatiotemporal patterns, reflected in the influence of 

spatially distributed cytoarchitectural, biochemical, and genetic properties. The 

correspondence between these multimodal “brain maps” may reflect underlying causal 

pathways and is hence a topic of substantial interest. However, these maps possess intrinsic 

smoothness (spatial autocorrelation, SA) which can inflate spurious cross-correlations, leading 

to false positive associations. Identifying true associations requires knowledge about the 

distribution of correlations that arise by chance in the presence of SA. This null distribution 

can be generated from an ensemble of surrogate brain maps that preserve the intrinsic SA but 

break the correlations between maps. The present work introduces the “eigenstrapping” 

method, which uses a spectral decomposition of cortical and subcortical surfaces in terms of 

geometric eigenmodes, and then randomly rotating these modes to produce SA-preserving 

surrogate brain maps. It is shown that these surrogates appropriately represent the null 

distribution of chance pairwise correlations, with similar or superior false positive control to 

current state-of-the-art procedures. Eigenstrapping is fast, eschews the need for parametric 

assumptions about the nature of a map’s SA, and works with maps defined on smooth surfaces 

with or without a boundary. Moreover, it generalizes to broader classes of null models than 

existing techniques, offering a unified approach for inference on cortical and subcortical maps, 

spatiotemporal processes, and complex patterns possessing higher-order correlations.  
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MAIN TEXT 

 

Interest in spatial patterns of cortical activity, cellular and microstructural composition, 

molecular architecture, and network connectivity of the brain has surged in recent years 1–6. An 

important challenge in this field is to measure the similarity between two or more such “brain 

maps” while excluding spurious relationships arising from chance. Correlations between 

different maps may reflect the influence of spatially patterned gene expression on 

cytoarchitecture or neuronal activity, hence motivating further mechanistic investigation 3,7. 

However, cortical regions that are close together tend to possess similar features, the causes of 

which may be biological (such as a gradual change in gene expression) or methodological (due 

to the spatial smoothing that is applied in the analyses of most imaging modalities). These 

effects combine to endow brain maps with a spatial autocorrelation (SA) that typically has an 

extent of tens of mm 5,8–10. The presence of such within-map correlations reduces the true 

degrees of freedom when testing for pairwise associations between maps, hence amplifying 

spurious associations. Null hypotheses of the correspondence between maps, i.e., the 

distribution of “chance” in map-to-map correlations, need to preserve SA to control Type I 

error 8,11. This is not a trivial undertaking in the presence of complex statistical dependencies 

within and between maps 12. 

 

There are several methods that can generate surrogate maps that maintain SA while 

randomizing the association between maps, hence providing suitable “null models”. Most of 

these null models fall into two broad classes: 1) direct spatial permutation, commonly known 

as the “Spin Test” 10,13–16, whereby maps in the neocortex are projected onto a sphere, randomly 

rotated, then projected back to the cortical surface; and 2) parameterized spatial randomization, 

such as “Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity” (BrainSMASH), 
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whereby surrogate maps are drawn from a random (Gaussian) process and smoothed to match 

the empirical SA with parametric models that approximate the original statistical structure 8,17. 

However, both classes have drawbacks: the Spin Test provides incomplete coverage of the 

cortex because it rotates missing data in the medial wall (i.e., vertices within the subcortex and 

anatomically inferior to the cingulate) onto the map (see Fig. 5 for a demonstration). In 

addition, the Spin Test has thus far not been extended to volumetric maps, precluding its use 

in the subcortex. The Spin Test also preserves the original spatial relationships between all 

points, only rotating them to different locations. This form of randomization yields a restricted 

null space with an assumption that no higher-order spatial structure exists within the original 

map. Higher-order spatial effects occur frequently in biological systems including neural 

processes in visual cortex, which reflect the complex statistical dependences in natural scenes 

18–21. Estimating the null space to identify these more complex spatial effects requires a 

randomization of higher-order statistical dependencies. Conversely, generating spatial nulls 

with spatial parametric techniques such as BrainSMASH 8 requires extensive parameter 

optimization and is computationally intensive 11. Moreover, these methods rest upon 

assumptions of stationarity on brain maps, drawing randomness from stationary Gaussian 

processes. Cortical activity frequently violates these assumptions, exhibiting long-tailed 

statistics and nonlinear spatiotemporal properties 22–27. At high levels of SA, both of these 

methods fail tests of Type I error, with false positive rates 2–10 times higher than expected 11. 

This inflation can be particularly problematic for inference on very smooth, lower-resolution 

maps, such as those generated with brain transcriptomics or positron emission tomography. 

 

To improve on the current state of null models, we turn to geometric basis sets. These basis 

sets – known as geometric eigenmodes – support the decomposition of complex spatial patterns 

from coarse to fine wavelengths. Geometry constrains the behavior of many complex systems, 
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including the brain, where it influences large-scale dynamics such as standing and travelling 

waves 28–32. Geometric eigenmodes have increasingly been used to model and describe these 

diverse aspects of brain activity and structure 33–39. Geometric basis sets are essentially 

spherical harmonics generalized to non-spherical surfaces and can be derived by application of 

the Laplace-Beltrami operator (LBO) 34. Notably, for the present purposes, the LBO projects 

spatial data into an orthogonal subspace where the data representation (the eigenmode 

coefficients) are decorrelated and hence exchangeable, similar to the Fourier or wavelet 

transforms 40,41. This allows constrained randomization of spatial data on irregular surfaces 

without disrupting (two-point) spatial correlations when the data are back-projected into the 

original spatial domain. Appropriate eigenmode randomization can thus yield a geometric 

surrogate map preserving the SA of the original data while randomizing the location and 

higher-order properties of the map. 

 

Here, we introduce eigenstrapping, a method of generating random brain maps with preserved 

SA for null hypothesis testing. By leveraging the mathematical properties of the LBO, 

eigenstrapping provides a method to perform rigorous statistical inference of cortical and 

subcortical associations and surface or volumetric maps for a broad range of research questions. 

We show that eigenstrapping has distinct advantages over existing methods for producing 

surrogate brain maps, including stronger false positive rate (FPR) control, relatively low 

computational burden, generalizability to a broad class of spatial processes, use in both cortical 

and subcortical maps, and applicability to complex spatial and spatiotemporal processes 10. We 

provide an open-source Python-based package that is deployable to commonly utilized 

neuroimaging formats 42. 

 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.579070doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.07.579070
http://creativecommons.org/licenses/by-nc/4.0/


 

 6 

 

RESULTS 

 

We first describe the method for decomposing a brain map into cortical eigenmodes. The 

method of constrained randomization through rotation of these eigenmodes is then provided. 

We next show how reconstructing a map from these rotated modes produces SA-preserving 

surrogate maps. Ensembles of these surrogates obtained through repeated random eigenmode 

rotation yields a null distribution for spurious associations between smooth maps, which we 

benchmark against the Spin Test and BrainSMASH methods. We end with an exposition of the 

randomization of more complex (ternary and quaternary) correlations by eigenmode rotation 

and the relevance of this to probe brain maps for complex textural properties. 

  

Eigenmode decomposition and group-based rotation 

 

An eigenmode decomposition on a discretized surface 𝒙 with N vertices yields N-1 orthogonal 

eigenmodes which can be ordered by their corresponding eigenvalues. These modes allow a 

spectral decomposition of a spatial pattern y from coarse to fine wavelengths (i.e., spatial 

frequencies) 33,34,43. In the spherical case, the eigenmodes are called spherical harmonics and 

occur in groups of modes with identical (degenerate) eigenvalues. Each harmonic group thus 

describes a set of orthogonal spatial patterns expressed on the sphere that have the same 

characteristic wavelength. The folds, gyri, and non-spherical distortions of the cortical 

geometry perturb this structure, but the eigenvalue separation between groups of modes is 

approximately preserved, particularly at spatial scales relevant for whole brain maps, allowing 

one to use similar groupings 33,34.  
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Formally, an empirical brain map 𝑦(𝒙) on a discrete surface 𝒙 with 𝑁 vertices is decomposed 

into a linear combination of geometric eigenmodes, 

 

𝑦(𝒙) = ' ' (𝛽!"𝜓!"(𝒙)+ + 𝜖#(𝒙)
!

"$%!

#

!$&

, (1) 

 

where	𝐺 is the total number of groups used in the decomposition and there are 2Λ + 1 modes 

in each group. 𝛽!" is the linear coefficient (weighting) of mode 𝜓!" in group Λ with eigenvalue 

𝜆!" (see Fig. 1A). These coefficients	are estimated by integration of the modes with the data y 

on the surface x (see Methods) 44,45. The residual error 𝜖#(𝒙) decreases in amplitude as the 

number of groups 𝐺 used in the decomposition increases, vanishing if the decomposition is 

complete; that is, if the full complement of 𝑁 − 1 modes is used. Individual modes within a 

group Λ are orthogonal by virtue of their relative orientation, whilst the groups themselves are 

also orthogonal due to their differing characteristic wavelengths. We use this orthogonality 

between groups to resample modes without disrupting the spatial spectra and hence smoothness 

of the map y. A more detailed description is provided in Methods.  

 

Spherical harmonics within groups possess identical characteristic spatial frequencies 

(eigenvalues) while the groups themselves are invariant under rotation. Geometric eigenmodes 

adapt to the folds and undulations of the cortical surface. As a consequence, geometric mode 

groups are not rotationally invariant and modes within a group possess similar but not identical 

spatial frequencies. To rotate geometric eigenmodes within groups, it is thus necessary to 

normalize their eigenvalues to have equal value, equivalent to mapping the modes onto an n-

dimensional sphere 𝒛, 
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𝜙!"(𝒛) =
𝜓!"(𝒙)

8𝜆!"
, (2) 

 

where 𝜙!" is the equivalent spherical representation of 𝜓!". The number of modes in a group 

and hence the dimension of the sphere remains 𝑛 = 2Λ + 1 (Supplementary Table S1).  

 

As a result of this normalization, all spherical modes within a group have identical eigenvalues 

denoted 𝜉!' = 𝜉!( = ⋯	𝜉!). To perform eigenstrapping, groups of spherical modes are rotated 

by taking the matrix multiplication with a random rotation matrix 𝑅(𝜃!) 46, 

 

𝜙!"* (𝒛) = 𝜙!"(𝒛)𝑅(𝜃!), (3) 

 

where the prime denotes rotation by a random angle 𝜃 and Λ is the group number. This group-

based rotation ensures that spherical modes within groups retain their orthogonality. This 

process is repeated with an independent random rotation applied to each group, breaking the 

original angular alignment of modes in different groups. 

 

Rotated spherical modes 𝜙!"* (𝒛)	are then mapped back to the cortical geometry, yielding 

rotated geometric eigenmodes, 

 

	𝜓*
!"(𝒙) = 𝜙*!"(𝒛)@𝜆!" , (4) 

 

A surrogate brain map 𝑦*(𝒙) is then obtained from these rotated eigenmodes, 
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𝑦′(𝒙) = ' ' (𝛽!"𝜓!"* (𝒙)+ + 𝜖#* (𝒙)
!

"$%!

#

!$&

, (5) 

 

where 𝛽!" are the same coefficients from Eq. (1) (Fig. 1C). The surrogate error term 𝜖#* (𝒙) is 

derived from simple random permutation of the error term 𝜖#(𝒙) from Eq. (1) (see Methods 

and Supplementary Information-S1). To preserve the amplitude distribution of the empirical 

data, an optional amplitude-adjustment step can be performed (Fig. 1C – top left; 

Supplementary Information-S2). The resampling procedure is illustrated in Fig. 1B for the first 

non-zero eigengroup, Λ = 1. 
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Fig. 1. The eigenstrapping method to generate surrogates that preserve spatial autocorrelation. (A) Eigenmode 

decomposition: coefficients 𝛽!" are derived from the generalized linear model (GLM; Eq. 1). A total number of 

modes is chosen such that the residual error in the GLM is negligible. (B) Eigenmode rotation: Eigenmodes are 

partitioned into eigengroups Λ (of size 𝑛 = 2Λ + 1) and normalized by their eigenvalues 𝜆!" to yield spherical 

eigenmodes 𝜙!" with identical eigenvalues 𝜉!". This is analogous to transformation from an n-dimensional 

ellipsoid with axes 𝜆!"to an n-dimensional sphere with axes 𝜉!". The equality of 𝜉 (i.e., degeneracy; Fig. S1) 

permits rotation of 𝜙!" by a random rotation matrix 𝑅(𝜃), resulting in rotated spherical eigenmodes 𝜙!"# . These 

modes are multiplied by /𝜆!" to project them back to the ellipsoid, resulting in rotated modes 𝜓!"#  in groups Λ. 

(C) Surrogate maps: The GLM with original coefficients 𝛽 is multiplied by rotated modes 𝜓# across all Λ𝜇 

yielding a surrogate brainmap 𝑦#. An optional amplitude adjustment step (rescaling; see Supplementary 
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Information-S2) is applied to the reconstructed data (in red; original data in blue). Residuals can be permuted and 

added back into the resulting surrogate map 𝑦# (see Supplementary Information-S1). 

 

Statistical properties of surrogate maps generated from rotated eigenmodes 

 

To test the performance of this procedure, we generated eigenstrapping surrogate maps of task-

evoked fMRI data on the fs-LR-32k surface of 255 unrelated healthy individuals from the 

Human Connectome Project 47 (HCP; emotion, see Supplementary Table S2 for a list of tasks). 

This was compared to surrogates generated from SA-naïve random permutation of vertices. An 

example target map (HCP; gambling) is compared to an example contrast emotion map in Fig. 

2A with Pearson’s correlation 𝑟 = 0.249. Example surrogate maps using an eigenmode 

decomposition with 6000 modes visually capture the smoothness of the original data (Fig. 2B). 

Quantifying the SA of these maps using the variogram, a measure of local smoothness 8 shows 

that eigenstrapping (Fig. 2C, blue) preserves the empirical SA to very small spatial separations 

(<1 mm). In contrast, SA-naïve random permutations whiten the surrogates, producing 

relatively flat SA (Fig. 2C, red). An ensemble of 1000 eigenstrapped surrogate maps exhibits 

a broad, zero-centered distribution of correlations with a target empirical map (Fig. 2D, blue; 

gambling), hence yielding a wider distribution than SA-naïve random permutations (Fig. 2D, 

red). Notably, eigenstrapped surrogate maps are on average uncorrelated with each other, 

yielding a broad, zero-centered pairwise-correlation distribution (Fig. 2E). 
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 Fig. 2. Statistical properties of eigenstrapped surrogates of fMRI data. (A) An example HCP task contrast map 

(Contrast map; left) was correlated with a target contrast map (Target map; right) from the same participant in 

another task condition at |𝑟| = 0.249. Each map is colored by task contrast weight. (B) Four example eigenstrapped 

surrogates of the contrast map (panel A, left). (C) The variogram from 0 to 30 mm spatial separation with the 

average of 1000 SA-naive surrogates (Random; red circles), and the average and standard deviation of 1000 

eigenstrapping surrogates (Eigenstrapping; blue line and shading, respectively) against the contrast map 

(Empirical). (D) Correlation of SA-naïve (red) and eigenstrapping (blue) surrogates with the target fMRI map. 

The correlation of the target map to the contrast map |𝑟| = 0.249 is shown with the dashed black line. In this case, 

the correlation lies outside the null distribution and it thus considered statistically significant. (D) Pairwise 

correlation of SA-naive (red) and eigenstrapping (blue) surrogates. 
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Control of false positives in simulated brain maps 

 

We next tested the efficacy of eigenstrapping in controlling Type I error, benchmarked against 

a ground truth from simulated brain maps. Simulated maps were generated with Gaussian 

random fields (GRFs) that have parametrically varying SA 48,49 with smoothness parameter 𝛼 

(Fig. 3; see Methods and Supplementary Information-S4). We simulated pairs of GRF maps 

with predetermined cross-correlations of |𝑟| = 0.15±0.005 and a cortical resolution of 10,242 

vertices in the fsaverage5 standard space. The relatively weak correlation of |𝑟| = 0.15 lies 

outside the null distribution for pairs of cortical maps that possess weak SA (low 𝛼), but falls 

within the null, consistent with a chance association, for pairs of smooth cortical maps (high 

𝛼) 8,11. Smoothness was tuned from 𝛼 = 0.0 (no SA) to 𝛼 = 4.0 (high SA) in steps of 0.5 with 

1000 pairs of GRFs generated at each step (Fig. 3A-B; Fig. S4). This procedure yielded 9000 

total pairs with pairwise cross-correlations centered at 0.15 (range 0.145-0.155). 

 

We used eigenstrapping to derive a significance value for the cross-correlation of the simulated 

pairs of cortical maps and compared it to random, SA-naïve surrogates of the same maps. 1000 

surrogate maps were derived from one map in each GRF pair using eigenstrapping (Fig. 3A, 

blue) with fixed numbers of modes based on the SA (Fig. 3B). The eigenstrapped surrogates 

and the other map in the GRF pair were correlated, forming a correlation distribution across 𝛼 

levels (Fig. 3C). The choice of modes was tailored empirically against the average GRF 

variogram, which is 2500 at 𝛼 = 0.0-1.0, 1500 at 𝛼 = 1.5, 500 at 𝛼 = 2.0, 200 at 𝛼 = 2.5-3.5, 

and 50 at 𝛼 = 4.0. At high SA (𝛼 > 1.5), the variogram is preserved with relatively few modes 

(corresponding to 0.05–1.5% of all modes on the surface) following amplitude adjustment 

(Supplementary Information-S2). This was compared to SA-naïve random surrogates, obtained 

by randomly permuting the data (Figure 2A; red). These distributions were then used to 
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estimate the two-tailed p-value for the original correlation of the GRF pair. As SA increases, 

the distribution of the correlation between eigenstrapped surrogates widens (Fig. 2C) until the 

inter-map correlation of 0.15 falls within the tail of the distribution at 𝛼 ≥ 2. The p-value 

increases accordingly (i.e., the -log10(p) drops) becoming greater than 0.05 for 𝛼 ≥ 2 (-log10(p) 

< 1.3; Fig. 2D). This analysis thus shows that a chance cross-correlation of |𝑟| = 0.15 is 

common among smooth brain maps. The distribution of correlations remains narrow for all 

randomized surrogates (Fig. 2D; red)	and the original correlation remains well outside the 

distribution for all 𝛼 (that is, the null is too precisely represented by SA-naïve nulls). 

 

We next assessed the false positive rate (FPR) of eigenstrapping against those of the Spin Test 

and BrainSMASH (the two most cited methods for spatial null models) by randomly swapping 

one map from each of the pairs from the analysis in Fig. 2A-D. Since the correlations between 

these randomly paired maps will be zero centered, the FPR should be equal to or below the 

chosen statistical alpha – i.e., ≤ 5% FPR at p < 0.05. Eigenstrapping yields an FPR close to the 

expected 5% for low SA (𝛼 < 1.5, Fig. 2E). As SA increased to a level visually consistent with 

the smoothness of empirical brain maps (𝛼 ≥ 1.5), eigenstrapping performs below expected at 

3.9% (𝛼 = 1.5), expected at 5.0% (𝛼 = 2.0), then increases to 8.6% (𝛼 = 2.5), and 11.3% (𝛼 = 

3.0). At higher levels of SA (smoother than typically seen empirically), the FPR rises to 12.3% 

(𝛼 = 3.5) and 12.6% (𝛼 = 4.0). For the same test, the Spin Test yields slightly higher FPR than 

eigenstrapping across all high SA regimes (Fig. 2E in yellow). The BrainSMASH method 

shows much higher FPR than both the Spin Test and eigenstrapping, reaching 29.2% at 𝛼 = 2.0 

and 38.4% at 𝛼 = 4.0 (Fig. 2E in green). 
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Fig. 3. Eigenstrapping control of false positives. (A) Gaussian random fields (GRFs) with varying SA were used 

to generate pairs of cortical maps with absolute Pearson correlation |𝑟| = 0.15±0.005. Two GRF maps are plotted 

at 𝛼 = 2 alongside random (red) and eigenstrapping (blue) exemplar surrogates. Rightmost panel shows exemplar 

histogram of SA-randomizing surrogate (red) and eigenstrapping surrogate (blue) correlations. Dashed line shows 

the ground-truth correlation of the GRF pair. (B) GRFs are plotted with 𝛼 increasing from 0.0 to 4.0. Variograms 

derived from the generated maps demonstrate the increase in SA with increase in 𝛼 (bottom panel). The choice of 

modes for eigenstrapping of each 𝛼-pair was tailored to the best visual fit of surrogate to empirical variograms. 

(C) Average null distributions of eigenstrapping for different levels of SA, normalized between 0 and 1. (D) Mean 

and standard deviation of two-tailed p-values of 1000 surrogates (SA-randomizing: red; eigenstrapping: blue) per 

9000 GRF pairs as a function of SA. Black dashed line shows significance at p = 0.05 (-log10(p) = 1.3). Null 

hypotheses are rejected above this line, not rejected below this line. (E) Each line indicates false positive rate 

(FPR) of null method as a function of spatial autocorrelation (Eigenstrapping: blue; Spin Test: yellow; 

BrainSMASH: green). Mean FPRs after 20 randomized sets are shown in solid lines. Shaded areas around solid 

lines correspond to standard deviations. The black dashed line corresponds to expected FPR of ≤ 5%. 

 

We further quantify the SA-preserving property of eigenstrapping by calculating Moran’s I, a 

measure of global SA 50, for each GRF and surrogate map (Fig. S5-6). In contrast to the 

variogram, which captures two-point correlations as a function of distance, Moran’s I provides 
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a single composite summary of SA 8,50. Eigenstrapping preserves Moran’s I for all levels of 

smoothness 𝛼 (see Supplementary Information-S5). 

 

Null hypothesis testing of associations between empirical brain maps 

 

A primary goal of using surrogate brain maps is to identify significant associations between 

effects expressed on the cortical mantle – where a ground truth is lacking – such as the 

correlation between the spatial pattern of a gene’s expression and spatially distributed 

activation patterns or cortical morphology 3,5,51. We next explored associations between the 

first principal component (PC1) of gene expression 52 (Fig. 4A, left) with well-validated surface 

maps (Fig. 4A, middle) of function (the principal gradient of cognitive terms from functional 

activation studies; Neurosynth) 53,54; structure (the average ratio of T1-weighted to T2-

weighted MRI) 47,55; morphology (average cortical thickness) 47,55; and intrinsic functional 

connectivity (the first principal component of resting-state functional connectivity) 56. We 

performed inference on these associations using surrogates derived from eigenstrapped 

surrogates (blue) and compared the results to the BrainSMASH (green) and Spin Test (yellow) 

methods. Empirical correlations were z-scored to quantify the relative effect size and statistical 

significance of each null (Fig. 4B).  

 

The correlations of each of these maps to gene expression vary considerably in magnitude and 

sign (see red diamonds in Fig. 4B). The association of the cognitive gradient to the gene 

expression map is the weakest (Fig. 4B, left; Neurosynth gradient). Notably, the null is only 

rejected for the BrainSMASH test	(𝑧	= 2.55, 𝑝 = 0.008) whereas the nulls derived from the two 

other methods possess wider tails which enclose the empirical correlation (eigenstrapping 𝑧 = 

1.14, 𝑝 = 0.39; Spin test 𝑧 = 1.71; p = 0.062). All other associations are statistically significant 
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(i.e., p < 0.05) when using any of the nulls, although the correlation distributions are 

consistently narrowest for the BrainSMASH test, yielding larger z-statistics for the T1w/T2w 

ratio (eigenstrapping 𝑧 = 4.18, BrainSMASH 𝑧 = 5.69, Spin Test 𝑧 = 4.18), cortical thickness 

(eigenstrapping 𝑧 = -4.10, BrainSMASH 𝑧 = -5.34, Spin Test 𝑧 = -3.59), and the functional 

gradient (eigenstrapping 𝑧 = -2.42; BrainSMASH 𝑧 = -3.86, Spin Test 𝑧 = -2.90).  

 

Fig. 4. Null hypothesis testing of associations between empirical brain maps. (A) Examining the association of 

the first principal gradient (PC1) of cortical gene expression (left) with four example target maps (center). The 
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exemplar surrogates per method are plotted on the left hemisphere of the inflated fsaverage surface. Inference on 

these associations was performed using three SA-preserving surrogate methods (eigenstrapping: blue; 

BrainSMASH: green; Spin Test: yellow) (B) Correlations with source brain map (first principal gradient of gene 

expression) of target brain maps (Neurosynth gradient, T1w/T2w ratio, Cortical thickness, and Functional 

gradient) in red; surrogate correlations to source map plotted with rainclouds 57 (eigenstrapping: blue; 

BrainSMASH: green; Spin Test: yellow). Empirical correlations of source/target pairs are given by red-bordered 

(non-significant, 𝑝$%&& ≥ 0.05) or red-filled (significant, 𝑝$%&& < 0.05) diamonds. All p-values are family-wise 

error corrected 58. 

 

The narrower tails of the BrainSMASH method are notable and could be due to a whitening 

effect on the SA, which is evident in the noisier visual appearance of these nulls (Fig. 4A, 

middle; Fig. S7A). Although the SA is preserved to the width of the kernel, a lack of 

smoothness is present at larger separation distances (i.e., the variogram is flatter; Fig. S7B). 

This issue does not arise with the eigenstrapped nulls (Fig. S7C). Very long-wavelength SA 

(captured by the eigenspectrum) is preserved with eigenstrapping but degraded by the 

BrainSMASH test (Fig. S7D-E). Although the Spin Test preserves the SA, the rotation of the 

medial wall is evident – the black marker on the Spin Test surrogate (Fig. 4A: Spin-permuted, 

rightmost brain map) indicates the non-data (NaNs) from the medial wall that are rotated onto 

the cortical surface. This issue is avoided by eigenstrapping, as eigenmodes are rotated in the 

eigenspace 𝒛, rather than the cortical surface 𝒙. 

 

Generating subcortical surrogate maps  

 

Characterizing subcortical activity and cortical-subcortical interactions is of substantial current 

interest 51,56,59–64. We extended eigenstrapping to volumetric data to enable significance testing 

of associations between and within subcortical structures. As a demonstration, we constructed 

tetrahedral meshes of three subcortical structures (thalamus, hippocampus, and striatum; see 
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Methods) and applied eigenstrapping to these discretized surfaces. The process for generation 

of eigenstrapping surrogate maps in subcortical and volumetric spaces is identical to the 

process for cortical surfaces once a mesh has been derived. In brief, subcortical (tetrahedral) 

geometric eigenmodes are transformed to the spherical representation and randomly rotated, 

then transformed back, producing subcortical surrogate maps with matched SA as in Eq. (2). 

As an example, we derived maps of cortico-subcortical associations (known as “functional 

connectivity gradients”, see Supplementary Information-S6 for details), which capture the 

principal variations of functional connectivity between subcortical and cortical voxels. For 

present purposes, this method yields smoothly varying patterns projected onto thalamus, 

hippocampus, and striatum, from which we derive eigenstrapped surrogates (Fig. 5A). 

 

The application of eigenstrapping to these structures generates subcortical surrogates that 

preserve the variety of SA in these data (Fig. 5B). Eigenstrapping preserves empirical SA 

(change in Moran’s I; Δ𝐼) more accurately than BrainSMASH with optimized parameters (Fig. 

5C). Specifically, the changes in Moran’s I was significantly lower in eigenstrapping surrogates 

compared with BrainSMASH surrogates across all subcortical structures (thalamus: Student’s 

T-statistic (T) = 42.24, p < 0.0005, degrees of freedom (d.f.) =1998; hippocampus: T = 12.27, 

p < 0.0005, d.f. = 1998; striatum: T = -11.46, p < 0.0005, d.f. = 1998). Note that the Spin Test 

cannot currently generate surrogates of volumetric maps, so it could not be compared with the 

eigenstrapping and BrainSMASH results in these subcortical structures.  
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Fig. 5. Subcortical surrogate maps with spatial autocorrelation. (A) Cortico-subcortical connectivity gradients 

(empirical data) in left thalamus (left), hippocampus (middle), and striatum (right) and 3 example surrogates 

generated using eigenstrapping. Number of modes used were 700, 100, and 300 for thalamus, hippocampus, and 

striatum, respectively, and all surrogates had amplitude adjustment applied. Thalamus surrogates also had 

residuals permuted. Axes of subcortical projections are given by red arrows: S: superior; A: anterior; M: medial; 
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L: lateral. (B) Variograms of subcortical principal gradients (black) and 1000 surrogates (blue) across the three 

subcortical structures. (C) Change in Moran’s I (ΔI) for difference in SA within principal gradients. Rainclouds 

of 1000 surrogates of eigenstrapping (blue) shown against BrainSMASH (green) for each subcortical structure. 

Black bars denote T-tests performed between each null method Δ𝐼. Stars correspond to significance level of two-

sided p-values of T-tests: ***: p < 0.005; **: p < 0.01; *: p < 0.05; n.s.: p ≥ 0.05. 

 

Higher-order spatial correlations and complex textural features 

 

While SA captures the linear, two-point smoothness of a pattern, many spatial maps possess 

higher order correlations, with ternary (three-point) and quaternary (four-point) relationships 

that cannot be predicted from knowledge of standard (two-point) correlations. These complex 

textures arise in systems showing accumulative and thermochemical processes such as soils 65, 

alloys 66, and gene enrichment in plants 67. Ternary and quaternary effects are also present in 

natural scenes 68, where they are central to human visual perception 18,19,21 and associated 

responses in visual cortex 20.  

 

Many effects expressed on the cortex arise from complex biophysical processes. It is hence 

possible that many cortical maps, such as ocular dominance stripes, possess complex textural 

properties. Establishing their presence requires a surrogate method that preserves low order 

(binary) correlations but randomizes higher-order (ternary, quaternary, etc.) correlations. As a 

proof of principle, we project a human face, a canonical multiscale natural scene, to the cortex 

(Fig. 6A). The Spin Test rotates this cortical map and distorts but does not disrupt the complex 

textural relationships when projected back to the grid (Fig. 6A, bottom). It thus provides an 

insufficiently deep randomization of the original map. In contrast, eigenstrapping preserves 

two-point correlations (first-order smoothness) but visually randomizes these more complex 
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cross-scale properties (Fig. 6A, top) due to the randomization of effects across independently 

rotated scales (eigengroups). 

 

To test this effect more formally, we discretized the images using local texture patterns (local 

ternary patterns; LTP 69), which classify values (-1: black, 0: gray, 1: white) based on the 

similarity of a local neighborhood to a central pixel (Fig. 6B, see Methods). Both 

eigenstrapping and the Spin Test preserve the variogram and the eigenspectrum of the face 

(Fig. 6C-D) but only eigenstrapped surrogates disrupt these textural properties (Fig. 6E). The 

difference between the methods’ proportion ΔLTP is substantial (T = 237.81, p < 0.0005, d.f. 

= 1998). Eigenstrapping thus presents a unique method to generate a null distribution for 

identifying complex textural properties in brain maps. 
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Fig. 6. Eigenstrapping randomizes complex textural features in a natural scene. (A) A grayscale image of a natural 

scene (an artificially generated face) projected to the cortex. 1000 surrogates generated from eigenstrapping (blue) 

or the Spin Test (yellow). Luminance values are z-scored and kept constant throughout the analysis. Surrogates 

are then projected back to the square grid. (B) Grid-projected images are discretized using local texture patterns 

(local ternary patterns; LTP 69), which classify values (-1: black, 0: gray, 1: white) based on the similarity of a 

local neighborhood to a central pixel. (C) The variogram of the eigenstrapping surrogates follows the empirical 

curve from very fine to coarse spatial scales. (D) The average modal power spectra of the surrogates are nearly 

identical (Pearson’s r = 0.949) and reproduce the empirical power spectrum (gray) (Pearson’s r = 0.62 and 0.50 
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for eigenstrapping and Spin Test, respectively). (E) The proportion change in local ternary patterns 

:Δ𝐿𝑇𝑃 = '()*&*+,-	 ∑ 0123$%&&45,6' ∑ 012
'()*&*+,- ∑012

> for each surrogate method.  

 

DISCUSSION 

 

We present a method to generate surrogate brain maps by resampling geometric basis sets. 

Eigenstrapping can yield a very large number of surrogate data realizations for even small 

surfaces such as subcortical structures, while closely preserving the spatial smoothness of the 

original data. These additional realizations explore a deeper null space than other methods, 

generating surrogate maps that preserve two-point correlations but randomize more complex 

textural properties. Unlike the Spin Test, eigenstrapping avoids the “medial wall problem” (see 

Supplementary Information-S7) and can be extended to subcortical structures. In comparison 

with BrainSMASH, eigenstrapping preserves the full spatial power spectrum, preserving 

spatial correlations well beyond the spatial smoothing kernel that lies at the core of the 

BrainSMASH method. For this reason, eigenstrapping preserves the Moran’s local I statistic 

more faithfully than the BrainSMASH test and does not require parametric assumptions or 

extensive parameter tuning, with eigenstrapping only having one free parameter (the number 

of modes used for decomposition in Eq. 1). Improvements over the current state-of-the-art are 

summarized in Table 1. We provide an open-access Python package, which implements the 

method for both surface and volumetric maps 70. 

 

By rotating spatial modes within groups and re-inserting the coefficients from the original 

eigenmode decomposition, eigenstrapping preserves the average amplitude of each spatial 

frequency, and as such is a natural extension of time series phase randomization 41 and 

wavestrapping 71,72, to spatial data on curved and folded surfaces. We show that eigenstrapping 
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permutes higher order (ternary) properties of spatial maps, just as phase randomization 

permutes comparable nonlinear properties in time-series data. Though it is generally accepted 

that the brain expresses nonlinear activity 24–27,73, the presence and putative function of 

nonlinear properties of brain maps is an empirical question for which we provide the inferential 

tools. 

 

Eigenstrapping lends itself to an extension to spatiotemporal data, again by importing a 

technique from multivariate phase randomization of time series data 71,74: Applying the same 

random rotation of each eigengroup across whole brain volumes acquired sequentially through 

time preserves temporal properties of each point-wise timeseries and spatial relationships 

between timeseries, while randomizing all other spatial properties. Excursions outside this 

spatiotemporal null would be informative regarding complex physiological processes, such as 

the presence of travelling waves 28,31,32,36,39,75 and metastable dynamics 25,26,30. More broadly, 

any metric sensitive to time-dependent functional connectivity could be employed to detect 

non-trivial fluctuations in brain state, which are of substantial current interest 76–83. 

Demonstrating these effects will be the subject of future work. 

 

Identifying a suitable orthogonal transformation that removes the complex correlations within 

spatiotemporal data is key to nonparametric methods, as this allows rotation of the phases of 

basis functions without degrading the correlations of the original data 84,85. Resampling 

methods for null hypothesis testing of neuroimaging data have previously employed the 

discrete wavelet transform for this endeavor 72,86. However, while wavelet-based resampling 

methods are suitable for data on regular two-dimensional grids (such as fMRI slices) 72, the 

geometric distortions induced by cortical curvature place limitations on the application of 

wavelet-based methods to contemporary surface-based analyses 59. Obtaining geometric 
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eigenmodes from the LBO is a natural extension of orthogonal basis decompositions to curved 

surfaces and, as shown here, yield surrogate brain maps that preserve SA and provide good 

control of false positives. A related approach, known as Moran spectral randomization (MSR), 

first weights vertex connectivity of the surface (usually using the inverse of the pairwise 

distance matrix) and then estimates the graph Laplacian of this matrix. The ensuing 

eigenfunctions of the generalized eigenvalue problem for the Laplacian are then used to 

decompose a map on the surface (similar to Eq. 1). Surrogate maps are derived by randomly 

flipping the (positive or negative) sign of the coefficients 87. This process yields 2)%' 

surrogates, where n is the total number of eigenfunctions, far fewer than arising from free 

rotation of geometric eigengroups as in this paper, which is (𝐺 − 1)!. Moreover, if the spatial 

map loads onto a small number of the eigenfunctions, as often happens, flipping the sign of the 

coefficient yields surrogates that are strongly (anti-)correlated to the original data, producing 

multimodal null distributions 8. As a result, the MSR achieves poorer FPR in similar tests 11. 

 

Geometric eigenmodes and their associated eigenvalues are obtained by solving the Helmholtz 

equation on a discrete cortical mesh (see Methods). As such, geometric eigenmodes play a 

crucial role in generative models of brain activity 30,33,34 and morphology 88. In particular, 

physiologically derived neural field models 89 are separable into their temporal and spatial 

components under very broad assumptions 33,34. The spatial component of a broad class of 

neural field models satisfies the Helmholtz equation, yielding the geometric modes that we 

presently employ. These modes thus capture how geometry constrains large-scale neural 

activity 43. The temporal component of neural field models assigns damped oscillations to each 

eigenmode (higher frequencies are associated with eigenmodes with shorter characteristic 

wavelengths). Although we use geometric eigenmodes for a specific statistical purpose, this 

deeper connection to neural field theory (NFT) could assist in linking the statistical inference 
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that eigenstrapping affords to deeper causal inference. For example, finding a significant 

excursion of cortical activity from an eigenstrapped null could motivate exploration of linear 

resonance or nonlinear excitation of NFT, extending prior work from a purely temporal to a 

spatiotemporal framework 90,91. 

 

Eigenstrapping is a very versatile approach, being applicable to both surface- and volume-

based analyses. It is also fast for most applications, with 200–500 modes being adequate to 

randomize common neuroimaging datasets, such as smoothed fMRI maps, while preserving 

intrinsic spatial structure. We also note that incremental rotation of eigengroups (applying a 

series of random but small rotations) would allow one to track the gradual randomization of a 

brain map through a complex morphospace 92, similar to the approach recently applied to 

synthetic brain networks 93 and natural images 20. In sum, eigenstrapping offers a flexible 

methodology for null hypothesis testing in modern neuroscience. 
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METHODS 

Derivation of geometric eigenmodes 

 

Cortical eigenmodes were derived from a triangular mesh of a population-averaged template 

left hemisphere pial surface with vertices 𝒙 94 (fs-LR-32k template space with 32,492 vertices 

per hemisphere 55,95: Fig. 1A, gray cortical surface. fsaverage5 template space with 10,242 

vertices per hemisphere 94). The eigenmodes and associated eigenvalues are obtained by 

solving the Helmholtz equation, 

 

∇(𝜓+(𝒙) = −𝜆+𝜓+(𝒙), (5) 

 

where ∇( is the Laplace Beltrami Operator (LBO) which generalizes the Laplacian to the 

curved surface 94,96 where 𝜂 = 0,1,2, … indices the eigenmodes. The geometric modes 

𝜓+$!" = Q𝜓&,&(𝒙), 𝜓',%'(𝒙), 𝜓',&(𝒙), …𝜓!,"(𝒙)R have corresponding eigenvalues 𝜆+$!" =

Q𝜆&,&, 𝜆',%', 𝜆',&… , 𝜆!,"(𝒙)R, where the index of mode 𝜂 becomes group Λ and number 𝜇. When 

the Helmholtz equation is applied to study waves, the eigenvalues are typically denoted by 𝜆 =

𝑘( where 𝑘 is known as the wave number 33. These groups increase in size monotonically 

according to the multiplicity factor 𝑛 = 2Λ + 1 and decrease in spatial wavelength with group 

(Fig. S10). The integer 𝜇 in each group Λ ranges from −Λ ≤ 0 ≤ Λ. The eigenmodes 𝜓+(𝒙) 

form a complete set of orthonormal basis functions, hence supporting the decomposition of a 

surface map into space-varying components with coefficients 𝛽 (as in Eq. 1).  

 

The Laplace-Beltrami operator (LBO) is a generalization of the Laplacian on a sphere z to 

functions defined on arbitrary smooth surfaces such as the cortex x. On the sphere, the solutions 

to Eq. (5) are identical to spherical harmonics, which are denoted 𝑌-.(𝒛) with eigenvalues 𝜉-.. 
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Note that spherical harmonics occur in groups l which are rotationally invariant, hence with 

identical eigenvalues 𝜉-. = 𝜉-) where 𝑛 ≠ 𝑚 index these degenerate, within-group harmonics. 

In the non-spherical case (e.g., on the cortex), eigenvalues 𝜆!" ≠ 𝜆!/ where 𝜈 ≠ 𝜇 and are no 

longer degenerate (Fig. S1).  

 

Perturbation theory can be used to express LBO eigenfunctions 𝜓-. and eigenvalues 𝜆-. on 

non-spherical surfaces in terms of first order perturbations of the spherical harmonics 34. For 

the geometric eigenvalues from Eq. (5) this corresponds to 

 

𝜆-. = 𝜉-. + Ω-.𝜉′-., (6) 

 

where 𝜉-. is the unperturbed (spherical harmonic) eigenvalue and 𝜉′-. is the first order 

perturbation with coefficient Ω-.. Hence, this expresses eigenmodes and their eigenvalues as 

a first order perturbation of spherical harmonics. We use the indexing 𝜂 = Λ𝜇 with group Λ 

and mode number 𝜇 in the geometric (cortical and subcortical) case, and 𝜂 = 𝑙𝑚 in the 

spherical case to disambiguate geometric eigenmodes and spherical harmonics. 

 

Crucially, the geometric eigenvalues within groups are perturbed by differing amounts because 

of the symmetry breaking transformation of the sphere onto the folded cortex. That is, the 

perturbation Ω-. ≠ Ω-) and thus the eigenvalues 𝜆-. ≠ 𝜆-) when 𝑚 ≠ 𝑛. Fig. S1 shows the 

first 16 eigenvalues obtained by solving Eq. (5) on increasingly folded cortices from a spherical 

representation (far left; 𝜌 = 0) to a fully folded cortex (far right; 𝜌 = 1) using FreeSurfer 94, 

as a function of folding 𝜌. As 𝜌 increases, the average eigenvalue within groups Λ remains 

nearly constant (exactly so for the zeroth group Λ = 0) while the eigenvalues for individual 
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modes demonstrate perturbed energies, splitting but not crossing with modes from adjacent 

groups. 

 

Eigenstrapping proceeds by rotating these geometric eigenmodes collectively within groups, 

hence maintaining within-group orthogonality while achieving rotations across spatial scales 

(perturbing higher-order patterns, in contrast to the Spin Test). To achieve this without 

distorting the associated eigenvalue energies of different modes within a group, we restore the 

symmetry of eigenvalues within groups through renormalization. This renormalization can be 

recast as a mapping of geometric modes on the surface of a hypothetical ellipsoid with 

dimension 𝑛 = 2Λ + 1 and axes 𝜆!" to spherical modes on an n-dimensional (hyper)sphere 

with axes 𝜉-. (Eq. 2). That is, the first non-constant spherical harmonic (and modal) group 

forms the surface of a 3D sphere, while the second group forms the surface of a 5D sphere, and 

so on. 

 

The composition of these eigengroups and the geometric properties of each ellipsoid are crucial 

to the eigenstrapping approach. The approximate wavelength on the cortex can be calculated 

for each cortical eigengroup as 43,88 

 

wavelength ≅
2𝜋𝑅0

[𝑙(𝑙 + 1)]
'
(
. (7) 

 

The wavelengths for a sphere of radius 𝑅0 ≈ 67 mm (approximately the radius of the 

fsaverage5 population-average template used in this study) are listed in Supplementary Table 

1, along with eigengroup membership for the first 1000 modes. The linear relationship of 

eigengroup membership and the relationship of wavelength to group is given in Fig. S10. Fig. 
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S10 also shows the group size for the first 100 eigengroups, corresponding to the first 10000 

modes. 

 

Once transformed to an n-dimensional sphere with discrete grid points 𝒛, each spherical mode 

𝜙!"(𝒛)	can be expressed as a weighted sum of spherical harmonics 𝑌-.(𝒛), 

 

𝜙!" =''𝐶!"-.
.

𝑌-.
-

(𝒛), (8) 

 

where 𝐶!"-. are coefficients of this expansion of spherical eigenmodes 𝜙!"(𝒛)	in terms of 

spherical harmonics 𝑌-.(𝒛). For low order modes, the terms on the RHS are predominated by 

harmonics from the same group as the spherical eigenmodes, that is 𝐶!" ≫	𝐶-. for groups 𝑙 ≠

Λ 33. For higher modes, there is greater “leakage” from adjacent groups 97. Note that geometric 

eigenmodes can be more complex than their corresponding spherical harmonics, such as 

differing numbers of positive and negative domains within the same group. However, the 

Courant Nodal Line Theorem limits the complexity of the resulting modes by restricting the 

number of separate regions that can have positive or negative sign to at most n for the nth 

eigenmode 33. 

 

Having mapped the modes to the sphere, the ensuing spherical eigenmodes	𝜙!" can be rotated 

in blocks of size 𝑛 = 2Λ + 1 to yield new modes with the same characteristic wavelength. 

Rotating all modes within each block by a common angle ensures they remain orthogonal to 

each other. 
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Rotation of spherical modes 

 

Rotation of spherical modes 𝜙 is the matrix multiplication of mode groups of size {𝑍 × 𝑛}, 

where 𝑍 is the number of vertices in the abstract (hyper-)sphere 𝒛 and 𝑛 is the number of modes 

in that group, by a random rotation matrix 𝑅(𝜃!) 98,99 of size {𝑛 × 𝑛}, 

 

𝜙!"* (𝒛) = 𝜙!"(𝒛)𝑅(𝜃!){)×)}. (9) 

 

where 𝜃! is the random angle, drawn randomly for the Λ-th group. Eq. (9) is performed on all 

groups, resulting in unbiased rotations of modes that preserves eigenvalue energies and within- 

and between-group orthogonality. To generate random rotation matrices on the sphere 𝒛, we 

draw from the Haar distribution for the special orthogonal group SO(n) 98, where n is the 

number of modes in the group Λ. This is performed in practice by taking random selections of 

SO(n) using the scipy.stats.special_ortho_group Python function 99. 

 

Generalized linear model for generating surrogate maps 

 

An empirical brain map 𝑦(𝒙) on spatial location 𝒙 with components {𝑥, 𝑦, 𝑧} can be 

decomposed as a weighted sum of geometric modes 𝜓!" (Eq. 1). The weightings, or 

coefficients, 𝛽!" of this sum can be obtained by integrating over the cortical surface 34,44,45, 

 

𝛽!" = v𝑦(𝒙)𝜓!"(𝒙)𝑑𝒙 . (10) 
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Average normalized modal coefficients 𝛽x!" =
478
∑478

 for HCP data (used in Fig. 1) are plotted 

in Fig. S11. 

 

Eigenstrapping algorithm 

 

The algorithm for rotating eigengroups and creating randomized, SA-preserving surrogate 

brain maps (the eigenstrapping algorithm; Algorithm 1) can be outlined in pseudocode, as 

follows: 

 

Algorithm 1 Eigenstrapping algorithm 

Estimate coefficients 𝜷 from brain map 𝒚 using Eq. (10) 

Index groups 𝚲 ← total number of groups (G) 

Initialize new modes array 𝚿* 

for 𝒊 = 𝟏: 𝑮 do 

generate random rotation matrix 𝑹𝒏×𝒏 ← 𝑺𝑶(𝒏)	

																𝝓𝒊,𝝁 = 𝝍𝒊,𝝁𝝀𝒊,𝝁
%𝟏𝟐	  

																𝝓𝒊,𝝁
* = 𝝓𝒊,𝝁 ∙ 𝑹𝒏×𝒏   

																𝝍𝒊,𝝁
* = 𝝓𝒊,𝝁

* 𝝀𝒊,𝝁
𝟏
𝟐 	   

																𝚿𝒊
* = {𝝍𝒊,𝝁

* }  

end for 

Surrogate map 𝒚* = 𝜷𝚿* 

(optional) 𝒚* amplitude adjusted ← 𝒚*[𝒔𝒐𝒓𝒕(𝒚*)] = 𝒚[𝒔𝒐𝒓𝒕(𝒚)]	

(optional) 𝒚* = 𝒚* + 𝒑𝒆𝒓𝒎(𝝐) 
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Note that the operator (′) refers to ‘new’, or ‘prime’, not the first derivative or the transpose. 

 

Eigenvalues 𝜆!9 and eigenmodes 𝜓!" were derived from the left fs-LR-32k and fsaverage5 

pial surfaces using a numerical finite element method and the Lanzcos algorithm of the 

Implicitly Restarted Arnoldi Method in ARPACK 100 as implemented in the ShapeDNA Python 

package 101,102 (https://github.com/Deep-MI/LaPy). These surfaces consist of 32,492 and 

10,242 vertices, respectively. For Figs. 1-2 (on the fs-LR-32k pial surface), we computed up to 

the first 6,000 modes to test the algorithm, which corresponds to approximately 18.5% of the 

complete set of surface modes. For Fig. 3 in the simulated maps (on the fsaverage5 pial 

surface), we computed up to the first 2500 modes, corresponding to approximately 2.5% of all 

surface modes. In simulated maps that resembled brain data (1.5 ≥ 𝛼 ≥ 3.0), the first 200 to 

1000 modes were adequate to produce surrogate maps with the same SA structure 

(corresponding to 0.2 to 1.0% of all surface modes). All cortical surfaces had the medial wall 

removed (cut and turned into a Neumann boundary) prior to deriving eigenvalues and modes, 

except as addressed in the texture analysis section (Methods: Local texture patterns; Fig. 6). 

The Neumann boundary forces the derivative at the normal to the boundary to zero. This 

boundary condition was chosen rather than the Dirichlet condition due to its better 

minimization of boundary effects 101,102. 

 

There are several advantages of this method:  

1) Because modes are generalizable representations of real-valued functions on the 

surface, they can produce surrogate brain maps from any surface that is utilized in 

imaging analyses (e.g., cortical maps across the entire developmental spectrum as 

well as from different species). 
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2) Volumetric modes can be calculated using tetrahedral meshes that represent 

volumetric space and projected back to volume space. Thus, null maps can also be 

derived for volume maps as well as surface maps. This is important as subcortical 

spatiotemporal maps are a topic of substantial growing interest 59,61,62,64,103.  

3) As boundary effects are minimized 101, modes can be derived without the presence 

of the medial wall, as they were in all cortical analyses in this paper, or for an 

arbitrarily-sized patch of brain for region-of-interest analysis, such as insular or 

hippocampal maps 59,104.  

4) One can derive a number of rotated modes 𝚿* on any finite mesh to draw from and 

create practically infinitely many different surrogate maps at will. The computation 

time of Alg. (1) was calculated for different surfaces and total numbers of modes in 

Fig. S9. 

5) In contrast to modes derived from the graph Laplacian of the surface distance matrix 

(i.e., for MSR 87), geometric eigenmodes can be smoothly rotated. This permits a 

far larger space of nulls than MSR and avoids producing nulls that are strongly 

(anti-)correlated with the original data 8. 

 

Depth of decomposition and treatment of residuals 

 

The eigenmode decomposition Eq. (1) is complete for a total of N-1 modes when performed 

on a spatial mesh with N vertices. Accordingly, the residual term 𝜀#(𝒙) in Eq. (1) approaches 

zero (within numerical accuracy). However, for a highly resolved cortical mesh (e.g., 32,492 

vertex points for fs-LR-32k), a complete representation carries a substantial computational 

burden. In practice, the error term becomes small for substantially fewer eigenmodes than the 

above limit. Retaining the variance of the error 𝜀 is important to preserve the power and 
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variogram of the original data (Fig. S2A). However, simply adding the original error yields 

surrogate data that is correlated with the original data (Fig. S2B-C) when the number of modes 

is not sufficiently high enough. This is because exactly the same error term 𝜀(𝒙) is present in 

all surrogate realizations. Randomly permuting the residual to yield a surrogate residual 𝜀* 

ensures the correlation between data and surrogate (and between surrogates) is zero-centered. 

However, if the error term is too large, this process will whiten the data, distorting the 

variogram (Fig. S3). In practice, we found that selection of eigenmodes sufficient to balance 

parsimony with accuracy (i.e., preserving the variogram and ensuring a zero centered 

correlation between y and y’) is an important parameter to optimize – ranging from 50–2000 

in the GRF analysis (Fig. 2) to 6000 in the HCP data (Fig. 1). For the smaller subcortical 

meshes, between 100–700 eigenmodes were sufficient (Fig. 5). As a rule of thumb, it is 

recommended that 200–500 modes be sufficient for most smoothed fMRI data. With 

parcellated or very smooth data, fewer modes are required. Tools have been provided for the 

user to fit the number of modes to the empirical SA in the Python toolbox 42. 

 

HCP data 

 

The Human Connectome Project (HCP) provides well-documented and robust activation maps 

for each of its task conditions 55,105. We downloaded activation maps in CIFTI format in fs-LR-

32k standard space from 255 unrelated subjects for the social cognition task, motor task, 

gambling task, working memory task, language task, emotion task, and relational task, 

accessing 47 task contrasts in total (see Supplementary Information-S3). 

 

Gaussian random fields 
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The statistical properties of eigenstrapping were benchmarked against a known relationship 

using parametric simulations of Gaussian random fields (GRFs), adopting a previous approach 

11. Simulated brain maps were derived by generating pairs of 3D multivariate Gaussian 

distributions with Pearson correlation tuned to r = 0.15 ± 0.005. These ensembles of pairs were 

generated with nine different levels SA across by modifying the slope of the pair’s power 

spectral density (𝛼 = 0.0–4.0 in increments of 0.5, where 0.0 indicates random Gaussian noise). 

The pairs of GRFs were projected to the fsaverage5 cortical mesh using FreeSurfer 

mri_vol2surf. The medial wall was removed (i.e., set to NaN), and the resulting brain maps 

were only included for further analysis if the intra-pair correlation fell within the target range 

of r. At each level of SA, we generated 1000 pairs, resulting in 9000 total pairs of maps with 

correlations from 0.145–0.155 (see Supplementary Information-S4). 

 

Null comparison – Spin Test 

 

The Spin Test randomizes the alignment between two cortical surface maps through rotation 

by a random angle 10, and is useful for computing SA-corrected p-values when making 

statistical inferences on dense cortical brain maps. To compare eigenstrapping to the null brain 

maps generated using the Spin Test, we used the Python implementation of the method in the 

neuromaps toolbox 5. Any statistics drawn from Spin Test generated maps excluded the rotated 

medial wall (as NaNs) as the standard implementation. As the spin test can only produce null 

maps of the cortical surface, we used another method for comparison of both cortical surface 

measures and volumetric measures, namely, the BrainSMASH method, outlined below. 

 

In contrast to the single spin per surrogate property of the Spin Test, rotations within 

eigenstrapping are applied group-wise to separate spherical eigenspaces, greatly increasing the 
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true degrees of freedom. Notably, for every surrogate realized by the Spin Test, free rotation 

of geometric eigengroups permits (𝐺 − 1)! realizations. These extra realizations explore a 

deeper null space, where higher-order correlations are disrupted while still preserving 

smoothness of the original map.  

 

Null comparison – BrainSMASH 

 

The Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity (BrainSMASH) method 

uses geostatistical methods to derive randomized brain maps that replicate the empirical map’s 

SA 8. The steps that the BrainSMASH tool uses is as follows: 1) randomly permute the values 

in a target brain map; and 2) smooth and rescale the permuted map to recover the SA structure 

of the target brain map. This is performed through rescaling of values in several spatial levels 

of linear fits of Gaussian, exponential, or logarithmic distributions. To generate null brain maps 

using the BrainSMASH method, we used the Python implementation from 

https://github.com/murraylab/brainsmash. The dense sampling algorithm 

(brainsmash.mapgen.Sampled) was used for all analyses in this study. As the method allows 

for different fits to the variogram depending on parameters given, optimized parameters were 

chosen based on visual assessment of best fit to the original variogram. 

 

Cortico-subcortical functional connectivity patterns 

 

We used resting-state functional connectivity patterns (“gradients”) to examine the capacity of 

eigenstrapping to identify cortical-subcortical effects. Resting-state data from the HCP were 

sampled on tetrahedral meshes (thalamus, hippocampus, and the striatum - consisting of the 

caudate, putamen, and nucleus accumbens areas). These structures were generated from 
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binarized images of 25% probability thresholds of the Harvard-Oxford subcortical atlas of each 

region 106–109. Unlike the cortex, which can be modeled as a 2D sheet, subcortical volumes are 

solid 3D objects. We therefore calculated the modes using tetrahedral meshes rather than 

triangular meshes to account for the full 3D geometry of these structures 102. 

 

Cortico-subcortical functional gradients were derived from diffusion map embedding of HCP 

resting-state fMRI (see Supplementary Information-S6). The first non-zero gradient for each 

subcortical structure (corresponding to the second eigenvector in Eq. S5) was derived from the 

Laplacian of the group-averaged resting state functional connectivity matrix of HCP data in 

MNI152 space. Eigenmodes were derived on the tetrahedral mesh, resampled to volumetric 

space, then rotated, yielding SA-preserving surrogate subcortical maps (Fig. 5). 

 

Local texture patterns 

 

A variety of spatial images and processes, such as natural scenes, possess complex spatial 

features that cannot be fully captured using standard first-order statistics (two-point 

correlations, or spatial autocorrelation) 68. We refer to these higher order effects as textures to 

emphasize the complex arrangement of spatial features above low level smoothness. Local 

texture patterns (local ternary patterns; LTPs) 69 were analyzed to quantify the effect of 

eigenstrapping on the presence of these features in natural scenes. By discretizing an image 

into three values (-1, 0, 1), LTPs can be used to detect complex, textural effects such as facial 

features. 

 

A 1024´1024 pixel grayscale image of a face (derived from 110, Natural scene) was projected 

to the fsaverage5 cortical surface (10,242 vertices) using a simple (inverse)-stereographic 
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projection (Fig. 6A, Projection to cortex). The edges of the image joined at the central sulcus. 

Eigenstrapping (blue) with 5000 modes solved on the cortical surface (including the medial 

wall) was used to produce 1000 surrogates. The Spin Test (yellow) was used to rotate the data 

on the cortical surface 1000 times, producing 1000 rotated surrogates. The medial wall was 

included in this analysis in order to preserve the original luminance histogram and distortion 

induced by the projection. Cortical data (original image and surrogates) were then projected to 

the grid (Back-projection) by inverting the initial projection, interpolating with a bilinear spline 

across non-data pixels induced by projection to the grid. Central pixels 𝑐: with index 𝑖 were 

discretized into three values 𝐿𝑇𝑃: = (−1,0,1) by a threshold 𝑘 on 8-neighbor pixels 𝑝: 

 

𝐿𝑇𝑃: = �
1,								if	𝑝: > 𝑐: + 𝑘
0,								if	𝑝: > 𝑐: − 𝑘
−1						if	𝑝: < 𝑐: − 𝑘

. (11) 

 

We used a threshold of 𝑘 = 5 which is commonly used for face detection algorithms 69,111. Each 

pixel then had a value ranging from -8 to 8, which were then thresholded to positive non-zero 

values, indicating a common feature to a particular 9-pixel neighborhood. Each of these values 

were summed, producing a single LTP (∑𝐿𝑇𝑃) for each image. If the feature of interest (the 

face) is disrupted, then the LTP will be different to the original image. The proportion change 

in LTP (Δ𝐿𝑇𝑃) can be quantified by the equation, 

 

Δ𝐿𝑇𝑃 =
𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	 ∑ 𝐿𝑇𝑃 − 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 ∑𝐿𝑇𝑃

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	 ∑ 𝐿𝑇𝑃
. (12) 

 

This value was derived for each surrogate and summarized in Fig. 6E. To test for a difference 

in the impact of the two surrogate methods’ on complex patterns, a Student’s T-test was 

performed on Δ𝐿𝑇𝑃 of each method and two-tailed p-values derived. 
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CODE AVAILABILITY 

 

All code and data to reproduce the results of the paper as well as the eigenstrapping method 

itself is openly available at https://github.com/SNG-newy/eigenstrapping/ and 42. 

Documentation on the method’s practical usage is also available from the same location. Raw 

and preprocessed HCP data can be accessed at https://db.humanconnectome.org/. 
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Table 1. Comparison of eigenstrapping to other null models. 

Metric Surface Eigenstrapping Spin Test BrainSMASH 

Computation time Cortical1 103 seconds* 102 seconds 104 seconds 

Volumetric2 101 seconds Cannot perform 

volumetric nulls 

103 seconds 

Spatial 

autocorrelation 

Cortical3 ≤ 10-5 ≤ 10-5 ≤ 10-5 

Volumetric4 0.0037 Cannot perform 

volumetric nulls 

0.0041 

False positive 

rate5 

Cortical 12.3% 13.5% 36.3% 

Feature Eigenstrapping Spin Test BrainSMASH 

Statistical assumption of spatial 

autocorrelation 

Non-stationary Stationary Stationary 

Disruption of higher-order effects ü û ü 

Parallel maps6 ü û † û 

Morphospaces7 ü û û 

Cortico-subcortical connectivity ü û ü 

1Average magnitude of computation time of 1000 surrogates on fsaverage5 surface using 1 CPU thread in log-

seconds. 

2Average magnitude of computation time of 1000 surrogates of striatum volume using 1 CPU thread in log-

seconds. 

3Magnitude of mean change in Moran’s I in cortical maps at 𝛼 = 3 (Fig. 3). 

4Mean change in Moran’s I in cortico-subcortical gradients in Fig. 5. 

5False positive rate at 𝛼 = 3. 

6By fixing randomization of topology at the first volume, fMRI can be resampled at each subsequent volume 

thereby examining which fluctuations arise by chance and what brain activity is significant. 
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7Partial randomization of topology can occur by rotating iteratively or at specific modal wavelengths, exploring 

the spatial dependencies and topological morphospace of the original data. 

*Future development will implement speed-ups of the algorithm e.g., through memory-mapped matrices and 

reducing computational overhead. 

†The rotations of the Spin Test could be fixed, but due to the sizable loss of vertices during medial wall insertion, 

it is less than ideal for providing a fully complete 4D null. 
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