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Evolutionary adaptation to new environments likely results from a combination of selective sweeps and 
polygenic shifts, depending on the genetic architecture of traits under selection. While selective sweeps have 
been widely studied, polygenic responses are considered more prevalent but challenging to quantify. The in-
finitesimal model makes explicit the hypothesis about the dynamics of changes in allele frequencies under 
selection, where only allelic effect sizes, frequencies, linkage, and gametic disequilibrium matter. Departures 
from this, like long-range correlations of allele frequency changes, could be a signal of epistasis in polygenic 
response. We performed an Evolve & Resequence experiment in Drosophila melanogaster exposing flies to a 
high-sugar diet as a source of environmental stress for over 100 generations. We tracked allele frequency 
changes in >3000 individually sequenced flies as well as population pools and searched for loci under selection 
by identifying sites with allele frequency trajectories that differentiated selection regimes consistently across 
replicates. We estimate that at least 4% of the genome was under positive selection, the result of a highly 
polygenic response. Most of this response was seen as small but consistent allele frequency changes over 
time, and there were only a few large allele-frequency changes (selective sweeps).  We then searched for sig-
natures of selection on pairwise combinations of alleles in the new environment and found several strong 
signals of putative epistatic interactions across unlinked loci that were consistent across selected populations. 
Finally, we measured differentially expressed genes (DEGs) across treatments and show that DEGs are en-
riched for selected SNPs, suggesting a regulatory basis for the selective response. Our results suggest that 
epistatic contributions to polygenic selective response are common and lead to detectable signatures. 

INTRODUCTION 

Genetic changes underlying evolutionary response to a 
new environment can differ depending on the genetic ar-
chitecture of the traits under selection. For traits with sim-
ple genetic architectures, controlled by few genes with 
large allelic effect sizes, we would expect to see selective 
sweeps, in which a positively selected allele rapidly goes 
to fixation and leaves a detectable signature in the sur-
rounding genomic regions (Pavlidis & Alachiotis, 2017; 
Smith & Haigh, 1974). Interest in finding the causal allele 
responsible for a phenotype has caused a bias for this 
type of selective response in the literature (Pritchard & Di 
Rienzo, 2010), and we have cataloged several positively 
selected genes in humans and other species (Feder et al., 
2016; Garud et al., 2015; Ihle et al., 2006). In contrast, for 
traits that are controlled by many genes, quantitative ge-
netic theory predicts that selection response is generated 

by more subtle changes across the allele frequencies of 
many loci (Chevin & Hospital, 2008; Jain & Stephan, 
2017), and indeed it has become clear that this is a more 
common form of adaptive response than hard sweeps 
(Barghi et al., 2020; Pritchard et al., 2010).   
While much of the experimental effort has been focused 
on determining how many genomic regions respond to se-
lection, there is more to genetic architecture than the num-
ber of loci affecting a trait (Hansen, 2006). Gene-by-gene 
(epistatic) and gene-by-environment interactions both 
contribute to genetic variation and can be leveraged in re-
sponse to selection. The extent to which epistasis is im-
portant for polygenic response is still an open question 
(Crow, 2010; Csilléry et al., 2018; Hansen, 2013; Le 
Rouzic, 2014; Phillips, 2008; Weinreich et al., 2013). 
Given the possibility that epistasis contributes appreciably 
to adaptation, we argue that polygenic selection response 
should result in two observable patterns when epistasis is 
present: i) a correlation between the allele frequencies at 
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interacting loci—i.e. change in allele frequency at one lo-
cus is accompanied by corresponding changes at the (po-
tentially unlinked) interacting loci (Csilléry et al., 2018), 
and ii) the emergence of gametic disequilibrium in 
adapted populations—as allelic combinations are se-
lected for or against—resulting in deviations from two-lo-
cus Hardy-Weinberg proportions between pairs of un-
linked loci (Boyrie et al., 2021 
Identifying these signatures of polygenic and epistatic re-
sponse to selection is a challenging problem and Evolve 
and Resequence (E&R) experiments have emerged as a 
natural and powerful tool for investigating these questions 
(Barghi et al., 2020). By exposing replicate populations to 
a stressful treatment condition and keeping them in this 
environment for several generations we are able to track 
the resulting changes in genetic composition due to 

selection. By tracking allele frequencies through time in 
both selected and control populations, we can distinguish 
the effects related to adaptation to laboratory conditions 
and the effects of the selective stress to which treatment 
populations are exposed. The environmental change 
caused by the exposure to stress also opens the possibil-
ity for new gene combinations to come under selection 
(Das et al., 2020; Ogbunugafor, 2022), allowing us to 
search for the signatures of selection on epistatic combi-
nations that are advantageous in the new environment. 
Alterations in the diet is likely to be a ubiquitous source of 
environmental stress for animal populations. When ex-
posed to varying levels of dietary sugar, Drosophila mel-
anogaster individuals display complex metabolic and be-
havioral responses (Chng et al., 2017; McKenzie & 
McKechnie, 1979). Exposure to high sugar can lead to 

Figure 1: Selection experimental design. A. Scheme of the experimental design. A synthetic outbred population was
created by a round-robin cross of 16 lines from the Netherlands. This population (NEX) was kept as an outbred population 
for over 50 generations before the start of the selection experiment. Starting from NEX, 3 control (control) and 3 treatment 
(hs) populations of around 5000 individuals were kept for 100 generations. Samples of one hundred individuals were taken 
at generations 1, 11, 25 and 100 for allele frequency tracking. B. Linkage disequilibrium (LD) decay across hs and control
populations at generation 100. NEX derived populations have very low levels of LD. C. Minor allele frequency across
generations. D. Egg-lay measurements after selection showing the adaptive response to the high-sugar environment in hs
populations	Control flies on Control food (C C), Control flies on High Sugar food (C HS), High Sugar selected flies on Control 
food (HS C), High Sugar selected flies on High Sugar food (HS HS).
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changes in the absorption and metabolism of sugars 
(Hickey & Benkel, 1982; Zinke et al., 2002), along with 
altered foraging and feeding behaviors (Dus et al., 2015; 
Lim et al., 2014). These metabolic responses are medi-
ated by neuronal and endocrine signaling networks in the 
head, which interact with and cause coordinated re-
sponses in the corpora cardiaca and fat bodies in the 
thorax and abdomen, resulting in an organism-wise re-
sponse (Chng et al., 2017). High sugar also causes differ-
ential gene expression, leading to up regulation of diges-
tive enzymes and other genes involved in lipid metabo-
lism (Chng et al., 2014; Mattila et al., 2015). Flies exposed 
to chronic high sugar can develop several pathologies, 
like obesity, diabetes-like responses, cardiomyopathy, 
shorter life span, and tumor growth (Birse et al., 2010; 
Musselman et al., 2011; Na et al., 2013; Pallares, Lea, et 
al., 2020). This suggests that high-sugar stress is likely to 
cause generalized responses in several interacting gene 
networks and should lead to strong selective pressures. 
Here, we performed an E&R experiment where three rep-
licate populations of Drosophila melanogaster were ex-
posed to a stressful environment in the form of a high level 
of dietary sugar, while another three replicate populations 
were maintained on a control diet. All six populations were 
derived from the same base population. Whole genome 
sequencing was performed on flies from all six popula-
tions at generations 1, 11, 25, and 100, giving a total of 

almost 3000 sequenced individuals (fig. 1 A). Using this 
time series genomic data, we identify two directions of al-
lele frequency change. The largest driver was shared 
across selected and control populations, suggesting a 
shared lab environment selection. The second-largest 
driver of genetic change contrasts control and selected 
populations, and so is linked to the selection regime. We 
estimate that at least 4% of the genome was under posi-
tive selection due to high-sugar stress. Most observed 
changes in allele frequency are however relatively mod-
est, and using the individual sequence data to estimate 
haplotypes, we show how most of the selected loci do not 
show archetypal signals of selective sweeps after 100 
generations. These results point towards a highly poly-
genic selection response, in line with theoretical expecta-
tions from quantitative genetics theory. We then measure 
differentially expressed (DE) genes across selected and 
control lines after selection and show that DE genes are 
highly enriched for selected SNPs, pointing to regulatory 
divergence as a mechanism for the effects of the poly-
genic response to selection. We also quantify correlations 
in allele frequency between pairs of selected loci over 
time, as well as gametic disequilibrium after 100 genera-
tions of adaptation, and show that several alleles show 
correlations and gametic disequilibrium across unlinked 
loci, suggesting that epistatic interactions participated in 
the response to selection. We confirm this last point by 
using Wright-Fisher simulations, showing that the 

Figure 2: Principal components one (x-axis) and two (y-axis) from the PCA on the genome wide allele frequencies 
across the entire selection experiment. Each line corresponds to one of the six experimental populations, red indicating
high-sugar treatment and black control, with symbols marking the mean scores for each population and time point. The 
variance explained by each of the first 23 principal components is shown in the inset. 
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correlations and the gametic disequilibrium we observe 
are unlikely to appear in the absence of epistatic interac-
tions. While we lack a clear phenotype to directly study 
the effect of epistatic variation on selection response, our 
results suggest that epistatic contributions to polygenic re-
sponse to selection are common and lead to detectable 
genomic signatures. 

Results 
 
Polygenic Selection Response 

To study the effect of long-term selection on a stressful 
environment, we kept three replicate populations of flies 
under high-sugar stress and three under control 
conditions for 100 generations. To assess if selected 
populations had adapted to the stressful high-sugar 
environment, we performed a factorial egg-lay 
experiment, measuring the fecundity of both control and 
high-sugar (hs) populations in the control and high-sugar 
diet. Both populations show higher fecundity in the 
corresponding diet (fig. 1 D), indicating successful 
adaptation. We collected data from 100 individuals at four 
time points and obtained both allele frequencies from 
Pool-seq and genotypes from individual sequencing 
(fig. 1 A and C). This time series genomic data allowed us 

to analyze the changes in allele frequency and identify the 
largest drivers of genetic change in response to the 
stressful environment. After quality control (see Methods), 
we obtained allele frequency estimates for ~1.76M SNPs, 
giving a total data collection of 4 time points x 3 replicate 
populations x 2 treatments x 1.76M SNPs genotype calls. 
To identify the main drivers of genetic change without any 
prior assumptions, we performed a Principal Component 
Analysis (PCA) of the allele frequencies across the entire 
selection experiment. The first two principal components 
(PC), explaining 17% and 13% of the variance, largely 
coincides with time and selection regime, respectively 
(figs. 2, 7). This unsupervised approach thus identified 
time and high-sugar selection as the two main drivers of 
genetic change genome wide. Surprisingly, the time 
dimension, captured by the first PC, explained slightly 
more variance than the selection regime, which was 
captured by the second PC. This shows that all six 
populations experience some common selection 
pressures, presumably related to lab environment. The 
second largest driver of genetic change is indeed 
exposure to high-sugar stress (fig. 2). 

Figure 3: Results from the per SNP regression model.	Panels A-C show possible patterns of relevant and consistent 
allele frequency change across the six populations. We chose SNPs with strong signals for illustration, but many significant 
SNPs show more subtle allele frequency changes. Plotted are allele frequencies trajectories of SNPs with significant linear 
trends under the specified model. A. Consistent change in control and hs, B. consistent change in control only, C.  hs and 
control differ. Both the examples shown in B. and C. would lead to a significant interaction term between time and treatment, 
but we filter SNPs that change only in Control (like in panel B). D. Manhattan plot showing negative log10 transformed p-
values from the regression analysis of allele frequency over time. The p-values correspond to the time-by-selection regime 
interaction coefficient in the model. A significant p-value indicates different trajectories in the two treatments. SNPs showing 
a selection response primarily in the control regime where excluded and are not shown. 
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High-sugar selection on individual loci 

To identify individual loci under selection, we fitted a 
univariate regression model for each SNP, incorporating 
allele frequencies across all time points, replicate 
populations, and selection regimes. This model identifies 
SNPs whose allele frequency changes in the same 
direction over time in all replicate populations. The time 
coefficient in the model captures changes that are similar 
across all six populations (fig. 3 A), and the time-by-
selection-regime coefficient captures changes that are 
unique to one selection treatment (fig. 3 B and C). The p-
values of the time coefficient were highly correlated with 
SNP loadings onto PC1 (cor = 0.59, p < 10-16, sup fig. 1), 
whereas the the p-values of the time-by-regime coefficient 
were highly correlated with SNP loadings onto PC2 (cor = 
0.68, p < 10-16, sup fig. 1), consistent with the first two 
PCs capturing time and selection regime. 

Different SNPs showed very different allele frequency tra-
jectories over time. Some respond similarly to selection in 
all replicate populations regardless of selection regime 
(fig. 3 A), while others respond in opposite directions 
(fig. 3 C) or in only one of the regimes (fig. 3 B). Our re-
gression model allowed us to distinguish these different 
scenarios and, for what follows, we focus on the selection 
signatures that are unique to the high-sugar selection re-
gime. The Manhattan profile in fig. 2 D, showing the time-
by-regime p-values, suggests a polygenic selection re-
sponse. This is in line with the observation that time and 
selection regime are the two main drivers of genetic 
change genome-wide (fig. 2). 
In order to further relate the locus-specific results (fig. 3) 
to the genome-wide signal quantified by the PCA (fig. 2), 
we repeat the PCA after excluding all SNPs with a regres-
sion p-value below a given threshold, effectively removing 
the SNPs that are associated with the selection regime. 
Changing the significance threshold allowed us to evalu-
ate the effects of the filtered SNPs on the PCA. When us-
ing a very conservative threshold, excluding only the most 
strongly selected SNPs, the results from the PCA re-
mained largely unchanged, showing that the PCA signal 
is not driven by a few loci under very strong selection (sup 
fig. 2 A). We used these changes in the PCA as a heuristic 
to pick a p-value threshold of 8×10-12, since PC2 did no 
longer distinguish the different selection regimes when 
excluding SNPs with a p-value below this threshold (sup 
fig. 2 C). SNPs passing this significance threshold are 
thus driving the majority of the selection response to high-
sugar stress that we observe in the PCA. 
What proportion of the genome is responding to  
selection? 

Using this conservative threshold, ~45k SNPs show a 
signature of positive selection that is unique to the high-
sugar selection regime. Considering 200 bp around every 
selected SNP, corresponding to an average r2 of 0.2 
(fig. 1 B), these SNPs span ~5.6 Mb, or ~4% of the 
mappable genome of D. melanogaster. Since the linkage 

disequilibrium (LD) around the selected loci is expected to 
be larger than the genome-wide average, we believe this 
to be a conservative estimate. The magnitudes of the 
allele frequency changes tend to be relatively small. 
Comparing generation 1 to generation 100, the mean 
change across all SNPs in the populations exposed to the 
high-sugar selection regime is 0.11, while the mean 
change among the selected SNPs is 0.25 (fig. 4). Among 
all the 1.76 M SNPs, only 4753 show a pattern where the 
minor allele at generation 1 has reached fixation at 
generation 100 in at least one of the populations in the 
high-sugar selection regime. Furthermore, many SNPs 
also display a delayed selection response, with the largest 
change in allele frequency after generation 25 (fig. 4). 
This is consistent with theoretical predictions for polygenic 
adaptation involving independent loci (Chevin & Hospital, 
2008; Pavlidis et al., 2012), but could also be due to 
epistatic effects (Paixão & Barton, 2016). 

Do the selected alleles show a detectable sweep sig-
nature? 

Next, we ask if the identified selection signatures tend to 
coincide with the genomic footprint of selective sweeps. 
Using a core set of 20k high confidence SNPs, we 
estimated individual haplotypes at generation 100. These 
haplotypes were then used to calculate the integrated 
Haplotype Score (iHS) (Voight et al., 2006) in the HS 
populations. A large iHS indicates an extended haplotype 
associated with one allele at a given SNP, a pattern 
characteristic of a selective sweep. The estimated iHS 
and the p-values from our regression model showed a 
small but significant correlation (cor = 0.07, p = 2.1×10-17, 
sup fig. 3), indicating a tendency of longer haplotypes at 
the selected loci. The observed correlation is, however, 
very modest, showing that the loci indicated to be under 

Figure 4: Histograms showing mean changes in allele 
frequency in the populations exposed the high-sugar se-
lection regime, between generation 1 and 11, 1 and 25, 
and 1 and 100. Panel A includes all 1.76M SNPs and 
panel B includes the 45k SNPs that show a signature of 
positive selection unique to the high-sugar selection re-
gime. 
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selection using our time series data do not display a 
strong sweep-like pattern after 100 generations of 
adaptation. At a nominal significance threshold of p < 
0.05, only 4.7% of the selected loci, as inferred from the 
regression analysis, also displayed a significant iHS. 
Taken together, these observations are all consistent with 
the polygenic view of adaptation through subtle shifts in 
allele frequency at a large number of loci, and with 
selection acting primarily on standing genetic variation 
rather than novel mutations. 

Effects of Polygenic Adaptation on Gene Expression 

Much of the genetic variation for complex traits resides in 
gene-regulatory regions (Albert & Kruglyak, 2015). 
Selection on complex traits might then be expected to act 
largely on this regulatory variation, resulting in changes in 
gene expression. To characterize the effect of selection 
on gene expression, we performed a full reciprocal 
experiment where flies, adapted to either high-sugar or 
control selection regimes, were reared in either high-
sugar or control conditions (fig. 5). This design allows us 
to account for short-term plastic changes due exposure to 
a different diet and the long-term effect of selection. For 
each one of the four experimental groups, we then 
performed RNA-seq separately on bodies and heads (n ~ 
40 per group, see Methods). After quality control, we 
obtained expression for 8397 genes from the body 
samples, and 8298 genes from the head samples. 

DE genes between flies adapted to the respective selec-
tion regimes was measured separately for head and body 
samples. At an FDR < 0.01, 1155 and 578 genes showed 

DE in body and head respectively. We went on to ask how 
many of these DE genes fall in regions with signatures of 
selection. In both body and head, we see an enrichment 
of selected SNPs among the genes showing DE (fig. 5 B). 
Starting at p-value of 10-5 for the selection term, this en-
richment gets more pronounced with increasingly strin-
gent selection p-values. The enrichment highly exceeds 
the expected random overlap between selection signals 
and DE genes, as estimated from a permutation test, in-
dicating that adaptation appears to have acted on regula-
tory genetic variants. 
Epistasis across selected loci 

Whether epistatic interactions contribute to long-term 
selection response is a contentious topic, but there are 
several possible mechanisms through which epistasis 
could play a role in polygenic response. For example, 
diminishing returns epistasis, where the rise in frequency 
of one allele decreases the fitness of alleles at other loci, 
which has been empirically observed (Kryazhimskiy et al., 
2014), is implicit in stabilizing selection models describing 
population movement towards an optimum (Chevin & 
Hospital, 2008; Höllinger et al., 2019; Jain & Stephan, 
2015). The access to allele frequency time-series and 
haplotype information allows us to look for two different 
signatures of epistatic contributions to the observed 
polygenic selection response. In the presence of epistasis 
for fitness, the trajectory of a given allele during the course 
of selection is not independent of the trajectories of alleles 
at other loci. Rather, the expected trajectory is a function 
of the trajectories of all other alleles that it interacts with 
(Paixão & Barton, 2016). This should result in two 

Figure 5: Differential expression after selection.	A. Volcano plots showing differential gene expression between flies 
adapted to the high-sugar versus control selection regime, after controlling for the plastic effects related to each diet. Each 
point corresponds to one gene. Y-axis shows the negative log10 transformed p-value of the differential expression, and x-
axis shows the log2 transformed fold change. The two panels correspond to expression in body and head tissue. B. Fraction 
of SNPs under positive selection in the high-sugar selection regime that coincide with a differentially expressed gene (y-axis), 
at different p-values for the selection signature (x-axis). Solid red lines show the observed fraction of SNPs overlapping DE 
genes and boxplots show the empirical null distributions obtained from permutations. The two panels correspond to 
expression in body and head tissue. 
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observable patterns: 1) a correlation between the allele 
frequencies at interacting loci, as changes in allele 
frequency at one locus is accompanied by corresponding 
changes at the interacting locus; 2) gametic disequilibrium 
in adapted populations, the selective removal of 
unfavorable allelic combinations should result in 
deviations from the 2-locus Hardy-Weinberg proportions 
expected for a pair of unlinked loci (Corbett-Detig et al., 
2013). 

To explore the expected genomic footprint of selection un-
der fitness epistasis versus strict additivity in the current 
experiment, we performed a series of Wright-Fisher 
based simulations using the SLiM modeling framework 
(Haller & Messer, 2019). The simulations were set up to 
mimic the relevant aspects of the experiment, starting by 

creating neutral populations with about 3k segregating 
SNPs in mutation-drift equilibrium distributed along two 
unlinked chromosomes. Using these starting populations, 
we sampled 1000 segregating mutations to be a quantita-
tive trait locus (QTL) contributing to the trait under trunca-
tion selection. We then simulated two scenarios: (1) an 
additive scenario, in which the value of the trait is only 
given by these additive QTLs, and (2) an epistatic sce-
nario, where, in addition to the additive effects, we sam-
pled 200 pairs of QTLs (one member of the pair in each 
chromosome) to have an additive-by-additive epistatic ef-
fect on the quantitative trait. After 100 generations of se-
lection, we quantified both gametic disequilibrium and cor-
related changes in allele frequency. This was done for the 
same pairs of QTLs in both simulations, with the only dif-
ference being the presence of the epistatic interaction in 

Figure 6: Signatures of epistasis in experimental data and simulations. A. Top panel shows negative log10 p-values (y-
axis) from the regression analysis of allele frequency over time. The p-values correspond to the time-by-selection regime 
interaction coefficient in the model. SNP positions are scaled for visualization. Bottom panel shows a heatmap of pairwise 
SNP analyses performed in the populations exposed to the high-sugar selection regime. Negative log10 p-values of the 
gametic disequilibrium, given by a chi-square test, are shown above the diagonal. Negative log10 transformed p-values of 
the correlation in allele frequencies over time are shown below the diagonal. B. Locus pairs showing both genotype ratio 
distortions (chi-square test, p < 5.7×10-8) and correlated allele frequencies (correlation test, p < 0.001). The outer circle 
represents the chromosome arms, and each link represents a locus pair. Colors correspond to our LD clumping procedure, 
where links with the same color involve the same locus at one end, supported by multiple locally linked SNPs. C. Comparison 
of allele frequency correlations and gametic	disequilibrium in the simulations, across additive and epistatic scenarios. 
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one scenario. The gametic disequilibrium between un-
linked loci was substantially higher in the presence of epi-
stasis, as opposed to selection acting on a purely additive 
genetic architecture. Likewise, the correlation between al-
lele frequency trajectories of QTL pairs in different chro-
mosomes is only different from zero in the epistatic sce-
nario (fig. 6 C). 
Next, we looked for the same kind of genomic footprint in 
our empirical data. For this analysis, we focused on a set 
of SNPs under strong selection unique to the high-sugar 
regime, indicated by a time-by-regime p < 8×10-12, and for 
which we had high enough coverage to confidently geno-
type a large number of individual flies, giving us a set of 
1.3k SNPs. Having estimated the correlations in allele fre-
quencies between these SNPs in the high-sugar regime, 
the resulting SNP×SNP correlation matrix gives a picture 
of the SNPs that move in unison through time in all repli-
cate populations, and the ones that do not (fig. 6 A, lower 
triangle). Secondly, the SNP×SNP gametic disequilibrium 
matrix shows which SNP pairs display deviations from the 
proportions expected for unlinked loci in the populations 
exposed to the high-sugar selection regime (fig. 6 A, up-
per triangle). 
Both allele frequency correlations and gametic disequilib-
rium were substantial between SNPs that are physically 
linked, as expected (fig. 6 A, elements near the diagonal). 
However, we also observe numerous examples of corre-
lations between physically distant SNPs, showing that 
their allele frequencies change in a similar manner during 
the course of selection. This could be due to epistasis, but 
it could also be a consequence of similar but independent 
selection pressures acting on the two SNPs. However, we 
also identified multiple cases of gametic disequilibrium 
between physically distant SNPs, indicative of epistatic 
selection. Comparing gametic disequilibrium in the high-
sugar populations to the control populations, for the SNPs 
showing a signature of positive selection unique to the 
high-sugar regime, we observed a small but highly signif-
icant negative correlation (cor = -0.06, p < 10-16). This in-
dicates that SNP pairs in gametic disequilibrium in one 
selection regime tend to segregate independently in the 
other. However, when doing the same comparison for the 
SNPs that display a similar signature of selection in both 
treatments, presumably due to lab environment adapta-
tion, we observed a positive correlation (cor = 0.14, p < 
10-16). This indicates that SNP pairs that are selected in 
both treatment also have more similar patterns of gametic 
disequilibrium. Taken together, this suggests that the ob-
served gametic disequilibrium between physically distant 
SNPs is caused by epistatic selection, where allelic com-
binations that are under selection in the high-sugar re-
gime tend to be neutral in the control regime, leading to 
gametic disequilibrium in the high-sugar populations but 
not the controls. On the other hand, allelic combinations 
that are conducive to fitness in both regimes are selected 
in a similar manner in all populations, creating a similar 
footprint of gametic disequilibrium in both high-sugar and 
control populations. 

We identified 1413 SNP pairs in the HS populations where 
the two SNPs were located on different chromosomes, 
displayed gametic disequilibrium (chi-square test, p < 
5.7×10-8), and correlated allele frequencies (correlation 
test, p < 0.001). To exclude the possibility that the ob-
served gametic disequilibrium was due to population 
structure rather than epistasis, we also looked for evi-
dence of gametic disequilibrium within each replicate pop-
ulation. Compared to jointly analyzing all replicate popu-
lations from the same selection regime, this analysis has 
lower power due to smaller sample size. Since, by design, 
no population structure exists within each replicate popu-
lation, it cannot be the cause of gametic disequilibrium. 
Keeping only signals supported by multiple linked SNPs 
at “both ends”, and where at least two SNP pair gametic 
disequilibrium replicated within the replicate populations, 
we identify 11 pairwise epistatic selection signatures, 
each supported by between 5 and 63 SNP pairs (fig. 6 B). 

 
Discussion 

Here, we track the allele frequency trajectories of 1.7 
million SNPs in replicate populations of D. melanogaster 
exposed to either a control diet or a stressful high-sugar 
diet. Principal component analysis of the SNP allele 
frequencies in these population samples revealed a 
striking pattern: PC1 corresponded with generation time 
for both treatments, whereas PC2 cleanly separated the 
control from the high-sugar diet populations. By applying 
a regression model to the allele frequency trajectories 
between control and selected populations, we detected a 
large number of SNPs whose allele frequency changed 
consistently in the selected populations and not in the 
control population, suggesting that the exposure to high 
sugar drove the consistent response. Surprisingly, the lab 
environment, shared between control and selected 
populations, appears to be a stronger source of selection 
than the exposure to high sugar. The subtle changes in 
allele frequency and the large number of SNPs that show 
signatures of selection are suggestive of a massively 
polygenic selection response. This polygenic response 
appears to be grounded in regulatory changes, given that 
differentially expressed genes in the populations exposed 
to high sugar are enriched for SNPs under selection. We 
also look for signatures of interactions between selected 
loci, and find strong evidence for fitness epistasis in the 
form of gametic disequilibrium between physically 
unlinked loci and correlations between allele frequency 
trajectory of these same loci. 

Highly polygenic genetic architectures have had a recent 
renaissance in the complex trait literature. Progressively 
more powerful genome-wide association studies (Pallares 
et al., 2023; Yengo et al., 2022), evidence from E&R ex-
periments (Barghi et al., 2019; Burny et al., 2021) and 
gene-regulatory networks (Võsa et al., 2021) have re-
vealed a rich set of loci and genes implicated in determin-
ing the phenotypic variation of quantitative traits. Theoret-
ical results have also elucidated under which conditions 
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we should expect selection response to be more or less 
polygenic. Is has been shown (Götsch & Bürger, 2023; 
Höllinger et al., 2019) that some measure of mutational 
target size is a crucial parameter determining the number 
of loci involved in adaptive architecture. Our uniquely 
powerful design uncovers these signatures of selection 
spanning an appreciable fraction of the genome. These 
results are consistent with the intermediate scenario from 
Höllinger et al. (2019), in which adaptation takes place by 
partial sweeps at many loci. This response is related to 
the strong stress caused by the high-sugar diet, as we ex-
pect several phenotypes at different levels of organization 
to be involved in the response to selection. While we do 
not have access to the phenotypes under selection, we 
are able to probe these putative differences by analyzing 
differential gene expression. Selected lines show hun-
dreds of DE genes, and these are indeed enriched for se-
lected SNPs, suggestive of a link between regulatory cis-
eQTL variation and the response to selection. These 
widespread regulatory changes are expected to percolate 
through metabolic networks (Boyle et al., 2017), leading 
to interactions between connected genes, which poten-
tially complicates the adaptive architecture (Forsberg et 
al., 2017). 
We attempt to further characterize the adaptive architec-
ture by searching for possible signatures of epistatic inter-
actions between the SNPs under selection in the HS pop-
ulations. Epistasis can be a store of additive genetic vari-
ation (Cheverud & Routman, 1995, 1996), but the effect 
of epistatic interaction on the long-term response to se-
lection is thought to be modest in general (Paixão & Bar-
ton, 2016). Epistasis can become important if it is direc-
tional, i.e., if epistatic effects consistently produce positive 
of negative effects on the selected traits, thus enhancing 
or buffering additive variation (Barton, 2017; Hansen, 
2013; Hansen & Wagner, 2001). Because measuring epi-
stasis can be challenging, we have little information on the 
general pattern of directional epistasis (Le Rouzic, 2014), 
but it has been documented in some model organisms (Le 
Rouzic et al., 2023; Pavlicev et al., 2010). Furthermore, if 
several traits are selected simultaneously, the effects of 
epistasis on trait associations can be important in deter-
mining the response to selection (Jones et al., 2014; Melo 
& Marroig, 2015; Pavlicev et al., 2011). In E&R experi-
ments, allelic redundancy has been implicated in the lack 
of parallelism across replicas, as segregating alleles at 
several loci could be combined in different ways to pro-
duce similar fitness and selective responses (Barghi et al., 
2019, 2020). Under stabilizing selection, this type of inter-
action would necessarily lead to fitness epistasis (Bank, 
2022; Höllinger et al., 2019). Alternatively, epistatic inter-
actions can also increase parallelism, as the possible 
adaptive paths through genotype space are limited by the 
genomic background (Bank, 2022; Das et al., 2020; Krya-
zhimskiy et al., 2014). Given these numerous mecha-
nisms for epistasis to contribute to long-term selection re-
sponse, we searched for genomic signatures of epistatic 
interactions in the form of correlated allele frequencies 
and gametic disequilibrium across unlinked loci that 

where exclusive to the selected populations. We find over 
one thousand pairs of unlinked loci that show significantly 
correlated allele frequency trajectories and gametic dise-
quilibrium exclusively in the HS populations. Using more 
stringent criteria, we find these signals across 11 pairwise 
regions, replicated in all selected populations and sup-
ported by several SNPs. While we cannot pinpoint the 
mechanistic source of the epistatic interaction we ob-
serve, we can detect them with high confidence, indicat-
ing that there is a potential role for epistasis in the adap-
tive architecture for high-sugar stress that should be fur-
ther explored. 

Methods 
 
Mapping Population 

To allow the detection of allelic effects that would be 
hidden in natural populations due to low frequency, we 
created a synthetic outbred mapping population. To 
create this population, we selected 16 inbred lines from 
the Netherlands population (NEX) from the GLOBAL 
DIVERSITY LINES (Grenier et al., 2015). The lines were 
selected based upon their low frequency of inversions to 
reduce the suppression of recombination associated with 
inversions (Barghi & Schlötterer, 2019). To establish the 
population from these lines, we performed a round-robin 
cross on the initial lines (1 x 2 , 2 x 3 , …, 16 x 1 ) and 
subsequently performed a round-robin cross on the F1s 
to ensure parental representation and that no 
chromosome was lost. The resulting F2 individuals were 
placed in a x b x c cm cages and allowed to recombine 
freely for more than 50 generations. This design 
increases the allele frequency of rare variants by 
replicating and randomizing throughout the population 
(fig. 1 C). 

Selection Regime 

We performed a laboratory natural selection experiment 
(Fuller et al., 2005) on high-sugar diets without selecting 
for any phenotype. High-sugar diets are known to have 
high fitness costs (Musselman et al., 2011; Na et al., 
2013; Pallares, Lea, et al., 2020) and by allowing our 
populations to directly evolve under this physiological 
stress, we explored the adaptation to this deleterious 
effect. To do this, we subdivided our mapping population 
into 6 replicate populations, 3 of which were placed on a 
standard medium and 3 of which were placed on high-
sugar medium. The standard medium consists of 8% 
glucose, 8% yeast, 1.2% agar, 0.04% phosphoric acid, 
and 0.4% propionic acid. High-sugar medium follows the 
same recipe as standard medium with the addition of 12% 
glucose resulting in a total of 20% glucose. Each 
population was placed in a population cage (BugDorm 
#4F3030) and maintained at ~5000 individuals for ~120 
generations. Each generation was seeded from an egg 
lay, on fresh bottles of the respective diet, at 5-6 days 
post-eclosion. After pupation but before eclosion, bottles 
were cleared of adults, moved to new cages and opened. 
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Following each egg lay, individuals were collected and 
stored at -80 C for subsequent sequencing. 

Factorial egg lay after selection 

To assess if selected populations had adapted to the 
stressful high-sugar environment, we performed a 
factorial egg lay experiment, measuring the fecundity of 
both CONTROL and HS populations in the control and high-
sugar diet. We started by controlling/standardizing 
population density for the parental flies. To that end, adult 
flies from each selection regime (control and HS) laid 
eggs on apple juice-agar plates for 3 hours. These plates 
were then incubated at 24 degree C, 70% relative 
humidity, and 12:12 Light/Dark cycle for 24hrs to obtain 
1st instar larvae. We then placed 50 larvae (low density) 
in each vials with 8-10ml of the appropriate food type 
(control or high sugar), the emerging flies were used for 
the fertility measurement. At the time of the assay, all flies 
were between 4-6 days old. Flies from each treatment 
were allowed to lay eggs on a molasses-agar medium 
with a small amount of yeast paste. These plates were 
switched every 2 hrs, 3 times on one day and the same 
process was repeated the following day. Eggs on each of 
the plates were counted to provide a fecundity estimate. 
Both populations show higher fitness in the diet to which 
they had adapted (fig. 1 D). 

Library preparation and sequencing 

Flies from generation 1, 11, 25, and 100 were selected 
from each population for sequencing and distributed into 
96 well plates. One 2.8 mm stainless steel grinding bead 
(OPS diagnostics, #089-5000-11) and 100 µl of lysis 
buffer were added to each well. Flies were homogenized 
for 10 minutes at maximum speed in a Talboys High 
Throughput Homogenizer (#930145). The resulting lysate 
was moved to a new 96-well plate for DNA extraction, 
using a Multi-Well Plate Vacuum Manifold (Pall Life 
Sciences #5017) and Acroprep advance 1 ml DNA 
binding plates (Pall Life Sciences #8132). 

Library prep was performed using a liquid handling robot 
(CyBio® FeliX, Analitik Jena) to ease the processing of 
many samples and reduce variability from manual han-
dling of samples. The protocol broadly followed the strat-
egy described in Picelli et al (Picelli et al., 2014). Specifi-
cally, we added 10 µl (100 µM) of forward oligo adapter A 
and 10 µl (100 µM) of reverse oligo adapter (Tn5MERev) 
to 80 µl of reassociation buffer (10 mM Tris pH 8.0, 50 mM 
NaCl, 1 mM EDTA). Following this, we annealed in a ther-
mocycler with the following program: 95°C for 10 minutes, 
90°C for 1 minute, reduce the temperature by 1°C per cy-
cle for 60 cycles, and then hold at 4°C. The process was 
repeated for oligo adapter B. To load the adapters onto 
Tn5, we mixed 5 µl of Tn5, 9 µl of pre-annealed adapter 
A, and 9 µl of pre-annealed adapter B then incubated this 
mixture in a thermocycler at 37°C for 30 minutes. The re-
sulting pre-charged Tn5 was the diluted with a 1:1 solution 
of reassociation buffer and glycerol to 1:1 reassociation 
buffer:glycerol to pre-charged Tn5. 

Mapping of reads, SNP calling, and estimation of al-
lele frequencies 

Following sequencing, we mapped reads to the 
Drosophila melanogaster reference genome (v6.14) using 
BWA (3) (Li & Durbin, 2009), retained only uniquely 
mapped reads, and removed PCR generated duplicates 
using Picard (“Picard Toolkit,” 2019). SNPs were called 
jointly in batch 1 (generations 1,11,25; 1728 samples) and 
batch 2 (generation 100; 1116 samples) using the 
haplotype-based variant detector Freebayes (Garrison & 
Marth, 2012), ignoring indels and multi-allelic SNPs. Any 
SNPs with a quality score less than 30, or with a coverage 
smaller than 28x in any population in batch 1, or smaller 
than 80x in any population in batch 2, were excluded. We 
also excluded SNPs with coverage above the genome 
wide baseline of 167x in any population in batch 1, or 
above 333x in any population in batch 2, since such highly 
covered SNPs might be indicative of collapsed repeats. 
After these filtering steps, we retained 1,741,428 SNPs on 
the major chromosomes (2L, 2R, 3L, 3R and X) for 
subsequent analyzes. 

Allele frequencies inferred from pooled sequencing can 
be biased if the coverage per individual in the pool is un-
even (Schlötterer et al., 2014). Our individually barcoded 
DNA-libraries allowed us to identify from which individual 
any given read originates, thereby avoiding this problem. 
The variance in per sample read depth was substantial, 
suggesting that allele frequency estimated from Pool-seq, 
agnostic to read origin, might be error prone. We cor-
rected for uneven coverage when estimating allele fre-
quencies using the formula: 𝑓!" =

#
$!
∑ $𝐴𝑂!%/(𝐴𝑂!% +%

𝑅𝑂!%+,, where 𝑓!" is the estimated allele frequency of SNP 
i in pool k, n is the number of individuals in the pool, and 
𝐴𝑂!% and 𝑅𝑂!% are the number of observations of the alter-
native and reference alleles respectively at SNP i in indi-
vidual j. The sum is taken over all individuals in pool k, 
where k is one of the 24 [4 (timepoints) x 3 (replicate pop-
ulations) x 2 (treatments)] population samples. This strat-
egy corrects for unequal coverage and should be refered 
over naive Pool-seq estimates. We thus obtained esti-
mates of allele frequency per SNP, in each of the 24 pop-
ulation samples. 
We minimized variability in sequence coverage intro-
duced by manual handling of samples by preparing librar-
ies with a CyBio® FeliX liquid handling robot.   We pooled 
libraries according to DNA concentration, and re-pooled 
the DNA libraries after preliminary sequencing on the Illu-
mina Miseq platform to normalize coverage. 
Inference of patterns of polygenic adaptation using 
PCA 

To explore the main drivers of genetic changes during the 
course of the experiment, we performed a principal 
component analysis of the genome wide allele 
frequencies. For this analysis, we first assembled a 
sample-by-SNP matrix P, containing the genome-wide 
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allele frequencies in all 24 population samples (4 time 
points x 2 treatments x 3 replicate populations). We then 
computed the principal components of this matrix, 
allowing us to identify the main drivers of allele frequency 
changes in an unsupervised fashion. 

Inference of individual loci selection signatures 

To detect signals of positive selection, we fitted the 
following logistic regression model: 

𝑙𝑜𝑔 0
𝑝!

1 − 𝑝!
4 = 𝛽&𝑡! + 𝛽'(𝐻𝑆! + 𝛽'(∗&𝑡!𝐻𝑆! + 𝑒! 

where 𝑝! denotes the allele frequency at a given locus in 
a given population and time point; 𝑡!  is a numerical 
variable corresponding to the 4 sampled time-points 
(generations 1, 11, 25, and 100 are numerically coded as 
{1, 2, 3, 4}, and so the corresponding coefficient (𝛽& ) 
measures the average allele frequency change across all 
time-points); 𝐻𝑆! is an indicator variable corresponding to 
the two treatments 𝐻𝑆 = 1 in high sugar (HS) and 𝐻𝑆 = 0 
in control (CONTROL)); 𝑒!  is an error term. The 𝛽 
parameters are the corresponding regression coefficients. 
This allowed us to model the allele frequency for every 
locus across the entire selection experiment in one joint 
statistical framework. We focus primarily on the 
interaction effect 𝛽'(∗& , which quantifies the degree to 
which the allele frequency trajectory in the control regime 
differs from the one in the high-sugar regime. 

After fitting this model for all SNPs, we obtained estimates 
of the effect of time separately for the control and high-
sugar selection regimes. This was done using the 
emtrends function in the R package emmeans (Lenth, 
2022). In order to exclude selection signatures that did not 
correspond to high-sugar adaptation, we disregarded 
SNPs where the effect of time in the high-sugar selection 
regime showed a p-value above 10-4. 
Individual level genotypes 

To obtain individual-level genotypes rather than allele 
frequencies from our low coverage data at generation 
100, we first filtered our SNP data more stringently. 
Having already applied the filter described above, we 
retained SNPs with called genotypes in more than 90% of 
the individuals, each genotype being called with a 
minimum depth of 3. We also excluded individuals with 
more than 50% missing genotypes. This filtering was 
done separately for each chromosome, giving a set of 51k 
SNPs called in 412 individuals in the control populations, 
and 52k SNPs called in 439 individuals in the high-sugar 
populations. These genotypes where used to estimate 
linkage disequilibrium (fig. 1 B) and to search for 
signatures of selective sweeps and gametic 
disequilibrium. 

Detecting selective sweeps 

To detect signatures of selective sweeps, we first used 
the software shapeit (Delaneau et al., 2008) to phase the 

individual genotypes into haplotypes. The estimated 
haplotypes were then used to calculate the integrated 
Haplotype Score (iHS) (Voight et al., 2006). Briefly, iHS 
measures the length of haplotype homozygosity around a 
given allele, compared to its alternative allele. A recent 
selective sweep is expected to leave a genomic footprint 
of extended homozygosity around the selected allele, 
whereas selection on standing genetic variation and/or 
polygenic selection might not leave such a footprint 
(Lynch & Walsh, 1998). iHS was calculated using the R-
package rehh (Gautier & Vitalis, 2012), and scores were 
standardized per allele frequency bin as described in 
Voight et al. (2006). We calculated iHS at generation 100 
in the high-sugar selected populations, using the 3 
replicate populations. To compare selection signatures 
inferred from our regression model to selective sweeps 
inferred by iHS, we contrasted the regression p-values to 
iHS on a SNP-by-SNP basis (sup fig. 3). 

Transcriptional changes associated with adaptation 
to high-sugar diet 
 
• Experimental design 

To identify transcriptional changes associated with 
genetic adaptation to high sugar, we performed an 
experiment that allowed us to robustly differentiate gene 
expression differences due to the adaptation regime from 
the plastic response due to short-term changes in dietary 
condition. For this, we used a full reciprocal design where 
flies from each replicate cage from generation 170 were 
allowed to lay eggs in either the dietary condition they 
evolved in (i.e., HS evolved flies on high-sugar food, 
CONTROL evolved flies on control food), or in the 
alternative diet (i.e., HS evolved flies on control diet, 
CONTROL evolved flies on high-sugar diet). Female flies 
were collected 7-11 days after eclosion, and head and 
body were separated and plated each in two 96-well 
plates with each plate containing samples for only one 
tissue and all four experimental combinations. Plates 
were stored at -80˚C until further processing. 

• RNA extraction and sequencing 

Plates containing heads and bodies were processed in 
the same way: Sample homogenization was done as 
described above for DNA samples, and mRNA extraction 
as described in Suppl. File 2 of Pallares, Picard, et al. 
(2020) using Dynabeads™ mRNA DIRECT™ Purification 
kit (ThermoFisher), and a final elution of 10 µl and 30 µl 
Tris-HCl for heads and body, respectively. 3’-enriched 
RNAseq libraries were prepared following the TM3’seq 
pipeline (Pallares, Picard, et al., 2020). In brief, 10 µl of 
input mRNA was used in the first strand cDNA synthesis 
reaction which was primed with Tn5Me-B-30T oligo that 
binds to the polyA tail of mRNA molecules resulting in 3’ 
enriched libraries. cDNA was amplified in three rounds of 
PCR and tagmented using homemade Tn5 transposase. 
12 PCR cycles were used for final library amplification 
using Illumina’s i5 and i7 primers. The step by step 
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TM3’seq protocol can be found in Suppl. File 1 of Pallares, 
Picard, et al. (2020). All libraries within a plate were 
pooled using 5 µl or 2 µl per head and body library, 
respectively, and cleaned and size-selected using the 
double-sided Agencourt AMPure XP bead (Beckman 
Coulter) cleanup approach described for DNA-seq 
libraries. The resulting four plate-level libraries were 
pooled in equal proportions and sequenced on the 
Illumina NovaSeq S2 platform at the Genomics Core 
Facility of the Lewis-Sigler Institute for Integrative 
Genomics at Princeton University. RNA extraction, cDNA 
synthesis, and library preparation were done in the 
CyBio® FeliX liquid handling robot. 

• Processing of RNAseq data 

Raw RNA-seq reads were trimmed to remove low quality 
bases, adapter sequences, and to exclude post-trimmed 
reads shorter than 20 nt using Trimmomatic 0.32 (Bolger 
et al., 2014) and the following parameters: SE 
ILLUMINACLIP:1:30:7 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:20. The trimmed reads 
were mapped to the Drosophila melanogaster genome 
r6.14 using STAR (Dobin et al., 2013), and uniquely 
mapped reads were assigned to genes using 
feautureCounts from the package Subread (Liao et al., 
2013) and the following parameters: -t exon –g gene_id]. 
Samples with fewer than 500k or more than 20M gene 
counts, and genes with mean CPM < 1 were removed. 
After this filtering, the final dataset used in further analysis 
consisted of 161 head samples with a median of 3.45M 
gene counts covering 8460 genes, and 171 body samples 
with a median of 2.3M gene counts covering 8360 genes. 

• Differential expression analysis 

To identify the transcriptional differences due to 
adaptation to high sugar, we performed a differential 
expression analysis between flies evolved in HS diet and 
flies evolved in CONTROL diet while accounting for the 
dietary condition the flies were exposed to for one 
generation. For each tissue separately, we used a Wald 
test in DESeq2 (Love et al., 2014) and the following 
design: Expression ~ Plate + Diet + Genotype, where 
Plate indicates the 96-well plate in which samples were 
processed from sample collection through library 
preparation; Diet represents the dietary condition the flies 
were exposed to for one generation (HS or CONTROL); 
Genotype represents the diet flies evolved in (HS or 
CONTROL). Sample size for each of the four groups in body 
and head, respectively: n(genotype HS, diet HS) = 41, 38; 
n(genotype HS, diet CONTROL) = 46, 42; n(genotype 
CONTROL, diet CONTROL) = 45, 41; n(genotype CONTROL, 
diet HS) = 39, 40. p-values were estimated for the null 
hypothesis lfcThreshold = 0 and alpha = 0.05, and 
adjusted using Benjamini & Hochberg FDR method. 

• Differentially expressed genes and selection 

Having identified genes that were differentially expressed 
between flies adapted to the respective selection regimes, 

we went on to look for signals of selection nearby along 
the chromosome to these genes. Considering an interval 
± 5 kb around each gene, we looked for SNPs showing a 
significant time-by-regime effect in the regression 
analysis and overlapped with the DE genes. To this end 
we used the R-package GenomicRanges, and the fraction 
of overlapping selected SNPs was calculated at p-value 
thresholds {10-5, 10-10, 10-15, 10-20, 10-25, 10-30} for the 
time-by-regime effect (fig. 5 B, red lines and points). 
Because of the large number of DE genes and selected 
SNPs, we expect some amount of overlap between the 
two by chance. To quantify this expected chance overlap, 
we performed a permutation test. For each permutation, 
the same number of SNPs as we observed to be 
significant at that significance threshold was picked at 
random from the full set of 1.76M SNPs. We then 
calculated the fraction of these random SNPs that 
overlapped with the DE genes. Performing 1000 
permutations at each p-value threshold gave us empirical 
null distributions for the overlap (fig. 5 B, boxplots). 

Epistatic selection signatures 
 
• Wright-Fisher model with selection for epistatic QTLs 

We used an individual based Wright-Fisher model to 
investigate the effect of epistatic interactions in the inter-
chromosomal LD in our selection experiment. The 
simulation was based on the code from Lou et al. (2020), 
using the SLiM modeling framework. We start by creating 
a neutral burn-in population with 5000 individuals, two 
equal chromosomes with 300 k sites, a base mutation rate 
of 1.5×10-9, and a between-site recombination rate of 10-

8. This burn-in population is allowed to evolve under a 
Wright-Fisher neutral model for 50k generations. With 
these parameters we expect about 0.5 recombinations 
per generation, and after 50k generations we have about 
3k segregating neutral SNPs in mutation-drift equilibrium 
with a minor allele frequency above 5%. The burn-in 
process was repeated for each simulation replicate, so 
each replicate simulation started with a different initial 
population. For each initial population, we also did 
experimental replicates, which started from the same 
starting population. 

Using these starting populations, we sampled 1000 of the 
segregating mutations to be QTLs contributing to the phe-
notypic effect of a polygenic trait, with all QTLs having the 
same phenotypic effect and 2 alleles. We then considered 
two scenarios: (1) an additive scenario, where the value 
of the trait is only given by these additive QTLs, and (2) 
an epistatic scenario, where, in addition to the additive ef-
fects, we sampled 200 pairs of QTLs (one member of the 
pair in each chromosome) to have an additive-by-additive 
epistatic effect. In this epistatic scenario, the value of the 
trait depended on these epistatic interactions. Both sce-
narios proceed with truncation selection on the polygenic 
trait for 100 generations, with the 500 individuals with the 
smallest trait value being removed before reproduction in 
each generation. This strength of selection was chosen 
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so that at the end of the simulation we had only a few fix-
ations (around 10), mimicking the observation in our fly 
selection experiment. 
During the selection phase of the simulation we sampled 
allele frequencies at regular intervals (every 10 genera-
tions) and used these to calculate the correlation between 
allele frequencies at the QTL pairs. At generation 100, we 
also measured the gametic disequilibrium between the 
same pairs of QTLs in both simulations, with the only dif-
ference being the presence of the epistatic interaction in 
one of the scenarios. We compared the mean gametic 
disequilibrium between these QTL pairs to a distribution 
of the mean gametic disequilibrium between random pairs 
of SNPs across chromosomes. To create this distribution, 
we sampled 200 SNPs in each chromosome and calcu-
lated the gametic disequilibrium between the pairs, this 
process was repeated 10k times. We created a separate 
distribution for each scenario. 

• Identifying well-supported epistatic SNP pairs 

To detect potential instances of epistatic selection, we 
looked for two types of signals: 1) correlations between 
the allele frequencies at different loci; 2) gametic 
disequilibrium after 100 generations of selection. The 
former could be due to epistasis or due to similar but 
independent selection coefficients at the respective loci, 
while the latter is only expected under epistasis. The 
correlations were estimated by the Pearson correlation 
coefficient, using allele frequencies in all generations in 
the high-sugar populations (𝑛 = 12 per SNP pair). The 
gametic disequilibrium was quantified separately in high-
sugar and control populations, using the individual 
genotypes at generation 100 described above. For each 
SNP pair, we tested the deviation from independent 
segregation using a chi square test (𝑛 ~ 420 per SNP 
pair). Having identified candidate pairs where the two 
SNPs displayed gametic disequilibrium and were located 
on different chromosomes, we attempted to find well 
supported signals by clustering physically close SNPs 
with a similar signal of gametic disequilibrium. To do this, 
we applied a clustering procedure akin to the LD clumping 
algorithm implemented in PLINK (Purcell et al., 2007). 
The algorithm works as follows: 

i. Starting with the SNP pair with the smallest p-
value for gametic disequilibrium, assign to the 
same cluster all other SNP pairs with one SNP 
on chromosome 2 that are within 250 kb, in 
linkage disequilibrium, and have not already 
been clustered. Repeat until there are no more 
SNP-pairs to assign to clusters. Thus, each 
cluster contains SNP pairs sharing proximal and 
linked SNPs on chromosome 2. 

ii. For each cluster identified in (i), perform a 
second round of clustering for the SNP pairs 
within that cluster. This is done by assigning to 
the same cluster all SNP-pairs with one SNP on 
chromosome 3 that are within 250 kb, in linkage 

disequilibrium, and have not already been 
clustered. 

We thus obtain hierarchical clusters, where each 
“chromosome 2 end” cluster contains one or several 
“chromosome 3 end” clusters. The algorithm is greedy, so 
each SNP pair will only end up in one cluster, if at all. 
Finally, we keep the clusters with at least 3 linked SNPs 
at “each end”. We thus identify epistatic selection 
signatures supported by multiple SNP pairs, with multiple 
linked SNPs at each end of the putative interaction. 
Through the nature of our clustering procedure, each 
such signature will involve one locus on chromosome 2, 
and one or several loci on chromosome 3 (fig. 6 B). 

Code and data availability 
Code to reproduce figures in this paper is available at 
github.com/ayroles-lab/highsugar-selection-code. 

Corresponding data is available at Princeton DataSpace 
link. 
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Supporting information and figures 
Supporting information can be found at github.com/diogro/HighSugarSelection. 
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Supplementary Figure 1: Comparison of PC scores and p-values from regression analysis. PC1 scores 
are similar to p-values from SNPs that show a shared selection signal across treatment and control, 
and PC2 scores are similar to p-values from SNPs that only show selection signal in HS. These 
similarities corroborate the interpretation that PC1 is related to the SNPs involved in the shared 
selection captured by the time component of the regression, and that PC2 is related to the SNPs 
involved in the response to high-sugar selection, which is captures by the time-by-selection regime 
interaction coefficient in the regression analysis. 
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Supplementary Figure 2: Across population allele frequency PCA (as in fig. 2) after exclusion of 
significant SNPs.	As the p-value significance threshold for the high-sugar selection interaction term is increased 
and more putatively selected SNPs are removed, PC2 gradually explains less and less of the divergence 
between HS and CONTROL populations. The Manhattan plot in the final panel shows the -log10 p-values for the 
interaction term in the regression analysis and the horizontal lines show the various thresholds used in the PCA 
panels. For each PCA panel, SNPs above the threshold are removed before calculating the PCA. The threshold 
we chose based on the differentiation between CONTROL and HS populations in the PCA plot is marked by the 
red line in the Manhattan plot and the red box around the corresponding PCA plot. 
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Supplementary Figure 3: A comparison of the results from the time-series regression analysis and the 
iHS analysis. We compare the p-values from the regression analysis to the absolute iHS values calculated on 
the HS populations. (A) Negative log10 transformed p-values corresponding to the time-by-selection regime 
interaction coefficient in the regression analysis of allele frequency over time (y-axis) plotted versus absolute 
iHS scores (x-axis). (B) Negative log10 transformed p-values corresponding to the CONTROL population contrast 
in the regression analysis of allele frequency over time (y-axis) plotted versus absolute iHS scores calculated 
on the HS populations (x-axis). Around 15k SNPs included in the figure, with each point representing one SNP. 
Only the interaction term p-value are associated with iHS values, suggesting both capture a signal related to 
high-sugar selection. In contrast, signals associated with changes in the CONTROL population are not associated 
with the iHS signal in the HS populations. 
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