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Abstract  

Predicting brain age from T1-weighted MRI is a promising marker for understanding brain 

aging and its associated conditions. While deep learning models have shown success in 

reducing the Mean Absolute Error (MAE) of predicted brain age, concerns about robust and 

accurate generalization in new data limit their clinical applicability. The large number of 

trainable parameters, combined with limited medical imaging training data, contribute to this 

challenge, often resulting in a generalization gap where there is a significant discrepancy 

between model performance on training data versus unseen data. 

In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and 

address the generalization gap through comprehensive preprocessing, extensive data 

augmentation, and model regularization. Using training data from the UK Biobank, we 

demonstrate substantial improvements in model performance. Specifically, our approach 

reduces the generalization MAE by 44% (from 5.25 to 2.96 years) in the Alzheimer’s Disease 

Neuroimaging Initiative dataset and by 22% (from 4.35 to 3.40 years) in the Australian 

Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve a 29% reduction in scan-

rescan error (from 0.86 to 0.61 years) while enhancing the model's robustness to registration 

errors. Feature importance maps highlight anatomical regions used to predict age. 

These results highlight the critical role of high-quality preprocessing and robust training 

techniques in improving accuracy and narrowing the generalization gap, both necessary steps 

towards the clinical use of brain age prediction models. Our study makes valuable 

contributions to neuroimaging research by offering a potential pathway to improve the 

clinical applicability of deep learning models. 
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Introduction  

Estimating brain age solely from T1-weighted (T1w) Magnetic Resonance Imaging (MRI) 

offers insight into the similarity between an individual subject's brain and a cohort of healthy 

brains of various ages. Comparing the subject's chronological age with a model-estimated 

brain age can represent a deviation from typical healthy aging patterns and can be used as a 

feature to check whether the brain is undergoing accelerated aging or not and may serve as an 

indicator of progression in neurodegeneration diseases. Numerous studies have established 

correlations between the brain age gap — defined as the difference between estimated brain 

age and chronological age — and various stages of neurodegenerative diseases. Cole et al. 

demonstrated an increase in apparent brain age in HIV-positive adults [1]. He and his 

colleagues also found an association between elevated brain age and a higher risk of death 

[2].  Bøstrand et al. showed that alcohol use can accelerate brain aging [3]. Numerous studies 

have investigated the relationship between accelerated brain aging and dementia. For 

instance, Wang et al. observed a significant association between brain age gap and dementia 

risk [4]. Biondo et al. suggested that brain age could aid in the early detection of dementia 

[5]. Our group found that the brain age gap significantly correlates with 18F-NAV-4694 and 

18F-MK-6240 Standardized Uptake Value Ratios (SUVRs), which are tracers for amyloid-

beta and tau tangles, respectively. Additionally, Beck et al. demonstrated that brain age gap is 

associated with cardiometabolic risk factors [6]. 

Due to their ability to automatically extract intensity-based, shape-related, and textural 

features, deep learning models have emerged as the preferred choice for brain age prediction. 

However, training deep learning models for medical imaging data is challenging due to 

limited amounts of available data, inadequate representation of the overall population, and 

sparsity and potential label imbalances for training and testing. In addition, many researchers 

fail to evaluate their models on independent datasets that have not been seen previously 

during training or testing. Furthermore, out-of-distribution testing is very rare as most report 

only cross-validation results [7]. This oversight makes it increasingly difficult to ascertain the 

generalizability of published models for use in other studies. Since machine learning models 

can be misled by inter-site MRI acquisition differences (as demonstrated by Glocker et al. 
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[8]), the resulting lack of generalizability obstructs effective deployment of a previously 

trained model outside its original context. This weakness also prevents the extraction of 

potentially biologically-plausible interpretation of the data, hindering our understanding of 

underlying disease mechanisms and other biological processes. Therefore, it is crucial to 

exercise extra caution when (1) training a model and (2) to rigorously evaluate its 

performance on an independent, previously unseen dataset using various metrics to ensure 

robust generalization. 

Background 

By searching PubMed using the keywords "MRI," "Age," and "Prediction," we identified a 

total of 155 papers published between 2020 and 2024. Looking more closely, we found 40 

relevant papers that (1) trained a deep model on T1w MRIs to predict brain age and (2) 

reported results from at least one validation strategy. While successful to varying degrees, 

they all potentially have at least one of the three following problems: either 1) no independent 

data is used to assess how well the models generalize when facing out-of-distribution 

samples, or 2) there is a significant drop in accuracy when testing the models on external 

data, or 3) no results are reported regarding the model's robustness, such as how the output 

changes with small perturbations to the input, like registration errors or scan-dependent 

differences. 

We review a number of these papers here in chronological order. Table 1 summarizes our 

findings. Feng et al. [9] trained a 3D Convolutional Neural Network (CNN) with multiple 

interleaved convolutional blocks to predict brain age. They tested their model on an 

independent dataset, Cam-CAN, and reported a Mean Absolute Error (MAE) of 4.21 years 

for predicting an individual’s age from T1w MRI structural scans. These authors also ran a 

reproducibility test and showed that their model prediction remains consistent across 

sessions, with an approximate standard deviation of 1 year. 

Lombardi et al. [10] trained a deep model on morphological features extracted by FreeSurfer 

v5.3.0 and tested their model on previously unseen samples from previously seen scan sites. 

They reported an MAE of 2.7 years on the test set. Additionally, they did not study the 

impact of possible errors in different stages of the FreeSurfer recon-all processing command. 
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Kuo et al. [11] reported an MAE of 3.33 years for predicting brain age of the PAC2019 

dataset subjects, but no independent testing and no sensitivity/stability analyses were 

performed. 

Dinsdale et al. [12] reported MAE that ranged from 2.71 to 3.09 years. However, they did not 

test their model on unseen images from a dataset different from the training dataset. Also, 

despite training three networks simultaneously, suggesting potential increased robustness, 

they did not conduct any specific robustness evaluation. 

Ren et al. [13] achieved an MAE of 2.65 years as their best reported result, however they did 

not use unseen external data to test their deep model. Additionally, although they used 

registered MRIs as training data, they did not report how sensitive their model is when faced 

with different sources of variabilities such as registration errors or scanner-related artifacts. 

 
Table 1 Deep brain age prediction papers discussed in the introduction and tests they reported. 
Test #1 is out-of-distribution test and Test #2 is robustness test. The sign “✓✓” indicates no problem, 

the sign “✓” indicates some tests were done, but there are possible shortcomings, and the sign “✗” 
indicates no proper testing was done/reported. 

Paper Test #1 Test #2 Comments 

Feng et al. [9] ✓ ✓ Independent testing was done on only one dataset. Also, just one 
reproducibility test is reported which was done only on 3 
subjects. 

Lombardi et al. 
[10] 

✗ ✗ Hold-out data came from the same distribution with training 
data. 

Kuo et al. [11] ✗ ✗ 
 

Dinsdale et al. [12] ✗ ✗ 
 

Ren et al. [13] ✗ ✗ 
 

Besson et al. [14] ✗ ✗ 
 

Hepp et al. [15] ✗ ✗ 
 

Peng et al. [16] ✗ ✗ 
 

Leonardsen et al. 
[17] 

✓✓ ✗ 
 

Lee et al. [18] ✓ ✗ Independent testing was done on only one dataset. 

Dular et al. [19] ✓ ✓ Independent testing was done only on the UKBB dataset, leading 
to potentially more optimistic results. They did not perform any 
robustness test for errors related to the preprocessing pipeline. 
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Besson et al. [14] reduced the number of trainable parameters of their model by exploiting a 

Graph CNN architecture and achieved test MAEs of 2.73 to 8.61 years on different datasets. 

While they tested their model on hold-out data, the testing data came from the same datasets 

as that used for training, thus came from the same distribution. Moreover, although they 

registered all images to the Montreal Neurological Institute (MNI) space and extracted 

surface vertices, they did not report any robustness testing. 

Hepp et al. [15] introduced an uncertainty measure to have an estimation of the predicted 

brain possible age range, instead of having only a single value as the predicted brain age. 

They reported an MAE of 3.21 ± 2.45 years. They trained and tested their model on the same 

dataset, the Germany National Cohort (GNC) study. No external or robustness test was done. 

Peng et al. [16] employed preprocessed MRIs. They reduced the number of trainable 

parameters significantly by removing the fully-connected layer from their model architecture 

and achieved an MAE of 2.18 years. However, they did not validate their model externally, 

nor did they test their model robustness. Leonardsen et al. [17] modified Peng’s model and 

trained it on ~53K MRIs from multiple studies and reported an MAE of 2.47 years on the 

internal (within domain) test set and 3.90 years on average on external (out of domain) test 

images from other studies. This 1.43 year increase in MAE is indicative of the 

generalizability limit of their model in out of domain data. They did not test the robustness of 

their model. 

Lee et al. [18] trained a model on ~2K MRIs from the Mayo dataset [20] and tested it on 

Alzheimer's Disease Neuroimaging Initiative (ADNI) [21] subjects. They concluded that their 

model is generalizable since the internal (within domain) and the external (out of domain) test 

accuracies were statistically comparable (MAE of 3.48 years and 3.51 years respectively after 

bias correction). While their model was trained on registered MRIs, they did not report on the 

impact of small input disturbances on the prediction accuracy, nor did they mention any use 

of any method to make their model more robust. 

Recently, Dular et al. [19] trained 4 different models on ~2.5K T1w MRIs gathered from 

multiple sites. They did two external validations: first, testing the model on samples from an 

unseen site (MAE: 3.31 years for within domain to 3.65 years for out of domain testing for 

different models and different offset correction strategies), and second, testing the model on 

samples that had gone through a different preprocessing pipeline (MAE: 3.71 to 9.80 years). 
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The study revealed that the models’ error is significantly linked to the preprocessing pipeline. 

While they include different tests in their framework to assess the robustness of the trained 

models, they did not test those models' robustness in the face of preprocessing pipeline-

related errors (e.g. registration errors). It is also noteworthy that their external testing relied 

exclusively on data from the UK Biobank (UKBB) dataset [22], widely acknowledged as one 

of the highest-quality, homogeneous datasets available in the field. This choice of dataset 

may potentially lead to more optimistic test results. 

Materials and methods  

Datasets 

The T1w MRI data from five datasets used to train, validate, and test our Brain Age deep 

learning model are described below. 

UK Biobank (UKBB)  

The UKBB is an on-going project with the aim of gathering a large dataset of biomarkers to 

study human health. We downloaded version v14940, containing 39,676 T1w MR images of 

healthy subjects. All images were scanned using the same scanner, a Siemens Skyra 3T, with 

a 3D MPRAGE sequence (TR = 2000 ms, TE = 2.01 ms, TI = 880 ms, and flip angle = 8°) 

with 1 mm x 1 mm x 1 mm voxels. 

Alzheimer's Disease Neuroimaging Initiative (ADNI)  

ADNI was launched in 2003 as a public-private partnership, led by Micheal W. Weiner, MD, 

with the primary aim of investigating whether MRI, Positron Emission Tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of AD. In this study we selected baseline scans of healthy 

participants from ADNI-1, ADNI-2, and ADNI-Go cohorts consisting of 594 T1w MRI scans 

of 280 cognitively normal subjects at baseline (first visit) acquired with an MPRAGE 

sequence (TR = 2300/2400 - 3000 ms, TE = ~3 ms, TI = 900 - 1000 ms, and flip angle = 8 - 

9°). The images were scanned using different scanners (from 3 different manufacturers: GE, 

Siemens, and Philips) at different sites. The resolution of images in ADNI-1 is 0.9375 mm x 

0.9375 mm x 1.2 mm and in ADNI-2/Go is 1 mm x 1 mm x 1.2 mm [23]. 
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Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL)  

AIBL is a study to discover which biomarkers, cognitive characteristics, or life-style factors 

can lead to AD development. From this study we selected baseline scans of cognitively 

normal participants, consisting of 245 T1w MR images scanned on a Siemens Avanto 1.5T 

with an MPRAGE sequence (TR = 1900 ms, TE = 2.13 ms, TI = 900 ms, flip angle = 9°). 

The resolution of scans is 1 mm x 1 mm x 1.2 mm. Only baseline images were used. 

Open Access Series of Imaging Studies 3 (OASIS-3) 

OASIS is an open-access compilation of data for more than 1,000 subjects collected from 

different on-going projects over 30 years. All OASIS-3 scans collected on Siemens TIM Trio 

3T using MPRAGE sequence (TR = 2400 ms, TE = 3.08 ms, TI = 1000 ms, flip angle = 8°). 

The resolution is 1 mm x 1 mm x 1 mm. In this study, we selected 859 baseline scans from 

cognitively normal participants. 

Movement-related artifacts (MR-ART) 

MR-ART is an open-access dataset of structural brain MRIs collected from 148 cognitively 

normal subjects including motion-free and motion-affected data acquired from the same 

participants in the same session with the goal of raising awareness about the impact of motion 

on MRI-derived data and evaluating approaches to correct for them. All scans were collected 

on a Siemens Magnetom Prisma 3T using an MPRAGE sequence (TR = 2300 ms, TE = 3 ms, 

TI = 900 ms, flip angle = 9°). The resolution is 1 mm x 1 mm x 1 mm. 

The UKBB images were employed for training our models, while testing was conducted on 

four other datasets. We specifically opted for baseline scans (those taken during the first visit) 

from each dataset, with an exception for datasets lacking a longitudinal structure to ensure the 

robustness of our model evaluation and mitigate potential challenges arising from 

correlations between different test samples. 

Data availability  

OASIS3 and MR-ART are open-access. UKBB, ADNI, and AIBL are available upon request 

and approval. 
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Preprocessing 
All T1w MRI data used in this study (including training, evaluation, and test phases) were 

preprocessed using the following steps: 1) brain extraction using SynthStrip [24], 2) intensity 

normalization through histogram matching [25], 3) denoising with adaptive non-local means 

[26], 4) N4 bias field correction [27], 5) repeating step 2, and 6) affine registration to the 

MNI152 nonlinear [28], [29] symmetric template using ANTs [30]. The size of the output 

image was 192x192x192 with 1 mm3 voxels. These volumes were used for all model fitting, 

validation, and testing. For each preprocessing step, we used some of the most advanced and 

reliable methods available in the literature, while many other studies rely on older approaches 

or utilize traditional FreeSurfer recon-all pipelines, which incorporate older methods such as 

the skull stripping technique introduced by Ségonne et al. [31] and the N3 bias field 

correction [32]. Additionally, we performed intensity normalization twice during the pipeline: 

once before bias field correction and once after. 

Quality Control 
We manually inspected all preprocessed images using Qrater [33]. Approximately ~4% of the 

preprocessed images failed, mostly due to either corrupted brain masks or failed registration. 

The number of failed images in each dataset are as follows: 1,976 of UKBB, 47 of ADNI, 1 

of AIBL, and 58 of OASIS-3. The demographics of the subjects that passed the QC are 

summarized in Table 2. 

Table 2 Demographic information of the various datasets utilized in this study. 

Dataset Subset Size 
[Subjects / Images] 

Sex 
[F / M] 

Age Range 
[min - max, mean±std] 

UK BioBank (UKBB) Full 37,700 / 37,700 20299 / 17401 45.0 - 83.0, 64.02±7.54 

Alzheimer's Disease 
Neuroimaging Initiative 
(ADNI)  

Healthy 
Controls 

280 / 547 
(333 1.5T, 214 3T) 

144 / 136 59.9 - 90.1, 74.75±5.75 

Australian Imaging 
Biomarkers and Lifestyle 
Study of Aging (AIBL) 

Healthy 
Controls 

244 / 244 140 / 104 60.0 - 92.0, 73.50 ± 6.48 

Open Access Series of 
Imaging Studies 3 (OASIS-3) 

Healthy 
Controls 

611 / 801 258 / 170 
(183 
unidentified) 

42.7 - 95.3, 67.58±8.23 

Movement-related artefacts 
(MR-ART) 

Full 148 / 436 95 / 53 18.2 - 74.8, 30.01±12.72 
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Training Data 
We split the UKBB data into two sets: one for training and validation (n = 95% of 37,700 = 

35,815) and one for hold-out testing (n = 5% of 37,700 - 35,815 = 1,885). The training and 

validation set was split into 3 parts: 32,045 MRIs for training, 1,885 for validation set 1 and 

1,885 for validation set 2. The two external validation sets were used to better check for any 

potential bias when estimating the within-domain accuracy. All sets were constructed to have 

an approximately uniform age distribution. 

Deep Learning Model for Brain Age Prediction 
We trained three different models with the training data, which was preprocessed, and quality 

controlled earlier (Fig. 1). The first model is an extension of the SFCN model of Peng, called 

SFCN-reg [17], with identical hyperparameter choices as specified in [17]. SFCN-reg is a 

convolutional neural network based on the VGG16 architecture, with the exclusion of the 

linear layer before VGG16’s final layer, effectively reducing the number of trainable 

parameters to ~3 millions. No hyperparameter tuning or additional augmentation techniques 

beyond those in the original paper were employed, allowing for a direct comparison of the 

impact of our more robust preprocessing pipeline. Fig. 1 shows the architecture of SFCN-reg 

used in this study. 

The second model was the same as the first, but during training we randomly applied a 

combination of 6 different data augmentation methods (RandomAffine, RandomGamma, 

RandomBiasField, RandomMotion, RandomBlur, and RandomNoise - all implemented in 

TorchIO library [34]) to each image before introducing it to the network (Fig. 1C). The 

parameters for data augmentation are described below. We hypothesized that these 

manipulations would make the SFCN-reg network more robust to data variability seen in the 

within domain training data and eventually, in the out of domain testing data. 

The third model was the same as the second, but during the training before feeding an MRI to 

the network, we randomly masked 20% of the voxels in the image, also known as input 

dropout (Fig. 1C). 

To finalize each model, we identified the epoch with the best average validation error from 

validations sets 1 and 2. We then evaluated the models with both internal (in-distribution) 

testing with the 5% held out independent UKBB dataset and with external (out-of-
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distribution) testing on ADNI, AIBL, OASIS-3 and MR-ART datasets. It is crucial to note 

that none of these test samples were seen by the model during the training/validation. 

(A) 

 
(B) 

 
(C) 

 
Figure 1. Details of the models we trained. (A) Our preprocessing pipeline, (B) The architecture of 

SFCN-reg we utilized, (C) The pipeline for the second and the third model we trained. 
 

Data Augmentations 
We utilized the following augmentation techniques implemented in TorchIO library [34] 

when training the second and the third model: 

• RandomAffine: Applies a random affine transformation (translation, rotation, and 

scaling) to the input. Translation parameters {dx, dy, dz} were randomly chosen from 

a continuous uniform distribution of (-2 mm, 2 mm). Rotation parameters {rx, ry, rz} 

were randomly chosen from a continuous uniform distribution of (-2°, 2°). Scaling 

parameters {sx, sy, sz} were randomly chosen from a continuous uniform distribution 

of (-0.99, 1.01). We selected parameters to represent ~1% error in registration. 
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• RandomGamma: Randomly adjusts contrast values (range of [0, 1]) by raising them 

to the power of g. g values were calculated as eb, with b chosen from a continuous 

uniform distribution of (-0.3, 0.3). This shifts the intensity distribution of an image 

nonlinearly to mimic the variability due to different scanner parameters. 

• RandomBiasField: Applies a bias field (linear combination of polynomial basis 

functions) to the entire image. Although we used the N4 method to remove non-

uniformity from images, complete removal of the bias field is not guaranteed. 

Therefore, we used a first-order polynomial function with a coefficient randomly 

chosen from a continuous uniform distribution of (-0.3, 0.3). 

• RandomMotion: Simulates several movements in the form of translation or rotation. 

Since we discarded images with extensive movement during the QC phase, we 

simulated head movement by repeating the original image 1 to 4 times (uniformly 

chosen). Each repetition involved translating the original image by d voxels chosen 

from a continuous uniform distribution of (-3, 3). 

• RandomBlur: Applies a Gaussian filter with randomly chosen standard deviations 

across different axes. Based on our visual inspection, we set a standard deviation of 

no larger than 1.5 in each axis. 

• RandomNoise: Applies Gaussian noise with a randomly chosen mean and standard 

deviation to the image. According to our visual inspection, we chose the mean 0 and a 

randomly chosen standard deviation from uniform distribution of (0, 0.06) for a signal 

range of [0, 1]. 

See Fig. 2, for the impact of each augmentation method on a sample image from UKBB.  

Bias Correction 
Many age prediction models have issues with regression to the mean, where the model 

predicts younger subjects as older and older subjects as younger. This bias can be observed in 

the correlation between prediction error and the true value. Specifically, the age prediction 

error tends to be more negative for older subjects on average and more positive for younger 

subjects. To address this bias, we applied a linear mapping to the model output to null the 

correlation between age prediction error and true age on the validation set (as outlined in the 

original SFCN paper [16]). Since correction coefficients are computed only in training, and 

reused with any of the test sets, there is no data leakage. 
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(A) 

 
(B) 

 

(C) 

 
(D) 

 

(F) 

 
(F) 

 

(G) 

 
Figure 2. The impact of each TorchIO augmentation method on a sample image from UKBB 

(A) The original sample. (B) RandomAffine with (dx, dy, dz) = (-2, -1, 0), (rx, ry, rz) = (2, 1, 0), (sx, 

sy, sz) = (1.005, 0.995, 1.000). (C) RandomGamma with  b = 0.25, (D) RandomBiasField with 

coefficient = 0.25. (E) RandomMotion with 3 simulated movements with d = 1.5. (F) RandomBlur 

with std = 1.0. (G) RandomNoise with mean = 0 and std = 0.05 

Results  

For each independent testing dataset, we performed a comprehensive set of empirical checks, 

including the model's stability across different subsets of test data, the model’s ability to 

extrapolate, scan-rescan error assessments, and the model's reliability in the presence of 

registration errors - all detailed below. This suite of evaluations aimed to provide a thorough 

understanding of the trained model performance across different datasets and under various 

conditions. 
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Additionally, to assess the impact of our preprocessing pipeline on achieving more 

generalized predictions, all test samples underwent the identical preprocessing pipeline and 

QC procedure (cf. above). Our hypothesis is that this standardized processing protocol 

safeguards against observed differences in model performance being attributed to dataset-

related artifacts rather than genuine underlying factors. 

Test #1: Performance on different subsets of a test set  

To assess the model's reliability and robustness, we computed the mean and standard 

deviation of the Mean Absolute Error (MAE) in predicted age, in years, using a resampling 

procedure (like bootstrapping), selecting 50 subjects randomly from each test set 100 times. 

The performance of our model was compared with data published with the original SFCN-reg 

model in Table 3. Of note, our model was trained exclusively on UKBB data, thereby 

constraining the observed trained age to the range 45-81 years old. The results in Table 3 are 

from the full test sets, regardless of the age range in each set. 

Table 3. Performance comparison of the original SFCN-reg and our trained models.  The 
internal test was done on UKBB, and the external test was done on ADNI, AIBL, and OASIS3 using 
the full age range available (not limited only to the training age range). Mean Absolute Error (MAE) 

measured in years. Numbers in brackets are model performance after the regression-based bias 
correction. 

Prep: Our Preprocessing Pipeline, Aug: Data Augmentation, Drop: Input Dropout (20%) 

Dataset UKBB ADNI AIBL OASIS3 
 

n 
[Min, Max] 
Mean ± Std 

1885 
[46.0, 81.0] 
63.9 ± 7.61 

280 
[59.9, 90.1] 
74.9 ± 5.75 

244 
[60.0, 92.0] 
73.5 ± 6.48 

611 
[42.7, 95.3] 
67.6 ± 8.23 

 

Model / Test 
(Metric) 

Internal Test 
(MAE) 

External Test 
(MAE) 

External Test 
(MAE) 

External Test 
(MAE) 

External Test 
(Average) 

SFCN1 2.18 - - - - 

SFCN-reg2 2.47 5.25 4.35 - 3.903 

Model #1 
SFCN-reg + Prep 

2.06 ± 0.22 
[2.20 ± 0.23] 

3.44 ± 0.34 
[2.96 ± 0.30] 

3.86 ± 0.35 
[3.40 ± 0.31] 

2.93 ± 0.34 
[2.84 ± 0.32] 

3.41 
[3.07] 

Model #2 
SFCN-reg + Prep + Aug 

2.31 ± 0.26 
[2.47 ± 0.25] 

3.21 ± 0.31 
[2.88 ± 0.29] 

3.82 ± 0.35 
[3.44 ± 0.32] 

2.97 ± 0.38 
[3.04 ± 0.33] 

3.33 
[3.12] 

Model #3 
SFCN-reg + Prep + Aug + 
Drop 

2.33 ± 0.24 
[2.52 ± 0.25] 

3.38 ± 0.31 
[3.04 ± 0.30] 

4.05 ± 0.39 
[3.56 ± 0.36] 

3.06 ± 0.38 
[3.05 ± 0.31] 

3.50 
[3.22] 

1 Numbers from the original paper [16] 
2 Numbers from the original paper [17] 
3 The external test average for the original SFCN-reg paper [17] includes test results on IXI and the Norwegian Cognitive 
NeuroGenetics Sample, and so is not directly comparable to the average of ADNI, AIBL, and OASIS. 
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Fig. 3A displays the scatter plots between the true chronological age and the predicted brain 

age from our implementation of the SFCN-reg model trained with UKBB data processed by 

the improved pipeline (Model #1). Internal test results in Table 3 closely match those 

reported in the original SFCN paper [16] and those reported in the original SFCN-reg [17], 

indicating the success of our SFCN-reg re-implementation. However, since our SFCN-reg 

implementation was trained on a narrower dataset range, a direct comparison is not possible. 

External test results showed up to 43% improvement on ADNI (from 5.25 years down to 

3.46/3.01 years before/after bias correction), and up to 27% reduction in MAE for AIBL 

(from 4.35 years down to 3.52/3.19 years before/after bias correction). 

(a1) 

 

(a2) 

 
(b1) 

  

(c1) 

  

(d1) 

  

(e1) 

  
(b2) 

 

(c2) 

 

(d2) 

 

(e2) 

  

Figure 3A. Model #1 (SFCN-reg + Preprocessing Pipeline): Predicted Age vs True 
(Chronological) Age. 

Bland-Altman plots (sub-panel (a)) compare model performance on the UKBB validation set. (a1) 
represents the direct deep model output, while (a2) shows results after regression bias correction. 
Additionally, sub-panel (b) displays the Predicted Age vs. True Age scatter plot for the UKBB 

validation set, with (b1) showing results without bias correction and (b2) with bias correction. Age 
histograms are included for both Predicted (vertical) and True Age (horizontal). Sub-panels (c), (d), 
and (e) extend the analysis to external test data from ADNI, AIBL, and OASIS, with Row 1 (c1, d1, 

e1) showing results without bias correction and Row 2 (c2, d2, e2) with bias correction. 
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Fig. 3B shows the scatter plots between the true chronological age and the predicted brain age 

from our implementation of the SFCN-reg model trained with UKBB data processed using 

our improved pipeline and with extended data augmentation during the training (Model #2). 

As reported in Table 3, adding data augmentation increases MAE in the internal test results 

(from 2.06 years to 2.31 years before bias correction and from 2.20 years to 2.47 years after 

bias correction, approximately 12% in both scenarios) but results in a 3% to 7% improvement 

of MAE for ADNI (from 3.44 years to 3.21 years before bias correction, and from 2.96 years 

to 2.88 years after bias correction). There is no significant change for AIBL and OASIS3 

before/after bias correction. 

(a1) 

 

(a2) 

 
(b1) 

  

(c1) 

 

(d1) 

 

(e1) 

 
(b2) 

 

(c2) 

 

(d2) 

 

(e2) 

 

Figure 3B. Model #2 (SFCN-reg + Preprocessing Pipeline + Augmentation): Predicted Age vs 
True (Chronological) Age. 

Bland-Altman plots (sub-panel (a)) compare model performance on the UKBB validation set. (a1) 
represents the direct deep model output, while (a2) shows results after regression bias correction. 
Additionally, sub-panel (b) displays the Predicted Age vs. True Age scatter plot for the UKBB 

validation set, with (b1) showing results without bias correction and (b2) with bias correction. Age 
histograms are included for both Predicted (vertical) and True Age (horizontal). Sub-panels (c), (d), 
and (e) extend the analysis to external test data from ADNI, AIBL, and OASIS, with Row 1 (c1, d1, 

e1) showing results without bias correction and Row 2 (c2, d2, e2) with bias correction. 
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Fig. 3C illustrates the scatter plots between the true chronological age and the predicted brain 

age from our implementation of the SFCN-reg model trained with UKBB data processed 

using our improved pipeline and with extended data augmentation during the training, as well 

as incorporating input dropout (Model #3). As detailed in Table 3, apart from the test results 

reported for ADNI, this model does not show improved results compared to the other two. 

Internal test results demonstrate up to 14.5% increase of MAE in different scenarios. 

Furthermore, there is up 6.0% increase of MAE for AIBL data, and up to 7.4% increase for 

OASIS3 data. 

(a1) 

 

(a2) 

 
(b1)

 

(c1)

 

(d1)

 

(e1)

 
(b2) 

 

(c2) 

 

(d2) 

 

(e2)

 
Figure 3C. Model #3 (SFCN-reg + Preprocessing Pipeline + Augmentation + Dropout): 

Predicted Age vs True (Chronological) Age. 
Bland-Altman plots (sub-panel (a)) compare model performance on the UKBB validation set. (a1) 
represents the direct deep model output, while (a2) shows results after regression bias correction. 
Additionally, sub-panel (b) displays the Predicted Age vs. True Age scatter plot for the UKBB 

validation set, with (b1) showing results without bias correction and (b2) with bias correction. Age 
histograms are included for both Predicted (vertical) and True Age (horizontal). Sub-panels (c), (d), 
and (e) extend the analysis to external test data from ADNI, AIBL, and OASIS, with Row 1 (c1, d1, 

e1) showing results without bias correction and Row 2 (c2, d2, e2) with bias correction. 
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Table 4 Trained models’ extrapolation ability vs interpolation ability.  Performance comparison 
of our model when predicting the chronological age of subjects younger than 45 and older than 83 
(out of training age range), versus subjects older than 45 and younger than 83 (within training age 

range). Mean Absolute Error (MAE) measured in years. 

Prep: Our Preprocessing Pipeline, Aug: Data Augmentation, Drop: Input Dropout (20%) 

Dataset ADNI AIBL OASIS3 MR-ART 

Independent Testing Data Out of Training Age Range 
n 
[Min, Max] 
Mean ± Std 

30 
[83.0, 90.1] 
85.1 ± 1.80 

24 
[83.0, 92.0] 
85.2 ± 2.38 

27 
[83.1, 95.3] 
86.0 ± 2.87 

107 
[18.2, 44.3] 
26.4 ± 6.15 

Model / Metric MAE 
[Corrected] 

R2 
(p-value) 

MAE 
[Corrected] 

R2 
(p-value) MAE 

[Corrected] 
R2 
(p-value) 

MAE 
[Corrected] 

R2 
(p-value) 

Model #1 
SFCN-reg + Prep 

8.04 
[6.17] 

0.02 
(NS) 

8.56 
[6.75] 

0.08 
(NS) 

8.34 
[5.92] 

0.01 
(NS) 

18.48 
[15.66] 

0.52 
(p << 0.01) 

Model #2 
SFCN-reg + Prep + 
Aug 

7.41 
[4.81] 

0.10 
(NS) 

7.73 
[5.28] 

0.01 
(NS) 

8.34 
[5.92] 

0.01 
(NS) 

17.41 
[13.14] 

0.55 
(p << 0.01) 

Model #3 
SFCN-reg + Prep + 
Aug + Drop 

7.47 
[5.45] 

0.00 
(NS) 

8.67 
[6.81] 

0.03 
(NS) 

8.85 
[6.92] 

0.01 
(NS) 

17.31 
[14.55] 

0.49 
(p << 0.01) 

Independent Testing Data within the Training Age Range 
n 
[Min, Max] 
Mean ± Std 

250 
[59.9, 82.7] 
73.5 ± 4.71 

220 
[60.0, 82.0] 
72.3 ± 5.42 

586 
[46.0, 82.9] 
67.1 ± 7.59 

12 
[45.2, 74.8] 
60.5 ± 8.85 

Model / Metric MAE 
[Corrected] 

R2 
(p-value) 

MAE 
[Corrected] 

R2 
(p-value) 

MAE 
[Corrected] 

R2 
(p-value) 

MAE 
[Corrected] 

R2 
(p-value) 

Model #1 
SFCN-reg + Prep 

2.85 
[2.57] 

0.61 
(p << 0.01) 

3.35 
[3.04] 

0.61 
(p << 0.01) 

2.70 
[2.64] 

0.84 
(p << 0.01) 

2.64 
[2.27] 

0.93 
(p << 0.01) 

Model #2 
SFCN-reg + Prep + Aug 

2.66 
[2.63] 

0.65 
(p << 0.01) 

3.41 
[3.28] 

0.56 
(p << 0.01) 

2.77 
[2.89] 

0.81 
(p << 0.01) 

2.18 
[1.86] 

0.92 
(p << 0.01) 

Model #3 
SFCN-reg + Prep + Aug 
+ Drop 

2.84 
[2.72] 

0.60 
(p << 0.01) 

3.50 
[3.20] 

0.56 
(p << 0.01) 

2.86 
[2.91] 

0.80 
(p << 0.01) 

2.62 
[2.59] 

0.89 
(p << 0.01) 

Test #2: Out-of-age-range extrapolation ability  

As mentioned above, all three models underwent training on a dataset comprising 32,045 

samples from the UKBB, with an age range spanning from 45 to 81 years with a nearly 

uniform distribution. It is important to investigate the model’s ability to extrapolate to predict 

the brain age of individuals who fall outside the training range, a necessary characteristic to 

apply the model in broader demographic contexts beyond the training data. We were unable 

to find any previously published results that addressed the issue of extrapolation in brain age 
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prediction for comparison. Table 4 shows the results of testing of subjects with an age greater 

than, or less than, that available in the training set (top half of Table 4) or that fall within the 

range of the training data (bottom half of Table 4). For those out of the range, most predicted 

brain ages fall within the training age range, resulting in MAEs substantially greater than 

observed in the previous set of experiments (see Fig. 4 for scatter plots for Model #3). 

Additionally, the sub-cohorts of cognitively normal subjects aged over 83 years old in ADNI, 

AIBL, and OASIS3 are relatively small, which complicates drawing robust conclusions. For 

MR-ART dataset, where the age range and the number of samples available are more than 

twice than other datasets, MAEs and R2 scores for different models are not conclusively 

different from each other. Not surprisingly, for the sub-cohort from each external test dataset 

that is within the training age range, the MAE is smaller than that reported in Table 3. 

Given the limitation of our models to extrapolate, in the following tests we consider only 

those subjects aged between 45 to 83 years old (the training age range) in order not to 

confound the MAE with extrapolation error. 

(A)  

 

(B) 

 

(C) 

 

(D) 

 

Figure 4. Extrapolation ability of Model #3 (A) Predicted brain age vs chronological age for 
subjects older than 81 in ADNI, (B) Predicted brain age vs chronological age for subjects older than 
81 in AIBL, (C) Predicted brain age vs chronological age for subjects older than 81 in OASIS3, (D) 

Predicted brain age vs chronological age for subjects younger than 45 in MR-ART 

Test #3: Scan-rescan stability 

An often-overlooked aspect of model assessment is the stability of its predictions. A reliable 

model should consistently generate similar results when presented with input from the same 

subject. The availability of multiple scans from the same subject within the same session in 

some datasets allows us to explore possible discrepancies in the model's predictions when 

assessing the brain age of an individual from two distinct scans captured within hours during 

a single session. This evaluation of prediction stability is important to ensure the model's 

reliability and its ability to produce consistent results under varying conditions, ultimately 
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contributing to the overall robustness of the predictive framework. Combining ADNI and 

OASIS3, there are almost 500 subjects with two scans. We presented both scans to the 

models and calculated the absolute difference between the predicted ages. The mean absolute 

differences (MAD) and R2 score of first prediction and second prediction are reported in 

Table 5 and scatter plots are shown in Fig. 5 for each model and dataset (Note that we 

compare differences between two estimates and not the error between an estimate and the true 

age, hence the use here of MAD in the place of MAE). 

Correlation plots (after bias correction) are shown in Fig 5. While all three models performed 

well with R2 scores of 0.95 or greater on different datasets, Model #3 trained with 

augmentation and input dropout was superior in comparison to the other two (up to 29.1% 

better than Model #1 and up to 24.7% better than Model #2 in terms of MAD). Likewise, 

Model #2 that was equipped with extensive data augmentations during the training, 

performed up to 5.8% better in comparison with Model #1 in terms of MAD. 

(A1) 

 

(B1) 

 

(C1) 

 
(A2) 

 

(B2) 

 

(C2) 

 

Figure 5. Scan-rescan stability of trained models (A1) Model #1 - scan #2 predicted brain age vs 
scan #1 predicted brain age in ADNI, (A2) Model #1 - scan #2 predicted brain age vs scan #1 

predicted brain age in OASIS3, (B1) Model #2 - scan #2 predicted brain age vs scan #1 predicted 
brain age in ADNI, (B2) Model #2 - scan #2 predicted brain age vs scan #1 predicted brain age in 

OASIS3, (C1) Model #3 - scan #2 predicted brain age vs scan #1 predicted brain age in ADNI, (C2) 
Model #3 - scan #2 predicted brain age vs scan #1 predicted brain age in OASIS3 
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Table 5 Comparison of the stability of our three models when presented with two different scans 
of the same subject during the same session. Mean Absolute Difference (MAD) measured in years 

[after bias correction]. 

Prep: Our Preprocessing Pipeline, Aug: data Augmentation, Drop: Input Dropout (20%) 

Dataset ADNI OASIS3 
n 
[Min, Max] 
Mean ± Std 

458 scans, 229 subjects 
[59.9, 82.7] 
73.5 ± 4.79 

536 scans, 268 subjects 
[46.0, 82.9] 
66.1 ± 7.83 

Model / Metric MAD 
[Corrected] 

R2 MAD 
[Corrected] 

R2 

Model #1 
SFCN-reg + Prep 

0.75 
[0.86] 

0.95 0.69 
[0.79] 

0.98 

Model #2 
SFCN-reg + Prep + Aug 

0.71 
[0.81] 

0.96 0.65 
[0.75] 

0.99 

Model #3 
SFCN-reg + Prep + Aug + Drop 

0.54 
[0.61] 

0.98 0.60 
[0.69] 

0.99 

Test #4: Sensitivity to registration errors 

As the performance of the trained models heavily relies on the data preprocessing pipeline, it 

becomes imperative to assess its sensitivity to potential processing issues such as registration 

errors. To conduct this evaluation, we selected a random subset of 50 scans from different 

test sets (e.g., from n=1885 UKBB held-out data, n=250 ADNI, n=220 AIBL, and n=586 

OASIS3) and subjected them to 50 random affine transformations each. The goal was to 

quantify the model's response to registration errors, with a focus on understanding the impact 

of such variations on predictions. The random transformation parameters included uniformly 

chosen scale parameters ranging from 0.98 to 1.02 independently for each axis, uniformly 

chosen rotation parameters spanning from -2 to 2 degrees independently for each axis, and 

uniformly chosen translation parameters covering -2 mm to 2 mm independently for each 

axis. Then, the predicted brain age for the perturbed input was compared with that for the 

unchanged input. 

As shown in Table 6, Model #3 outperforms Model #1 and Model #2 in terms of Signed 

Difference (SD), indicating a smaller prediction bias. For different datasets, there is an 

absolute bias of 0.09 years on average for Model #3, while the average of absolute bias for 

Model #1 and Model #2 is 0.37 and 0.31 years respectively. Moreover, Absolute Difference 

(AD) improved by up to 9.3% from Model #1 to Model #2 and improved by up to 11.1% 

from Model #2 to Model #3 on average. 
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Table 6. Comparison of the sensitivity of our three models to registration errors. Signed 
Difference (SD) and Absolute Difference (AD) measured in years [after bias correction]. 

Prep: Our Preprocessing Pipeline, Aug: Data Augmentation, Drop: Input Dropout (20%) 

Dataset UKBB ADNI AIBL OASIS3 
n 
[Min, Max] 
Mean ± Std 

1885 
[46.0, 81.0] 
63.9 ± 7.61 

250 
[59.9, 81.0] 
73.5 ± 4.71 

220 
[60.0, 81.0] 
72.3 ± 5.42 

586 
[46.0, 81.0] 
67.1 ± 7.59 

Model / Metric SD AD SD AD SD AD SD AD 
Model #1 
SFCN-reg + Prep 

0.27±1.11 
[0.31±1.27] 

0.90±0.70 
[1.03±0.80] 

-0.39±0.97 
[-0.44±1.11] 

0.80±0.63 
[0.91±0.72] 

-0.49±0.86 
[-0.56±0.98] 

0.81±0.63 
[0.93±0.72] 

0.12±1.09 
[0.14±1.25] 

0.88±0.67 
[1.00±0.76] 

Model #2 
SFCN-reg + Prep + 
Aug 

0.25±0.96 
[0.29±1.10] 

0.72±0.55 
[0.86±0.67] 

0.33±0.85 
[0.39±1.02] 

0.73±0.54 
[0.88±0.65] 

0.30±0.86 
[0.36±1.03] 

0.72±0.56 
[0.86±0.67] 

0.16±0.95 
[0.19±1.15] 

0.76±0.60 
[0.91±0.72] 

Model #3 
SFCN-reg + Prep + 
Aug + Drop 

-0.13±0.93 
[-0.15±1.06] 

0.74±0.57 
[0.84±0.65] 

0.09±0.85 
[0.10±0.96] 

0.66±0.53 
[0.76±0.61] 

0.08±0.78 
[0.09±0.89] 

0.62±0.48 
[0.70±0.55] 

0.00±0.90 
[0.00±1.03] 

0.72±0.55 
[0.82±0.62] 

Test #5: Sensitivity to motion artifacts 

As shown in [35], brain age prediction can be affected by varying levels of motion artifacts. 

Therefore, it is important to evaluate the impact of motion on model outputs and minimize it 

as much as possible. To assess the impact of motion artifacts on our model, we compared the 

predicted brain age in the presence and absence of movement on the MR-ART dataset. The 

more robust the model, the less disparity there is between model outputs. According to test 

#2, our model does not perform well when it comes to subjects younger or older than the 

training age range. Hence, we exclude those subjects when performing this test to solely 

assess the impact of movement and omit the impact of instability our model encounters when 

facing younger or older subjects. MR-ART rated the level of movement with scores from 1 to 

3. Score 1 indicates no or minimal movement, while 2 and 3 are associated with more severe 

motion artifacts. We compared the prediction for scans with a score of 1 and scans with a 

score greater than 1 for each subject and then calculated the MAD and R2 score for the entire 

population. Model #2, which was trained on images with motion augmentation, performs 

better than Model #1, showing an improved R2 score by 14.1% (from 0.78 to 0.89) and MAD 

by 20.3% (from 4.58 to 3.65 years). Model #3 also performs better compared to Model #1 

(R2 score: 0.90 and MAD: 4.04 years), but worse than Model #2 in terms of MAD. The 

results are also reported in Table 7. 
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Table 7. Comparison of the stability of our three models when presented with two different 
scans of the same subject with different levels of movements during the same session. Mean 

Absolute Difference (MAD) measured in years [after bias correction]. 

Prep: Our Preprocessing Pipeline, Aug: Data Augmentation, Drop: Input Dropout (20%) 

Dataset MR-ART 
n 
[Min, Max] 
Mean ± Std 

28 
[45.2, 74.8] 
61.0 ± 8.10 

Model / Metric MAD R2 
Model #1 
SFCN-reg + Prep 

4.00 
[4.58] 

0.78 

Model #2 
SFCN-reg + Prep + Aug 

3.03 
[3.65] 

0.89 

Model #3 
SFCN-reg + Prep + Aug + Drop 

3.54 
[4.04] 

0.90 

Interpretability of the Model 

To analyze the contribution of various features to the output, we used Grad-CAM [36]. In 

summary, Grad-CAM examines the gradient of the output with respect to different features. 

While Grad-CAM is typically utilized to examine final layers, having our input image 

registered to a template allows us to apply Grad-CAM to the input layer. Fig. 6 displays 

averaged Grad-CAM maps of the Model #3 for different age groups (incrementing by 5 

years). According to Grad-CAM maps, the model typically looks at the ventricle area and 

cortical areas. For younger subjects, the model focus is more towards the ventricle area, but 

for older subjects’ cortical areas are important as well. This is in alignment with our previous 

knowledge about brain aging, confirming that the model is paying attention to biologically 

plausible features. 

Discussion  

Many deep learning models have previously been trained and deployed to estimate an 

individual’s brain age out of T1w MR brain scans alone. Those models were reported to be 

more accurate than traditional methods. However, in our review of the literature we found 

that only a few of them were validated on out-of-distribution independent data that was not 

used for training [9], [17], [18], [19]. Moreover, we have not found any methods that assess 

the generalization and robustness of the trained model on more than one external dataset, thus 

most methods do not address the fact that other independent samples may have other  
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Figure 6. Averaged Grad-CAM Map for different age groups. 
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distribution characteristics due to different factors such as scanner properties, preprocessing 

pipeline, inclusion/exclusion criteria, etc. Here, we trained our model on almost 40K images 

from the UKBB, a very large epidemiological sample, representative of the UK population, 

and tested it not only on a held-out within-distribution subset of the UKBB data, but also on 

out-of-distribution independent data from ADNI, AIBL, OASIS3 and MR-ART datasets. 

Furthermore, we conducted various tests to assess the reliability and robustness of our deep 

learning brain age prediction model and applied the following approaches to see if we could 

increase the reliability and robustness of the model: 1- implementing a more comprehensive 

preprocessing pipeline (Model #1), 2- incorporating additional data augmentation during 

training (Model #2), and 3- applying model regularization through an input dropout (Model 

#3). 

By employing the aforementioned techniques and training the same model (SFCN-reg) with 

the same hyperparameters as used by Leonardsen et al. [17], we observed an improvement in 

brain age prediction generalization gap on all four independent datasets: ADNI, AIBL, 

OASIS3, and MR-ART. When applied to the ADNI dataset, Leonardson [17] reported an 

increase of 1.43 years in MAE, comparing within domain to out of domain testing. Here, we 

have an increase in MAE of only 0.86 years for Model #1, 0.65 years for Model #2, 0.70 

years for Model #3, indicating that the proposed preprocessing, data augmentation and input 

input dropout lead to better generalization. One should note that Lee et al. [18] report only a 

slight increase (from 3.48 to 3.51 years) for within domain to out of domain testing, but at 3.5 

years their MAE is more than 40% greater than that reported here. More specifically, the 

MAE of the SFCN-reg architecture of Leonardsen [17] of 5.25 years on the ADNI external 

validation set was reduced to 2.96 years with the more extensive preprocessing proposed 

here. This represents a 43.6% decrease in brain age predictive error. Smaller, but still 

important improvements (21.8%) were found for the AIBL dataset. 

Adding more extensive data augmentation did not further decrease the average MAE in the 

external test data. However, data augmentation improves the robustness of the model as seen 

in the scan-rescan experiment (Test 3), the registration sensitivity experiment (Test 4) and the 

MR-artifact experiment (Test 5). 

Although preprocessing images can improve the generalization, it also introduces potential 

sources of error into the model, such as errors in masking, non-uniformity correction, and 
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registration, it is even more necessary to assess the reliability of the model with regards to 

these kinds of errors. 

In the scan-rescan test, all models performed well with a minimum R2 score of 0.95, with 

Model #3 emerging as the top performer. Absolute difference decreases from 0.86 years with 

preprocessing, to 0.81 years with preprocessing and data augmentation, and to 0.61 years for 

preprocessing, data augmentation and input dropout for ADNI. However, considering that 

Model #3 is slightly less accurate in predicting brain ages of subjects from external 

independent datasets, the improvement in the scan-rescan test may be attributed to the 

increased bias of this model. Similar improvements were found with OASIS3. 

In the registration sensitivity experiment, we showed that the bias is reduced almost to zero 

with input dropout, and the variance decreases as data augmentation and dropout are added. 

In the sensitivity to motion artifacts experiment, it is evident that brain age predicted by our 

model is sensitive to motion. This is not surprising as many other preprocessing pipelines are 

sensitive to motion artifacts as well [37]. Moqaddam et al. [35] have shown that brain age 

prediction using conventional methods is also sensitive to motion and needs correction. 

However, as shown in Table 7, data augmentation helped us to decrease the disparity between 

two scans by different levels of movements by ~20%. 

We investigated how well our model could extrapolate when presented with samples older 

than those used in training. Our results (Table 4 and Fig. 4) revealed a pronounced 

floor/ceiling effect, indicating that none of our three models extrapolate effectively, 

particularly for older subjects, possibly due to their more atrophied brains or data 

distributions which are unfamiliar to the model. Neither augmentation nor regularization 

improved the extrapolation results. Despite this limitation and training our model on a smaller 

dataset with a narrower age range, testing it on samples from ADNI, AIBL, and OASIS3 

(without age restrictions) resulting in enhanced results compared to the literature, enabling us 

to infer that better image preprocessing can enhance the model's generalization ability more 

effectively than introducing additional training data via data augmentation or regularizing the 

model by input dropout. This improvement has also been reported by Dular et al. [19]. It is 

noteworthy to mention that our model outperforms those trained by Dular et al. [19], however 

direct comparison is challenging since we trained our model on 10 times more data and tested 

it on several datasets. We also used more steps in our preprocessing pipeline. Additionally, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.06.11.598576doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.598576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 
 

Dular et al. [19] employed non-linear registration in their pipeline, which may eliminate 

certain information related to brain atrophy that might be useful in brain age prediction. 

Fig. 6 shows the anatomical features used to drive the brain age estimate. The earliest age 

range shows that it starts with information around the brain stem and lateral ventricles. As 

age progresses, more information from ventricles and medial temporal region is used, 

followed by even more information from the ventricles and the cortex. This follows our 

knowledge about brain aging, indicating reliability of features extracted by our model. 

Our study is not without limitations. As demonstrated by the extrapolation test, our models 

are unable to predict the brain age of subjects younger than 45 or older than 81. To better 

evaluate these deep learning models, it appears necessary to train them on a broader, more 

inclusive age range, similar to what discussed by Kopal et al. [38], [39]. These deep models 

lack interpretability on their own, and their inability to extrapolate raises even more questions 

about their interpretability. Our models rely on a preprocessing pipeline, requiring 

preprocessing for every image introduced to the network. Our preprocessing pipeline is 

optimized to execute in less than 15 minutes per image on an average desktop computer. 

However, it is still significantly slower than pipelines that rely solely on deep learning 

architectures processing raw images. When registration is used as part of the preprocessing 

pipeline, the same stereotaxic MRI template is employed to prevent bias in the model. While 

the template we used is suitable for adults, it may not be optimal for young children or for 

older subjects with significant brain atrophy. Finally, the architecture utilized is well-

established in brain age prediction literature but does not incorporate several more recently 

developed techniques, such as attention mechanisms, which may enhance accuracy.  

In conclusion, we have demonstrated that application of a sophisticated image preprocessing 

pipeline, extensive data augmentation during training, and regularization through input 

dropout can significantly improve the accuracy and robustness of brain age prediction in 

healthy datasets. Evaluation experiments in the left-out within distribution UKBB data and in 

the ADNI, AIBL, OASIS3 and MR-ART independent datasets show good performance and 

strong out-of-distribution generalizability, low scan-rescan variability, and robustness to 

registration errors. On top of that, the Grad-CAM images show that anatomically appropriate 

features are used to estimate brain age. In the future, we will apply this model to patient 

cohorts with cognitive decline and or neurodegeneration. 
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