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ABSTRACT 27 

Type 2 diabetes (T2D) is a significant risk factor for Alzheimer’s disease (AD). Despite multiple 28 

studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly 29 

understood. It is challenging to design studies that address co-occurring and comorbid diseases, 30 

limiting the number of existing evidence bases. To address this challenge, we expanded the 31 

applications of a computational framework called Translatable Components Regression 32 

(TransComp-R), initially designed for cross-species translation modeling, to perform cross-33 

disease modeling to identify biological programs of T2D that may exacerbate AD pathology. Using 34 

TransComp-R, we combined peripheral blood-derived T2D and AD human transcriptomic data to 35 

identify T2D principal components predictive of AD status. Our model revealed genes enriched 36 

for biological pathways associated with inflammation, metabolism, and signaling pathways from 37 

T2D principal components predictive of AD. The same T2D PC predictive of AD outcomes 38 

unveiled sex-based differences across the AD datasets. We performed a gene expression 39 

correlational analysis to identify therapeutic hypotheses tailored to the T2D-AD axis. We identified 40 

six T2D and two dementia medications that induced gene expression profiles associated with a 41 

non-T2D or non-AD state. Finally, we assessed our blood-based T2DxAD biomarker signature in 42 

post-mortem human AD and control brain gene expression data from the hippocampus, entorhinal 43 

cortex, superior frontal gyrus, and postcentral gyrus. Using partial least squares discriminant 44 

analysis, we identified a subset of genes from our cross-disease blood-based biomarker panel 45 

that significantly separated AD and control brain samples. Our methodological advance in cross-46 

disease modeling identified biological programs in T2D that may predict the future onset of AD in 47 

this population. This, paired with our therapeutic gene expression correlational analysis, also 48 

revealed alogliptin, a T2D medication that may help prevent the onset of AD in T2D patients. 49 

 50 

 51 

 52 
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ABBREVIATIONS 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

Abbreviation Associations 
AD Alzheimer’s disease 
APOE Apolipoprotein E 
BBB Blood-brain barrier 
DEG Differentially expressed gene 
EC Entorhinal cortex 
FDA Food and Drug Administration 
GEO Gene Expression Omnibus 
GLM Generalized linear model 
GSEA Gene set enrichment analysis 
LASSO Least Absolute Shrinkage and Selection Operator 
LINCS Library of Integrated Network-Based Cellular Signatures 
LV Latent variable 
MCI Mild cognitive impairment 
MMSE Mini-Mental State Examination 
PC Principal component 
PCA Principal component analysis 
PLS-DA Partial least squares discriminant analysis 
PoCG Postcentral gyrus 
SFG Superior frontal gyrus 
T2D Type 2 diabetes 
TransComp-R Translatable Components Regression 
VIP Variable importance of projection 
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INTRODUCTION 65 

Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia and insulin 66 

dysregulation that significantly elevates the risk for Alzheimer’s disease (AD) by more than 60%1–67 

3. Alzheimer’s disease is an irreversible neurodegenerative disorder that gradually impairs 68 

memory and cognitive function. A recent large-scale longitudinal study found that individuals with 69 

an earlier onset of T2D were at higher risk of developing AD4. Other cohort studies5,6 reported 70 

similar results. In addition to the elevated risk of AD, T2D also contributes to other conditions such 71 

as hypertension7, neuroinflammation8, heart disease9, stroke10, and kidney disease11. As a result, 72 

the influence of T2D on other comorbidities further complicates our understanding of its impact 73 

on human health and the development of potential therapeutics for such conditions.  74 

 75 

To understand this T2D-AD axis, previous studies examined how the onset of T2D influences the 76 

progression of AD12. Multiple studies reported insulin signaling impairment in T2D and AD13,14. 77 

The metabolic connection to AD15 also carries the T2D risk factor and is further amplified by the 78 

age16. Systemic low-grade inflammation in T2D progressively leads to downstream 79 

neuroinflammation and neuronal cell death, increasing the risk of AD17–19. Another study revealed 80 

altered gene expression levels in neurons, astrocytes, and endothelial cells in post-mortem brain 81 

tissue of T2D subjects, showing alterations to brain cells under diabetic conditions20. 82 

 83 

Previous work from other groups implicates the blood-brain barrier (BBB) as a potential route that 84 

connects T2D21 and AD22. The BBB is a selective semipermeable membrane consisting of 85 

endothelial cells, pericytes, and astrocytes, which protects the brain from harmful substances and 86 

regulates the passage of immune cells and nutrients into the brain23,24. One large clinical study 87 

observed heightened BBB permeability in people with T2D and AD25. This progressive breakdown 88 

of the BBB in T2D and AD is associated with irregular vascular endothelial growth factor 89 

production, resulting in increased permeability across the BBB25,26. Other reports suggested that 90 
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damage to endothelial cells in the cerebral blood vessels, indicated by elevated adhesion 91 

molecules, may contribute to this breakdown25,27,28. Therefore, chronic circulation of molecules 92 

produced under T2D conditions in the bloodstream may contribute to BBB breakdown and 93 

eventually enter the brain, contributing to the development of dementia and cognitive dysfunction. 94 

 95 

A barrier to understanding how one disease influences another is that studies that simultaneously 96 

investigate multiple health conditions in humans are rare and difficult29. This challenge is 97 

compounded in chronic disorders like T2D and AD, where pathogenesis can precede diagnosis 98 

by decades30. To overcome this barrier, other groups have used differential expression analysis 99 

of transcriptomic data between T2D and AD but have fallen short in considering human 100 

heterogeneity, such as sex and age31,32. Another group integrated T2D and AD data using non-101 

negative matrix factorization to identify shared genes across the blood of T2D and AD. While they 102 

identified dysregulated transcription factors shared across both diseases, they also did not 103 

account for confounding variables such as sex and age33. To overcome this challenge, we 104 

adapted Translatable Components Regression (TransComp-R), a computational approach 105 

initially developed to translate observations from pre-clinical animal disease models to human 106 

contexts34–37, to perform cross-disease modeling of human datasets to identify T2D biology 107 

predictive of AD.  108 

 109 

In this work, we hypothesized that gene transcripts in T2D blood may predict and inform AD 110 

pathology. We tested this hypothesis via computational modeling of publicly available peripheral 111 

blood transcriptomics data of T2D and AD patients to determine if biomarkers in T2D blood could 112 

distinguish blood signatures in AD versus cognitively normal control groups. To identify potential 113 

therapeutics tailored to the T2D-AD axis, we employed a correlational analysis to identify 114 

candidate drugs that may impact AD development. Lastly, we assessed whether the blood-based 115 
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biomarkers from our T2D-AD computational models could differentiate between AD and control 116 

samples in brain tissue transcriptomics data.  117 

 118 

RESULTS 119 

TransComp-R modeling separates AD and control subjects in T2D PC space 120 

We acquired bulk-RNA seq T2D and microarray AD peripheral whole blood data from Gene 121 

Expression Omnibus (GEO). For the T2D dataset (GSE184050)38, we used the longitudinal 122 

baseline sample collection and information, including demographic variables of sex and age. Two 123 

separate cohorts of AD data were used in the model to test the predictability of T2D for AD. In 124 

both AD cohort 1 (GSE63060)39 and AD cohort 2 (GSE63061)39, we used AD and healthy control 125 

subjects. Using two separate cohorts ensured that the selected T2D PC’s would be robust (Table 126 

1).  127 

Table 1. Demographics of processed human transcriptomic blood data across each data set. 128 
GEO Dataset 
(Accession) Condition Age (years) 

Mean ± SD 
Sex (%) Total Sample 

Size (n) Male Female 
T2D 
(GSE184050) 

Control 64.4 ± 9.6   3 (19%) 13 (81%) 16 
T2D 64.1 ± 2.8   3 (30%)   7 (70%) 10 

AD Cohort 1 
(GSE63060) 

Control 72.8 ± 5.8 42 (41%) 60 (59%) 102 
AD 75.4 ± 6.6 46 (32%) 99 (68%) 145 

AD Cohort 2 
(GSE63061) 

Control 75.3 ± 6.0 53 (40%) 81 (60%) 134 
AD 77.9 ± 6.7 54 (39%) 85 (61%) 139 

 129 

We repurposed the TransComp-R to identify biological pathways dysregulated in T2D predictive 130 

of AD status. Cross-disease TransComp-R begins by matching shared genes across all datasets 131 

(Fig. 1a). We then projected the AD human samples into a principal component analysis (PCA) 132 

space constructed from the T2D data. We evaluate predictive power of T2D PCs for outcomes in 133 

AD by Least Absolute Shrinkage and Selection Operator (LASSO) feature selection and 134 

generalized linear model (GLM) regression (Fig. 1b). Using GSEA, we annotated the biological 135 

and therapeutic interpretations of the significant T2D PCs predictive of AD biology (Fig. 1c). We 136 

correlated differentially expressed genes from the drug list containing consensus signatures from 137 
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the Library of Integrated Network-based Cellular Signatures (LINCS) database to the loadings of 138 

the T2D PCs predictive of AD. This method links drug regulation of genes associated with healthy 139 

states vs AD or T2D with drug response signatures to identify therapeutic hypotheses.  140 

 141 
Figure 1. Workflow of TransComp-R. (a) Genes across T2D and AD are selected for analysis. 142 
Each AD cohort is individually projected into the T2D PCA space to combine the two diseases. 143 
(b) PC translatability from T2D to AD is determined by running a GLM regression against AD 144 
outcomes using PCs consistently selected across each AD cohort. (c) Pathway enrichment 145 
analysis is performed on the loadings of significant PCs to identify enriched biological pathways. 146 
Potential therapeutic candidates are then identified using a correlation analysis framework. 147 
 148 

We matched 11,455 genes across the T2D and AD datasets and constructed the PCA space of 149 

the T2D and control samples. To prevent overfitting, we selected thirteen PCs for a cumulative 150 

explained variance of 80% for the TransComp-R model (Supplementary Fig. S1). Each AD 151 

cohort was separately projected onto the T2D PCs, such that we constructed two cross-disease 152 

models: T2D with AD cohort 1 and T2D with AD cohort 2.  153 
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 154 

We quantified how the variance captured by the T2D PCs explained the variation in human AD. 155 

To determine the cross-disease relevance of the T2D PCs to the variance of the AD data, we 156 

visualized each of the thirteen T2D PCs, comparing the variance explained in the T2D and AD 157 

data (Fig. 2a). When comparing the translatability of T2D PCs in AD cohort 1 and 2, we found 158 

T2D PC1, PC2, and PC3 had higher explained variance in Alzheimer’s disease data relative to 159 

the other T2D PCs 4-13, showing that T2D PCs1-3 have highest potential for translation of biology 160 

between T2D and AD. 161 

 162 
Figure 2. TransComp-R identifies T2D PCs predictive of AD outcomes. (a) AD PCs were 163 
separated by cohort, with variance explained in AD (b) Selection of PCs using a LASSO model 164 
incorporating sex and age demographics from the AD datasets. The model was run across twenty 165 
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random rounds of ten-fold cross-validation. PCs consistently determined significant across both 166 
AD cohorts from the GLM regression were further analyzed. (c) Principal component plots of AD 167 
scores on selected T2D PCs separating AD and control outcomes in AD cohort 1 and (d) AD 168 
cohort 2. Each T2D PC is represented by the percent variance explained in AD.  169 
 170 

We used LASSO to select the most relevant T2D PCs for predicting AD by regressing AD 171 

projections on T2D PCs, sex, and age from the AD cohort, with interaction effects of T2D PC with 172 

sex and age. From the LASSO model, several PCs (PC2, PC5-6, PC9-13) were selected across 173 

both AD cohorts (Fig. 2b). Despite the multiple number of PCs being consistently selected from 174 

LASSO, only T2D PC2, PC5, PC6, and PC11 fulfilled the selection criteria and discerned between 175 

AD and control groups in the GLM. The T2D PCs predictive of AD conditions were visualized for 176 

both AD cohort 1 (Fig. 2c) and AD cohort 2 (Fig. 2d). While the transcriptomic variation encoded 177 

on T2D PC2 and PC5 were able to distinguish between human AD and control groups, there was 178 

less distinguishable separation made by T2D PC6 and PC11. Among T2D PC2 and PC5, we 179 

selected T2D PC2 for deeper downstream interrogation due to the higher potential for T2D-to-AD 180 

translatability as quantified by the percentage of variance explained in AD (Fig. 2a).  181 

 182 

T2D and AD share pathways associated with metabolism, signaling pathways, and cellular 183 

processes 184 

We employed GSEA to interpret the T2D PC2 gene loadings, which encoded transcriptomic 185 

variation between healthy and T2D subjects that predicted AD outcomes using both KEGG (Fig. 186 

3a) and Hallmark (Fig. 3b) databases to gain a holistic insight into the genes loaded on T2D PC2.  187 
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188 
Figure 3. Pathway Enrichment Analysis. The transcriptomic variance separating AD and 189 
control subjects on T2D PC2 was interpreted with GSEA using the (a) KEGG and (b) Hallmark 190 
databases. Significantly enriched pathways were determined with a Benjamini-Hochberg adjusted 191 
p value less than 0.01. (c) Shared leading edge genes between biological pathways in the KEGG 192 
and (d) Hallmark pathways. The node size represents the number of genes contributing to the 193 
pathway from GSEA, whereas the edge size is the number of shared genes between each 194 
biological pathway. Missing pathways signified that there were no shared genes with other 195 
pathways.  196 
 197 

We organized the enriched pathways into themes to determine if neighboring pathways were due 198 

to the overrepresentation of shared genes for both the KEGG (Fig. 3c) and Hallmark (Fig. 3d) 199 

databases. In the AD-associated pathways from KEGG, we identified enriched pathway themes, 200 
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such as the cardiovascular system, signaling pathways, cellular processes and metabolism, and 201 

cancer pathways. In the control group, we found pathways associated with neurodegenerative 202 

diseases and metabolism. From Hallmark, pathways enriched in AD associations included 203 

signaling pathways, cellular processes, metabolism, and stress response, with metabolism and 204 

cell cycle pathways enriched in controls. 205 

 206 

T2D PC2 identifies gene expression changes with predictive ability across sex and disease 207 

conditions in two AD cohorts 208 

We compared the average log2 fold change of the 11,455 shared genes for disease and control 209 

groups to identify trends in the regulation of genes across diseases. In both AD cohorts and T2D, 210 

there were decreases in gene expression including COX7C, NDUSF5, NDUFA1, RPL17, RPL23, 211 

RPL26, RPL31, and TOMM7 (Fig 4a), genes responsible for mitochondrial and ribosomal 212 

functions. COX7C, NDUSF5, and NDUFA1 are active in the electron transport chain function in 213 

the inner mitochondrial membrane and TOMM7 encodes for a subunit of the translocase of the 214 

outer mitochondrial membrane. Ribosomal protein L genes such as RPL17, RPL23, RPL26, and 215 

RPL31 play a role in forming structures of ribosomes and regulating ribosome function.  216 
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 217 
Figure 4. Comparison of global gene expression and AD-predictive T2D PCs (a) AD and 218 
T2D log2 fold change plot of all shared 11,455 genes (b) AD and T2D log2 fold change plot filtered 219 
by gene expressions with the top 50 and bottom 50 loadings of T2D PC2. (c) Scores of T2D PC2 220 
separated by sex and disease condition. A Mann-Whitney test adjusted by Benjamini-Hochberg 221 
was used to determine statistical significance. The distribution of the data is annotated by the 222 
mean and interquartile ranges. 223 
 224 

We next tested to see if the top 50 and bottom 50 gene loadings from T2D PC2 could capture the 225 

cross-disease trends of the total transcriptome. We visualized the filtered gene with AD and T2D 226 

fold changes and observed a similar trend such that multiple genes were downregulated in both 227 

AD and T2D conditions (Fig. 4b). Among those consistently downregulated in AD and T2D, genes 228 

related to ribosomal proteins (RPL and RPS) were present. These 100 genes also distinguished 229 

between control and AD subjects (Supplementary Fig. S2).  230 

 231 

Finally, we evaluated T2D PC2’s ability to stratify sex and disease characteristics in AD. We 232 

identified significant sex-based differences across AD and control in both cohorts. In AD cohort 1, 233 

we found that the female and male groups, each separated by AD and control, were significantly 234 
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different by the variation captured by T2D PC2, with adjusted p values of 0.0002 and 0.0013, 235 

respectively (Fig. 4c). Similarly, in AD cohort 2, there was significance in disease separation for 236 

both females and males, with adjusted p values of 0.0073 and 0.0033, respectively (Fig. 4c). 237 

Comparing the scores of T2D PC2 by disease condition only, we found significance in both AD 238 

cohort 1 (p = 2.000x10-7) and AD cohort 2 (p = 9.078x10-5).  239 

 240 

Identification of drug perturbation signatures associated with PC2 T2D-AD signatures  241 

We developed a correlation analysis to identify therapeutic candidates associated with the T2D 242 

PC2 predictive of AD. We used the Library of Integrated Network-Based Cellular Signatures 243 

(LINCS) Consensus Signatures, a dataset containing 33,609 drugs with their respective post-244 

treatment gene expression profiles summarized as a “characteristic direction” (CD) coefficient40. 245 

Of the 33,609 drugs in the LINCS database, 3,161 remained after we filtered out duplicates and 246 

drugs without known targets. We compared the CD coefficient values of genes affected by each 247 

drug to the gene loadings on T2D PC2 using Spearman’s correlation. We hypothesized a drug 248 

could be therapeutic for T2D/AD risk based on the correlation directionality, where negative r 249 

values were interpreted as inducing profiles associated with a non-T2D or non-AD state and 250 

positive r values associated with a T2D or AD disease state. 251 

 252 

We identified 1,262 drugs significantly correlated with the loadings in T2D PC2 (Fig. 5a). Drugs 253 

associated with a non-T2D and non-AD gene expression profile included dienestrol, BW-180C, 254 

T-0156, alogliptin, and roflumilast (Supplementary Table S1). Dienestrol had the most negative 255 

correlation coefficient of -0.5059 and is an estrogen receptor agonist used to treat vaginal pain by 256 

targeting ESR1. T-0156 (PDE5A) and roflumilast (PDE4A, PDE4B, PDE4C and PDE4D) are both 257 

phosphodiesterase inhibitors. We also identified a prototypical delta opioid receptor agonist (BW-258 

180C) and a T2D prescription medication (alogliptin), which targets OPRD1 and DPP4, 259 
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respectively. Conversely, drugs associated with gene expression of a T2D or AD disease state 260 

included antagonists such as wortmannin (PI3K inhibitor), proglumide (CCK receptor antagonist), 261 

GR-127935 (serotonin receptor antagonist), homatropine-methylbromide (acetylcholine receptor 262 

antagonist), and phenacemide (sodium channel blocker).  263 

 264 

To filter drugs tested for safety and efficacy, we referenced the Food and Drug Administration 265 

(FDA) Orange Book for FDA-approved and over-the-counter drugs (June 2024 version)41. We 266 

identified 301 FDA-approved drugs in our original significant 1,262 (Fig. 5b), and of these, 23 267 

were approved for over-the-counter use (Fig. 5c). Among the FDA-approved drugs, alogliptin and 268 

roflumilast were among the most negative correlation coefficients. Other medications with 269 

negative coefficients associated with a non-T2D or AD state were isradipine, used for 270 

hypertension (CACNA1S, CACNA1C, CACMA1F, CACMA1D, and CACMA2D1 targets), niacin 271 

used for vitamin B (HCAR2 and HCAR3 targets), and disopyramide used for irregular heartbeats 272 

(SCN5A gene target) (Supplementary Table S2). Among medications with top positive 273 

coefficients associated with AD and T2D, we identified two anti-cancer drugs (pacritinib and 274 

lenvatinib), a blood thinner (ticagrelor), and two anti-arrhythmic drugs (adenosine and flecainide).  275 

 276 

The most negative coefficients for over-the-counter drugs were vasodilators, opioid receptor 277 

targets, and histamine receptor drugs (Supplementary Table S3). Minoxidil had the most 278 

negative correlation coefficient (-0.3101) and is a hypertension medication that targets KCNJ8, 279 

KCNJ11, and ABCC9. Loperamide (opioid receptor agonist), used for diarrhea, targets OPRM1 280 

and OPRD1, while naloxone (opioid receptor antagonist), used for opioid overdose, affects 281 

OPRK1, OPRM1, and OPRD1. We also identified two histamine receptor antagonists, cimetidine 282 

and doxylamine, which targeted HRH2 and HRH1, respectively. The most positively correlated 283 

medications that induced disease gene signatures included orlistat, a lipase inhibitor used for 284 

weight loss and T2D, had the greatest coefficient of 0.3104 (LIPF, PNLIP, DAGLA, and FASN 285 
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targets). Other positive correlation, T2D-AD associated drugs included budesonide (corticosteroid 286 

for Crohn’s disease) and mometasone (steroid for skin discomfort), both of which are 287 

glucocorticoid receptor agonists with the target of NR3C1. Other medications among the most 288 

positively correlated included clotrimazole (cytochrome p450 inhibitor) and pheniramine 289 

(histamine receptor antagonist), which targeted KCNN4 and HRH1 respectively. 290 
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 291 
Figure 5. Computational gene expression correlational analysis. (a) All significant drugs 292 
identified from the LINCS database. Drugs filtered by (b) FDA approval status and (c) over-the-293 
counter drugs. (d) FDA-approved T2D drugs (alogliptin and glipizide) associated with control 294 
group signatures. (e) FDA-approved T2D drug (orlistat) associated with genes upregulated in AD. 295 
(f) FDA-approved medications for cognitive-enhancement (galantamine and donepezil). (g) FDA-296 
approved drug (brexpiprazole) with signatures correlated to genes elevated in AD. 297 
 298 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.627991doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.11.627991
http://creativecommons.org/licenses/by/4.0/


 17 

We compared the FDA-approved drugs to MedlinePlus and First Databank for any medication 299 

currently used to treat T2D or cognitive-associated symptoms (Supplementary Table S4). Of the 300 

301 FDA-approved drugs identified, we found ten medications for T2D and three with cognitive 301 

function associations (Supplementary Table S5). Among the medications used for T2D, glipizide 302 

(sulfonylurea), repaglinide (insulin secretagogue), and nateglinide (insulin secretagogue) targeted 303 

KCNJ11 and ABCC8. The diabetes dipeptidyl peptidase inhibitors that target DPP4, included 304 

alogliptin, sitagliptin, and linagliptin. We also identified sodium/glucose co-transporter inhibitor 305 

empagliflozin (SLC5A2), the PPAR receptor antagonist pioglitazone, glucosidase inhibitor 306 

acarbose (AMY2A, MGAM, and GAA), and lipase inhibitor orlistat (LIPF, PNLIP, DAGLA, and 307 

FASN). Among medications commonly prescribed to improve cognitive function, we identified 308 

donepezil and galantamine, acetylcholinesterase inhibitors that target ACHE and ACHE/BCHE 309 

and brexpiprazole (HTR2A, DRD2, HTR1A), a dopamine receptor partial agonist used for AD-310 

associated agitation. Of these thirteen medications, empagliflozin, linagliptin, brexpiprazole, 311 

acarbose, and orlistat contained gene expression responses correlated to an AD or T2D condition. 312 

Nine medications were associated with a non-AD or non-T2D condition, which included alogliptin, 313 

glipizide, repaglinide, sitagliptin, pioglitazone, galantamine, nateglinide, and donepezil.  314 

 315 

We selected the top two medications that associated with a non-disease state (T2D and cognitive-316 

enhancing medication) and those associated with a disease state to compare the relationship of 317 

the drug DEGs and T2D PC2 scores. We found that alogliptin and glipizide, anti-T2D drugs had 318 

the most significant correlation magnitude among the six drugs, with a coefficient of -0.5 (p < 319 

2.2x10-16) and -0.42 (p < 2.2x10-16), respectively (Fig. 5d). Orlistat had gene signatures most 320 

positively correlated with disease states (rho = 0.31, p = 2.9x10-10) (Fig. 5e). The signatures 321 

affected by cognitive medications galantamine (rho = -0.13 p = 0.0028) and donepezil (rho = -0.1 322 

p = 0.024) had weaker correlations than the anti-T2D medication (Fig. 5f). Finally, we identified 323 

brexpiprazole, an anti-psychotic drug with a low positive correlation coefficient of 0.22 (p = 2.6x10-324 
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7) associated with T2D and AD disease status (Fig. 5g). Other FDA-approved T2D medications, 325 

with weaker correlations to a non-T2D or non-AD state included repaglinide, sitagliptin, 326 

pioglitazone, and nateglinide (Supplementary Fig. S3).  327 

 328 

Translation of T2D PC2 gene loadings to from AD blood to AD brain transcriptomics  329 

Having identified biomarkers in T2D blood predictive of AD status, we assessed if the identified 330 

signature stratified AD from control patients in brain tissues. We acquired a human microarray 331 

dataset (GSE48350)42,43 profiling AD and control samples in multiple brain regions: hippocampus, 332 

entorhinal cortex (EC), superior frontal gyrus (SFG), and postcentral gyrus (PoCG). Potential age 333 

bias was reduced by excluding subjects younger than 55. The post-processed demographics 334 

separated by their respective brain region were summarized (Table 2). 335 

 336 

Table 2. Demographic summary across four different processed human brain regions 337 
GEO Dataset 
(GSE48350) Condition Age (years) 

Mean ± SD 
Sex (%) Total Sample 

Size (n) Male Female 
Hippocampus 
 

Control 82.0 ± 10.0 13 (52%) 12 (48%) 25 
AD 83.1 ± 8.5   9 (47%) 10 (53%) 19 

Entorhinal Cortex Control 80.7 ± 10.3   9 (50%)   9 (50%) 18 
 AD 86.5 ± 5.5   7 (47%)   8 (53%) 15 
Superior Frontal Control 80.8 ± 10.3 12 (46%) 14 (54%) 26 
Gyrus AD 87.1 ± 6.2   7 (33%) 14 (67%) 21 
Postcentral Gyrus Control 81.5 ± 10.4 11 (46%) 13 (54%) 24 
 AD 85.0 ± 8.2 10 (40%) 15 (60%) 25 

 338 

We matched genes in the AD brain dataset to the top 50 and bottom 50 genes from T2D PC2 339 

(Fig. 6a) and matched 88 genes. We determined AD status-associated genes in each brain region 340 

via differential expression analysis (Benjamini-Hochberg adjusted Mann-Whitney test, p adjusted 341 

< 0.20). We first investigated the hippocampus brain tissue to identify genes from T2D-blood PC2 342 

that could stratify AD and control groups in the brain. We identified 25 significant genes (adjusted 343 

p value < 0.20) and hierarchical clustering showed these 25 genes separated AD and control 344 

conditions in the hippocampus gene expression data (Fig. 6b). We used these genes to construct 345 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.627991doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.11.627991
http://creativecommons.org/licenses/by/4.0/


 19 

PLS-DA models to identify genes driving separation across the brain tissue samples of AD and 346 

control groups (Fig. 6c, Supplementary Fig. S4). 347 

 348 
Figure 6. Translating blood-predictable signatures to the brain. (a) Method of testing blood-349 
derived data predictability in the brain. (b) Z-score of significant AD-associated genes identified 350 
in the human hippocampal dataset (Mann-Whitney adjusted by Benjamini-Hochberg, p adjusted 351 
< 0.20). (c) PLS-DA model using significant genes to predict AD status. AD groups are labeled 352 
by APOE genotype, Braak stage, and MMSE. (d) Loading variables LV1 and LV2 for the model 353 
are presented. A VIP>1 is annotated with a star, and the color of the loading bar represents the 354 
highest contribution to the specific class by the respective gene. 355 
 356 
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We annotated the subjects within the PLS-DA plot by their respective apolipoprotein E (APOE) 357 

genotype, Braak stage, and mini-mental state examination (MMSE) scores (Fig. 6d). These were 358 

used since APOE e4 is the greatest genetic risk factor for AD44, Braak stage assesses 359 

neurofibrillary tangle pathology45, and MMSE for cognitive impairment screening46. There was 360 

clear separation between AD and control groups in our PLS-DA model and we identified a subset 361 

of genes loaded in the latent variables (LVs) most predictive of disease status (Fig. 6d). On LV1, 362 

we identified genes with variable importance of projection (VIP) greater than 1 associated with 363 

the control group, including SNRPD2, POLR2K, ATP6V0C, NDUFB1, COX6C, COX7C, and 364 

CHGA. For the AD group, we found BNC1, WDR38, SLC9A1, ALB, and TNRC18 with a VIP>1. 365 

Although there was no separation across the disease classes on LV2, we found NDUFB1, 366 

ATP6V0C, COX7C, COX6C, and CHGA contributed greater than average (VIP > 1) to the control 367 

group, whereas ALB, TNRC18, SLC9A1, BNC1, BCORL1, and ZNF467 had a VIP >1 for AD.  368 

 369 

After observing separation across disease classes in the hippocampus brain data, we next 370 

determined if the T2D blood biomarkers able to stratify AD conditions in blood were reflective in 371 

other parts of the brain. We built PLS-DA models for the EC, SFG, and PoCG. Of the 88 genes 372 

that matched in the human brain tissue data, five genes were significant across AD and control 373 

groups in the EC (Fig. 7a). Using these genes for the PLS-DA model, we found distinct separation 374 

across LV1, and identified RIN3, RPL36A, and POLR2K as genes with a VIP greater than 1 (Fig. 375 

7b). In the SFG brain region, we identified four significant genes: RIN3, CSTA, RCN3, and 376 

RPL36A (Fig. 7c). In the SFG model, RIN3 and RPL36A contributed most to separation between 377 

the AD and control groups (Fig. 7d). In the PoCG region, three genes significantly separated AD 378 

and control, including PRAM1, RCN3, and RPL36A (Fig. 7e-f). For each of these three brain 379 

regions, additional annotation on the PLS-DA subjects by APOE genotype, Braak stage, and 380 

MMSE were visualized for the EC, SFG, and PoCG PLS-DA models (Supplementary Fig. S5).  381 

 382 
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 383 
Figure 7. PLS-DA models using blood biomarkers to predict AD status in other brain 384 
regions (a) Z-score of significant genes identified in the human EC dataset. (b) PLS-DA using 385 
the significant genes on the EC data with loadings on LV1 and LV2. (c) Z-score of significant 386 
genes identified in the human SFG dataset. (d) PLS-DA using the significant genes on the SFG 387 
data with loadings on LV1 and LV2. (e) Z-score of significant genes identified in the human PoCG 388 
dataset. (f) PLS-DA using the significant genes on the PoCG data with loadings on LV1 and LV2. 389 
For all brain regions, the significance of the genes was determined by a Mann-Whitney adjusted 390 
by Benjamini-Hochberg (p adjusted < 0.20) across AD and control groups. 391 
 392 

DISCUSSION 393 

In this study, we used blood transcriptomics data from human T2D and AD studies to understand 394 

the potential pathways by which T2D affects AD pathology. Our cross-disease model identified a 395 

T2D-derived blood gene signature predictive of AD status and therapeutic candidates associated 396 

with non-T2D and AD status. A subset of genes in the T2D blood were predictive of AD status in 397 

four brain regions, showing the cross-disease model's significance and implications.  398 
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 399 

Chemokine signaling pathways were involved in patients of T2D47 by routes of downstream 400 

inflammation48 and AD49 with connections to cognitive decline. Wnt signaling also played a role in 401 

metabolic dysregulation50 and loss of synaptic integrity51. Insulin pathways were enriched in AD 402 

conditions, consistent with prior literature showing insulin resistance52 is associated with an 403 

increased risk for AD development53. Pathways, such as MAPK and NOTCH, were enriched in 404 

AD conditions, with MAPK-p38 phosphorylation associated with both T2D and AD54,55. Notch1 405 

expression decreases beta cell masses and insulin secretion in rodents56 and was significantly 406 

different across control and AD groups in our analysis57. FC epsilon RI is also altered in T2D and 407 

AD cases, such that downstream mast cells are affected58.  408 

 409 

We also identified cellular processes and metabolism pathways on the AD predictive T2D PC2. 410 

Elevated neutrophil activation to chemokines and transendothelial migration is associated with 411 

T2D59. In AD, monocytes and human brain microvascular endothelial cells expressing CXCL1 are 412 

associated with amyloid-beta-induced migration from the blood to the brain60. FC gamma 413 

receptor-mediated phagocytosis is observed in T2D in compromised monocyte phagocytosis61. 414 

PRKCD is associated with amyloid-beta significantly triggered neurodegeneration in AD62. In 415 

blood, coagulation is active in hyperglycemia63 and factor XIII Val34Leu gene polymorphism is 416 

associated with sporadic AD64. Lastly, heme metabolism was associated with T2D and AD. A 417 

T2D-based study reported that increased dietary heme iron intake increased the risk of T2D65. In 418 

an AD study, altered heme metabolism was noted in AD brain samples66 (Supplementary Table 419 

S6). 420 

 421 

From our drug screening analysis, we identified T2D and AD medications whose perturbed gene 422 

signatures significantly associated with the healthy state on the cross-disease predictive T2D PC2. 423 

The T2D (alogliptin and glipizide) and AD (galantamine and donepezil) medications that induced 424 
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gene signatures correlated with T2D PC2 are current therapies for T2D and AD67. Alogliptin, an 425 

FDA-approved T2D, has been shown to reduce hippocampal insulin resistance in amyloid-beta-426 

induced AD rodent models68. Glipizide has conflicting findings, with one study showed improved 427 

glycemic control and memory69 and another reported the drug be associated with higher risk of 428 

AD than metformin, another T2D medication70. Overall, the identification of these medications in 429 

our analysis shows promise for high-throughput drug screening integrated in a cross-disease 430 

modeling framework for comorbid conditions.  431 

 432 

Our PLS-DA models identified signatures encoded in the T2D PC2 predicted AD status in brain 433 

tissue and many genes from our blood-based signature have associations with AD pathology in 434 

the brain. Individuals with MCI and AD show decreased SNRPD2 expression levels in the 435 

hippocampus71–73, as well as decreased POLR2K74,75. COX deficiency has been reported in both 436 

AD brain and blood samples76. CHGA was associated with senile and pre-amyloid plaques77 and 437 

linked to AD compared to control groups in cerebrospinal fluid78. Our findings in literature show 438 

that ALB may differ across blood and brain79,80. While others reported decreased serum ALB 439 

levels increased the risk of AD, our findings in the hippocampus showed the opposite effects.  440 

 441 

In the EC, SFG, and PoCG brain regions, RIN3 was reported to have significantly elevated mRNA 442 

levels in the hippocampus and cortex of APP/PS1 mouse models for AD81 and is a signature gene 443 

expressed in peripheral blood and the brain81,82. In a metformin response, drug-naïve T2D study, 444 

RPL36A correlated with a change in hemoglobin A1c levels83. In AD, RPL36A was found to be 445 

downregulated in cells stimulated by amyloid-beta84. This downregulation was consistent with our 446 

findings in the AD groups (Supplementary Table S7). These findings suggest that some gene 447 

signatures in T2D blood predictive of AD are present in the brain, linking blood-based biomarkers 448 

to primary tissue pathobiology.  449 

 450 
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A limitation to our study is that that data from large-scale human studies simultaneously studying 451 

the relationship between T2D and AD are still rare, meaning sample sizes and demographic 452 

representation of the human population across sex, age, and other variables is limited. 453 

Addressing this gap in the AD-T2D axis would improve opportunities to integrate other clinical 454 

variables, such as hemoglobin A1c for T2D, pathological results of amyloid-beta quantification for 455 

AD, and other human demographic variables known to be linked to AD and T2D pathology.  456 

 457 

Our work introduced a new application for cross-disease modeling using TransComp-R to identify 458 

significantly relevant shared pathways by which T2D influences AD development. We found gene 459 

signatures in the peripheral blood of T2D subjects predictive of AD pathology, and identified a 460 

subset of genes in the blood that significantly predicted AD status in four brain regions. These 461 

findings shed insight into the shared comorbidity between T2D and AD and encourage future 462 

applications of TransComp-R for cross-disease modeling.  463 

 464 

MATERIALS AND METHODS 465 

Data selection 466 

Human AD and T2D transcriptomic datasets were selected on GEO with the requirements that 467 

samples were collected from similar blood sample collection processes, a sample size of 10 or 468 

greater per condition, and demographic information containing sex and age. The datasets on 469 

GEO were scanned by using combinations of phrases, including “Alzheimer’s disease,” “diabetes,” 470 

“blood,” and “gene expression.” Like the blood data, post-mortem human brain tissue gene 471 

expression was identified using the information criteria containing human data with a cohort size 472 

greater than 10 per condition. Terms used to identify data on GEO included “brain,” “Alzheimer’s 473 

disease,” “human,” and “gene expression.” 474 

 475 

 476 
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Pre-processing and normalization 477 

Transcriptomic AD and T2D human data were acquired from GEO using Bioconductor tools in R 478 

(GEOquery ver. 2.70.0, limma ver. 3.58.1, and Biobase ver. 2.62.0)85–87. To reduce potential bias 479 

from younger age participants in the data, we removed all subjects 55 years old or below from 480 

the study in both the AD and T2D datasets with the justification of balancing the established age 481 

of late onset of AD (65 years). The T2D baseline group was used. For the AD cohorts, conditions 482 

that were not AD or control were excluded from the study. The datasets were then log2 483 

transformed and matched for the same gene overlap. The genes shared across all AD and T2D 484 

datasets were normalized by z-score before computational modeling with TransComp-R.  485 

 486 

Cross-disease modeling with TransComp-R 487 

We conducted TransComp-R by applying PCA on the T2D data with both disease and control 488 

groups. The number of PCs that encoded transcriptomic variation between healthy and T2D 489 

subjects was limited to a total explained cumulative variance of 80%. The two AD datasets were 490 

individually projected into the T2D PCA space, such that there were two separate models: T2D 491 

with AD cohort 1 and T2D with AD cohort 2. The projection of AD data into the T2D PCA space 492 

can be described by matrix multiplication: 493 

𝑃!",$%"&	(	)* = 𝑋!"
&	(	+𝑄$%"

+	(	)*, 494 

where matrix Ps x PC, the projection of AD data onto the T2D space, defined by columns of T2D 495 

PCs and rows of AD subjects, is represented by the product of matrix Xs x g and Qg x PC. Here, s is 496 

represented by AD subjects, g is represented by the gene list shared by AD and T2D, and PC is 497 

the principal components from the T2D space.  498 

 499 

 500 

 501 
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Variance explained in Alzheimer’s disease by principal components of type 2 diabetes  502 

To determine the translatability of T2D variance onto the AD data, we quantified the percent 503 

variability that is explained in AD by the T2D PCs with the following equation: 504 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑	𝑖𝑛	𝐴𝐷	𝑏𝑦	𝑇2𝐷 = 	 ,!
"[.".],!

∑1234(6".".6)
 , 505 

where AD data matrix X, projected onto a matrix Q containing columns of T2D PCs by matrix 506 

multiplication (T representing a matrix transpose). The percent variance of AD in X explained by 507 

a PC (qi) of Q was then calculated.  508 

 509 

Variable selection of T2D PCs 510 

The T2D PCs predictive of AD outcomes were identified by employing LASSO across twenty 511 

random rounds of ten-fold cross-validations regressing the AD positions in T2D PC space against 512 

AD disease status. Demographic sex and age variables describing the subjects from the AD 513 

datasets were included in the GLM: 514 

𝑌	~	𝛽8 + 𝛽9𝑃𝐶 + 𝛽%𝑆𝑒𝑥 + 𝛽:𝐴𝑔𝑒 + 𝛽;𝑆𝑒𝑥𝑃𝐶 + 𝛽<𝐴𝑔𝑒𝑃𝐶, 515 

PCs with a coefficient frequency greater than 4 of the 20 rounds (25% selection frequency) in at 516 

least two of the three PC terms (PC, Sex*PC, or Age*PC) were selected for GLMs with individual 517 

PCs regressed against AD outcomes. T2D PCs that were consistently significant in both AD 518 

cohorts (p value < 0.05) were selected for further biological interpretation.  519 

 520 

Gene set enrichment analysis 521 

Loadings of the PCs selected by the GLM were analyzed with GSEA in R (msigdbr ver. 7.5.1, 522 

fgsea ver. 1.28.0, and clusterProfiler ver. 4.10.1)88–90. Two data collections (KEGG and Hallmark) 523 

were downloaded from the Molecular Signatures Database to identify enriched biological 524 

pathways. Identified pathways were determined to be significant, with a Benjamini-Hochberg 525 

adjusted p value of less than 0.01 to account for multiple hypothesis testing. The imputed 526 
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parameters to run GSEA included a minimum gene size of 5, a maximum gene size of 500, and 527 

epsilon, the tuning constant of 0. The default setting of 1000 permutations was used.  528 

 529 

Identifying shared genes across enriched biological pathways 530 

We used igraph (ver. 2.0.3)91 in R to identify overlapping genes that may be commonly enriched 531 

across multiple biological pathways identified from GSEA. We then processed the R-generated 532 

data in Cytoscape (ver. 3.10.2)92 to enhance pathway visualization. We established the nodes 533 

representing different biological pathways and the edge thickness by the number of overlapping 534 

genes between the two biological pathways. Additionally, the node size was determined by the 535 

number of total enriched genes contributing to the biological pathway as determined by GSEA, 536 

with the node colors red and blue used to discern pathway associations with AD or control groups, 537 

respectively.  538 

 539 

Fold-change comparison cross-disease 540 

The relationship of different gene expression across AD and T2D conditions was compared using 541 

the log2 fold change of each gene shared across the AD and T2D blood data. For each dataset 542 

(T2D and AD), the log2 fold change of each gene expression was calculated by taking the log2 of 543 

the average gene expression of the disease groups divided by the average gene expression of 544 

the control groups. Different gene expression relationships were compared across the T2D and 545 

AD datasets.  546 

 547 

Sex-based comparison across type 2 diabetes principal component scores 548 

PC scores were compared across sex and disease conditions to compare PC predictability across 549 

sex demographics. A Mann-Whitney pair-wise test was used to compare AD females to control 550 

females and AD males to control males. To account for multiple hypothesis testing, a Benjamini-551 

Hochberg adjusted p value less than 0.05 was determined significant for the analysis. 552 
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 553 

Computational gene expression correlational analysis 554 

Potentially therapeutic drugs correlated with T2D PCs predictive of AD were screened using 555 

publicly available data from the L1000 Consensus Signatures Coefficient Tables (Level 5) from 556 

the LINCS database. Before screening, the LINCS drug data was pre-processed by excluding all 557 

drugs with no known targets based on the LINCS small molecules metadata. 558 

 559 

To identify candidate drugs associated with T2D and AD, two data sources were compiled: DEGs 560 

from each respective drug from LINCS and the loadings from the T2D PCs predictive of AD. DEGs 561 

for each drug were determined through the following: The characteristic direction values, which 562 

signified the drug's up- or down-regulation of a gene, were scaled to obtain their z-score values40. 563 

The list of DEGs for each drug was then identified if the gene’s z-score value presented with 564 

a p value less than 0.05. The original characteristic direction values for the selected genes for 565 

each respective drug were then isolated. For each T2D PC that was able to stratify transcriptomic 566 

variance between control and AD subjects, differentially expressed drug genes and PC gene 567 

loadings were matched. A Spearman correlation was calculated to determine the correlation 568 

between PC loadings and the DEGs’ characteristic direction coefficients for each drug. For a given 569 

T2D PC of interest, drugs were ranked by their respective Spearman’s r values. The correlations’ 570 

p values were corrected by Benjamini-Hochberg before visualizing the drugs’ ranks against their 571 

r values (adjusted p value < 0.05). 572 

 573 

Filtering genetic blood biomarkers for computational modeling of brain tissue data 574 

The top 50 and bottom 50 genes, ranked by their respective scores on the T2D PC predictive of 575 

AD in blood, were used to filter genes of AD brain tissue data. After filtering for matching genes, 576 

a Benjamini-Hochberg adjusted Mann-Whitney test was performed to determine significant genes. 577 
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An adjusted p value of less than 0.20 was deemed significant to allow for a more permissible list 578 

of potential genes that relate the blood to the brain. The significant genes were then used for PLS-579 

DA modeling.  580 

 581 

Partial least squares discriminant analysis 582 

Using R (mixOmics ver. 6.26.0)93, we constructed a PLS-DA model to determine the predictability 583 

of blood-based gene expression markers in the human brain. Specifically, we used PCs derived 584 

from T2D blood transcriptomic data predictive of AD outcomes in blood profiles and selected the 585 

top 50 and bottom 50 gene loadings as a filter for hippocampal tissue transcriptomic data in 586 

human subjects. A PLS-DA model screening for the 100 genes was used to determine if all genes 587 

driving the transcriptomic variation in the T2D PC could stratify AD and control in brain tissue. As 588 

an additional follow-up, the 100 filtered genes selected by the blood data significantly 589 

distinguishable among AD and control in human blood were also used to construct the PLS-DA 590 

model. The number of latent variables used for the model was determined by 100 randomly 591 

repeated three-fold cross-validation based on the model with the lowest cross-validation error rate.  592 

 593 

As a way to determine the most important predictors driving separation and predictive accuracy 594 

in the PLS-DA model, we calculated the VIP score for each gene. For a given number of PLS-DA 595 

components A, the VIP for each gene predictor, k, is calculated by: 596 

𝑉𝐼𝑃= = @>∙∑ @#$
%&

#'( ∙AAB#
B∙AAC)*)#+

A
9/%

, 597 

where K is the total number of gene predictors, wak is the weight of predictor k in the ath LV 598 

component. The total sum of squares explained in all LV components is represented by SSYtotal.  599 

A calculated VIP score greater than 1 signifies that a given gene is an important variable for a 600 

specific LV in the PLS-DA model.  601 

 602 
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AD subjects were annotated by their APOE genotype, Braak stage, and MMSE score among 603 

each PLS-DA model. The MMSE numerical scores, which evaluate cognitive impairment, were 604 

aggregated based on standardized scoring metrics such that 30-26 was normal, 25-20 was mild, 605 

19-10 was moderate, and 9-0 was severe94. The control groups did not have any clinical records. 606 

607 
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SUPPLEMENTARY INFORMATION 890 

 891 
Supplementary Figure S1. Data processing of the AD and T2D data. (a) Gene overlaps across 892 
the three publicly available transcriptomics data. (b) Cumulative variance was explained for T2D 893 
PCs with a threshold of 80%. (c) PCA of the AD cohort 1, AD cohort 2, and T2D data.  894 
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 905 
Supplementary Figure S2. Identification of genes separating between healthy and AD 906 
groups. Hierarchical clustering of the top and bottom 50 T2D PC2 loadings in T2D PC2 for (a) 907 
AD cohort 1 and (b) AD cohort 2.  908 
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 913 
Supplementary Figure S3. Additional anti-T2D drugs approved by the FDA. (a) Anti-T2D 914 
therapeutics with potential reduction of AD pathology. (b) Anti-T2D therapeutics with increased 915 
risk for AD. 916 
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 919 
Supplementary Figure S4. PLS-DA models of the brain tissue gene expression filtered by 920 
the 88 represented in the T2D PC2 loading. Models constructed for (a) the hippocampus, (b) 921 
the entorhinal cortex, (c) the superior frontal gyrus, and (d) the postcentral gyrus. 922 
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930 
Supplementary Figure S5. Annotated PLS-DA models by genotype and clinical scores. 931 
Subjects are further labeled by their respective APOE genotype, Braak stage, and MMSE for brain 932 
tissue collected for the (a) entorhinal cortex, (b) superior frontal gyrus, and (c) postcentral gyrus. 933 
 934 
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