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Abstract 18 

Open scientific competitions have successfully driven biomedical advances but remain underuti-19 

lized in aging research, where biological complexity and heterogeneity require methodological 20 

innovations. Here, we present the results from Phase I of the Biomarkers of Aging Challenge, an 21 

open competition designed to drive innovation in aging biomarker development and validation. 22 

The challenge leverages a unique DNA methylation dataset and aging outcomes from 500 indi-23 
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viduals, aged 18 to 99. Participants are asked to develop novel models to predict chronological 24 

age, mortality, and multi-morbidity. Results from the chronological age prediction phase show 25 

important advances in biomarker accuracy and innovation compared to existing models. The 26 

winning models feature improved predictive power and employ advanced machine learning 27 

techniques, innovative data preprocessing, and the integration of biological knowledge. These 28 

approaches have led to the identification of novel age-associated methylation sites and patterns. 29 

This challenge establishes a paradigm for collaborative aging biomarker development, potential-30 

ly accelerating the discovery of clinically relevant predictors of aging-related outcomes. This 31 

supports personalized medicine, clinical trial design, and the broader field of geroscience, paving 32 

the way for more targeted and effective longevity interventions. 33 

Introduction 34 

The global demographic shift towards an aging population poses unprecedented challenges to 35 

healthcare systems and societal structures1,2. This transition, marked by a surge in age-related 36 

pathologies, underscores the critical need for precise quantification of biological aging3. Chrono-37 

logical age fails to capture the heterogeneity in aging trajectories among individuals, requiring 38 

robust biomarkers of aging—quantifiable indicators that accurately reflect biological age and 39 

predict age-associated decline4. 40 

Recent breakthroughs have revolutionized our understanding of aging biomarkers, particularly in 41 

the realm of epigenetics. The field has seen a proliferation of epigenetic clocks, including the 42 

seminal contributions of Horvath5, Hannum6, PhenoAge7, GrimAge8, and DunedinPACE9. More 43 

recent developments include causality-enriched clocks10, genomic-region-based clocks (includ-44 

ing PRC2 clock11, RetroAge12), and deep learning-based clocks13–15. These advances, alongside 45 

the establishment of the Biomarkers of Aging Consortium, have laid a foundation for the identi-46 

fication and validation of targeted interventions to extend healthy lifespan by fostering collabora-47 

tion and standardization efforts4,16,17. However, despite these strides, significant challenges re-48 

main, such as limited reproducibility of biomarker results across populations, insufficient longi-49 

tudinal validation, and unclear mechanistic links to fundamental aging processes. 50 

Open science initiatives have catalyzed breakthroughs in complex biomedical fields. For in-51 

stance, the Critical Assessment of protein Structure Prediction (CASP) competitions dramatically 52 
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advanced protein folding predictions18 and led to the development of Rosetta19 and Alphafold20, 53 

which have revolutionized the field of structural biology. Similarly, the DREAM Challenges ad-54 

vanced our understanding of gene regulatory networks and drug sensitivity21, and the Alz-55 

heimer’s Disease Neuroimaging Initiative (ADNI) in neurology accelerated biomarker discovery 56 

through open data and competitions22. In these initiatives, researchers compete to develop the 57 

best solutions while simultaneously sharing data, methods, and insights, fostering a collaborative 58 

environment that accelerates scientific progress. This unique blend of competition and coopera-59 

tion has proven highly effective in tackling complex biomedical challenges. These successes un-60 

derscore the immense potential of open competitions to drive rapid advancements in aging re-61 

search. 62 

Here, we present Phase I of the Biomarkers of Aging Challenge, a global open science initiative 63 

that aims to advance the development and validation of aging biomarkers.. This challenge lever-64 

ages crowdsourcing and standardized datasets to overcome key barriers in the field. (1). We in-65 

troduce a unique, curated dataset of DNA methylation profiles and comprehensive health out-66 

comes from 500 individuals (ages 18-99), facilitating direct comparisons of biomarker models 67 

across diverse genetic backgrounds and environmental exposures23. (2). The Biomarkers of Ag-68 

ing Challenge utilizes Biolearn (https://bio-learn.github.io), an open-source computational plat-69 

form that standardizes the implementation and evaluation of aging biomarkers17. Biolearn bridg-70 

es the methodological gap between computational biology and data science, enabling systematic 71 

benchmarking of novel algorithms. (3). Our three-phase competition structure—encompassing 72 

chronological age prediction, mortality risk assessment, and multi-morbidity forecasting—73 

incentivizes the development of biomarkers with direct clinical relevance, aligning with recent 74 

frameworks for evaluating longevity interventions4. 75 

Preliminary findings from the chronological age prediction phase have yielded unexpected in-76 

sights into the epigenetic landscapes of aging. Top-performing models have identified novel 77 

DNA methylation signatures that demonstrate superior accuracy and generalizability compared 78 

to existing biomarkers. The Biomarkers of Aging Challenge exemplifies the transformative po-79 

tential of open competitions in accelerating scientific discovery. By fostering interdisciplinary 80 

collaboration and providing a unified framework for biomarker evaluation, we have created an 81 

ecosystem that rapidly translates diverse expertise into tangible progress. This approach not only 82 
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addresses the heterogeneity in biomarker formulations but also tackles the inconsistencies in da-83 

taset structures that have hindered progress in the field. 84 

Results 85 

Overview of the Challenge series 86 

The Biomarkers of Aging Challenge was designed as a multi-phase open science initiative to ad-87 

dress key limitations in aging biomarker development and validation. Launched in March 2024, 88 

the competition attracted 152 teams from 28 countries, representing a diverse array of expertise 89 

in computational biology, data science, and geroscience (Figure 1). 90 

The challenge is structured in three sequential phases (Figure 1a): 91 

1. Chronological Age Prediction (March - July 2024): Participants developed models to predict 92 

chronological age from DNA methylation data. This phase served as a benchmark for feature 93 

selection and model performance. 94 

2. Mortality Prediction (July - November 2024): Teams refined their models to predict all-cause 95 

mortality risk, a key outcome in aging research. 96 

3. Multi-morbidity Prediction (Scheduled for 2025): This phase will focus on predicting the on-97 

set of multiple age-related conditions, which will be critical for the optimization and extension of 98 

healthspan. 99 

Central to the challenge is a unique, high-quality reference dataset. We generated methylation 100 

profiles for 500 individuals from the Mass General Brigham Biobank using the Illumina 101 

MethylationEPIC v2.0 platform, which captures methylation status at over 930,000 CpG sites23. 102 

This dataset covers a wide range of ages, is balanced between males and females, and represents 103 

the racial and ethnic diversity of the Boston area (Figure 1b-d). Participants were provided with 104 

the complete epigenetic dataset but were blinded to all outcome data. Model performance was 105 

evaluated using a split-sample approach: 50% of the data was used for ongoing assessment via a 106 

public leaderboard, while the remaining 50% was withheld as a final validation set. This meth-107 

odology facilitated iterative model refinement while mitigating the risk of overfitting. 108 
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To standardize biomarker implementation and evaluation, we utilized our recently developed 109 

open-source Python-based Biolearn platform. Biolearn facilitated the integration of 17 additional 110 

public datasets from the Gene Expression Omnibus, encompassing 12,463 samples across di-111 

verse tissue types and age ranges (Figure 1b). This comprehensive framework enabled systemat-112 

ic benchmarking of both existing and novel biomarker algorithms. 113 

Submissions were evaluated using a standardized pipeline on a held-out test set. For the chrono-114 

logical age prediction phase, performance was assessed using mean absolute error (MAE) and 115 

feature number. Participants were able to submit once daily, and the leaderboard was updated in 116 

real time, fostering competition and rapid iteration of models. 117 

Phase I: Chronological age prediction 118 

The inaugural phase of the Biomarkers of Aging Challenge, focusing on chronological age pre-119 

diction, attracted 37 teams and garnered 551 submissions. The top-performing models consist-120 

ently surpassed existing published biomarkers of aging (BoAs) in chronological age prediction 121 

accuracy on our 500-sample dataset (Figure 2a). The phase I first-ranked entry (DarthVenter) 122 

achieved a mean absolute error (MAE) of 2.45 years on the final dataset, with a leaderboard 123 

score of 2.11 years. The second-ranked entry (Lucascamillo) and third-ranked entry 124 

(ZetaPartition) followed closely with an MAE of 2.55 years and 2.46 years, respectively. 125 

Notably, these top-performing teams employed diverse approaches in terms of feature selection. 126 

The first-ranked entry utilized 8,000 features, and the third-ranked entry leveraged 136,111 fea-127 

tures, in contrast to the second-ranked entry’s more parsimonious approach with 337 features. 128 

This variation in feature set sizes demonstrates that high performance can be achieved through 129 

different strategies in feature selection and model complexity. 130 

All finalist competition entries consistently achieved MAEs below 3 years, representing a signif-131 

icant improvement over existing biomarkers. In comparison, the best-performing published bi-132 

omarker in the current Biolearn collection (Horvath) exhibited an MAE of approximately 4.8 133 

years, with other established biomarkers such as Hannum, PhenoAge, and GrimAge demonstrat-134 

ing progressively higher MAEs ranging from about 5 to 8.5 years. This substantial improvement 135 

in accuracy underscores the potential of new approaches developed during the challenge to ad-136 
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vance the field of epigenetic age prediction and offers new avenues for investigating the biologi-137 

cal underpinnings of aging. 138 

The winning models also employed diverse approaches (Figure 2b), showcasing the potential for 139 

innovation in epigenetic age prediction. The first-ranked entry, Skip-Improved Training Hive 140 

(SITH) network, utilized an ensemble of feed-forward neural networks with a linear skip layer, 141 

trained on 8,000 CpG sites from 19 datasets. The second-ranked entry introduced a transformer-142 

based foundation model pre-trained on over 100,000 samples and fine-tuned for age prediction 143 

using a subset of 337 CpG sites. The third-ranked entry is a deep learning model based on a 144 

ResNet architecture, leveraging 136,111 CpG sites from 33 publicly available datasets. 145 

Overall, these results represent a significant improvement in chronological age prediction using 146 

epigenetic data. The competition has produced models that substantially outperform existing 147 

published biomarkers, offering more accurate tools for assessing biological age. Moreover, the 148 

consistent performance across age ranges suggests robust models that could be applicable in var-149 

ious research and potentially clinical contexts. The outcomes of this initial phase set a new 150 

benchmark for epigenetic age prediction and provide a strong foundation for subsequent phases 151 

of the Biomarkers of Aging Challenge, which will focus on more complex outcomes such as 152 

mortality and multi-morbidity prediction. 153 

Discussion 154 

The Biomarkers of Aging Consortium broadly aims to catalyze progress in the complex field of 155 

aging. We hypothesized that leveraging the power of an open science initiative, the Biomarkers 156 

of Aging Challenge Series, would yield significant advances in aging biomarker development. 157 

The results of the first phase of our challenge provide powerful proof of concept for this idea. 158 

The winning models not only outperformed existing epigenetic clocks but also introduced novel 159 

approaches that may have broader implications for aging research and personalized medicine. 160 

The top-performing models employed diverse strategies to improve age prediction accuracy. The 161 

first-ranked entry’s SITH network utilized an ensemble method with a skip-layer architecture, 162 

which showed effectiveness in capturing age-related signals while addressing batch effects. The 163 

second-ranked entry’s CpGPT model applied a transformer-based approach, demonstrating the 164 
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applicability of transfer learning in epigenetics. The models achieved MAEs ranging from 2.45 165 

to 2.55 years, representing an improvement over existing biomarkers. The third-ranked entry’s 166 

approach incorporated a larger number of CpG sites (136,111) compared to traditional epigenetic 167 

clocks, potentially leveraging previously unexplored genomic regions. This increased precision 168 

may enhance the detection of subtle age-related changes and improve the evaluation of interven-169 

tions targeting the aging process. However, the complexity of these models presents challenges 170 

in interpreting their biological significance and understanding the mechanisms underlying their 171 

predictions–an ongoing general issue in this field. Further research is needed to elucidate the bio-172 

logical relevance of these computational advancements and their potential applications in aging 173 

research and clinical settings. 174 

One key challenge moving forward will be to bridge the gap between predictive accuracy and 175 

biological insight. While these models excel at chronological age prediction, their complexity 176 

may obscure the underlying biological processes they capture. Future research should focus on 177 

developing interpretable models or methods to extract biological meaning from these high-178 

performing but opaque predictors. 179 

The success of this challenge also highlights the value of standardized datasets and evaluation 180 

frameworks in advancing the field. The novel dataset generated for this competition, covering a 181 

wide age range and balanced for sex, provides a valuable resource for future research. The open-182 

source Biolearn platform offers a standardized implementation of existing biomarkers and evalu-183 

ation tools, which could facilitate more robust comparisons of new models in the future. 184 

As we move into the subsequent phases of the challenge, focusing on mortality and multi-185 

morbidity prediction, it will be crucial to consider how the insights gained from chronological 186 

age prediction can be translated to these more complex, clinically relevant outcomes. The diverse 187 

approaches showcased in this first phase provide a strong foundation for tackling these challeng-188 

es, potentially leading to more accurate and personalized risk assessments for age-related diseas-189 

es. 190 
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Methods 191 

Challenge Design and Participation 192 

The Biomarkers of Aging Challenge was structured in three phases: Chronological Age Predic-193 

tion (March 1 - July 5, 2024), Mortality Prediction (July 1 - November 1, 2024), and Multi-194 

morbidity Prediction (scheduled for 2025). This study focuses on Phase 1 results. Teams could 195 

submit daily predictions, with the best result retained for final judging. For Phase 1, finalist sub-196 

missions needed to achieve a mean absolute error (MAE) of ≤3 years between predicted and ac-197 

tual ages. 198 

Dataset Generation and Preprocessing 199 

We generated a novel dataset using the Illumina MethylationEPIC v2.0 platform, comprising 200 

DNA methylation profiles from 500 blood samples provided by Mass General Brigham Biobank. 201 

The dataset covered ages 18-99 years and was balanced for sex. Participants received this data 202 

without phenotypic information for model development and testing. For training, teams were al-203 

lowed to use any public or private datasets not included in the scoring set. The Biolearn platform 204 

provided access to relevant data from Gene Expression Omnibus (GEO), National Health and 205 

Nutrition Examination Survey (NHANES), and Framington Heart Study (FHS), though its use 206 

was optional. 207 

Evaluation Criteria 208 

For Phase 1, submissions were evaluated using MAE on a held-out test set. A public leaderboard, 209 

updated in real-time using 50% of the data samples, aided teams in model development. Final 210 

rankings were determined using the full dataset. 211 

Since DNA methylation data has limited precision, we considered any MAE within 0.1 to be tied 212 

with ties broken in favor of the model using the least number of features. Specifically, for first 213 

place, the best MAE score was considered against every other score within 0.1, and the model 214 

using the least number of features was the winning model. Second place was determined in the 215 

same way, with the first place model score removed and third place with the first and second 216 

place models removed. 217 
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Phase 1 Winning Model Architectures 218 

The first-ranked entry’s Skip-Improved Training Hive (SITH) Network: This ensemble model 219 

comprised multiple feed-forward (FF) neural networks, each with a linear skip layer. It utilized 220 

8,000 CpG sites from 19 datasets (>8,000 samples total). Each base model (~500,000 parame-221 

ters) consisted of three hidden layers with 64 neurons each and ReLU activation. The linear skip 222 

layer connected the input directly to the output neuron. The ensemble’s final prediction was the 223 

unweighted mean of all base model predictions. Training employed the AdamW optimizer with 224 

OneCycle scheduling over 3000 epochs and an age-weighted smoothed-L1-loss function, which 225 

required a modest 4 GB of GPU memory on a Nvidia T100 for around 8 hours. To account for 226 

batch effects, each base model was trained on a subset of the data with one dataset removed and 227 

90% of the remaining samples randomly chosen. Validation used three independent datasets 228 

(~1,000 samples). The SITH network achieved an MAE of 2.45 on the full competition dataset. 229 

The second-ranked entry’s CpGPT (CpG Pre-trained Transformer): This transformer-based 230 

model flexibly used a subset of CpG sites from a vocabulary of 5,773 probes derived from 26 231 

existing epigenetic clocks. The model architecture included a chromosome encoder, genomic 232 

position encoder, beta value encoder, transformer encoder, two beta value decoders, an age de-233 

coder, and a covariates decoder, totaling approximately 1.6 million trainable parameters. CpGPT 234 

was pre-trained on 105,850 samples from 1,566 GEO datasets for about 1,000 epochs using 4 235 

NVIDIA A10G GPUs over ~14 days. It was then fine-tuned on ComputAgeBench data for 30 236 

epochs. The model demonstrated high stability, with age predictions across different input CpG 237 

subsets showing correlations consistently above 0.999. For the competition, CpGPT achieved an 238 

MAE of 2.55 years. 239 

The third-ranked entry’s Deep Learning ResNet: This dense ResNet architecture processed 240 

136,111 CpG sites from 13,446 samples across 33 GEO datasets (mean age 50.2 years). Prepro-241 

cessing involved mean-imputation of normalized beta values, exclusion of cross-reactive probes 242 

and sites with large variances, and adding 0.5 years to integer age labels. The model structure 243 

included an initial fully connected layer, three residual blocks (each with two fully connected 244 

layers and ReLU activation), and a final fully connected output layer. Training used a balanced 245 

split of young (20-24 years), old (>95 years), and middle-aged (24-95 years) individuals. The 246 

Adam optimizer was employed with hyperparameters optimized through random search. The 247 
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training ran for 500 epochs with a batch size of 64 on an NVIDIA A100 GPU, using Mean 248 

Squared Error as the loss function. Linear regression was applied post-training to reduce poten-249 

tial linear bias. The model achieved an MAE of 2.46 on the competition dataset. 250 

Statistical Analysis 251 

All statistical analyses were performed using standard Python libraries. The code for these anal-252 

yses will be made open-source, ensuring reproducibility and transparency of our results. 253 

Data and Code Availability 254 

The scoring DNA methylation dataset has been released as an open-access resource following 255 

challenge completion at GSE24633723, while the phenotypic data will only be released after 256 

completion of all challenge phases. The Biolearn platform, including standardized implementa-257 

tions of existing biomarkers and evaluation tools, is available at https://github.com/bio-258 

learn/biolearn. The workflow for the challenge is available at https://github.com/bio-259 

learn/biomarkers-of-aging-challenge-2024. All analysis code for this paper will be made availa-260 

ble through the same repository. 261 
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 275 

Figure 1. Overview of the Biomarkers of Aging Challenge. a. Timeline of the challenge 276 

showing the three phases: Chronological Age Prediction (March-July 2024), Mortality Prediction 277 

(July-November 2024), and Multi-morbidity Prediction (planned for 2025). Key dates for each 278 

phase, including announcements, deadlines, and result releases, are indicated. b. Illustration of 279 

the MGB cohort (n = 500) used in the challenge, showing blood samples, DNA extraction, and 280 

methylation array analysis. c. Age distribution of the challenge cohort, with density plots colored 281 

for males and females. d. Bar chart showing the race distribution of the challenge cohort, includ-282 

ing White, Black, Asian, and other categories. 283 

  284 
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 285 

Figure 2. Phase 1 of the Biomarkers of Aging Challenge. a. Bar plot showing the mean abso-286 

lute error (MAE) for different models, including competition submissions (blue) and published 287 

biomarkers (red). The x-axis lists the models, and the y-axis shows the MAE in years. The plot 288 

indicates that 37 teams submitted a total of 551 entries. b. Scatter plot comparing predicted 289 

vs. actual age for the top 3 winning teams. Each point represents an individual, with different 290 

colors for each team’s model. The diagonal line represents perfect prediction. 291 

  292 
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