

1 **Hexosamine Biosynthesis Disruption Impairs GPI Production and**
2 **Arrests *Plasmodium falciparum* Growth at Schizont Stages**

3

4 **Authors:**

5 María Pía Alberione^{1,2}, Yunuen Avalos-Padilla^{1,3}, Gabriel W Rangel⁴, Miriam Ramírez^{1,2},
6 Tais Romero-Uruñuela^{1,2}, Àngel Fenollar^{1,2}, Marcell Crispim^{1,2,5,6}, Terry K Smith⁷, Manuel
7 Llinás^{4,8}, Luis Izquierdo^{1,2,9}

8 ¹ISGlobal, Barcelona, Catalonia, Spain; ²Facultat de Medicina i Ciències de la Salut,
9 Universitat de Barcelona (UB), Barcelona, Spain; ³Nanomalaria Group, Institute for
10 Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology,
11 Barcelona, Spain; ⁴Department of Biochemistry and Molecular Biology and Huck Center
12 for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA;
13 ⁵Department of Parasitology, Institute of Biomedical Sciences of the University of São
14 Paulo, São Paulo, Brazil; ⁶Department of Clinical and Toxicological Analyses, School of
15 Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil; ⁷Biomedical
16 Sciences Research Complex (BSRC), School of Biology, University of St Andrews, St
17 Andrews KY16 9ST, UK; ⁸Department of Chemistry, Pennsylvania State University,
18 University Park, Pennsylvania, USA; ⁹CIBER de Enfermedades Infecciosas (CIBERINFEC),
19 Instituto de Salud Carlos III, Barcelona, Spain

20 * For correspondence: luis.izquierdo@isglobal.org

21

22 **Short title:**

23 The Hexosamine Biosynthetic Pathway is Critical for Malaria Parasite Development at
24 Schizont Stage

25

26 Abstract

27 UDP-N-acetylglucosamine (UDP-GlcNAc) is a crucial sugar nucleotide for glycan
28 synthesis in eukaryotes. In the malaria parasite *Plasmodium falciparum*, UDP-GlcNAc is
29 synthesized via the hexosamine biosynthetic pathway (HBP) and is essential for
30 glycosylphosphatidylinositol (GPI) anchor production, the most prominent form of
31 protein glycosylation in the parasite. In this study, we explore a conditional knockout of
32 glucosamine-6-phosphate N-acetyltransferase (*PfGNA1*), a key HBP enzyme. *PfGNA1*
33 depletion led to significant disruptions in HBP metabolites, impairing GPI biosynthesis
34 and causing mislocalization of the merozoite surface protein 1 (MSP1), the most
35 abundant GPI-anchored protein in the parasite. Furthermore, parasites were arrested
36 at the schizont stage, exhibiting severe segmentation defects and an incomplete rupture
37 of the parasitophorous vacuole membrane (PVM), preventing egress from host red
38 blood cells. Our findings demonstrate the critical role of HBP and GPI biosynthesis in *P.*
39 *falciparum* asexual blood stage development and underscore the potential of targeting
40 these pathways as a therapeutic strategy against malaria.

41 Author Summary

42 Malaria remains a major cause of illness and death, particularly in sub-Saharan Africa,
43 with increasing resistance to treatments highlighting the urgent need for new strategies.
44 Malaria parasites rely on the hexosamine biosynthetic pathway to produce UDP-N-
45 acetylglucosamine, an essential metabolite for glycosylphosphatidylinositol synthesis.
46 Glycosylphosphatidylinositol molecules anchor vital proteins to the parasite's surface
47 and, as free glycolipids, serve as structural components of its membranes. Our study
48 examined the effects of disrupting *PfGNA1*, a key enzyme in the hexosamine
49 biosynthetic pathway, which is distinct from its human counterparts. Disruption of
50 *PfGNA1* blocked the production of glycosylphosphatidylinositol, leading to improper
51 protein localization, developmental arrest, and failure of the parasites to mature or exit
52 infected red blood cells. Our results underscore the central role of the hexosamine
53 biosynthetic pathway and glycosylphosphatidylinositol biosynthesis, which are essential
54 for parasite survival. This pathway represents a promising target for developing novel
55 antimalarial therapies.

57 Introduction

58 Malaria is a major global health problem that kills more than 600,000 people a year,
59 mainly children under the age of five and pregnant women in sub-Saharan Africa [1].
60 The disease is caused by parasites of the genus *Plasmodium* and, out of the five species
61 infecting humans, *P. falciparum* causes the most severe form of malaria and accounts
62 for the greatest number of deaths [2]. *P. falciparum* has a complex life cycle involving
63 two different hosts, *Anopheles* mosquitoes and humans. The infection starts with the
64 injection of parasite sporozoites into the human bloodstream, by the bite of an infected
65 mosquito. Sporozoites travel through the blood vessels to the liver to invade
66 hepatocytes and initiate the pre-erythrocytic stage of the disease. Once mature,
67 infected hepatocytes burst releasing exoerythrocytic merozoites that invade
68 erythrocytes, starting the cyclic asexual blood stages. After erythrocyte invasion the
69 parasite develops through three main morphological stages in each 48-hour cycle —the
70 ring, trophozoite and schizont stages— finally replicating into 16-32 daughter
71 merozoites that invade new erythrocytes upon parasite egress [3]. The asexual stages
72 are responsible for malaria clinical symptoms, but some parasites sexually commit and
73 differentiate into male and female gametocytes. Mature sexual forms ingested by
74 mosquitoes undergo several transformations within the Anopheline vector and
75 ultimately infect new human hosts during subsequent blood meals [4].

76 The malaria parasite relies upon the hexosamine biosynthetic pathway (HBP) for survival
77 during the asexual blood stages [5,6]. Recent research highlights that the HBP is also
78 important during the liver stage development of murine malaria parasite [7]. The end
79 product of the HBP is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a crucial
80 sugar nucleotide used by glycosyltransferases to synthesize GlcNAc-containing
81 glycoconjugates [8]. Given the limited scope for protein and lipid glycosylation in *P.*
82 *falciparum*, UDP-GlcNAc appears to serve exclusively as a precursor for the generation
83 of *N*-glycans and glycosylphosphatidylinositol (GPI) glycolipids (Supplementary Fig. S1)
84 [9,10]. Some works report that *O*-GlcNAcylation, a dynamic post-translational
85 modification involved in cellular regulation and signalling, is also present in *P.*
86 *falciparum*, although the enzymes responsible for this modification have not been
87 identified [11]. *N*-glycosylation is a post-translational modification which involves the

88 synthesis of a glycan donor initiated by GlcNAc-dependent glycosyltransferases. This
89 precursor is then transferred to proteins in the endoplasmic reticulum (ER) by an
90 oligosaccharyltransferase [12]. *P. falciparum* produces highly truncated *N*-glycan donors
91 containing only one or two GlcNAc residues [13]. However, proteins with these minimal
92 *N*-glycans have not been fully characterized [14]. On the other hand, GPI glycolipids are
93 the best characterized and most prominent glycoconjugates in the malaria parasite [15].
94 GPIs are synthesized through a multistep pathway conserved in eukaryotes, beginning
95 on the cytoplasmic side of the ER with the transfer of GlcNAc, from UDP-GlcNAc, to
96 membrane-bound phosphatidylinositol (PI). The molecule is then de-*N*-acetylated and
97 moved to the luminal side of the ER, where subsequent biosynthetic reactions
98 culminate in GPI glycolipid generation. Finally, the protein precursor of GPI-anchored
99 proteins is processed by GPI-transamidase for GPI attachment [16,17].

100 GPIs are attached to the C-terminus of surface proteins, anchoring them to the external
101 leaflet of the plasma membrane [18,19]. *P. falciparum* expresses more than 30 different
102 GPI-anchored proteins along its life cycle, including asexual [20], sexual [21], sporozoite
103 [22] and pre-erythrocytic stages [23]. Many of these proteins play key roles in host cell
104 adhesion, invasion, and egress. Thus, GPI anchors are considered vital at various stages
105 of the parasite life cycle. Additionally, protein-free GPIs are present on the parasite
106 surface and are four to five times more abundant than GPIs linked to proteins [15,24].
107 In other protozoan parasites these free glycolipids are involved in motility and cell
108 invasion and are essential for growth [25,26]. Furthermore, free GPIs released into the
109 blood during egress also act as proinflammatory toxins, exerting immunomodulatory
110 effects and contributing to the severity of malaria [27,28]. This underpins the
111 importance of these glycoconjugates not only for parasite development through
112 multiple stages but also for malaria pathogenesis.

113 In this work, we characterized the effects of disrupting the HBP, causing a depletion in
114 UDP-GlcNAc in the asexual intraerythrocytic stages of *P. falciparum*. Our findings show
115 that these disruptions severely impair GPI biosynthesis, leading to the mislocalization of
116 merozoite surface protein 1 (MSP1), a key GPI-anchored protein on the merozoite cell
117 surface. Additionally, the parasite exhibits significant defects in segmentation and
118 completely fails to egress, leading to termination of the asexual life cycle.

119 **Results**

120 **PfGNA1-depleted parasites fail to progress to the next developmental cycle**

121 *P. falciparum* synthesizes the amino sugar UDP-GlcNAc through a classical HBP involving
122 five enzymatic steps (Fig. 1A and **Supplementary Table 1**). This metabolite is key for the
123 production of GPI anchors and *N*-glycans in the malaria parasite [9]. In a previous study,
124 a rapamycin-inducible conditional knockout was engineered in *P. falciparum* targeting
125 glucosamine-6-phosphate N-acetyltransferase (*PfGNA1*) (**Supplementary Fig. S2A**), the
126 enzyme responsible for the acetylation of glucosamine 6-phosphate in the HBP [6].
127 Parasite growth was arrested after three intraerythrocytic developmental cycles (IDC)
128 following rapamycin-induced *gna1* gene excision, revealing that both this enzyme and
129 the HBP are critical for asexual blood stage growth [5]. To determine the specific cause
130 of growth arrest and parasite death following *gna1* disruption, we synchronized
131 parasites to a 5-hour window and treated them with rapamycin immediately after
132 synchronization at the early ring stage (Fig. 1B). To assess the dynamics of *gna1* gene
133 excision, we performed PCR amplification of the *gna1* locus after treating tightly
134 synchronized early ring-stage parasites (cycle 0) with 10 nM rapamycin. At 30 hours
135 post-treatment, a significant amount of the non-excised 1546 bp PCR product was still
136 detected, indicating that the gene remained partially intact at least during the
137 trophozoite stage. Complete excision, marked by the exclusive presence of a 738 bp
138 product, was observed from 42 hours post-treatment in cycle 0 (Fig. 1C). This excision
139 pattern likely explains the partial parasite growth during the transition from cycle 0 to
140 cycle 1 (**Supplementary Fig. S2 B and C**), as the continued presence of the *gna1* gene —
141 and *PfGNA1* enzyme — throughout most of this cycle may allow for limited
142 development. However, once excision was complete, total inhibition of parasite growth
143 was seen in cycle 1. Remarkably, although *gna1* was completely excised by the start of
144 cycle 1, the parasites were still able to mature into late trophozoites and schizonts (Fig.
145 1D). Nevertheless, these parasites were unable to expand from cycle 1 to cycle 2,
146 showing an invasion rate lower than 1 (Fig. 1E). To study *PfGNA1* expression, we
147 engineered the II3 *gna1-3xHA-loxP* line, a new strain bearing a triple hemagglutinin A
148 (HA) epitope at the N-terminus region of the enzyme (**Supplementary Fig. S3**) in which

149 the *gna1* locus could still be excised in a regulatable manner by the addition of
150 rapamycin. Consistent with the full disruption of *gna1* by the end of cycle 0, we
151 confirmed the absence of *PfGNA1* in cycle 1 by Western blot (Fig. 1F).

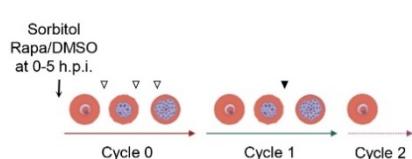
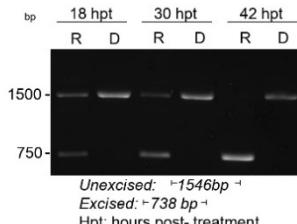
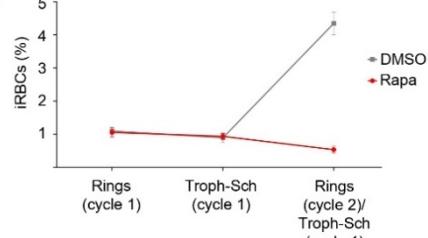
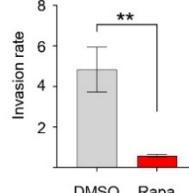
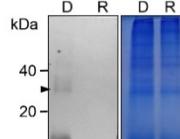

152

Figure 1


A


B


C

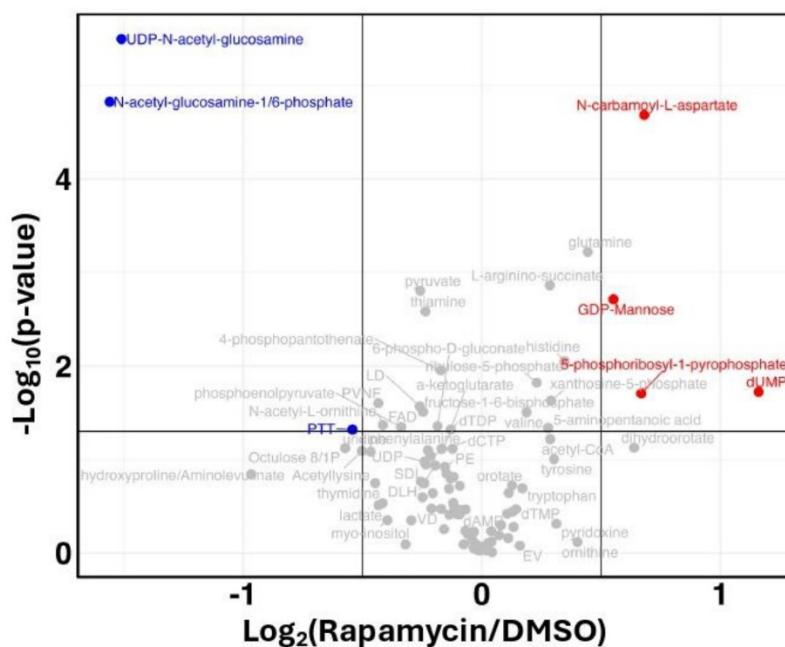

D

E

F

153

154 **Fig 1. *PfGNA1* is essential for parasite growth during asexual development. A)** Diagram
155 illustrating the enzymatic reactions involved in UDP-GlcNAc biosynthesis through the
156 Hexosamine Biosynthetic Pathway. Glucosamine-phosphate N-acetyltransferase
157 (GNA1) converts glucosamine-6-phosphate (GlcN6P) to N-acetylglucosamine-6-
158 phosphate (GlcNAc6P). **B)** Scheme outlining the timing of rapamycin (or mock, DMSO)
159 treatment, administered at cycle 0 after tight synchronization of parasites within a 5-
160 hour window. The times at which samples were collected for gene excision (white
161 arrowheads) and protein expression (black arrowhead) analyses are also shown. **C)** PCR
162 analysis of *gna1* was conducted at different times post-DMSO (D) or rapamycin (R)
163 treatment, using primers P5 and P6 specified in [Supplementary Fig. S2A](#) and
164 [Supplementary table II](#). **D)** Parasite growth across cycles 1 and 2 following *PfGNA1*
165 disruption assessed by flow cytometry. **E)** Invasion rates for parasites treated with either
166 DMSO or rapamycin were measured during the transition between developmental cycle
167 1 and 2. **F)** Western blot (left) with anti-HA antibody and Coomassie-stained gel (right)
168 as loading control showing protein from trophozoites at cycle 1, treated with DMSO (D)
169 or rapamycin (R) during cycle 0. The arrowhead indicates a band of approximately 30-
170 35 kDa, efficiently depleted upon rapamycin addition. In panels D and E the graph shows
171 mean \pm SD values of three independent biological replicates. Statistical analyses were
172 performed using unpaired *t* test. *, P<0.05; **, P<0.01; ***, P<0.001. Abbreviations: G6PI:
173 Glucose-6-phosphate isomerase; GFPT: Glucosamine-fructose-6-phosphate
174 aminotransferase; GNA1: Glucosamine-phosphate N-acetyltransferase; PAGM:
175 Phosphoacetylglucosamine mutase; UAP: UDP-N-acetylglucosamine
176 pyrophosphorylase.


177 Metabolic profiling reveals significant disruptions in the HBP and related intermediates

178 To confirm that *PfGNA1*-depleted cells exhibited alterations in the HBP, we conducted
179 metabolic profiling of cycle 1 trophozoites (Fig. 2A). This analysis included rapamycin-
180 treated, DMSO-treated (control), and the parental cell lines. Disruption of the HBP at
181 the GNA1 enzymatic step led to a substantial reduction in UDP-GlcNAc levels, the
182 pathway's final product (Fig. 2B). Importantly, levels of the intermediates, GlcNAc-1-
183 phosphate and GlcNAc-6-phosphate, downstream of *PfGNA1*, were also reduced.
184 However, our experimental setup could not distinguish between these two
185 phosphorylated metabolites (Fig. 2C). These metabolic changes were evident when
186 comparing both the mock-treated and parental cell lines to the rapamycin-treated line
187 (Supplementary Fig. S4). Additionally, we observed a significant accumulation of GDP-
188 mannose, a key precursor for the synthesis of dolichol-phosphate-mannose, the
189 mannose donor in GPI anchor biosynthesis (Fig. 2D). This accumulation may suggest a
190 reduced availability of glucosamine-phosphatidylinositol (GlcN-PI) as mannose acceptor
191 in the GPI biosynthetic pathway.

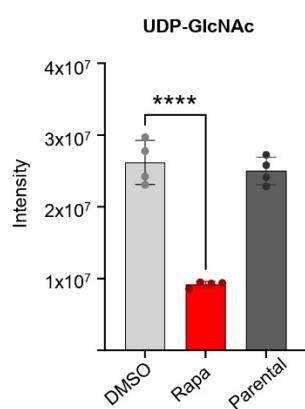
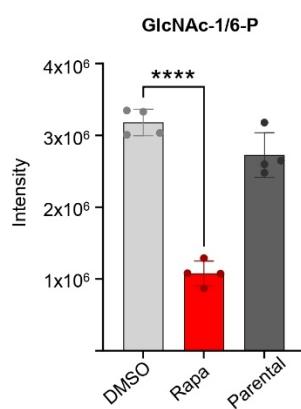
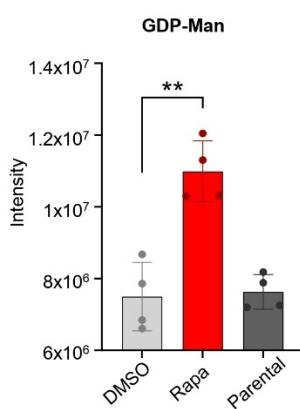

192 Furthermore, parasites treated with either rapamycin or DMSO (control) were grown,
193 and total lipids were extracted and analysed by electrospray-tandem mass spectrometry
194 (ES-MS-MS). Lipidomic analysis revealed an accumulation of phosphatidylinositol (PI)
195 molecules, relative to phosphatidylinositol phosphate (PIP) species. This finding could
196 be explained by the depletion of UDP-GlcNAc, which utilizes PI as an acceptor in the first
197 steps of GPI biosynthesis (Supplementary Fig. S5). Evidence of the presence of either
198 GlcN-PI or GlcNAc-PI species in the WT was also investigated, however none was
199 observed as it was likely below the level of detection (data not shown).

Figure 2


A


B

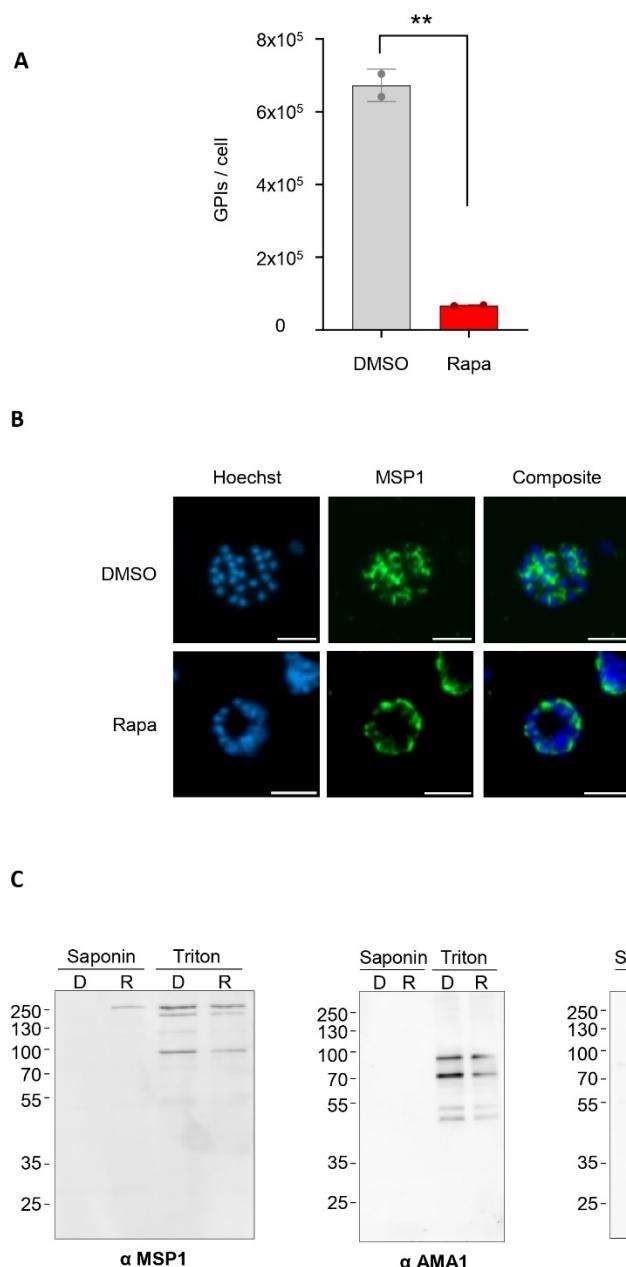
C

D

200

201 **Fig 2. *PfGNA1*-disrupted parasites show depletion of HBP intermediates and UDP-**
 202 **GlcNAc. A)** Volcano plot showing global metabolomic changes between *PfGNA1*-
 203 disrupted and DMSO-treated parasites. Detailed analyses of GlcNAc-1/6-P (B), UDP-
 204 GlcNAc (C) and GDP-Man (D) levels in *PfGNA1*-disrupted parasites (treated with
 205 rapamycin), non-disrupted parasites (DMSO-treated) and the parental cell line. Data
 206 represent the mean and standard deviation from four independent replicates. *p*-values
 207 from two-sided Student's *t*-tests are shown in B, C and D, comparing the specified
 208 conditions. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$. Abbreviations: GlcNAc-1/6-
 209 P, *N*-acetylglucosamine-1/6-phosphate; UDP-GlcNAc, uridine diphosphate *N*-
 210 acetylglucosamine; GDP-Man, Guanosine diphosphate mannose.

211 HBP disruption disturbs GPI biosynthesis and alters MSP1 localization in malaria
212 parasites

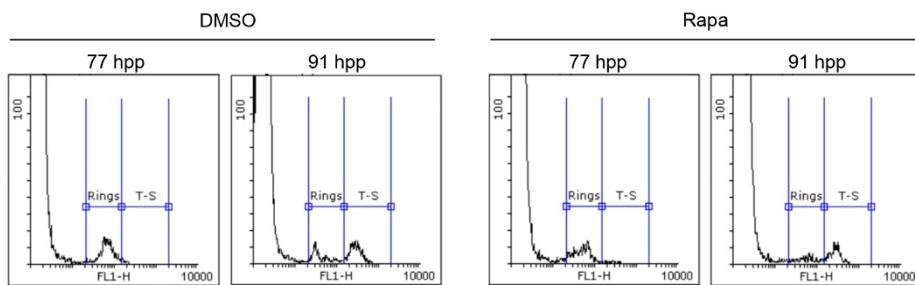

213 GPI anchors rely upon UDP-GlcNAc for their biosynthesis and are the most abundant
214 glycoconjugates in *P. falciparum*, thereby playing a crucial role in parasite viability
215 [15,29,30]. Given that UDP-GlcNAc depletion coincided with the accumulation of other
216 upstream GPI biosynthetic precursors, such as GDP-Man, required for mannosylation
217 reactions, we focused our analysis on GPI anchor molecules. Furthermore, the relatively
218 rapid death of parasites following *PfGNA1* depletion suggested that *N*-glycans are
219 unlikely to be involved in the observed phenotype. This is because the inhibition of *N*-
220 glycans —another class of GlcNAc-containing glycoconjugate [14]—leads to a delayed
221 death phenotype [31]. Indeed, our analysis revealed a striking reduction in the level of
222 total GPI molecules in rapamycin-treated cells (Fig. 3A).

223 The surface of the malaria parasite is densely populated with GPI-anchored proteins,
224 with MSP1 (PF3D7_0930300) being a major component, accounting for approximately
225 one-third of these GPI-anchored proteins on the merozoite surface [20]. MSP1 is
226 essential for the *P. falciparum* asexual stages, facilitating both invasion and egress [32–
227 34]. Given the reduced GPI anchor content in *PfGNA1*-disrupted parasites, we
228 investigated MSP1 localization using immunofluorescence microscopy. In DMSO-treated
229 parasites, MSP1 was found to encircle the merozoites in mature schizonts, based upon
230 its location around the Hoechst-stained merozoite nuclei. However, in most *PfGNA1*-
231 disrupted parasites, MSP1 appeared to be untethered, shifting away from the merozoite
232 nuclei and diffusing towards the periphery of the schizont plasma membrane (Fig. 3B).
233 However, a small subset of *PfGNA1*-disrupted parasites appear to retain the typical
234 MSP1 distribution observed in untreated parasites (Supplementary Fig. S6A).

235 Our results indicated that alterations in GPI anchor content, due to *PfGNA1* disruption,
236 partially affected the localization of GPI-anchored MSP1. We then hypothesized that
237 non-anchored and mislocalized MSP1 might be secreted into the parasitophorous
238 vacuole (PV) lumen, based upon the immunofluorescence microscopy observations. To
239 investigate this, we treated parasites with saponin, a detergent that selectively
240 permeabilizes the erythrocyte and parasitophorous vacuole membrane (PVM), allowing
241 extraction of soluble proteins present in those compartments without affecting the

242 parasite plasma membrane. The remaining pellets were further extracted with Triton X-
243 100. Western blot analysis revealed that, in *PfGNA1*-disrupted parasites, MSP1 partially
244 leaked into the PV, suggesting secretion to the peripheral space. In contrast, no such
245 leakage was observed in DMSO-treated controls (Fig. 3C, left panel). Additionally, MSP1
246 processing was notably reduced in *PfGNA1*-disrupted parasites compared to DMSO-
247 treated parasites [34]. As controls, we also conducted Western blot analyses for apical
248 membrane antigen 1 (AMA1, PF3D7_1133400), a transmembrane protein, and BiP
249 (PF3D7_0917900), a protein member of the endoplasmic reticulum chaperone complex,
250 to confirm that their localization remained unaffected by the disruption of *PfGNA1* and
251 GPI biosynthesis. Both proteins were detected in the expected fraction after protein
252 extraction (Fig. 3C, middle and right panel, respectively, and [Supplementary Fig. S6B](#)).

Figure 3


254 **Fig 3. GPI synthesis is altered in *PfGNA1*-deficient parasites, disrupting the localization**
255 **of the GPI-anchored protein MSP1. A)** Quantification of GPI molecules per cell in DMSO-
256 and rapamycin-treated parasites. **B)** Immunofluorescence microscopy showing MSP1
257 distribution in segmented schizonts. MSP1 was labelled with a mouse anti-MSP1
258 antibody (green), and nuclei were stained with Hoechst dye (blue). Scale bar is 5 μ m. **C)**
259 Subcellular fractionation of schizonts treated with DMSO or rapamycin was performed
260 sequentially using saponin, followed by Triton X-100 extraction. Both fractions were
261 analysed by SDS-PAGE and Western blotting, using anti-MSP1 (left), anti-AMA1 (middle)
262 and anti-BiP (right) antibodies, respectively. Bands migrating at varying heights, likely
263 reflecting initial MSP1 processing, are observed in the Triton lanes (left panel). Panels B
264 and C display representative images from four independent biological replicates.

265 *PfGNA1* disruption prevents egress and reinvasion of *P. falciparum*

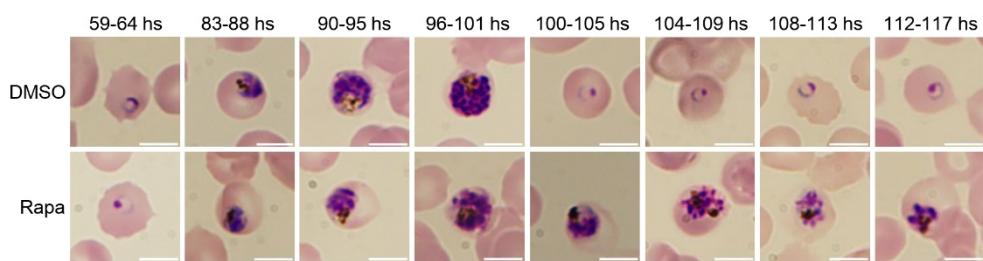
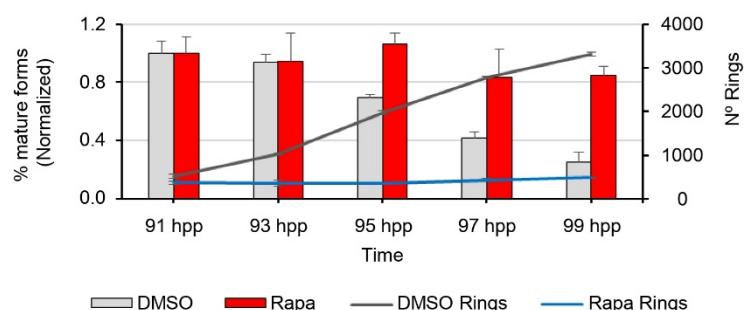
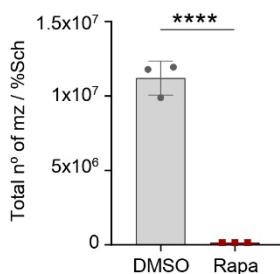

266 To determine what impedes parasite growth during cycle 1, we synchronized parasites
267 over a 5-hour window using sequential 70% Percoll centrifugation followed by sorbitol
268 lysis and monitored their development using flow cytometry and light microscopy. Flow
269 cytometry revealed DNA replication, marking the transition from ring (77 hours post-
270 Percoll) to trophozoite and schizont stages (91 hours post-Percoll) [35], in both control
271 and *PfGNA1*-disrupted parasites (Fig. 4A). However, upon careful observation of
272 Giemsa-stained preparations, we found that, although *PfGNA1*-disrupted parasites
273 appeared to develop into mature stages, they failed to progress further. These parasites
274 often displayed aberrant morphology and did not form fully segmented, multinucleated
275 schizonts with distinct nuclei (Fig. 4B). Additionally, these parasites failed to egress,
276 which was evident from the persistent presence of mature parasites during the
277 transition between cycles 1 and 2, and the lack of new ring forms, as confirmed by flow
278 cytometry (Fig. 4C). To further support our observations, we mechanically released the
279 daughter merozoites from mature parasites by passing them through a 1.2 μ m filter
280 (Boyle et al., 2010). Virtually no fully mature merozoites were isolated from *PfGNA1*-
281 disrupted parasites relative to control parasites (Fig. 4D). Moreover, these mechanically
282 released merozoites were unable to reinvoke new host red blood cells (Supplementary
283 Fig. S7). Overall, the disruption of *PfGNA1* led to the inability of mature parasites to
284 egress and reinvoke new host red blood cells presumably through disruption of the HBP
285 and GPI biosynthesis pathways, thereby halting parasite development.

Figure 4


A


B

C

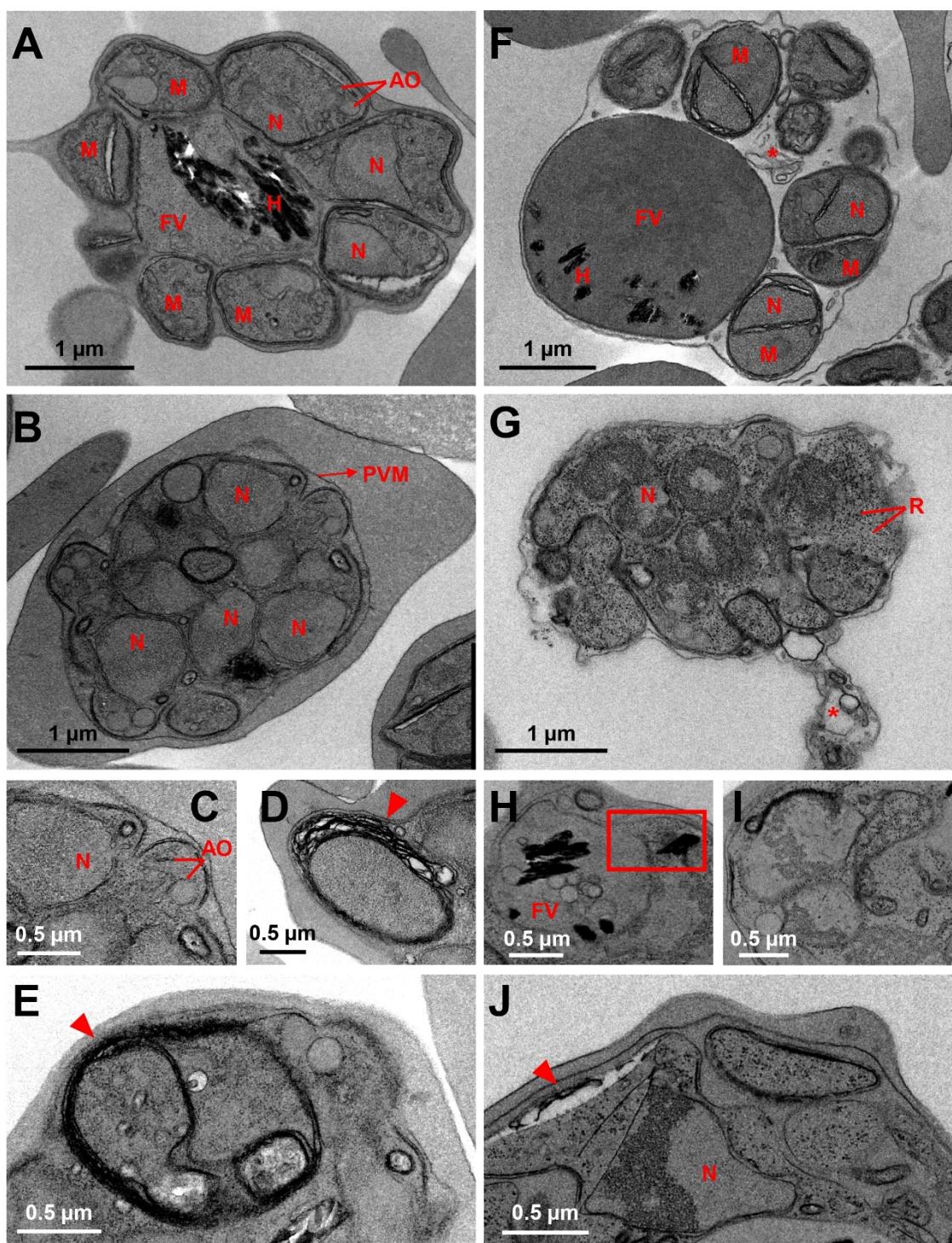
D

286

287 **Fig 4. Disruption of *PfGNA1* hints at segmentation defects and prevents parasite**
288 **egress. A)** Histograms showing a population shift from ring stages to
289 trophozoite/schizont stages. For flow cytometry analysis, the DNA of parasite cultures
290 was stained with SYTO11, and RBCs were gated using bivariate plots (SSC-H vs. FSC-H),

291 recording 50,000 events within this region. The recorded events were then plotted as a
292 function of fluorescence intensity detected through Filter 1, where subpopulations are
293 distinguished according to their DNA content. **B)** Microscopy images of Giemsa-stained
294 smears from tightly synchronized (5-hour window) *PfGNA1* conditional knockout
295 parasites treated with DMSO (control) or rapamycin. The images show time points
296 during cycle 1 and the transition to cycle 2. Scale bar is 5 μ m. **C)** Egress of synchronized
297 (5-hour window) *PfGNA1* conditional knockout parasites treated with DMSO (control)
298 and rapamycin. Total parasitemia and the levels of young forms (rings) and mature
299 forms (trophozoites-schizonts) were measured every two hours by flow cytometry
300 during the transition between cycles 1 and 2, as described in A. The percentage of
301 mature forms at each time point was normalized to the percentage observed at 91 hpp,
302 when the trophozoite-schizont peak was reached. The ring levels are represented as an
303 absolute number (hpp: hours post-Percol). **D)** *PfGNA1* conditional knockout parasite,
304 treated with either rapamycin or DMSO, were enriched using Percoll, and merozoites
305 were mechanically released by filtration. The number of merozoites post-filtration was
306 measured by flow cytometry and normalized to the percentage of schizonts in culture
307 before filtration.
308 Panels A and B shows a representative image from four biological replicates. Panels C
309 and D are based on three independent biological replicates, each with technical
310 replicates. The graphs depict the means and standard deviation derived from one
311 representative biological replicate, averaged over technical triplicates. The statistical
312 analysis of panels C and D were performed using unpaired *t* test. *, P<0.05; **, P<0.01;
313 ***<0.001; ****<0.0001.

314


315 HBP and GPI biosynthesis disruption causes segmentation defects and prevents full PVM
316 rupture in *PfGNA1*-deficient parasites

317 To further investigate the morphological defects observed in mature schizonts, we
318 performed transmission electron microscopy on rapamycin-induced *PfGNA1*-disrupted
319 parasites and DMSO-treated controls synchronized at late stages. In DMSO-treated
320 schizonts (Fig. 5A), segmentation occurred normally, with each merozoite individually
321 enclosed by a membrane and exhibiting classical structures, including nuclei and apical
322 organelles. In contrast, *PfGNA1*-disrupted schizonts displayed clear segmentation
323 defects, with only some schizonts achieving proper segmentation (Supplementary Fig.
324 S8A). Although nuclear division was observed, the developing merozoites appeared
325 conjoined within a single membrane, indicating a failure in the formation of individual
326 membranes required to separate the incipient merozoites (Fig. 5B). Some apical
327 organelles appeared well-formed in the mutant strain (Fig. 5C), but multiple stacks of
328 membranes were observed in *PfGNA1*-disrupted parasites (Fig. 5D, E, arrowheads).
329 Interestingly, in both DMSO- and rapamycin-treated parasites, a uniform contrast across
330 the PVM was observed (Fig 5A, C). This suggests that the contents of the red blood cell
331 cytoplasm and the vacuole had mixed, indicating that, although the PVM appears intact,
332 it has likely undergone poration, which is a precursor to PVM rupture, as observed in
333 [36,37].

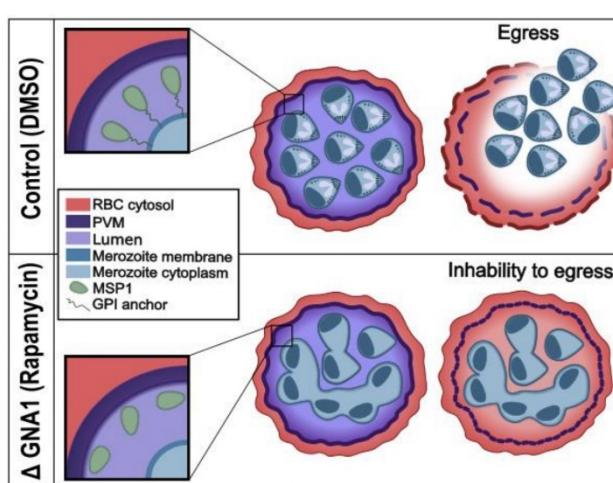
334 When parasites were treated with E64, a cysteine protease inhibitor that prevents red
335 blood cell membrane rupture while allowing the breakdown of the PVM [38], it became
336 evident that DMSO-treated schizonts were correctly formed. Single merozoites with
337 well-defined organelles were clearly observed in the absence of the PVM (Fig. 5F). A
338 clear change in contrast, resulting from the mixing of vacuolar contents with the host
339 cell cytoplasm, indicated the loss of the PVM as a distinct barrier. Additionally, whorls
340 of membrane vesicles, likely remnants of the PVM [36], were observed, providing
341 further confirmation of this effect (Fig. 5F, asterisk). In *PfGNA1*-disrupted schizonts,
342 partial PVM disruption was observed in some parasites as shown by whorls of
343 membrane vesicles in the RBC cytoplasm (Fig. 5G, asterisk). However, in the majority of
344 the observed parasites, schizonts were unable to rupture the PVM (Supplementary Fig.
345 S8 B and C), suggesting that the egress defect associated with HBP disruption and altered

346 GPI biosynthesis occurs before full PVM rupture and is unrelated to host red blood cell
347 membrane breakdown [34]. Additionally, food vacuoles containing internal
348 membranous structures were also present (Fig. 5H), with occasional ruptures of the
349 vacuole membrane, releasing hemozoin crystals (Fig. 5H, square). The fused merozoites
350 exhibited chromatin condensation at the nuclear periphery, an indicator of cellular
351 apoptosis (Fig. 5G, J) [39]. Additionally, the ribosomes appeared irregularly distributed
352 throughout the cytoplasm, potentially due to a deficiency in endoplasmic reticulum
353 presence (Fig. 5G, I, J), an effect previously observed in *Plasmodium* undergoing
354 apoptosis induced by chalcone derivatives [40].

Figure 5

355

356 **Fig 5. *PfGNA1* disrupted parasites show a severe segmentation defect.** Transmission
357 electron microscopy showing the ultrastructure of *PfGNA1* conditional-knockout
358 schizonts treated with DMSO (control) or rapamycin, with or without E64 exposure. **A)**
359 DMSO-treated parasites show multiple merozoites (M) along with distinct structures,


360 including nuclei (N), apical organelles (AO), and food vacuoles (FV) containing hemozoin
361 crystals (H). **B)** Rapamycin-treated parasites exhibited multinucleated, fused merozoites
362 enclosed within the parasitophorous membrane (PVM). **C)** Zoom from B) showing the
363 proper formation of apical organelles. **D)** and **E)** Detail of a *PfGNA1*-disrupted parasite
364 surrounded by multiple layers of stacked membranes (indicated by arrowheads). **F)** An
365 E64-treated, DMSO-control parasite, showing isolated merozoites with their respective
366 organelles. Membrane vesicle whorls, marked by an asterisk are also visible. **G)** An E64-
367 exposed, rapamycin-treated parasite with ribosomes (R) dispersed irregularly
368 throughout the cytoplasm. Multiple nuclei display distinct chromatin condensation. **H)**
369 Zoom of a FV in a *PfGNA1*-disrupted parasite as in G), containing internal membranous
370 structures. A square highlights a ruptured FV with liberated hemozoin crystals. **I)** Detail
371 of a nucleus of an E64-exposed, rapamycin-treated parasite showing chromatin
372 condensation. **J)** Numerous stacked membrane layers are also observed.

373

374 In summary, our data shows that *PfGNA1* disruption depletes the UDP-GlcNAc pool,
375 which greatly impacts the synthesis of GPI-anchors. Consequently, the localization of
376 MSP1, a key GPI-anchored protein in the membrane of merozoites, is disrupted.
377 Likewise, membrane biogenesis is severely altered during schizont maturation. This
378 results in defects in egress and invasion, thereby halting parasite growth at the schizont
379 stage and ultimately leading to apoptosis (Fig. 6).

380

Figure 6

381

382 **Fig 6. Diagram depicting impaired parasite egress following disruptions in HBP and GPI**
383 **biosynthesis.** Rapamycin-treated *PfGNA1*-disrupted parasites show a marked reduction
384 in GPI molecule levels, compromising MSP1 anchoring to the merozoite membrane and
385 causing it to diffuse away. These parasites also display severe abnormalities during
386 schizont development, characterized by aberrant morphology and the inability to form
387 fully segmented, multinucleated schizonts with distinct nuclei. Furthermore, they fail to
388 fully rupture the PVM, which prevents later breakdown of the red blood cell host
389 membrane and ultimately blocks egress.

390

391 Discussion

392 Our data confirms that *PfGNA1* disruption leads to a reduction in the HBP intermediates
393 GlcNAc-1-phosphate and GlcNAc-6-phosphate, and to the depletion of UDP-GlcNAc, the
394 final product of the pathway [5]. UDP-GlcNAc acts as donor for GlcNAc-dependent
395 glycosyltransferase reactions. In *P. falciparum* a basic *N*-glycosylation mechanism is
396 conserved although the extent, number, and significance of *N*-glycosylated proteins
397 remain unclear [13,14]. *N*-glycosylation is essential for eukaryotic organisms and,
398 notably, the initial steps of the process involve the action of GlcNAc-dependent
399 glycosyltransferases in the ER [9]. However, disrupting *N*-glycosylation does not
400 immediately halt *P. falciparum* growth. Instead, the parasites continue to grow and
401 invade new red blood cells, where they progress until the early trophozoite stages, at
402 which point their development is halted [31]. This phenomenon, known as delayed
403 death, is commonly, but not exclusively, linked to compounds targeting the apicoplast
404 in *P. falciparum* and related apicomplexans. During delayed death, the disruption of
405 specific cellular functions does not kill the parasite immediately but rather results in the
406 death of its progeny in the following developmental cycle [41–43]. The rapid death of
407 parasites within the first developmental cycle following complete *PfGNA1* depletion,
408 coupled with the hallmark stall in schizont stages, strongly suggests that interference
409 with *N*-glycosylation is not responsible for the arrest caused by the alteration of the HBP.
410 Likewise, previous studies have identified a limited number of *O*-GlcNAcylated proteins
411 in the ring and trophozoite stages of *P. falciparum* [11]. Some of these proteins are
412 involved in critical processes, such as glycolysis and chaperone functions, highlighting
413 roles comparable to those of *O*-GlcNAcylated proteins in other eukaryotic organisms
414 [44]. However, similar to other apicomplexan parasites [45], *P. falciparum* lacks known
415 orthologs of the enzymes *O*-GlcNAc transferase (OGT) and *O*-GlcNAcase (OGA), which
416 are needed for regulating this modification [11,46]. Furthermore, culturing parasites
417 with various concentrations of compounds that interfere with *O*-GlcNAcylation does not
418 impact their viability [11]. Taken together, these observations suggest that *O*-
419 GlcNAcylation is not a key factor in the effects resulting from UDP-GlcNAc depletion in
420 the parasite.

421 UDP-GlcNAc is crucial for initiating the biosynthesis of GPI glycoconjugates, which are
422 abundant on parasite surfaces, either as free molecules or tethering key proteins to the
423 membrane [15]. Our data shows that UDP-GlcNAc depletion leads to a major reduction
424 in GPI molecules. This depletion is accompanied by a concomitant accumulation of GDP-
425 mannose and phosphatidylinositol species, which are unused precursors in the GPI
426 biosynthetic pathway [17,47]. The reduced availability of GPI anchors results in the
427 mislocalization of MSP1, a major GPI-anchored protein on the surface of *P. falciparum*.
428 MSP1, along with MSP2, constitutes approximately two-thirds of all GPI-anchored
429 proteins on the merozoite surface [20]. Without sufficient GPI anchors, MSP1 is released
430 into the parasitophorous vacuole via the secretory pathway, as it can no longer remain
431 tethered to the parasite membrane [34]. The mislocalization of MSP1 is consistent with
432 findings in other studies, where disruptions in GPI anchor biosynthesis during *P.*
433 *falciparum* asexual blood stages led to comparable effects [48,49]. Similar alterations
434 have also been observed in the related apicomplexan parasite *Toxoplasma gondii*,
435 where HBP disruption also impairs GPI formation, resulting in the aberrant localization
436 of key GPI-anchored proteins and affecting parasite survival [50]. The dramatic
437 reduction in GPI glycoconjugates in *PfGNA1*-disrupted parasites, along with the
438 persistence of typical MSP1 distribution in some parasites, suggests that malaria
439 parasites may prioritize preserving crucial GPI-anchored proteins like MSP1, while
440 sacrificing free GPIs and less essential GPI-anchored proteins. This likely helps sustain
441 the intraerythrocytic life cycle, despite disruptions to HBP/GPI biosynthesis ultimately
442 stall asexual development. Thus, our findings demonstrate that hindering the HBP
443 severely impacts GPI anchor biosynthesis, and underscore the importance of these
444 glycoconjugates for the proper localization and function of essential *P. falciparum*
445 proteins.

446 During the schizont stage, the parasite undergoes segmentation, dividing into multiple
447 daughter merozoites [35]. This process involves the parasite plasma membrane
448 invaginating and encapsulating the emerging daughter cells, which eventually detach
449 from the remnants of the mother cell [51]. Disruption of the HBP and GPI anchor
450 biosynthesis leads to major segmentation defects, resulting in abnormal merozoite
451 formation. Interestingly, these segmentation defects closely mirror those observed
452 following the partial rescue of asexual parasites after apicoplast inhibition, which also

453 led to GPI depletion [48]. This partial rescue likely affects the metabolism of cis-
454 polyisoprenols and dolichols, which may potentially alter membrane biophysical
455 properties and/or affect parasite development in later stages. However, given that our
456 data stem from the targeted disruption of the HBP, these findings strongly suggest that
457 the observed segmentation defects are not related to changes in these lipid pools, but
458 rather to the resulting disruption of GPI biosynthesis. Thus, a specific, yet unidentified
459 GPI-anchored protein or group of proteins, potentially including their GPI moieties, may
460 play a significant role in the segmentation mechanism during asexual stages. This idea is
461 reinforced by observations in *P. falciparum* sporozoites, where the GPI anchor of the
462 circumsporozoite protein has been linked to sporozoite budding [52]. Additionally, the
463 analysis of detergent-resistant membranes in asexual stages revealed subsets of GPI-
464 anchored proteins associated with lipid rafts, further suggesting their involvement in
465 critical cellular processes [53]. Finally, the absence of free GPIs on the parasite surface
466 could lead to significant alterations in the plasma membrane, potentially disrupting
467 cytokinesis or other essential processes critical to parasite growth [25].

468 Disruptions in the HBP and GPI biosynthesis cause malaria parasites to become
469 completely stalled in late schizogony, rendering them incapable of exiting their host red
470 blood cells [48,49]. During egress, newly formed merozoites breach the PVM that
471 encloses them before escaping through the red blood cell membrane [54]. Just prior to
472 PVM rupture, the membrane rounds up [36,37,55] and appears to break at a few initial
473 points before decomposing [36,55], often progressing outward from their breaks [37].
474 At the same time, a few minutes before rupture, protein kinase G (PKG) is activated by
475 an increase in cyclic GMP levels [56]. This activation triggers the secretion of subtilisin-
476 like protease 1 (SUB1) from parasite exosomes to the parasitophorous vacuole (PV)
477 compartment. SUB1 is thought to play a role in the disassembly of the PVM, although
478 the exact mechanism of membrane rupture remains unclear [54]. SUB1 also facilitates
479 the proteolytic processing and maturation of serine-repeat antigen (SERA) cysteine
480 proteases, including SERA5 [57], as well as merozoite surface proteins like MSP1 [34].
481 These effectors bind to and destabilize components of the erythrocyte cytoskeleton,
482 enabling the rupture of the erythrocyte membrane and the subsequent egress of
483 merozoites [34,57]. Our data indicate that GPI-disrupted parasites are stalled just before
484 PVM breakdown, with the electron microscopy data hinting at the presence of small

485 perforations in the PVM [36]. These observations clearly align with recent studies
486 suggesting that a GPI-anchored effector may be crucial for PKG activation and/or PVM
487 rupture [48], while also pointing away from a potential direct role of dolichols in
488 maintaining PVM structure. Overall, alterations in sugar nucleotides or dolichol
489 derivative precursors necessary for GPI biosynthesis highlight the critical roles of these
490 glycoconjugates in parasite development, particularly in mediating PVM rupture and
491 enabling successful merozoite formation and egress [48,49].

492 In summary, our findings demonstrate that the ablation of *PfGNA1* disrupts the HBP,
493 significantly impairs GPI production, and halts parasite growth at the mature schizont
494 stage. Given the critical role of GPI-anchored proteins throughout various stages of
495 parasite development [20–23], our study identifies the HBP-GPI anchor biosynthesis
496 metabolic axis as a promising source of potential drug targets against malaria.
497 Furthermore, considering the unique characteristics of *PfGNA1*, which belongs to a
498 distinct enzyme family with an independent evolutionary origin in apicomplexans [5,6],
499 our work highlights the potential of targeting this enzyme for the development of
500 selective antimalarial compounds.

501

502 Materials and methods

503 *P. falciparum* culture and transfection

504 The asexual stages of *P. falciparum* were cultured at 37 °C in an environment consisting
505 of 92% N₂, 2% O₂, and 5% CO₂. Cultures were maintained in RPMI 1640 medium
506 containing Albumax II with washed red blood cells (RBCs) of blood type B+ at a
507 hematocrit of 3 to 4%. Human erythrocytes (anonymized adult blood samples) were
508 obtained from the Banc de Sang i Teixits (Catalonia, Spain), with approval from the
509 Clinical Research Ethics Committee of Hospital Clínic de Barcelona. Parasite growth was
510 monitored by counting infected erythrocytes in Giemsa-stained blood smears using light
511 microscopy. The II3 *gna1*-3xHA-*loxP* strain was generated through Cas9-mediated gene
512 replacement. For that, sgRNA and Cas9-expressing construct (pDC2-Cas9-hDHFRyFCU)
513 and linearized pUC19 plasmids were used as backbone. The single guide RNA (sgRNA)
514 targeting the *PfGNA1* was chosen using ChopChop [58] and cloned in the pDC2-Cas9-
515 sgRNA plasmid using primers P7/P8. A recodonized version of *gna1* with three
516 hemagglutinin residues in the N-terminus *PfGNA1* was cloned in pUC19 (Fig S2A). All
517 primers used are described in Supplementary table II. *P. falciparum* 3D7 II-3 parasites,
518 which contain the DiCre system inserted into the *p230p* genomic locus (courtesy of Ellen
519 Knuepfer [59]), were transfected during the ring stages. Briefly, after sorbitol
520 synchronization, 200 µl of infected red blood cells (iRBCs) at <5% parasitemia were
521 electroporated with 60 µg of each plasmid at 310V and 950 millifarads. 24 hours later,
522 transfected parasites were selected using 10 nM WR99210 during 5 days, with resistant
523 parasites emerging in culture 28 days after transfection. Clonal parasite lines were
524 subsequently derived from transfected parasite populations through limiting dilution.
525 Recovered parasites were then harvested for genotyping. Genomic DNA was extracted
526 from these parasites using the QIAamp DNA minikit (Qiagen) in accordance with the
527 manufacturer's guidelines. The purified DNA samples were used as templates for PCR
528 amplification of the inserted construct.

529 *P. falciparum* growth analysis

530 To calculate growth curves, tightly synchronized parasites were measured via flow
531 cytometry by incubating 5 µl of parasite culture with 0.75 µl SYTO11 in 900 µl of PBS for

532 1 min. Stained parasites were analysed on a BD FACSCalibur where fifty thousand events
533 were recorded for each sample. To analyse the morphological development of the
534 parasite, images of Giemsa-stained smears were taken on an Olympus BX51 microscope
535 throughout cycle 1 and 2, increasing the frequency of sampling to 4 hours at the end of
536 cycle 1 and beginning of cycle 2.

537 Western blot GNA1

538 To determine GNA1 expression, the parasites were synchronized to ring-stage by
539 sorbitol and treated for three hours with 10 nM rapamycin or DMSO (used as a vehicle
540 control) to induce the *gna1* excision at cycle 0. Cycle 1 cultures, with >5% parasitemia,
541 at trophozoite stages were collected and centrifuged, resuspended in 2 volumes of 0.2%
542 saponin in PBS and incubated on ice for 10 min. Then, 10 ml of PBS was added to each
543 sample and the mixture was centrifuged at 1800 x g for 8 min at 4°C. The supernatants
544 were removed and the saponin treatment was repeated one more time. Pellets were
545 transferred to 1.5 ml vials, washed with PBS, resuspended in 100 µL of lysis buffer (2%
546 SDS, 60 mM DTT in 40 mM Tris HCl pH=9.0 containing protease inhibitor cocktail,
547 purchased from Sigma). Then 20 µL of Laemmli 6X (final concentration 1x) were added,
548 incubated for 5 min at 95 °C and 15 µL of each sample were separated by sodium dodecyl
549 sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a
550 nitrocellulose membrane (Bio-Rad, 0.45 µm). For this, electro-transfer was performed
551 at a constant 20 V overnight using the Mini Trans-Blot cell module (Bio-Rad) with Dunn's
552 Transfer Buffer (10 mM CO₃HNa, 3 mM CO₃Na₂ in 20% methanol, pH 9.9)[60]. The
553 following day, the membrane was blocked for 2 hours at room temperature with 5%
554 (w/v) skimmed milk in TBST (10 mM Tris-HCl pH 8.0, 150 mM NaCl and 0.05% Tween
555 20). The primary antibody (anti-HA antibody purchased from Santa Cruz Biotechnology,
556 cod. 2C-7392) was diluted 1:5000 in 5% skimmed milk/TBST and incubated overnight.
557 After this, the membrane was washed 3 times in TBST for 10 min and incubated for 1
558 hour with a peroxidase-labelled anti-mouse IgG secondary antibody (Cell Signalling
559 Technology, cod. 7076), diluted 1:10,000 in 5% skimmed milk/TBST. Following three
560 washing steps with TBST for 10 min, the membrane was developed with a Clarity
561 Western ECL Substrate (Bio-Rad) and visualized in an ImageQuant LAS 4000 mini
562 biomolecular imager (GE Healthcare).

563 To determine the expression and subcellular localization of MSP1, AMA1 and BIP,
564 rapamycin and DMSO-treated parasites were collected during cycle 1, after incubation
565 with E64 for 3 hours. Schizonts were enriched with Percoll 70%, washed with 1 ml of
566 PBS/PIC and transferred to 1.5 ml vials. After centrifugation, the pellets were
567 resuspended in 6 volumes of 0.15% saponin in PBS/PIC, incubated 10 min at 4 °C and
568 centrifugated (10,000 g, 15 min, 4 °C). The resulting supernatants were transferred to
569 new tubes and stored at -80 °C. The remaining pellets were washed twice with 1ml
570 PBS/PIC and incubated in 1% Triton X-100 in PBS/PIC for 1 hour at 4 °C under continuous
571 and vigorous shaking, to improve protein extraction. Samples were then sonicated on
572 ice (3 pulse x 10 seconds, 10 seconds off between pulses, amplitude 100%), centrifuged
573 (20,000 g, 15 min, 4 °C) and the supernatants containing membrane-associated and
574 organelle-specific proteins were recovered and stored at -80 °C. A BCA Protein Assay
575 (Thermo Fisher Scientific, Waltham, Massachusetts, EUA) was performed, and 10 µg of
576 each extract was resolved by SDS-PAGE and transferred onto nitrocellulose membranes
577 (#10600003, Amersham, 0.45 µm). Electro-transfer was carried out at a constant 30 V
578 overnight using transfer buffer (25 mM Tris base, 192 mM glycine in 20% methanol).
579 Membranes were blocked for 1 hour with 5% BSA in PBS at room temperature. Mouse
580 anti-MSP1 MRA-880A (MR4) was diluted 1:1000 in 1xPBS/0.1% Tween20/5%BSA and
581 incubated overnight at 4°C. In the case of rabbit anti-AMA1 [61] and rat anti-BIP (MR4)
582 were diluted 1:1000 in 1xPBS/0.1% Tween20/5%BSA and incubated 1 hour at room
583 temperature. After this, the membranes were washed 3 times with 0.1%
584 Tween20/PBS1x for 15 min at room temperature. Secondary antibodies, goat anti-
585 mouse HRP (#12349, Sigma Aldrich), goat anti-rabbit HRP (# ab6721, Abcam) and goat
586 anti-rat HRP (#A10549, Invitrogen), were diluted 1:1000 in 1xPBS/0.1% Tween20/5%BSA
587 and incubated for 1 hour at room temperature. Following three washing steps with 0.1%
588 Tween20/PBS1x for 15 min and a final rinse with PBS, the membranes were developed
589 with ECL Western Blotting substrate (#32109, Pierce Thermo Scientific) and visualized in
590 in an ImageQuant LAS 4000 mini biomolecular imager (GE Healthcare).

591 Harvest of parasites and metabolite extraction for metabolomic analysis

592 The II3 *gna1-loxP* line was tightly synchronized over a 5-hour window, using sequential
593 70% Percoll centrifugation followed by sorbitol lysis, and immediately treated with 10

594 nM rapamycin or DMSO (control) for one hour. Rapamycin or DMSO were then removed
595 from the culture medium and the parasites were incubated until 57 hours post-Percoll
596 when a new sorbitol synchronization was performed at the beginning of cycle 1. The
597 samples were then incubated for about 81-89 hours post-Percoll and then enriched by
598 magnetic-activated cell sorting (MACS).

599 For High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) analysis,
600 1×10^8 parasites per replicate were replated in a 6-well plate and incubated for 2.5 hours
601 to allow recovery. At the time of sample collection, the metabolism was quenched
602 through addition of ice-cold PBS. Parasites were pelleted ($500 \times g$, 4°C , 7 min) and
603 metabolites were extracted from the pellet with 1 ml ice cold 90% methanol, vortexed
604 30 seconds, and centrifuged for 10 min at maximum speed ($16000 \times g$) at 4°C . Samples
605 were treated identically and swiftly to ensure reproducible results. The methanol
606 supernatants were stored at -80°C until analysis, when they were transferred to fresh
607 1.5 ml tubes, dried down completely under nitrogen gas flow, and the metabolite
608 residues stored at -70°C .

609 High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) Analysis

610 Once ready for HPLC-MS, samples were resuspended in 100 μl HPLC-grade water with 1
611 μM chlorpropamide internal standard to account for instrument variation. The samples
612 were then analyzed using a Thermo Scientific Q Exactive Plus Orbitrap MS instrument
613 connected to a Thermo Scientific Dionex Ultmate 3000 LC setup using a Waters XSelect
614 HSS T3 Column XP (100 x 2.1 mm, 2.5 μM) (Waters, 186006151) at 30°C . Solvent A was
615 97% water/3% methanol; 15 mM acetic acid; 10 mM tributylamine; 2.5 μM medronic
616 acid, and solvent B was 100% methanol. The samples ran at 0.200 ml/min with the
617 following gradient: 0-5.0 min: 100% A, 0% B; 5.0-13.0 min: 80% A, 20% B; 13.0-15.0 min:
618 45% A, 55% B; 15.0-17.5 min: 35% A, 65% B; 17.5-21.0 min: 5% A, 95% B; 21.0-25 min:
619 100% A, 0% B. Ion detection in negative ion mode was performed using a scan range of
620 85 to 1000 m/z with a resolution of 140,000 at m/z 200. The experimental sample run
621 order was randomized with pooled quality control (QC) samples and blanks run regularly
622 throughout the sample queue. Raw data for the metabolomic analysis has been
623 submitted to the NIH Metabolomics Workbench under tracking number ID 5425.

624 HPLC-MS Data Analysis

625 .raw data files from the instrument were converted to centroided .mzML format using
626 MSConvert of the ProteoWizard Software Package [62]. These files were loaded into EI
627 Maven [63] for further data processing, including peak calling, alignment, and peak
628 annotation based on expected m/z and the retention time of previously run metabolite
629 standards. Each EI-Maven-called peak is visually examined for acceptable gaussian
630 shape and signal intensity, and the areas of curated peaks are exported to Microsoft
631 Excel for further processing and analysis. All raw metabolite signal intensities were
632 corrected for chlorpropamide variation, and the average blank signal for each
633 metabolite was subtracted from experimental conditions (or substituted for
634 experimental conditions if blank average signal was higher than experimental signal).
635 Metabolites were then filtered for reproducibility in HPLC-MS detection using the
636 relative standard deviation (RSD) of the pooled QC samples, discarding any metabolites
637 with a QC RSD > 30. The resulting feature matrices were then exported and further
638 analyzed using tools on MetaboAnalyst.ca and/or the MetaboAnalystR package for R
639 [64,65].

640 Lipid analysis

641 For ES-MS-MS, parasites were harvested as explained above. 2.6×10^8 (Parental), 1.9×10^8
642 (DMSO) and 1.8×10^8 (rapamycin) parasites per replicate were replated and incubated
643 for 1 hour to allow recovery. Parasites were collected and resuspended in 2 volumes of
644 0.2% saponin in PBS, and incubated on ice for 10 min. Then, 10 ml of PBS was added to
645 each sample and the mixture was centrifuged at $1800 \times g$ for 8 min at 4°C . Supernatants
646 were removed and the saponin treatment was repeated one more time. Pellets were
647 transferred to 1.5 ml vials and washed with PBS. Total lipids from parasites were
648 subjected to Bligh-Dyer extraction [66]. Briefly, cells were suspended in 100 μl PBS and
649 transferred to a glass tube where 375 μl of 1:2 (v/v) CHCl_3 : MeOH were added and
650 vortexed. The samples were agitated vigorously for a further 10-15min. Samples were
651 made biphasic by adding of 125 μl of CHCl_3 followed by vortexing. Then, 125 μl of water
652 was added and the samples were vortexed again. After centrifugation at 1000 g at room
653 temperature for 5 min, the lower phase (organic) was transferred to a new glass vial and

654 the upper phase was re-extracted with fresh CHCl₃. The resultant lower phase lipid
655 extract was dried under nitrogen and stored at 4°C until analysis.

656 Lipid extracts were analysed on a Thermo Exactive Orbitrap mass spectrometer and a
657 ABSciex 4000 QTrap ES-MS-MS. Both positive and negative scans were conducted over
658 various ranges spanning 150-1500 m/z. Lipid identities were confirmed by accurate mass
659 and collision induced fragmentation.

660 GPI quantification

661 4.1x10⁸ (DMSO) and 1.9x10⁸ (rapamycin) parasites per replicate were replated and
662 incubated for 1 hour to allow recovery. Then, cultures were centrifuged at 500 x g for 7
663 min at 4°C and washed twice with cold PBS. Pellets were stored at -80°C until analysis.

664 The method utilises the quantification of all GPIs molecules (protein-free GPIs and GPI-
665 anchored proteins) in a cell by conversion of their GlcN to [1-2H]-2,5-anhydromannitol
666 (AHM) as described elsewhere [67]. Briefly, the internal standard of scyllo-inositol (10
667 ml of 10 mM) was added to each replicate sample of the freeze-dried cells. Various
668 controls with various GlcN and myo-inositol concentrations were prepared and
669 processed in parallel. Samples were subjected to alkaline hydrolysis, by resuspending in
670 200 µl concentrated aqueous NH₃/40% propan-1-ol (1:1, v/v) and incubated at room
671 temperature for >16 h. Samples were subsequently dried under a stream of nitrogen.

672 Dried samples were dissolved in 30 µl 300 mM sodium acetate buffer. To each sample,
673 20 µl freshly prepared 1 M sodium nitrite is added and incubated at room temperature
674 for 3 h. Following this nitrous acid deamination, the samples had to be reduced by the
675 sequential addition of 10 µl of 400 mM boric acid followed by ~75 µl 2 M sodium
676 hydroxide and 40 µl freshly prepared 1 M sodium borohydride and left at to reduce at
677 4°C for 16 h. The samples were desalted using AG50WX12 resin and dried three times
678 with 100 µl 2% acetic acid in methanol to remove the boric acid and once with 200 µl
679 methanol.

680 Samples were subjected to methanolysis by adding 50 µl of dry methanol containing 0.5
681 M HCl, transferring to, and flame sealing in capillaries under vacuum and incubating
682 them at 95°C for 4 h. Upon opening, pyridine (10 µl) with acetic anhydride (10 µl) were
683 added and left for 30 min at RT, to re-N-acetylate any GlcN. Samples were dried from

684 dry methanol (20 μ l) twice prior to derivatization with 10 μ l of dry pyridine and with 10
685 μ l of N-methyl-N-trimethylsilyl-trifluoroacetamide. After 10 minutes, 2 μ l of the mixture
686 was injected onto Agilent GC-MS (MS detector-5973N, GC-6890) with a SE-54column (30
687 m \times 0.25 mm) at 80°C for 2 min followed by a gradient up to 140°C at 30°C/min and a
688 second gradient up to 265°C at 5°C/min and held at 265°C for a further 10 min. Single
689 Ion monitoring of m/z 272 was selected to detect AHM and m/z 318 to detect both
690 scyllo- and myo-inositol. Peak areas of the standard curves allows the molar relative
691 response factor to be calculated, allowing quantification of AHM and hence the number
692 of GPI containing molecules per cell.

693 Indirect Immunofluorescence assays

694 Parasites were synchronized to ring-stage by sorbitol and treated for one hour with
695 10nM rapamycin or DMSO (used as a vehicle control) to induce *gna1* excision. The
696 cultures were incubated until next cycle (cycle 1) when a new sorbitol synchronization
697 was performed. Thirty-eight hours after the second synchronization, 10 μ M E64 was
698 added to the media and incubated during 6 hours. Schizonts were enriched by Percoll
699 70%, resuspended in 1 ml of compete media and washed three times with PBS. In
700 parallel, an eight-well chamber removable (80841, Ibidi GmbH, Germany) was incubated
701 with 80 μ l Concanavalin A (5mg/ml in water, Sigma) per well for 20 min at 37 °C. The
702 Concanavalin A was then removed and the slides were left to dry. Then, 150 μ l of
703 schizont suspension were seeded in the pre-treated slides and allowed to settle for 10
704 min at 37 °C. Unbound RBCs were washed away applying 200 μ l PBS per well until a faint
705 RBC monolayer remained and preparations were fixed by adding 200 μ l cold methanol
706 (-20 °C) and incubated at -20 °C for 7 min. After washing once with PBS, preparations
707 were blocked by adding 150 μ L of 2% BSA in PBS, and incubating them for 30 min at
708 room temperature at 400 rpm, orbital agitation. Preparations were then washed 3 times
709 with PBS and 100 μ L of mouse anti-MSP1 8A12 ([68], courtesy of Michael Blackman)
710 diluted 1:50 in 2% BSA/PBS was added and incubated overnight at 4°C with at 400 rpm.
711 The following day, cells were washed 3 times with PBS to remove the excess of primary
712 antibody. The supernatant was removed and donkey anti-Mouse IgG (H+L) Alexa Fluor™
713 488 (#A21202, Thermo Fisher Scientific, Waltham, Massachusetts, EUA), and Hoechst
714 33342 (Thermo Fisher Scientific, Waltham, Massachusetts, EUA), diluted 1:100 and

715 1:5000 in 2% BSA/PBS, respectively, was added to the cultures and incubated for 1 hour
716 at room temperature at 400 rpm protected from light. Preparations were then washed
717 3 times with PBS to remove excess secondary antibody and the slides were mounted in
718 Vectashield (#H-1000, Vector Laboratories). Images were obtained using a LSM980
719 Airyscan 2 microscope (Zeiss) and processed with ImageJ (National Institutes of Health,
720 USA).

721 Egress assays

722 The II3 *gna1-loxP* line was tightly synchronized (5 hours) and treated with 10 nM
723 rapamycin or DMSO (control) for one hour. The cultures were incubated up to 56 hours
724 post-Percoll when a new sorbitol synchronization was performed at the beginning of
725 cycle 1. Parasitemia was measured at 77, 88, 91, 93, 95, 97 and 99 hours post-Percoll by
726 flow cytometry on a BD FACSCalibur. The graph represents the percentage of schizonts
727 at each time point relative to the percentage at the peak —observed 91 hours post-
728 Percoll— as well as the absolute number of rings at each timepoint.

729 Merozoite purification

730 Merozoite purification was conducted as previously described [33]. Briefly, the II3 *gna1-*
731 *loxP* line was sorbitol synchronized and treated with 10 nM rapamycin or DMSO
732 (control) for one hour to induce *gna1* disruption. Cultures were incubated for 56 hours
733 when 200 nM of ML10 was added to the media. After 17 hours a Percoll 70%
734 synchronization was performed and the suspension of segmented schizonts was washed
735 with 10 ml of washing media and centrifuged at 2200 x g for 5 min at room temperature.
736 The supernatant was discarded, the pellet resuspended in 10 ml of fresh washing media
737 and passed through a 1.2 µm filter pre-blocked with 1% BSA/PBS for 20 min. The
738 released merozoites were collected in vials previously blocked with 1% BSA/PBS and the
739 filter was washed with 5 ml of washing media, combining the volume with the previous
740 merozoite suspension. Merozoite suspensions were centrifuged at 2200 x g for 15 min
741 at room temperature, and the resultant pellets were resuspended in 100 µl of complete
742 RPMI. Merozoite suspensions were measured by flow cytometry on a BD FACSCalibur
743 by adding 20 µl of Countbright™ absolute counting beads (LifeTechnologies #C36950)
744 and 2 µL of merozoite suspension in 900 µl of PBS, and staining merozoites with 0.5 µl

745 of Syto-11 green fluorescent nucleic acid stain for 1 min. The number of merozoites was
746 calculated by the number of Syto-11 positive population relative to the counting beads,
747 fixing the number of beads at 1000 events.

748 Flow cytometry-based invasion assay

749 To study invasion, merozoites were purified following the protocol described before.
750 Cultures of 30 ml containing approx. 4% schizonts treated with DMSO or rapamycin were
751 passed through a pre-blocked 1.2 μ m filter. Isolated merozoites were resuspended in
752 370 μ l of complete RPMI and 50 μ l of the suspension was placed per triplicate with fresh
753 RBCs in a final volume of 100 μ l and 1% hematocrit. The vials were incubated at 37 °C in
754 a shaker for 20 min and transferred to different wells containing 100 μ l RPMI, bringing
755 the hematocrit to 0.5%. The 96 well plate was incubated at 37 °C for 24 hours.
756 Parasitemias were measured on a BD FACSCalibur by mixing 900 μ l PBS with 20 μ l culture
757 and 0.75 μ l SYTO-11. The percentage of infected RBCs related to the initial percentage
758 of pre-filtered schizonts was represented in the graph.

759 Transmission electron microscopy

760 The II3 *gna1-loxP* line was synchronized to ring-stage by sorbitol and treated for one
761 hour with 10 nM rapamycin or DMSO (used as a vehicle control) to induce the *gna1*
762 excision. The cultures were incubated until the start of the next cycle, at which point a
763 new sorbitol synchronization was performed. 26 hours after sorbitol synchronization,
764 the cultures were split into two groups. Two cultures were treated with 10 μ M E64 for
765 15 hours, while the other two were left untreated. Segmented schizonts were enriched
766 by Percoll 70%. The resultant pellet of iRBC was resuspended in 1 ml of washing media,
767 centrifuged at 400 $\times g$ for 5 min and the supernatant discarded. Segmented schizonts
768 were fixed by resuspending the pellet in 500 μ l of cold fixation buffer (2%
769 paraformaldehyde, 2.5% glutaraldehyde in 0.1 M phosphate buffer) and incubated at 4
770 °C during 30 min in a shaker. After centrifugation at 600 $\times g$ for 5 min, the samples were
771 washed at 4 °C for 10 min in fixation buffer, and washed four times for 10 min with
772 phosphate buffer 0.1 M pH 7.4 at 4 °C. Then, a solution of 1% osmium tetroxide, 0.8%
773 potassium ferrocyanide and 0.1 M PB pH 7.4 was added to the sample and incubated
774 for 1.5 hours at 4 °C in the dark and washed 4 times for 10 min with double-distilled

775 water at 4 °C to eliminate excess of osmium. After dehydrating the sample with
776 increasing concentrations of acetone, infiltration into the Spurr resin was performed
777 followed by polymerization. Ultrathin 60 nm sections of the resin stub were cut using a
778 Leica UC7 ultramicrotome, stained with Aqueous uranyl acetate and Reynolds lead
779 citrate before observation on a J1010 Transmission electron microscope (Jeol) coupled
780 with an Orius CCD camera (Gatan). Sections were imaged at 80kV. TEM was performed
781 on TEM-SEM Electron Microscopy Unit from Scientific and Technological Centers
782 (CCiTUB), Universitat de Barcelona.

783 **Statistical analysis**

784 All graphs in this study were generated using GraphPad Prism version 8.0.2. Statistical
785 analyses were conducted using an unpaired Student's *t*-test to compare the means
786 between two independent groups, with significance defined as a *p*-value less than 0.05.

787

788 **Acknowledgments**

789 We are very grateful to Michael Blackman for sharing the anti-MSP1 antibody, Viola
790 Introini and Matt Govendir, from Maria Bernabeu's research group for their assistance
791 with confocal imaging, Alfred Cortés and their team for technical advice and reagents
792 and the TEM-SEM Electron Microscopy Unit from Scientific and Technological Centers
793 (CCiTUB), Universitat de Barcelona, and their staff for their support and advice on TEM
794 technique. The authors would like to acknowledge the Huck Institutes' Metabolomics
795 Core Facility (RRID:SCR_023864) for maintenance of the Thermo Exactive Plus.

796

797 **Competing interests**

798 The authors have declared that no competing interests exist.

799

800

801 **References**

- 802 1. World Health Organization. World Malaria Report. Geneva; 2023 Nov. Available:
803 <https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023>
- 805 2. Wassmer SC, Grau GER. Severe malaria: what's new on the pathogenesis front? *Int J Parasitol.* 2017;47: 145–152. doi:10.1016/J.IJPARA.2016.08.002
- 807 3. Cowman AF, Healer J, Marapana D, Marsh K. *Malaria: Biology and Disease. Cell.* 2016;167: 610–624. doi:10.1016/j.cell.2016.07.055
- 809 4. Tadesse FG, Meerstein-Kessel L, Gonçalves BP, Drakeley C, Ranford-Cartwright L, Bousema T. Gametocyte Sex Ratio: The Key to Understanding *Plasmodium falciparum* Transmission? *Trends Parasitol.* 2019;35: 226–238. doi:10.1016/J.PT.2018.12.001
- 812 5. Chi J, Cova M, De Las Rivas M, Medina A, Junqueira Borges R, Leivar P, et al. *Plasmodium falciparum* apicomplexan-specific glucosamine-6-phosphate N-acetyltransferase is key for amino sugar metabolism and asexual blood stage development. *mBio.* 2020;11: 1–15. doi:10.1128/MBIO.02045-20
- 816 6. Cova M, López-Gutiérrez B, Artigas-Jerónimo S, González-Díaz A, Bandini G, Maere S, et al. The Apicomplexa-specific glucosamine-6-phosphate N-acetyltransferase gene family encodes a key enzyme for glycoconjugate synthesis with potential as therapeutic target. *Sci Rep.* 2018;8: 4005. doi:10.1038/s41598-018-22441-3
- 820 7. Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, et al. Genome-Scale Identification of Essential Metabolic Processes for Targeting the *Plasmodium* Liver Stage. *Cell.* 2019;179: 1112–1128. doi:10.1016/j.cell.2019.10.030
- 823 8. Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, et al. Biosynthesis of GDP-fucose and Other Sugar Nucleotides in the Blood Stages of *Plasmodium falciparum*. *Journal of Biological Chemistry.* 2013;288: 16506–16517. doi:10.1074/jbc.M112.439828
- 827 9. Cova M, Rodrigues JA, Smith TK, Izquierdo L. Sugar activation and glycosylation in *Plasmodium*. *Malar J.* 2015;14: 427. doi:10.1186/s12936-015-0949-z
- 829 10. Izquierdo L. The glycobiology of *plasmodium falciparum*: New approaches and recent advances. *Biotechnol Adv.* 2023;66: 108178. doi:10.1016/J.BIOTECHADV.2023.108178
- 831 11. Kupferschmid M, Aquino-Gil MO, Shams-Eldin H, Schmidt J, Yamakawa N, Krzewinski F, et al. Identification of O-GlcNAcylated proteins in *Plasmodium falciparum*. *Malar J.* 2017;16: 1–11. doi:10.1186/S12936-017-2131-2
- 834 12. Burda P, Aebi M. The dolichol pathway of N-linked glycosylation. *Biochimica et Biophysica Acta (BBA) - General Subjects.* 1999;1426: 239–257. doi:10.1016/S0304-4165(98)00127-5

837 13. Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, et al. The diversity of
838 dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of
839 sets of glycosyltransferases. *Proc Natl Acad Sci U S A.* 2005;102: 1548–1553.
840 doi:10.1073/pnas.0409460102

841 14. Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings C V, et al. Suggestive
842 evidence for Darwinian Selection against asparagine-linked glycans of *Plasmodium*
843 *falciparum* and *Toxoplasma gondii*. *Eukaryot Cell.* 2010;9: 228–41.
844 doi:10.1128/EC.00197-09

845 15. Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al. Glycosylphosphatidylinositol anchors of *Plasmodium falciparum*: molecular
846 characterization and naturally elicited antibody response that may provide immunity to
847 malaria pathogenesis. *J Exp Med.* 2000/12/06. 2000;192: 1563–1576.
848 doi:10.1084/jem.192.11.1563

850 16. Ferguson MAJ, Brimacombe JS, Brown JR, Crossman A, Dix A, Field RA, et al. The GPI
851 biosynthetic pathway as a therapeutic target for African sleeping sickness. *Biochim
852 Biophys Acta.* 1999;1455: 327–340. doi:10.1016/S0925-4439(99)00058-7

853 17. Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. *Open Biol.*
854 2020;10. doi:10.1098/RSOB.190290

855 18. Ferguson MAJ. The structure, biosynthesis and functions of glycosylphosphatidylinositol
856 anchors, and the contributions of trypanosome research. *J Cell Sci.* 1999;112: 2799–
857 2809. doi:10.1242/jcs.112.17.2799

858 19. Komath S, Fujita M, Hart G, Ferguson M, Kinoshita T. Glycosylphosphatidylinositol
859 Anchors. Fourth Edition. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M,
860 et al., editors. *Essentials of Glycobiology*. Fourth Edition. Cold Spring Harbor (NY): Cold
861 Spring Harbor Laboratory Press; 2022. doi:10.1101/GLYCOBIOLOGY.4E.12

862 20. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al. Identification and
863 stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the
864 human malaria parasite *Plasmodium falciparum*. *Mol Cell Proteomics.* 2006;5: 1286–
865 1299. doi:10.1074/mcp.M600035-MCP200

866 21. Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG, et al. Structure
867 and function of a malaria transmission blocking vaccine targeting Pfs230 and Pfs230-
868 Pfs48/45 proteins. *Communications Biology* 2020 3:1. 2020;3: 1–12.
869 doi:10.1038/s42003-020-01123-9

870 22. Nagar R, Garcia Castillo SS, Pinzon-Ortiz M, Patray S, Coppi A, Kanatani S, et al. The
871 major surface protein of malaria sporozoites is GPI-anchored to the plasma membrane.
872 *Journal of Biological Chemistry.* 2024; 107557. doi:10.1016/J.JBC.2024.107557

873 23. Arredondo SA, Swearingen KE, Martinson T, Steel R, Dankwa DA, Harupa A, et al. The
874 Micronemal *Plasmodium* Proteins P36 and P52 Act in Concert to Establish the

875 Replication-Permissive Compartment Within Infected Hepatocytes. *Front Cell Infect*
876 *Microbiol.* 2018;8: 413. doi:10.3389/FCIMB.2018.00413/BIBTEX

877 24. Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the
878 major carbohydrate modification in proteins of intraerythrocytic stage *Plasmodium*
879 *falciparum*. *J Biol Chem.* 1997;272: 6428–6439. doi:10.1074/jbc.272.10.6428

880 25. Ilgoutz SC, Zawadzki JL, Ralton JE, McConville MJ. Evidence that free GPI glycolipids are
881 essential for growth of *Leishmania mexicana*. *EMBO J.* 1999;18: 2746–2755.
882 doi:10.1093/EMBOJ/18.10.2746

883 26. Niehus S, Smith TK, Azzouz N, Campos MA, Dubremetz JF, Gazzinelli RT, et al. Virulent
884 and Avirulent Strains of *Toxoplasma gondii* Which Differ in Their
885 Glycosylphosphatidylinositol Content Induce Similar Biological Functions in
886 Macrophages. *PLoS One.* 2014;9: e85386. doi:10.1371/journal.pone.0085386

887 27. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, et al. Induction of
888 proinflammatory responses in macrophages by the glycosylphosphatidylinositols of
889 *Plasmodium falciparum*: cell signaling receptors, glycosylphosphatidylinositol (GPI)
890 structural requirement, and regulation of GPI activity. *J Biol Chem.* 2005;280: 8606–16.
891 doi:10.1074/jbc.M413541200

892 28. Schofield L, Hewitt MC, Evans K, Siomos M-A, Seeberger PH. Synthetic GPI as a
893 candidate anti-toxic vaccine in a model of malaria. *Nature.* 2002;418: 785–9.
894 doi:10.1038/nature00937

895 29. Delorenzi M, Sexton A, Shams-Eldin H, Schwarz RT, Speed T, Schofield L. Genes for
896 glycosylphosphatidylinositol toxin biosynthesis in *Plasmodium falciparum*. *Infect*
897 *Immun.* 2002;70: 4510–4522. doi:10.1128/IAI.70.8.4510-4522.2002

898 30. Sanders PR, Kats LM, Drew DR, O'Donnell RA, O'Neill M, Maier AG, et al. A set of
899 glycosylphosphatidyl inositol-anchored membrane proteins of *Plasmodium falciparum*
900 is refractory to genetic deletion. *Infect Immun.* 2006;74: 4330–8.
901 doi:10.1128/IAI.00054-06

902 31. Fenollar À, Ros-Lucas A, Pía Alberione M, Martínez-Peinado N, Ramírez M, Ángel
903 Rosales-Motos M, et al. Compounds targeting GPI biosynthesis or N-glycosylation are
904 active against *Plasmodium falciparum*. *Comput Struct Biotechnol J.* 2022;20: 850–863.
905 doi:10.1016/J.CSBJ.2022.01.029

906 32. Baldwin MR, Li X, Hanada T, Liu SC, Chishti AH. Merozoite surface protein 1 recognition
907 of host glycophorin A mediates malaria parasite invasion of red blood cells. *Blood.*
908 2015;125: 2704. doi:10.1182/BLOOD-2014-11-611707

909 33. Boyle MJ, Wilson DW, Richards JS, Riglar DT, Tetteh KKA, Conway DJ, et al. Isolation of
910 viable *Plasmodium falciparum* merozoites to define erythrocyte invasion events and
911 advance vaccine and drug development. *Proc Natl Acad Sci U S A.* 2010;107: 14378–83.
912 doi:10.1073/pnas.1009198107

913 34. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, et al. Processing
914 of *Plasmodium falciparum* Merozoite Surface Protein MSP1 Activates a Spectrin-Binding
915 Function Enabling Parasite Egress from RBCs. *Cell Host Microbe*. 2015;18: 433–444.
916 doi:10.1016/J.CHOM.2015.09.007

917 35. Voß Y, Klaus S, Guizetti J, Ganter M. *Plasmodium schizogony*, a chronology of the
918 parasite's cell cycle in the blood stage. *PLoS Pathog*. 2023;19: e1011157.
919 doi:10.1371/JOURNAL.PPAT.1011157

920 36. Hale VL, Watermeyer JM, Hackett F, Vizcay-Barrena G, Van Ooij C, Thomas JA, et al.
921 Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte
922 cytoskeleton collapse in *Plasmodium falciparum* egress. *Proc Natl Acad Sci U S A*.
923 2017;114: 3439–3444. doi: 10.1073/pnas.1619441114

924 37. Glushakova S, Beck JR, Garten M, Busse BL, Nasamu AS, Tenkova-Heuser T, et al.
925 Rounding precedes rupture and breakdown of vacuolar membranes minutes before
926 malaria parasite egress from erythrocytes. *Cell Microbiol*. 2018;20.
927 doi:10.1111/CMI.12868

928 38. Glushakova S, Mazar J, Hohmann-mariott MF, Hama E, Zimmerberg J. Irreversible
929 effect of cysteine protease inhibitors on the release of malaria parasites from infected
930 erythrocytes. *Cell Microbiol*. 2009;11: 95–105. doi:10.1111/J.1462-5822.2008.01242.X

931 39. Tripathi J, Stoklasa M, Nayak S, En Low K, Qian Hui Lee E, Duong Tien QH, et al. The
932 artemisinin-induced dormant stages of *Plasmodium falciparum* exhibit hallmarks of
933 cellular quiescence/senescence and drug resilience. *Nature Communications* 2024 15:1.
934 2024;15: 1–17. doi:10.1038/S41467-024-51846-0

935 40. Sinha S, Radotra BD, Medhi B, Batovska DI, Markova N, Sehgal R. Ultrastructural
936 alterations in *Plasmodium falciparum* induced by chalcone derivatives. *BMC Res Notes*.
937 2020;13: 1–6. doi:10.1186/S13104-020-05132-Z/FIGURES/2

938 41. Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, et al. Delayed
939 death in the malaria parasite *Plasmodium falciparum* is caused by disruption of
940 prenylation-dependent intracellular trafficking. *PLoS Biol*. 2019;17: e3000376.
941 doi:10.1371/JOURNAL.PBIO.3000376

942 42. Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij C. The
943 *Plasmodium falciparum* rhoptry protein RhopH3 plays essential roles in host cell
944 invasion and nutrient uptake. *eLife*. 2017;6: 1–23. doi:10.7554/eLife.23239

945 43. Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, et al. Genetic
946 validation of PfFKBP35 as an antimalarial drug target. *eLife*. 2023;12.
947 doi:10.7554/ELIFE.86975

948 44. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. *Nature*
949 *Reviews Molecular Cell Biology* 2017 18:7. 2017;18: 452–465.
950 doi:10.1038/NRM.2017.22

951 45. Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, et al.
952 CRISPR/Cas9 and glycomics tools for *Toxoplasma* glycobiology. *Journal of Biological*
953 *Chemistry*. 2019;294: 1104–1125. doi:10.1074/jbc.RA118.006072

954 46. Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J, Routier FH. Protein O-
955 and C-Glycosylation pathways in *Toxoplasma gondii* and *Plasmodium falciparum*.
956 *Parasitology*. 2019;146: 1755–1766. doi:10.1017/S0031182019000040

957 47. Yadav U, Khan MA. Targeting the GPI biosynthetic pathway. *Pathog Glob Health*.
958 2018;112: 115–122. doi:10.1080/20477724.2018.1442764

959 48. Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-
960 derived isoprenoids are essential for biosynthesis of GPI protein anchors, and
961 consequently for egress and invasion in *Plasmodium falciparum*. *PLoS Pathog*. 2024;20:
962 e1012484. doi:10.1371/JOURNAL.PPAT.1012484

963 49. Frasse PM, Miller JJ, Polino AJ, Soleimani E, Zhu JS, Jakeman DL, et al. Enzymatic and
964 structural characterization of HAD5, an essential phosphomannomutase of malaria-
965 causing parasites. *Journal of Biological Chemistry*. 2022;298. doi:
966 10.1016/j.jbc.2021.101550

967 50. Alberione MP, González-Ruiz V, von Rohr O, Rudaz S, Soldati-Favre D, Izquierdo L, et al.
968 N-acetylglucosamine supplementation fails to bypass the critical acetylation of
969 glucosamine-6-phosphate required for *Toxoplasma gondii* replication and invasion.
970 *PLoS Pathog*. 2024;20: e1011979. doi:10.1371/JOURNAL.PPAT.1011979

971 51. Rudlaff RM, Kraemer S, Marshman J, Dvorin JD. Three-dimensional ultrastructure of
972 *Plasmodium falciparum* throughout cytokinesis. *PLoS Pathog*. 2020;16: e1008587.
973 doi:10.1371/JOURNAL.PPAT.1008587

974 52. Wang Q, Fujioka H, Nussenzweig V. Exit of *Plasmodium* sporozoites from oocysts is an
975 active process that involves the circumsporozoite protein. *PLoS Pathog*. 2005/10/05.
976 2005;1: e9. doi:10.1371/journal.ppat.0010009

977 53. Wang L, Mohandas N, Thomas A, Coppel RL. Detection of detergent-resistant
978 membranes in asexual blood-stage parasites of *Plasmodium falciparum*. *Mol Biochem*
979 *Parasitol*. 2003;130: 149–153. doi:10.1016/S0166-6851(03)00165-8

980 54. Dvorin JD, Goldberg DE. Plasmodium Egress Across the Parasite Life Cycle. *Annu Rev*
981 *Microbiol*. 2022;76: 67–90. doi:10.1146/annurev-micro-041320-020659

982 55. Thomas JA, Tan MSY, Bisson C, Borg A, Umrekar TR, Hackett F, et al. A protease cascade
983 regulates release of the human malaria parasite *Plasmodium falciparum* from host red
984 blood cells. *Nature Microbiology* 2018 3:4. 2018;3: 447–455. doi:10.1038/S41564-018-
985 0111-0

986 56. Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, et al. Malaria
987 Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory

1025 68. Guevara Patiño JA, Holder AA, McBride JS, Blackman MJ. Antibodies that inhibit malaria
1026 merozoite surface protein-1 processing and erythrocyte invasion are blocked by
1027 naturally acquired human antibodies. *J Exp Med.* 1997;186: 1689–1699.
1028 doi:10.1084/JEM.186.10.1689

1029