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Abstract

Ancestry estimation from genotype data in unrelated individuals has become an essential tool
in population and medical genetics to understand demographic population histories and to
model or correct for population structure. The ADMIXTURE software is a widely used model-
based approach to account for population stratification, however, it struggles with convergence
issues and does not scale to modern human datasets or the large number of variants in whole-
genome sequencing data. Likelihood-free approaches optimize a least square objective and
have gained popularity in recent years due to their scalability. However, this comes at the
cost of accuracy in the ancestry estimates in more complex admixture scenarios. We present a
new model-based approach, fastmixture, which adopts aspects from likelihood-free approaches
for parameter initialization, followed by a mini-batch expectation-maximization procedure to
model the standard likelihood. In a simulation study, we demonstrate that the model-based
approaches of fastmixture and ADMIXTURE are significantly more accurate than recent and
likelihood-free approaches. We further show that fastmixture runs approximately 30× faster
than ADMIXTURE on both simulated and empirical data from the 1000 Genomes Project such
that our model-based approach scales to much larger sample sizes than previously possible.
Our software is freely available at https://github.com/Rosemeis/fastmixture.
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Introduction

For the past two decades, unsupervised ancestry estimation has been a crucial element in studies on
human evolutionary genetics and genome-wide association studies [1, 2]. Estimating global ancestry
proportions in unrelated individuals and corresponding ancestral allele frequencies has been a classic
way of correcting for population structure and understanding demographic processes that have
shaped the evolutionary history of modern populations. Ancestry estimation from genotype data
emerged with the model-based clustering approach proposed with STRUCTURE [3], where individuals
are proportionally assigned to an assumed number of ancestral populations. They modeled the
probability of the observed genotype data given ancestry proportions and ancestral allele frequencies
using a Bayesian approach. Due to scalability issues, the Bayesian approach was later replaced by
maximum likelihood models, which were optimized using expectation-maximization (EM) and block
relaxation algorithms, this includes the widely used software ADMIXTURE [4, 5].

In the era of big data, where ever-growing cohorts contain thousands of individuals with geno-
type data for millions of genetic variants, classic state-of-the-art model-based approaches, such as
ADMIXTURE and STRUCTURE, fail to scale due to computational intractability. Over the past decade,
there have been multiple attempts to scale unsupervised ancestry estimation. These efforts have
primarily been rooted in likelihood-free approaches, with a few exceptions that have attempted to
scale the standard model-based approach. Model-based and likelihood-free approaches have been
shown to be connected within the framework of matrix factorization, where both approximate an
observed genotype matrix by lower rank matrices under different assumptions and constraints [6].
In likelihood-free approaches, it is common to optimize a different least square objective using
either non-negative matrix factorization (NMF) [7, 8] or alternating least square (ALS) [9, 10].
The SCOPE software [10] has gained increased popularity due to its efficient implementation of an
ALS approach, which is well-suited for biobank-scale datasets. Meanwhile for the model-based
approaches, a stochastic variational inference algorithm [11] and a neural network autoencoder [12]
have also been proposed in recent times.

As large-scale cohorts begin to expand and include more cosmopolitan representations of in-
dividuals around the globe, obtaining accurate ancestry estimates has become a crucial task of
modern genomics. This is essential to properly correct for population structure in genome-wide
association studies and mitigate the bias in the over-representation of European-descent samples
in current cohorts due to the ever-increasing focus on genomics for population health applications
[13, 14]. While convergence within a reasonable time frame is highly desirable for these extensive
datasets, recent attempts to improve scalability most often compromise accuracy in the ancestry
estimation, as demonstrated here. The field still lacks a method that scales to larger datasets while
being as accurate as the classic state-of-the-art approaches.

We introduce fastmixture, a novel model-based method for estimating ancestry proportions
and ancestral allele frequencies in unrelated individuals. We leverage randomized singular value
decomposition (SVD) for initializing the ancestry proportions and ancestral allele frequencies, fol-
lowed by a mini-batch accelerated scheme to speed up the convergence of the EM algorithm. We
demonstrate in an extensive simulation study and on real data that fastmixture significantly
outperforms the original ADMIXTURE software in terms of speed while maintaining higher accuracy
compared to recently developed approaches for ancestry estimation.
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Material and methods

We define a diallelic genotype matrix of N individuals and M variants or single-nucleotide polymor-
phisms (SNPs) as G ∈ {0, 1, 2}N×M , which corresponds to the minor allele counts. We describe
the estimation of ancestry proportions and ancestral allele frequencies with K ancestral sources
as a low-rank matrix factorization problem such that G ≈ 2QPT , with Q ∈ [0, 1]N×K and the

constraint
∑K

k=1 qik = 1, for i = 1, . . . , N , and P ∈ [0, 1]M×K . The matrix factorization problem
can also be interpreted as the estimation of individual allele frequencies from the genotype matrix,
H = QPT . Here, hij =

∑K
k qikpjk is the individual allele frequency of individual i at variant j

assuming K ancestral sources. The individual allele frequency will correspond to the underlying
parameter in a binomial sampling process of a genotype conditioned on population structure.

Likelihood model

We estimate ancestry proportions and ancestral allele frequencies by maximizing the likelihood
model introduced in ADMIXTURE [5]. The log-likelihood model is defined as follows, assuming inde-
pendence for individuals and variants:

L(Q,P) =

N∑
i

M∑
j

gij log(hij) + (2− gij) log(1− hij) . (1)

We utilize the expectation-maximization (EM) algorithm of frappe [4] and ADMIXTURE [5] to
maximize the log-likelihood, where the EM updates at iteration t for entries of Q and P are defined
as follows, respectively:
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The EM algorithm is notorious for its slow convergence rate and to expedite this process, we em-
ploy a quasi-Newton (QN) acceleration scheme [15]. The QN acceleration scheme combines multiple
EM updates into a larger jump in parameter space at the expense of an increased computational
cost per iteration. More details on the acceleration scheme can be found in the supplementary ma-
terial and Algorithm S1. The convergence criteria of the EM algorithm is defined by the difference
in log-likelihood between two successive iterations:

L(Q(t+1),P(t+1))− L(Q(t),P(t)) < ϵ , (4)

with ϵ being a user-defined threshold.

SVD initialization

Multiple approaches for inferring population structure are connected under the umbrella of matrix
factorization, each incorporating different conditions and constraints [6]. Therefore, we leverage the
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efficiency and speed of likelihood-free approaches to provide a better initialization of Q and P to
aid the convergence rate of the EM algorithm in comparison to a standard random initialization.

We initialize Q and P using individual allele frequencies estimated from randomized singular
value decomposition (SVD) performed on the genotype matrix, combined with an alternating least
squares (ALS) approach. SVD is a widely used dimensionality reduction approach in population
genetics, which infers continuous structure by extracting axes of genetic variation. The randomized
SVD is defined as GC ≈ U[1:D]S[1:D]V

T
[1:D], which extracts the top D singular values and singular

vectors, with GC being the centered genotype matrix. The individual allele frequency of individual
i at variant j is then approximated using the SVD as ĥij = fj +

1
2

∑D
d=1 uidsdvjd, where fj is the

minor allele frequency of variant j. We use D = K − 1, as the top K − 1 singular vectors will
capture the population structure of K distinct populations [16]. By initializing P randomly, we

can then factorize the individual allele frequency matrix, Ĥ, using an ALS approach to iteratively
estimate both Q and P, which minimizes the following least square objective:

min
Q,P
∥Ĥ−QPT ∥2F , (5)

where ∥.∥F is the Frobenius norm. The concept is similar to ALStructure [9] and SCOPE [10], which
instead rely on latent subspace estimation for approximating the individual allele frequencies. The
convergence criteria of the ALS approach is defined by the root mean square error (RMSE) of Q
matrices between two successive iterations:√√√√ 1

NK

N∑
i=1

K∑
k=1

(
q
(t+1)
ik − q

(t)
ik

)2
< δ , (6)

with δ being a user-defined threshold. The initialization of Q and P is fully described in Algorithm
1.

Algorithm 1 fastmixture initialization

Given: G, f , D, K
1: GC ← center(G, f) ▷ Centered genotype matrix
2: U[1:D], S[1:D], V[1:D] ← randomizedSVD(GC , D) ▷ Randomized SVD

3: Ĥ = 1
2U[1:D]S[1:D]V

T
[1:D] + f ▷ Individual allele frequencies based on SVD

4: P ∈ [0, 1]M×K initialized randomly
5: while not converged do ▷ Alternating least squares for solving equation 5
6: Q← ĤP(PTP)−1

7: P← ĤTQ(QTQ)−1

8: if rmse(Q,Qprev) < δ then ▷ Convergence criteria for ALS
9: break

10: end if
11: Qprev ← Q
12: end while
Return: Q, P
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Mini-batch optimization

To further accelerate the convergence rate of the EM algorithm, we introduce simple mini-batch
updates inspired by stochastic gradient descent and stochastic EM algorithms [17]. In each itera-
tion, we randomly split the M variants into B batches, and perform QN accelerated EM updates
sequentially in each of the B batches. The strategy of sub-sampling variants was also explored in
TeraStructure [11]. This results in the entries of Q being updated B times across the batches,
while the entries of P are still only updated once per cycle. Following the mini-batch updates,
full QN accelerated EM updates are applied to stabilize the parameters in every iteration. Given
the stochastic nature of our mini-batch updates, we halve the number of batches B every time the
log-likelihood estimate (Equation 1) fluctuates between iterations. The algorithm will therefore
gradually converge towards a standard QN accelerated algorithm for B → 1. Our proposed mini-
batch setting resembles a mini-batch gradient descent approach, where the batch size is increased
over time. For a detailed description of the fastmixture method, please refer to Algorithm 2.

Algorithm 2 fastmixture estimation

Given: G, f , K, B
1: Q, P← initialization(G, f , K) ▷ Algorithm 1: SVD initialization
2: Lprev ← L(Q,P) ▷ Log-likelihood (Equation 1)
3: while not converged do
4: Randomly split M variants into B batches
5: for b = 1, . . . , B do
6: Q,P[b] ← QN(G[b],Q,P[b]) ▷ Mini-batch updates (Algorithm S1)
7: end for
8: Q,P← QN(G,Q,P) ▷ Full updates (Algorithm S1)
9: if L(Q,P) < Lprev then

10: B = B/2 ▷ Halve the number of batches
11: end if
12: if B = 1 and L(Q,P)− Lprev < ϵ then ▷ Convergence criteria for EM
13: break
14: end if
15: Lprev ← L(Q,P)
16: end while
Return: Q, P

Implementation details

The fastmixture software is implemented as a multithreaded command-line tool written in Python
and Cython, which takes binary PLINK [18] files as input. It utilizes the NumPy library [19] for
efficient array manipulation. We assume that the user has performed standard quality control and
preprocessing, (e.g., variant filtering based on a minor allele frequency threshold and to only include
unrelated samples). The genotype matrix is stored in an 8-bit integer format. For Algorithm 1, we
read the centered genotypes in chunks to reduce the memory consumption and perform randomized
SVD as introduced in PCAone [20]. This approach minimizes the memory footprint of fastmixture,
which is primarily dominated by the genotype matrices of MN + 8CN bytes, with C being the
chunk size of variants used in the randomized SVD. This allows our method to handle large-scale
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datasets effectively. The individual allele frequency matrix obtained in the randomized SVD, Ĥ,
is computed implicitly through the singular matrices in the ALS approach to further reduce the
memory footprint. Throughout the study, we use a starting point of B = 32 mini-batches to
speed up the convergence of the EM algorithm, which works well across all the tested scenarios.
We set the convergence criteria of the ALS approach and the EM algorithm to δ = 1.0 × 10−4

and ϵ = 0.5, respectively. Given the computational expense of the log-likelihood estimation step
(Equation 1), which requires a full pass over the data, we only evaluate it every fifth iteration along
with convergence checks to reduce the number of computations. If the entries of Q and P are out
of domain during the ALS or accelerated EM updates, we simply map them back to their domain
through truncation and projection procedures.

Simulations

We simulate genotypes using the msprime [21] backwards-in-time coalescent model and infer true
ancestral tracts using tspop [22]. To evaluate the capabilities of fastmixture, we assume different
demographic models in four different scenarios, all featuring a single or multiple admixture events
where the true ancestry proportions are known. In each scenario, we simulate a genetic segment of
250 Mb using a constant recombination rate of 1.28× 10−8 [23] and a mutation rate of 2.36× 10−8

[24]. We visualize the different demographic models in Figure 1A, Figure S3A, S1A, and S2A. A
census event precedes the first admixture event in all simulations to track the true ancestry of the
inherited segments in the sampled individuals. The lengths of the segments each individual has
inherited from each source population are then aggregated to estimate the ground truth ancestry
proportions using tspop. Scenarios A, B, and C are constructed from simple demographic models,
where we assume a constant population size of 10,000 for all simulated populations, while Scenario
D extends the out-of-Africa model [24] with an additional admixture event (American-Admixture)
[25]. In Scenario A, B, and D, we sample 1,000 individuals, while in the more complex Scenario
C, we sample 1,600 individuals. We perform standard filtering on minor allele frequencies at a
threshold of 0.05, resulting in datasets consisting of 689,563 SNPs, 687,107 SNPs, 685,592 SNPs,
and 500,114 SNPs for Scenario A, B, C, and D, respectively. An overview of the simulated datasets
is provided in the supplementary material.

1000 Genomes Project

We also evaluate our fastmixture software in the phase 3 release of the 1000 Genomes Project
(1KGP) [26]. The dataset consists of genotype data of 2,504 individuals from 26 populations across
the world, assigned to five super-populations: AFR (African ancestry), AMR (American ancestry),
EAS (East Asian ancestry), EUR (European ancestry), SAS (South Asian ancestry). We keep
diallelic SNPs with a minor allele frequency greater than the standard threshold of 0.05, resulting
in a total of 6,864,700 SNPs. Due to computational complexity and runtime considerations for
comparative analyses, we also construct a downsampled dataset, which we refer to as “1KGP
Down”. This dataset is obtained by random downsampling or thinning the number of SNPs from
the full dataset by a factor of ten, such that the downsampled dataset consists of 686,470 SNPs.
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A.

B.

POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure 1: A. Demographic model of Scenario C with 200 individuals sampled from each of the eight
populations. B. Admixture plots of the ancestry proportions in the simulated individuals for K = 5 with
the ground truth at the top followed by the different software using their run with the highest log-likelihood.
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Results

We evaluate and compare the performance of fastmixture (v0.93) against widely used software for
estimating ancestry proportions: ADMIXTURE (v1.3.0) [5], Neural ADMIXTURE (v1.4.1) [12] and SCOPE

[10]. All software are executed with their default parameters. ADMIXTURE and Neural ADMIXTURE

are model-based approaches, like ours. ADMIXTURE maximizes the likelihood model using a block
relaxation method combined with a similar quasi-Newton acceleration scheme to fastmixture,
while Neural ADMIXTURE employs a neural network autoencoder approach. On the other hand,
SCOPE is a likelihood-free approach that estimates the ancestry proportions and ancestral allele
frequencies using an ALS method, differing from the maximum likelihood approaches of the other
tools. In our simulation study, we assess these tools based on the root mean square error (RMSE)
(Table 1) and the Jenson-Shannon divergence (JSD) (Table S2) between the estimated ancestry
proportions and the ground truth ancestry proportions. We also report the log-likelihood estimates
(Equation 1) (Table S3) for both the simulated and the empirical datasets of the 1000 Genomes
Project. The different measures of assessment in the simulation study are further detailed in the
supplementary material.

Additionally, we compare the computational runtimes of fastmixture to the three other soft-
ware (Figure 3 and Table S1). Notably, ADMIXTURE exhibits significant scalability issues, being
approximately 30 times slower than fastmixture across all evaluated datasets. For instance,
ADMIXTURE needs more than 40 hours to complete a single run for K = 5 on the full 1KGP dataset.
In contrast, fastmixture has comparable runtimes to the two other faster approaches in the sim-
ulation study. SCOPE is the fastest of all evaluated approaches, showcasing the appealing choice of
optimizing the least square objective, a step also used for parameter initialization in fastmixture.

Ancestry estimation in simulation studies

Under the simple demographic model of Scenario A (Figure S1), ADMIXTURE and fastmixture were
the two most accurate software followed by SCOPE. When only considering the scalable methods,
fastmixture clearly outperformed SCOPE in terms of RMSE (Table 1) and JSD (Table S2), where
SCOPE appeared to produce highly noisy ancestry proportions in individuals of the unadmixed pop-
ulations. On all accounts, Neural ADMIXTURE severely underperformed in estimating the ancestry
proportions of the admixed individuals. Notably when admixture was introduced from more than
three sources, as in Scenario B (Figure S2), Neural ADMIXTURE failed to detect POP4 as a separate
population from POP3 and modeled the ADMIX population incorrectly as a separate unadmixed
population. For Scenario B, both ADMIXTURE and fastmixture were again more accurate than
SCOPE, while fastmixture was ∼34× faster than ADMIXTURE (Figure 3 and Table S1). The noise
introduced by SCOPE only increased for K = 4 in comparison to K = 3 in the simpler Scenario A.

We further evaluated the different software in a more complex simulation scenario, Scenario
C, which includes five ancestral sources (K = 5) with symmetric migration patterns and three
admixed populations (Figure 1). Consistent with results from the simpler scenarios, fastmixture
and ADMIXTURE outperformed the two other approaches, with fastmixture being ∼28× faster than
ADMIXTURE. Due to the increased complexity of the simulation scenario, SCOPE exhibited an even
greater increase of noise in its ancestry estimates, while Neural ADMIXTURE again failed to detect one
of the unadmixed population sources and modeled two admixed populations as ancestral sources.
Examining the accuracy of the ancestry estimates in each of the eight populations, we observed that
fastmixture and ADMIXTURE performed similarly across the unadmixed and admixed populations,
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Scenario fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

A 0.0364 (1.0e-4) 0.1289 (0.0200) 0.0367 (3.1e-7) 0.0677 (7.8e-5)
B 0.0278 (4.5e-5) 0.3690 (0.0022) 0.0279 (2.2e-7) 0.0661 (8.2e-5)
C 0.0255 (8.7e-6) 0.3094 (0.0044) 0.0256 (1.9e-7) 0.0658 (3.2e-5)
D 0.0085 (4.3e-7) 0.1010 (0.0372) 0.0085 (4.5e-8) 0.0186 (3.3e-6)

Table 1: Root mean square error (RMSE) measures for estimated ancestry proportions in the four different
simulation scenarios for the evaluated methods against the ground truth. The mean across five different
runs is reported with the corresponding standard deviation in parenthesis.

whereas SCOPE inferred more accurate ancestry estimates in the admixed populations in comparison
to the unadmixed populations (Table S4 and S5).

Using the American-Admixture demographic model in Scenario D (Figure S3), we still consis-
tently observed that ADMIXTURE and fastmixture perform similarly in terms of accuracy and log-
likelihood, outputting results closest to the ground truth (Table 1 and Table S2), with fastmixture

being ∼28× faster than ADMIXTURE. While across all scenarios SCOPE exhibited the fastest run-
times, it also consistently underperformed in accuracy as measured with RMSE and JSD, however,
markedly better than Neural ADMIXTURE.

Testing hyperparameters

The number of initial batches in fastmixture, used for its mini-batch optimization, is a hyper-
parameter. We tested the effect of changing the number of mini-batches in the more complex
simulation scenario, Scenario C, having multiple admixture events and five source populations. We
utilized B = {8, 16, 32, 64, 128}, including the default choice of B = 32, and reported the computa-
tional runtimes, log-likelihoods, RMSE, and JSD measures. Our results showed that fastmixture
was robust to changes in B, as all evaluated choices consistently captured the same solutions with
highly comparable assessment measures (Figure S4 and Table S6). Based on these findings, we
conclude that B = 32 was an optimal choice, balancing both fast runtimes and highly accurate
ancestry estimations.

We further evaluated the effectiveness of our SVD initialization by comparing it to random
parameter initialization inside the fastmixture framework for Scenario C. We reported computa-
tional runtimes, log-likelihoods, RMSE, and JSD measures in Table S7, where the two initializa-
tions performed similarly but the SVD initialization approximately halves the runtime on average
in comparison to having a random initialization. Therefore, our observed runtime gains relative to
ADMIXTURE could largely be attributed to our proposed mini-batch optimization.

Robustness to model misspecification

For most scenarios in ancestry estimation, the true number of ancestral sources is rarely known.
We, therefore, tested and compared all software and their capabilities to deal with model misspecifi-
cations related to the number of ancestral sources used for Scenario C, which had a ground truth of
K = 5. Here we would expect the ancestry estimations to capture older events in the demographic
model for K < 5. The results comparing the software for K = {2, 3, 4} are displayed in Figures
S6, S7 and S8, respectively, and their corresponding log-likelihoods are reported in Table S8. We
note that ADMIXTURE only found the optimal solution in four out of five runs, thus showcasing its
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AFR EUR EAS AMR SAS

Figure 2: Admixture plots of the estimated ancestry proportions for K = 5 in the full version of the 1000
Genomes Project dataset (1KGP) by the different software using their run with the highest log-likelihood.
AFR: African, EUR: European, EAS: East Asian, AMR: American, and SAS: South Asian ancestry.

vulnerabilities due to random parameter initialization and a standard optimization approach. Due
to the increased complexity of the simulation scenario, SCOPE exhibited an even further increased
noise level in its ancestry estimates across all three values of K.

Ancestry estimation in the 1000 Genomes Project

In addition to our simulation study, we also applied fastmixture to empirical data of the 1000
Genomes Project (1KGP), using both a downsampled version and the full set of variants. Specifi-
cally, the downsampled version was the only way to properly assess the performance of ADMIXTURE
over multiple runs due to scalability issues (Figure S9). Here we observed, as in the simulation
study, that fastmixture and ADMIXTURE performed comparably and the two methods achieved the
highest log-likelihoods, followed by SCOPE and then Neural ADMIXTURE (Table S3), even though
Neural ADMIXTURE maximizes the log-likelihood in its optimization approach.

For the full 1KGP dataset, we only performed a single run for ADMIXTURE due to its excessive
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Figure 3: Runtime (in minutes) for the different software measured across five runs in the four simulated
scenarios (A, B, C, and D), and in the two 1000 Genomes Project datasets: one including all individuals
(1KGP), and the downsampled dataset (1KGP Down). The intervals display the full range of runtimes
across the six runs. On the left, a zoomed-in version highlights the runtime differences between the software
with more similar times. The results are also described in Table S1. All analyses have been performed on
a cluster with an Intel(R) Xeon(R) Gold 6152 CPU using 64 threads.

computational runtime of> 40 hours, in comparison to the other software with runtimes of< 2 hours
(Figure 3 and Table S1). Here fastmixture was ∼30× faster on average than the ADMIXTURE run.
We demonstrated again that fastmixture was the best performing method in terms of achieving
the highest log-likelihood (Figure 2). Strikingly, Neural ADMIXTURE failed to accurately distinguish
ancestral contributions in the AMR and SAS super-populations in both the full dataset and in 1KGP
Down. Moreover, we saw a correlation of r2 = 0.72 between the estimated ancestry proportions
in the downsampled and the full dataset for Neural ADMIXTURE, indicating poor robustness. This
is in strong contrast to fastmixture, ADMIXTURE and SCOPE where the results between the full
dataset and the downsampled one were highly correlated (r2 ≈ 1). We observed the same pattern
of increased noise in the estimated ancestry proportions of the unadmixed individuals from SCOPE,
which was consistent across the two 1KGP datasets.

Discussion

We have presented, fastmixture, our novel method and software for ancestry estimation in geno-
type data using our extended model-based approach. We demonstrate that our approach performs
comparably to ADMIXTURE while being ∼30× faster on average across all evaluated datasets. Among
the four methods assessed, ADMIXTURE and fastmixture stand out as the most accurate approaches
as shown in our simulation study. In general, fastmixture estimates fast and accurate solutions
that are robust to changes in model parameters and hyperparameters, such as initialization and
number of initial mini-batches, which can be attributed to both its SVD initialization and acceler-
ated mini-batch optimization procedure. It is well known that ADMIXTURE has scalability issues for
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large sample sizes and whole-genome sequencing data, which we also demonstrate using the 1KGP
datasets. The results of ADMIXTURE are only based on a single seed in the full 1KGP SNP set due to
a prohibitively excessive computational runtime of more than 40 hours, in contrast to ∼74 minutes
using fastmixture. We have therefore evaluated all software on a downsampled version as well,
with 10× less SNPs, which is a common procedure in population genetic studies.

fastmixture has runtimes comparable to the recently introduced Neural ADMIXTURE software,
which employs an autoencoder framework for speeding up the ancestry estimation. Note that the
testing of the software has exclusively been conducted in a CPU-based setup. However, Neural
ADMIXTURE struggles across all evaluated datasets and consistently performs the poorest among the
evaluated methods, as it can only manage to model unadmixed populations in simpler demographic
models. In Scenario B and C, Neural ADMIXTURE fails to detect unadmixed populations and models
admixed populations incorrectly as ancestral sources. SCOPE emerges as the fastest approach across
all evaluated datasets, demonstrating excellent scalability. However, its optimization of a simpler
least squares objective compromises its ability to accurately estimate ancestry proportions, where
it can be difficult to distinguish real admixture signals from noise.

When optimizing a different objective, it is expected that the log-likelihood estimates for SCOPE
would be lower compared to model-based approaches. However, based on the RMSE and JSD mea-
sures against the ground truth in the simulation study, our results showcase that the least square
objective used in likelihood-free approaches, such as SCOPE, is not an optimal choice in comparison
to the likelihood model. Our findings suggest that the added noise in the ancestry proportions
estimated in SCOPE are likely to increase further in scenarios with a larger K or more complex
demographic models, as demonstrated in Scenario C. This limits the utility of SCOPE in association
studies and precision medicine. Furthermore, we observed a general trend of major optimization
issues for the Neural ADMIXTURE software across all evaluated scenarios. A critical issue appears to
be in their convergence evaluation, where log-likelihood estimates are normalized across individuals
and variants in their mini-batch training setup, causing premature convergence. This premature
convergence negatively impacts their performance, despite Neural ADMIXTURE erroneously report-
ing faster runtimes than it would achieve at optimal solutions.

While our fastmixture software does not entirely solve the scalability issues of model-based
approaches, it represents a significant step by enabling researchers to estimate accurate ancestry
proportions for much larger sample sizes and whole-genome sequencing data. It will also facil-
itate a more feasible exploration of increased numbers of ancestral sources. We anticipate that
fastmixture will be the preferred alternative to ADMIXTURE in future population genetic studies,
and it will also allow researchers to correct for population structure in genome-wide association
studies of moderate sample sizes, leveraging our accurate estimates of ancestry proportions.

Data availability

The study uses genotype data from the phase 3 release of the 1000 Genomes Project [26], publicly
available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. The results
(trees and ancestry estimations) and processed genotype data files used in the study are available
on Zenodo (https://doi.org/10.5281/zenodo.12683371) for reproducibility.
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Code availability

The fastmixture software is open-source and freely available on GitHub (https://github.com
/Rosemeis/fastmixture). Scripts for reproducing the entire simulation study are available on
Zenodo (https://doi.org/10.5281/zenodo.12683371).
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Supplementary material

Quasi-Newton acceleration scheme

We here describe the quasi-Newton scheme [15] used to accelerate the expectation-maximization
(EM) algorithm of fastmixture. For simplicity and speed, we only utilize one secant condition
(q = 1) in the scheme for both the mini-batch and the full EM updates such that the update rule
is a combination of two standard EM steps. We define Q(1) and P(1) as the updated matrices after
one standard EM step, using Equation 2 and Equation 3, respectively, and Q(2) and P(2) after two
successive standard EM steps. The accelerated update rules are then described as follows and we
refer to the original paper on the quasi-Newton scheme for more details:

Algorithm S1 quasi-Newton acceleration

Given: G, Q, P
1: Q(1), P(1) ← em(G, Q, P) ▷ First EM step
2: Q(2), P(2) ← em(G, Q(1), P(1)) ▷ Second EM step

3: D
(1)
Q , D

(1)
P ← Q(1) −Q, P(1) −P ▷ First difference matrices

4: D
(2)
Q , D

(2)
P ← Q(2) −Q(1), P(2) −P(1) ▷ Second difference matrices

5: D
(3)
Q , D

(3)
P ← D

(2)
Q −D

(1)
Q , D

(2)
P −D

(1)
P ▷ Third difference matrices

6: cQ, cP ←
〈
D

(1)
Q ,D

(1)
Q

〉
F〈

D
(3)
Q ,D

(1)
Q

〉
F

,

〈
D

(1)
P ,D

(1)
P

〉
F〈

D
(3)
P ,D

(1)
P

〉
F

▷ Step multipliers using Frobenius inner products

7: Q← (1− cQ)Q
(1) + cQQ

(2) ▷ quasi-Newton update for Q
8: P← (1− cP )P

(1) + cPP
(2) ▷ quasi-Newton update for P

Return: Q, P

Assessment measures

We here describe the different assessment measures used in the study. The log-likelihood estimate
is already defined in Equation 1. Q refers to the estimated ancestry proportions and Q∗ refers to
the simulated ground truth ancestry proportions.

Root mean square error (RMSE)

RMSE(Q∗,Q) =
1

NK

N∑
i=1

K∑
k=1

(q∗ik − qik)
2 . (S1)

Jensen-Shannon divergence (JSD)

JSD(Q∗,Q) =
1

2

(
KLD(Q∗,X) + KLD(Q,X)

)
, (S2)

where X = 1
2 (Q

∗ +Q) and KLD(·, ·) is the Kullback–Leibler divergence:

KLD(Q,X) =
1

N

N∑
i=1

K∑
k=1

(
qik log

qik
xik

)
. (S3)

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.07.08.602454doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulated data overview

All demographic models and scripts for reproducing the simulation scenarios are available on Zenodo
(https://doi.org/10.5281/zenodo.12683371).

Common msprime options

– Segment length: 250 Mb

– Mutation rate: 2.36× 10−8

– Recombination rate: 1.28× 10−8

Scenario A

– N = 1,000 (250 individuals from each of the 4 simulated populations)

– M = 689,563

– 3 ancestral populations (POP1, POP2, POP3)

– 1 admixed population (POP1: 1
3 , POP2: 1

3 , POP3: 1
3 )

Scenario B

– N = 1,000 (200 individuals from each of the 5 simulated populations)

– M = 687,107

– 4 ancestral populations (POP1, POP2, POP3, POP4)

– 1 admixed population (POP1: 1
4 , POP2: 1

4 , POP3: 1
4 , POP4: 1

4 )

Scenario C

– N = 1,600 (200 individuals from each of the 8 simulated populations)

– M = 685,592

– 5 ancestral populations (POP1, POP2, POP3, POP4, POP5)

– 1 admixed population (POP1: 1
5 , POP2: 1

5 , POP3: 1
5 , POP4: 1

5 , POP5: 1
5 )

– 1 admixed population (POP1: 1
3 , POP2: 1

3 , POP3: 1
3 )

– 1 admixed population (POP4: 1
2 , POP5: 1

2 )

Scenario D

– N = 1,000 (250 individuals from each of the 4 simulated populations)

– M = 500,114

– 3 ancestral populations (AFR, EUR, EAS)

– 1 admixed population (AFR: 1
6 , EUR: 1

3 , EAS: 1
2 )

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.07.08.602454doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.12683371
https://doi.org/10.1101/2024.07.08.602454
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary figures and tables

A.

B.

POP1 POP2 POP3 ADMIX

Figure S1: A. Demographic model of Scenario A with 250 individuals sampled from each of the four
populations. B. Admixture plots of the ancestry proportions in the simulated individuals for K = 3 with
the ground truth at the top followed by the different software using their run with the highest log-likelihood.
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A.

POP1 POP2 POP3 ADMIXPOP4

B.

Figure S2: A. Demographic model of Scenario B with 200 individuals sampled from each of the five
populations. B. Admixture plots of the ancestry proportions in the simulated individuals for K = 4 with
the ground truth at the top followed by the different software using their run with the highest log-likelihood.
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A.

B.

AFR EUR EAS ADMIX

Figure S3: A. Demographic model of Scenario D (American admixture [25]) with 250 individuals sampled
from each of the four populations. B. Admixture plots of the ancestry proportions in the simulated
individuals for K = 3 with the ground truth at the top followed by the different software using their run
with the highest log-likelihood.
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POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure S4: Admixture plots of the ancestry proportions in the simulated individuals for K = 5 of Scenario
C by fastmixture with different batch sizes for B = {8, 16, 32, 64, 128} using their run with the highest
log-likelihood.
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POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure S5: Admixture plots of the ancestry proportions in the simulated individuals for K = 5 of Scenario
C by fastmixture with different types of initialization using their run with the highest log-likelihood.
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POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure S6: Admixture plots of the ancestry proportions in the simulated individuals for K = 2 of Scenario
C by the different software using their run with the highest log-likelihood.
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POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure S7: Admixture plots of the ancestry proportions in the simulated individuals for K = 3 of Scenario
C by the different software using their run with the highest log-likelihood.
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POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure S8: Admixture plots of the ancestry proportions in the simulated individuals for K = 4 of Scenario
C by the different software using their run with the highest log-likelihood.
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AFR EUR EAS AMR SAS

Figure S9: Admixture plots of the estimated ancestry proportions for K = 5 in the downsampled version
of the 1000 Genomes Project dataset (1KGP Down) by the different software using their run with the
highest log-likelihood. AFR: African, EUR: European, EAS: East Asian, AMR: American, and SAS: South
Asian ancestry.
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Dataset fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

A 2.70 (0.23) 3.97 (0.06) 77.85 (17.97) 1.69 (0.08)
B 3.09 (0.23) 3.98 (0.05) 105.34 (18.33) 1.96 (0.10)
C 7.11 (0.63) 6.09 (0.06) 202.22 (34.27) 2.31 (0.49)
D 1.32 (0.19) 2.97 (0.07) 36.72 (2.37) 0.24 (0.01)
1KGP Down 6.62 (0.42) 10.44 (0.21) 275.24 (12.77) 1.97 (0.25)
1KGP 82.74 (8.13) 113.54 (3.59) 2439.92∗ 18.69 (2.27)

Table S1: Computational runtimes (in minutes) for the different simulated and empirical datasets for the evaluated methods. The mean
across five different runs is reported with the corresponding standard deviation in parenthesis. All analyses have been performed on a
cluster with an Intel(R) Xeon(R) Gold 6152 CPU using 64 threads. ∗ADMIXTURE has only been evaluated on a single run for 1KGP due to
excessive runtime.

Scenario fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

A 0.0093 (4.2e-5) 0.0211 (0.0070) 0.0094 (1.3e-7) 0.0252 (3.0e-5)
B 0.0079 (4.5e-5) 0.2075 (0.0044) 0.0079 (1.5e-7) 0.0331 (4.2e-5)
C 0.0082 (4.6e-5) 0.1957 (0.0072) 0.0083 (1.4e-7) 0.0398 (2.9e-5)
D 0.0008 (6.7e-7) 0.0187 (0.0129) 0.0008 (4.5e-8) 0.0058 (1.1e-6)

Table S2: Jensen-Shannon divergence (JSD) measures for the estimated ancestry proportions in the three different simulated datasets for
the evaluated methods against the ground truth. The mean across five different runs is reported with the corresponding standard deviation
in parenthesis.

Dataset fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

A -637729493.6 (0.5) -640197951.4 (39763.0) -637729492.4 (0.5) -637845454.1 (10.0)
B -629360598.6 (0.1) -633930570.4 (37694.0) -629360598.5 (1.6) -629538330.5 (38.1)
C -1006294346.2 (0.6) -1013880607.9 (52010.8) -1006294347.6 (4.1) -1006604915.2 (244.3)
D -429286152.5 (0.2) -433792567.4 (627402.9) -429286155.6 (4.1) -429536651.1 (25.0)
1KGP Down -1509950457.3 (0.8) -1531090301.0 (228164.6) -1509950464.3 (7.5) -1510431876.5 (254.2)
1KGP -15097015793.7 (4.9) -15342582278.2 (3449977.8) -15097016096.0∗ -15101701104.4 (2807.9)

Table S3: Log-likelihood measures in the different simulated and empirical datasets for the evaluated methods. “1KGP” refers to data
from the 1000 Genomes Project, where “1KGP (down)” is the downsampled variant. The mean across five different runs is reported with
the corresponding standard deviation in parenthesis. ∗ADMIXTURE has only been evaluated on a single run for 1KGP due to excessive
runtime.
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Population fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

POP1 0.0188 0.0329 0.0189 0.0700
POP2 0.0220 0.0039 0.0221 0.0704
POP3 0.0253 0.0399 0.0254 0.0752
POP4 0.0314 0.0048 0.0316 0.0904
POP5 0.0310 0.6324 0.0312 0.0836
ADMIX1 0.0295 0.3408 0.0294 0.0294
ADMIX2 0.0220 0.3404 0.0220 0.0367
ADMIX3 0.0209 0.3138 0.0209 0.0421

Table S4: Root mean square error (RMSE) measures for the estimated ancestry proportions in the eight populations of Scenario C for
the evaluated methods against the ground truth.

Population fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

POP1 0.0086 0.0195 0.0087 0.0478
POP2 0.0105 0.0007 0.0106 0.0482
POP3 0.0124 0.0200 0.0124 0.0514
POP4 0.0140 0.0003 0.0142 0.0612
POP5 0.0138 0.6930 0.0139 0.0564
ADMIX1 0.0029 0.2731 0.0029 0.0028
ADMIX2 0.0022 0.2607 0.0022 0.0220
ADMIX3 0.0015 0.2118 0.0015 0.0283

Table S5: Jensen-Shannon divergence (JSD) measures for the estimated ancestry proportions in the eight populations of Scenario C for
the evaluated methods against the ground truth.

Mini-batches Runtime (m) Log-likelihood RMSE JSD
B = 8 7.86 (1.18) -1006294348.7 (1.4) 0.0258 (4.5e-5) 0.0084 (2.9e-5)
B = 16 7.11 (0.68) -1006294345.3 (1.0) 0.0256 (5.1e-5) 0.0083 (3.0e-5)
B = 32 7.11 (0.63) -1006294346.2 (0.2) 0.0255 (8.7e-6) 0.0082 (4.9e-6)
B = 64 7.53 (0.80) -1006294353.9 (1.4) 0.0254 (2.2e-5) 0.0082 (2.2e-5)
B = 128 9.82 (2.32) -1006294360.1 (1.5) 0.0254 (7.9e-6) 0.0081 (6.7e-6)

Table S6: Assessment measures in the simulated dataset of Scenario C using different initial numbers of batches, B, in fastmixture.
The mean across five different runs is reported with the corresponding standard deviation in parenthesis.
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Initialization Runtime (m) Log-likelihood RMSE JSD
Random 14.12 (1.03) -1006294348.5 (0.6) 0.0255 (3.2e-5) 0.0082 (2.0e-5)
SVD-based 7.11 (0.63) -1006294346.2 (0.2) 0.0255 (8.7e-6) 0.0082 (4.9e-6)

Table S7: Assessment measures in the simulated dataset of Scenario C using fastmixture for two different parameter initialization
approaches. The mean across five different runs is reported with the corresponding standard deviation in parenthesis.

fastmixture Neural ADMIXTURE ADMIXTURE SCOPE

K = 2 -1015395537.1 (0.1) -1016467332.7 (5479.3) -1015395536.6 (0.0) -1015464044.1 (0.0)
K = 3 -1011420272.3 (0.7) -1014984382.1 (274833.2) -1011420270.5 (0.2) -1011552464.8 (0.1)
K = 4 -1008338857.0 (0.4) -1014255193.2 (127570.6) -1008546129.6∗ (463478.4) -1008524838.1 (4.7)
K = 5 -1006294346.2 (0.2) -1013880607.9 (52010.8) -1006294347.6 (4.1) -1006604915.2 (244.3)

Table S8: Log-likelihood measures in the simulated dataset of Scenario C using fastmixture for different values of K, the number of
ancestral populations assumed in the ancestry estimation. The mean across five different runs is reported with the corresponding standard
deviation in parenthesis. ∗ADMIXTURE had 4/5 runs finding the optimal solution.
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