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Evolutionary adaptation to new environments likely results from a combination of selective sweeps and
polygenic shifts, depending on the genetic architecture of traits under selection. While selective sweeps have
been widely studied, polygenic responses are considered more prevalent but challenging to quantify. The in-
finitesimal model makes explicit the hypothesis about the dynamics of changes in allele frequencies under
selection, where only allelic effect sizes, frequencies, linkage, and gametic disequilibrium matter. Departures
from this, like long-range correlations of allele frequency changes, could be a signal of epistasis in polygenic
response. We performed an Evolve & Resequence experiment in Drosophila melanogaster exposing flies to a
high-sugar diet as a source of environmental stress for over 100 generations. We tracked allele frequency
changes in >3000 individually sequenced flies as well as population pools and searched for loci under selection
by identifying sites with allele frequency trajectories that differentiated selection regimes consistently across
replicates. We estimate that at least 4% of the genome was under positive selection, the result of a highly
polygenic response. Most of this response was seen as small but consistent allele frequency changes over
time, and there were only a few large allele-frequency changes (selective sweeps). We then searched for sig-
natures of selection on pairwise combinations of alleles in the new environment and found several strong
signals of putative epistatic interactions across unlinked loci that were consistent across selected populations.
Finally, we measured differentially expressed genes (DEGs) across treatments and show that DEGs are en-
riched for selected SNPs, suggesting a regulatory basis for the selective response. Our results suggest that
epistatic contributions to polygenic selective response are common and lead to detectable signatures.

by more subtle changes across the allele frequencies of
many loci (Chevin & Hospital, 2008; Jain & Stephan,
2017), and indeed it has become clear that this is a more

INTRODUCTION

Genetic changes underlying evolutionary response to a
new environment can differ depending on the genetic ar-
chitecture of the traits under selection. For traits with sim-
ple genetic architectures, controlled by few genes with
large allelic effect sizes, we would expect to see selective
sweeps, in which a positively selected allele rapidly goes
to fixation and leaves a detectable signature in the sur-
rounding genomic regions (Pavlidis & Alachiotis, 2017;
Smith & Haigh, 1974). Interest in finding the causal allele
responsible for a phenotype has caused a bias for this
type of selective response in the literature (Pritchard & Di
Rienzo, 2010), and we have cataloged several positively
selected genes in humans and other species (Feder et al.,
2016; Garud et al., 2015; lhle et al., 2006). In contrast, for
traits that are controlled by many genes, quantitative ge-
netic theory predicts that selection response is generated

common form of adaptive response than hard sweeps
(Barghi et al., 2020; Pritchard et al., 2010).

While much of the experimental effort has been focused
on determining how many genomic regions respond to se-
lection, there is more to genetic architecture than the num-
ber of loci affecting a trait (Hansen, 2006). Gene-by-gene
(epistatic) and gene-by-environment interactions both
contribute to genetic variation and can be leveraged in re-
sponse to selection. The extent to which epistasis is im-
portant for polygenic response is still an open question
(Crow, 2010; Csilléry et al., 2018; Hansen, 2013; Le
Rouzic, 2014; Phillips, 2008; Weinreich et al., 2013).
Given the possibility that epistasis contributes appreciably
to adaptation, we argue that polygenic selection response
should result in two observable patterns when epistasis is
present: i) a correlation between the allele frequencies at
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interacting loci—i.e. change in allele frequency at one lo-
cus is accompanied by corresponding changes at the (po-
tentially unlinked) interacting loci (Csilléry et al., 2018),
and ii) the emergence of gametic disequilibrium in
adapted populations—as allelic combinations are se-
lected for or against—resulting in deviations from two-lo-
cus Hardy-Weinberg proportions between pairs of un-
linked loci (Boyrie et al., 2021

Identifying these signatures of polygenic and epistatic re-
sponse to selection is a challenging problem and Evolve
and Resequence (E&R) experiments have emerged as a
natural and powerful tool for investigating these questions
(Barghi et al., 2020). By exposing replicate populations to
a stressful treatment condition and keeping them in this
environment for several generations we are able to track
the resulting changes in genetic composition due to

selection. By tracking allele frequencies through time in
both selected and control populations, we can distinguish
the effects related to adaptation to laboratory conditions
and the effects of the selective stress to which treatment
populations are exposed. The environmental change
caused by the exposure to stress also opens the possibil-
ity for new gene combinations to come under selection
(Das et al., 2020; Ogbunugafor, 2022), allowing us to
search for the signatures of selection on epistatic combi-
nations that are advantageous in the new environment.

Alterations in the diet is likely to be a ubiquitous source of
environmental stress for animal populations. When ex-
posed to varying levels of dietary sugar, Drosophila mel-
anogaster individuals display complex metabolic and be-
havioral responses (Chng et al., 2017; McKenzie &
McKechnie, 1979). Exposure to high sugar can lead to
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Figure 1: Selection experimental design. A. Scheme of the experimental design. A synthetic outbred population was
created by a round-robin cross of 16 lines from the Netherlands. This population (NEX) was kept as an outbred population
for over 50 generations before the start of the selection experiment. Starting from NEX, 3 control (control) and 3 treatment
(hs) populations of around 5000 individuals were kept for 100 generations. Samples of one hundred individuals were taken
at generations 1, 11, 25 and 100 for allele frequency tracking. B. Linkage disequilibrium (LD) decay across hs and control
populations at generation 100. NEX derived populations have very low levels of LD. C. Minor allele frequency across
generations. D. Egg-lay measurements after selection showing the adaptive response to the high-sugar environment in hs
populations Control flies on Control food (C C), Control flies on High Sugar food (C HS), High Sugar selected flies on Control
food (HS C), High Sugar selected flies on High Sugar food (HS HS).
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changes in the absorption and metabolism of sugars
(Hickey & Benkel, 1982; Zinke et al., 2002), along with
altered foraging and feeding behaviors (Dus et al., 2015;
Lim et al., 2014). These metabolic responses are medi-
ated by neuronal and endocrine signaling networks in the
head, which interact with and cause coordinated re-
sponses in the corpora cardiaca and fat bodies in the
thorax and abdomen, resulting in an organism-wise re-
sponse (Chng et al., 2017). High sugar also causes differ-
ential gene expression, leading to up regulation of diges-
tive enzymes and other genes involved in lipid metabo-
lism (Chng et al., 2014; Mattila et al., 2015). Flies exposed
to chronic high sugar can develop several pathologies,
like obesity, diabetes-like responses, cardiomyopathy,
shorter life span, and tumor growth (Birse et al., 2010;
Musselman et al., 2011; Na et al., 2013; Pallares, Lea, et
al., 2020). This suggests that high-sugar stress is likely to
cause generalized responses in several interacting gene
networks and should lead to strong selective pressures.

Here, we performed an E&R experiment where three rep-
licate populations of Drosophila melanogaster were ex-
posed to a stressful environment in the form of a high level
of dietary sugar, while another three replicate populations
were maintained on a control diet. All six populations were
derived from the same base population. Whole genome
sequencing was performed on flies from all six popula-
tions at generations 1, 11, 25, and 100, giving a total of
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almost 3000 sequenced individuals (fig. 1 A). Using this
time series genomic data, we identify two directions of al-
lele frequency change. The largest driver was shared
across selected and control populations, suggesting a
shared lab environment selection. The second-largest
driver of genetic change contrasts control and selected
populations, and so is linked to the selection regime. We
estimate that at least 4% of the genome was under posi-
tive selection due to high-sugar stress. Most observed
changes in allele frequency are however relatively mod-
est, and using the individual sequence data to estimate
haplotypes, we show how most of the selected loci do not
show archetypal signals of selective sweeps after 100
generations. These results point towards a highly poly-
genic selection response, in line with theoretical expecta-
tions from quantitative genetics theory. We then measure
differentially expressed (DE) genes across selected and
control lines after selection and show that DE genes are
highly enriched for selected SNPs, pointing to regulatory
divergence as a mechanism for the effects of the poly-
genic response to selection. We also quantify correlations
in allele frequency between pairs of selected loci over
time, as well as gametic disequilibrium after 100 genera-
tions of adaptation, and show that several alleles show
correlations and gametic disequilibrium across unlinked
loci, suggesting that epistatic interactions participated in
the response to selection. We confirm this last point by
using Wright-Fisher simulations, showing that the
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Figure 2: Principal components one (x-axis) and two (y-axis) from the PCA on the genome wide allele frequencies
across the entire selection experiment. Each line corresponds to one of the six experimental populations, red indicating
high-sugar treatment and black control, with symbols marking the mean scores for each population and time point. The
variance explained by each of the first 23 principal components is shown in the inset.
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correlations and the gametic disequilibrium we observe
are unlikely to appear in the absence of epistatic interac-
tions. While we lack a clear phenotype to directly study
the effect of epistatic variation on selection response, our
results suggest that epistatic contributions to polygenic re-
sponse to selection are common and lead to detectable
genomic signatures.

Results
Polygenic Selection Response

To study the effect of long-term selection on a stressful
environment, we kept three replicate populations of flies
under high-sugar stress and three under control
conditions for 100 generations. To assess if selected
populations had adapted to the stressful high-sugar
environment, we performed a factorial egg-lay
experiment, measuring the fecundity of both control and
high-sugar (hs) populations in the control and high-sugar
diet. Both populations show higher fecundity in the
corresponding diet (fig.1 D), indicating successful
adaptation. We collected data from 100 individuals at four
time points and obtained both allele frequencies from
Pool-seq and genotypes from individual sequencing
(fig. 1 A and C). This time series genomic data allowed us

to analyze the changes in allele frequency and identify the
largest drivers of genetic change in response to the
stressful environment. After quality control (see Methods),
we obtained allele frequency estimates for ~1.76M SNPs,
giving a total data collection of 4 time points x 3 replicate
populations x 2 treatments x 1.76M SNPs genotype calls.
To identify the main drivers of genetic change without any
prior assumptions, we performed a Principal Component
Analysis (PCA) of the allele frequencies across the entire
selection experiment. The first two principal components
(PC), explaining 17% and 13% of the variance, largely
coincides with time and selection regime, respectively
(figs. 2, 7). This unsupervised approach thus identified
time and high-sugar selection as the two main drivers of
genetic change genome wide. Surprisingly, the time
dimension, captured by the first PC, explained slightly
more variance than the selection regime, which was
captured by the second PC. This shows that all six
populations experience some common selection
pressures, presumably related to lab environment. The
second largest driver of genetic change is indeed
exposure to high-sugar stress (fig. 2).
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Figure 3: Results from the per SNP regression model. Panels A-C show possible patterns of relevant and consistent
allele frequency change across the six populations. We chose SNPs with strong signals for illustration, but many significant
SNPs show more subtle allele frequency changes. Plotted are allele frequencies trajectories of SNPs with significant linear
trends under the specified model. A. Consistent change in control and hs, B. consistent change in control only, C. hs and
control differ. Both the examples shown in B. and C. would lead to a significant interaction term between time and treatment,
but we filter SNPs that change only in Control (like in panel B). D. Manhattan plot showing negative log10 transformed p-
values from the regression analysis of allele frequency over time. The p-values correspond to the time-by-selection regime
interaction coefficient in the model. A significant p-value indicates different trajectories in the two treatments. SNPs showing
a selection response primarily in the control regime where excluded and are not shown.
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High-sugar selection on individual loci

To identify individual loci under selection, we fitted a
univariate regression model for each SNP, incorporating
allele frequencies across all time points, replicate
populations, and selection regimes. This model identifies
SNPs whose allele frequency changes in the same
direction over time in all replicate populations. The time
coefficient in the model captures changes that are similar
across all six populations (fig. 3 A), and the time-by-
selection-regime coefficient captures changes that are
unique to one selection treatment (fig. 3 B and C). The p-
values of the time coefficient were highly correlated with
SNP loadings onto PC1 (cor =0.59, p < 10-16, sup fig. 1),
whereas the the p-values of the time-by-regime coefficient
were highly correlated with SNP loadings onto PC2 (cor =
0.68, p < 10-16, sup fig. 1), consistent with the first two
PCs capturing time and selection regime.

Different SNPs showed very different allele frequency tra-
jectories over time. Some respond similarly to selection in
all replicate populations regardless of selection regime
(fig. 3 A), while others respond in opposite directions
(fig. 3 C) or in only one of the regimes (fig. 3 B). Our re-
gression model allowed us to distinguish these different
scenarios and, for what follows, we focus on the selection
signatures that are unique to the high-sugar selection re-
gime. The Manhattan profile in fig. 2 D, showing the time-
by-regime p-values, suggests a polygenic selection re-
sponse. This is in line with the observation that time and
selection regime are the two main drivers of genetic
change genome-wide (fig. 2).

In order to further relate the locus-specific results (fig. 3)
to the genome-wide signal quantified by the PCA (fig. 2),
we repeat the PCA after excluding all SNPs with a regres-
sion p-value below a given threshold, effectively removing
the SNPs that are associated with the selection regime.
Changing the significance threshold allowed us to evalu-
ate the effects of the filtered SNPs on the PCA. When us-
ing a very conservative threshold, excluding only the most
strongly selected SNPs, the results from the PCA re-
mained largely unchanged, showing that the PCA signal
is not driven by a few loci under very strong selection (sup
fig. 2 A). We used these changes in the PCA as a heuristic
to pick a p-value threshold of 8x10-12, since PC2 did no
longer distinguish the different selection regimes when
excluding SNPs with a p-value below this threshold (sup
fig. 2 C). SNPs passing this significance threshold are
thus driving the majority of the selection response to high-
sugar stress that we observe in the PCA.

What proportion of the genome is responding to
selection?

Using this conservative threshold, ~45k SNPs show a
signature of positive selection that is unique to the high-
sugar selection regime. Considering 200 bp around every
selected SNP, corresponding to an average 2 of 0.2
(fig. 1 B), these SNPs span ~5.6 Mb, or ~4% of the
mappable genome of D. melanogaster. Since the linkage
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Figure 4: Histograms showing mean changes in allele
frequency in the populations exposed the high-sugar se-
lection regime, between generation 1 and 11, 1 and 25,
and 1 and 100. Panel A includes all 1.76M SNPs and
panel B includes the 45k SNPs that show a signature of
positive selection unique to the high-sugar selection re-
gime.

disequilibrium (LD) around the selected loci is expected to
be larger than the genome-wide average, we believe this
to be a conservative estimate. The magnitudes of the
allele frequency changes tend to be relatively small.
Comparing generation 1 to generation 100, the mean
change across all SNPs in the populations exposed to the
high-sugar selection regime is 0.11, while the mean
change among the selected SNPs is 0.25 (fig. 4). Among
all the 1.76 M SNPs, only 4753 show a pattern where the
minor allele at generation 1 has reached fixation at
generation 100 in at least one of the populations in the
high-sugar selection regime. Furthermore, many SNPs
also display a delayed selection response, with the largest
change in allele frequency after generation 25 (fig. 4).
This is consistent with theoretical predictions for polygenic
adaptation involving independent loci (Chevin & Hospital,
2008; Pavlidis et al., 2012), but could also be due to
epistatic effects (Paixao & Barton, 2016).

Do the selected alleles show a detectable sweep sig-
nature?

Next, we ask if the identified selection signatures tend to
coincide with the genomic footprint of selective sweeps.
Using a core set of 20k high confidence SNPs, we
estimated individual haplotypes at generation 100. These
haplotypes were then used to calculate the integrated
Haplotype Score (iHS) (Voight et al., 2006) in the HS
populations. A large iHS indicates an extended haplotype
associated with one allele at a given SNP, a pattern
characteristic of a selective sweep. The estimated iHS
and the p-values from our regression model showed a
small but significant correlation (cor = 0.07, p =2.1x10-17,
sup fig. 3), indicating a tendency of longer haplotypes at
the selected loci. The observed correlation is, however,
very modest, showing that the loci indicated to be under


https://doi.org/10.1101/2024.07.22.604612
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.22.604612; this version posted July 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

selection using our time series data do not display a
strong sweep-like pattern after 100 generations of
adaptation. At a nominal significance threshold of p <
0.05, only 4.7% of the selected loci, as inferred from the
regression analysis, also displayed a significant iHS.
Taken together, these observations are all consistent with
the polygenic view of adaptation through subtle shifts in
allele frequency at a large number of loci, and with
selection acting primarily on standing genetic variation
rather than novel mutations.

Effects of Polygenic Adaptation on Gene Expression

Much of the genetic variation for complex traits resides in
gene-regulatory regions (Albert & Kruglyak, 2015).
Selection on complex traits might then be expected to act
largely on this regulatory variation, resulting in changes in
gene expression. To characterize the effect of selection
on gene expression, we performed a full reciprocal
experiment where flies, adapted to either high-sugar or
control selection regimes, were reared in either high-
sugar or control conditions (fig. 5). This design allows us
to account for short-term plastic changes due exposure to
a different diet and the long-term effect of selection. For
each one of the four experimental groups, we then
performed RNA-seq separately on bodies and heads (n ~
40 per group, see Methods). After quality control, we
obtained expression for 8397 genes from the body
samples, and 8298 genes from the head samples.

DE genes between flies adapted to the respective selec-
tion regimes was measured separately for head and body
samples. At an FDR < 0.01, 1155 and 578 genes showed
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DE in body and head respectively. We went on to ask how
many of these DE genes fall in regions with signatures of
selection. In both body and head, we see an enrichment
of selected SNPs among the genes showing DE (fig. 5 B).
Starting at p-value of 105 for the selection term, this en-
richment gets more pronounced with increasingly strin-
gent selection p-values. The enrichment highly exceeds
the expected random overlap between selection signals
and DE genes, as estimated from a permutation test, in-
dicating that adaptation appears to have acted on regula-
tory genetic variants.

Epistasis across selected loci

Whether epistatic interactions contribute to long-term
selection response is a contentious topic, but there are
several possible mechanisms through which epistasis
could play a role in polygenic response. For example,
diminishing returns epistasis, where the rise in frequency
of one allele decreases the fitness of alleles at other loci,
which has been empirically observed (Kryazhimskiy et al.,
2014), is implicit in stabilizing selection models describing
population movement towards an optimum (Chevin &
Hospital, 2008; Héllinger et al., 2019; Jain & Stephan,
2015). The access to allele frequency time-series and
haplotype information allows us to look for two different
signatures of epistatic contributions to the observed
polygenic selection response. In the presence of epistasis
for fitness, the trajectory of a given allele during the course
of selection is not independent of the trajectories of alleles
at other loci. Rather, the expected trajectory is a function
of the trajectories of all other alleles that it interacts with
(Paixao & Barton, 2016). This should result in two
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Figure 5: Differential expression after selection. A. Volcano plots showing differential gene expression between flies
adapted to the high-sugar versus control selection regime, after controlling for the plastic effects related to each diet. Each
point corresponds to one gene. Y-axis shows the negative log10 transformed p-value of the differential expression, and x-
axis shows the log2 transformed fold change. The two panels correspond to expression in body and head tissue. B. Fraction
of SNPs under positive selection in the high-sugar selection regime that coincide with a differentially expressed gene (y-axis),
at different p-values for the selection signature (x-axis). Solid red lines show the observed fraction of SNPs overlapping DE
genes and boxplots show the empirical null distributions obtained from permutations. The two panels correspond to

expression in body and head tissue.
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observable patterns: 1) a correlation between the allele
frequencies at interacting loci, as changes in allele
frequency at one locus is accompanied by corresponding
changes at the interacting locus; 2) gametic disequilibrium
in adapted populations, the selective removal of
unfavorable allelic combinations should result in
deviations from the 2-locus Hardy-Weinberg proportions
expected for a pair of unlinked loci (Corbett-Detig et al.,
2013).

To explore the expected genomic footprint of selection un-
der fitness epistasis versus strict additivity in the current
experiment, we performed a series of Wright-Fisher
based simulations using the SLiM modeling framework
(Haller & Messer, 2019). The simulations were set up to
mimic the relevant aspects of the experiment, starting by
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creating neutral populations with about 3k segregating
SNPs in mutation-drift equilibrium distributed along two
unlinked chromosomes. Using these starting populations,
we sampled 1000 segregating mutations to be a quantita-
tive trait locus (QTL) contributing to the trait under trunca-
tion selection. We then simulated two scenarios: (1) an
additive scenario, in which the value of the trait is only
given by these additive QTLs, and (2) an epistatic sce-
nario, where, in addition to the additive effects, we sam-
pled 200 pairs of QTLs (one member of the pair in each
chromosome) to have an additive-by-additive epistatic ef-
fect on the quantitative trait. After 100 generations of se-
lection, we quantified both gametic disequilibrium and cor-
related changes in allele frequency. This was done for the
same pairs of QTLs in both simulations, with the only dif-
ference being the presence of the epistatic interaction in
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Figure 6: Signatures of epistasis in experimental data and simulations. A. Top panel shows negative log10 p-values (y-
axis) from the regression analysis of allele frequency over time. The p-values correspond to the time-by-selection regime
interaction coefficient in the model. SNP positions are scaled for visualization. Bottom panel shows a heatmap of pairwise
SNP analyses performed in the populations exposed to the high-sugar selection regime. Negative log10 p-values of the
gametic disequilibrium, given by a chi-square test, are shown above the diagonal. Negative log10 transformed p-values of
the correlation in allele frequencies over time are shown below the diagonal. B. Locus pairs showing both genotype ratio
distortions (chi-square test, p < 5.7x10-8) and correlated allele frequencies (correlation test, p < 0.001). The outer circle
represents the chromosome arms, and each link represents a locus pair. Colors correspond to our LD clumping procedure,
where links with the same color involve the same locus at one end, supported by multiple locally linked SNPs. C. Comparison
of allele frequency correlations and gametic disequilibrium in the simulations, across additive and epistatic scenarios.
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one scenario. The gametic disequilibrium between un-
linked loci was substantially higher in the presence of epi-
stasis, as opposed to selection acting on a purely additive
genetic architecture. Likewise, the correlation between al-
lele frequency trajectories of QTL pairs in different chro-
mosomes is only different from zero in the epistatic sce-
nario (fig. 6 C).

Next, we looked for the same kind of genomic footprint in
our empirical data. For this analysis, we focused on a set
of SNPs under strong selection unique to the high-sugar
regime, indicated by a time-by-regime p < 8x10-12, and for
which we had high enough coverage to confidently geno-
type a large number of individual flies, giving us a set of
1.3k SNPs. Having estimated the correlations in allele fre-
quencies between these SNPs in the high-sugar regime,
the resulting SNPxSNP correlation matrix gives a picture
of the SNPs that move in unison through time in all repli-
cate populations, and the ones that do not (fig. 6 A, lower
triangle). Secondly, the SNPxSNP gametic disequilibrium
matrix shows which SNP pairs display deviations from the
proportions expected for unlinked loci in the populations
exposed to the high-sugar selection regime (fig. 6 A, up-
per triangle).

Both allele frequency correlations and gametic disequilib-
rium were substantial between SNPs that are physically
linked, as expected (fig. 6 A, elements near the diagonal).
However, we also observe numerous examples of corre-
lations between physically distant SNPs, showing that
their allele frequencies change in a similar manner during
the course of selection. This could be due to epistasis, but
it could also be a consequence of similar but independent
selection pressures acting on the two SNPs. However, we
also identified multiple cases of gametic disequilibrium
between physically distant SNPs, indicative of epistatic
selection. Comparing gametic disequilibrium in the high-
sugar populations to the control populations, for the SNPs
showing a signature of positive selection unique to the
high-sugar regime, we observed a small but highly signif-
icant negative correlation (cor = -0.06, p < 10-16). This in-
dicates that SNP pairs in gametic disequilibrium in one
selection regime tend to segregate independently in the
other. However, when doing the same comparison for the
SNPs that display a similar signature of selection in both
treatments, presumably due to lab environment adapta-
tion, we observed a positive correlation (cor = 0.14, p <
10-1¢). This indicates that SNP pairs that are selected in
both treatment also have more similar patterns of gametic
disequilibrium. Taken together, this suggests that the ob-
served gametic disequilibrium between physically distant
SNPs is caused by epistatic selection, where allelic com-
binations that are under selection in the high-sugar re-
gime tend to be neutral in the control regime, leading to
gametic disequilibrium in the high-sugar populations but
not the controls. On the other hand, allelic combinations
that are conducive to fitness in both regimes are selected
in a similar manner in all populations, creating a similar
footprint of gametic disequilibrium in both high-sugar and
control populations.

We identified 1413 SNP pairs in the HS populations where
the two SNPs were located on different chromosomes,
displayed gametic disequilibrium (chi-square test, p <
5.7x108), and correlated allele frequencies (correlation
test, p < 0.001). To exclude the possibility that the ob-
served gametic disequilibrium was due to population
structure rather than epistasis, we also looked for evi-
dence of gametic disequilibrium within each replicate pop-
ulation. Compared to jointly analyzing all replicate popu-
lations from the same selection regime, this analysis has
lower power due to smaller sample size. Since, by design,
no population structure exists within each replicate popu-
lation, it cannot be the cause of gametic disequilibrium.
Keeping only signals supported by multiple linked SNPs
at “both ends”, and where at least two SNP pair gametic
disequilibrium replicated within the replicate populations,
we identify 11 pairwise epistatic selection signatures,
each supported by between 5 and 63 SNP pairs (fig. 6 B).

Discussion

Here, we track the allele frequency trajectories of 1.7
million SNPs in replicate populations of D. melanogaster
exposed to either a control diet or a stressful high-sugar
diet. Principal component analysis of the SNP allele
frequencies in these population samples revealed a
striking pattern: PC1 corresponded with generation time
for both treatments, whereas PC2 cleanly separated the
control from the high-sugar diet populations. By applying
a regression model to the allele frequency trajectories
between control and selected populations, we detected a
large number of SNPs whose allele frequency changed
consistently in the selected populations and not in the
control population, suggesting that the exposure to high
sugar drove the consistent response. Surprisingly, the lab
environment, shared between control and selected
populations, appears to be a stronger source of selection
than the exposure to high sugar. The subtle changes in
allele frequency and the large number of SNPs that show
signatures of selection are suggestive of a massively
polygenic selection response. This polygenic response
appears to be grounded in regulatory changes, given that
differentially expressed genes in the populations exposed
to high sugar are enriched for SNPs under selection. We
also look for signatures of interactions between selected
loci, and find strong evidence for fitness epistasis in the
form of gametic disequilibrium between physically
unlinked loci and correlations between allele frequency
trajectory of these same loci.

Highly polygenic genetic architectures have had a recent
renaissance in the complex trait literature. Progressively
more powerful genome-wide association studies (Pallares
et al., 2023; Yengo et al., 2022), evidence from E&R ex-
periments (Barghi et al., 2019; Burny et al., 2021) and
gene-regulatory networks (Vosa et al., 2021) have re-
vealed a rich set of loci and genes implicated in determin-
ing the phenotypic variation of quantitative traits. Theoret-
ical results have also elucidated under which conditions
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we should expect selection response to be more or less
polygenic. Is has been shown (Gétsch & Blrger, 2023;
Hollinger et al., 2019) that some measure of mutational
target size is a crucial parameter determining the number
of loci involved in adaptive architecture. Our uniquely
powerful design uncovers these signatures of selection
spanning an appreciable fraction of the genome. These
results are consistent with the intermediate scenario from
Hollinger et al. (2019), in which adaptation takes place by
partial sweeps at many loci. This response is related to
the strong stress caused by the high-sugar diet, as we ex-
pect several phenotypes at different levels of organization
to be involved in the response to selection. While we do
not have access to the phenotypes under selection, we
are able to probe these putative differences by analyzing
differential gene expression. Selected lines show hun-
dreds of DE genes, and these are indeed enriched for se-
lected SNPs, suggestive of a link between regulatory cis-
eQTL variation and the response to selection. These
widespread regulatory changes are expected to percolate
through metabolic networks (Boyle et al., 2017), leading
to interactions between connected genes, which poten-
tially complicates the adaptive architecture (Forsberg et
al., 2017).

We attempt to further characterize the adaptive architec-
ture by searching for possible signatures of epistatic inter-
actions between the SNPs under selection in the HS pop-
ulations. Epistasis can be a store of additive genetic vari-
ation (Cheverud & Routman, 1995, 1996), but the effect
of epistatic interaction on the long-term response to se-
lection is thought to be modest in general (Paixado & Bar-
ton, 2016). Epistasis can become important if it is direc-
tional, i.e., if epistatic effects consistently produce positive
of negative effects on the selected traits, thus enhancing
or buffering additive variation (Barton, 2017; Hansen,
2013; Hansen & Wagner, 2001). Because measuring epi-
stasis can be challenging, we have little information on the
general pattern of directional epistasis (Le Rouzic, 2014),
but it has been documented in some model organisms (Le
Rouzic et al., 2023; Pavlicev et al., 2010). Furthermore, if
several traits are selected simultaneously, the effects of
epistasis on trait associations can be important in deter-
mining the response to selection (Jones et al., 2014; Melo
& Marroig, 2015; Pavlicev et al., 2011). In E&R experi-
ments, allelic redundancy has been implicated in the lack
of parallelism across replicas, as segregating alleles at
several loci could be combined in different ways to pro-
duce similar fitness and selective responses (Barghi et al.,
2019, 2020). Under stabilizing selection, this type of inter-
action would necessarily lead to fitness epistasis (Bank,
2022; Hollinger et al., 2019). Alternatively, epistatic inter-
actions can also increase parallelism, as the possible
adaptive paths through genotype space are limited by the
genomic background (Bank, 2022; Das et al., 2020; Krya-
zhimskiy et al., 2014). Given these numerous mecha-
nisms for epistasis to contribute to long-term selection re-
sponse, we searched for genomic signatures of epistatic
interactions in the form of correlated allele frequencies
and gametic disequilibrium across unlinked loci that

where exclusive to the selected populations. We find over
one thousand pairs of unlinked loci that show significantly
correlated allele frequency trajectories and gametic dise-
quilibrium exclusively in the HS populations. Using more
stringent criteria, we find these signals across 11 pairwise
regions, replicated in all selected populations and sup-
ported by several SNPs. While we cannot pinpoint the
mechanistic source of the epistatic interaction we ob-
serve, we can detect them with high confidence, indicat-
ing that there is a potential role for epistasis in the adap-
tive architecture for high-sugar stress that should be fur-
ther explored.

Methods

Mapping Population

To allow the detection of allelic effects that would be
hidden in natural populations due to low frequency, we
created a synthetic outbred mapping population. To
create this population, we selected 16 inbred lines from
the Netherlands population (NEX) from the GLOBAL
DIVERSITY LINES (Grenier et al., 2015). The lines were
selected based upon their low frequency of inversions to
reduce the suppression of recombination associated with
inversions (Barghi & Schlétterer, 2019). To establish the
population from these lines, we performed a round-robin
cross on the initial lines (1x2,2x3,...,16x 1) and
subsequently performed a round-robin cross on the F1s
to ensure parental representation and that no
chromosome was lost. The resulting F2 individuals were
placed in a x b x ¢ cm cages and allowed to recombine
freely for more than 50 generations. This design
increases the allele frequency of rare variants by
replicating and randomizing throughout the population
(fig. 1 C).

Selection Regime

We performed a laboratory natural selection experiment
(Fuller et al., 2005) on high-sugar diets without selecting
for any phenotype. High-sugar diets are known to have
high fithess costs (Musselman et al., 2011; Na et al.,
2013; Pallares, Lea, et al., 2020) and by allowing our
populations to directly evolve under this physiological
stress, we explored the adaptation to this deleterious
effect. To do this, we subdivided our mapping population
into 6 replicate populations, 3 of which were placed on a
standard medium and 3 of which were placed on high-
sugar medium. The standard medium consists of 8%
glucose, 8% yeast, 1.2% agar, 0.04% phosphoric acid,
and 0.4% propionic acid. High-sugar medium follows the
same recipe as standard medium with the addition of 12%
glucose resulting in a total of 20% glucose. Each
population was placed in a population cage (BugDorm
#4F3030) and maintained at ~5000 individuals for ~120
generations. Each generation was seeded from an egg
lay, on fresh bottles of the respective diet, at 5-6 days
post-eclosion. After pupation but before eclosion, bottles
were cleared of adults, moved to new cages and opened.
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Following each egg lay, individuals were collected and
stored at -80 C for subsequent sequencing.

Factorial egg lay after selection

To assess if selected populations had adapted to the
stressful high-sugar environment, we performed a
factorial egg lay experiment, measuring the fecundity of
both cCONTROL and Hs populations in the control and high-
sugar diet. We started by controlling/standardizing
population density for the parental flies. To that end, adult
flies from each selection regime (control and HS) laid
eggs on apple juice-agar plates for 3 hours. These plates
were then incubated at 24 degree C, 70% relative
humidity, and 12:12 Light/Dark cycle for 24hrs to obtain
1st instar larvae. We then placed 50 larvae (low density)
in each vials with 8-10ml of the appropriate food type
(control or high sugar), the emerging flies were used for
the fertility measurement. At the time of the assay, all flies
were between 4-6 days old. Flies from each treatment
were allowed to lay eggs on a molasses-agar medium
with a small amount of yeast paste. These plates were
switched every 2 hrs, 3 times on one day and the same
process was repeated the following day. Eggs on each of
the plates were counted to provide a fecundity estimate.
Both populations show higher fitness in the diet to which
they had adapted (fig. 1 D).

Library preparation and sequencing

Flies from generation 1, 11, 25, and 100 were selected
from each population for sequencing and distributed into
96 well plates. One 2.8 mm stainless steel grinding bead
(OPS diagnostics, #089-5000-11) and 100 pl of lysis
buffer were added to each well. Flies were homogenized
for 10 minutes at maximum speed in a Talboys High
Throughput Homogenizer (#930145). The resulting lysate
was moved to a new 96-well plate for DNA extraction,
using a Multi-Well Plate Vacuum Manifold (Pall Life
Sciences #5017) and Acroprep advance 1 ml DNA
binding plates (Pall Life Sciences #8132).

Library prep was performed using a liquid handling robot
(CyBio® FeliX, Analitik Jena) to ease the processing of
many samples and reduce variability from manual han-
dling of samples. The protocol broadly followed the strat-
egy described in Picelli et al (Picelli et al., 2014). Specifi-
cally, we added 10 ul (100 pyM) of forward oligo adapter A
and 10 pl (100 uM) of reverse oligo adapter (Tn5MERev)
to 80 pl of reassociation buffer (10 mM Tris pH 8.0, 50 mM
NaCl, 1 mM EDTA). Following this, we annealed in a ther-
mocycler with the following program: 95°C for 10 minutes,
90°C for 1 minute, reduce the temperature by 1°C per cy-
cle for 60 cycles, and then hold at 4°C. The process was
repeated for oligo adapter B. To load the adapters onto
Tn5, we mixed 5 ul of Tn5, 9 pl of pre-annealed adapter
A, and 9 pl of pre-annealed adapter B then incubated this
mixture in a thermocycler at 37°C for 30 minutes. The re-
sulting pre-charged Tn5 was the diluted with a 1:1 solution
of reassociation buffer and glycerol to 1:1 reassociation
buffer:glycerol to pre-charged Tn5.

Mapping of reads, SNP calling, and estimation of al-
lele frequencies

Following sequencing, we mapped reads to the
Drosophila melanogaster reference genome (v6.14) using
BWA (3) (Li & Durbin, 2009), retained only uniquely
mapped reads, and removed PCR generated duplicates
using Picard (“Picard Toolkit,” 2019). SNPs were called
jointly in batch 1 (generations 1,11,25; 1728 samples) and
batch 2 (generation 100; 1116 samples) using the
haplotype-based variant detector Freebayes (Garrison &
Marth, 2012), ignoring indels and multi-allelic SNPs. Any
SNPs with a quality score less than 30, or with a coverage
smaller than 28x in any population in batch 1, or smaller
than 80x in any population in batch 2, were excluded. We
also excluded SNPs with coverage above the genome
wide baseline of 167x in any population in batch 1, or
above 333x in any population in batch 2, since such highly
covered SNPs might be indicative of collapsed repeats.
After these filtering steps, we retained 1,741,428 SNPs on
the major chromosomes (2L, 2R, 3L, 3R and X) for
subsequent analyzes.

Allele frequencies inferred from pooled sequencing can
be biased if the coverage per individual in the pool is un-
even (Schlbtterer et al., 2014). Our individually barcoded
DNA-libraries allowed us to identify from which individual
any given read originates, thereby avoiding this problem.
The variance in per sample read depth was substantial,
suggesting that allele frequency estimated from Pool-seq,
agnostic to read origin, might be error prone. We cor-
rected for uneven coverage when estimating allele fre-

quencies using the formula: fik:nikzi [40;;/(40;; +

RO;;)], where f is the estimated allele frequency of SNP
iin pool k, nis the number of individuals in the pool, and
A0;; and RO;; are the number of observations of the alter-
native and reference alleles respectively at SNP i in indi-
vidual j. The sum is taken over all individuals in pool k,
where kis one of the 24 [4 (timepoints) x 3 (replicate pop-
ulations) x 2 (treatments)] population samples. This strat-
egy corrects for unequal coverage and should be refered
over naive Pool-seq estimates. We thus obtained esti-
mates of allele frequency per SNP, in each of the 24 pop-
ulation samples.

We minimized variability in sequence coverage intro-
duced by manual handling of samples by preparing librar-
ies with a CyBio® FeliX liquid handling robot. We pooled
libraries according to DNA concentration, and re-pooled
the DNA libraries after preliminary sequencing on the lllu-
mina Miseq platform to normalize coverage.

Inference of patterns of polygenic adaptation using
PCA

To explore the main drivers of genetic changes during the
course of the experiment, we performed a principal
component analysis of the genome wide allele
frequencies. For this analysis, we first assembled a
sample-by-SNP matrix P, containing the genome-wide
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allele frequencies in all 24 population samples (4 time
points x 2 treatments x 3 replicate populations). We then
computed the principal components of this matrix,
allowing us to identify the main drivers of allele frequency
changes in an unsupervised fashion.

Inference of individual loci selection signatures

To detect signals of positive selection, we fitted the
following logistic regression model:

Di
1-p

tog (2) = Beti + BusHS: + Bus.ctiH1S; + e
where p; denotes the allele frequency at a given locus in
a given population and time point; t; is a numerical
variable corresponding to the 4 sampled time-points
(generations 1, 11, 25, and 100 are numerically coded as
{1, 2, 3, 4}, and so the corresponding coefficient (S;)
measures the average allele frequency change across all
time-points); HS; is an indicator variable corresponding to
the two treatments HS = 1 in high sugar (Hs) and HS = 0
in control (CONTROL)); e; is an error term. The S
parameters are the corresponding regression coefficients.
This allowed us to model the allele frequency for every
locus across the entire selection experiment in one joint
statistical framework. We focus primarily on the
interaction effect Bys.., which quantifies the degree to
which the allele frequency trajectory in the control regime
differs from the one in the high-sugar regime.

After fitting this model for all SNPs, we obtained estimates
of the effect of time separately for the control and high-
sugar selection regimes. This was done using the
emtrends function in the R package emmeans (Lenth,
2022). In order to exclude selection signatures that did not
correspond to high-sugar adaptation, we disregarded
SNPs where the effect of time in the high-sugar selection
regime showed a p-value above 10-4.

Individual level genotypes

To obtain individual-level genotypes rather than allele
frequencies from our low coverage data at generation
100, we first filtered our SNP data more stringently.
Having already applied the filter described above, we
retained SNPs with called genotypes in more than 90% of
the individuals, each genotype being called with a
minimum depth of 3. We also excluded individuals with
more than 50% missing genotypes. This filtering was
done separately for each chromosome, giving a set of 51k
SNPs called in 412 individuals in the control populations,
and 52k SNPs called in 439 individuals in the high-sugar
populations. These genotypes where used to estimate
linkage disequilibrium (fig.1 B) and to search for
signatures of selective sweeps and gametic
disequilibrium.

Detecting selective sweeps

To detect signatures of selective sweeps, we first used
the software shapeit (Delaneau et al., 2008) to phase the

individual genotypes into haplotypes. The estimated
haplotypes were then used to calculate the integrated
Haplotype Score (iHS) (Voight et al., 2006). Briefly, iHS
measures the length of haplotype homozygosity around a
given allele, compared to its alternative allele. A recent
selective sweep is expected to leave a genomic footprint
of extended homozygosity around the selected allele,
whereas selection on standing genetic variation and/or
polygenic selection might not leave such a footprint
(Lynch & Walsh, 1998). iHS was calculated using the R-
package rehh (Gautier & Vitalis, 2012), and scores were
standardized per allele frequency bin as described in
Voight et al. (2006). We calculated iHS at generation 100
in the high-sugar selected populations, using the 3
replicate populations. To compare selection signatures
inferred from our regression model to selective sweeps
inferred by iHS, we contrasted the regression p-values to
iHS on a SNP-by-SNP basis (sup fig. 3).

Transcriptional changes associated with adaptation
to high-sugar diet

e Experimental design

To identify transcriptional changes associated with
genetic adaptation to high sugar, we performed an
experiment that allowed us to robustly differentiate gene
expression differences due to the adaptation regime from
the plastic response due to short-term changes in dietary
condition. For this, we used a full reciprocal design where
flies from each replicate cage from generation 170 were
allowed to lay eggs in either the dietary condition they
evolved in (i.e., HS evolved flies on high-sugar food,
CONTROL evolved flies on control food), or in the
alternative diet (i.e., HS evolved flies on control diet,
CONTROL evolved flies on high-sugar diet). Female flies
were collected 7-11 days after eclosion, and head and
body were separated and plated each in two 96-well
plates with each plate containing samples for only one
tissue and all four experimental combinations. Plates
were stored at -80°C until further processing.

e RNA extraction and sequencing

Plates containing heads and bodies were processed in
the same way: Sample homogenization was done as
described above for DNA samples, and mRNA extraction
as described in Suppl. File 2 of Pallares, Picard, et al.
(2020) using Dynabeads™ mRNA DIRECT ™ Purification
kit (ThermoFisher), and a final elution of 10 yl and 30 yl
Tris-HCI for heads and body, respectively. 3-enriched
RNAseq libraries were prepared following the TM3’seq
pipeline (Pallares, Picard, et al., 2020). In brief, 10 ul of
input mMRNA was used in the first strand cDNA synthesis
reaction which was primed with Tn5Me-B-30T oligo that
binds to the polyA tail of mRNA molecules resulting in 3’
enriched libraries. cDNA was amplified in three rounds of
PCR and tagmented using homemade Tn5 transposase.
12 PCR cycles were used for final library amplification
using lllumina’s i5 and i7 primers. The step by step
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TMS3’seq protocol can be found in Suppl. File 1 of Pallares,
Picard, et al. (2020). All libraries within a plate were
pooled using 5 pl or 2 ul per head and body library,
respectively, and cleaned and size-selected using the
double-sided Agencourt AMPure XP bead (Beckman
Coulter) cleanup approach described for DNA-seq
libraries. The resulting four plate-level libraries were
pooled in equal proportions and sequenced on the
lllumina NovaSeq S2 platform at the Genomics Core
Facility of the Lewis-Sigler Institute for Integrative
Genomics at Princeton University. RNA extraction, cDNA
synthesis, and library preparation were done in the
CyBio® FeliX liquid handling robot.

e  Processing of RNAseq data

Raw RNA-seq reads were trimmed to remove low quality
bases, adapter sequences, and to exclude post-trimmed
reads shorter than 20 nt using Trimmomatic 0.32 (Bolger
et al, 2014) and the following parameters: SE
ILLUMINACLIP:1:30:7 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:20. The trimmed reads
were mapped to the Drosophila melanogaster genome
r6.14 using STAR (Dobin et al.,, 2013), and uniquely
mapped reads were assigned to genes using
feautureCounts from the package Subread (Liao et al.,
2013) and the following parameters: -t exon —g gene_id].
Samples with fewer than 500k or more than 20M gene
counts, and genes with mean CPM < 1 were removed.
After this filtering, the final dataset used in further analysis
consisted of 161 head samples with a median of 3.45M
gene counts covering 8460 genes, and 171 body samples
with a median of 2.3M gene counts covering 8360 genes.

e Differential expression analysis

To identify the transcriptional differences due to
adaptation to high sugar, we performed a differential
expression analysis between flies evolved in HS diet and
flies evolved in CONTROL diet while accounting for the
dietary condition the flies were exposed to for one
generation. For each tissue separately, we used a Wald
test in DESeq2 (Love et al., 2014) and the following
design: Expression ~ Plate + Diet + Genotype, where
Plate indicates the 96-well plate in which samples were
processed from sample collection through library
preparation; Diet represents the dietary condition the flies
were exposed to for one generation (HS or CONTROL);
Genotype represents the diet flies evolved in (HS or
CONTROL). Sample size for each of the four groups in body
and head, respectively: n(genotype HS, diet HS) = 41, 38;
n(genotype Hs, diet CONTROL) = 46, 42; n(genotype
CONTROL, diet CONTROL) = 45, 41; n(genotype CONTROL,
diet HS) = 39, 40. p-values were estimated for the null
hypothesis IfcThreshold = 0 and alpha = 0.05, and
adjusted using Benjamini & Hochberg FDR method.

e Differentially expressed genes and selection

Having identified genes that were differentially expressed
between flies adapted to the respective selection regimes,

we went on to look for signals of selection nearby along
the chromosome to these genes. Considering an interval
+ 5 kb around each gene, we looked for SNPs showing a
significant time-by-regime effect in the regression
analysis and overlapped with the DE genes. To this end
we used the R-package GenomicRanges, and the fraction
of overlapping selected SNPs was calculated at p-value
thresholds {105, 1019, 10-'5, 1020, 10-25, 10-30} for the
time-by-regime effect (fig. 5 B, red lines and points).
Because of the large number of DE genes and selected
SNPs, we expect some amount of overlap between the
two by chance. To quantify this expected chance overlap,
we performed a permutation test. For each permutation,
the same number of SNPs as we observed to be
significant at that significance threshold was picked at
random from the full set of 1.76M SNPs. We then
calculated the fraction of these random SNPs that
overlapped with the DE genes. Performing 1000
permutations at each p-value threshold gave us empirical
null distributions for the overlap (fig. 5 B, boxplots).

Epistatic selection signatures

e  Wright-Fisher model with selection for epistatic QTLs

We used an individual based Wright-Fisher model to
investigate the effect of epistatic interactions in the inter-
chromosomal LD in our selection experiment. The
simulation was based on the code from Lou et al. (2020),
using the SLiM modeling framework. We start by creating
a neutral burn-in population with 5000 individuals, two
equal chromosomes with 300 k sites, a base mutation rate
of 1.5x109, and a between-site recombination rate of 10-
8. This burn-in population is allowed to evolve under a
Wright-Fisher neutral model for 50k generations. With
these parameters we expect about 0.5 recombinations
per generation, and after 50k generations we have about
3k segregating neutral SNPs in mutation-drift equilibrium
with a minor allele frequency above 5%. The burn-in
process was repeated for each simulation replicate, so
each replicate simulation started with a different initial
population. For each initial population, we also did
experimental replicates, which started from the same
starting population.

Using these starting populations, we sampled 1000 of the
segregating mutations to be QTLs contributing to the phe-
notypic effect of a polygenic trait, with all QTLs having the
same phenotypic effect and 2 alleles. We then considered
two scenarios: (1) an additive scenario, where the value
of the trait is only given by these additive QTLs, and (2)
an epistatic scenario, where, in addition to the additive ef-
fects, we sampled 200 pairs of QTLs (one member of the
pair in each chromosome) to have an additive-by-additive
epistatic effect. In this epistatic scenario, the value of the
trait depended on these epistatic interactions. Both sce-
narios proceed with truncation selection on the polygenic
trait for 100 generations, with the 500 individuals with the
smallest trait value being removed before reproduction in
each generation. This strength of selection was chosen
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so that at the end of the simulation we had only a few fix-
ations (around 10), mimicking the observation in our fly
selection experiment.

During the selection phase of the simulation we sampled
allele frequencies at regular intervals (every 10 genera-
tions) and used these to calculate the correlation between
allele frequencies at the QTL pairs. At generation 100, we
also measured the gametic disequilibrium between the
same pairs of QTLs in both simulations, with the only dif-
ference being the presence of the epistatic interaction in
one of the scenarios. We compared the mean gametic
disequilibrium between these QTL pairs to a distribution
of the mean gametic disequilibrium between random pairs
of SNPs across chromosomes. To create this distribution,
we sampled 200 SNPs in each chromosome and calcu-
lated the gametic disequilibrium between the pairs, this
process was repeated 10k times. We created a separate
distribution for each scenario.

e Identifying well-supported epistatic SNP pairs

To detect potential instances of epistatic selection, we
looked for two types of signals: 1) correlations between
the allele frequencies at different loci; 2) gametic
disequilibrium after 100 generations of selection. The
former could be due to epistasis or due to similar but
independent selection coefficients at the respective loci,
while the latter is only expected under epistasis. The
correlations were estimated by the Pearson correlation
coefficient, using allele frequencies in all generations in
the high-sugar populations (n = 12 per SNP pair). The
gametic disequilibrium was quantified separately in high-
sugar and control populations, using the individual
genotypes at generation 100 described above. For each
SNP pair, we tested the deviation from independent
segregation using a chi square test (n ~ 420 per SNP
pair). Having identified candidate pairs where the two
SNPs displayed gametic disequilibrium and were located
on different chromosomes, we attempted to find well
supported signals by clustering physically close SNPs
with a similar signal of gametic disequilibrium. To do this,
we applied a clustering procedure akin to the LD clumping
algorithm implemented in PLINK (Purcell et al., 2007).
The algorithm works as follows:

i. Starting with the SNP pair with the smallest p-
value for gametic disequilibrium, assign to the
same cluster all other SNP pairs with one SNP
on chromosome 2 that are within 250 kb, in
linkage disequilibrium, and have not already
been clustered. Repeat until there are no more
SNP-pairs to assign to clusters. Thus, each
cluster contains SNP pairs sharing proximal and
linked SNPs on chromosome 2.

ii.  For each cluster identified in (i), perform a
second round of clustering for the SNP pairs
within that cluster. This is done by assigning to
the same cluster all SNP-pairs with one SNP on
chromosome 3 that are within 250 kb, in linkage

disequilibrium, and have not already been
clustered.

We thus obtain hierarchical clusters, where each
“chromosome 2 end” cluster contains one or several
“chromosome 3 end” clusters. The algorithm is greedy, so
each SNP pair will only end up in one cluster, if at all.
Finally, we keep the clusters with at least 3 linked SNPs
at “each end”. We thus identify epistatic selection
signatures supported by multiple SNP pairs, with multiple
linked SNPs at each end of the putative interaction.
Through the nature of our clustering procedure, each
such signature will involve one locus on chromosome 2,
and one or several loci on chromosome 3 (fig. 6 B).

Code and data availability

Code to reproduce figures in this paper is available at
github.com/ayroles-lab/highsugar-selection-code.

Corresponding data is available at Princeton DataSpace
link.
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Supplementary Figure 1: Comparison of PC scores and p-values from regression analysis. PC1 scores
are similar to p-values from SNPs that show a shared selection signal across treatment and control,
and PC2 scores are similar to p-values from SNPs that only show selection signal in HS. These
similarities corroborate the interpretation that PC1 is related to the SNPs involved in the shared
selection captured by the time component of the regression, and that PC2 is related to the SNPs
involved in the response to high-sugar selection, which is captures by the time-by-selection regime
interaction coefficient in the regression analysis.
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Supplementary Figure 2: Across population allele frequency PCA (as in fig. 2) after exclusion of
significant SNPs. As the p-value significance threshold for the high-sugar selection interaction term is increased
and more putatively selected SNPs are removed, PC2 gradually explains less and less of the divergence
between HS and CONTROL populations. The Manhattan plot in the final panel shows the -log10 p-values for the
interaction term in the regression analysis and the horizontal lines show the various thresholds used in the PCA
panels. For each PCA panel, SNPs above the threshold are removed before calculating the PCA. The threshold
we chose based on the differentiation between CONTROL and HS populations in the PCA plot is marked by the
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red line in the Manhattan plot and the red box around the corresponding PCA plot.
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Supplementary Figure 3: A comparison of the results from the time-series regression analysis and the
iHS analysis. We compare the p-values from the regression analysis to the absolute iHS values calculated on
the HS populations. (A) Negative log10 transformed p-values corresponding to the time-by-selection regime
interaction coefficient in the regression analysis of allele frequency over time (y-axis) plotted versus absolute
iHS scores (x-axis). (B) Negative log10 transformed p-values corresponding to the CONTROL population contrast
in the regression analysis of allele frequency over time (y-axis) plotted versus absolute iHS scores calculated
on the Hs populations (x-axis). Around 15k SNPs included in the figure, with each point representing one SNP.
Only the interaction term p-value are associated with iHS values, suggesting both capture a signal related to
high-sugar selection. In contrast, signals associated with changes in the CONTROL population are not associated
with the iHS signal in the HS populations.
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