

1 **Bluetongue virus serotype 12 in the Netherlands in 2024 - A BTV**
2 **serotype reported in Europe for the first time**
3

4 René van den Brom^{1#}, Inge Santman-Berends¹, Mark G. van der Heijden², Frank Harders³,
5 Marc Engelsma³, Rene G.P. van Gennip³, Mieke A. Maris-Veldhuis³, Arno-Jan Feddema³,
6 Karianne Peterson¹, Natalia Golender⁴, Marcel Spierenburg⁵, Piet A. van Rijn^{3,6}, Melle
7 Holwerda³

8

9 *Affiliations*

10 1: Royal GD, PO Box 9, 7400 AA Deventer, The Netherlands

11 2: University Farm Animal Practice (ULP), Reijerscopse Overgang 1, 3481 LZ Harmelen,
12 The Netherlands

13 3: Wageningen Bioveterinary Research (WBVR), Department of Virology, P.O. Box 65, 8200
14 AB Lelystad, The Netherlands

15 4: Kimron Veterinary Institute, Division of Virology, Bet Dagan, PO Box 12, 5025001, Israel

16 5: NVWA Incident- and Crisiscentre (NVIC), Netherlands Food and Consumer Product
17 Safety Authority (NVWA) , P.O. Box 3511 GG Utrecht, The Netherlands.

18 6: North-West University, Department of Biochemistry, Centre for Human Metabolomics,
19 North-West University, Potchefstroom, South Africa

20 # corresponding author; email: r.vd.brom@gdanimalhealth.com. Phone number:
21 +31882025500.

22

23 **Word count abstract:** 216 words

24 **Word count text:** 3131 words

25 **Article summary line:** Approximately one year after the start of the BTV-3 outbreak in the
26 Netherlands, another serotype, BTV-12, which had never been observed in Europe before,
27 was detected in a sheep sampled on 16 September 2024. This paper describes the first cases,
28 the follow up studies and the first steps to trace the origin of the Dutch BTV-12 outbreak.

29 **Running title:** Bluetongue virus serotype 12 in the Netherlands in 2024 - A BTV serotype
30 reported in Europe for the first time

31 **Abstract**

32 Bluetongue (BT) is a viral midge borne disease primarily affecting ruminants such as sheep,
33 cattle, and goats. In 2023, the Netherlands reported the first case of bluetongue virus serotype
34 3 (BTV-3), after being BTV free for eleven years. Since May 2024, vaccination with
35 inactivated BT vaccines for serotype 3 was applied in the Netherlands. Nonetheless, in late
36 June/July 2024, BTV-3 re-emerged and spread over large parts of Europe. In October 2024,
37 BTV-12 was identified by follow-up diagnostics after a BTV-3 vaccinated sheep with signs of
38 BT was tested positive for BTV but negative for serotype 3. This marks a significant event, as
39 BTV-12 had never been reported in Europe. Screening of farms in close proximity to the
40 sheep farm and retrospective analysis of previously BTV PCR positive tested clinical
41 suspicions, resulted in nine BTV-12 affected farms in total. The emergence of BTV-12 in the
42 Netherlands raises important questions about the route of introduction of BT in the
43 Netherlands and mechanisms of viral spread of this specific serotype. Possible adaptation of
44 new BTV serotypes to the European climatic and husbandry conditions prompts
45 reconsideration of surveillance, prevention, and control strategies in relation to changing
46 ecological conditions and vector dynamics. The initial findings, respective studies as well as
47 the initial attempts to trace the origin of BTV-12 are described.

48

49 Keywords: bluetongue; sheep; cattle; serotyping; genotyping; phylogenetic analysis

50 **INTRODUCTION**

51

52 Bluetongue virus (BTV) is a non-contagious, arthropod-borne virus, which is predominantly
53 transmitted by certain species of *Culicoides* biting midges, so-named competent insect
54 vectors. BTV was historically only present in subtropic and tropic regions between latitudes
55 35°S and 50°N (Gibbs and Greiner, 1994; Zhang et al., 1999). Bluetongue (BT) can remain
56 asymptomatic in ruminants but can also cause (severe) clinical disease and mortality
57 (MacLachlan et al., 2015). The disease can cause significant economic losses in the livestock
58 industry, particularly through morbidity, mortality, and trade restrictions (MacLachlan et al.,
59 2015). Most species of ruminants are susceptible for BTV infection (Niedbalski, 2015).
60 Additionally, infections in new world camelids and incidentally in dogs have been described
61 (Allen et al., 2015; van den Brink et al., 2024). BTV is not zoonotic given that humans are not
62 susceptible for infection (MacLachlan et al., 2015).

63 The BTV serogroup consists of more than thirty serotypes of which serotypes 1 to 24 are
64 notifiable to the World Organisation of Animal Health (WOAH). Since 1998, several BTV
65 serotypes (1, 2, 3, 4, 6, 8, 9, 11, 16, 25 and 27) have been detected in Europe. In 2006,
66 bluetongue, caused by serotype 8, was discovered in the Netherlands for the first time. From
67 2009 onwards, BTV was not detected anymore and in 2012, the Netherlands became officially
68 BT-free again (Holwerda et al., 2024). In 2023, an outbreak of a new variant of BTV-3 started
69 in the Netherlands (Holwerda et al., 2024) and has still huge impact on the Dutch sheep and
70 cattle industry (Santman-Berends et al., 2024; van den Brink et al., 2024). In May 2024, three
71 BTV-3 based inactivated vaccines became available aiming to reduce the infection pressure of
72 BTV-3 and reducing clinical signs. Nevertheless, in late June/beginning of July 2024, BTV-3
73 re-emerged and rapidly spread over large parts of Europe, including Germany, Belgium,

74 Luxembourg, France, Portugal, Spain, Sweden, Norway, Denmark, United Kingdom,
75 Switzerland, Austria and Greece.

76 Unexpectedly, the first BTV-12 cases in the Netherlands as here described represent a novel
77 virus incursion with potentially significant implications. BTV-12 has previously not been
78 identified in Europe. However, BTV-12 has been recently reported at the European border in
79 Israel (Golender et al., 2023). Its emergence in the Netherlands is notable because its
80 geographical source and route of introduction are unknown. Since this is the second incursion
81 of a novel BTV serotype in Northwestern Europe in a consecutive vector season, it urges the
82 importance to investigate possible viral sources, routes of introduction and active monitoring
83 and surveillance targeting vector borne diseases. In this paper we describe: 1) the first
84 findings like sequencing, virus isolation, and clinical manifestation on a Dutch sheep and
85 dairy cattle farm affected by BTV-12, 2) retrospective screening of samples for BTV-12
86 submitted in September and October in the Netherlands, and 3) molecular epidemiological
87 study for evaluation of origin of BTV-12 in the Netherlands.

88

89 **MATERIALS AND METHODS**

90 *General data on sheep and cattle population in the Netherlands*

91 In 2023, around 1.1 million sheep and 2.6 million dairy cattle (1.6 million ≥ 2 year and 1
92 million < 2 year) were present on approximately 31,000 sheep farms (of which approximately
93 10% were professional enterprises (> 32 sheep)) and 13,500 dairy cattle farms in the
94 Netherlands. Additionally, there were 14,500 non-dairy cattle herds in the Netherlands
95 (Santman-Berends et al., 2016).

96

97 *Notification data on BTV-3 and BTV-12 in the Netherlands in 2024*

98 Notification data was provided by the Netherlands Food and Consumer Product Safety
99 Authority (NVWA, Utrecht the Netherlands), on 20 October 2024. These data included the
100 unique herd number, the date of notification, the involved animal species, the involved
101 bluetongue serotype and the cartographic coördinates, for every clinical BT notification
102 (clinical suspicions and PCR confirmed cases) in 2024. Based on these data a thematic map of
103 the Netherlands was generated with the spmap procedure in Stata 17® presenting the locations
104 of the BTV-3 and BTV-12 notifications in 2024. In the outbreak season of 2023 in the
105 Netherlands, BTV-3 was diagnosed on over 5,000 farms. In 2024, BTV-3 re-occurred and
106 8,063 farms were affected by BTV until 18 October 2024 (www.nvwa.nl, Figure 1 (grey
107 dots)).

108

109 *Nucleic acid extraction & real-time PCR*

110 To investigate the presence of genomic material of BTV in the collected EDTA-blood,
111 nucleic acids were extracted from 200 µL of EDTA-blood using the Magnapure 96 robotic
112 extraction machine (Roche, Basel, Switzerland) in combination with the Magnapure 96 DNA
113 and viral NA small volume kit. The nucleic acids were eluted in 50 µL. Subsequently,
114 external predenaturation of the double strand RNA of BTV was performed by warming 8 µL
115 of elution in a plate for 1 minute at 99°C and immediately cooled on ice for 5 minutes. Then,
116 5 µL of the denatured RNA was added to a new 96-well plate containing 4x TaqMan
117 Fastvirus 1-step Master mix enzyme (Thermo Fischer, Waltham, USA) per well in a total
118 amount of 15 µL with the BTV-specific primers either for a panBTV-approach targeting
119 segment 10 (Hofmann et al., 2008; van Rijn et al., 2012), or to a serotype specific PCR
120 targeting segment 2 of BTV-3 (Maan et al., 2007; Lorusso et al., 2018). The reverse
121 transcription and amplification were performed in Quantstudio 5 (Thermo Fischer) machines
122 using the following real-time PCR program: 50 °C for 10 minutes followed by 95 °C for 1

123 minute and 45 cycles of 95 °C for 15 seconds and 60 °C for 30 seconds. Analysis was
124 performed using the integrated Quantstudio software.

125

126 *Viral genome determination using whole genome sequencing*

127 Sequencing the BTV-12 genome was performed according to the Sequence-Independent-
128 Single-Primer-Amplification-method of Holwerda et al. (2024) and were submitted to the
129 NCBI GenBank database.

130

131 *Phylogenetic analyses*

132 The phylogenetic trees were generated using the top thirty hits of the NCBI-data base for each
133 individual segment. Sequences were aligned using MAFFT v7.475 (Katoh and Toh, 2010),
134 phylogeny was reconstructed using maximum likelihood analysis with IQ--TREE software
135 v2.0.3 and 1000 bootstrap replicates (Nguyen et al., 2015) and subsequently visualized using
136 the R package GGTREE (Yu et al., 2017). Bootstrap values above 49 were indicated at the
137 branch nodes and NCBI accession numbers were indicated at the strains.

138

139 *Retrospective screening studies of field positive samples for BTV-12*

140 At the day that the causal BTV in the sheep flock was identified as BTV-12/NET2024 (3
141 October 2024), previously panBTV PCR positive blood samples from BTV-suspected
142 ruminants submitted between 10 and 20 September originating within a radius of twenty
143 kilometers of the sheep case were subject for detailed analysis. After a second case of BTV-
144 12/NET2024 was identified, all blood samples that were submitted in September and October
145 2024, to confirm the clinical BT notification, were selected for retrospective analysis.
146 Samples of clinical suspicions which were panBTV PCR positive but BTV-3 PCR negative

147 were subject for further analysis by whole genome sequencing or serotype specific BTV-12
148 PCR testing.

149

150 **RESULTS**

151 *The first index case sheep farm*

152 On 16 September 2024, a blood sample from a seven-month-old ram (Blue Texel) born in the
153 Netherlands, which unexpectedly showed severe clinical signs specific for BT despite
154 vaccination with a BTV-3 vaccine, was submitted to the Dutch national reference laboratory
155 Wageningen Bioveterinary Research (WBVR). The main clinical signs included fever,
156 swollen head, stiffness and lameness, and a tucked up abdomen (Picture 1). After treatment
157 with corticosteroids and NSAID on 14 September, the ram initially improved, but on 18
158 September, the clinical presentation became more severe resulting in the rams' death on 20
159 September 2024.

160 The rams' blood sample was tested positive twice by panBTV real-time PCR assays
161 (panBTV-PCR), whereas serotype-specific BTV-3 PCR assays tested twice negative. These
162 findings prompted in-depth investigation by whole genome sequencing, according to
163 Holwerda et al., 2024. Genotyping for serotype specific genome segment 2 indicated the
164 presence of BTV serotype 12 in the Netherlands on 3 October 2024. According to the
165 procedure, the blood sample was then sent to the European Union reference laboratory for BT
166 in Madrid (Spain), which subsequently confirmed BTV serotype 12 (BTV-12/NET2024) on
167 10 October 2024.

168

169 The competent authority in the Netherlands, NVWA, was informed and sampled all sheep in
170 the flock the ram originated from. In total, six out of 49 sheep tested panBTV PCR positive
171 and all six were positive for serotype 3. Each of these sheep had shown signs of BT in the
172 previous months but, although not all fully recovered, none of the sheep died. Further analysis
173 using whole genome sequencing showed no co-infections with other BTV serotypes.

174 The sheep farm, located in the center of the Netherlands (Figure 1, green triangle), had fifty
175 sheep at the time BTV-12/NET2024 was detected. In 2023, between 13 September and the
176 end of November, this farm had been heavily affected by BTV-3/NET2023 showing high
177 morbidity and mortality. In 2024, the entire flock was vaccinated twice with an inactivated
178 BTV-3 vaccine . The second vaccination was administered on 10 August 2024.

179

180 *Retrospective studies*

181 A total of nine samples from seven farms were panBTV-PCR confirmed, and one out of nine
182 was negative for serotype 3 (Table 1). This sample was submitted to WBVR on 20 September
183 and originated from a Holstein Friesian heifer on a dairy cattle farm located within five km
184 from the BTV-12 affected sheep farm. Subsequently, seventy out of 73 cattle that were
185 present on this farm, were sampled on 7 October. Three calves (<1 week of age) were
186 excluded from sampling. Except for the initially BTV-12 positive heifer and her calf (date of
187 birth/born on: 13 September 2024), all animals tested negative by the panBTV PCR test. Both
188 the heifer and her calf tested positive in the panBTV PCR and negative in BTV-3 PCR, and
189 revealed BTV serotype 12 based on whole genome sequencing. The initial sample from the
190 heifer was collected on 20 September during a routine farm visit of the local veterinarian. The
191 heifer had calved seven days earlier and, because the heifer had a fever and reddish nostrils, a
192 blood sample was submitted for BTV testing as part of the notification monitoring system. On

193 7 October, the heifer was clinically recovered, produced according to the farmers'
194 expectations (>27 kg milk/day), and only showed swollen carpal joints, without signs of
195 lameness (Picture 2a and 2b). Interestingly, her calf showed no clinical signs of BT.

196 To investigate to what extend BTV-12 had spread through the Netherlands, all panBTV PCR
197 positive samples that were send in as clinical suspicion towards WBVR in the months
198 September and October of 2024 were tested. A total of 2.519 RNA-samples were subjected to
199 the BTV-3 serotype specific PCR test, and if this test was negative, a BTV-12 specific PCR
200 test was then performed. In total, 2.507 out of 2.519 samples tested positive for BTV-3
201 (99.52%, 95% C: 99.17-99.75). The remaining twelve samples, submitted between 13
202 September and 17 October, tested positive for BTV-12. BTV-12 was detected in nine cattle
203 samples from seven cattle farms, and in three sheep samples from two sheep farms. Most of
204 these BTV-12 positive samples originated from the same region as the first two recognized
205 cases. Two farms affected by BTV-12/NET2024 are located at a larger distance from this
206 region (Figure 1; green dots).

207

208 *Whole genome sequencing and phylogenetic analysis of BTV-12/NET2024*

209 BTV-12/NET2024 was genetically studied in detail and complete sequences of all ten genome
210 segments were directly recovered from blood samples from the first three described clinical
211 cases. The NCBI accession numbers of the BTV-12/NET 2024 are PQ584499-PQ584508.
212 Initially, the sequence of genome segment 2 encoding serotype dominant VP2 protein was
213 aligned to sequences available in the NCBI-database (<https://www.ncbi.nlm.nih.gov/>) to
214 determine the serotype. Preliminary results clearly indicated the highest homology with
215 serotype 12 for segment 2 (Figure 2), but additional phylogenetic analysis was performed for
216 all 10 segments (Figure 3).

217

218 **DISCUSSION**

219 The Dutch monitoring and surveillance system is largely based on trust and easy accessible
220 contacts between farmers, veterinarians, Royal GD, WBVR and other veterinary institutes.
221 This system has demonstrated to be highly effective in early detection of emergencies and
222 monitoring trends (Santman-Berends et al., 2016; Dijkstra et al., 2022). In 2024, this
223 monitoring and surveillance system again showed its importance as a Dutch sheep farmer and
224 his veterinary practitioner together with a small ruminant specialist from Royal GD reported
225 clinical signs of BT in a sheep that was prime-boost vaccinated for serotype 3. In a
226 collaborative manner, investigation of this case identified the first European case of BTV
227 serotype 12. Subsequently, BTV-12/NET2024 was retrospectively also found on one
228 additional dairy herd within a radius of five km from the first case. Remarkably, only 1-2
229 animals on both farms were found positive for BTV-12/NET2024, suggesting that virus
230 spread was either very slow or these were one of the first cases. Further retrospective
231 screening resulted in seven additional BTV-12 affected farms. Most BTV-12 cases were
232 found in the proximity of the initial two cases. Two BTV-12 affected farms are located on a
233 larger distance suggesting transmission by *Culicoides* spp. was unlikely. However, indications
234 of transmission by animal movements were not found. The extremely low number of affected
235 farms and within affected farms and the low number of BTV-12 infected animals could
236 indicate that BTV-12 invaded late in the season of vector activity in Northwestern Europe. A
237 slow virus spread could also be caused by a low vector competence of residential *Culicoides*
238 species for BTV-12/NET2024. Since only a limited number of clinical cases in sheep and
239 cattle were detected in Dutch livestock, it is too early to draw any conclusions regarding the
240 virulence and the potential impact of BTV-12/NET2024 on sheep and cattle. Extended active
241 surveillance is needed to elucidate the prevalence of BTV-12/NET2024 in the Netherlands,

242 since it may also be possible that asymptomatic infections by BTV-12/NET2024 have
243 occurred and possibly remained unnoticed.

244 In 2008, after the start of massive vaccination against BTV-8/NET2006 in the Netherlands,
245 emerging BTV-6/NET2008 showed a similar phenomenon with only one or two infected
246 animals per farm and some on a larger distance (van Rijn et al., 2012). This BTV-6/NET2008
247 is strongly related to live-attenuated vaccine (for serotype 6) from South Africa. In the
248 Netherlands, BTV-1 was also detected in an imported animal in 2008 showing the possibility
249 of virus introduction via import of asymptomatic infected animals (van Rijn et al., 2012).
250 Fortunately, BTV-1 and BTV-6 did not massively spread and did not re-emerge in the
251 subsequent year. Illegal use of poorly inactivated BTV-vaccines or infectious BTV as
252 contaminant in other vaccines have been reported and should be considered as a possible virus
253 source (Bumbarov et al., 2016; Ganter, presentation ECSRHM, Turin, 4-5 July 2024).

254 However, two available sequences of segment 2 from live-attenuated vaccine strains for
255 serotype 12 showed low homologies with that of BTV-12/NET2024. Instead, similarities were
256 found with a BTV-12 strain that was identified in Israel at the end of 2020 (Golender et al.,
257 2023), and spread all over the country and the West Bank during the arboviral season of 2021.

258 The unpublished whole genome sequence of BTV-12/ISR2020/2717 was kindly shared and
259 recently submitted to NCBI (accession numbers PQ490575-PQ490584). Phylogenetic
260 analyses for segments 3 to 9 of BTV-12/NET2024 showed high homology (96-98%) with
261 BTV-12/ISR2020/2717. Nevertheless, homology between BTV-12/2024 and BTV-
262 12/ISR2020/2717 was much lower for segments 1, 2 and 10 (82-93%). Detailed investigation
263 of segments 1 and 10 showed high homologies with BTV-24/ISR2009/02 (accession number
264 MN710085.1, 98.1% homology) and BTV-3/ISR-2262/2/16 (accession number
265 MG345004.1, 94.15 homology) as detected in the Middle-East. Upon segment 2, the highest
266 homology with segment 2 sequences from Africa suggests that this segment of BTV-

267 12/NET2024 is closer related to BTV-12 from Africa than from India (Figure 3). Altogether,
268 these results might indicate that seven out of ten segments have been derived from an ancestor
269 circulating in the Middle-East. Further, several reassortment events might have resulted in
270 incorporation of segments 1 and 10 from other co-circulating BTV serotypes, whereas this is
271 unclear for segment 2.

272 This first detection of BTV-12 in the Netherlands is unique because this serotype had not
273 previously been reported in any European country. The geographical source of the virus
274 remains uncertain, despite the high homology with Israeli sequences for many segments.
275 However, availability of recent sequences is limited. Recent developments are expected to
276 make whole genome sequencing easier and cheaper, in a timely matter and even possible in
277 the field (Sghaier et al., 2022). To enable molecular epidemiological studies aiming at tracing
278 the origin of an emerging virus, it is important to regularly upload sequences with the correct
279 information.

280 The subsequent/novel incursion in Europe of a second BTV serotype after one year is a
281 significant epidemiological event. Although BTV-3 and BTV-12 are completely different
282 from each other, one common trait is that they were both first observed in the same area of the
283 Netherlands. This raises the question whether there is a relationship between these two
284 introductions or if these events should be regarded as separate occasions. More research
285 should be performed to assess specific factors involved in these BTV incursions in the middle
286 of the Netherlands.

287 Additionally, these two subsequent BTV incursions raises questions about the future
288 distribution of BTV serotypes and the adequacy of current preventive measures, and signals
289 the need for an expansion of BT and vector surveillance. Monitoring the spread of BTV
290 serotypes is also of critical importance. Historically, BT outbreaks in Europe have followed
291 seasonal patterns corresponding to the activity of *Culicoides* midges, typically peaking in late

292 summer and early autumn. The presence of subsequently new serotypes in the Netherlands
293 may indicate shifting environmental and ecological conditions that facilitate the movement of
294 both vectors and pathogens across geographical boundaries. Given climate change, midge
295 population dynamics may change increasing the risk of novel incursions and spread of BTV
296 serotypes.

297 Although limited multi-serotype vaccines are available (Savini et al., 2009), current
298 vaccination strategies in Europe are primarily targeting one serotype at the time, such as
299 BTV-1, -3, -4, -8, and -16 by inactivated BT vaccines. It remains the question whether this
300 mono-serotype vaccination approach fulfills the needs in the future to protect ruminant
301 livestock from multiple serotypes of BTV.

302 Several hypotheses regarding spread of BTV over long distances have been proposed,
303 including the possibility of transport of infected midges by wind, contaminated vaccines or
304 introduction through animal movements or animal products (Mintiens et al., 2008). Here, no
305 proven route of introduction has been yet identified, but as a first step to unravel the
306 introduction of BTV-12, evidence of the geographical origin was found by whole genome
307 sequencing followed by phylogenetic analyses on segment level.

308

309 **CONCLUSION**

310 BTV serotype 12 (BTV-12/NET2024) was detected in the Netherlands, after clinical signs of
311 BT were noted in a BTV-3 vaccinated sheep. This was the first report of BTV-12 occurring in
312 the European continent. This prompted a large scale investigation which revealed in total nine
313 BTV-12 positive farms (seven cattle and two sheep farms). Phylogenetic analyses showed
314 high homology with BT-viruses from the Middle-East. Despite this evidence/indication of the
315 geographical origin, the exact virus source, mechanism and route to the Netherlands are

316 currently unknown. This subsequent introduction, after the BTV-3 introduction in 2023,
317 highlights the vulnerability of Europe's livestock sector to emerging viral threats.

318

319 **AUTHOR CONTRIBUTION**

320 RvdB, MvdH, KP were involved in the detection of the sheep case. MvdH was involved in the
321 cattle case. Retrospective investigation of the cattle case was performed by MH, AJF, FH,
322 ME, RV and RG. They were also involved in the laboratory work. MS is involved as official
323 veterinarian from the Dutch Food and Consumer Product Safety Authority (NVWA). RvdB,
324 MH, PvR and IS wrote the initial draft of the manuscript. NG provided epidemiological and
325 molecular data on Israeli BTV-12. All authors did read the draft and gave their comments.
326 RvdB, IS, PvR and MH created the final version of the manuscript and all authors agreed with
327 the content.

328

329 **ACKNOWLEDGEMENTS and FUNDING INFORMATION**

330 We would like to thank the colleagues from Royal GD, WBVR and NVWA for their help
331 with the field work and the laboratory investigations. Additionally, we also thank Piet
332 Vellema and Tom McNeilly for their valuable comments on the manuscript. This study is
333 financially supported by the Ministry of Agriculture, Fisheries, Food security and Nature
334 (project number: 1600002757 VZVD).

335

336 **CONFLICT OF INTEREST STATEMENT**

337 The authors declare that they have no conflicts of interest.

338

339 **ETHICS STATEMENT**

340 The authors confirm that they have adhered to the ethical policies of the journal, as noted on
341 the journal's author guidelines page. Ethical approval is not applicable.

342

343 **REFERENCES**

344

345 Allen AJ, Stanton JB, Evermann JF, Fry LM, Ackerman MG, Barrington GM. Bluetongue disease and
346 seroprevalence in South American camelids from the northwestern region of the United States. *J Vet*
347 *Diagn Invest.* 2015;27(2):226-30. doi: 10.1177/1040638715571627.

348 Bumbarov V, Golender N, Erster O, Khinich Y. Detection and isolation of Bluetongue virus from
349 commercial vaccine batches. *Vaccine.* 2016;34(28):3317-23. doi: 10.1016/j.vaccine.2016.03.097.

350 Dijkstra E, Vellema P, Peterson K, Bogt-Kappert CT, Dijkman R, Harkema L, et al. Monitoring and
351 Surveillance of Small Ruminant Health in The Netherlands. *Pathogens.* 2022;11(6):635. doi:
352 10.3390/pathogens11060635

353

354 Gibbs EP, Greiner EC. The epidemiology of bluetongue. *Comp. Immunol. Microbiol. Infect. Dis.*
355 1994;17:207–220.

356

357 Meyer G, Lacroux C, Léger S, Top S, Goyeau K, Deplanche M, et al. Lethal Bluetongue virus
358 Serotype 1 infection in Llamas. *Emerg Infect Dis.* 2009;15(4):607–8.

359 Golender N, Klement E, Kovtunenko A, Even-Tov B, Zamir L, Tiomkin E, et al. Comparative
360 Molecular and Epidemiological Analyses of Israeli Bluetongue Viruses Serotype 1 and 9 Causing
361 Outbreaks in 2018-2020. *Microorganisms.* 2023;11(2):366. doi: 10.3390/microorganisms11020366.

362

363 Hofmann M.A., Renzullo S., Mader M., Chaignat V., Worwa G., Thuer B. Genetic characterization of
364 toggenburg orbivirus, a new bluetongue virus, from goats, Switzerland. *Emerg Infect Dis*
365 2008;14(12):1855-1861. DOI: 10.3201/eid1412.080818

366 Holwerda M, Santman-Berends IMGA, Harders F, Engelsma M, Vloet RPM, Dijkstra E, et al.
367 Emergence of Bluetongue Virus Serotype 3, the Netherlands, September 2023. *Emerg Infect Dis.*
368 2024;30(8):1552-1561. doi: 10.3201/eid3008.231331.

369 Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. *Bioinformatics*
370 2010;26:1899–1900.

371 Lorusso A, Guercio A, Purpari G, Cammà C, Calistri P, D'Alterio N, et al. Bluetongue virus serotype 3
372 in Western Sicily, November 2017. *Vet Ital.* 2017;53(4):273-275. doi: 10.12834/VetIt.251.520.178

373 Maan S, Maan NS, Samuel AR, Rao S, Attoui H, Mertens PPC. Analysis and phylogenetic
374 comparisons of full-length VP2 genes of the 24 bluetongue virus serotypes. *Journal of General*
375 *Virology.* 2007;88(2):621–30.

376 MacLachlan NJ, Mayo CE, Daniels PW, Savini G, Zientara S, Gibbs EP. Bluetongue. *Rev Sci Tech.*
377 2015;34(2):329-40. doi: 10.20506/rst.34.2.2360.

378

379 Mintiens K, Méroc E, Mellor PS, Staubach C, Gerbier G, Elbers AR, et al. Possible routes of
380 introduction of bluetongue virus serotype 8 into the epicentre of the 2006 epidemic in north-western
381 Europe. *Prev Vet Med.* 2008;87(1-2):131-44. doi: 10.1016/j.prevetmed.2008.06.011.

382

383 Niedbalski W. Bluetongue in Europe and the role of wildlife in the epidemiology of disease. *Pol J Vet
384 Sci.* 2015;18(2):455-61. doi: 10.1515/pjvs-2015-0060.

385 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ TREE: a fast and effective stochastic
386 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.* 2015;32:268–274.

387 Santman-Berends IMGA, Brouwer-Middelesch H, Van Wuijckhuise L, de Bont-Smolenaars AJG, Van
388 Schaik G. Surveillance of cattle health in the Netherlands: Monitoring trends and developments using
389 routinely collected cattle census data. *Prev Vet Med.* 2016;134:103-112. doi:
390 10.1016/j.prevetmed.2016.10.002.

391 Santman-Berends IMGA, van den Brink KMJA, Dijkstra E, van Schaik G, Spierenburg MAH, van
392 den Brom R. The impact of the bluetongue serotype 3 outbreak on sheep and goat mortality in the
393 Netherlands in 2023. *Prev Vet Med.* 2024;231:106289. doi: 10.1016/j.prevetmed.2024.106289.

394

395 Savini G, Hamers C, Conte A, Migliaccio P, Bonfini B, Teodori L, Di Ventura M, Hudelet P,
396 Schumacher C, Caporale V. Assessment of efficacy of a bivalent BTV-2 and BTV-4 inactivated
397 vaccine by vaccination and challenge in cattle.

398 *Vet Microbiol.* 2009;133(1-2):1-8. doi: 10.1016/j.vetmic.2008.05.032.

399 Sghaier S, Sailleau C, Marcacci M, Thabet S, Curini V, Ben Hassine T, et al. Epizootic Haemorrhagic
400 Disease Virus Serotype 8 in Tunisia, 2021. *Viruses.* 2022;15(1):16. doi: 10.3390/v15010016.

401 van den Brink KMJA, Santman-Berends IMGA, Harkema L, Scherpenzeel CGM, Dijkstra E,
402 Bisschop PIH, et al. Bluetongue virus serotype 3 in ruminants in the Netherlands: Clinical signs,
403 seroprevalence and pathological findings. *Vet Rec.* 2024;195(4):e4533. doi: 10.1002/vetr.4533.

404 van Rijn PA, Geurts Y, van der Spek AN, Veldman D, van Gennip RG. Bluetongue virus serotype 6 in
405 Europe in 2008-Emergence and disappearance of an unexpected non-virulent BTV. *Vet Microbiol.*
406 2012;158(1-2):23-32. doi: 10.1016/j.vetmic.2012.01.022.

407 Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. GGTREE: an R package for visualization and
408 annotation of phylogenetic trees with their covariates and other associated data. *Methods Ecol Evol*
409 2017;8:28–36.

410

411 Zhang N, MacLachlan NJ, Bonneau KR, Zhu J, Li Z, Zhang K, et al. Identification of seven serotypes
412 of bluetongue virus from the People's Republic of China. *Vet Rec.* 1999;145(15):427–9.

413 **Pictures**

414

415

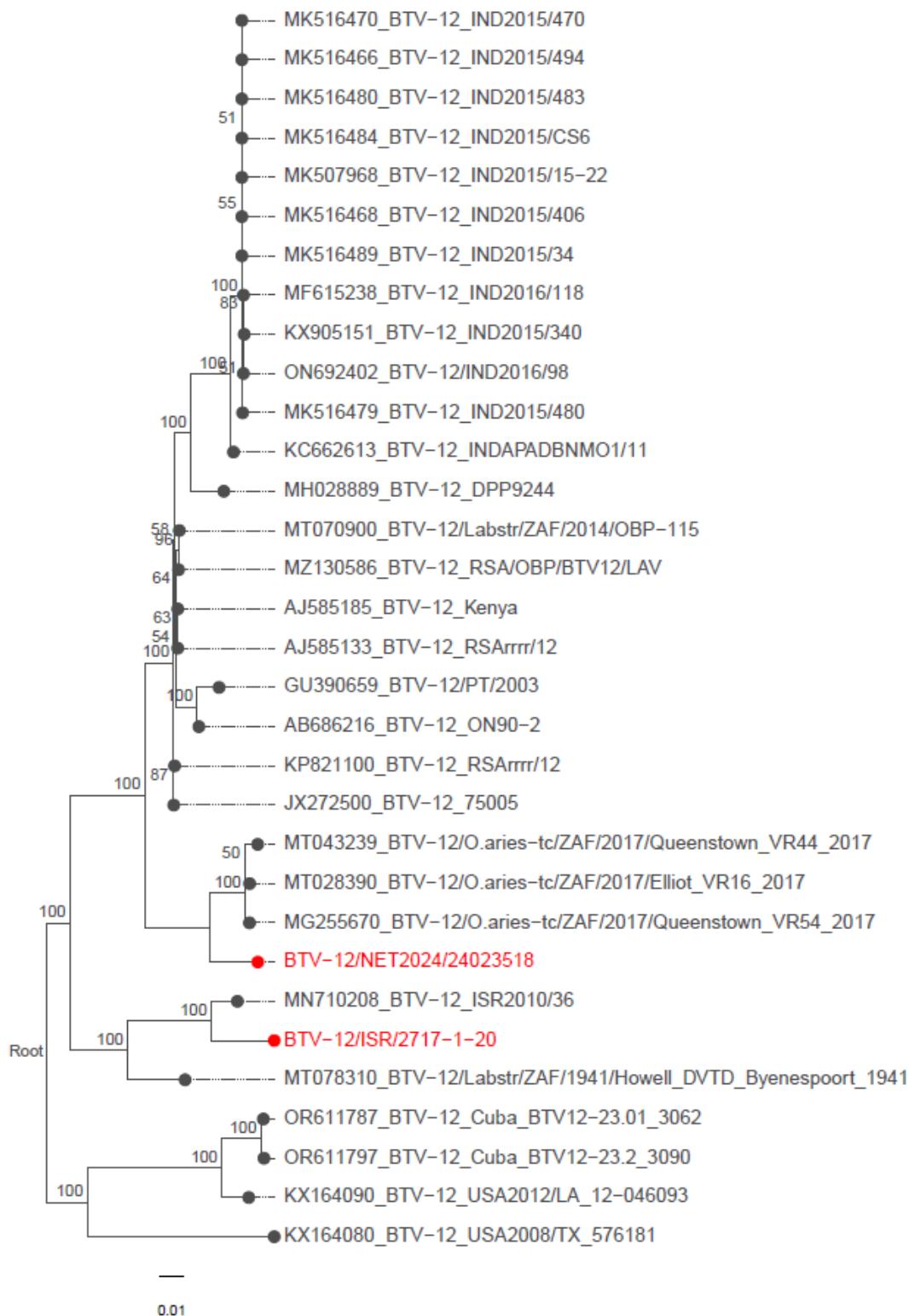
416 **Picture 1.** Blue Texel ram showing mild clinical signs of bluetongue on 14 September 2024.

417

418

419

420 **Picture 2a and 2b.** Holstein Friesian heifer showing swollen joints of the carpus at sampling on 7 October 2024.


421 **Figures**

422 Source: Dutch food and consumer safety authority

423 **Figure 1.** BTV-3 cases notified between July and October 2024 (grey). The green dots represent the location of the nine
424 confirmed BTV-12 cases, the index BTV-12 case is represented by a green triangle.


425

426

0.01

427 **Figure 2.** Phylogenetic tree with the relation of segment 2 (VP2) of BTV-12/NET2024/24023518 with the top thirty closest
428 relatives from the NCBI BLAST analysis (accession date Oct 3, 2024) and BTV-12/ISR2020/2717.

429

430

431 **Figure 3.** Schematic view of phylogenetic trees for all segments of BTV-12/NET2024/24023518 with the top thirty closest
432 relatives for each segment from the NCBI BLAST analysis (accession date Oct 3, 2024) and BTV-12/ISR2020/2717.
433 Coloured dots represent the origin of the virus isolate. To compare the Dutch (BTV-12/NET2024) and Israeli isolates (BTV-
434 12/ISR2020/2717), these are highlighted in each tree with a red dot.

435 **Tables**

436

437 **Table 1.** Results of retrospective PCR testing (including cycle threshold values) of samples from the passive surveillance
438 submitted within a radius of twenty km of the sheep farms where BTV-12 was detected.

Sample	Farm	Sampling date	Species	Distance to sheep farm	1 st pan BTV PCR	BTV-3 PCR
1	A	13/09/2024	Cattle	17,5 km	22,37	22,42
2	B	13/09/2024	Goat	2,7 km	26,95	27,14
3	C	17/09/2024	Cattle	4,6 km	25,36	26,97
4	D	19/09/2024	Cattle	14,3 km	28,66	29,43
5	D	19/09/2024	Cattle	14,3 km	27,27	28,75
6	D	19/09/2024	Cattle	14,3 km	26,52	27,71
7	E	20/09/2024	Cattle	3,6 km	24,23	-
8	F	20/09/2024	Cattle	3,6 km	27,33	29,21
439	9	18/09/2024	Cattle	18,2 km	31,77	32,19

440

Sample	Farm	Sampling date	Species	Distance to sheep farm	1 st pan BTV PCR	BTV-3 PCR
1	A	13/09/2024	Cattle	17,5 km	22,37	22,42
2	B	13/09/2024	Goat	2,7 km	26,95	27,14
3	C	17/09/2024	Cattle	4,6 km	25,36	26,97
4	D	19/09/2024	Cattle	14,3 km	28,66	29,43
5	D	19/09/2024	Cattle	14,3 km	27,27	28,75
6	D	19/09/2024	Cattle	14,3 km	26,52	27,71
7	E	20/09/2024	Cattle	3,6 km	24,23	-
8	F	20/09/2024	Cattle	3,6 km	27,33	29,21
9	G	18/09/2024	Cattle	18,2 km	31,77	32,19

441

442

443 **Table 2.** The nucleotide homology of the BTV-12/NET2024 was compared to publicly available sequences from the NCBI
 444 database, and to the Israeli BTV-12/ISR2020/2717 virus isolate. The segments of virus isolates with the highest homology
 445 are shown. The corresponding NCBI accession numbers of each segment are indicated.

Segment	Viral protein	Length (base pairs)	Homology (%) with BTV-12/NET2024	Virus name	Accession number	Homology (%) with BTV-12/ISR2020/2717
Segment 1	VP1	3944	98,10	BTV-24/ISR2009/02_2009	MN710085.1	93,43
Segment 2	VP2	2904	96,56	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR54_2017	MG255670.1	89,1
Segment 3	VP3	2772	97,11	BTV-3/ISR-2019/13-2013	MG344982.1	98,9
Segment 4	VP4	1981	97,78	BTV-3/ISR-2255/18-2018	MN200309.1	97,65
Segment 5	NS1	1774	98,03	BTV-1/LIB2007/06-2007	KP821370.1	97,05
Segment 6	VP5	1645	96,66	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR44_2017	MT043243.1	96,96
Segment 7	VP7	1156	97,58	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR54_2017	MG255675.1	99,29
Segment 8	NS2	1125	96,89	BTV-12/O.aries-tc/ZAF/2017/Elliot_VR16_2017	MT028396.1	95,44
Segment 9	VP6/NS4	1049	97,71	BTV-4/IT(L)_2003	JN255890.1	98,16
Segment 10	NS3/NS3a	822	95,13	BTV-7/O.aries-tc/ZAF/2017/Beaufort_Wes_VR43_2017	MT043237.1	82,49

446

Segment	Viral protein	Nucleotide length	% nucleotide homology with BTV-12/NET2024	Isolate name	Accessions number	% Homology with BTV-12/ISR2020/2717
Segment 1	VP1	3944	98,10	BTV-24/ISR2009/02_2009	MN710085.1	93,43
Segment 2	VP2	2904	96,56	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR54_2017	MG255670.1	89,1
Segment 3	VP3	2772	97,11	BTV-3/ISR-2019/13-2013	MG344982.1	98,9
Segment 4	VP4	1981	97,78	BTV-3/ISR-2255/18-2018	MN200309.1	97,65
Segment 5	NS1	1774	98,03	BTV-1/LIB2007/06-2007	KP821370.1	97,05
Segment 6	VP5	1645	96,66	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR44_2017	MT043243.1	96,96
Segment 7	VP7	1156	97,58	BTV-12/O.aries-tc/ZAF/2017/Queenstown_VR54_2017	MG255675.1	99,29
Segment 8	NS2	1125	96,89	BTV-12/O.aries-tc/ZAF/2017/Elliot_VR16_2017	MT028396.1	95,44
Segment 9	VP6/NS4	1049	97,71	BTV-4/IT(L)_2003	JN255890.1	98,16
Segment 10	NS3/NS3a	822	95,13	BTV-7/O.aries-tc/ZAF/2017/Beaufort_Wes_VR43_2017	MT043237.1	82,49

447