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Abstract

Open scientific competitions have successfully driven biomedical advances but remain underuti-
lized in aging research, where biological complexity and heterogeneity require methodological
innovations. Here, we present the results from Phase | of the Biomarkers of Aging Challenge, an
open competition designed to drive innovation in aging biomarker development and validation.

The challenge leverages a unique DNA methylation dataset and aging outcomes from 500 indi-
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viduals, aged 18 to 99. Participants are asked to develop novel models to predict chronological
age, mortality, and multi-morbidity. Results from the chronological age prediction phase show
important advances in biomarker accuracy and innovation compared to existing models. The
winning models feature improved predictive power and employ advanced machine learning
techniques, innovative data preprocessing, and the integration of biological knowledge. These
approaches have led to the identification of novel age-associated methylation sites and patterns.
This challenge establishes a paradigm for collaborative aging biomarker devel opment, potential-
ly accelerating the discovery of clinically relevant predictors of aging-related outcomes. This
supports personalized medicine, clinical trial design, and the broader field of geroscience, paving

the way for more targeted and effective longevity interventions.

I ntroduction

The global demographic shift towards an aging population poses unprecedented challenges to
healthcare systems and societal structures2 This transition, marked by a surge in age-related
pathologies, underscores the critical need for precise quantification of biological aging®. Chrono-
logical age fails to capture the heterogeneity in aging trajectories among individuals, requiring
robust biomarkers of aging—aquantifiable indicators that accurately reflect biological age and
predict age-associated decline®.

Recent breakthroughs have revolutionized our understanding of aging biomarkers, particularly in
the realm of epigenetics. The field has seen a proliferation of epigenetic clocks, including the
seminal contributions of Horvath®, Hannum®, PhenoAge’, GrimAge®, and DunedinPACE®. More
recent developments include causality-enriched clocks™, genomic-region-based clocks (includ-
ing PRC2 clock™, RetroAge™), and deep learning-based clocks™™°. These advances, alongside
the establishment of the Biomarkers of Aging Consortium, have laid a foundation for the identi-
fication and validation of targeted interventions to extend healthy lifespan by fostering collabora-
tion and standardization efforts™*®*’. However, despite these strides, significant challenges re-
main, such as limited reproducibility of biomarker results across populations, insufficient longi-
tudinal validation, and unclear mechanistic links to fundamental aging processes.

Open science initiatives have catalyzed breakthroughs in complex biomedical fields. For in-
stance, the Critical Assessment of protein Structure Prediction (CASP) competitions dramatically
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advanced protein folding predictions™ and led to the development of Rosetta™ and Alphafold®,
which have revolutionized the field of structural biology. Similarly, the DREAM Challenges ad-
vanced our understanding of gene regulatory networks and drug sensitivity”, and the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) in neurology accelerated biomarker discovery
through open data and competitions®. In these initiatives, researchers compete to develop the
best solutions while simultaneously sharing data, methods, and insights, fostering a collaborative
environment that accelerates scientific progress. This unique blend of competition and coopera-
tion has proven highly effective in tackling complex biomedical challenges. These successes un-
derscore the immense potential of open competitions to drive rapid advancements in aging re-
search.

Here, we present Phase | of the Biomarkers of Aging Challenge, a global open science initiative
that aims to advance the development and validation of aging biomarkers.. This challenge lever-
ages crowdsourcing and standardized datasets to overcome key barriers in the field. (1). We in-
troduce a unique, curated dataset of DNA methylation profiles and comprehensive health out-
comes from 500 individuals (ages 18-99), facilitating direct comparisons of biomarker models
across diverse genetic backgrounds and environmental exposures™. (2). The Biomarkers of Ag-

ing Challenge utilizes Biolearn (https.//bio-learn.github.io), an open-source computational plat-

form that standardizes the implementation and evaluation of aging biomarkers'’. Biolearn bridg-
es the methodological gap between computational biology and data science, enabling systematic
benchmarking of novel algorithms. (3). Our three-phase competition structure—encompassing
chronological age prediction, mortality risk assessment, and multi-morbidity forecasting—
incentivizes the development of biomarkers with direct clinical relevance, aligning with recent

frameworks for evaluating longevity interventions”.

Preliminary findings from the chronological age prediction phase have yielded unexpected in-
sights into the epigenetic landscapes of aging. Top-performing models have identified novel
DNA methylation signatures that demonstrate superior accuracy and generalizability compared
to existing biomarkers. The Biomarkers of Aging Challenge exemplifies the transformative po-
tential of open competitions in accelerating scientific discovery. By fostering interdisciplinary
collaboration and providing a unified framework for biomarker evaluation, we have created an

ecosystem that rapidly translates diverse expertise into tangible progress. This approach not only
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83 addresses the heterogeneity in biomarker formulations but also tackles the inconsistencies in da-
84  taset structures that have hindered progressin the field.

s Resaults

g6 Overview of the Challenge series

g7 The Biomarkers of Aging Challenge was designed as a multi-phase open science initiative to ad-
ss  dress key limitations in aging biomarker development and validation. Launched in March 2024,
89 the competition attracted 152 teams from 28 countries, representing a diverse array of expertise

9 incomputational biology, data science, and geroscience (Figure 1).
91 Thechallengeis structured in three sequential phases (Figure 1a):

92 1. Chronological Age Prediction (March - July 2024): Participants developed models to predict
93 chronological age from DNA methylation data. This phase served as a benchmark for feature
94  selection and model performance.

95 2. Mortality Prediction (July - November 2024): Teams refined their models to predict all-cause
96  mortality risk, a key outcome in aging research.

97 3. Multi-morbidity Prediction (Scheduled for 2025): This phase will focus on predicting the on-
98 set of multiple age-related conditions, which will be critical for the optimization and extension of
9%  healthspan.

100 Central to the challenge is a unique, high-quality reference dataset. We generated methylation
101 profiles for 500 individuals from the Mass General Brigham Biobank using the Illumina
102 MethylationEPIC v2.0 platform, which captures methylation status at over 930,000 CpG sites™.
103 This dataset covers a wide range of ages, is balanced between males and females, and represents
104 theracial and ethnic diversity of the Boston area (Figure 1b-d). Participants were provided with
105 the complete epigenetic dataset but were blinded to all outcome data. Mode performance was
106  evaluated using a split-sample approach: 50% of the data was used for ongoing assessment via a
107 public leaderboard, while the remaining 50% was withheld as a final validation set. This meth-
108 odology facilitated iterative model refinement while mitigating the risk of overfitting.
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100  To standardize biomarker implementation and evaluation, we utilized our recently developed
110  open-source Python-based Biolearn platform. Biolearn facilitated the integration of 17 additional
111 public datasets from the Gene Expression Omnibus, encompassing 12,463 samples across di-
112 versetissue types and age ranges (Figure 1b). This comprehensive framework enabled systemat-

113 ic benchmarking of both existing and novel biomarker algorithms.

114  Submissions were evaluated using a standardized pipeline on a held-out test set. For the chrono-
115 logical age prediction phase, performance was assessed using mean absolute error (MAE) and
116  feature number. Participants were able to submit once daily, and the leaderboard was updated in

117 real time, fostering competition and rapid iteration of models.

us  Phasel: Chronological age prediction

119  Theinaugural phase of the Biomarkers of Aging Challenge, focusing on chronological age pre-
120 diction, attracted 37 teams and garnered 551 submissions. The top-performing models consist-
121 ently surpassed existing published biomarkers of aging (BoAs) in chronological age prediction
122 accuracy on our 500-sample dataset (Figure 2a). The phase | first-ranked entry (DarthVenter)
123  achieved a mean absolute error (MAE) of 2.45 years on the final dataset, with a leaderboard
124 score of 211 years. The second-ranked entry (Lucascamillo) and third-ranked entry
125 (ZetaPartition) followed closdly with an MAE of 2.55 years and 2.46 years, respectively.

126 Notably, these top-performing teams employed diverse approaches in terms of feature selection.
127 Thefirst-ranked entry utilized 8,000 features, and the third-ranked entry leveraged 136,111 fea-
128  tures, in contrast to the second-ranked entry’s more parsimonious approach with 337 features.
129 This variation in feature set sizes demonstrates that high performance can be achieved through

130 different strategies in feature selection and model complexity.

131 All finalist competition entries consistently achieved MAEs below 3 years, representing a signif-
132 icant improvement over existing biomarkers. In comparison, the best-performing published bi-
133 omarker in the current Biolearn collection (Horvath) exhibited an MAE of approximately 4.8
134 years, with other established biomarkers such as Hannum, PhenoAge, and GrimAge demonstrat-
135 ing progressively higher MAEs ranging from about 5 to 8.5 years. This substantial improvement

136 in accuracy underscores the potential of new approaches developed during the challenge to ad-
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137 vance the field of epigenetic age prediction and offers new avenues for investigating the biologi-
138 cal underpinnings of aging.

139 The winning models also employed diverse approaches (Figure 2b), showcasing the potential for
140  innovation in epigenetic age prediction. The first-ranked entry, Skip-Improved Training Hive
141 (SITH) network, utilized an ensemble of feed-forward neural networks with a linear skip layer,
142 trained on 8,000 CpG sites from 19 datasets. The second-ranked entry introduced a transformer-
143 based foundation model pre-trained on over 100,000 samples and fine-tuned for age prediction
144 using a subset of 337 CpG sites. The third-ranked entry is a deep learning model based on a
145  ResNet architecture, leveraging 136,111 CpG sites from 33 publicly available datasets.

146 Overall, these results represent a significant improvement in chronological age prediction using
147 epigenetic data. The competition has produced models that substantially outperform existing
148 published biomarkers, offering more accurate tools for assessing biological age. Moreover, the
149 consigtent performance across age ranges suggests robust models that could be applicable in var-
150  ious research and potentially clinica contexts. The outcomes of this initial phase set a new
151 benchmark for epigenetic age prediction and provide a strong foundation for subsequent phases
152 of the Biomarkers of Aging Challenge, which will focus on more complex outcomes such as

153 mortality and multi-morbidity prediction.

15 Discussion

155 The Biomarkers of Aging Consortium broadly aims to catalyze progress in the complex field of
156 aging. We hypothesized that leveraging the power of an open science initiative, the Biomarkers
157 of Aging Challenge Series, would yield significant advances in aging biomarker development.
158 The results of the first phase of our challenge provide powerful proof of concept for this idea.
159 The winning models not only outperformed existing epigenetic clocks but also introduced novel

160  approaches that may have broader implications for aging research and personalized medicine.

161 Thetop-performing models employed diverse strategies to improve age prediction accuracy. The
162 first-ranked entry’s SITH network utilized an ensemble method with a skip-layer architecture,
163 which showed effectiveness in capturing age-related signals while addressing batch effects. The
164 second-ranked entry’s CpGPT model applied a transformer-based approach, demonstrating the
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165 applicability of transfer learning in epigenetics. The models achieved MAES ranging from 2.45
166 to 2.55 years, representing an improvement over existing biomarkers. The third-ranked entry’s
167 approach incorporated alarger number of CpG sites (136,111) compared to traditional epigenetic
168 clocks, potentially leveraging previously unexplored genomic regions. This increased precision
169  may enhance the detection of subtle age-related changes and improve the evaluation of interven-
170 tions targeting the aging process. However, the complexity of these models presents challenges
171 in interpreting their biological significance and understanding the mechanisms underlying their
172 predictions—an ongoing general issue in thisfield. Further research is needed to elucidate the bio-
173 logical relevance of these computational advancements and their potential applications in aging
174 research and clinical settings.

175 One key challenge moving forward will be to bridge the gap between predictive accuracy and
176 biological insight. While these models excel at chronological age prediction, their complexity
177 may obscure the underlying biological processes they capture. Future research should focus on
178 developing interpretable models or methods to extract biological meaning from these high-

179 performing but opaque predictors.

180  The success of this challenge also highlights the value of standardized datasets and evaluation
181 frameworks in advancing the field. The novel dataset generated for this competition, covering a
182 wide age range and balanced for sex, provides a valuable resource for future research. The open-
183 source Biolearn platform offers a standardized implementation of existing biomarkers and evalu-

184 ation tools, which could facilitate more robust comparisons of new models in the future.

1855 As we move into the subsequent phases of the challenge, focusing on mortality and multi-
186 morbidity prediction, it will be crucial to consder how the insights gained from chronological
187 age prediction can be tranglated to these more complex, clinically relevant outcomes. The diverse
188 approaches showcased in this first phase provide a strong foundation for tackling these challeng-
189  €s, potentially leading to more accurate and personalized risk assessments for age-related diseas-

190 €s.
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191 Methods

192 Challenge Design and Participation

193 The Biomarkers of Aging Challenge was structured in three phases: Chronological Age Predic-
194 tion (March 1 - July 5, 2024), Mortality Prediction (July 1 - November 1, 2024), and Multi-
195 morbidity Prediction (scheduled for 2025). This study focuses on Phase 1 results. Teams could
196 submit daily predictions, with the best result retained for final judging. For Phase 1, finalist sub-
197 missions needed to achieve a mean absolute error (MAE) of <3 years between predicted and ac-

198 tual ages.

199  Dataset Generation and Preprocessng

200 We generated a novel dataset using the Illumina MethylationEPIC v2.0 platform, comprising
200 DNA methylation profiles from 500 blood samples provided by Mass General Brigham Biobank.
202  The dataset covered ages 18-99 years and was balanced for sex. Participants received this data
203  without phenotypic information for model development and testing. For training, teams were al-
204  lowed to use any public or private datasets not included in the scoring set. The Biolearn platform
205  provided access to relevant data from Gene Expression Omnibus (GEO), National Health and
206  Nutrition Examination Survey (NHANES), and Framington Heart Study (FHS), though its use

207 wasoptional.

206  Evaluation Criteria

200  For Phase 1, submissions were evaluated using MAE on a held-out test set. A public leaderboard,
210  updated in real-time using 50% of the data samples, aided teams in model development. Final
211 rankings were determined using the full dataset.

212 Since DNA methylation data has limited precision, we considered any MAE within 0.1 to be tied
213 with ties broken in favor of the model using the least number of features. Specifically, for first
214 place, the best MAE score was considered against every other score within 0.1, and the model
215 using the least number of features was the winning model. Second place was determined in the
216 same way, with the first place model score removed and third place with the first and second

217 place models removed.
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218 Phase 1 Winning Model Architectures

219 The first-ranked entry’s Skip-Improved Training Hive (SITH) Network: This ensemble model
20  comprised multiple feed-forward (FF) neural networks, each with a linear skip layer. It utilized
221 8,000 CpG sites from 19 datasets (>8,000 samples total). Each base mode (~500,000 parame-
222 ters) consisted of three hidden layers with 64 neurons each and Rel. U activation. The linear skip
223 layer connected the input directly to the output neuron. The ensemble’'s final prediction was the
224 unweighted mean of all base model predictions. Training employed the AdamW optimizer with
225 OneCycle scheduling over 3000 epochs and an age-weighted smoothed-L 1-loss function, which
26  required a modest 4 GB of GPU memory on a Nvidia T100 for around 8 hours. To account for
227 batch effects, each base model was trained on a subset of the data with one dataset removed and
28  90% of the remaining samples randomly chosen. Validation used three independent datasets
229  (~1,000 samples). The SITH network achieved an MAE of 2.45 on the full competition dataset.

230  The second-ranked entry’s CpGPT (CpG Pre-trained Transformer): This transformer-based
231 mode flexibly used a subset of CpG sites from a vocabulary of 5,773 probes derived from 26
232 existing epigenetic clocks. The mode architecture included a chromosome encoder, genomic
233 position encoder, beta value encoder, transformer encoder, two beta value decoders, an age de-
23 coder, and a covariates decoder, totaling approximately 1.6 million trainable parameters. CoGPT
235 was pre-trained on 105,850 samples from 1,566 GEO datasets for about 1,000 epochs using 4
235 NVIDIA A10G GPUs over ~14 days. It was then fine-tuned on ComputAgeBench data for 30
237 epochs. The model demonstrated high stability, with age predictions across different input CpG
238 subsets showing correlations consistently above 0.999. For the competition, CpGPT achieved an
239  MAE of 2.55 years.

220  The third-ranked entry’s Deep Learning ResNet: This dense ResNet architecture processed
221 136,111 CpG sites from 13,446 samples across 33 GEO datasets (mean age 50.2 years). Prepro-
242 cessing involved mean-imputation of normalized beta values, exclusion of cross-reactive probes
243 and sites with large variances, and adding 0.5 years to integer age labels. The model structure
244 included an initial fully connected layer, three residual blocks (each with two fully connected
245 layers and RelLU activation), and a final fully connected output layer. Training used a balanced
26 split of young (20-24 years), old (>95 years), and middle-aged (24-95 years) individuals. The
247 Adam optimizer was employed with hyperparameters optimized through random search. The
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248 training ran for 500 epochs with a batch size of 64 on an NVIDIA A100 GPU, using Mean
249 Squared Error as the loss function. Linear regression was applied post-training to reduce poten-
250 tia linear bias. The model achieved an MAE of 2.46 on the competition dataset.

251 Statistical Analysis

252 All statistical analyses were performed using standard Python libraries. The code for these anal-

253 yses will be made open-source, ensuring reproducibility and transparency of our results.

254 Data and Code Availability

255 The scoring DNA methylation dataset has been released as an open-access resource following
256 challenge completion at GSE246337%, while the phenotypic data will only be released after
257 completion of all challenge phases. The Biolearn platform, including standardized implementa-
258 tions of existing biomarkers and evaluation tools, is available at https://github.com/bio-
259 learn/biolearn. The workflow for the challenge is available at https://github.com/bio-
260  learn/biomarkers-of-aging-challenge-2024. All analysis code for this paper will be made availa-

261 blethrough the same repository.
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276 Figure 1. Overview of the Biomarkers of Aging Challenge. a. Timeline of the challenge
277 showing the three phases: Chronological Age Prediction (March-July 2024), Mortality Prediction
278 (July-November 2024), and Multi-morbidity Prediction (planned for 2025). Key dates for each
279 phase, including announcements, deadlines, and result releases, are indicated. b. Illustration of
280 the MGB cohort (n = 500) used in the challenge, showing blood samples, DNA extraction, and
281 methylation array analysis. c. Age distribution of the challenge cohort, with density plots colored
282 for males and females. d. Bar chart showing the race distribution of the challenge cohort, includ-

283 ing White, Black, Asian, and other categories.
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Figure 2. Phase 1 of the Biomar kers of Aging Challenge. a. Bar plot showing the mean abso-

lute error (MAE) for different models, including competition submissions (blue) and published
biomarkers (red). The x-axis lists the models, and the y-axis shows the MAE in years. The plot
indicates that 37 teams submitted a total of 551 entries. b. Scatter plot comparing predicted

vs. actual age for the top 3 winning teams. Each point represents an individual, with different

colors for each team’s model. The diagonal line represents perfect prediction.
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