

1 **Cross-disease modeling of peripheral blood identifies biomarkers of type 2 diabetes**
2 **predictive of Alzheimer's disease**
3

4 **Authors and Affiliations:** Brendan K. Ball¹, Jee Hyun Park¹, Elizabeth A. Proctor²⁻⁶, Douglas K.
5 Brubaker^{7-8*}

6 1. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
7 2. Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
8 3. Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
9 4. Department of Biomedical Engineering, Penn State University, State College, PA, USA
10 5. Center for Neural Engineering, Penn State University, State College, PA, USA
11 6. Department of Engineering Science & Mechanics, Penn State University, State College,
12 PA, USA
13 7. Center for Global Health & Diseases, Department of Pathology, School of Medicine, Case
14 Western Reserve University School of Medicine, Cleveland, OH, USA
15 8. Blood Heart Lung Immunology Research Center, University Hospitals, Cleveland, OH,
16 USA

17 ***Corresponding Author:** dkb50@case.edu
18

19 **Keywords:** Type 2 diabetes, Alzheimer's disease, transcriptomics, computational gene
20 correlation analysis, cross-disease modeling, partial least squares discriminant analysis
21
22
23
24
25
26

27 **ABSTRACT**

28 Type 2 diabetes (T2D) is a significant risk factor for Alzheimer's disease (AD). Despite multiple
29 studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly
30 understood. It is challenging to design studies that address co-occurring and comorbid diseases,
31 limiting the number of existing evidence bases. To address this challenge, we expanded the
32 applications of a computational framework called Translatable Components Regression
33 (TransComp-R), initially designed for cross-species translation modeling, to perform cross-
34 disease modeling to identify biological programs of T2D that may exacerbate AD pathology. Using
35 TransComp-R, we combined peripheral blood-derived T2D and AD human transcriptomic data to
36 identify T2D principal components predictive of AD status. Our model revealed genes enriched
37 for biological pathways associated with inflammation, metabolism, and signaling pathways from
38 T2D principal components predictive of AD. The same T2D PC predictive of AD outcomes
39 unveiled sex-based differences across the AD datasets. We performed a gene expression
40 correlational analysis to identify therapeutic hypotheses tailored to the T2D-AD axis. We identified
41 six T2D and two dementia medications that induced gene expression profiles associated with a
42 non-T2D or non-AD state. Finally, we assessed our blood-based T2DxAD biomarker signature in
43 post-mortem human AD and control brain gene expression data from the hippocampus, entorhinal
44 cortex, superior frontal gyrus, and postcentral gyrus. Using partial least squares discriminant
45 analysis, we identified a subset of genes from our cross-disease blood-based biomarker panel
46 that significantly separated AD and control brain samples. Our methodological advance in cross-
47 disease modeling identified biological programs in T2D that may predict the future onset of AD in
48 this population. This, paired with our therapeutic gene expression correlational analysis, also
49 revealed alogliptin, a T2D medication that may help prevent the onset of AD in T2D patients.

50

51

52

53 **ABBREVIATIONS**

Abbreviation	Associations
AD	Alzheimer's disease
APOE	Apolipoprotein E
BBB	Blood-brain barrier
DEG	Differentially expressed gene
EC	Entorhinal cortex
FDA	Food and Drug Administration
GEO	Gene Expression Omnibus
GLM	Generalized linear model
GSEA	Gene set enrichment analysis
LASSO	Least Absolute Shrinkage and Selection Operator
LINCS	Library of Integrated Network-Based Cellular Signatures
LV	Latent variable
MCI	Mild cognitive impairment
MMSE	Mini-Mental State Examination
PC	Principal component
PCA	Principal component analysis
PLS-DA	Partial least squares discriminant analysis
PoCG	Postcentral gyrus
SFG	Superior frontal gyrus
T2D	Type 2 diabetes
TransComp-R	Translatable Components Regression
VIP	Variable importance of projection

54

55

56

57

58

59

60

61

62

63

64

65 **INTRODUCTION**

66 Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia and insulin
67 dysregulation that significantly elevates the risk for Alzheimer's disease (AD) by more than 60%¹⁻³. Alzheimer's disease is an irreversible neurodegenerative disorder that gradually impairs
68 memory and cognitive function. A recent large-scale longitudinal study found that individuals with
69 an earlier onset of T2D were at higher risk of developing AD⁴. Other cohort studies^{5,6} reported
70 similar results. In addition to the elevated risk of AD, T2D also contributes to other conditions such
71 as hypertension⁷, neuroinflammation⁸, heart disease⁹, stroke¹⁰, and kidney disease¹¹. As a result,
72 the influence of T2D on other comorbidities further complicates our understanding of its impact
73 on human health and the development of potential therapeutics for such conditions.

75

76 To understand this T2D-AD axis, previous studies examined how the onset of T2D influences the
77 progression of AD¹². Multiple studies reported insulin signaling impairment in T2D and AD^{13,14}.
78 The metabolic connection to AD¹⁵ also carries the T2D risk factor and is further amplified by the
79 age¹⁶. Systemic low-grade inflammation in T2D progressively leads to downstream
80 neuroinflammation and neuronal cell death, increasing the risk of AD¹⁷⁻¹⁹. Another study revealed
81 altered gene expression levels in neurons, astrocytes, and endothelial cells in post-mortem brain
82 tissue of T2D subjects, showing alterations to brain cells under diabetic conditions²⁰.

83

84 Previous work from other groups implicates the blood-brain barrier (BBB) as a potential route that
85 connects T2D²¹ and AD²². The BBB is a selective semipermeable membrane consisting of
86 endothelial cells, pericytes, and astrocytes, which protects the brain from harmful substances and
87 regulates the passage of immune cells and nutrients into the brain^{23,24}. One large clinical study
88 observed heightened BBB permeability in people with T2D and AD²⁵. This progressive breakdown
89 of the BBB in T2D and AD is associated with irregular vascular endothelial growth factor
90 production, resulting in increased permeability across the BBB^{25,26}. Other reports suggested that

91 damage to endothelial cells in the cerebral blood vessels, indicated by elevated adhesion
92 molecules, may contribute to this breakdown^{25,27,28}. Therefore, chronic circulation of molecules
93 produced under T2D conditions in the bloodstream may contribute to BBB breakdown and
94 eventually enter the brain, contributing to the development of dementia and cognitive dysfunction.

95

96 A barrier to understanding how one disease influences another is that studies that simultaneously
97 investigate multiple health conditions in humans are rare and difficult²⁹. This challenge is
98 compounded in chronic disorders like T2D and AD, where pathogenesis can precede diagnosis
99 by decades³⁰. To overcome this barrier, other groups have used differential expression analysis
100 of transcriptomic data between T2D and AD but have fallen short in considering human
101 heterogeneity, such as sex and age^{31,32}. Another group integrated T2D and AD data using non-
102 negative matrix factorization to identify shared genes across the blood of T2D and AD. While they
103 identified dysregulated transcription factors shared across both diseases, they also did not
104 account for confounding variables such as sex and age³³. To overcome this challenge, we
105 adapted Translatable Components Regression (TransComp-R), a computational approach
106 initially developed to translate observations from pre-clinical animal disease models to human
107 contexts³⁴⁻³⁷, to perform cross-disease modeling of human datasets to identify T2D biology
108 predictive of AD.

109

110 In this work, we hypothesized that gene transcripts in T2D blood may predict and inform AD
111 pathology. We tested this hypothesis via computational modeling of publicly available peripheral
112 blood transcriptomics data of T2D and AD patients to determine if biomarkers in T2D blood could
113 distinguish blood signatures in AD versus cognitively normal control groups. To identify potential
114 therapeutics tailored to the T2D-AD axis, we employed a correlational analysis to identify
115 candidate drugs that may impact AD development. Lastly, we assessed whether the blood-based

116 biomarkers from our T2D-AD computational models could differentiate between AD and control
117 samples in brain tissue transcriptomics data.

118

119 **RESULTS**

120 **TransComp-R modeling separates AD and control subjects in T2D PC space**

121 We acquired bulk-RNA seq T2D and microarray AD peripheral whole blood data from Gene
122 Expression Omnibus (GEO). For the T2D dataset (GSE184050)³⁸, we used the longitudinal
123 baseline sample collection and information, including demographic variables of sex and age. Two
124 separate cohorts of AD data were used in the model to test the predictability of T2D for AD. In
125 both AD cohort 1 (GSE63060)³⁹ and AD cohort 2 (GSE63061)³⁹, we used AD and healthy control
126 subjects. Using two separate cohorts ensured that the selected T2D PC's would be robust (**Table**
127 **1**).

128 **Table 1.** Demographics of processed human transcriptomic blood data across each data set.

GEO Dataset (Accession)	Condition	Age (years) Mean \pm SD	Sex (%)		Total Sample Size (n)
			Male	Female	
T2D (GSE184050)	Control	64.4 \pm 9.6	3 (19%)	13 (81%)	16
	T2D	64.1 \pm 2.8	3 (30%)	7 (70%)	10
AD Cohort 1 (GSE63060)	Control	72.8 \pm 5.8	42 (41%)	60 (59%)	102
	AD	75.4 \pm 6.6	46 (32%)	99 (68%)	145
AD Cohort 2 (GSE63061)	Control	75.3 \pm 6.0	53 (40%)	81 (60%)	134
	AD	77.9 \pm 6.7	54 (39%)	85 (61%)	139

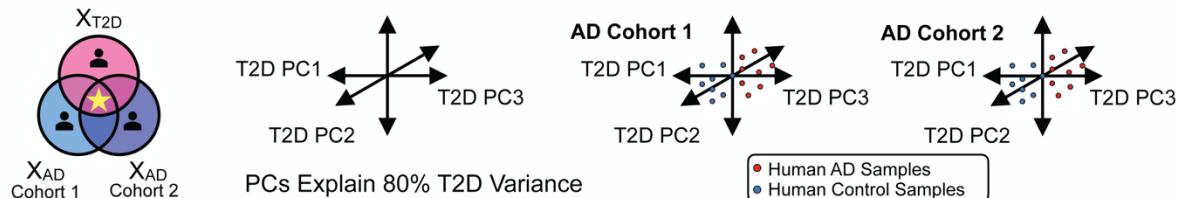
129

130 We repurposed the TransComp-R to identify biological pathways dysregulated in T2D predictive
131 of AD status. Cross-disease TransComp-R begins by matching shared genes across all datasets
132 (**Fig. 1a**). We then projected the AD human samples into a principal component analysis (PCA)
133 space constructed from the T2D data. We evaluate predictive power of T2D PCs for outcomes in
134 AD by Least Absolute Shrinkage and Selection Operator (LASSO) feature selection and
135 generalized linear model (GLM) regression (**Fig. 1b**). Using GSEA, we annotated the biological
136 and therapeutic interpretations of the significant T2D PCs predictive of AD biology (**Fig. 1c**). We
137 correlated differentially expressed genes from the drug list containing consensus signatures from

138 the Library of Integrated Network-based Cellular Signatures (LINCS) database to the loadings of
 139 the T2D PCs predictive of AD. This method links drug regulation of genes associated with healthy
 140 states vs AD or T2D with drug response signatures to identify therapeutic hypotheses.

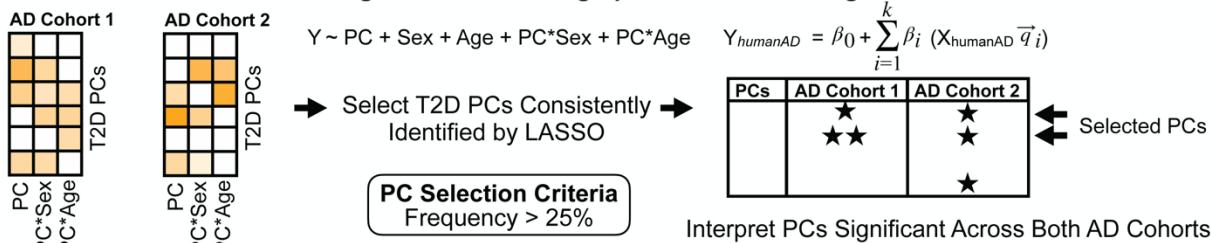
a Project Alzheimer's Disease Samples into Type 2 Diabetes PCA Space

1. Match Shared Genes 2. Create T2D PCA Space 3. Project AD Data onto T2D PC Eigenvectors



b Determine Translatability of Type 2 Diabetes PCs to Alzheimer's Disease

4. Select PCs with LASSO Using AD Human Demographics 5. Linear Regression of Selected T2D PCs

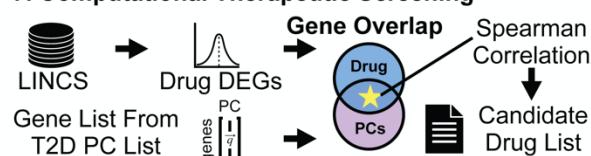


c Biological Interpretation of PCs Identified by TransComp-R

6. Pathway Enrichment Analysis

Select loadings from significant PCs

7. Computational Therapeutic Screening

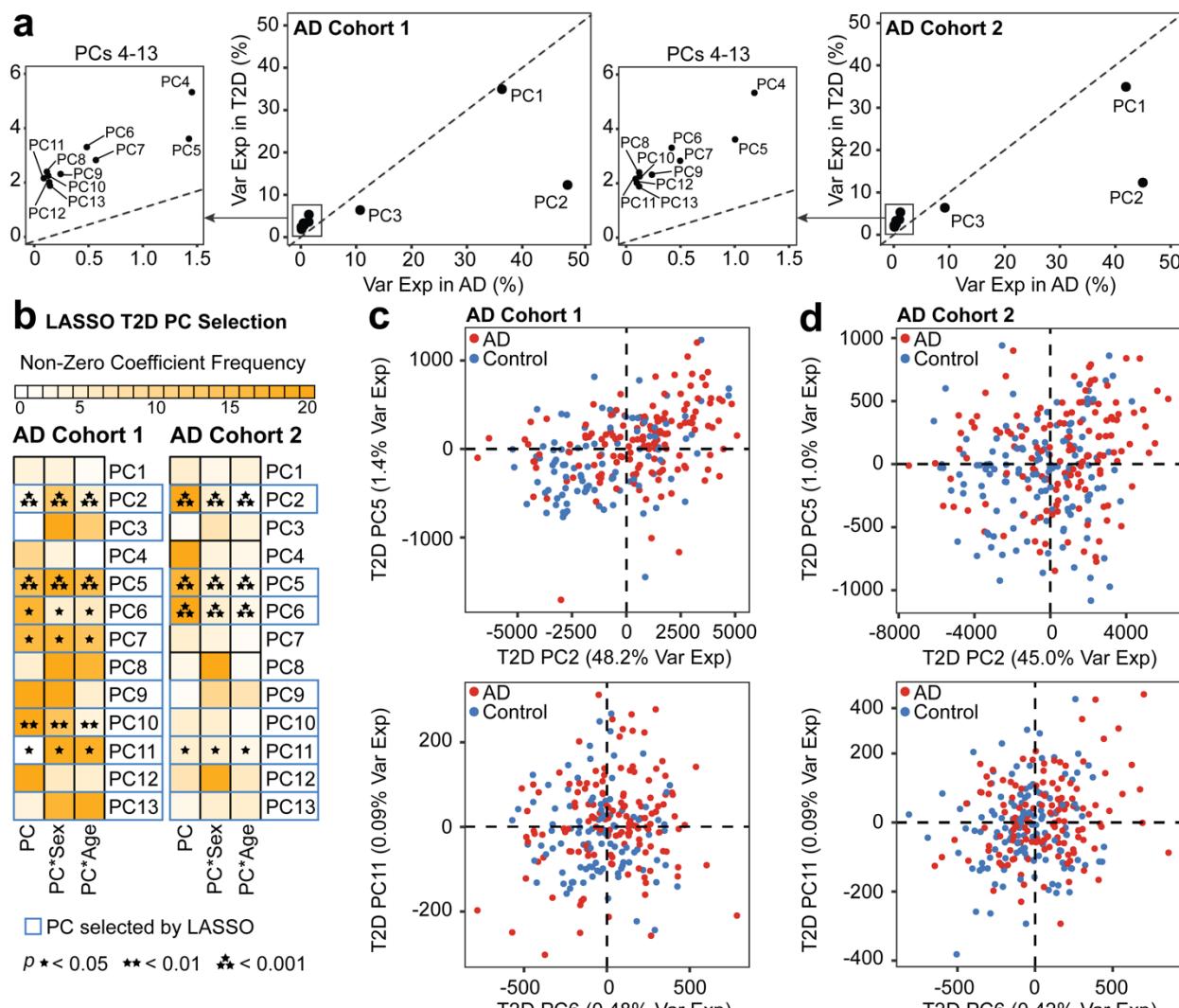


141
 142 **Figure 1. Workflow of TransComp-R.** (a) Genes across T2D and AD are selected for analysis.
 143 Each AD cohort is individually projected into the T2D PCA space to combine the two diseases.
 144 (b) PC translatability from T2D to AD is determined by running a GLM regression against AD
 145 outcomes using PCs consistently selected across each AD cohort. (c) Pathway enrichment
 146 analysis is performed on the loadings of significant PCs to identify enriched biological pathways.
 147 Potential therapeutic candidates are then identified using a correlation analysis framework.
 148

149 We matched 11,455 genes across the T2D and AD datasets and constructed the PCA space of
 150 the T2D and control samples. To prevent overfitting, we selected thirteen PCs for a cumulative
 151 explained variance of 80% for the TransComp-R model (**Supplementary Fig. S1**). Each AD
 152 cohort was separately projected onto the T2D PCs, such that we constructed two cross-disease
 153 models: T2D with AD cohort 1 and T2D with AD cohort 2.

154

155 We quantified how the variance captured by the T2D PCs explained the variation in human AD.
 156 To determine the cross-disease relevance of the T2D PCs to the variance of the AD data, we
 157 visualized each of the thirteen T2D PCs, comparing the variance explained in the T2D and AD
 158 data (**Fig. 2a**). When comparing the translatability of T2D PCs in AD cohort 1 and 2, we found
 159 T2D PC1, PC2, and PC3 had higher explained variance in Alzheimer's disease data relative to
 160 the other T2D PCs 4-13, showing that T2D PCs 1-3 have highest potential for translation of biology
 161 between T2D and AD.



162
 163
 164
 165

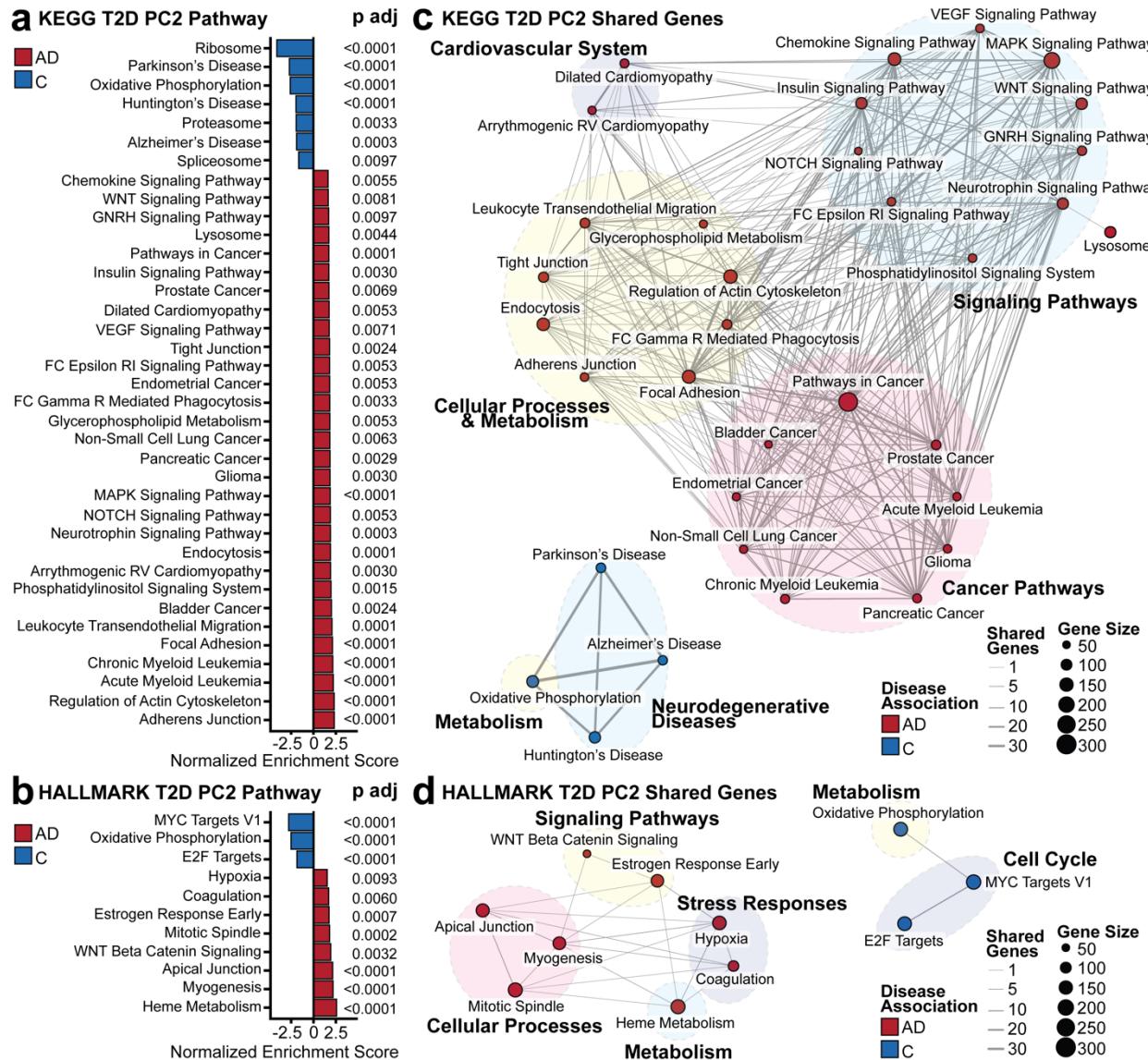
Figure 2. TransComp-R identifies T2D PCs predictive of AD outcomes. (a) AD PCs were separated by cohort, with variance explained in AD (b) Selection of PCs using a LASSO model incorporating sex and age demographics from the AD datasets. The model was run across twenty

166 random rounds of ten-fold cross-validation. PCs consistently determined significant across both
167 AD cohorts from the GLM regression were further analyzed. **(c)** Principal component plots of AD
168 scores on selected T2D PCs separating AD and control outcomes in AD cohort 1 and **(d)** AD
169 cohort 2. Each T2D PC is represented by the percent variance explained in AD.
170

171 We used LASSO to select the most relevant T2D PCs for predicting AD by regressing AD
172 projections on T2D PCs, sex, and age from the AD cohort, with interaction effects of T2D PC with
173 sex and age. From the LASSO model, several PCs (PC2, PC5-6, PC9-13) were selected across
174 both AD cohorts (**Fig. 2b**). Despite the multiple number of PCs being consistently selected from
175 LASSO, only T2D PC2, PC5, PC6, and PC11 fulfilled the selection criteria and discerned between
176 AD and control groups in the GLM. The T2D PCs predictive of AD conditions were visualized for
177 both AD cohort 1 (**Fig. 2c**) and AD cohort 2 (**Fig. 2d**). While the transcriptomic variation encoded
178 on T2D PC2 and PC5 were able to distinguish between human AD and control groups, there was
179 less distinguishable separation made by T2D PC6 and PC11. Among T2D PC2 and PC5, we
180 selected T2D PC2 for deeper downstream interrogation due to the higher potential for T2D-to-AD
181 translatability as quantified by the percentage of variance explained in AD (**Fig. 2a**).
182

183 **T2D and AD share pathways associated with metabolism, signaling pathways, and cellular
184 processes**

185 We employed GSEA to interpret the T2D PC2 gene loadings, which encoded transcriptomic
186 variation between healthy and T2D subjects that predicted AD outcomes using both KEGG (**Fig.**
187 **3a**) and Hallmark (**Fig. 3b**) databases to gain a holistic insight into the genes loaded on T2D PC2.



188
189
190
191
192
193
194
195
196
197

198 We organized the enriched pathways into themes to determine if neighboring pathways were due
199 to the overrepresentation of shared genes for both the KEGG (Fig. 3c) and Hallmark (Fig. 3d)
200 databases. In the AD-associated pathways from KEGG, we identified enriched pathway themes,

201 such as the cardiovascular system, signaling pathways, cellular processes and metabolism, and
202 cancer pathways. In the control group, we found pathways associated with neurodegenerative
203 diseases and metabolism. From Hallmark, pathways enriched in AD associations included
204 signaling pathways, cellular processes, metabolism, and stress response, with metabolism and
205 cell cycle pathways enriched in controls.

206

207 **T2D PC2 identifies gene expression changes with predictive ability across sex and disease
208 conditions in two AD cohorts**

209 We compared the average \log_2 fold change of the 11,455 shared genes for disease and control
210 groups to identify trends in the regulation of genes across diseases. In both AD cohorts and T2D,
211 there were decreases in gene expression including *COX7C*, *NDUSF5*, *NDUFA1*, *RPL17*, *RPL23*,
212 *RPL26*, *RPL31*, and *TOMM7* (Fig 4a), genes responsible for mitochondrial and ribosomal
213 functions. *COX7C*, *NDUSF5*, and *NDUFA1* are active in the electron transport chain function in
214 the inner mitochondrial membrane and *TOMM7* encodes for a subunit of the translocase of the
215 outer mitochondrial membrane. Ribosomal protein L genes such as *RPL17*, *RPL23*, *RPL26*, and
216 *RPL31* play a role in forming structures of ribosomes and regulating ribosome function.

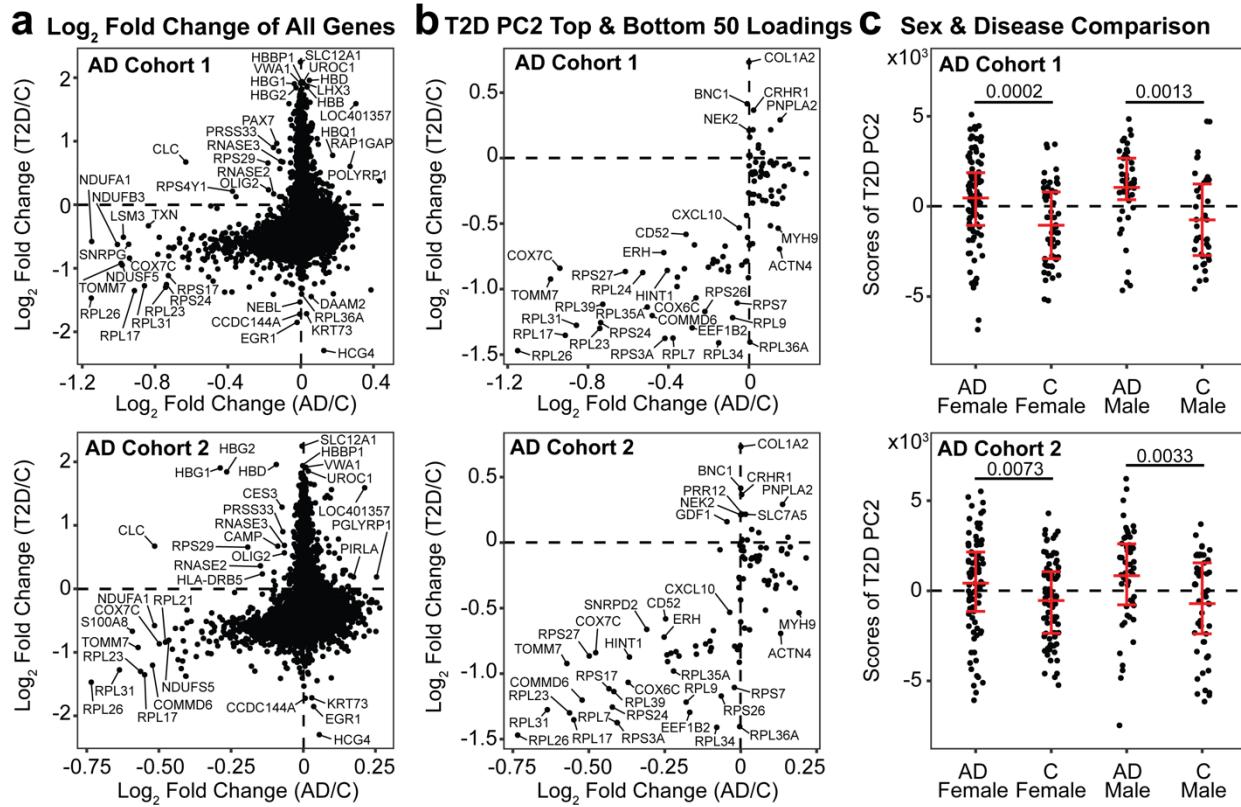


Figure 4. Comparison of global gene expression and AD-predictive T2D PCs **(a)** AD and T2D \log_2 fold change plot of all shared 11,455 genes **(b)** AD and T2D \log_2 fold change plot filtered by gene expressions with the top 50 and bottom 50 loadings of T2D PC2. **(c)** Scores of T2D PC2 separated by sex and disease condition. A Mann-Whitney test adjusted by Benjamini-Hochberg was used to determine statistical significance. The distribution of the data is annotated by the mean and interquartile ranges.

217
218
219
220
221
222
223
224

225 We next tested to see if the top 50 and bottom 50 gene loadings from T2D PC2 could capture the
226 cross-disease trends of the total transcriptome. We visualized the filtered gene with AD and T2D
227 fold changes and observed a similar trend such that multiple genes were downregulated in both
228 AD and T2D conditions (**Fig. 4b**). Among those consistently downregulated in AD and T2D, genes
229 related to ribosomal proteins (RPL and RPS) were present. These 100 genes also distinguished
230 between control and AD subjects (**Supplementary Fig. S2**).

231

232 Finally, we evaluated T2D PC2's ability to stratify sex and disease characteristics in AD. We
233 identified significant sex-based differences across AD and control in both cohorts. In AD cohort 1,
234 we found that the female and male groups, each separated by AD and control, were significantly

235 different by the variation captured by T2D PC2, with adjusted p values of 0.0002 and 0.0013,
236 respectively (**Fig. 4c**). Similarly, in AD cohort 2, there was significance in disease separation for
237 both females and males, with adjusted p values of 0.0073 and 0.0033, respectively (**Fig. 4c**).
238 Comparing the scores of T2D PC2 by disease condition only, we found significance in both AD
239 cohort 1 ($p = 2.000 \times 10^{-7}$) and AD cohort 2 ($p = 9.078 \times 10^{-5}$).

240

241 **Identification of drug perturbation signatures associated with PC2 T2D-AD signatures**

242 We developed a correlation analysis to identify therapeutic candidates associated with the T2D
243 PC2 predictive of AD. We used the Library of Integrated Network-Based Cellular Signatures
244 (LINCS) Consensus Signatures, a dataset containing 33,609 drugs with their respective post-
245 treatment gene expression profiles summarized as a “characteristic direction” (CD) coefficient⁴⁰.
246 Of the 33,609 drugs in the LINCS database, 3,161 remained after we filtered out duplicates and
247 drugs without known targets. We compared the CD coefficient values of genes affected by each
248 drug to the gene loadings on T2D PC2 using Spearman’s correlation. We hypothesized a drug
249 could be therapeutic for T2D/AD risk based on the correlation directionality, where negative p
250 values were interpreted as inducing profiles associated with a non-T2D or non-AD state and
251 positive p values associated with a T2D or AD disease state.

252

253 We identified 1,262 drugs significantly correlated with the loadings in T2D PC2 (**Fig. 5a**). Drugs
254 associated with a non-T2D and non-AD gene expression profile included dienestrol, BW-180C,
255 T-0156, alogliptin, and roflumilast (**Supplementary Table S1**). Dienestrol had the most negative
256 correlation coefficient of -0.5059 and is an estrogen receptor agonist used to treat vaginal pain by
257 targeting *ESR1*. T-0156 (*PDE5A*) and roflumilast (*PDE4A*, *PDE4B*, *PDE4C* and *PDE4D*) are both
258 phosphodiesterase inhibitors. We also identified a prototypical delta opioid receptor agonist (BW-
259 180C) and a T2D prescription medication (alogliptin), which targets *OPRD1* and *DPP4*,

260 respectively. Conversely, drugs associated with gene expression of a T2D or AD disease state
261 included antagonists such as wortmannin (*PI3K* inhibitor), proglumide (*CCK* receptor antagonist),
262 *GR-127935* (serotonin receptor antagonist), homatropine-methylbromide (acetylcholine receptor
263 antagonist), and phenacemide (sodium channel blocker).

264
265 To filter drugs tested for safety and efficacy, we referenced the Food and Drug Administration
266 (FDA) Orange Book for FDA-approved and over-the-counter drugs (June 2024 version)⁴¹. We
267 identified 301 FDA-approved drugs in our original significant 1,262 (**Fig. 5b**), and of these, 23
268 were approved for over-the-counter use (**Fig. 5c**). Among the FDA-approved drugs, alogliptin and
269 roflumilast were among the most negative correlation coefficients. Other medications with
270 negative coefficients associated with a non-T2D or AD state were isradipine, used for
271 hypertension (*CACNA1S*, *CACNA1C*, *CACMA1F*, *CACMA1D*, and *CACMA2D1* targets), niacin
272 used for vitamin B (*HCAR2* and *HCAR3* targets), and disopyramide used for irregular heartbeats
273 (*SCN5A* gene target) (**Supplementary Table S2**). Among medications with top positive
274 coefficients associated with AD and T2D, we identified two anti-cancer drugs (pacritinib and
275 lenvatinib), a blood thinner (ticagrelor), and two anti-arrhythmic drugs (adenosine and flecainide).

276
277 The most negative coefficients for over-the-counter drugs were vasodilators, opioid receptor
278 targets, and histamine receptor drugs (**Supplementary Table S3**). Minoxidil had the most
279 negative correlation coefficient (-0.3101) and is a hypertension medication that targets *KCNJ8*,
280 *KCNJ11*, and *ABCC9*. Loperamide (opioid receptor agonist), used for diarrhea, targets *OPRM1*
281 and *OPRD1*, while naloxone (opioid receptor antagonist), used for opioid overdose, affects
282 *OPRK1*, *OPRM1*, and *OPRD1*. We also identified two histamine receptor antagonists, cimetidine
283 and doxylamine, which targeted *HRH2* and *HRH1*, respectively. The most positively correlated
284 medications that induced disease gene signatures included orlistat, a lipase inhibitor used for
285 weight loss and T2D, had the greatest coefficient of 0.3104 (*LIPF*, *PNLIP*, *DAGLA*, and *FASN*

286 targets). Other positive correlation, T2D-AD associated drugs included budesonide (corticosteroid
287 for Crohn's disease) and mometasone (steroid for skin discomfort), both of which are
288 glucocorticoid receptor agonists with the target of *NR3C1*. Other medications among the most
289 positively correlated included clotrimazole (cytochrome p450 inhibitor) and pheniramine
290 (histamine receptor antagonist), which targeted *KCNN4* and *HRH1* respectively.

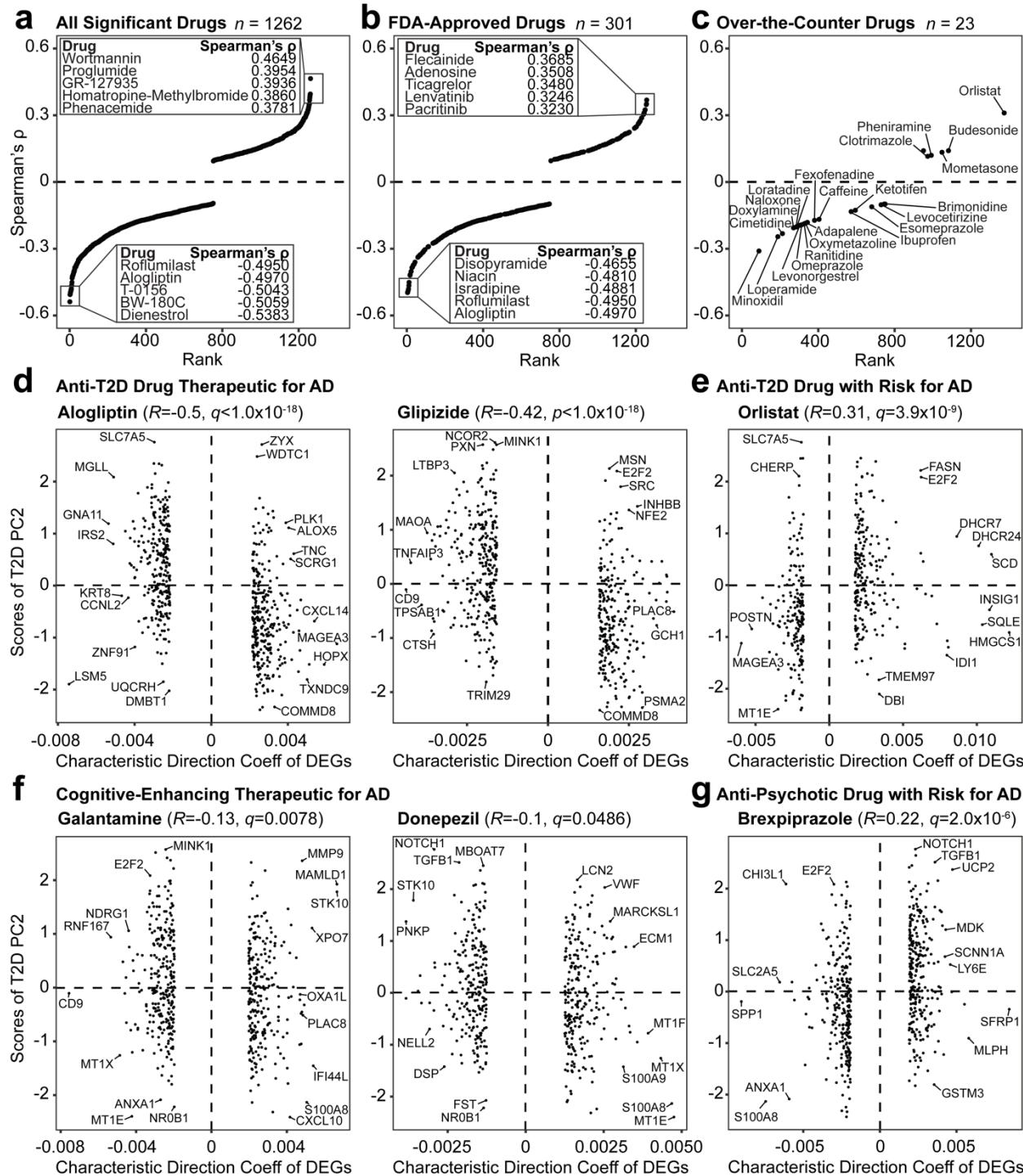


Figure 5. Computational gene expression correlational analysis. (a) All significant drugs identified from the LINCS database. Drugs filtered by (b) FDA approval status and (c) over-the-counter drugs. (d) FDA-approved T2D drugs (alogliptin and glipizide) associated with control group signatures. (e) FDA-approved T2D drug (orlistat) associated with genes upregulated in AD. (f) FDA-approved medications for cognitive-enhancement (galantamine and donepezil). (g) FDA-approved drug (brexpiprazole) with signatures correlated to genes elevated in AD.

291
292
293
294
295
296
297
298

299 We compared the FDA-approved drugs to MedlinePlus and First Databank for any medication
300 currently used to treat T2D or cognitive-associated symptoms (**Supplementary Table S4**). Of the
301 301 FDA-approved drugs identified, we found ten medications for T2D and three with cognitive
302 function associations (**Supplementary Table S5**). Among the medications used for T2D, glipizide
303 (sulfonylurea), repaglinide (insulin secretagogue), and nateglinide (insulin secretagogue) targeted
304 *KCNJ11* and *ABCC8*. The diabetes dipeptidyl peptidase inhibitors that target *DPP4*, included
305 alogliptin, sitagliptin, and linagliptin. We also identified sodium/glucose co-transporter inhibitor
306 empagliflozin (*SLC5A2*), the *PPAR* receptor antagonist pioglitazone, glucosidase inhibitor
307 acarbose (*AMY2A*, *MGAM*, and *GAA*), and lipase inhibitor orlistat (*LIPF*, *PNLIP*, *DAGLA*, and
308 *FASN*). Among medications commonly prescribed to improve cognitive function, we identified
309 donepezil and galantamine, acetylcholinesterase inhibitors that target *ACHE* and *ACHE/BCHE*
310 and brexpiprazole (*HTR2A*, *DRD2*, *HTR1A*), a dopamine receptor partial agonist used for AD-
311 associated agitation. Of these thirteen medications, empagliflozin, linagliptin, brexpiprazole,
312 acarbose, and orlistat contained gene expression responses correlated to an AD or T2D condition.
313 Nine medications were associated with a non-AD or non-T2D condition, which included alogliptin,
314 glipizide, repaglinide, sitagliptin, pioglitazone, galantamine, nateglinide, and donepezil.
315

316 We selected the top two medications that associated with a non-disease state (T2D and cognitive-
317 enhancing medication) and those associated with a disease state to compare the relationship of
318 the drug DEGs and T2D PC2 scores. We found that alogliptin and glipizide, anti-T2D drugs had
319 the most significant correlation magnitude among the six drugs, with a coefficient of -0.5 ($p <$
320 2.2×10^{-16}) and -0.42 ($p < 2.2 \times 10^{-16}$), respectively (**Fig. 5d**). Orlistat had gene signatures most
321 positively correlated with disease states ($\rho = 0.31$, $p = 2.9 \times 10^{-10}$) (**Fig. 5e**). The signatures
322 affected by cognitive medications galantamine ($\rho = -0.13$ $p = 0.0028$) and donepezil ($\rho = -0.1$
323 $p = 0.024$) had weaker correlations than the anti-T2D medication (**Fig. 5f**). Finally, we identified
324 brexpiprazole, an anti-psychotic drug with a low positive correlation coefficient of 0.22 ($p = 2.6 \times 10^{-$

325 ⁷) associated with T2D and AD disease status (**Fig. 5g**). Other FDA-approved T2D medications,
326 with weaker correlations to a non-T2D or non-AD state included repaglinide, sitagliptin,
327 pioglitazone, and nateglinide (**Supplementary Fig. S3**).
328

329 **Translation of T2D PC2 gene loadings to from AD blood to AD brain transcriptomics**

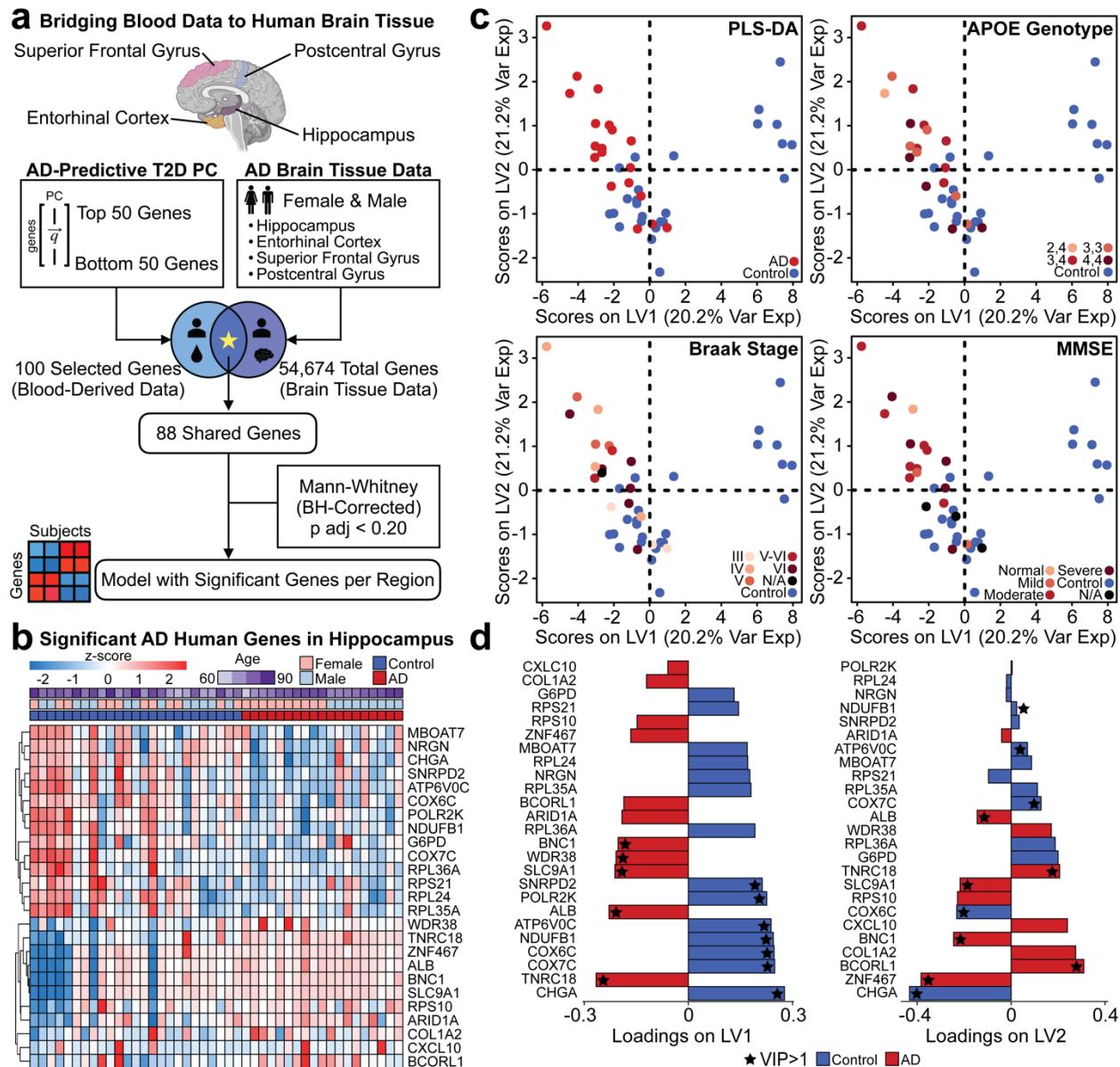
330 Having identified biomarkers in T2D blood predictive of AD status, we assessed if the identified
331 signature stratified AD from control patients in brain tissues. We acquired a human microarray
332 dataset (GSE48350)^{42,43} profiling AD and control samples in multiple brain regions: hippocampus,
333 entorhinal cortex (EC), superior frontal gyrus (SFG), and postcentral gyrus (PoCG). Potential age
334 bias was reduced by excluding subjects younger than 55. The post-processed demographics
335 separated by their respective brain region were summarized (**Table 2**).
336

337 **Table 2.** Demographic summary across four different processed human brain regions

GEO Dataset (GSE48350)	Condition	Age (years) Mean \pm SD	Sex (%)		Total Sample Size (n)
			Male	Female	
Hippocampus	Control	82.0 \pm 10.0	13 (52%)	12 (48%)	25
	AD	83.1 \pm 8.5	9 (47%)	10 (53%)	19
Entorhinal Cortex	Control	80.7 \pm 10.3	9 (50%)	9 (50%)	18
	AD	86.5 \pm 5.5	7 (47%)	8 (53%)	15
Superior Frontal Gyrus	Control	80.8 \pm 10.3	12 (46%)	14 (54%)	26
	AD	87.1 \pm 6.2	7 (33%)	14 (67%)	21
Postcentral Gyrus	Control	81.5 \pm 10.4	11 (46%)	13 (54%)	24
	AD	85.0 \pm 8.2	10 (40%)	15 (60%)	25

338
339 We matched genes in the AD brain dataset to the top 50 and bottom 50 genes from T2D PC2
340 (**Fig. 6a**) and matched 88 genes. We determined AD status-associated genes in each brain region
341 via differential expression analysis (Benjamini-Hochberg adjusted Mann-Whitney test, *p* adjusted
342 < 0.20). We first investigated the hippocampus brain tissue to identify genes from T2D-blood PC2
343 that could stratify AD and control groups in the brain. We identified 25 significant genes (adjusted
344 *p* value < 0.20) and hierarchical clustering showed these 25 genes separated AD and control
345 conditions in the hippocampus gene expression data (**Fig. 6b**). We used these genes to construct

346 PLS-DA models to identify genes driving separation across the brain tissue samples of AD and
 347 control groups (Fig. 6c, Supplementary Fig. S4).

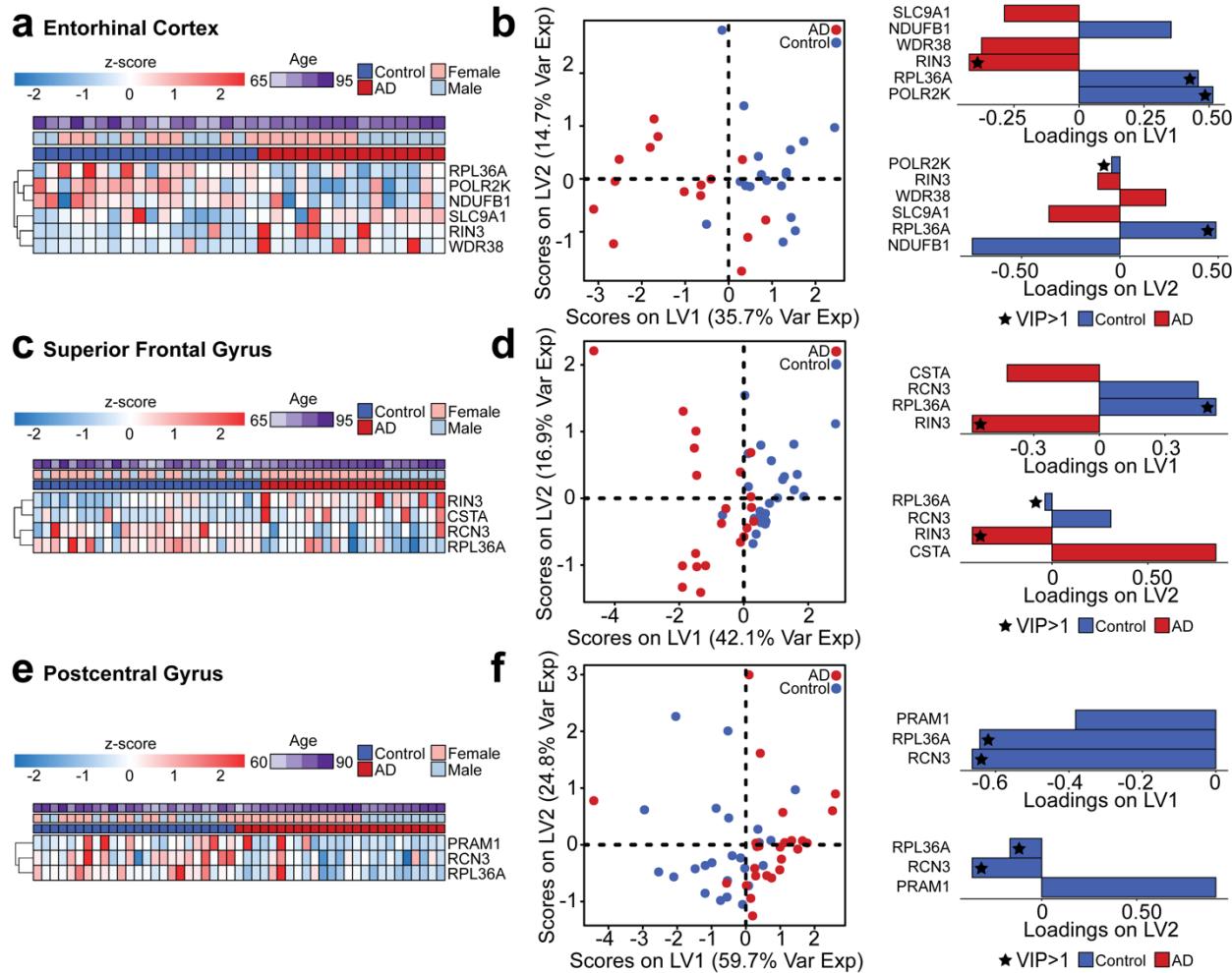


348
 349 **Figure 6. Translating blood-predictable signatures to the brain.** (a) Method of testing blood-
 350 derived data predictability in the brain. (b) Z-score of significant AD-associated genes identified
 351 in the human hippocampal dataset (Mann-Whitney adjusted by Benjamini-Hochberg, p adjusted
 352 < 0.20). (c) PLS-DA model using significant genes to predict AD status. AD groups are labeled
 353 by APOE genotype, Braak stage, and MMSE. (d) Loading variables LV1 and LV2 for the model
 354 are presented. A VIP>1 is annotated with a star, and the color of the loading bar represents the
 355 highest contribution to the specific class by the respective gene.

356

357 We annotated the subjects within the PLS-DA plot by their respective apolipoprotein E (APOE)
358 genotype, Braak stage, and mini-mental state examination (MMSE) scores (**Fig. 6d**). These were
359 used since APOE e4 is the greatest genetic risk factor for AD⁴⁴, Braak stage assesses
360 neurofibrillary tangle pathology⁴⁵, and MMSE for cognitive impairment screening⁴⁶. There was
361 clear separation between AD and control groups in our PLS-DA model and we identified a subset
362 of genes loaded in the latent variables (LVs) most predictive of disease status (**Fig. 6d**). On LV1,
363 we identified genes with variable importance of projection (VIP) greater than 1 associated with
364 the control group, including *SNRPD2*, *POLR2K*, *ATP6V0C*, *NDUFB1*, *COX6C*, *COX7C*, and
365 *CHGA*. For the AD group, we found *BNC1*, *WDR38*, *SLC9A1*, *ALB*, and *TNRC18* with a VIP>1.
366 Although there was no separation across the disease classes on LV2, we found *NDUFB1*,
367 *ATP6V0C*, *COX7C*, *COX6C*, and *CHGA* contributed greater than average (VIP > 1) to the control
368 group, whereas *ALB*, *TNRC18*, *SLC9A1*, *BNC1*, *BCORL1*, and *ZNF467* had a VIP >1 for AD.
369

370 After observing separation across disease classes in the hippocampus brain data, we next
371 determined if the T2D blood biomarkers able to stratify AD conditions in blood were reflective in
372 other parts of the brain. We built PLS-DA models for the EC, SFG, and PoCG. Of the 88 genes
373 that matched in the human brain tissue data, five genes were significant across AD and control
374 groups in the EC (**Fig. 7a**). Using these genes for the PLS-DA model, we found distinct separation
375 across LV1, and identified *RIN3*, *RPL36A*, and *POLR2K* as genes with a VIP greater than 1 (**Fig.**
376 **7b**). In the SFG brain region, we identified four significant genes: *RIN3*, *CSTA*, *RCN3*, and
377 *RPL36A* (**Fig. 7c**). In the SFG model, *RIN3* and *RPL36A* contributed most to separation between
378 the AD and control groups (**Fig. 7d**). In the PoCG region, three genes significantly separated AD
379 and control, including *PRAM1*, *RCN3*, and *RPL36A* (**Fig. 7e-f**). For each of these three brain
380 regions, additional annotation on the PLS-DA subjects by APOE genotype, Braak stage, and
381 MMSE were visualized for the EC, SFG, and PoCG PLS-DA models (**Supplementary Fig. S5**).
382



383
384
385
386
387
388
389
390
391
392

Figure 7. PLS-DA models using blood biomarkers to predict AD status in other brain regions (a) Z-score of significant genes identified in the human EC dataset. (b) PLS-DA using the significant genes on the EC data with loadings on LV1 and LV2. (c) Z-score of significant genes identified in the human SFG dataset. (d) PLS-DA using the significant genes on the SFG data with loadings on LV1 and LV2. (e) Z-score of significant genes identified in the human PoCG dataset. (f) PLS-DA using the significant genes on the PoCG data with loadings on LV1 and LV2. For all brain regions, the significance of the genes was determined by a Mann-Whitney adjusted by Benjamini-Hochberg (p adjusted < 0.20) across AD and control groups.

393 DISCUSSION

394 In this study, we used blood transcriptomics data from human T2D and AD studies to understand
395 the potential pathways by which T2D affects AD pathology. Our cross-disease model identified a
396 T2D-derived blood gene signature predictive of AD status and therapeutic candidates associated
397 with non-T2D and AD status. A subset of genes in the T2D blood were predictive of AD status in
398 four brain regions, showing the cross-disease model's significance and implications.

399

400 Chemokine signaling pathways were involved in patients of T2D⁴⁷ by routes of downstream
401 inflammation⁴⁸ and AD⁴⁹ with connections to cognitive decline. Wnt signaling also played a role in
402 metabolic dysregulation⁵⁰ and loss of synaptic integrity⁵¹. Insulin pathways were enriched in AD
403 conditions, consistent with prior literature showing insulin resistance⁵² is associated with an
404 increased risk for AD development⁵³. Pathways, such as MAPK and NOTCH, were enriched in
405 AD conditions, with MAPK-p38 phosphorylation associated with both T2D and AD^{54,55}. *Notch1*
406 expression decreases beta cell masses and insulin secretion in rodents⁵⁶ and was significantly
407 different across control and AD groups in our analysis⁵⁷. FC epsilon RI is also altered in T2D and
408 AD cases, such that downstream mast cells are affected⁵⁸.

409

410 We also identified cellular processes and metabolism pathways on the AD predictive T2D PC2.
411 Elevated neutrophil activation to chemokines and transendothelial migration is associated with
412 T2D⁵⁹. In AD, monocytes and human brain microvascular endothelial cells expressing CXCL1 are
413 associated with amyloid-beta-induced migration from the blood to the brain⁶⁰. FC gamma
414 receptor-mediated phagocytosis is observed in T2D in compromised monocyte phagocytosis⁶¹.
415 *PRKCD* is associated with amyloid-beta significantly triggered neurodegeneration in AD⁶². In
416 blood, coagulation is active in hyperglycemia⁶³ and factor XIII Val34Leu gene polymorphism is
417 associated with sporadic AD⁶⁴. Lastly, heme metabolism was associated with T2D and AD. A
418 T2D-based study reported that increased dietary heme iron intake increased the risk of T2D⁶⁵. In
419 an AD study, altered heme metabolism was noted in AD brain samples⁶⁶ (**Supplementary Table**
420 **S6**).

421

422 From our drug screening analysis, we identified T2D and AD medications whose perturbed gene
423 signatures significantly associated with the healthy state on the cross-disease predictive T2D PC2.
424 The T2D (alogliptin and glipizide) and AD (galantamine and donepezil) medications that induced

425 gene signatures correlated with T2D PC2 are current therapies for T2D and AD⁶⁷. Alogliptin, an
426 FDA-approved T2D, has been shown to reduce hippocampal insulin resistance in amyloid-beta-
427 induced AD rodent models⁶⁸. Glipizide has conflicting findings, with one study showed improved
428 glycemic control and memory⁶⁹ and another reported the drug be associated with higher risk of
429 AD than metformin, another T2D medication⁷⁰. Overall, the identification of these medications in
430 our analysis shows promise for high-throughput drug screening integrated in a cross-disease
431 modeling framework for comorbid conditions.

432

433 Our PLS-DA models identified signatures encoded in the T2D PC2 predicted AD status in brain
434 tissue and many genes from our blood-based signature have associations with AD pathology in
435 the brain. Individuals with MCI and AD show decreased *SNRPD2* expression levels in the
436 hippocampus⁷¹⁻⁷³, as well as decreased *POLR2K*^{74,75}. COX deficiency has been reported in both
437 AD brain and blood samples⁷⁶. *CHGA* was associated with senile and pre-amyloid plaques⁷⁷ and
438 linked to AD compared to control groups in cerebrospinal fluid⁷⁸. Our findings in literature show
439 that *ALB* may differ across blood and brain^{79,80}. While others reported decreased serum *ALB*
440 levels increased the risk of AD, our findings in the hippocampus showed the opposite effects.

441

442 In the EC, SFG, and PoCG brain regions, *RIN3* was reported to have significantly elevated mRNA
443 levels in the hippocampus and cortex of *APP/PS1* mouse models for AD⁸¹ and is a signature gene
444 expressed in peripheral blood and the brain^{81,82}. In a metformin response, drug-naïve T2D study,
445 *RPL36A* correlated with a change in hemoglobin A1c levels⁸³. In AD, *RPL36A* was found to be
446 downregulated in cells stimulated by amyloid-beta⁸⁴. This downregulation was consistent with our
447 findings in the AD groups (**Supplementary Table S7**). These findings suggest that some gene
448 signatures in T2D blood predictive of AD are present in the brain, linking blood-based biomarkers
449 to primary tissue pathobiology.

450

451 A limitation to our study is that that data from large-scale human studies simultaneously studying
452 the relationship between T2D and AD are still rare, meaning sample sizes and demographic
453 representation of the human population across sex, age, and other variables is limited.
454 Addressing this gap in the AD-T2D axis would improve opportunities to integrate other clinical
455 variables, such as hemoglobin A1c for T2D, pathological results of amyloid-beta quantification for
456 AD, and other human demographic variables known to be linked to AD and T2D pathology.

457

458 Our work introduced a new application for cross-disease modeling using TransComp-R to identify
459 significantly relevant shared pathways by which T2D influences AD development. We found gene
460 signatures in the peripheral blood of T2D subjects predictive of AD pathology, and identified a
461 subset of genes in the blood that significantly predicted AD status in four brain regions. These
462 findings shed insight into the shared comorbidity between T2D and AD and encourage future
463 applications of TransComp-R for cross-disease modeling.

464

465 MATERIALS AND METHODS

466 Data selection

467 Human AD and T2D transcriptomic datasets were selected on GEO with the requirements that
468 samples were collected from similar blood sample collection processes, a sample size of 10 or
469 greater per condition, and demographic information containing sex and age. The datasets on
470 GEO were scanned by using combinations of phrases, including “Alzheimer’s disease,” “diabetes,”
471 “blood,” and “gene expression.” Like the blood data, post-mortem human brain tissue gene
472 expression was identified using the information criteria containing human data with a cohort size
473 greater than 10 per condition. Terms used to identify data on GEO included “brain,” “Alzheimer’s
474 disease,” “human,” and “gene expression.”

475

476

477 **Pre-processing and normalization**

478 Transcriptomic AD and T2D human data were acquired from GEO using Bioconductor tools in R
479 (*GEOquery* ver. 2.70.0, *limma* ver. 3.58.1, and *Biobase* ver. 2.62.0)^{85–87}. To reduce potential bias
480 from younger age participants in the data, we removed all subjects 55 years old or below from
481 the study in both the AD and T2D datasets with the justification of balancing the established age
482 of late onset of AD (65 years). The T2D baseline group was used. For the AD cohorts, conditions
483 that were not AD or control were excluded from the study. The datasets were then \log_2
484 transformed and matched for the same gene overlap. The genes shared across all AD and T2D
485 datasets were normalized by z-score before computational modeling with TransComp-R.

486

487 **Cross-disease modeling with TransComp-R**

488 We conducted TransComp-R by applying PCA on the T2D data with both disease and control
489 groups. The number of PCs that encoded transcriptomic variation between healthy and T2D
490 subjects was limited to a total explained cumulative variance of 80%. The two AD datasets were
491 individually projected into the T2D PCA space, such that there were two separate models: T2D
492 with AD cohort 1 and T2D with AD cohort 2. The projection of AD data into the T2D PCA space
493 can be described by matrix multiplication:

494
$$P_{AD,T2D}^{s \times PC} = X_{AD}^{s \times g} Q_{T2D}^{g \times PC},$$

495 where matrix $P^{s \times PC}$, the projection of AD data onto the T2D space, defined by columns of T2D
496 PCs and rows of AD subjects, is represented by the product of matrix $X^{s \times g}$ and $Q^{g \times PC}$. Here, s is
497 represented by AD subjects, g is represented by the gene list shared by AD and T2D, and PC is
498 the principal components from the T2D space.

499

500

501

502 **Variance explained in Alzheimer's disease by principal components of type 2 diabetes**

503 To determine the translatability of T2D variance onto the AD data, we quantified the percent
504 variability that is explained in AD by the T2D PCs with the following equation:

505
$$Variance\ Explained\ in\ AD\ by\ T2D = \frac{q_i^T [X^T X] q_i}{\sum \text{diag}(Q^T X^T X Q)},$$

506 where AD data matrix X , projected onto a matrix Q containing columns of T2D PCs by matrix
507 multiplication (T representing a matrix transpose). The percent variance of AD in X explained by
508 a PC (q_i) of Q was then calculated.

509

510 **Variable selection of T2D PCs**

511 The T2D PCs predictive of AD outcomes were identified by employing LASSO across twenty
512 random rounds of ten-fold cross-validations regressing the AD positions in T2D PC space against
513 AD disease status. Demographic sex and age variables describing the subjects from the AD
514 datasets were included in the GLM:

515
$$Y \sim \beta_0 + \beta_1 PC + \beta_2 Sex + \beta_3 Age + \beta_4 SexPC + \beta_5 AgePC,$$

516 PCs with a coefficient frequency greater than 4 of the 20 rounds (25% selection frequency) in at
517 least two of the three PC terms (PC, Sex*PC, or Age*PC) were selected for GLMs with individual
518 PCs regressed against AD outcomes. T2D PCs that were consistently significant in both AD
519 cohorts (p value < 0.05) were selected for further biological interpretation.

520

521 **Gene set enrichment analysis**

522 Loadings of the PCs selected by the GLM were analyzed with GSEA in R (*msigdbr* ver. 7.5.1,
523 *fgsea* ver. 1.28.0, and *clusterProfiler* ver. 4.10.1)⁸⁸⁻⁹⁰. Two data collections (KEGG and Hallmark)
524 were downloaded from the Molecular Signatures Database to identify enriched biological
525 pathways. Identified pathways were determined to be significant, with a Benjamini-Hochberg
526 adjusted p value of less than 0.01 to account for multiple hypothesis testing. The imputed

527 parameters to run GSEA included a minimum gene size of 5, a maximum gene size of 500, and
528 epsilon, the tuning constant of 0. The default setting of 1000 permutations was used.

529

530 **Identifying shared genes across enriched biological pathways**

531 We used *igraph* (ver. 2.0.3)⁹¹ in R to identify overlapping genes that may be commonly enriched
532 across multiple biological pathways identified from GSEA. We then processed the R-generated
533 data in *Cytoscape* (ver. 3.10.2)⁹² to enhance pathway visualization. We established the nodes
534 representing different biological pathways and the edge thickness by the number of overlapping
535 genes between the two biological pathways. Additionally, the node size was determined by the
536 number of total enriched genes contributing to the biological pathway as determined by GSEA,
537 with the node colors red and blue used to discern pathway associations with AD or control groups,
538 respectively.

539

540 **Fold-change comparison cross-disease**

541 The relationship of different gene expression across AD and T2D conditions was compared using
542 the \log_2 fold change of each gene shared across the AD and T2D blood data. For each dataset
543 (T2D and AD), the \log_2 fold change of each gene expression was calculated by taking the \log_2 of
544 the average gene expression of the disease groups divided by the average gene expression of
545 the control groups. Different gene expression relationships were compared across the T2D and
546 AD datasets.

547

548 **Sex-based comparison across type 2 diabetes principal component scores**

549 PC scores were compared across sex and disease conditions to compare PC predictability across
550 sex demographics. A Mann-Whitney pair-wise test was used to compare AD females to control
551 females and AD males to control males. To account for multiple hypothesis testing, a Benjamini-
552 Hochberg adjusted p value less than 0.05 was determined significant for the analysis.

553

554 **Computational gene expression correlational analysis**

555 Potentially therapeutic drugs correlated with T2D PCs predictive of AD were screened using
556 publicly available data from the L1000 Consensus Signatures Coefficient Tables (Level 5) from
557 the LINCS database. Before screening, the LINCS drug data was pre-processed by excluding all
558 drugs with no known targets based on the LINCS small molecules metadata.

559

560 To identify candidate drugs associated with T2D and AD, two data sources were compiled: DEGs
561 from each respective drug from LINCS and the loadings from the T2D PCs predictive of AD. DEGs
562 for each drug were determined through the following: The characteristic direction values, which
563 signified the drug's up- or down-regulation of a gene, were scaled to obtain their z-score values⁴⁰.
564 The list of DEGs for each drug was then identified if the gene's z-score value presented with
565 a *p* value less than 0.05. The original characteristic direction values for the selected genes for
566 each respective drug were then isolated. For each T2D PC that was able to stratify transcriptomic
567 variance between control and AD subjects, differentially expressed drug genes and PC gene
568 loadings were matched. A Spearman correlation was calculated to determine the correlation
569 between PC loadings and the DEGs' characteristic direction coefficients for each drug. For a given
570 T2D PC of interest, drugs were ranked by their respective Spearman's ρ values. The correlations'
571 *p* values were corrected by Benjamini-Hochberg before visualizing the drugs' ranks against their
572 *p* values (adjusted *p* value < 0.05).

573

574 **Filtering genetic blood biomarkers for computational modeling of brain tissue data**

575 The top 50 and bottom 50 genes, ranked by their respective scores on the T2D PC predictive of
576 AD in blood, were used to filter genes of AD brain tissue data. After filtering for matching genes,
577 a Benjamini-Hochberg adjusted Mann-Whitney test was performed to determine significant genes.

578 An adjusted p value of less than 0.20 was deemed significant to allow for a more permissible list
579 of potential genes that relate the blood to the brain. The significant genes were then used for PLS-
580 DA modeling.

581

582 **Partial least squares discriminant analysis**

583 Using R (*mixOmics* ver. 6.26.0)⁹³, we constructed a PLS-DA model to determine the predictability
584 of blood-based gene expression markers in the human brain. Specifically, we used PCs derived
585 from T2D blood transcriptomic data predictive of AD outcomes in blood profiles and selected the
586 top 50 and bottom 50 gene loadings as a filter for hippocampal tissue transcriptomic data in
587 human subjects. A PLS-DA model screening for the 100 genes was used to determine if all genes
588 driving the transcriptomic variation in the T2D PC could stratify AD and control in brain tissue. As
589 an additional follow-up, the 100 filtered genes selected by the blood data significantly
590 distinguishable among AD and control in human blood were also used to construct the PLS-DA
591 model. The number of latent variables used for the model was determined by 100 randomly
592 repeated three-fold cross-validation based on the model with the lowest cross-validation error rate.

593

594 As a way to determine the most important predictors driving separation and predictive accuracy
595 in the PLS-DA model, we calculated the VIP score for each gene. For a given number of PLS-DA
596 components A , the VIP for each gene predictor, k , is calculated by:

$$597 \quad VIP_k = \left(\frac{K \cdot \sum_{a=1}^A w_{ak}^2 \cdot SSA_a}{A \cdot SSY_{total}} \right)^{1/2},$$

598 where K is the total number of gene predictors, w_{ak} is the weight of predictor k in the a^{th} LV
599 component. The total sum of squares explained in all LV components is represented by SSY_{total} .
600 A calculated VIP score greater than 1 signifies that a given gene is an important variable for a
601 specific LV in the PLS-DA model.

602

603 AD subjects were annotated by their APOE genotype, Braak stage, and MMSE score among
604 each PLS-DA model. The MMSE numerical scores, which evaluate cognitive impairment, were
605 aggregated based on standardized scoring metrics such that 30-26 was normal, 25-20 was mild,
606 19-10 was moderate, and 9-0 was severe⁹⁴. The control groups did not have any clinical records.
607

608 **REFERENCES**

609 1. Wang, K.-C. *et al.* Risk of Alzheimer's Disease in Relation to Diabetes: A Population-Based
610 Cohort Study. *Neuroepidemiology* **38**, 237–244 (2012).

611 2. Janson, J. *et al.* Increased Risk of Type 2 Diabetes in Alzheimer Disease. *Diabetes* **53**, 474–
612 481 (2004).

613 3. Gudala, K., Bansal, D., Schifano, F. & Bhansali, A. Diabetes mellitus and risk of dementia: A
614 meta-analysis of prospective observational studies. *Journal of Diabetes Investigation* **4**, 640–
615 650 (2013).

616 4. Barbiellini Amidei, C. *et al.* Association Between Age at Diabetes Onset and Subsequent Risk
617 of Dementia. *JAMA* **325**, 1640–1649 (2021).

618 5. Cheng, G., Huang, C., Deng, H. & Wang, H. Diabetes as a risk factor for dementia and mild
619 cognitive impairment: a meta-analysis of longitudinal studies. *Internal Medicine Journal* **42**,
620 484–491 (2012).

621 6. Teixeira, M. M. *et al.* Association between diabetes and cognitive function at baseline in the
622 Brazilian Longitudinal Study of Adult Health (ELSA- Brasil). *Sci Rep* **10**, 1596 (2020).

623 7. Sun, D. *et al.* Type 2 Diabetes and Hypertension: A Study on Bidirectional Causality. *Circulation
624 Research* **124**, 930–937 (2019).

625 8. Srodnulski, S. *et al.* Neuroinflammation and neurologic deficits in diabetes linked to brain
626 accumulation of amylin. *Molecular Neurodegeneration* **9**, 30 (2014).

627 9. Palazzuoli, A. & Iacoviello, M. Diabetes leading to heart failure and heart failure leading to
628 diabetes: epidemiological and clinical evidence. *Heart Fail Rev* **28**, 585–596 (2023).

629 10. Chen, R., Ovbiagele, B. & Feng, W. Diabetes and Stroke: Epidemiology, Pathophysiology,
630 Pharmaceuticals and Outcomes. *Am J Med Sci* **351**, 380–386 (2016).

631 11. Kumar, M. *et al.* The Bidirectional Link Between Diabetes and Kidney Disease: Mechanisms
632 and Management. *Cureus* **15**, e45615.

633 12. Riching, A. S., Major, J. L., Londono, P. & Bagchi, R. A. The Brain–Heart Axis: Alzheimer’s,
634 Diabetes, and Hypertension. *ACS Pharmacol Transl Sci* **3**, 21–28 (2019).

635 13. Candeias, E. *et al.* The impairment of insulin signaling in Alzheimer’s disease. *IUBMB Life* **64**,
636 951–957 (2012).

637 14. De Felice, F. G., Gonçalves, R. A. & Ferreira, S. T. Impaired insulin signalling and allostatic
638 load in Alzheimer disease. *Nat Rev Neurosci* **23**, 215–230 (2022).

639 15. Morgen, K. & Frölich, L. The metabolism hypothesis of Alzheimer’s disease: from the concept
640 of central insulin resistance and associated consequences to insulin therapy. *J Neural Transm*
641 **122**, 499–504 (2015).

642 16. Pontzer, H. *et al.* Daily energy expenditure through the human life course. *Science* **373**, 808–
643 812 (2021).

644 17. Liu, P. *et al.* High-fat diet-induced diabetes couples to Alzheimer’s disease through
645 inflammation-activated C/EBP β /AEP pathway. *Mol Psychiatry* **27**, 3396–3409 (2022).

646 18. De Sousa, R. A. L. *et al.* An update on potential links between type 2 diabetes mellitus and
647 Alzheimer’s disease. *Mol Biol Rep* **47**, 6347–6356 (2020).

648 19. Khan, M. S. H. & Hegde, V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential
649 Biomarker in Alzheimer’s Disease. *Journal of Personalized Medicine* **10**, (2020).

650 20. Bury, J. J. *et al.* Type 2 diabetes mellitus-associated transcriptome alterations in cortical
651 neurones and associated neurovascular unit cells in the ageing brain. *Acta Neuropathol
652 Commun* **9**, 5 (2021).

653 21. Rom, S. *et al.* Hyperglycemia-driven neuroinflammation compromises BBB leading to
654 memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. *Mol Neurobiol*
655 **56**, 1883–1896 (2019).

656 22. Liu, Y., Huber, C. C. & Wang, H. Disrupted blood-brain barrier in 5xFAD mouse model of
657 Alzheimer’s disease can be mimicked and repaired *in vitro* with neural stem cell-derived
658 exosomes. *Biochemical and Biophysical Research Communications* **525**, 192–196 (2020).

659 23. Blanchette, M. & Daneman, R. Formation and maintenance of the BBB. *Mechanisms of*
660 *Development* **138**, 8–16 (2015).

661 24. Kadry, H., Noorani, B. & Cucullo, L. A blood–brain barrier overview on structure, function,
662 impairment, and biomarkers of integrity. *Fluids and Barriers of the CNS* **17**, 69 (2020).

663 25. Janelidze, S. *et al.* Increased blood-brain barrier permeability is associated with dementia and
664 diabetes but not amyloid pathology or APOE genotype. *Neurobiology of Aging* **51**, 104–112
665 (2017).

666 26. Hu, Y., Zheng, Y., Wang, T., Jiao, L. & Luo, Y. VEGF, a Key Factor for Blood Brain Barrier
667 Injury After Cerebral Ischemic Stroke. *Aging Dis* **13**, 647–654 (2022).

668 27. Tousoulis, D. *et al.* Diabetes Mellitus-Associated Vascular Impairment: Novel Circulating
669 Biomarkers and Therapeutic Approaches. *Journal of the American College of Cardiology* **62**,
670 667–676 (2013).

671 28. Tryggestad, J. B. *et al.* Circulating adhesion molecules and associations with HbA1c,
672 hypertension, nephropathy, and retinopathy in the Treatment Options for type 2 Diabetes in
673 Adolescent and Youth study. *Pediatric Diabetes* **21**, 923–931 (2020).

674 29. Hanlon, P. *et al.* Representation of people with comorbidity and multimorbidity in clinical trials
675 of novel drug therapies: an individual-level participant data analysis. *BMC Medicine* **17**, (2019).

676 30. Zilkens, R. R., Davis, W. A., Spilsbury, K., Semmens, J. B. & Bruce, D. G. Earlier Age of
677 Dementia Onset and Shorter Survival Times in Dementia Patients With Diabetes. *American*
678 *Journal of Epidemiology* **177**, 1246–1254 (2013).

679 31. Huang, C., Luo, J., Wen, X. & Li, K. Linking Diabetes Mellitus with Alzheimer's Disease:
680 Bioinformatics Analysis for the Potential Pathways and Characteristic Genes. *Biochem Genet*
681 **60**, 1049–1075 (2022).

682 32. Karki, R. *et al.* Data-Driven Modeling of Knowledge Assemblies in Understanding Comorbidity
683 Between Type 2 Diabetes Mellitus and Alzheimer's Disease. *Journal of Alzheimer's Disease*
684 **78**, 87–95 (2020).

685 33. Lee, T. & Lee, H. Shared Blood Transcriptomic Signatures between Alzheimer's Disease and
686 Diabetes Mellitus. *Biomedicines* **9**, 34 (2021).

687 34. Brubaker, Douglas. K. *et al.* An interspecies translation model implicates integrin signaling in
688 infliximab-resistant inflammatory bowel disease. *Sci Signal* **13**, eaay3258 (2020).

689 35. Lee, M. J. *et al.* Computational Interspecies Translation Between Alzheimer's Disease Mouse
690 Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM
691 Receptor Agonist Signatures, Distinct From Influences of Aging. *Frontiers in Neuroscience* **15**,
692 (2021).

693 36. Suarez-Lopez, L. *et al.* Cross-species transcriptomic signatures predict response to MK2
694 inhibition in mouse models of chronic inflammation. *iScience* **24**, 103406 (2021).

695 37. Ball, B. K., Proctor, E. A. & Brubaker, D. K. Cross-Species Modeling Identifies Gene
696 Signatures in Type 2 Diabetes Mouse Models Predictive of Inflammatory and Estrogen
697 Signaling Pathways Associated with Alzheimer's Disease Outcomes in Humans. in
698 *Biocomputing* 2025 426–440 (WORLD SCIENTIFIC, 2024).
699 doi:10.1142/9789819807024_0031.

700 38. Chen, H.-H. *et al.* Novel diabetes gene discovery through comprehensive characterization
701 and integrative analysis of longitudinal gene expression changes. *Human Molecular Genetics*
702 **31**, 3191 (2022).

703 39. Sood, S. *et al.* A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health
704 status. *Genome Biology* **16**, (2015).

705 40. Xie, Z. *et al.* Getting Started with LINCS Datasets and Tools. *Curr Protoc* **2**, e487 (2022).

706 41. Food and Drug Administration. Approved Drug Products with Therapeutic Equivalence
707 Evaluations. (2024).

708 42. Berchtold, N. C. *et al.* Synaptic genes are extensively downregulated across multiple brain
709 regions in normal human aging and Alzheimer's disease. *Neurobiol Aging* **34**, 1653–1661
710 (2013).

711 43. Cribbs, D. H. *et al.* Extensive innate immune gene activation accompanies brain aging,
712 increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. *J
713 Neuroinflammation* **9**, 179 (2012).

714 44. Jansen, W. J. *et al.* Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia:
715 A Meta-analysis. *JAMA* **313**, 1924–1938 (2015).

716 45. Malek-Ahmadi, M., Perez, S. E., Chen, K. & Mufson, E. J. Braak Stage, Cerebral Amyloid
717 Angiopathy, and Cognitive Decline in Early Alzheimer's Disease. *J Alzheimers Dis* **74**, 189–
718 197 (2020).

719 46. Arevalo-Rodriguez, I. *et al.* Mini-Mental State Examination (MMSE) for the early detection of
720 dementia in people with mild cognitive impairment (MCI). *Cochrane Database Syst Rev* **2021**,
721 CD010783 (2021).

722 47. Cereijo, R. *et al.* The chemokine CXCL14 is negatively associated with obesity and
723 concomitant type-2 diabetes in humans. *Int J Obes* **45**, 706–710 (2021).

724 48. Ball, B. K., Kuhn, M. K., Fleeman Bechtel, R. M., Proctor, E. A. & Brubaker, D. K. Differential
725 responses of primary neuron-secreted MCP-1 and IL-9 to type 2 diabetes and Alzheimer's
726 disease-associated metabolites. *Sci Rep* **14**, 12743 (2024).

727 49. Zhou, F., Sun, Y., Xie, X. & Zhao, Y. Blood and CSF chemokines in Alzheimer's disease and
728 mild cognitive impairment: a systematic review and meta-analysis. *Alz Res Therapy* **15**, 107
729 (2023).

730 50. Fuster, J. J. *et al.* Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue
731 Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion. *Diabetes*
732 **64**, 1235–1248 (2014).

733 51. Liu, C.-C. *et al.* Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic
734 Abnormalities and Amyloid Pathology in Alzheimer's Disease. *Neuron* **84**, 63–77 (2014).

735 52. Fischer, S. *et al.* Insulin-resistant patients with type 2 diabetes mellitus have higher serum
736 leptin levels independently of body fat mass. *Acta Diabetol* **39**, 105–110 (2002).

737 53. Schrijvers, E. M. C. *et al.* Insulin metabolism and the risk of Alzheimer disease. *Neurology* **75**,
738 1982–1987 (2010).

739 54. Brown, A. E. *et al.* p38 MAPK activation upregulates proinflammatory pathways in skeletal
740 muscle cells from insulin-resistant type 2 diabetic patients. *American Journal of Physiology-
741 Endocrinology and Metabolism* **308**, E63–E70 (2015).

742 55. Wang, S. *et al.* Peripheral expression of MAPK pathways in Alzheimer's and Parkinson's
743 diseases. *Journal of Clinical Neuroscience* **21**, 810–814 (2014).

744 56. Eom, Y. S. *et al.* Notch1 Has an Important Role in β -Cell Mass Determination and
745 Development of Diabetes. *Diabetes Metab J* **45**, 86–96 (2021).

746 57. Cho, S.-J. *et al.* Altered expression of Notch1 in Alzheimer's disease. *PLOS ONE* **14**,
747 e0224941 (2019).

748 58. Kettner, A., Di Matteo, M. & Santoni, A. Insulin potentiates Fc ϵ RI-mediated signaling in mouse
749 bone marrow-derived mast cells. *Molecular Immunology* **47**, 1039–1046 (2010).

750 59. Lin, Q. *et al.* Abnormal Peripheral Neutrophil Transcriptome in Newly Diagnosed Type 2
751 Diabetes Patients. *Journal of Diabetes Research* **2020**, 9519072 (2020).

752 60. Zhang, K. *et al.* CXCL1 Contributes to β -Amyloid-Induced Transendothelial Migration of
753 Monocytes in Alzheimer's Disease. *PLOS ONE* **8**, e72744 (2013).

754 61. Restrepo, B. I., Twahirwa, M., Rahbar, M. H. & Schlesinger, L. S. Phagocytosis via
755 Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes
756 Patients with Chronic Hyperglycemia. *PLoS One* **9**, e92977 (2014).

757 62. Park, Y. H. *et al.* Dysregulated Fc gamma receptor-mediated phagocytosis pathway in
758 Alzheimer's disease: network-based gene expression analysis. *Neurobiology of Aging* **88**,
759 24–32 (2020).

760 63. Stegenga, M. E. *et al.* Hyperglycemia Stimulates Coagulation, Whereas Hyperinsulinemia
761 Impairs Fibrinolysis in Healthy Humans. *Diabetes* **55**, 1807–1812 (2006).

762 64. Gerardino, L. *et al.* Coagulation factor XIII Val34Leu gene polymorphism and Alzheimer's
763 disease. *Neurological Research* **28**, 807–809 (2006).

764 65. Wang, F. *et al.* Integration of epidemiological and blood biomarker analysis links haem iron
765 intake to increased type 2 diabetes risk. *Nat Metab* 1–12 (2024) doi:10.1038/s42255-024-
766 01109-5.

767 66. Atamna, H. & Frey, W. H. A role for heme in Alzheimer's disease: Heme binds amyloid β and
768 has altered metabolism. *Proceedings of the National Academy of Sciences* **101**, 11153–11158
769 (2004).

770 67. Stanciu, G. D. *et al.* Link between Diabetes and Alzheimer's Disease Due to the Shared
771 Amyloid Aggregation and Deposition Involving Both Neurodegenerative Changes and
772 Neurovascular Damages. *J Clin Med* **9**, 1713 (2020).

773 68. Rahman, S. O. *et al.* Alogliptin reversed hippocampal insulin resistance in an amyloid-beta
774 fibrils induced animal model of Alzheimer's disease. *European Journal of Pharmacology* **889**,
775 173522 (2020).

776 69. Gradman, T. J., Laws, A., Thompson, L. W. & Reaven, G. M. Verbal Learning and/or Memory
777 Improves with Glycemic Control in Older Subjects with Non-Insulin-Dependent Diabetes
778 Mellitus. *Journal of the American Geriatrics Society* **41**, 1305–1312 (1993).

779 70. Akimoto, H. *et al.* Antidiabetic Drugs for the Risk of Alzheimer Disease in Patients With Type
780 2 DM Using FAERS. *Am J Alzheimers Dis Other Demen* **35**, 1533317519899546 (2020).

781 71. Liu, N. *et al.* Hippocampal transcriptome-wide association study and neurobiological pathway
782 analysis for Alzheimer's disease. *PLOS Genetics* **17**, e1009363 (2021).

783 72. Tao, Y. *et al.* The Predicted Key Molecules, Functions, and Pathways That Bridge Mild
784 Cognitive Impairment (MCI) and Alzheimer's Disease (AD). *Front. Neurol.* **11**, (2020).

785 73. Bellou, E. & Escott-Price, V. Are Alzheimer's and coronary artery diseases genetically related
786 to longevity? *Front. Psychiatry* **13**, (2023).

787 74. Wong, J. Altered Expression of RNA Splicing Proteins in Alzheimer's Disease Patients:
788 Evidence from Two Microarray Studies. *DEE* **3**, 74–85 (2013).

789 75. Chaparro, R. J. *et al.* Nonobese diabetic mice express aspects of both type 1 and type 2
790 diabetes. *Proc Natl Acad Sci U S A* **103**, 12475–12480 (2006).

791 76. Cardoso, S. M., Proen  a, M. T., Santos, S., Santana, I. & Oliveira, C. R. Cytochrome c oxidase
792 is decreased in Alzheimer's disease platelets. *Neurobiology of Aging* **25**, 105–110 (2004).

793 77. Rangon, C.-M. *et al.* Different chromogranin immunoreactivity between prion and a-beta
794 amyloid plaque. *NeuroReport* **14**, 755 (2003).

795 78. H  l  t  , M. *et al.* An Integrated Workflow for Multiplex CSF Proteomics and Peptidomics—
796 Identification of Candidate Cerebrospinal Fluid Biomarkers of Alzheimer's Disease. *J.
797 Proteome Res.* **14**, 654–663 (2015).

798 79. Kim, J. W. *et al.* Serum albumin and beta-amyloid deposition in the human brain. *Neurology*
799 **95**, e815–e826 (2020).

800 80. Min, J.-Y. *et al.* Chronic Status of Serum Albumin and Cognitive Function: A Retrospective
801 Cohort Study. *J Clin Med* **11**, 822 (2022).

802 81. Shen, R. *et al.* Upregulation of RIN3 induces endosomal dysfunction in Alzheimer's disease.
803 *Transl Neurodegener* **9**, 26 (2020).

804 82. Kajihara, H. *et al.* RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early
805 endocytic pathway. *Journal of Cell Science* **116**, 4159–4168 (2003).

806 83. Vohra, M. *et al.* Implications of genetic variations, differential gene expression, and allele-
807 specific expression on metformin response in drug-na  e type 2 diabetes. *Journal of
808 Endocrinological Investigation* **46**, 1205 (2023).

809 84. Deng, L. *et al.* Amyloid    Induces Early Changes in the Ribosomal Machinery, Cytoskeletal
810 Organization and Oxidative Phosphorylation in Retinal Photoreceptor Cells. *Front Mol
811 Neurosci* **12**, 24 (2019).

812 85. Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO)
813 and BioConductor. *Bioinformatics* **23**, 1846–1847 (2007).

814 86. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and
815 microarray studies. *Nucleic Acids Research* **43**, e47 (2015).

816 87. Huber, W. *et al.* Orchestrating high-throughput genomic analysis with Bioconductor. *Nat
817 Methods* **12**, 115–121 (2015).

818 88. Dolgalev, I. msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format. (2022).

819 89. Korotkevich, G. *et al.* Fast gene set enrichment analysis. 060012 Preprint at
820 <https://doi.org/10.1101/060012> (2021).

821 90. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for Comparing
822 Biological Themes Among Gene Clusters. *OMICS: A Journal of Integrative Biology* **16**, 284–
823 287 (2012).

824 91. Csárdi, G. *et al.* igraph for R: R interface of the igraph library for graph theory and network
825 analysis. Zenodo <https://doi.org/10.5281/zenodo.10681749> (2024).

826 92. Shannon, P. *et al.* Cytoscape: A Software Environment for Integrated Models of Biomolecular
827 Interaction Networks. *Genome Res* **13**, 2498–2504 (2003).

828 93. Rohart, F., Gautier, B., Singh, A. & Cao, K.-A. L. mixOmics: An R package for ‘omics feature
829 selection and multiple data integration. *PLOS Computational Biology* **13**, e1005752 (2017).

830 94. Vertesi, A. *et al.* Standardized Mini-Mental State Examination. Use and interpretation. *Can
831 Fam Physician* **47**, 2018–2023 (2001).

832

833

834

835

836

837

838 **ACKNOWLEDGEMENTS**

839 This work is supported by an award from the Good Ventures Foundation and Open Philanthropy
840 (DKB, BKB, and JHP). This work is also supported by R01AG072513 from the National Institute
841 on Aging (EAP). BKB acknowledges the National Science Foundation for support under the
842 Graduate Research Fellowship Program (GRFP) under grant number DGE-1842166. BKB also
843 acknowledges the support of the NIH T32 predoctoral fellowship T32DK101001 from the National
844 Institute of Diabetes and Digestive and Kidney Diseases. Additionally, BKB acknowledges a
845 research grant award from the Research Hub Foundation.

846

847 **AUTHOR CONTRIBUTIONS**

848 BKB: Conceptualization, data curation, formal analysis, funding acquisition, investigation,
849 methodology, visualization, writing-original draft, writing-review & editing. JHP: Data curation,
850 methodology, writing-review & editing. JHP: Conceptualization, data curation, methodology,
851 writing-review & editing. EAP: Conceptualization, funding acquisition, methodology, project
852 administration, resources, writing-review & editing. DKB: Conceptualization, funding acquisition,
853 methodology, project administration, resources, writing-review & editing.

854

855 **DATA AVAILABILITY**

856 We accessed all blood-derived T2D RNA-seq and AD microarray expression data from Gene
857 Expression Omnibus under accession numbers GSE184050, GSE63060, and GSE63061.
858 Additionally, hippocampal human data was acquired from Gene Expression Omnibus with the
859 accession number GSE48350. The computational correlational analysis data was acquired from
860 the Library of Integrated Network-Based Cellular Signatures database's L1000 Consensus
861 Signatures Coefficient Tables (Level 5).

862

863

864 **CODE AVAILABILITY**

865 All code used for analysis is made publicly available at <https://github.com/Brubaker-Lab/CrossDisease-TransCompR-T2D-AD-Human>.

867

868 **COMPETING INTERESTS**

869 The authors declare no competing interests.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

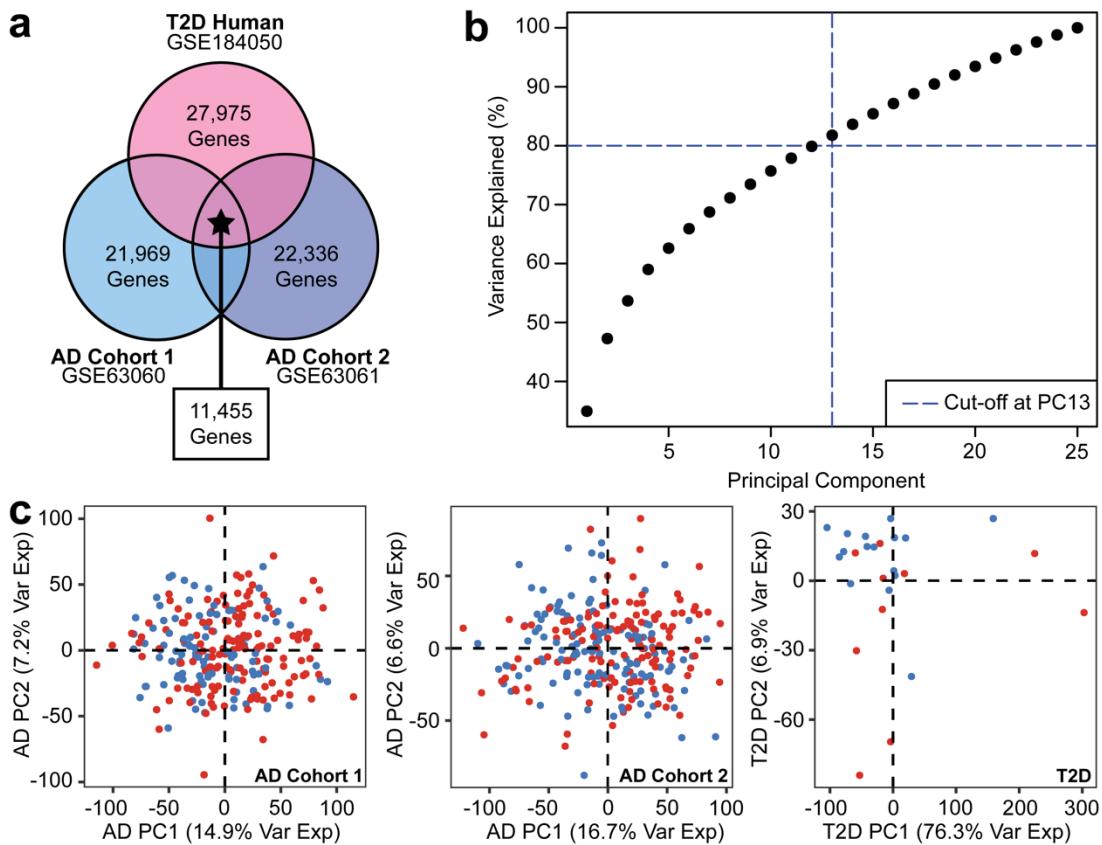
886

887

888

889

890 **SUPPLEMENTARY INFORMATION**



891
892 **Supplementary Figure S1.** Data processing of the AD and T2D data. **(a)** Gene overlaps across
893 the three publicly available transcriptomics data. **(b)** Cumulative variance was explained for T2D
894 PCs with a threshold of 80%. **(c)** PCA of the AD cohort 1, AD cohort 2, and T2D data.

895

896

897

898

899

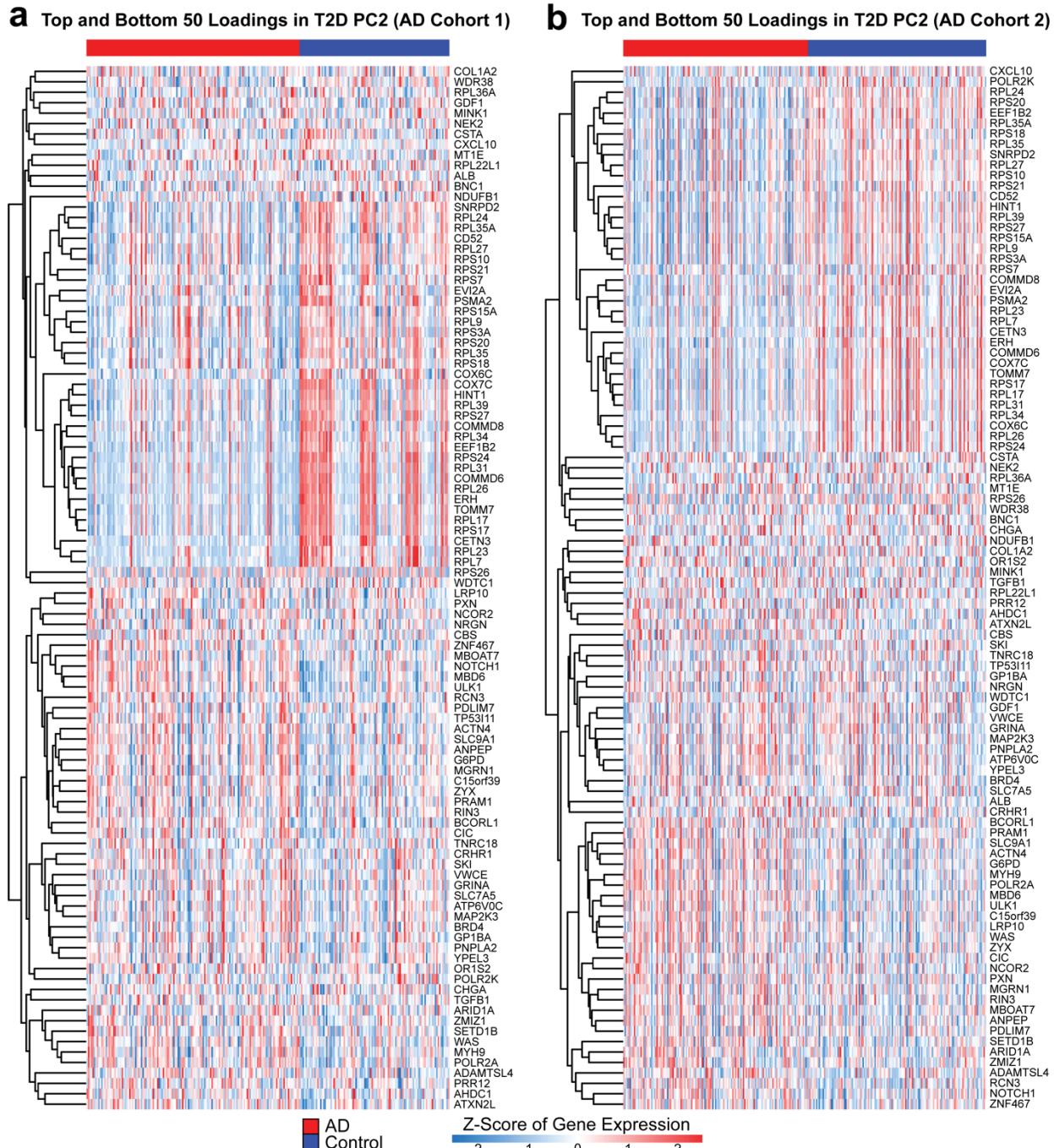
900

901

902

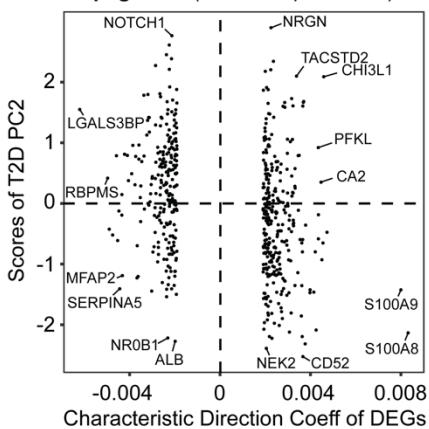
903

904

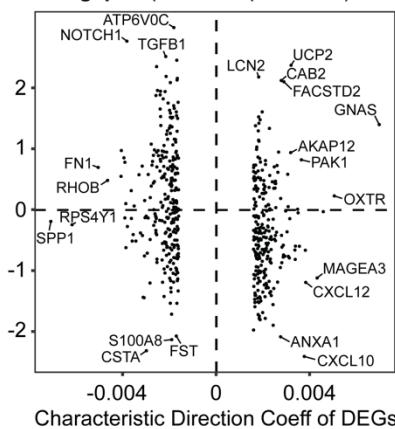


a Anti-T2D Drug Therapeutic for AD

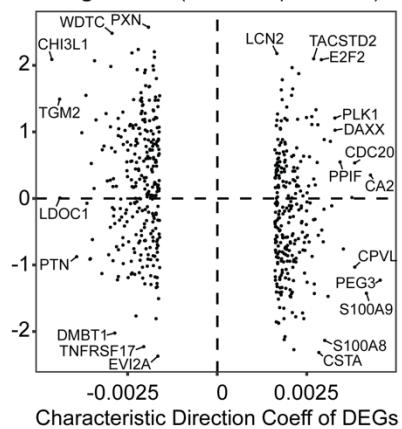
Repaglinide ($R=-0.27, q=1.5 \times 10^{-9}$)



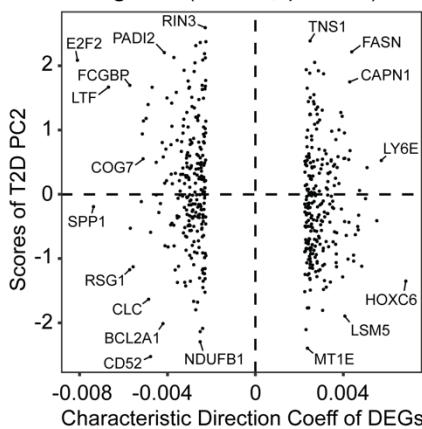
Sitagliptin ($R=-0.26, q=2.4 \times 10^{-8}$)



Pioglitazone ($R=-0.21, q=6.2 \times 10^{-6}$)

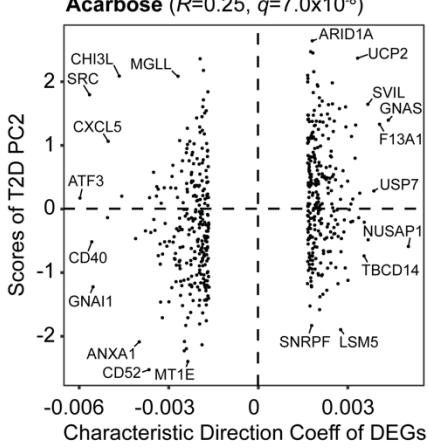


Nateglinide ($R=-0.13, q=0.0115$)

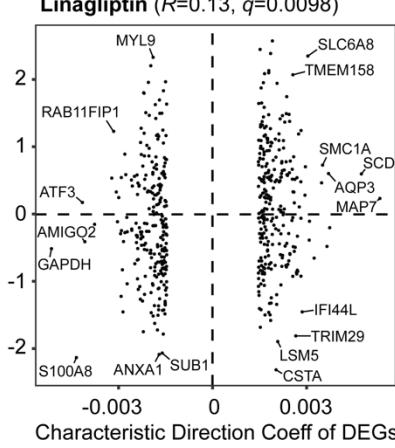


b Anti-T2D Drug with Risk for AD

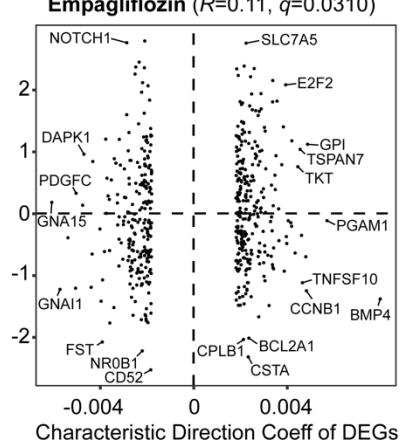
Acarbose ($R=0.25, q=7.0 \times 10^{-8}$)



Linagliptin ($R=0.13, q=0.0098$)



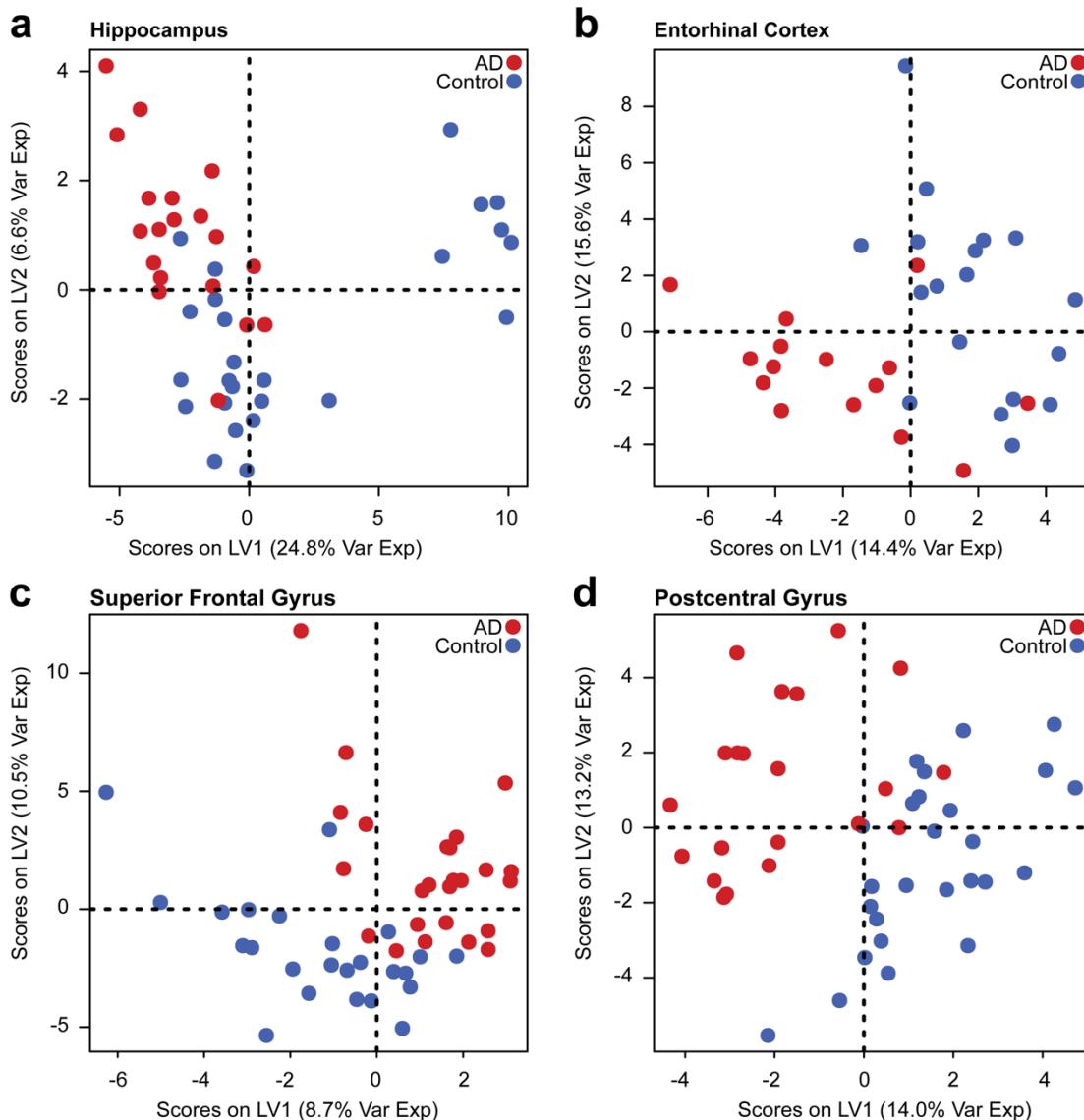
Empagliflozin ($R=0.11, q=0.0310$)



913
914
915
916
917

Supplementary Figure S3. Additional anti-T2D drugs approved by the FDA. (a) Anti-T2D therapeutics with potential reduction of AD pathology. (b) Anti-T2D therapeutics with increased risk for AD.

918



919

920

921

922

923

924

925

926

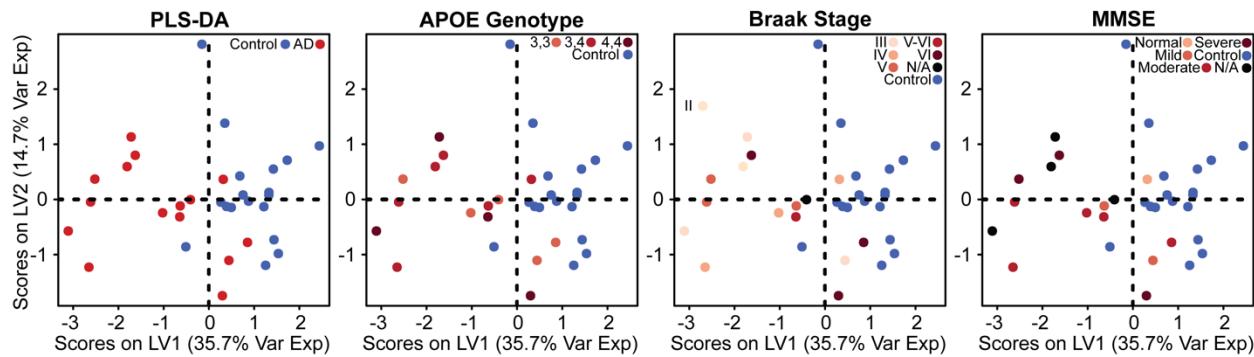
927

928

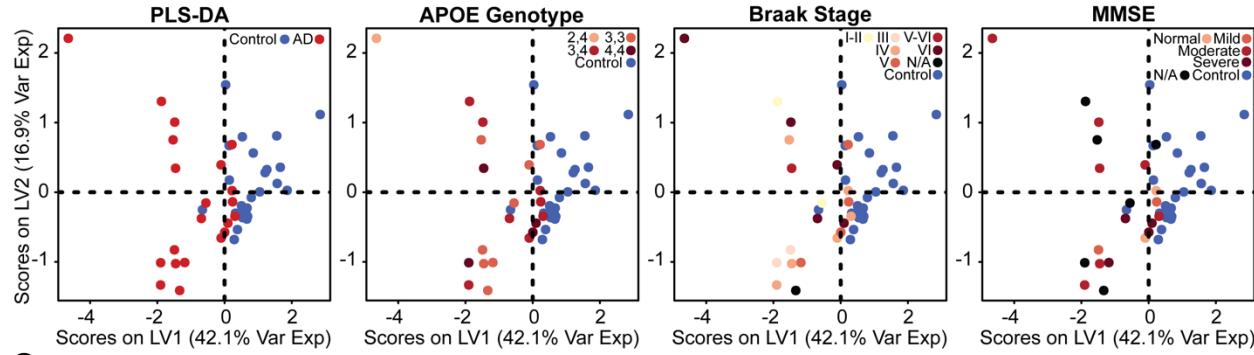
929

Supplementary Figure S4. PLS-DA models of the brain tissue gene expression filtered by the 88 represented in the T2D PC2 loading. Models constructed for (a) the hippocampus, (b) the entorhinal cortex, (c) the superior frontal gyrus, and (d) the postcentral gyrus.

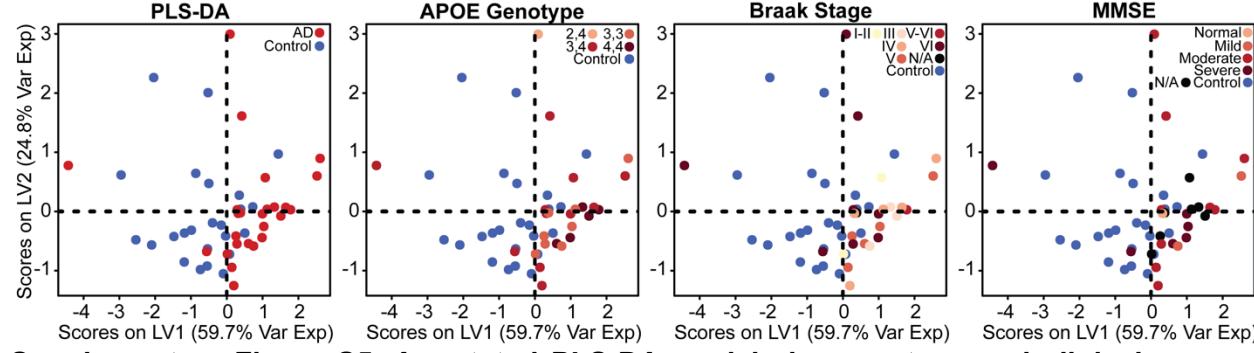
a Entorhinal Cortex



b Superior Frontal Gyrus



c Postcentral Gyrus



930

931

Supplementary Figure S5. Annotated PLS-DA models by genotype and clinical scores.

932 Subjects are further labeled by their respective APOE genotype, Braak stage, and MMSE for brain

933 tissue collected for the **(a)** entorhinal cortex, **(b)** superior frontal gyrus, and **(c)** postcentral gyrus.

934

935

936

937

938

939

940