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ABSTRACT

Type 2 diabetes (T2D) is a significant risk factor for Alzheimer’s disease (AD). Despite multiple
studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly
understood. It is challenging to design studies that address co-occurring and comorbid diseases,
limiting the number of existing evidence bases. To address this challenge, we expanded the
applications of a computational framework called Translatable Components Regression
(TransComp-R), initially designed for cross-species translation modeling, to perform cross-
disease modeling to identify biological programs of T2D that may exacerbate AD pathology. Using
TransComp-R, we combined peripheral blood-derived T2D and AD human transcriptomic data to
identify T2D principal components predictive of AD status. Our model revealed genes enriched
for biological pathways associated with inflammation, metabolism, and signaling pathways from
T2D principal components predictive of AD. The same T2D PC predictive of AD outcomes
unveiled sex-based differences across the AD datasets. We performed a gene expression
correlational analysis to identify therapeutic hypotheses tailored to the T2D-AD axis. We identified
six T2D and two dementia medications that induced gene expression profiles associated with a
non-T2D or non-AD state. Finally, we assessed our blood-based T2DxAD biomarker signature in
post-mortem human AD and control brain gene expression data from the hippocampus, entorhinal
cortex, superior frontal gyrus, and postcentral gyrus. Using partial least squares discriminant
analysis, we identified a subset of genes from our cross-disease blood-based biomarker panel
that significantly separated AD and control brain samples. Our methodological advance in cross-
disease modeling identified biological programs in T2D that may predict the future onset of AD in
this population. This, paired with our therapeutic gene expression correlational analysis, also

revealed alogliptin, a T2D medication that may help prevent the onset of AD in T2D patients.


https://doi.org/10.1101/2024.12.11.627991
http://creativecommons.org/licenses/by/4.0/

53

54
55
56
57
58
59
60
61
62
63

64

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.11.627991; this version posted December 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

ABBREVIATIONS
Abbreviation Associations
AD Alzheimer’s disease
APOE Apolipoprotein E
BBB Blood-brain barrier
DEG Differentially expressed gene
EC Entorhinal cortex
FDA Food and Drug Administration
GEO Gene Expression Omnibus
GLM Generalized linear model
GSEA Gene set enrichment analysis
LASSO Least Absolute Shrinkage and Selection Operator
LINCS Library of Integrated Network-Based Cellular Signatures
LV Latent variable
MCI Mild cognitive impairment
MMSE Mini-Mental State Examination
PC Principal component
PCA Principal component analysis
PLS-DA Partial least squares discriminant analysis
PoCG Postcentral gyrus
SFG Superior frontal gyrus
T2D Type 2 diabetes

TransComp-R
VIP

Translatable Components Regression
Variable importance of projection
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INTRODUCTION

Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia and insulin
dysregulation that significantly elevates the risk for Alzheimer’s disease (AD) by more than 60%"~
3. Alzheimer's disease is an irreversible neurodegenerative disorder that gradually impairs
memory and cognitive function. A recent large-scale longitudinal study found that individuals with
an earlier onset of T2D were at higher risk of developing AD*. Other cohort studies®® reported
similar results. In addition to the elevated risk of AD, T2D also contributes to other conditions such
as hypertension’, neuroinflammation®, heart disease®, stroke'®, and kidney disease''. As a result,
the influence of T2D on other comorbidities further complicates our understanding of its impact

on human health and the development of potential therapeutics for such conditions.

To understand this T2D-AD axis, previous studies examined how the onset of T2D influences the
progression of AD'?. Multiple studies reported insulin signaling impairment in T2D and AD">",
The metabolic connection to AD'® also carries the T2D risk factor and is further amplified by the

age'®.

Systemic low-grade inflammation in T2D progressively leads to downstream
neuroinflammation and neuronal cell death, increasing the risk of AD"~'°. Another study revealed
altered gene expression levels in neurons, astrocytes, and endothelial cells in post-mortem brain

tissue of T2D subjects, showing alterations to brain cells under diabetic conditions?.

Previous work from other groups implicates the blood-brain barrier (BBB) as a potential route that
connects T2D?' and AD*. The BBB is a selective semipermeable membrane consisting of
endothelial cells, pericytes, and astrocytes, which protects the brain from harmful substances and
regulates the passage of immune cells and nutrients into the brain?*?*. One large clinical study
observed heightened BBB permeability in people with T2D and AD?. This progressive breakdown
of the BBB in T2D and AD is associated with irregular vascular endothelial growth factor

production, resulting in increased permeability across the BBB#*?°. Other reports suggested that
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91 damage to endothelial cells in the cerebral blood vessels, indicated by elevated adhesion
92  molecules, may contribute to this breakdown?2"2_ Therefore, chronic circulation of molecules
93  produced under T2D conditions in the bloodstream may contribute to BBB breakdown and
94  eventually enter the brain, contributing to the development of dementia and cognitive dysfunction.
95

96 A barrier to understanding how one disease influences another is that studies that simultaneously

97 investigate multiple health conditions in humans are rare and difficult®

. This challenge is
98  compounded in chronic disorders like T2D and AD, where pathogenesis can precede diagnosis
99 by decades®. To overcome this barrier, other groups have used differential expression analysis

100  of transcriptomic data between T2D and AD but have fallen short in considering human

101  heterogeneity, such as sex and age®"*2. Another group integrated T2D and AD data using non-

102 negative matrix factorization to identify shared genes across the blood of T2D and AD. While they

103  identified dysregulated transcription factors shared across both diseases, they also did not

104  account for confounding variables such as sex and age®. To overcome this challenge, we

105 adapted Translatable Components Regression (TransComp-R), a computational approach

106 initially developed to translate observations from pre-clinical animal disease models to human

337 to perform cross-disease modeling of human datasets to identify T2D biology

107  contexts
108  predictive of AD.

109

110  In this work, we hypothesized that gene transcripts in T2D blood may predict and inform AD
111  pathology. We tested this hypothesis via computational modeling of publicly available peripheral
112 blood transcriptomics data of T2D and AD patients to determine if biomarkers in T2D blood could
113 distinguish blood signatures in AD versus cognitively normal control groups. To identify potential

114  therapeutics tailored to the T2D-AD axis, we employed a correlational analysis to identify

115  candidate drugs that may impact AD development. Lastly, we assessed whether the blood-based
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116  biomarkers from our T2D-AD computational models could differentiate between AD and control
117  samples in brain tissue transcriptomics data.

118

119 RESULTS

120  TransComp-R modeling separates AD and control subjects in T2D PC space

121  We acquired bulk-RNA seq T2D and microarray AD peripheral whole blood data from Gene
122 Expression Omnibus (GEO). For the T2D dataset (GSE184050)%®, we used the longitudinal
123 baseline sample collection and information, including demographic variables of sex and age. Two
124  separate cohorts of AD data were used in the model to test the predictability of T2D for AD. In
125  both AD cohort 1 (GSE63060)%* and AD cohort 2 (GSE63061)*°, we used AD and healthy control

126  subjects. Using two separate cohorts ensured that the selected T2D PC’s would be robust (Table

127  1).

128  Table 1. Demographics of processed human transcriptomic blood data across each data set.
GEO Dataset Condition Age (years) Sex (%) Total Sample
(Accession) Mean + SD Male Female Size (n)
T2D Control 64.4 + 9.6 3 (19%) 13 (81%) 16
(GSE184050) T2D 64.1+2.8 3 (30%) 7 (70%) 10
AD Cohort 1 Control 72.8+5.8 42 (41%) 60 (59%) 102
(GSE63060) AD 754 +6.6 46 (32%) 99 (68%) 145
AD Cohort 2 Control 75.3+6.0 53 (40%) 81 (60%) 134
(GSE63061) AD 77.9+6.7 54 (39%) 85 (61%) 139

129

130  We repurposed the TransComp-R to identify biological pathways dysregulated in T2D predictive
131  of AD status. Cross-disease TransComp-R begins by matching shared genes across all datasets
132 (Fig. 1a). We then projected the AD human samples into a principal component analysis (PCA)
133 space constructed from the T2D data. We evaluate predictive power of T2D PCs for outcomes in
134 AD by Least Absolute Shrinkage and Selection Operator (LASSO) feature selection and
135  generalized linear model (GLM) regression (Fig. 1b). Using GSEA, we annotated the biological
136  and therapeutic interpretations of the significant T2D PCs predictive of AD biology (Fig. 1¢c). We

137  correlated differentially expressed genes from the drug list containing consensus signatures from
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the Library of Integrated Network-based Cellular Signatures (LINCS) database to the loadings of
the T2D PCs predictive of AD. This method links drug regulation of genes associated with healthy

states vs AD or T2D with drug response signatures to identify therapeutic hypotheses.

d Project Alzheimer’s Disease Samples into Type 2 Diabetes PCA Space
1. Match Shared Genes 2. Create T2D PCA Space 3. Project AD Data onto T2D PC Eigenvectors

Xr20 AD Cohort 1

T2D PC1 T2D PC1
T2D PC3

AD Cohort 2

T2D PC1

“* T2DPC3 “° T2D PC3

T2D PC2 T2D PC2 T2D PC2
X X . . © Human AD Samples
Cohﬁ?ﬂ Cohort 2 PCs Explain 80% T2D Variance [o Human Control Samples ]

b Determine Translatability of Type 2 Diabetes PCs to Alzheimer’s Disease

4. Select PCs with LASSO Using AD Human Demographics 5. Linear Regression of Selected T2D PCs
AD Cohort 1 AD Cohort 2 k

Y~ PC + Sex + Age + PC*Sex + PC*Age Y humanAp = /}0 + Z/}i (XhumanaAD 7{)

» » i=1
O O
= 2 =p Select T2D PCs Consistently =p D c;,hm” AD cf:m“ -
N N Identified by LASSO * % * &= Selected PCs
oO% g oO%g PC Selection Criteria .
o< o< Frequency > 25%
Zi) 9 g_) E 9 y ° Interpret PCs Significant Across Both AD Cohorts

C Biological Interpretation of PCs Identified by TransComp-R

6. Pathway Enrichment Analysis 7. Computational Therapeutic Screening
PC 2 - Gene Overlap _Spearman
« 8 I £ = - -»> Correlation
PC*sl7| = BEY > =& LINCS Drug DEGs
! £ Gene List From 4[] Y Candidate
Select loadings from significant PCs & Enrichment Score T2D PC List gl{] -»> Drug List

Figure 1. Workflow of TransComp-R. (a) Genes across T2D and AD are selected for analysis.
Each AD cohort is individually projected into the T2D PCA space to combine the two diseases.

(b) PC translatability from T2D to AD is determined by running a GLM regression against AD
outcomes using PCs consistently selected across each AD cohort. (c) Pathway enrichment
analysis is performed on the loadings of significant PCs to identify enriched biological pathways.

Potential therapeutic candidates are then identified using a correlation analysis framework.

We matched 11,455 genes across the T2D and AD datasets and constructed the PCA space of

the T2D and control samples. To prevent overfitting, we selected thirteen PCs for a cumulative

explained variance of 80% for the TransComp-R model (Supplementary Fig. S1). Each AD
cohort was separately projected onto the T2D PCs, such that we constructed two cross-disease

models: T2D with AD cohort 1 and T2D with AD cohort 2.
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154
155  We quantified how the variance captured by the T2D PCs explained the variation in human AD.
156  To determine the cross-disease relevance of the T2D PCs to the variance of the AD data, we
157  visualized each of the thirteen T2D PCs, comparing the variance explained in the T2D and AD
158  data (Fig. 2a). When comparing the translatability of T2D PCs in AD cohort 1 and 2, we found
159 T2D PC1, PC2, and PC3 had higher explained variance in Alzheimer’s disease data relative to
160  the other T2D PCs 4-13, showing that T2D PCs1-3 have highest potential for translation of biology
161  between T2D and AD.
a __507AD Cohort 1 _504AD Cohort 2
PCs 4-13 2 401 . PCs 4-13 S 40.
PC4. g L6 PCA .pc4 g ,,/ °
- 30; el F 30+ -7 PCt
4 P . i e 4 bcs PC6 o i 7
R bcere PC7  PCS X 207 e pc10ePC7  PC5 X201 yd
2 R&ESh 4 & 10 L o |2 X’E—cﬁ’gg - &10] L7 o
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163  Figure 2. TransComp-R identifies T2D PCs predictive of AD outcomes. (a) AD PCs were
164  separated by cohort, with variance explained in AD (b) Selection of PCs using a LASSO model
165 incorporating sex and age demographics from the AD datasets. The model was run across twenty
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166  random rounds of ten-fold cross-validation. PCs consistently determined significant across both
167  AD cohorts from the GLM regression were further analyzed. (c¢) Principal component plots of AD
168  scores on selected T2D PCs separating AD and control outcomes in AD cohort 1 and (d) AD
igg cohort 2. Each T2D PC is represented by the percent variance explained in AD.

171  We used LASSO to select the most relevant T2D PCs for predicting AD by regressing AD
172 projections on T2D PCs, sex, and age from the AD cohort, with interaction effects of T2D PC with
173  sex and age. From the LASSO model, several PCs (PC2, PC5-6, PC9-13) were selected across
174  both AD cohorts (Fig. 2b). Despite the multiple number of PCs being consistently selected from
175 LASSO, only T2D PC2, PC5, PC6, and PC11 fulfilled the selection criteria and discerned between
176  AD and control groups in the GLM. The T2D PCs predictive of AD conditions were visualized for
177  both AD cohort 1 (Fig. 2c) and AD cohort 2 (Fig. 2d). While the transcriptomic variation encoded
178  on T2D PC2 and PC5 were able to distinguish between human AD and control groups, there was
179 less distinguishable separation made by T2D PC6 and PC11. Among T2D PC2 and PC5, we
180  selected T2D PC2 for deeper downstream interrogation due to the higher potential for T2D-to-AD
181 translatability as quantified by the percentage of variance explained in AD (Fig. 2a).

182

183  T2D and AD share pathways associated with metabolism, signaling pathways, and cellular
184  processes

185 We employed GSEA to interpret the T2D PC2 gene loadings, which encoded transcriptomic
186  variation between healthy and T2D subjects that predicted AD outcomes using both KEGG (Fig.

187  3a) and Hallmark (Fig. 3b) databases to gain a holistic insight into the genes loaded on T2D PC2.
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Figure 3. Pathway Enrichment Analysis. The transcriptomic variance separating AD and
control subjects on T2D PC2 was interpreted with GSEA using the (a) KEGG and (b) Hallmark
databases. Significantly enriched pathways were determined with a Benjamini-Hochberg adjusted
p value less than 0.01. (c) Shared leading edge genes between biological pathways in the KEGG
and (d) Hallmark pathways. The node size represents the number of genes contributing to the
pathway from GSEA, whereas the edge size is the number of shared genes between each
biological pathway. Missing pathways signified that there were no shared genes with other

pathways.

We organized the enriched pathways into themes to determine if neighboring pathways were due

to the overrepresentation of shared genes for both the KEGG (Fig. 3c) and Hallmark (Fig. 3d)

databases. In the AD-associated pathways from KEGG, we identified enriched pathway themes,

10
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201  such as the cardiovascular system, signaling pathways, cellular processes and metabolism, and
202  cancer pathways. In the control group, we found pathways associated with neurodegenerative
203  diseases and metabolism. From Hallmark, pathways enriched in AD associations included
204  signaling pathways, cellular processes, metabolism, and stress response, with metabolism and
205  cell cycle pathways enriched in controls.

206

207  T2D PC2 identifies gene expression changes with predictive ability across sex and disease
208  conditions in two AD cohorts

209  We compared the average log. fold change of the 11,455 shared genes for disease and control
210  groups to identify trends in the regulation of genes across diseases. In both AD cohorts and T2D,
211  there were decreases in gene expression including COX7C, NDUSF5, NDUFA1, RPL17, RPL23,
212 RPL26, RPL31, and TOMM?7 (Fig 4a), genes responsible for mitochondrial and ribosomal
213 functions. COX7C, NDUSF5, and NDUFA1 are active in the electron transport chain function in
214  the inner mitochondrial membrane and TOMM7 encodes for a subunit of the translocase of the
215  outer mitochondrial membrane. Ribosomal protein L genes such as RPL17, RPL23, RPL26, and

216  RPL31 play a role in forming structures of ribosomes and regulating ribosome function.

11
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Figure 4. Comparison of global gene expression and AD-predictive T2D PCs (a) AD and
T2D log. fold change plot of all shared 11,455 genes (b) AD and T2D log- fold change plot filtered
by gene expressions with the top 50 and bottom 50 loadings of T2D PC2. (c¢) Scores of T2D PC2
separated by sex and disease condition. A Mann-Whitney test adjusted by Benjamini-Hochberg
was used to determine statistical significance. The distribution of the data is annotated by the
mean and interquartile ranges.

We next tested to see if the top 50 and bottom 50 gene loadings from T2D PC2 could capture the
cross-disease trends of the total transcriptome. We visualized the filtered gene with AD and T2D
fold changes and observed a similar trend such that multiple genes were downregulated in both
AD and T2D conditions (Fig. 4b). Among those consistently downregulated in AD and T2D, genes

related to ribosomal proteins (RPL and RPS) were present. These 100 genes also distinguished

between control and AD subjects (Supplementary Fig. S2).

Finally, we evaluated T2D PC2’s ability to stratify sex and disease characteristics in AD. We
identified significant sex-based differences across AD and control in both cohorts. In AD cohort 1,

we found that the female and male groups, each separated by AD and control, were significantly
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235  different by the variation captured by T2D PC2, with adjusted p values of 0.0002 and 0.0013,
236  respectively (Fig. 4c). Similarly, in AD cohort 2, there was significance in disease separation for
237  both females and males, with adjusted p values of 0.0073 and 0.0033, respectively (Fig. 4c).
238  Comparing the scores of T2D PC2 by disease condition only, we found significance in both AD
239  cohort 1 (p = 2.000x107) and AD cohort 2 (p = 9.078x107).

240

241 Identification of drug perturbation signatures associated with PC2 T2D-AD signatures
242 We developed a correlation analysis to identify therapeutic candidates associated with the T2D
243 PC2 predictive of AD. We used the Library of Integrated Network-Based Cellular Signatures
244 (LINCS) Consensus Signatures, a dataset containing 33,609 drugs with their respective post-
245  treatment gene expression profiles summarized as a “characteristic direction” (CD) coefficient*.
246  Of the 33,609 drugs in the LINCS database, 3,161 remained after we filtered out duplicates and
247  drugs without known targets. We compared the CD coefficient values of genes affected by each
248  drug to the gene loadings on T2D PC2 using Spearman’s correlation. We hypothesized a drug
249  could be therapeutic for T2D/AD risk based on the correlation directionality, where negative p
250  values were interpreted as inducing profiles associated with a non-T2D or non-AD state and
251  positive p values associated with a T2D or AD disease state.

252

253  We identified 1,262 drugs significantly correlated with the loadings in T2D PC2 (Fig. 5a). Drugs
254  associated with a non-T2D and non-AD gene expression profile included dienestrol, BW-180C,
255  T-0156, alogliptin, and roflumilast (Supplementary Table S1). Dienestrol had the most negative
256  correlation coefficient of -0.5059 and is an estrogen receptor agonist used to treat vaginal pain by
257  targeting ESR1. T-0156 (PDE5A) and roflumilast (PDE4A, PDE4B, PDE4C and PDE4D) are both
258  phosphodiesterase inhibitors. We also identified a prototypical delta opioid receptor agonist (BW-

259 180C) and a T2D prescription medication (alogliptin), which targets OPRD1 and DPP4,
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260  respectively. Conversely, drugs associated with gene expression of a T2D or AD disease state
261  included antagonists such as wortmannin (P/3K inhibitor), proglumide (CCK receptor antagonist),
262  GR-127935 (serotonin receptor antagonist), homatropine-methylbromide (acetylcholine receptor
263  antagonist), and phenacemide (sodium channel blocker).

264

265  To filter drugs tested for safety and efficacy, we referenced the Food and Drug Administration
266  (FDA) Orange Book for FDA-approved and over-the-counter drugs (June 2024 version)*'. We
267 identified 301 FDA-approved drugs in our original significant 1,262 (Fig. 5b), and of these, 23
268  were approved for over-the-counter use (Fig. 5¢). Among the FDA-approved drugs, alogliptin and
269  roflumilast were among the most negative correlation coefficients. Other medications with
270  negative coefficients associated with a non-T2D or AD state were isradipine, used for
271  hypertension (CACNA1S, CACNA1C, CACMA1F, CACMA1D, and CACMA2D1 targets), niacin
272  used for vitamin B (HCARZ2 and HCARS3 targets), and disopyramide used for irregular heartbeats
273  (SCN5A gene target) (Supplementary Table S2). Among medications with top positive
274  coefficients associated with AD and T2D, we identified two anti-cancer drugs (pacritinib and
275  lenvatinib), a blood thinner (ticagrelor), and two anti-arrhythmic drugs (adenosine and flecainide).
276

277  The most negative coefficients for over-the-counter drugs were vasodilators, opioid receptor
278  targets, and histamine receptor drugs (Supplementary Table S3). Minoxidil had the most
279  negative correlation coefficient (-0.3101) and is a hypertension medication that targets KCNJ8,
280  KCNJ11, and ABCC9. Loperamide (opioid receptor agonist), used for diarrhea, targets OPRM1
281 and OPRD1, while naloxone (opioid receptor antagonist), used for opioid overdose, affects
282  OPRK1, OPRM1, and OPRD1. We also identified two histamine receptor antagonists, cimetidine
283  and doxylamine, which targeted HRH2 and HRH1, respectively. The most positively correlated
284  medications that induced disease gene signatures included orlistat, a lipase inhibitor used for

285  weight loss and T2D, had the greatest coefficient of 0.3104 (L/PF, PNLIP, DAGLA, and FASN
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targets). Other positive correlation, T2D-AD associated drugs included budesonide (corticosteroid
for Crohn’s disease) and mometasone (steroid for skin discomfort), both of which are
glucocorticoid receptor agonists with the target of NR3C1. Other medications among the most
positively correlated included clotrimazole (cytochrome p450 inhibitor) and pheniramine

(histamine receptor antagonist), which targeted KCNN4 and HRH1 respectively.
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Figure 5. Computational gene expression correlational analysis. (a) All significant drugs
identified from the LINCS database. Drugs filtered by (b) FDA approval status and (c) over-the-
counter drugs. (d) FDA-approved T2D drugs (alogliptin and glipizide) associated with control
group signatures. (e) FDA-approved T2D drug (orlistat) associated with genes upregulated in AD.
(f) FDA-approved medications for cognitive-enhancement (galantamine and donepezil). (g) FDA-
approved drug (brexpiprazole) with signatures correlated to genes elevated in AD.
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299  We compared the FDA-approved drugs to MedlinePlus and First Databank for any medication
300  currently used to treat T2D or cognitive-associated symptoms (Supplementary Table S4). Of the
301 301 FDA-approved drugs identified, we found ten medications for T2D and three with cognitive
302  function associations (Supplementary Table S5). Among the medications used for T2D, glipizide
303  (sulfonylurea), repaglinide (insulin secretagogue), and nateglinide (insulin secretagogue) targeted
304 KCNJ11 and ABCCS8. The diabetes dipeptidyl peptidase inhibitors that target DPP4, included
305 alogliptin, sitagliptin, and linagliptin. We also identified sodium/glucose co-transporter inhibitor
306 empagliflozin (SLC5A2), the PPAR receptor antagonist pioglitazone, glucosidase inhibitor
307 acarbose (AMY2A, MGAM, and GAA), and lipase inhibitor orlistat (LIPF, PNLIP, DAGLA, and
308 FASN). Among medications commonly prescribed to improve cognitive function, we identified
309 donepezil and galantamine, acetylcholinesterase inhibitors that target ACHE and ACHE/BCHE
310  and brexpiprazole (HTR2A, DRD2, HTR1A), a dopamine receptor partial agonist used for AD-
311 associated agitation. Of these thirteen medications, empagliflozin, linagliptin, brexpiprazole,
312  acarbose, and orlistat contained gene expression responses correlated to an AD or T2D condition.
313  Nine medications were associated with a non-AD or non-T2D condition, which included alogliptin,
314  glipizide, repaglinide, sitagliptin, pioglitazone, galantamine, nateglinide, and donepezil.

315

316  We selected the top two medications that associated with a non-disease state (T2D and cognitive-
317  enhancing medication) and those associated with a disease state to compare the relationship of
318  the drug DEGs and T2D PC2 scores. We found that alogliptin and glipizide, anti-T2D drugs had
319  the most significant correlation magnitude among the six drugs, with a coefficient of -0.5 (p <
320  2.2x107°) and -0.42 (p < 2.2x107'®), respectively (Fig. 5d). Orlistat had gene signatures most
321 positively correlated with disease states (rho = 0.31, p = 2.9x10™"%) (Fig. 5e). The signatures
322  affected by cognitive medications galantamine (rho =-0.13 p = 0.0028) and donepezil (rho = -0.1
323  p =0.024) had weaker correlations than the anti-T2D medication (Fig. 5f). Finally, we identified

324  brexpiprazole, an anti-psychotic drug with a low positive correlation coefficient of 0.22 (p = 2.6x10

17


https://doi.org/10.1101/2024.12.11.627991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.11.627991; this version posted December 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

325 ") associated with T2D and AD disease status (Fig. 5g). Other FDA-approved T2D medications,
326  with weaker correlations to a non-T2D or non-AD state included repaglinide, sitagliptin,
327  pioglitazone, and nateglinide (Supplementary Fig. S3).

328

329  Translation of T2D PC2 gene loadings to from AD blood to AD brain transcriptomics

330  Having identified biomarkers in T2D blood predictive of AD status, we assessed if the identified
331  signature stratified AD from control patients in brain tissues. We acquired a human microarray
332  dataset (GSE48350)*** profiling AD and control samples in multiple brain regions: hippocampus,
333  entorhinal cortex (EC), superior frontal gyrus (SFG), and postcentral gyrus (PoCG). Potential age
334  bias was reduced by excluding subjects younger than 55. The post-processed demographics

335  separated by their respective brain region were summarized (Table 2).

336
337 Table 2. Demographic summary across four different processed human brain regions
GEO Dataset Condition Age (years) Sex (%) Total Sample
(GSE48350) Mean + SD Male Female Size (n)
Hippocampus Control  82.0+10.0 13 (52%) 12 (48%) 25
AD 83.1+8.5 9 (47%) 10 (53%) 19
Entorhinal Cortex Control  80.7 +10.3 9 (50%) 9 (50%) 18
AD 86.5+5.5 7 (47%) 8 (53%) 15
Superior Frontal Control  80.8 +10.3 12 (46%) 14 (54%) 26
Gyrus AD 87.1+£6.2 7 (33%) 14 (67%) 21
Postcentral Gyrus Control 81.5+10.4 11 (46%) 13 (54%) 24
AD 85.0 £ 8.2 10 (40%) 15 (60%) 25

338

339  We matched genes in the AD brain dataset to the top 50 and bottom 50 genes from T2D PC2
340  (Fig. 6a) and matched 88 genes. We determined AD status-associated genes in each brain region
341  via differential expression analysis (Benjamini-Hochberg adjusted Mann-Whitney test, p adjusted
342 <0.20). We first investigated the hippocampus brain tissue to identify genes from T2D-blood PC2
343  that could stratify AD and control groups in the brain. We identified 25 significant genes (adjusted
344  p value < 0.20) and hierarchical clustering showed these 25 genes separated AD and control

345  conditions in the hippocampus gene expression data (Fig. 6b). We used these genes to construct
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346  PLS-DA models to identify genes driving separation across the brain tissue samples of AD and

347  control groups (Fig. 6¢, Supplementary Fig. S4).
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349  Figure 6. Translating blood-predictable signatures to the brain. (a) Method of testing blood-
350 derived data predictability in the brain. (b) Z-score of significant AD-associated genes identified
351 in the human hippocampal dataset (Mann-Whitney adjusted by Benjamini-Hochberg, p adjusted
352 < 0.20). (c¢) PLS-DA model using significant genes to predict AD status. AD groups are labeled
353 by APOE genotype, Braak stage, and MMSE. (d) Loading variables LV1 and LV2 for the model
354  are presented. A VIP>1 is annotated with a star, and the color of the loading bar represents the
355  highest contribution to the specific class by the respective gene.

356
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357  We annotated the subjects within the PLS-DA plot by their respective apolipoprotein E (APOE)
358  genotype, Braak stage, and mini-mental state examination (MMSE) scores (Fig. 6d). These were
359 used since APOE e4 is the greatest genetic risk factor for AD*, Braak stage assesses
360 neurofibrillary tangle pathology*®, and MMSE for cognitive impairment screening*. There was
361 clear separation between AD and control groups in our PLS-DA model and we identified a subset
362  of genes loaded in the latent variables (LVs) most predictive of disease status (Fig. 6d). On LV1,
363  we identified genes with variable importance of projection (VIP) greater than 1 associated with
364 the control group, including SNRPD2, POLR2K, ATP6V0OC, NDUFB1, COX6C, COX7C, and
365 CHGA. For the AD group, we found BNC1, WDR38, SLC9A1, ALB, and TNRC18 with a VIP>1.
366  Although there was no separation across the disease classes on LV2, we found NDUFB1,
367 ATP6V0C, COX7C, COX6C, and CHGA contributed greater than average (VIP > 1) to the control
368  group, whereas ALB, TNRC18, SLC9A1, BNC1, BCORL1, and ZNF467 had a VIP >1 for AD.
369

370  After observing separation across disease classes in the hippocampus brain data, we next
371  determined if the T2D blood biomarkers able to stratify AD conditions in blood were reflective in
372  other parts of the brain. We built PLS-DA models for the EC, SFG, and PoCG. Of the 88 genes
373  that matched in the human brain tissue data, five genes were significant across AD and control
374  groups in the EC (Fig. 7a). Using these genes for the PLS-DA model, we found distinct separation
375 across LV1, and identified RIN3, RPL36A, and POLR2K as genes with a VIP greater than 1 (Fig.
376  7b). In the SFG brain region, we identified four significant genes: RIN3, CSTA, RCN3, and
377  RPL36A (Fig. 7c). In the SFG model, RIN3 and RPL36A contributed most to separation between
378  the AD and control groups (Fig. 7d). In the PoCG region, three genes significantly separated AD
379  and control, including PRAM1, RCN3, and RPL36A (Fig. 7e-f). For each of these three brain
380 regions, additional annotation on the PLS-DA subjects by APOE genotype, Braak stage, and
381  MMSE were visualized for the EC, SFG, and PoCG PLS-DA models (Supplementary Fig. S5).

382
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384  Figure 7. PLS-DA models using blood biomarkers to predict AD status in other brain
385 regions (a) Z-score of significant genes identified in the human EC dataset. (b) PLS-DA using
386  the significant genes on the EC data with loadings on LV1 and LV2. (c) Z-score of significant
387  genes identified in the human SFG dataset. (d) PLS-DA using the significant genes on the SFG
388  data with loadings on LV1 and LV2. (e) Z-score of significant genes identified in the human PoCG
389  dataset. (f) PLS-DA using the significant genes on the PoCG data with loadings on LV1 and LV2.
390  For all brain regions, the significance of the genes was determined by a Mann-Whitney adjusted
391 by Benjamini-Hochberg (p adjusted < 0.20) across AD and control groups.

392

393 DISCUSSION

394 In this study, we used blood transcriptomics data from human T2D and AD studies to understand
395 the potential pathways by which T2D affects AD pathology. Our cross-disease model identified a
396  T2D-derived blood gene signature predictive of AD status and therapeutic candidates associated
397  with non-T2D and AD status. A subset of genes in the T2D blood were predictive of AD status in

398  four brain regions, showing the cross-disease model's significance and implications.
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399

400  Chemokine signaling pathways were involved in patients of T2D*" by routes of downstream
401  inflammation*® and AD*® with connections to cognitive decline. Wnt signaling also played a role in
402  metabolic dysregulation® and loss of synaptic integrity®'. Insulin pathways were enriched in AD
403  conditions, consistent with prior literature showing insulin resistance® is associated with an
404  increased risk for AD development®®, Pathways, such as MAPK and NOTCH, were enriched in
405  AD conditions, with MAPK-p38 phosphorylation associated with both T2D and AD®*%°. Notch1
406  expression decreases beta cell masses and insulin secretion in rodents®® and was significantly
407  different across control and AD groups in our analysis®’. FC epsilon Rl is also altered in T2D and
408  AD cases, such that downstream mast cells are affected®.

409

410  We also identified cellular processes and metabolism pathways on the AD predictive T2D PC2.
411  Elevated neutrophil activation to chemokines and transendothelial migration is associated with
412  T2D*. In AD, monocytes and human brain microvascular endothelial cells expressing CXCL1 are
413  associated with amyloid-beta-induced migration from the blood to the brain®. FC gamma
414  receptor-mediated phagocytosis is observed in T2D in compromised monocyte phagocytosis®’.
415 PRKCD is associated with amyloid-beta significantly triggered neurodegeneration in AD®. In
416  blood, coagulation is active in hyperglycemia®® and factor XlIl Val34Leu gene polymorphism is
417  associated with sporadic AD%. Lastly, heme metabolism was associated with T2D and AD. A
418  T2D-based study reported that increased dietary heme iron intake increased the risk of T2D®. In
419  an AD study, altered heme metabolism was noted in AD brain samples®® (Supplementary Table
420  S6).

421

422 From our drug screening analysis, we identified T2D and AD medications whose perturbed gene
423  signatures significantly associated with the healthy state on the cross-disease predictive T2D PC2.

424  The T2D (alogliptin and glipizide) and AD (galantamine and donepezil) medications that induced
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425  gene signatures correlated with T2D PC2 are current therapies for T2D and AD®’. Alogliptin, an
426  FDA-approved T2D, has been shown to reduce hippocampal insulin resistance in amyloid-beta-
427  induced AD rodent models®®. Glipizide has conflicting findings, with one study showed improved
428  glycemic control and memory®® and another reported the drug be associated with higher risk of
429  AD than metformin, another T2D medication’™. Overall, the identification of these medications in
430  our analysis shows promise for high-throughput drug screening integrated in a cross-disease
431  modeling framework for comorbid conditions.

432

433 Our PLS-DA models identified signatures encoded in the T2D PC2 predicted AD status in brain
434  tissue and many genes from our blood-based signature have associations with AD pathology in
435  the brain. Individuals with MCI and AD show decreased SNRPDZ2 expression levels in the
436  hippocampus’="® as well as decreased POLR2K*"®. COX deficiency has been reported in both
437  AD brain and blood samples’. CHGA was associated with senile and pre-amyloid plaques’’ and
438  linked to AD compared to control groups in cerebrospinal fluid’®. Our findings in literature show
439  that ALB may differ across blood and brain”?®°. While others reported decreased serum ALB
440 levels increased the risk of AD, our findings in the hippocampus showed the opposite effects.
441

442 Inthe EC, SFG, and PoCG brain regions, RIN3 was reported to have significantly elevated mRNA
443 levels in the hippocampus and cortex of APP/PS1 mouse models for AD®' and is a signature gene
444  expressed in peripheral blood and the brain®'®2, In a metformin response, drug-naive T2D study,
445  RPL36A correlated with a change in hemoglobin A1c levels®®. In AD, RPL36A was found to be
446  downregulated in cells stimulated by amyloid-beta®. This downregulation was consistent with our
447  findings in the AD groups (Supplementary Table S7). These findings suggest that some gene
448  signatures in T2D blood predictive of AD are present in the brain, linking blood-based biomarkers
449  to primary tissue pathobiology.

450
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451  Alimitation to our study is that that data from large-scale human studies simultaneously studying
452  the relationship between T2D and AD are still rare, meaning sample sizes and demographic
453  representation of the human population across sex, age, and other variables is limited.
454  Addressing this gap in the AD-T2D axis would improve opportunities to integrate other clinical
455  variables, such as hemoglobin A1c for T2D, pathological results of amyloid-beta quantification for
456  AD, and other human demographic variables known to be linked to AD and T2D pathology.

457

458  Our work introduced a new application for cross-disease modeling using TransComp-R to identify
459  significantly relevant shared pathways by which T2D influences AD development. We found gene
460  signatures in the peripheral blood of T2D subjects predictive of AD pathology, and identified a
461  subset of genes in the blood that significantly predicted AD status in four brain regions. These
462  findings shed insight into the shared comorbidity between T2D and AD and encourage future
463  applications of TransComp-R for cross-disease modeling.

464

465 MATERIALS AND METHODS

466  Data selection

467 Human AD and T2D transcriptomic datasets were selected on GEO with the requirements that
468 samples were collected from similar blood sample collection processes, a sample size of 10 or
469  greater per condition, and demographic information containing sex and age. The datasets on
470  GEO were scanned by using combinations of phrases, including “Alzheimer’s disease,” “diabetes,”
471  “plood,” and “gene expression.” Like the blood data, post-mortem human brain tissue gene
472  expression was identified using the information criteria containing human data with a cohort size

473  greater than 10 per condition. Terms used to identify data on GEO included “brain,” “Alzheimer’s
474  disease,” “human,” and “gene expression.”
475

476
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477  Pre-processing and normalization

478  Transcriptomic AD and T2D human data were acquired from GEO using Bioconductor tools in R
479  (GEOquery ver. 2.70.0, limma ver. 3.58.1, and Biobase ver. 2.62.0)%%_ To reduce potential bias
480  from younger age participants in the data, we removed all subjects 55 years old or below from
481 the study in both the AD and T2D datasets with the justification of balancing the established age
482  of late onset of AD (65 years). The T2D baseline group was used. For the AD cohorts, conditions
483  that were not AD or control were excluded from the study. The datasets were then log:
484  transformed and matched for the same gene overlap. The genes shared across all AD and T2D
485  datasets were normalized by z-score before computational modeling with TransComp-R.

486

487  Cross-disease modeling with TransComp-R

488  We conducted TransComp-R by applying PCA on the T2D data with both disease and control
489  groups. The number of PCs that encoded transcriptomic variation between healthy and T2D
490  subjects was limited to a total explained cumulative variance of 80%. The two AD datasets were
491  individually projected into the T2D PCA space, such that there were two separate models: T2D
492 with AD cohort 1 and T2D with AD cohort 2. The projection of AD data into the T2D PCA space
493  can be described by matrix multiplication:

494 Pi3R5p = Xap Qfn .

495  where matrix P°*"C, the projection of AD data onto the T2D space, defined by columns of T2D
496  PCs and rows of AD subjects, is represented by the product of matrix X3*9 and Q9*"C. Here, s is
497  represented by AD subjects, g is represented by the gene list shared by AD and T2D, and PC is
498  the principal components from the T2D space.

499

500

501
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502  Variance explained in Alzheimer’s disease by principal components of type 2 diabetes
503 To determine the translatability of T2D variance onto the AD data, we quantified the percent
504  variability that is explained in AD by the T2D PCs with the following equation:

al [x"X]aq;
Y. diag(QTxTxQ) ’

505  Variance Explained in AD by T2D =
506  where AD data matrix X, projected onto a matrix Q containing columns of T2D PCs by matrix
507  multiplication (T representing a matrix transpose). The percent variance of AD in X explained by
508 aPC (qgi) of Q was then calculated.

509

510  Variable selection of T2D PCs

511  The T2D PCs predictive of AD outcomes were identified by employing LASSO across twenty
512 random rounds of ten-fold cross-validations regressing the AD positions in T2D PC space against
513  AD disease status. Demographic sex and age variables describing the subjects from the AD
514  datasets were included in the GLM:

515 Y~ By + B1PC + B,Sex + f3Age + [,SexPC + BsAgePC,

516  PCs with a coefficient frequency greater than 4 of the 20 rounds (25% selection frequency) in at
517 least two of the three PC terms (PC, Sex*PC, or Age*PC) were selected for GLMs with individual
518 PCs regressed against AD outcomes. T2D PCs that were consistently significant in both AD
519  cohorts (p value < 0.05) were selected for further biological interpretation.

520

521  Gene set enrichment analysis

522 Loadings of the PCs selected by the GLM were analyzed with GSEA in R (msigdbr ver. 7.5.1,
523  fgsea ver. 1.28.0, and clusterProfiler ver. 4.10.1)*°. Two data collections (KEGG and Hallmark)
524  were downloaded from the Molecular Signatures Database to identify enriched biological
525  pathways. ldentified pathways were determined to be significant, with a Benjamini-Hochberg

526  adjusted p value of less than 0.01 to account for multiple hypothesis testing. The imputed
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527  parameters to run GSEA included a minimum gene size of 5, a maximum gene size of 500, and
528  epsilon, the tuning constant of 0. The default setting of 1000 permutations was used.

529

530 Identifying shared genes across enriched biological pathways

531  We used igraph (ver. 2.0.3)*" in R to identify overlapping genes that may be commonly enriched
532 across multiple biological pathways identified from GSEA. We then processed the R-generated
533  data in Cytoscape (ver. 3.10.2)% to enhance pathway visualization. We established the nodes
534  representing different biological pathways and the edge thickness by the number of overlapping
535 genes between the two biological pathways. Additionally, the node size was determined by the
536  number of total enriched genes contributing to the biological pathway as determined by GSEA,
537  with the node colors red and blue used to discern pathway associations with AD or control groups,
538  respectively.

539

540  Fold-change comparison cross-disease

541  The relationship of different gene expression across AD and T2D conditions was compared using
542 the log: fold change of each gene shared across the AD and T2D blood data. For each dataset
543  (T2D and AD), the log: fold change of each gene expression was calculated by taking the log» of
544  the average gene expression of the disease groups divided by the average gene expression of
545  the control groups. Different gene expression relationships were compared across the T2D and
546  AD datasets.

547

548  Sex-based comparison across type 2 diabetes principal component scores

549  PC scores were compared across sex and disease conditions to compare PC predictability across
550  sex demographics. A Mann-Whitney pair-wise test was used to compare AD females to control
551 females and AD males to control males. To account for multiple hypothesis testing, a Benjamini-

552 Hochberg adjusted p value less than 0.05 was determined significant for the analysis.
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553

554  Computational gene expression correlational analysis

555  Potentially therapeutic drugs correlated with T2D PCs predictive of AD were screened using
556  publicly available data from the L1000 Consensus Signatures Coefficient Tables (Level 5) from
557  the LINCS database. Before screening, the LINCS drug data was pre-processed by excluding all
558  drugs with no known targets based on the LINCS small molecules metadata.

559

560  To identify candidate drugs associated with T2D and AD, two data sources were compiled: DEGs
561  from each respective drug from LINCS and the loadings from the T2D PCs predictive of AD. DEGs
562  for each drug were determined through the following: The characteristic direction values, which
563  signified the drug's up- or down-regulation of a gene, were scaled to obtain their z-score values®.
564  The list of DEGs for each drug was then identified if the gene’s z-score value presented with
565 apvalue less than 0.05. The original characteristic direction values for the selected genes for
566  each respective drug were then isolated. For each T2D PC that was able to stratify transcriptomic
567  variance between control and AD subjects, differentially expressed drug genes and PC gene
568 loadings were matched. A Spearman correlation was calculated to determine the correlation
569  between PC loadings and the DEGs’ characteristic direction coefficients for each drug. For a given
570  T2D PC of interest, drugs were ranked by their respective Spearman’s p values. The correlations’
571  pvalues were corrected by Benjamini-Hochberg before visualizing the drugs’ ranks against their
572  p values (adjusted p value < 0.05).

573

574  Filtering genetic blood biomarkers for computational modeling of brain tissue data

575  The top 50 and bottom 50 genes, ranked by their respective scores on the T2D PC predictive of
576  AD in blood, were used to filter genes of AD brain tissue data. After filtering for matching genes,

577  aBenjamini-Hochberg adjusted Mann-Whitney test was performed to determine significant genes.
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578  An adjusted p value of less than 0.20 was deemed significant to allow for a more permissible list
579  of potential genes that relate the blood to the brain. The significant genes were then used for PLS-
580 DA modeling.

581

582  Partial least squares discriminant analysis

583  Using R (mixOmics ver. 6.26.0)*, we constructed a PLS-DA model to determine the predictability
584  of blood-based gene expression markers in the human brain. Specifically, we used PCs derived
585  from T2D blood transcriptomic data predictive of AD outcomes in blood profiles and selected the
586 top 50 and bottom 50 gene loadings as a filter for hippocampal tissue transcriptomic data in
587  human subjects. A PLS-DA model screening for the 100 genes was used to determine if all genes
588  driving the transcriptomic variation in the T2D PC could stratify AD and control in brain tissue. As
589 an additional follow-up, the 100 filtered genes selected by the blood data significantly
590 distinguishable among AD and control in human blood were also used to construct the PLS-DA
591  model. The number of latent variables used for the model was determined by 100 randomly
592  repeated three-fold cross-validation based on the model with the lowest cross-validation error rate.
593

594  As a way to determine the most important predictors driving separation and predictive accuracy
595  inthe PLS-DA model, we calculated the VIP score for each gene. For a given number of PLS-DA

596  components A, the VIP for each gene predictor, k, is calculated by:

1/2

_ (KTA_ w2 SSA,
597  VIP, = (—Alssyml ) ,

598 where K is the total number of gene predictors, wa is the weight of predictor k in the a” LV
599  component. The total sum of squares explained in all LV components is represented by SSYota.
600 A calculated VIP score greater than 1 signifies that a given gene is an important variable for a
601  specific LV in the PLS-DA model.

602
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603  AD subjects were annotated by their APOE genotype, Braak stage, and MMSE score among
604 each PLS-DA model. The MMSE numerical scores, which evaluate cognitive impairment, were
605  aggregated based on standardized scoring metrics such that 30-26 was normal, 25-20 was mild,

606  19-10 was moderate, and 9-0 was severe®. The control groups did not have any clinical records.

607
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groups. Hierarchical clustering of the top and bottom 50 T2D PC2 loadings in T2D PC2 for (a)
AD cohort 1 and (b) AD cohort 2.
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Supplementary Figure S3. Additional anti-T2D drugs approved by the FDA. (a) Anti-T2D
therapeutics with potential reduction of AD pathology. (b) Anti-T2D therapeutics with increased
risk for AD.
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920  Supplementary Figure S4. PLS-DA models of the brain tissue gene expression filtered by
921 the 88 represented in the T2D PC2 loading. Models constructed for (a) the hippocampus, (b)
922  the entorhinal cortex, (c) the superior frontal gyrus, and (d) the postcentral gyrus.
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931 Supplementary Figure S5. Annotated PLS-DA models by genotype and clinical scores.
932  Subjects are further labeled by their respective APOE genotype, Braak stage, and MMSE for brain
933  tissue collected for the (a) entorhinal cortex, (b) superior frontal gyrus, and (c) postcentral gyrus.
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