

GABA, Glutamate dynamics and BOLD observed during cognitive processing in psychosis patients with hallucinatory traits

Alexander R. Craven^{a,b,*},

Gerard Dwyer^a,

Lars Ersland^b,

Katarzyna Kazimierczak^c,

Lin Lilleskare^d,

Ralph Noeske^e,

Lydia Brunvoll Sandøy^{a,f}

Erik Johnsen^{d,g}

Kenneth Hugdahl^{a,d,h}

^a Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway

^b Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway

^c Institute of Computer Science, Czech Academy of Sciences, Prague, Czechia

^d Division of Psychiatry, Haukeland University Hospital, Bergen, Norway

^e GE HealthCare, Berlin, Germany

^f Department of Physics and Technology, University of Bergen, Bergen, Norway

^g Department of Clinical Medicine, University of Bergen, Bergen, Norway

^h Department of Radiology, Haukeland University Hospital, Bergen, Norway

* Corresponding author:

Alexander R. Craven (M.Sc.),

Department of Biological and Medical Psychology, University of Bergen,

Jonas Lies vei 91, 5009 Bergen, Norway

Email: alex.craven@uib.no

Word count: 4134 (main text); 200 (abstract)

1
2 **Abstract:**
3

4 The perception of a voice in the absence of an external auditory source – an auditory
5 verbal hallucination – is a characteristic symptom of schizophrenia. To better understand this
6 phenomenon requires integration of findings across behavioural, functional, and
7 neurochemical levels. We address this with a locally adapted MEGA-PRESS sequence
8 incorporating interleaved unsuppressed water acquisitions, allowing concurrent assessment of
9 behaviour, blood-oxygenation-level-dependent (BOLD) functional changes,
10 Glutamate+Glutamine (Glx), and GABA, synchronised with a cognitive (flanker) task. We
11 acquired data from the anterior cingulate cortex (ACC) of 51 patients with psychosis
12 (predominantly schizophrenia spectrum disorder) and hallucinations, matched to healthy
13 controls. Consistent with the notion of an excitatory/inhibitory imbalance, we hypothesized
14 differential effects for Glx and GABA between groups, and aberrant dynamics in response to
15 task. Results showed impaired task performance, lower baseline Glx and positive association
16 between Glx and BOLD in patients, contrasting a negative correlation in healthy controls.
17 Task-related increases in Glx were observed in both groups, with no significant difference
18 between groups. No significant effects were observed for GABA. These findings suggest that
19 a putative excitatory/inhibitory imbalance affecting inhibitory control in the ACC is primarily
20 observed as tonic, baseline glutamate differences, rather than GABAergic effects or aberrant
21 dynamics in relation to a task.

22 **Keywords:**
23

24 GABA; Glutamate; MEGA-PRESS; functional spectroscopy; hallucinations;
25 psychosis
26
27

28 **Highlights:**

29

- 30 • In-vivo, GABA-edited functional ^1H -MRS data were collected from 51
31 patients with hallucinations and a similar number of matched healthy controls
- 32 • Reduced Glutamate+Glutamine (Glx) levels were observed in the patient
33 group.
- 34 • BOLD association to baseline Glutamate+Glutamine (Glx) differed between
35 patients and controls
- 36 • Robust task-related increases in measured Glx were observed in the Anterior
37 Cingulate Cortex (ACC)
- 38 • Task-related changes in measured Glx did not differ between patients and
39 controls

40

41

42 **List of Abbreviations**

43	(f)MRI	<i>(functional) Magnetic Resonance Imaging</i>
44	(f)MRS	<i>(functional) Magnetic Resonance Spectroscopy</i>
45	ACC	<i>Anterior Cingulate Cortex</i>
46	AVH	<i>Auditory Verbal Hallucination</i>
47	BAVQ-R	<i>revised Beliefs About Voices Questionnaire</i>
48	BOLD	<i>blood-oxygenation level dependent</i>
49	CI _{95%}	<i>95% confidence interval</i>
50	DDD	<i>Defined Daily Dose</i>
51	DIFF	<i>GABA-edited difference spectrum</i>
52	EPI	<i>echo-planar imaging</i>
53	fGM	<i>voxel grey matter fraction</i>
54	FWHM	<i>full width at half maximum (measuring spectral linewidth)</i>
55	GABA	<i>γ-aminobutyric acid</i>
56	GABA+	<i>GABA with contribution from underlying co-edited signals</i>
57	Glu	<i>glutamate</i>
58	Glx	<i>Glutamate and Glutamine combined</i>
59	HRF	<i>haemodynamic response function</i>
60	ISI	<i>inter-stimulus interval</i>
61	MAD	<i>Median Absolute Deviation</i>
62	MVQ	<i>MiniVoiceQuestionnaire</i>
63	NMDA	<i>N-methyl-D-aspartic acid</i>
64	NAA	<i>N-acetylaspartate</i>
65	P3	<i>PANSS positive subscale item 3, hallucinatory behaviour</i>
66	PANSS	<i>Positive and Negative Syndrome Scale</i>
67	RA	<i>response accuracy</i>
68	RT	<i>reaction time</i>
69	RT _{slowing}	<i>reaction time slowing</i>
70	SNR	<i>signal-to-noise ratio</i>
71	SSD	<i>schizophrenia spectrum disorder</i>
72	T _{s,A}	<i>Time from Stimulus to Acquisition</i>
73	VOI _(location)	<i>volume of interest (in specified location)</i>
74	WREF	<i>Unsuppressed water-reference spectrum</i>

75

76

77

78

79 1 Introduction

80

81 The perception of a voice in the absence of an external auditory source – an auditory
82 verbal hallucination (AVH) – is a characteristic symptom of schizophrenia, manifesting at
83 different “levels of explanation” [1,2]. These range from broad, high-level, macro-scale aspects
84 of cultural and social context, through to clinical symptoms and diagnoses, cognitive factors,
85 and increasingly intricate, mechanistic aspects of integrated neural systems and networks,
86 individual synapses and neurotransmitters forming a part of those systems, and the molecular
87 processes occurring therein. While observations at all levels have been informative in guiding
88 targets for treatment and for further research, these when considered in isolation have not
89 yielded a comprehensive explanation of the complex, multi-faceted phenomenon. Indeed,
90 without effective vertical integration to harmonise findings across levels there is a risk that the
91 theories and models under investigation become dissociated from the very phenomena which
92 they attempt to explain^[1].

93

94 Amongst current theories aiming to explain the phenomenology of patients “hearing
95 voices” is a putative breakdown of the dynamic interplay between bottom-up (excitatory,
96 perceptual) and top-down (inhibitory control) cognitive processes, perhaps reflected in the
97 dynamic interaction of excitatory and inhibitory neurotransmitters^[3]: glutamate (Glu) and γ -
98 aminobutyric acid (GABA) respectively. While there are published imaging and static
99 spectroscopy findings to support this model^[2,4], there is currently limited data to bridge
100 clinical and imaging findings with neurotransmitter dynamics at the receptor level, due in part
101 to the challenges associated with reliably measuring these neurotransmitters in a dynamic
102 (functional) setting.

103 Acquisition and reliable analysis of functional Magnetic Resonance Spectroscopy
104 (fMRS) data is challenging for two reasons: firstly, the metabolite signals of interest are

104 several orders of magnitude weaker than the water signal which forms the basis of blood-
105 oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI)
106 measurement, leading to a substantial trade-off against spatial and temporal resolution.
107 Furthermore, BOLD-related changes in signal relaxation and local shim quality have a direct
108 impact on spectral line-shape which may affect the quantification of certain metabolites.
109 While this represents a potential confound for metabolite quantification^[5], it also provides an
110 opportunity for simultaneously assessing task-induced BOLD dynamics from unsuppressed
111 water data obtained during the MRS acquisition^[6,7]. Extending the approach of Apšvalka et al
112 ^[8] to a GABA-editing (MEGA-PRESS) context^[9,10], we previously demonstrated a technique
113 for simultaneously obtaining time-resolved, GABA-edited, MRS data and an indication of
114 local BOLD response^[11], incorporating unsuppressed water reference signals at a regular
115 interval within the edited acquisition scheme. The GABA-editing technique yields estimates
116 for GABA with some contribution from underlying co-edited signals (GABA+), and estimates
117 for Glutamate and Glutamine combined (Glx). The present study applies the same acquisition
118 and analysis techniques (and a matched subset of the same healthy controls) in a case-control
119 context with psychosis patients, predominantly with a diagnosed schizophrenia spectrum
120 disorder (SSD).

121 Consistent with the notion of an excitatory/inhibitory imbalance, we hypothesize
122 differential effects for Glx and GABA between healthy controls and patients, and aberrant
123 dynamics in one or both in relation to a cognitive task. Furthermore, based on the findings of
124 Falkenberg et al ^[12], we anticipate positive correlation between BOLD-fMRI activation and
125 baseline Glx in the patient group, with decreased Glx levels associated with impaired
126 executive control functioning in that group. We further anticipate a negative correlation
127 between BOLD-fMRI activation and baseline Glx in the healthy controls.

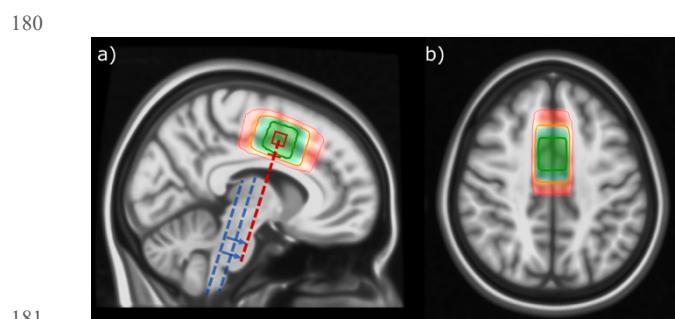
128 **2 Methods**

129 **2.1 In-vivo data collection**

130 **2.1.1 Subject recruitment and demographics**

131 The study included 54 psychiatric patients experiencing mild to severe AVH. Patients
132 were recruited through health-care personnel in the Vestland County Health Care System
133 (Helse Vest regional helseforetak). The recruitment was primarily from the Sandviken
134 Psychiatric Clinic, Haukeland University Hospital in Bergen, Norway, with a few patients
135 recruited from other counties. Patients had different psychiatric diagnoses, predominantly on
136 the schizophrenia spectrum (see Supplementary Table 1 for ICD-10 diagnoses^[13,14]). Prior to
137 inclusion (and no more than 7 days before MR scanning), patients underwent a Positive and
138 Negative Syndrome Scale (PANSS)^[15] interview. Only patients exhibiting hallucinatory
139 behaviour according to a PANSS positive subscale item 3 (P3) score of 3 or higher were
140 recruited to the study. Subsequently, the project nurse administered the revised Beliefs About
141 Voices Questionnaire (BAVQ-R)^[16] and the MiniVoiceQuestionnaire (MVQ)^[17]. Of the
142 initially scanned participants, three patients were excluded due to technical issues, giving a
143 total of 51 patients (19 female, 20 male, 2 transgender assigned female at birth), mean age
144 31.8 years (SD 9.3) with a mean PANSS P3 score of 4.6 (SD 0.8). Most patients used second-
145 generation antipsychotics, with prescribed maximum dosage around 1.36 (SD 1.47) times the
146 Defined Daily Dose (DDD)^[18]; further detail in Supplementary Figure 1.

147 An equal number of healthy controls were included, matched on age (± 4 years): mean
148 age 31.5 years (SD 9.1); two transgender patients were matched according to the sex they
149 were assigned at birth. Healthy controls were drawn from a larger cohort which has been
150 analysed previously to demonstrate efficacy of the applied methods^[11].


151 All potential subjects were screened for implanted medical devices and history of
152 major head injuries; controls were additionally screened for substance abuse, and for
153 neurological or medical illnesses. All subjects provided written informed consent prior to
154 participation and were free to withdraw at any time without consequence. Participants
155 received compensation in the form of cash or a gift card. The study was approved by the
156 Regional Committee for Medical Research Ethics in Western Norway (REK Vest #
157 2016/800).

158 2.1.2 MR scanning protocol

159 MR data were acquired on a 3.0 T GE DiscoveryTM MR750 scanner (GE HealthCare,
160 Chicago, IL), with an 8-channel head coil. The protocol included a high-resolution T1-
161 weighted structural acquisition: fast spoiled gradient (FSPGR) sequence with 188 sagittal
162 slices of 256x256 isometric 1 mm voxels, 12 degree flip angle and TE/TR approximately
163 2.95/6.8 ms respectively. GABA-edited MRS data were acquired with a modified MEGA-
164 PRESS sequence (TE=68 ms, TR=1500 ms, 15ms editing pulses at 1.9/7.46 ppm for edit-
165 ON/-OFF respectively, simple 2-step phase cycle to minimize periodic confounds, 700
166 transients total), from a 22x36x23 mm (18.2 mL) voxel placed medially in the Anterior
167 Cingulate Cortex (ACC). This voxel was centred on an imaginary line projected through the
168 forward part of the pons, parallel with the brain stem as illustrated in Figure 1. The standard
169 GE HealthCare MEGA-PRESS implementation had been modified to send per-TR trigger
170 pulses for task synchronisation, and to periodically disable CHESS water suppression (every
171 third transient) to allow acquisition of a water-unsuppressed reference signal interleaved
172 within the regular GABA-editing sequence^[11]. A summary of key sequence and hardware
173 parameters is presented in an MRSinMRS^[19] checklist, Supplementary Table 2.

174 Finally, BOLD fMRI data were collected with an echo-planar imaging (EPI) sequence:
175 TE=30 ms, TR=2500 ms, 90 degree flip angle, interleaved acquisition of 36 slices of 128 x

176 128 voxels (1.72x1.72 mm), 3.0 mm slice thickness with 0.5 mm gap (3.5 mm slice spacing);
177 240 volumes for a total acquisition time of 600 s. Two patients elected to end scanning before
178 completion of the BOLD fMRI task, and are therefore excluded only from analyses relating to
179 that sequence.

181
182 *Figure 1: Placement of the fMRS voxel across all subjects, mapped to standard space. Shading (red-blue-green) and*
183 *corresponding contours indicate [5,50,95]-percentile coverage of the achieved placement across subjects. Dashed lines in*
184 *(a) illustrate landmarks used for voxel positioning: medial ACC, centred on an imaginary line through the forward part of*
185 *the pons (red), parallel with the brain stem (indicated in blue). Adapted from Craven et al, 2023^[11], updated to reflect the*
186 *present sample.*

187

188 2.1.3 Functional paradigm: Eriksen Flanker task

189 During both the GABA-edited fMRS and the BOLD fMRI acquisitions, subjects
190 performed a cognitive task based on the Eriksen Flanker task^[20]. In each trial, a set of five
191 arrows is presented; the task is to indicate the direction of the central “target” arrow. The four
192 surrounding “flankers” may match the target for a “congruent” trial (for example, “>>>
193 >” or “<<<<<”), or they may be in the opposite direction for a cognitively more
194 demanding “incongruent” trial (“<<><<” or “>><>>”). The paradigm was
195 implemented in E-Prime 2.0 SP1 [2.0.10.353: Psychology Software Tools Inc., Pittsburgh,
196 PA, <https://pstnet.com/>], with timing synchronised to the scanner via an NNL SyncBox
197 [NordicNeuroLab AS (NNL), Bergen, Norway, <http://nordicneurolab.com/>, note declaration
198 of interest]. Stimuli were presented through goggles (NNL) in light grey on a black
199 background, with a small font to remain near the parafoveal field of view^[21]. Subjects

200 responded using handheld response grips (NNL), pressing with the index finger on the
201 corresponding hand. Subjects were presented instructions in Norwegian or English according
202 to preference, and were shown sample stimuli before entering the scanner, and again
203 immediately before the task.

204 The task was implemented in a block-event design, beginning with a 60-second task-
205 OFF block then alternating 30-second task-ON and 60-second task-OFF blocks, for a total of
206 11/6 task-ON blocks for the fMRS/fMRI acquisitions respectively. Within each task-ON
207 block, one trial was presented per TR giving an average inter-stimulus interval (ISI) of 1500
208 ms and a total of 220/120 trials for fMRS/fMRI respectively. A randomly selected 40% of
209 trials were incongruent. Trial onset timing was jittered randomly with respect to the fixed TR,
210 such that stimuli were presented in the range $T_{S-A} = 100-350$ ms before the excitation pulse,
211 spanning much of the early response suggested by prior fMRS studies^[8,22]. Stimuli were
212 presented for 350 ms, with a nominal 800 ms response window.

213 [2.2 fMRS data processing and quantification](#)

214 Functional MEGA-PRESS data were processed with a modified pipeline based around
215 core functionality from Gannet version 3.1^[23]. After spectral registration^[24,25], individual
216 transients were processed using a linear model to separate variance of interest from nuisance
217 factors (variance associated with phase cycling and inferred subject motion), as detailed in a
218 previous work^[11,26]. Spectra were modelled according to achieved interval between stimulus
219 and acquisition (T_{S-A}). Five bins were defined, with edges at [100, 183, 267, 350] ms, open at
220 either end, lower limits inclusive; the inner three bins evenly cover the nominated 100-350 ms
221 T_{S-A} range. This resulted in approximately 48 task-ON metabolite transients per bin (with
222 some individual variation), and 320 task-OFF metabolite transients. Line-shape matching was
223 performed using a reference deconvolution approach^[26-29].

224 Extracted GABA-edited difference spectra (DIFF) were evaluated against three
225 rejection criteria, applied in series: full width at half maximum (FWHM) linewidth of fitted
226 GABA+ or inverted N-acetylaspartate (NAA) peaks exceeding 30 Hz or 12 Hz respectively,
227 extraordinarily low signal-to-noise ratio (SNR) (below 20 for the fitted NAA peak), and
228 extreme outliers, where GABA+ or Glx estimates differed from the median by more than five
229 times the Median Absolute Deviation (MAD) for spectra surviving the first two criteria.

230 Unsuppressed water-reference spectra (WREF) were fit with a pseudo-Voigt function
231 on a linear baseline, with Voigt linewidth filtered for outliers and discontinuities and
232 modelled against the expected BOLD response (event impulses convolved with a dual-gamma
233 haemodynamic response function (HRF) model), with covariate components as for the
234 metabolite spectrum model. The resultant BOLD model coefficient estimates the overall
235 change in water linewidth ($\Delta\text{FWHM}_{\text{water}}$) reflecting the strength of the individual's BOLD
236 response within the fMRS-localised region^[11]. This value will be denoted BOLD-fMRS.

237 2.3 fMRI data processing

238 fMRI block analysis was performed using FEAT (FMRI Expert Analysis Tool version
239 6.00, part of FSL) ^[30-37], with a standard pipeline described fully in our previous work^[11]. For
240 the present study, a per-subject volume of interest (VOI) is defined from the individually
241 prescribed fMRS voxel geometry in the ACC (VOI_{fMRS,ACC}), with the median Z-score
242 (without thresholding) across VOI_{fMRS,ACC} taken as a measure of the strength of the BOLD
243 response across that volume. This value will be denoted BOLD-fMRI.

244 2.4 Numerical and Statistical Analysis

245 Behavioural outcomes were assessed with the Wilcoxon Signed Rank test for related
246 samples (between session/stimulus, within subject), and the Mann-Whitney U-test for
247 unrelated samples (patient vs control), motivated by unequal variance and high skew in some

248 parameters. Correlation of BOLD estimates by the two methods (BOLD-fMRI, BOLD-fMRS)
249 was assessed using the skipped Spearman method^[38,39] for resilience to bivariate outliers.
250 Outcomes from hypothesis testing and correlational tests are adjusted for multiple
251 comparisons within sub-analysis, using the Holm-Bonferroni approach; adjusted p-values are
252 denoted p_{holm} , with a corrected significance threshold defined as $p_{\text{holm}} < 0.05$.

253 Least-squares linear modelling was used to assess associations between baseline
254 metabolite estimates, BOLD signal strength and interactions with patient and control groups,
255 with voxel grey matter fraction (fGM) as a covariate (ie, $\text{Glx} \sim \text{C}(\text{group}) * \text{BOLD} + \text{fGM}$).
256 Outlier observations having disproportionate influence on the model (according to the
257 studentized difference in fits^[40] thresholded at $2\sqrt{(k/n)}$) were dropped. Model suitability was
258 verified using the Jarque-Bera test of normality^[41], and White's Lagrange Multiplier and
259 Two-Moment Specification tests^[42] for heteroscedasticity and correct specification.

260 A series of exploratory correlational tests were performed between symptom scores
261 (PANSS: P3, total positive and total negative subscale scores) and baseline metabolite
262 concentrations (Glx, GABA+), task-elicited change in metabolite levels (ie, $\Delta\text{Glx} = \text{Glx}_{\text{task-ON}}$
263 - $\text{Glx}_{\text{task-OFF}}$ and $\Delta\text{GABA} = \text{GABA}_{\text{task-ON}} - \text{GABA}_{\text{task-OFF}}$), BOLD response, and task
264 performance metrics (response accuracy (RA)/reaction time (RT), reaction time slowing
265 ($\text{RT}_{\text{slowing}}$)), using the skipped Spearman method.

266 Finally, a linear mixed-effects model was constructed for metabolite estimate in
267 relation to group (patient, control), task status (task-OFF, task-ON), with grey matter fraction
268 as a covariate and subject as the grouping variable (ie, $\text{Glx} \sim \text{C}(\text{group}) * \text{C}(\text{task_state})$
269 + fGM), filtering observations with strong residuals (deviating from median residual by more
270 than 2.5 times the MAD).

271 Statistical testing was performed in Python (v3.9.17) with statsmodels [43] (v0.13.5),
272 pingouin [44] (v0.5.2), SciPy [45] (v1.9.3), pandas [46] (v1.5.2) and NumPy [47] (v1.23.5)
273 libraries; subsequent visualisation was built on tools from matplotlib [48] (v3.3.4), seaborn [49]
274 (v0.11.2) and statannotations [50] (v0.5).

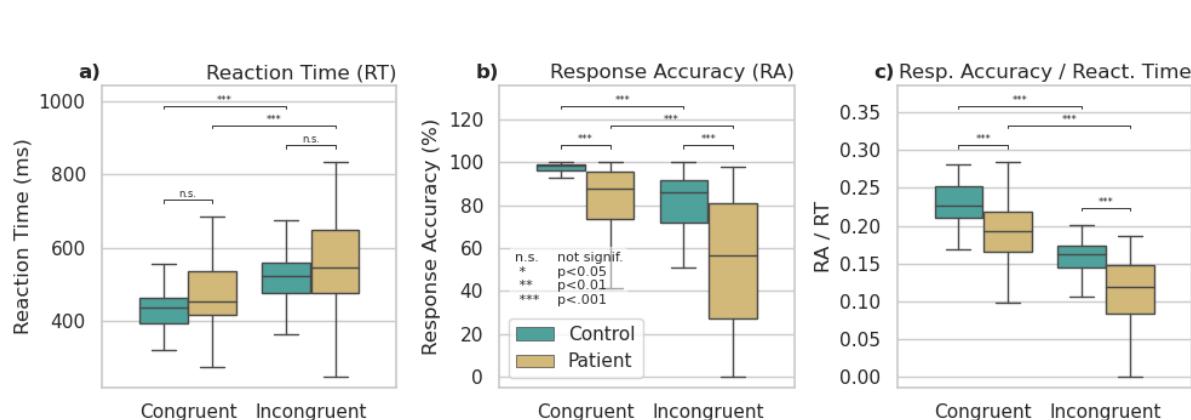
275

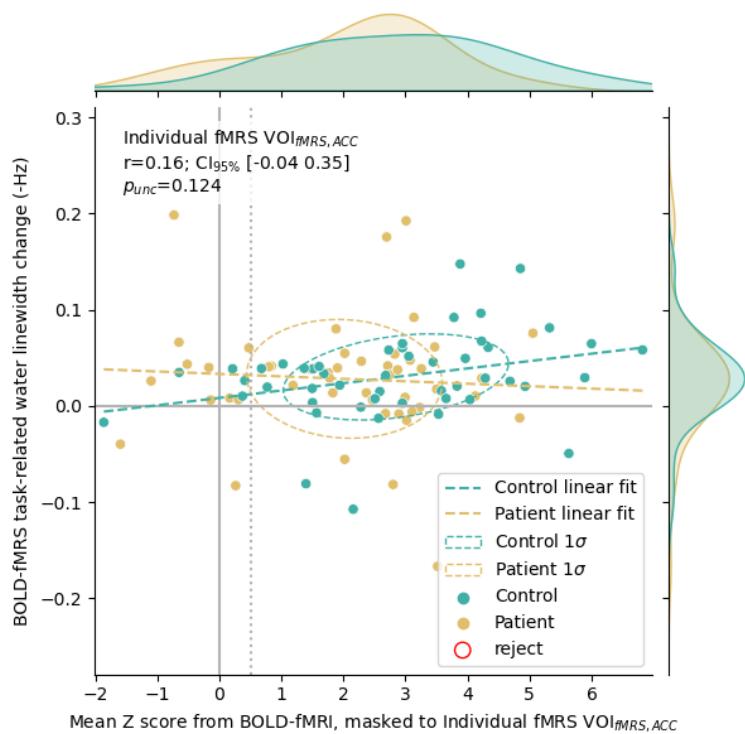
3 Results

276

3.1 Behavioural Outcomes

277 Behavioural outcomes from the Flanker task are summarised in Figure 2 and
278 Supplementary Table 3. Task performance in terms of reaction time (RT), response accuracy
279 (RA) and RA/RT was significantly degraded ($p_{\text{holm}} < 0.001$) between congruent and
280 incongruent trials, assessed across all subjects. Improved RA and RA/RT were observed
281 between the fMRS and subsequent fMRI task, both strongly significant for incongruent
282 stimuli ($p_{\text{holm}} < 0.001$). Patients showed significantly lower RA and RA/RT than the healthy
283 controls ($p_{\text{holm}} < 0.001$).



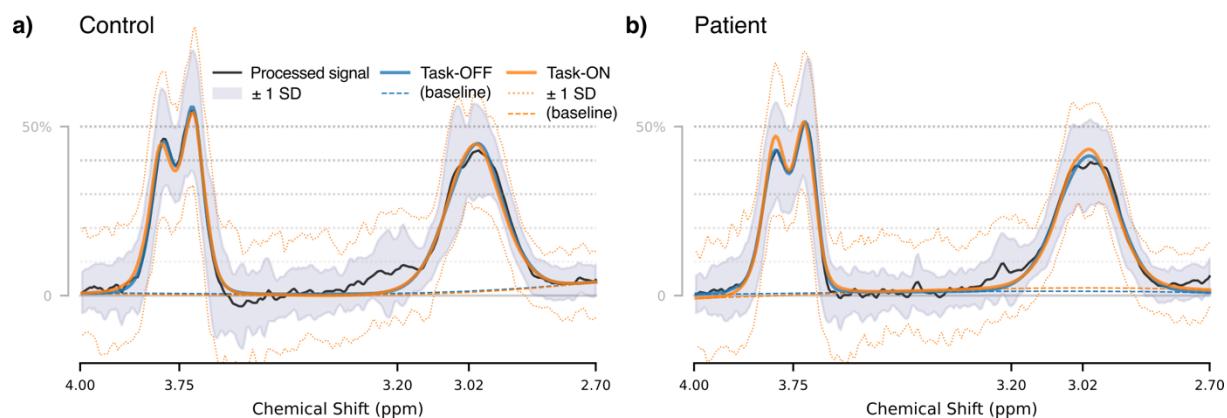

Figure 2 Outcomes from the behavioural task (fMRS and fMRI sessions pooled), showing significant increase in reaction time (a) and reduction in response accuracy (b, c) for incongruent conditions, and significantly degraded response accuracy for patients. Significant differences indicated with *** $p_{\text{holm}} < 0.001$, ** $p_{\text{holm}} < 0.01$, * $p_{\text{holm}} < 0.05$, n.s. not significant

290 3.2 Functional Outcomes

291 3.2.1 BOLD assessment by fMRI and fMRS

292 Correlation between the strength of the BOLD response as assessed with fMRS and
293 fMRI methods within the individually prescribed $VOI_{fMRS,ACC}$ was significant for healthy
294 controls ($r=0.35$, 95% confidence interval (CI_{95%}) [0.07,0.57], $p=0.014$), but unreliable for the
295 patient group ($r=-0.08$, CI_{95%} [-0.353,0.212], $p>0.5$), combining to a weak correlation across
296 the entire dataset ($r=0.16$, CI_{95%} [-0.04,0.346], n.s.). Correlation by group is shown in Figure
297 3; note generally weaker BOLD-fMRI response and greater variance in the BOLD-fMRS
298 estimate amongst patients.

299

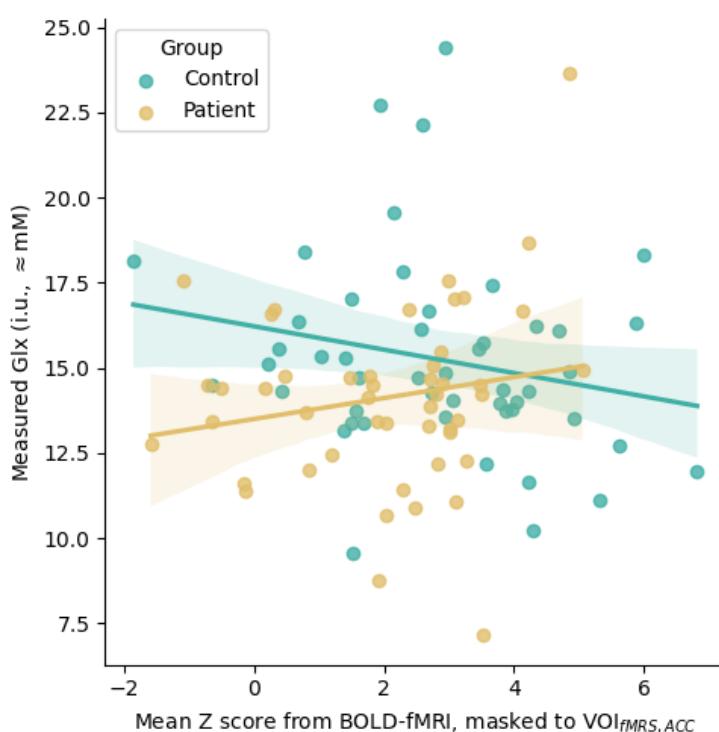

300

301 302 303 *Figure 3 Relation of BOLD assessed by BOLD-fMRS linewidth changes ($\Delta FWHM_{water}$) to mean Z score observed from the BOLD-fMRI data, regionally masked to the individual fMRS voxel ($VOI_{fMRS,ACC}$), showing significant correlation specific to healthy controls.*

304

305 3.2.2 Baseline and Functional MRS

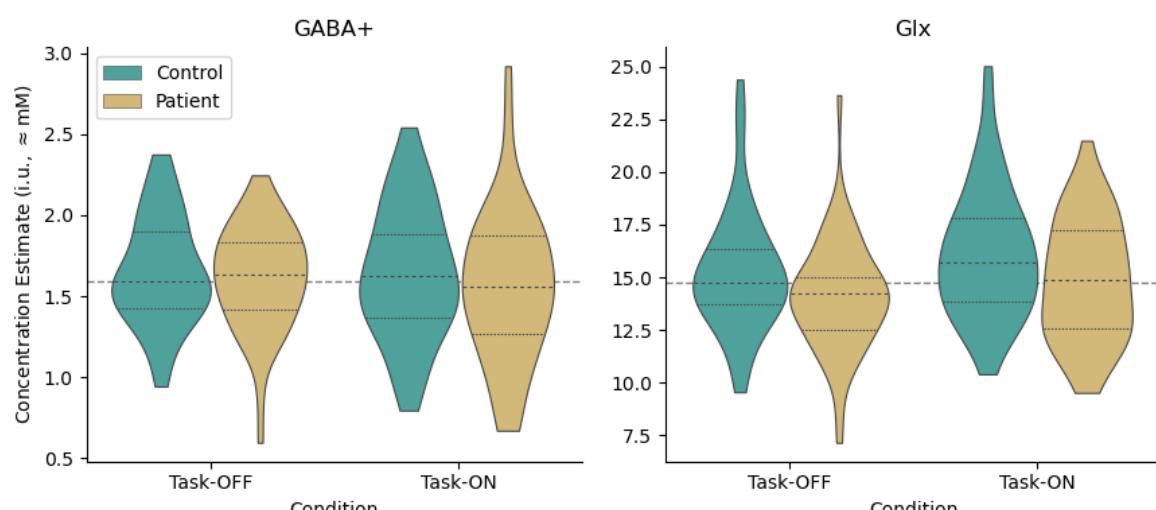
306



307

308 *Figure 4 Group mean spectra and model fit, separated by task condition*

309


310 Mean measured spectra for each group and condition are presented in Figure 4, with
311 corresponding quality metrics in Supplementary Table 4. Association with BOLD-fMRI is
312 shown in Figure 5. The linear model for baseline metabolite concentration with factors for the
313 interaction between group and measured BOLD strength (BOLD-fMRI) and grey matter
314 fraction showed significant effects of group for Glx (-2.3603 i.u., CI_{95%} [-3.680, -1.040],
315 p<0.001), a main effect for BOLD-fMRI (b=-0.394, CI_{95%} [-0.686, -0.102], p<0.01) and an
316 interaction between group and BOLD-fMRI (b=0.586, CI_{95%} [0.113, 1.059], p=0.016). This
317 indicated lower baseline Glx in patients and differential association between BOLD and
318 baseline Glx amongst healthy controls (negative association) and patients (positive
319 association). All other factors were non-significant. Substituting BOLD-fMRS as the
320 independent variable yielded weaker outcomes (p=0.054 for the group effect, p=0.094 for the
321 main effect of BOLD-fMRS). Similar analyses for GABA+ yielded no significant results.
322 Detailed model output is presented in the Supplementary Material, sections C.1 and C.2 for
323 Glx and GABA+ respectively.

324

325 *Figure 5 Relation between measured BOLD-fMRI response and measured Glx, showing complementary effects for healthy*
326 *controls and patients.*

327 No correlation was seen between symptom scores (PANSS P3, total positive, total
328 negative) and baseline metabolite concentration (GABA+ or Glx) or BOLD response (all
329 $p_{\text{holm}} > 0.05$). Possible associations between behavioural reaction time slowing and total
330 negative symptoms ($r = -0.351$, $CI_{95\%} [-0.578, -0.0747]$, $p = 0.0143$) and between total positive
331 symptoms and ΔGlx ($r = -0.335$, $CI_{95\%} [-0.57, -0.0496]$, $p = 0.0228$) did not survive strict
332 correction for multiple comparisons ($p_{\text{holm}} = 0.3, 0.46$ respectively) in the present context.
333 Outcomes for all exploratory tests are presented in Supplementary Material, section C.3
334 (Supplementary Table 5).

335

336 *Figure 6 Metabolite estimates by task state and group*

337 Concentration estimates for GABA+ and Glx by group and task condition are
338 presented in Figure 6; additional metabolites estimated from the edit-OFF sub-spectrum
339 (Choline, Creatine, NAA) are presented for interest in Supplementary Figure 2, but not
340 investigated further. Mixed-effects linear modelling showed strong task-related increase in
341 Glx (1.107 i.u., CI_{95%} [0.343 1.871], p<0.01) against an intercept at 13.096 i.u., CI_{95%}
342 [7.737,18.455], or roughly 8.5% increase in Glx estimate in response to the functional task.
343 The same model indicated reduced baseline Glx in the patient groups (-1.08 i.u., CI_{95%} [-
344 2.130, -0.030], p=0.04), but no evidence of any interaction was found (i.e., no differential
345 effects between task-ON and task-OFF, for patients vs controls (p>0.5)). Similar modelling
346 for GABA+ showed no significant effects.

347

4 Discussion and Conclusions

348

4.1 Behavioural outcomes

349 Behavioural outcomes were consistent with expectations based on existing
350 literature^[21,51-54], including substantially reduced response accuracy in the patient group
351 indicative of an executive and attentional deficit. However, anticipated prolonged reaction

352 times^[55,56] in the patient group were not significant, likely due to high variance within that
353 group. A previously reported improvement in response accuracy between the fMRS and
354 subsequent fMRI task performance^[11], perhaps attributable to learning effects, was also
355 apparent within the current patient group.

356 **4.2 Association with Symptom Scores**

357 Lack of observed correlation between symptom scores (PANSS P3, total positive, total
358 negative) and either the strength of the BOLD response or baseline metabolite concentration
359 may at first seem surprising, especially given previous reports showing such correlations^[57–60]
360 (albeit with some contradictory findings^[61]). However, we note that high PANSS P3 was a
361 pre-condition for inclusion in the present study, meaning the distribution of symptom scores is
362 not fully representative of the general population of patients with psychosis. Therefore, the
363 absence of correlations in the present study is not necessarily in conflict with existing reports;
364 it may be a result of sensitivity/ceiling effects. Moreover, it may indicate that these factors
365 distinguish low/non-hallucinating subjects from high-hallucinating ones, rather than degrees
366 of severity amongst the higher-hallucinating patients.

367 **4.3 Methodological Considerations**

368 Our previous study on healthy controls showed a significant correlation between the
369 BOLD signal strength assessed by the fMRS and subsequent fMRI acquisition. The moderate
370 degree of this correlation was attributed to inherent variability of each measure, intra-session
371 variability in the BOLD response itself, possible learning effects and/or fatigue. No such
372 correlation could be demonstrated in the patient group of the present study; there are a few
373 possible explanations for this. Within the patient group, BOLD-fMRS measurement showed
374 greater variance than amongst controls – perhaps reflecting reduced reliability of the
375 measurement in the presence of more pronounced subject motion as typically seen amongst

376 patient groups. BOLD estimates for patients also exhibited a skew towards lower values,
377 particularly evident in the BOLD-fMRS values (Figure 3) and likely reflecting limited
378 conformance amongst some of the participants. Weaker BOLD effects may challenge the
379 sensitivity of the fMRS implementation.

380 Hence, while the BOLD-fMRS estimates obtained in this way remain useful in certain
381 scenarios (especially where a robust BOLD response is to be expected) and offer the great
382 advantage of temporal concurrency with the MRS acquisition, we would caution against
383 relying solely upon this technique in scenarios where the BOLD response may be more subtle
384 or more variable, or where subject conformance may be limited. Further refinement of the
385 analysis model could potentially improve performance in this regard.

386 4.4 Baseline Metabolite Concentrations

387 Our results indicated lower baseline Glx in patients relative to controls in the ACC
388 region. While this is compatible with some previous reports for the region^[60–62], recent meta-
389 analyses^[63–65] have found differing effects depending on the brain region, and more nuanced
390 associations have been reported in relation to age^[66], progression/chronicity^[67,68],
391 antipsychotic effects^[69] and treatment response^[65,70,71]. Studies have also shown correlation
392 between glutamate level and grey matter loss in schizophrenia^[72], consistent with
393 neurodegeneration (loss of cortical volume, presumably corresponding with a decrease in
394 glutamatergic synaptic density^[73]) and likely associated with age and duration of illness.
395 Inclusion of the fGM factor in our statistical models should limit the impact of this factor on
396 our present findings.

397 Interpretation of our Glx findings is constrained by a few technical limitations: the
398 meta-analyses suggest different effects for Glu and Gln when assessed separately, with ACC
399 Gln tending to show elevation in patients while ACC Glu exhibits decreases in particular sub-

400 groups. This may reflect reduced glutamine demand, perhaps as a result of N-methyl-D-
401 aspartic acid (NMDA) receptor hypofunction^[74], leading to a net accumulation of
402 glutamine^[73]. While no attempt was made to distinguish Glu from Gln in the current dataset,
403 the DIFF spectrum of the TE=68 ms sequence is likely to differ from un-edited, shorter TE
404 sequences in terms of relative sensitivity to each. Inability to distinguish synaptic glutamate
405 from other roles (energy metabolism, protein synthesis etc) may also limit interpretation of
406 these outcomes. Furthermore, our selection criteria target a specific symptom (hallucinatory
407 behaviour) rather than a particular diagnosis. This yields a sample which is heterogeneous
408 with respect to diagnosis, treatment strategy and (presumably) genetic factors; finer-grained
409 analysis considering some of these factors presents an opportunity for further investigation.

410 We also observe a differential relation between baseline ACC Glx and BOLD-fMRI in
411 the same region: a negative association in healthy controls, contrasting a positive association
412 in patients. This is consistent with the findings of Falkenberg et al^[12], and compatible with
413 altered glutamatergic function in schizophrenia^[75–78]. Indeed these findings may reflect an
414 underlying neuronal mechanism, with positive association in the patient group perhaps
415 compensatory for overall reduced BOLD activation, with increasing glutamate levels
416 reflecting higher rates of energy turnover in the region^[79,80].

417 4.5 Dynamic Metabolite Concentrations

418 The finding of increased Glx in response to task (approximately 8.4% increase
419 between task-OFF and task-ON states, across groups) is consistent with our previous study^[11]
420 which investigated healthy controls alone, and towards the upper edge of ranges reported in
421 previous meta-analyses (for example, 6.97% CI_{95%} [5.23, 8.72] change reported by Mullins
422^[81], although typically lower (~3%) for the few studies investigating basic cognitive tasks in
423 the ACC^[82–84]). A short-term dynamic change of this magnitude is unlikely to be explained

424 by metabolic processes alone, but may be consistent with a hypothesized compartmental shift
425 [81,85]. During neural activity, Glu may move from a pool with reduced MRS visibility [86-88]
426 (such as the presynaptic vesicle) to a compartment where it is more visible (such as the
427 cytosol or the synapse), leading to an increase in the MRS-measured signal.

428 Significantly, the relative task-related change in Glx levels did not differ between
429 healthy controls and patients. Combined with the baseline outcomes, this suggests that
430 existing findings of glutamatergic effects are driven by lower baseline Glx levels in patients,
431 rather than aberrant dynamic regulation in response to task. Furthermore, the absence of
432 observable effects for GABA, either at baseline or as a change in response to task, suggests
433 that neurometabolic effects underlying a putative excitatory/inhibitory imbalance are again
434 driven by baseline Glx deficit, rather than GABAergic abnormalities. Although broadly
435 compatible with the notion of an excitatory-inhibitory imbalance, these findings are less clear
436 in relation to putative NMDA receptor hypofunction^[74] and its consequences for GABAergic
437 functions^[89]; indeed, it has been proposed that NMDA receptor hypofunction would lead to
438 increased release of synaptic glutamate and underdeveloped GABAergic circuitry.

439 **4.6 Conclusion**

440 In summary: with concurrent measurement of GABA+, Glx and BOLD in response to
441 a cognitive task, we obtained behavioural, functional MR and spectroscopy findings
442 consistent with literature based on separate acquisition of fMRI and MRS, and indicative of
443 an executive and attentional deficit. Limited findings in relation to symptom severity are
444 likely due to limited variation in our defined sample. Reduced baseline Glx in patients,
445 together with a dynamic change comparable with healthy controls in response to task points to
446 tonic rather than phasic effects. Together with an absence of observable differences for
447 GABA this serves to refine our understanding of the roles of these metabolites in a putative

448 Excitatory/Inhibitory imbalance as a possible mechanism underlying the perception of
449 auditory hallucinations.

450

451

452 5 Author Contributions

453
454 ARC: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation,
455 Data Curation, Writing – Original Draft
456 GD: Conceptualization, Methodology, Validation, Investigation, Writing – Review & Editing
457 LE: Methodology, Validation, Resources, Writing – Review & Editing
458 KK: Data Curation, Writing – Review & Editing
459 LL: Investigation, Data Curation, Writing – Review & Editing
460 RN: Methodology, Software, Writing – Review & Editing
461 LBS: Investigation, Data Curation, Writing – Review & Editing
462 EJ: Conceptualization, Resources, Writing – Review & Editing, Project administration
463 KH Conceptualization, Methodology, Resources, Writing – Review & Editing, Supervision,
464 Project administration, Funding acquisition
465

466 6 Acknowledgements

467 This study was funded by the European Research Council (ERC) grant #693124 and
468 by the Western Norway Health Authorities (Helse-Vest) grant #912045 to Kenneth Hugdahl.
469 We are grateful for the radiographers at Haukeland University Hospital: Roger Barndon,
470 Christel Jansen, Turid Randa, Trond Øveraas, Eva Øksnes and Tor Erlend Fjørtoft, for their
471 time and patience with data collection throughout this study.

472 7 Declaration of interest

473 Co-authors ARC, LE, KH own shares in NordicNeuroLab (NNL), which produced
474 some of the hardware accessories used during functional MR data acquisition at the scanner.
475 The authors declare no other conflicting interests.

476 8 Data availability statement

477 In accordance with data sharing regulations imposed by the Western Norway Ethical
478 Committee (REK-Vest) (<https://rekportalen.no/>), data may be shared by request to the
479 corresponding author, subject to written permission from the REK-Vest.

480 Our custom MEGA-PRESS sequence is based on proprietary GE HealthCare code; the
481 authors are in principle willing to share details on our local adaptions through the appropriate
482 vendor-facilitated channels.

483 Our tools and pipelines for fMRS data modelling are available from:
484 <https://git.app.uib.no/bergen-fmri/gaba-temporal-variability>

485

486 9 References

- 487
- 488 [1] Hugdahl, K. & Sommer, I. E. Auditory Verbal Hallucinations in Schizophrenia From
489 a Levels of Explanation Perspective. *Schizophr. Bull.* **44**, 234–241 (2018).
- 490 [2] Hugdahl, K. Auditory hallucinations: A review of the ERC “VOICE” project. *World J.*
491 *Psychiatry* **5**, 193 (2015).
- 492 [3] Jardri, R. *et al.* Are Hallucinations Due to an Imbalance Between Excitatory and
493 Inhibitory Influences on the Brain? *Schizophr. Bull.* **42**, 1124–1134 (2016).
- 494 [4] Ćurčić-Blake, B. *et al.* Interaction of language, auditory and memory brain networks
495 in auditory verbal hallucinations. *Prog. Neurobiol.* **148**, 1–20 (2017).
- 496 [5] Craven, A. R. *et al.* *Linenwidth-related bias in modelled concentration estimates from*
497 *GABA-edited ¹H-MRS*. <http://biorxiv.org/lookup/doi/10.1101/2024.02.27.582249>
498 (2024) doi:10.1101/2024.02.27.582249.
- 499 [6] Hennig, J., Emst, Th., Speck, O., Deuschl, G. & Feifel, E. Detection of brain
500 activation using oxygenation sensitive functional spectroscopy. *Magn. Reson. Med.*
501 **31**, 85–90 (1994).
- 502 [7] Zhu, X.-H. & Chen, W. Observed BOLD effects on cerebral metabolite resonances in
503 human visual cortex during visual stimulation: A functional ¹H MRS study at 4 T.
504 *Magn. Reson. Med.* **46**, 841–847 (2001).
- 505 [8] Apšvalka, D., Gadie, A., Clemence, M. & Mullins, P. G. Event-related dynamics of
506 glutamate and BOLD effects measured using functional magnetic resonance
507 spectroscopy (fMRS) at 3 T in a repetition suppression paradigm. *NeuroImage* **118**,
508 292–300 (2015).
- 509 [9] Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in
510 vivo spectral editing and water suppression. *NMR Biomed.* **11**, 266–272 (1998).
- 511 [10] Rothman, D. L., Petroff, O. A., Behar, K. L. & Mattson, R. H. Localized ¹H NMR
512 measurements of gamma-aminobutyric acid in human brain in vivo. *Proc. Natl. Acad.*
513 *Sci.* **90**, 5662–5666 (1993).
- 514 [11] Craven, A. R. *et al.* GABA, glutamatergic dynamics and BOLD contrast assessed
515 concurrently using functional MRS during a cognitive task. *NMR Biomed.* e5065
516 (2023) doi:10.1002/nbm.5065.
- 517 [12] Falkenberg, L. E. *et al.* Impact of glutamate levels on neuronal response and cognitive
518 abilities in schizophrenia. *NeuroImage Clin.* **4**, 576–584 (2014).
- 519 [13] World Health Organization. *The ICD-10 classification of mental and behavioural*
520 *disorders: clinical descriptions and diagnostic guidelines*. (World Health
521 Organization, 1992).
- 522 [14] World Health Organization. *ICD-10 psykiske lidelser og atferdsstyrrelser: kliniske*
523 *beskrivelser og diagnostiske retningslinjer*. (Universitetsforlaget, 2016).
- 524 [15] Kay, S. R., Fiszbein, A. & Opler, L. A. The Positive and Negative Syndrome Scale
525 (PANSS) for Schizophrenia. *Schizophr. Bull.* **13**, 261–276 (1987).
- 526 [16] Chadwick, P., Lees, S. & Birchwood, M. The revised Beliefs About Voices
527 Questionnaire (BAVQ-R). *Br. J. Psychiatry* **177**, 229–232 (2000).

- 528 [17] Hugdahl, K. *et al.* The phenomenology of auditory verbal hallucinations in
529 schizophrenia assessed with the MiniVoiceQuestionnaire (MVQ). Preprint at
530 <https://doi.org/10.1101/2023.02.16.23285636> (2023).
- 531 [18] WHO Collaborating Centre for Drug Statistics Methodology. *ATC classification index*
532 *with DDDs*, 2024. (WHO Collaborating Centre for Drug Statistics Methodology, Oslo,
533 Norway, 2024).
- 534 [19] Lin, A. *et al.* Minimum Reporting Standards for in vivo Magnetic Resonance
535 Spectroscopy (MRSinMRS): Experts' consensus recommendations. *NMR Biomed.*
536 (2021) doi:10.1002/nbm.4484.
- 537 [20] Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a
538 target letter in a nonsearch task. *Percept. Psychophys.* **16**, 143–149 (1974).
- 539 [21] Kopp, B., Mattler, U. & Rist, F. Selective attention and response competition in
540 schizophrenic patients. *Psychiatry Res.* **53**, 129–139 (1994).
- 541 [22] Lally, N. *et al.* Glutamatergic correlates of gamma-band oscillatory activity during
542 cognition: A concurrent ER-MRS and EEG study. *NeuroImage* **85**, 823–833 (2014).
- 543 [23] Edden, R. A. E., Puts, N. A. J., Harris, A. D., Barker, P. B. & Evans, C. J. Gannet: A
544 batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited
545 MR spectroscopy spectra: Gannet: GABA Analysis Toolkit. *J. Magn. Reson. Imaging*
546 **40**, 1445–1452 (2014).
- 547 [24] Near, J. *et al.* Frequency and phase drift correction of magnetic resonance
548 spectroscopy data by spectral registration in the time domain: MRS Drift Correction
549 Using Spectral Registration. *Magn. Reson. Med.* **73**, 44–50 (2015).
- 550 [25] Mikkelsen, M. *et al.* Correcting frequency and phase offsets in MRS data using robust
551 spectral registration. *NMR Biomed.* **33**, (2020).
- 552 [26] Craven, A. R., Ersland, L., Hugdahl, K. & Gruner, R. *Modelling inter-shot variability*
553 *for robust temporal sub-sampling of dynamic, GABA-edited MR spectroscopy data*.
554 <http://biorxiv.org/lookup/doi/10.1101/2024.12.05.627018> (2024)
555 doi:10.1101/2024.12.05.627018.
- 556 [27] Bartha, R., Drost, D. J., Menon, R. S. & Williamson, P. C. Spectroscopic lineshape
557 correction by QUECC: Combined QUALITY deconvolution and eddy current
558 correction. *Magn. Reson. Med.* **44**, 641–645 (2000).
- 559 [28] Metz, K. R., Lam, M. M. & Webb, A. G. Reference deconvolution: A simple and
560 effective method for resolution enhancement in nuclear magnetic resonance
561 spectroscopy. *Concepts Magn. Reson.* **12**, 21–42 (2000).
- 562 [29] Maudsley, A. A. Spectral Lineshape Determination by Self-Deconvolution. *J. Magn.*
563 *Reson. B* **106**, 47–57 (1995).
- 564 [30] Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the
565 Robust and Accurate Linear Registration and Motion Correction of Brain Images.
566 *NeuroImage* **17**, 825–841 (2002).
- 567 [31] Smith, S. M. Fast robust automated brain extraction. *Hum. Brain Mapp.* **17**, 143–155
568 (2002).
- 569 [32] Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration
570 of brain images. *Med. Image Anal.* **5**, 143–156 (2001).

- 571 [33] Andersson, J. L., Jenkinson, M. & Smith, S. Non-linear optimisation FMRIB technical
572 report TR07JA1. *Practice* (2007).
- 573 [34] Andersson, J. L., Jenkinson, M., Smith, S., & others. Non-linear registration, aka
574 Spatial normalisation FMRIB technical report TR07JA2. *FMRIB Anal. Group Univ.*
575 *Oxf.* **2**, e21 (2007).
- 576 [35] Grabner, G. *et al.* Symmetric Atlasing and Model Based Segmentation: An
577 Application to the Hippocampus in Older Adults. in *Medical Image Computing and*
578 *Computer-Assisted Intervention – MICCAI 2006* (eds. Larsen, R., Nielsen, M. &
579 Sporrings, J.) vol. 4191 58–66 (Springer Berlin Heidelberg, 2006).
- 580 [36] Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal Autocorrelation
581 in Univariate Linear Modeling of FMRI Data. *NeuroImage* **14**, 1370–1386 (2001).
- 582 [37] Worsley, K. J. Statistical analysis of activation images. Ch 14. in *Functional MRI: An*
583 *introduction to methods* (eds. Jezzard, P., Matthews, P. M. & Smith, S. M.) 251–270
584 (2001).
- 585 [38] Pernet, C., Wilcox, R. & Rousselet, G. Robust Correlation Analyses: False Positive
586 and Power Validation Using a New Open Source Matlab Toolbox. *Front. Psychol.* **3**,
587 (2013).
- 588 [39] Rousselet, G. A. & Pernet, C. R. Improving standards in brain-behavior correlation
589 analyses. *Front. Hum. Neurosci.* **6**, (2012).
- 590 [40] Belsley, D. A., Kuh, E. & Welsch, R. E. *Regression diagnostics: identifying*
591 *influential data and sources of collinearity*. (Wiley, 1980).
- 592 [41] Jarque, C. M. & Bera, A. K. A Test for Normality of Observations and Regression
593 Residuals. *Int. Stat. Rev. Rev. Int. Stat.* **55**, 163 (1987).
- 594 [42] White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
595 Test for Heteroskedasticity. *Econometrica* **48**, 817 (1980).
- 596 [43] Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with
597 python. in (2010).
- 598 [44] Vallat, R. Pingouin: statistics in Python. *J. Open Source Softw.* **3**, 1026 (2018).
- 599 [45] SciPy 1.0 Contributors *et al.* SciPy 1.0: fundamental algorithms for scientific
600 computing in Python. *Nat. Methods* **17**, 261–272 (2020).
- 601 [46] McKinney, W. Data Structures for Statistical Computing in Python. in (eds. van der
602 Walt, S. & Millman, J.) 56–61 (2010). doi:10.25080/Majora-92bf1922-00a.
- 603 [47] Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357–362 (2020).
- 604 [48] Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**, 90–95
605 (2007).
- 606 [49] Waskom, M. seaborn: statistical data visualization. *J. Open Source Softw.* **6**, 3021
607 (2021).
- 608 [50] Charlier, F. *et al.* trevismd/statannotations: v0.5. (2022)
609 doi:10.5281/ZENODO.7213391.
- 610 [51] Davelaar, E. J. & Stevens, J. Sequential dependencies in the Eriksen flanker task: A
611 direct comparison of two competing accounts. *Psychon. Bull. Rev.* **16**, 121–126
612 (2009).

- 613 [52] Ridderinkhof, K. R., Wylie, S. A., van den Wildenberg, W. P. M., Bashore, T. R. &
614 van der Molen, M. W. The arrow of time: Advancing insights into action control from
615 the arrow version of the Eriksen flanker task. *Atten. Percept. Psychophys.* **83**, 700–721
616 (2021).
- 617 [53] Stoffels, E. J. & van der Molen, M. W. Effects of visual and auditory noise on visual
618 choice reaction time in a continuous-flow paradigm. *Percept. Psychophys.* **44**, 7–14
619 (1988).
- 620 [54] Ettinger, U. *et al.* Response inhibition and interference control: Effects of
621 schizophrenia, genetic risk, and schizotypy. *J. Neuropsychol.* **12**, 484–510 (2018).
- 622 [55] Yücel, M. *et al.* Impairments of response conflict monitoring and resolution in
623 schizophrenia. *Psychol. Med.* **32**, 1251–1260 (2002).
- 624 [56] Gooding, D. C., Braun, J. G. & Studer, J. A. Attentional network task performance in
625 patients with schizophrenia–spectrum disorders: Evidence of a specific deficit.
626 *Schizophr. Res.* **88**, 169–178 (2006).
- 627 [57] Hjelmervik, H. *et al.* Intra-Regional Glu-GABA vs Inter-Regional Glu-Glu Imbalance:
628 A 1H-MRS Study of the Neurochemistry of Auditory Verbal Hallucinations in
629 Schizophrenia. *Schizophr. Bull.* **46**, 633–642 (2020).
- 630 [58] Hjelmervik, H. *et al.* Negative valence of hallucinatory voices as predictor of cortical
631 glutamatergic metabolite levels in schizophrenia patients. *Brain Behav.* **12**, (2022).
- 632 [59] Li, J. *et al.* Anterior Cingulate Cortex Glutamate Levels Are Related to Response to
633 Initial Antipsychotic Treatment in Drug-Naive First-Episode Schizophrenia Patients.
634 *Front. Psychiatry* **11**, 553269 (2020).
- 635 [60] Hugdahl, K. *et al.* Glutamate as a mediating transmitter for auditory hallucinations in
636 schizophrenia: A 1H MRS study. *Schizophr. Res.* **161**, 252–260 (2015).
- 637 [61] Ćurčić-Blake, B. *et al.* Glutamate in dorsolateral prefrontal cortex and auditory verbal
638 hallucinations in patients with schizophrenia: A 1 H MRS study. *Prog.
639 Neuropsychopharmacol. Biol. Psychiatry* **78**, 132–139 (2017).
- 640 [62] Singh, S. *et al.* Evidence for regional hippocampal damage in patients with
641 schizophrenia. *Neuroradiology* **60**, 199–205 (2018).
- 642 [63] Merritt, K. *et al.* Variability and magnitude of brain glutamate levels in schizophrenia:
643 a meta and mega-analysis. *Mol. Psychiatry* **28**, 2039–2048 (2023).
- 644 [64] Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J. & McGuire, P. K. Nature of
645 Glutamate Alterations in Schizophrenia: A Meta-analysis of Proton Magnetic
646 Resonance Spectroscopy Studies. *JAMA Psychiatry* **73**, 665 (2016).
- 647 [65] Nakahara, T. *et al.* Glutamatergic and GABAergic metabolite levels in schizophrenia-
648 spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies.
649 *Mol. Psychiatry* **27**, 744–757 (2022).
- 650 [66] Brandt, A. S. *et al.* Age-related changes in anterior cingulate cortex glutamate in
651 schizophrenia: A 1H MRS Study at 7Tesla. *Schizophr. Res.* **172**, 101–105 (2016).
- 652 [67] Liemburg, E. *et al.* Prefrontal NAA and Glx Levels in Different Stages of Psychotic
653 Disorders: a 3T 1H-MRS Study. *Sci. Rep.* **6**, 21873 (2016).

- 654 [68] Ohrmann, P. *et al.* Cognitive impairment and in vivo metabolites in first-episode
655 neuroleptic-naive and chronic medicated schizophrenic patients: A proton magnetic
656 resonance spectroscopy study. *J. Psychiatr. Res.* **41**, 625–634 (2007).
- 657 [69] Kubota, M., Moriguchi, S., Takahata, K., Nakajima, S. & Horita, N. Treatment effects
658 on neurometabolite levels in schizophrenia: A systematic review and meta-analysis of
659 proton magnetic resonance spectroscopy studies. *Schizophr. Res.* **222**, 122–132
660 (2020).
- 661 [70] Mouchlianitis, E. *et al.* Treatment-Resistant Schizophrenia Patients Show Elevated
662 Anterior Cingulate Cortex Glutamate Compared to Treatment-Responsive. *Schizophr.*
663 *Bull.* **42**, 744–752 (2016).
- 664 [71] Egerton, A. *et al.* Response to initial antipsychotic treatment in first episode psychosis
665 is related to anterior cingulate glutamate levels: a multicentre 1H-MRS study
666 (OPTiMiSE). *Mol. Psychiatry* **23**, 2145–2155 (2018).
- 667 [72] Aoyama, N. *et al.* Grey matter and social functioning correlates of glutamatergic
668 metabolite loss in schizophrenia. *Br. J. Psychiatry* **198**, 448–456 (2011).
- 669 [73] Coyle, J. T. & Konopaske, G. Glutamatergic Dysfunction in Schizophrenia Evaluated
670 With Magnetic Resonance Spectroscopy. *JAMA Psychiatry* **73**, 649 (2016).
- 671 [74] Coyle, J. T. Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis. *Cell.*
672 *Mol. Neurobiol.* **26**, 363–382 (2006).
- 673 [75] Dwyer, G. E., Hugdahl, K., Specht, K. & Grüner, R. Current Practice and New
674 Developments in the Use of In Vivo Magnetic Resonance Spectroscopy for the
675 Assessment of Key Metabolites Implicated in the Pathophysiology of Schizophrenia.
676 *Curr. Top. Med. Chem.* **18**, 1908–1924 (2019).
- 677 [76] Duarte, J. M. N. & Xin, L. Magnetic Resonance Spectroscopy in Schizophrenia:
678 Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism.
679 *Neurochem. Res.* **44**, 102–116 (2019).
- 680 [77] Benes, F. M., Sorensen, I., Vincent, S. L., Bird, E. D. & Sathi, M. Increased Density
681 of Glutamate-immunoreactive Vertical Processes in Superficial Laminae in Cingulate
682 Cortex of Schizophrenic Brain. *Cereb. Cortex* **2**, 503–512 (1992).
- 683 [78] Woo, T.-U. W., Shrestha, K., Lamb, D., Minns, M. M. & Benes, F. M. N-Methyl-D-
684 Aspartate Receptor and Calbindin-Containing Neurons in the Anterior Cingulate
685 Cortex in Schizophrenia and Bipolar Disorder. *Biol. Psychiatry* **64**, 803–809 (2008).
- 686 [79] Mangia, S. *et al.* Sustained Neuronal Activation Raises Oxidative Metabolism to a
687 New Steady-State Level: Evidence from ¹ H NMR Spectroscopy in the Human Visual
688 Cortex. *J. Cereb. Blood Flow Metab.* **27**, 1055–1063 (2007).
- 689 [80] Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. In vivo NMR Studies of
690 the Glutamate Neurotransmitter Flux and Neuroenergetics: Implications for Brain
691 Function. *Annu. Rev. Physiol.* **65**, 401–427 (2003).
- 692 [81] Mullins, P. G. Towards a theory of functional magnetic resonance spectroscopy
693 (fMRS): A meta-analysis and discussion of using MRS to measure changes in
694 neurotransmitters in real time. *Scand. J. Psychol.* **59**, 91–103 (2018).
- 695 [82] Kühn, S. *et al.* Neurotransmitter changes during interference task in anterior cingulate
696 cortex: evidence from fMRI-guided functional MRS at 3 T. *Brain Struct. Funct.* **221**,
697 2541–2551 (2016).

- 698 [83] Taylor, R. *et al.* Increased glutamate levels observed upon functional activation in the
699 anterior cingulate cortex using the Stroop Task and functional spectroscopy.
700 *NeuroReport* **26**, 107–112 (2015).
- 701 [84] Taylor, R. *et al.* Functional magnetic resonance spectroscopy of glutamate in
702 schizophrenia and major depressive disorder: anterior cingulate activity during a
703 color-word Stroop task. *Npj Schizophr.* **1**, 15028 (2015).
- 704 [85] Lea-Carnall, C. A., El-Deredy, W., Stagg, C. J., Williams, S. R. & Trujillo-Barreto, N.
705 J. A mean-field model of glutamate and GABA synaptic dynamics for functional
706 MRS. *NeuroImage* **266**, 119813 (2023).
- 707 [86] Kauppinen, R. A., Pirttilä, T. R. M., Auriola, S. O. K. & Williams, S. R.
708 Compartmentation of cerebral glutamate *in situ* as detected by ¹H/¹³C n.m.r.
709 *Biochem. J.* **298**, 121–127 (1994).
- 710 [87] Rae, C. *et al.* Inhibition of glutamine transport depletes glutamate and GABA
711 neurotransmitter pools: further evidence for metabolic compartmentation: Role of
712 glutamine transport in CNS metabolism. *J. Neurochem.* **85**, 503–514 (2003).
- 713 [88] Hancu, I. & Port, J. The case of the missing glutamine. *NMR Biomed.* **24**, 529–535
714 (2011).
- 715 [89] Cohen, S. M., Tsien, R. W., Goff, D. C. & Halassa, M. M. The impact of NMDA
716 receptor hypofunction on GABAergic neurons in the pathophysiology of
717 schizophrenia. *Schizophr. Res.* **167**, 98–107 (2015).
- 718
- 719
- 720

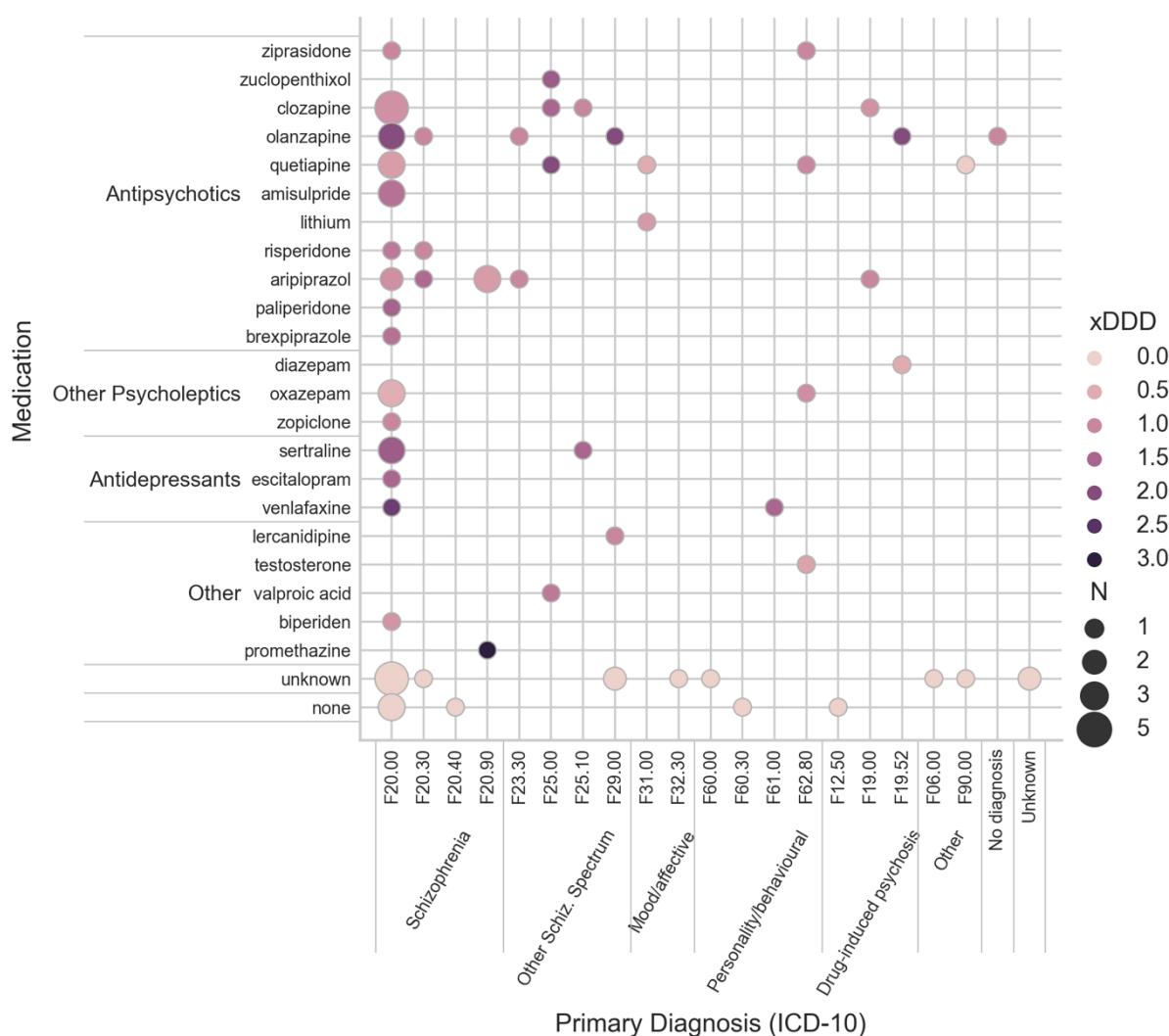
10 Figure Captions

3	Figure 1: Placement of the fMRS voxel across all subjects, mapped to standard space. Shading (red-blue-green) and corresponding contours indicate [5,50,95]-percentile coverage of the achieved placement across subjects. Dashed lines in (a) illustrate landmarks used for voxel positioning: medial ACC, centred on an imaginary line through the forward part of the pons (red), parallel with the brain stem (indicated in blue). Adapted from Craven et al, 2023 ^[11] , updated to reflect the present sample.....	9
10	Figure 2 Outcomes from the behavioural task (fMRS and fMRI sessions pooled), showing significant increase in reaction time (a) and reduction in response accuracy (b, c) for incongruent conditions, and significantly degraded response accuracy for patients. Significant differences indicated with *** $p_{\text{holm}} < 0.001$, ** $p_{\text{holm}} < 0.01$, * $p_{\text{holm}} < 0.05$, n.s. not significant.....	13
15	Figure 3 Relation of BOLD assessed by BOLD-fMRS linewidth changes ($\Delta\text{FWHM}_{\text{water}}$) to mean Z score observed from the BOLD-fMRI data, regionally masked to the individual fMRS voxel ($\text{VOI}_{\text{fMRS,ACC}}$), showing significant correlation specific to healthy controls.....	14
19	Figure 4 Group mean spectra and model fit, separated by task condition.....	15
20	Figure 5 Relation between measured BOLD-fMRI response and measured Glx, showing complementary effects for healthy controls and patients.....	16
22	Figure 6 Metabolite estimates by task state and group	17
23		
24	Supplementary Figure 1 Medication and mean of the (maximum) prescribed dosage, expressed relative to the defined daily dose (DDD). Size of the points is proportional to the number of patients (N), with darker shading indicating higher dosage (xDDD).....	33
28	Supplementary Figure 2 Concentration estimates for other metabolites according to group and condition (obtained from the edit-OFF sub-spectrum using the Gannet peak-fitting model).....	36
31		

1 A Additional Subject Details

2

	n	ICD-10	Diagnosis
Schizophrenia	29		
	23	F20.0	Paranoid schizophrenia
	3	F20.3	Undifferentiated schizophrenia
	1	F20.4	Post-schizophrenic depression
	2	F20.9	Schizophrenia, unspecified
Other Schiz. Spectrum	7		
	1	F23.3	Acute paranoid psychosis
	2	F25.0	Schizoaffective disorder, manic type
	1	F25.1	Schizoaffective disorder, depressive type
	3	F29	Unspecified non-organic psychosis
Mood/affective	2		
	1	F31	Bipolar disorder
	1	F32.3	Severe depressive episode with psychotic symptoms
Personality/behavioural	4		
	1	F60.0	Paranoid personality disorder
	1	F60.3	Emotionally unstable personality disorder
	1	F61.0	Mixed and other personality disorders
	1	F62.8	Other enduring personality changes
Drug-induced psychosis	4		
	1	F12.5	Use of cannabinoids; psychotic disorder
	2	F19.0	Multiple drug use and use of other psychoactive substances; acute intoxication
	1	F19.52	...psychosis, mainly with hallucinations
Other	5		
	1	F06.0	Organic hallucinosis
	1	F90	Disturbance of activity and attention
	2	N/A	Unknown diagnosis
	1	N/A	No diagnosis


3 *Supplementary Table 1 Diagnoses of patients in the present study, according to ICD-10 criteria*

4 Diagnoses are according to the ICD-10 criteria, described in the following publications
5 (English and Norwegian translation):

6
7 World Health Organization. (1992). *The ICD-10 classification of mental and behavioural*
8 *disorders: Clinical descriptions and diagnostic guidelines* (Reprinted). World Health
9 Organization. <https://www.who.int/docs/default-source/classification/other-classifications/bluebook.pdf>

10
11 World Health Organization. (2016). *ICD-10 psykiske lidelser og atferdsstyrrelser: Kliniske*
12 *beskrivelser og diagnostiske retningslinjer* (10. rev., 19. oppl). Universitetsforlaget.
13 <https://www.ehelse.no/kodeverk-og-terminologi/ICD-10-og-ICD-11>

14
15

1
2 *Supplementary Figure 1 Medication and mean of the (maximum) prescribed dosage, expressed relative to the defined daily*
3 *dose (DDD). Size of the points is proportional to the number of patients (N), with darker shading indicating higher dosage*
4 *(xDDD).*

5 In several cases, the prescribed dosage was qualified with terms such as “up to” and “as
6 needed” (“opp til”, “ved behov”); some subjects reported that they had not taken prescribed
7 medicine in the period leading up to the study. Dosage presented here therefore represents the
8 maximum prescribed dosage, and is likely to slightly overestimate the actual dosage taken.

9
10 Defined daily dose (DDD) according to WHO Collaborating Centre for Drug Statistics
11 Methodology, ATC classification index with DDDs, 2024. Oslo, Norway 2024, searchable
12 online at https://atcddd.fhi.no/atc_ddd_index/

13
14 ATC codes were derived from trade names via the register at
15 <https://www.felleskatalogen.no/medisin/atc-register/>

1 B MRSinMRS checklist

2

Site (name or number)	Haukeland University Hospital
1. Hardware	
a. Field strength [T]	3 T
b. Manufacturer	GE HealthCare
c. Model (software version if available)	MR 750, DV 28
d. RF coils: nuclei (transmit/receive), number of channels, type, body part	GEHC 8-channel ^1H head coil
e. Additional hardware	NNL visual system, response grips and SyncBox for functional task
2. Acquisition	
a. Pulse sequence	MEGA-PRESS (GABA+ editing, ATSM patch), adapted for triggering and with additional water-unsuppressed reference scans (every third FID)
b. Volume of interest (VOI) locations	Anterior Cingulate Cortex
c. Nominal VOI size [cm ³ ,mm ³]	22 x 36 x 23 mm ³ (18.2 mL)
d. Repetition time (T _R), echo time (T _E) [ms, s]	T _R = 1500 ms, T _E = 68 ms
e. Total number of excitations or acquisitions per spectrum In time series for kinetic studies i. Number of averaged spectra (NA) per time point ii. Averaging method (eg block-wise or moving average) iii. Total number of spectra (acquired/in time series)	700 transients, alternating edit-ON/-OFF with CHESS suppression pulses disabled in every third transient averages. Of these, 220 were preceded by task stimulus (grouped into 30-second task-ON blocks, separated by 60-second task-OFF blocks) Further subdivided into even time bins (roughly 73 averages each), and according to stimulus and response (varying sizes)
f. Additional sequence parameters (spectral width in Hz, number of spectral points, frequency offsets) If STEAM: mixing time (T _M) If MRSI: 2D or 3D, FOV in all directions, matrix size, acceleration factors, sampling method	Spectral width 5000Hz, 4096 data points 15 ms editing pulses at 1.9 ppm (edit-ON) and 7.46 ppm (edit-OFF)
g. Water suppression method	CHESS
h. Shimming method, reference peak, and thresholds for “acceptance of shim” chosen	Vendor default prescan (double-echo GRE)
i. Triggering or motion correction method (respiratory, peripheral, cardiac triggering, incl. device used and delays)	MRS served as trigger source for the functional paradigm
3. Data analysis methods and outputs	
a. Analysis software	Gannet 3.1, with in-house methods to extract functional subsets between GannetLoad and GannetFit modules.
b. Processing steps deviating from quoted reference or product	Spectra extracted from decomposition of full set of transients, described in section 2.2
c. Output measure (eg absolute concentration, institutional units, ratio), processing steps deviating from quoted reference or product	Water-referenced estimates for GABA+ and Glx, with adjustment for voxel tissue content
d. Quantification references and assumptions, fitting model assumptions	N/A
4. Data quality	
a. Reported variables (SNR, linewidth (with reference peaks))	SNR NAA: 97.7±11.1/95.7±12.9; 41.9±3.95/40.8±3.79 FWHM NAA (Hz): 6.91±0.73/6.97±0.73; 7.22±0.61/7.27±0.76 FWHM GABA+ (Hz): 18±1.82/16±2.5; 18.8±1.59/16.8±2.69 Denoted median±MAD, patient/control, task-OFF; task-ON
b. Data exclusion criteria	FWHM linewidth > 12 Hz (NAA _{diff}) or > 30 Hz (GABA+ _{diff}) SNR extraordinarily low, < 20 (NAA _{diff}) Extreme outliers (> 5 x median absolute deviation) for GABA+ _{diff} or Glx _{diff} estimate; See section 2.2
c. Quality measures of postprocessing model fitting (eg CRLB, goodness of fit, SD of residual)	Strong outlier removal and robust statistics only: individual fits to event-related data expected to be of lower quality than non-functional MRS.
d. Sample spectrum	See Figure 4

3 *Supplementary Table 2 MRSinMRS checklist^[19] summarising key details of the MRS acquisition*

1 C Supplementary Results

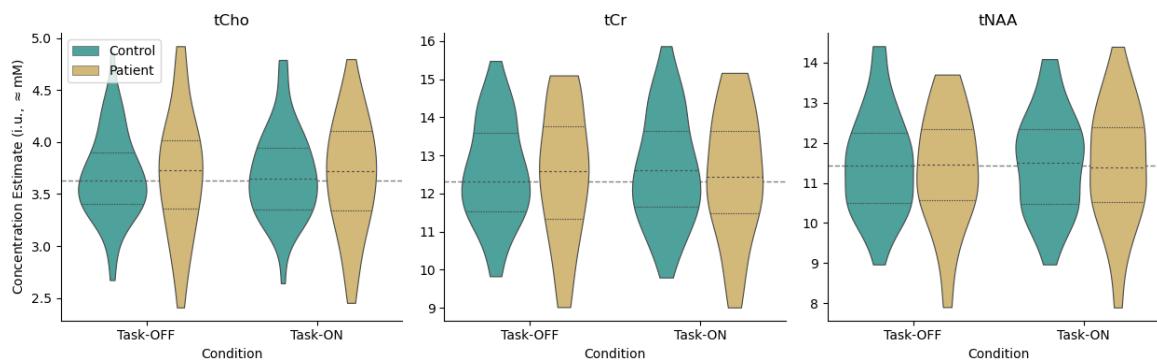
2

Session	Group	N subjects	Stimulus Type	N stimuli (per subj.)	Achieved ISI mean (ms)	Achieved ISI SD (ms)	RT (ms)	RA (% correct)	RA/RT
fMRS	Control	51	Congruent	132	1499.6 ± 5.6	107.3 ± 6.8	428.7 ± 38.9 ***/n.s./n.s.	98.5 ± 3.5 ***/n.s./***	.228 ± .022 ***/n.s./***
			Incongruent	88	1504.5 ± 8.7	108.2 ± 5.1	522.2 ± 51.0 ***/n.s./n.s.	84.1 ± 14.8 ***/***/***	.159 ± .029 ***/***/***
			Difference		(incompatibility slowing)		92.7 ± 23.3 ***/n.s./n.s.		
	Patient	51	Congruent	132	1501.7 ± 7.0	107.0 ± 10.4	451.6 ± 77.8 ***/n.s./n.s.	86.4 ± 18.7 ***/n.s./***	.182 ± .044 ***/n.s./***
			Incongruent	88	1500.9 ± 10.7	106.0 ± 12.9	538.0 ± 113.0 ***/n.s./n.s.	54.5 ± 23.8 ***/***/***	.100 ± .041 ***/***/***
			Difference		(incompatibility slowing)		103.8 ± 51.0 ***/n.s./n.s.		
	fMRI	Control	Congruent	72	1496.9 ± 7.5	102.8 ± 6.1	437.3 ± 39.0 ***/n.s./n.s.	98.6 ± 3.1 ***/n.s./***	.225 ± .021 ***/n.s./***
			Incongruent	48	1503.0 ± 11.0	102.7 ± 7.1	520.5 ± 49.4 ***/n.s./n.s.	89.6 ± 13.7 ***/***/***	.161 ± .025 ***/***/***
			Difference		(incompatibility slowing)		84.7 ± 21.0 ***/n.s./n.s.		
		Patient	Congruent	72	1498.5 ± 7.1	101.6 ± 6.2	454.7 ± 72.6 ***/n.s./n.s.	93.1 ± 17.3 ***/n.s./***	.193 ± .039 ***/n.s./***
			Incongruent	48	1501.3 ± 9.3	103.4 ± 8.0	561.0 ± 91.6 ***/n.s./n.s.	64.6 ± 24.1 ***/***/***	.119 ± .038 ***/***/***
			Difference		(incompatibility slowing)		90.7 ± 41.8 ***/n.s./n.s.		

3 *Supplementary Table 3 Behavioural outcomes from the Flanker task; values are quoted as Median +/- Median Absolute*
 4 *Deviation (MAD) of per-subject outcomes. Significant differences are indicated between stimulus type, session and group*
 5 *(denoted type/session/group, *** p_{holm}<0.001, ** p_{holm}<0.01, * p_{holm}<0.05, n.s. not significant). ISI: Inter-stimulus interval,*
 6 *RA: Response Accuracy, RT: Response Time*

7

8


9

1

	Control		Patient	
	task-OFF	task-ON	task-OFF	task-ON
SNR NAA	97.7 \pm 11.1	41.9 \pm 3.95	95.7 \pm 12.9	40.8 \pm 3.79
FWHM Cho/Cr <i>before</i> linewidth matching n.s.	6.84 \pm 0.569	6.72 \pm 0.619	7.07 \pm 0.474	7.02 \pm 0.518
FWHM Cho/Cr <i>after</i> linewidth matching n.s.	6.88 \pm 0.569	7.03 \pm 0.651	7.24 \pm 0.54	7.23 \pm 0.509
FWHM NAA (Hz)	6.91 \pm 0.729	6.97 \pm 0.729	7.22 \pm 0.608	7.27 \pm 0.764
FWHM GABA+ (Hz)	18 \pm 1.82	16.3 \pm 2.5	18.8 \pm 1.59	16.8 \pm 2.69
FWHM Glx (Hz)	12.1 \pm 1.11	12.7 \pm 1.47	12.3 \pm 0.9	12.5 \pm 1.49
GABA+ (i.u., \approx mM)	2.9 \pm 0.367	2.88 \pm 0.46	2.87 \pm 0.372	2.79 \pm 0.594
Glx (i.u., \approx mM)	14.7 \pm 1.35	15.7 \pm 2.03	14.2 \pm 1.33	14.9 \pm 2.39

2 *Supplementary Table 4* Quality metrics and concentration estimates from the fMRS analysis, task-ON vs task-OFF, presented
3 as median \pm MAD.

4
5

6 *Supplementary Figure 2* Concentration estimates for other metabolites according to group and condition (obtained from the
7 edit-OFF sub-spectrum using the Gannet peak-fitting model)

9

10

1 C.1 Regression Modelling Outcomes: Glx

2
3 Associations between baseline Glx estimate, BOLD signal strength and interactions with
4 patient and control groups, with voxel grey matter fraction fGM as a covariate (ie, $\text{Glx} \sim$
5 $\text{C}(\text{group}) * \text{BOLD} + \text{fGM}$), after removing outlier observations:

6
7 OLS Regression Results
8 =====
9 Dep. Variable: Glx_ConcIU_rest R-squared: 0.152
10 Model: OLS Adj. R-squared: 0.110
11 Method: Least Squares F-statistic: 3.627
12 Date: Mon, 14 Oct 2024 Prob (F-statistic): 0.00905
13 Time: 15:26:06 Log-Likelihood: -167.59
14 No. Observations: 86 AIC: 345.2
15 Df Residuals: 81 BIC: 357.5
16 Df Model: 4
17 Covariance Type: nonrobust
18 =====
19

	coef	std err	t	P> t	[0.025	0.975]
Intercept	14.7549	2.389	6.176	0.000	10.001	19.509
C(group, Treatment("control")) [T.patient]	-2.3603	0.663	-3.557	0.001	-3.680	-1.040
BOLD	-0.3937	0.147	-2.681	0.009	-0.686	-0.102
C(group, Treatment("control")) [T.patient] : BOLD	0.5860	0.238	2.463	0.016	0.113	1.059
fGM	2.0133	3.787	0.532	0.596	-5.523	9.549

20 =====
21 Omnibus: 1.838 Durbin-Watson: 2.120
22 Prob(Omnibus): 0.399 Jarque-Bera (JB): 1.795
23 Skew: 0.275 Prob(JB): 0.408
24 Kurtosis: 2.553 Cond. No. 78.1
25 =====

32
33
34
35
36 Glx estimate in relation to group (patient, control), task status (task-OFF, task-ON), with grey matter
37 fraction as a covariate and subject as the grouping variable (ie, $\text{Glx} \sim \text{C}(\text{group}) * \text{C}(\text{task_state})$
38 + fGM), after filtering observations with strong residuals:

39
40 Mixed Linear Model Regression Results
41 =====
42

	Dependent Variable: value	Method: REML	Scale: 3.5542	Log-Likelihood: -442.9158	Converged: Yes
Model:	MixedLM				
No. Observations:	193				
No. Groups:	99				
Min. group size:	1				
Max. group size:	2				
Mean group size:	1.9				

43 =====
44

	Coef.	Std.Err.	z	P> z	[0.025 0.975]
Intercept	13.096	2.734	4.790	0.000	7.737 18.455
C(task_state) [T.True]	1.107	0.390	2.840	0.005	0.343 1.871
C(group, Treatment("control")) [T.patient]	-1.080	0.536	-2.017	0.044	-2.130 -0.030
C(task_state) [T.True] : C(group, Treatment("control")) [T.pat	-0.106	0.546	-0.194	0.846	-1.177 0.965
fGM	3.030	4.492	0.675	0.500	-5.773 11.834
subject Var	3.315	0.574			

45 =====
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 C.2 Regression Modelling Outcomes: GABA+

2
3 Associations between baseline GABA+ estimate, BOLD signal strength and interactions with
4 patient and control groups, with voxel grey matter fraction fGM as a covariate (ie, GABA ~
5 C(group) *BOLD + fGM), after removing outlier observations:

6
7 OLS Regression Results
8 =====
9 Dep. Variable: GABA_rest R-squared: 0.073
10 Model: OLS Adj. R-squared: 0.029
11 Method: Least Squares F-statistic: 1.649
12 Date: Mon, 14 Oct 2024 Prob (F-statistic): 0.170
13 Time: 15:26:00 Log-Likelihood: -10.491
14 No. Observations: 89 AIC: 30.98
15 Df Residuals: 84 BIC: 43.43
16 Df Model: 4
17 Covariance Type: nonrobust
18 =====
19

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.7804	0.384	4.639	0.000	1.017	2.544
C(group, Treatment("control")) [T.patient]	-0.2491	0.108	-2.297	0.024	-0.465	-0.033
BOLD	-0.0577	0.025	-2.280	0.025	-0.108	-0.007
C(group, Treatment("control")) [T.patient]:BOLD	0.0870	0.038	2.264	0.026	0.011	0.163
fGM	0.0252	0.607	0.041	0.967	-1.181	1.231

20 =====
21 Omnibus: 0.113 Durbin-Watson: 2.258
22 Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.284
23 Skew: 0.047 Prob(JB): 0.868
24 Kurtosis: 2.740 Cond. No. 79.5
25 =====
26 =====
27
28
29
30
31 =====
32
33
34
35
36

37 GABA+ estimate in relation to group (patient, control), task status (task-OFF, task-ON), with grey
38 matter fraction as a covariate and subject as the grouping variable (ie, GABA ~
39 C(group) *C(task_state) + fGM), after filtering observations with strong residuals:

40
41 Mixed Linear Model Regression Results
42 =====
43 Model: MixedLM Dependent Variable: value
44 No. Observations: 192 Method: REML
45 No. Groups: 99 Scale: 0.0612
46 Min. group size: 1 Log-Likelihood: -64.0653
47 Max. group size: 2 Converged: Yes
48 Mean group size: 1.9
49 =====
50

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	1.426	0.368	3.873	0.000	0.704	2.147
C(task_state) [T.True]	0.008	0.050	0.165	0.869	-0.090	0.107
C(group, Treatment("control")) [T.patient]	-0.019	0.071	-0.271	0.787	-0.159	0.120
C(task_state) [T.True]:C(group, Treatment("control")) [T.pat]	-0.065	0.072	-0.896	0.370	-0.206	0.077
fGM	0.348	0.606	0.574	0.566	-0.840	1.535
subject Var	0.063	0.078				

51 =====
52
53
54
55
56
57
58
59
60

1 C.3 Exploratory correlational tests

2

Variables [®]	PANSS P3			PANSS total positive			PANSS total negative		
	r	punc.	pholm	r	punc.	pholm	r	punc.	pholm
-	-	-	-	-	-	-	-	-	-
Baseline Glx	-0.00 [-0.29, 0.28]	0.974	1	0.01 [-0.28, 0.29]	0.963	1	-0.06 [-0.34, 0.22]	0.661	1
ΔGlx	-0.01 [-0.29, 0.27]	0.945	1	-0.34 [-0.57,-0.05]	0.0228	0.457	-0.01 [-0.29, 0.27]	0.96	1
Baseline GABA+	-0.17 [-0.45, 0.15]	0.293	1	-0.14 [-0.41, 0.15]	0.337	1	0.05 [-0.24, 0.32]	0.744	1
ΔGABA+	-0.15 [-0.41, 0.14]	0.312	1	-0.03 [-0.32, 0.27]	0.858	1	0.07 [-0.22, 0.35]	0.618	1
BOLD-fMRI	-0.08 [-0.38, 0.23]	0.598	1	-0.10 [-0.38, 0.20]	0.508	1	-0.11 [-0.39, 0.18]	0.458	1
Task performance: RA/RT	-0.19 [-0.47, 0.13]	0.241	1	-0.15 [-0.42, 0.14]	0.301	1	-0.28 [-0.52, 0.00]	0.0536	1
Task performance: RT_slowing	-0.24 [-0.49, 0.05]	0.0982	1	-0.24 [-0.49, 0.05]	0.0988	1	-0.35 [-0.58,-0.07]	0.0143	0.301

3 *Supplementary Table 5 Exploratory correlational testing; skipped Spearman correlation with 95% confidence interval*

4