

1 **Distinct maternofetal immune signatures delineate preterm birth onset following urinary
2 tract infection**

3 Samantha Ottinger¹, Addison B. Larson¹, Vicki Mercado-Evans^{1,2}, Holly Branthoover¹, Jacob J.
4 Zulk¹, Camille Serchejian¹, Marlyd E. Mejia¹, Zainab A. Hameed¹, Ryan Walde³, Rachel C.
5 Fleck⁴, Allyson E. Shea⁴, Kathryn A. Patras^{1,5*}

6 ¹Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston,
7 Texas, USA

8 ²Medical Scientist Training Program, Baylor College of Medicine

9 ³Department of Pathology, University of South Alabama, Mobile, Alabama, USA

10 ⁴Department of Microbiology and Immunology, University of South Alabama

11 ⁵Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine

12 [#]Corresponding author: Kathryn Patras, One Baylor Plaza, Houston, TX, 77030,

13 katy.patras@bcm.edu

14 Keywords: urinary tract infection, uropathogenic *E. coli*, preterm birth, maternal immunity, IL-10

15 Conflict of interest statement: The authors have declared that no conflict of interest exists.

16

17

18

19

20

21

22 **ABSTRACT**

23 Preterm birth is the leading cause of infant mortality resulting in over one million neonatal
24 deaths annually. Maternal urinary tract infection (UTI) during pregnancy increases risk for
25 preterm birth; however, biological processes mediating UTI-associated preterm birth are not
26 well-described. We established a murine maternal UTI model in which challenge with
27 uropathogenic *E. coli* resulted in preterm birth in about half of dams. Dams experiencing
28 preterm birth displayed excessive bladder inflammation and altered uteroplacental T cell
29 polarization compared to non-laboring infected dams, with no differences in bacterial burdens.
30 Additional factors associated with preterm birth included higher proportions of male fetuses and
31 lower maternal serum IL-10. Furthermore, exogenous maternal IL-10 treatment absolved UTI-
32 associated preterm birth but contributed to fetal growth restriction in this model. Using urine
33 samples from a cohort of human pregnancies with or without UTI, we correlated urinary
34 cytokines with birth outcomes and urine culture status. These analyses yielded a non-invasive,
35 highly predictive three-model system for evaluating preterm birth risk implicating cytokines IL-
36 10, IL-15, IL-1 β , and IL-1RA. Our unique bimodal murine model coupled with patient samples
37 provides a platform to investigate immunological and microbial factors governing UTI-associated
38 preterm birth, revealing novel therapeutic opportunities to predict or prevent preterm birth.

39

40

41

42

43

44

45 **INTRODUCTION**

46 Preterm birth is the leading cause of neonatal mortality, impacting 15 million births and resulting
47 in 1 million deaths annually(1). Surviving infants are subject to physical, neurodevelopmental,
48 and socioeconomic sequelae. Up to 40% of preterm births are attributable to maternal or fetal
49 infection, including urinary tract infection (UTI)(2–4). Of note, maternal UTI is highly prevalent,
50 affecting 1 in 10 pregnancies(5). Several maternal factors, including physiological, hormonal,
51 and socioeconomic aspects, may contribute to higher UTI incidence(6). Maternal immunological
52 adaptation to support the fetus during pregnancy may also elevate UTI risk(7–9); however, the
53 impact of pregnancy on bladder immunity has not been described.

54 UTI in pregnancy is associated with increased risk of adverse outcomes including preterm birth,
55 intrauterine growth restriction, stillbirth, and neonatal sepsis(4, 10, 11). Despite abundant clinical
56 correlations, there is limited data exploring this relationship mechanistically, in part due to lack of
57 animal models that mimic clinical presentation in humans. A mouse model of maternal
58 pyelonephritis with uropathogenic *Escherichia coli* (UPEC), the cause of 70% of UTIs, resulted
59 in preterm birth in 90% of dams; however, this model found extensive placental and fetal
60 bacterial invasion and maternal bacteremia and may not represent the impact of localized
61 bladder inflammation(12). An outbred cystitis model observed increased uteroplacental immune
62 infiltration upon infection and intrauterine growth restriction in pups born to infected dams;
63 however, no preterm birth was detected(13). Furthermore, UTI has recently been shown to
64 induce neutrophilic inflammation in mammary tissue of lactating mice(14). These latter studies
65 support the role of localized bladder infection on distal tissue inflammation at sites critical for
66 maternal-neonatal health.

67 Immunological tolerance during pregnancy, essential to prevent rejection of the semi-allogeneic
68 fetus, is driven by type 2 and regulatory T helper cells(9). At parturition, inflammatory immune
69 cells, such as cytotoxic and type 17 T helper cells, neutrophils, and macrophages, infiltrate the

70 uteroplacental space, where they secrete interleukin (IL)-1 β , IL-6, and matrix metalloproteinases
71 that contribute to uterine contractility and fetal membrane rupture(15). Untimely recruitment of
72 these cells has been implicated in infection-associated and spontaneous preterm birth(15). Sex-
73 specific placental immune responses have been described in animal models and clinical
74 studies, with heightened inflammation in males offspring(16–18). This is consistent with worse
75 clinical outcomes for male neonates, with notable increased risk of preterm birth and neonatal
76 morbidity(1, 19, 20).

77 Here, we describe a mouse model of UTI-associated preterm birth. This model recapitulates
78 clinical manifestations of maternal UTI including preterm birth and intrauterine growth restriction
79 in a subset of individuals, allowing us to investigate the impact of localized maternal
80 inflammation on reproductive physiology and outcomes. Using this model, we describe
81 immunological differences in the pregnant and non-pregnant bladder. We further find disparate
82 bladder, systemic, and uteroplacental inflammation in preterm and non-preterm infected dams
83 during acute UTI. These findings are supported by a cross-sectional human cohort of pregnant
84 and non-pregnant UTI, in which we identify urinary biomarkers associated with preterm birth and
85 low birth weight. These findings advance our understanding of how pregnancy modulates the
86 immune response to UTI, while identifying biomarkers and therapeutic opportunities to predict or
87 prevent UTI-associated preterm birth.

88 **RESULTS**

89 **Maternal UTI induces preterm labor and intrauterine growth restriction**

90 To establish a model of maternal UTI, time-mated dams were transurethrally infected with 5e7
91 colony forming units (CFU) bacteria on embryonic day (E)13.5 and monitored daily for signs of
92 preterm birth (e.g. vaginal bleeding, passage of fetal tissue or amniotic fluid) until E17.5 (**Figure**
93 **1A**). Roughly 40% of dams exhibited signs of preterm labor within 4 hours of infection with

94 UTI89, a well-characterized cystitis *E. coli* strain, compared to 0% in mock-infected dams
95 (**Figure 1B**). UTI89, isolated in 1992 from a non-pregnant individual(21), may not accurately
96 represent currently circulating UPEC, or pregnancy or preterm birth-related strains.
97 Furthermore, *E. coli* evolves rapidly and has a broad pangenome(22). Given this, we selected
98 two novel UPEC isolates, SL2 and SL323, isolated from pregnant human urine in 2023. SL2
99 was isolated from a patient with asymptomatic bacteriuria (ASB) who delivered at term
100 gestation, while SL323 was from a symptomatic UTI patient who delivered preterm at 28 weeks
101 of gestation. Similar to UTI89, 50% of dams infected with SL323 displayed preterm birth
102 symptoms within four hours of infection (**Figure 1B**). On the other hand, ~80% of dams infected
103 with SL2 exhibited signs of preterm birth, although onset was delayed until 1.5 days post-
104 infection in some cases (**Figure 1B**). Initiation of preterm birth did not require viable bacteria, as
105 UV-inactivated UTI89 was sufficient to induce preterm birth (**Figure 1C**). Moreover, group B
106 *Streptococcus* (GBS), the most common Gram-positive bacterium associated with ASB in
107 pregnancy(23), also induced preterm birth in a subset of dams confirming this phenotype was
108 not specific to UPEC (**Figure 1C**). Interestingly, a genetic knockout line for Tamm-Horsfall
109 protein, shown to be more susceptible to UPEC UTI(24) exhibited similar preterm birth
110 incidence in this model (**Figure S1**).

111 Urosepsis is an increased and urgent complication of UTI in pregnancy(25). In this murine
112 model, bacteremia following infection was rare and frequency did not significantly differ between
113 groups (**Figure 1D**). Because the impact of systemic maternal inflammation on birth outcomes
114 has been well-described(7), we sought to characterize the effects of localized urinary infection
115 on maternofetal health; therefore, bacteremic dams were excluded from all subsequent
116 analyses. Increased risk of neonatal complications, such as stillbirth, fetal growth restriction, and
117 neonatal sepsis, are associated with maternal UTI(4, 10, 11). Using gross morphological
118 assessment, we detected adverse fetal morphologies (reabsorption, fetal demise, fetal necrosis)

119 more frequently in infected dams with preterm birth compared to non-laboring infected dams at
120 four hours post-infection (**Figure 1E**). Although no differences in the rate of adverse
121 morphologies was observed between infected dams and mock-infected controls at E17.5, fetal
122 growth restriction was evident in the infected group (**Figure 1F**). To determine if there were
123 postnatal impacts, we allowed dams to give birth and monitored pups out to postnatal day 7.
124 There was no difference in pup survival (**Figure 1G**) or average litter size (**Figure 1H**). Most
125 pups born to infected dams were intestinally colonized with UPEC, and a quarter of them (6/25)
126 had UPEC disseminated to the liver (**Figure 1I**). Most dams exhibited urinary and reproductive
127 tract colonization although total burdens varied across time points (**Figure S1**). Growth
128 restriction in pups from infected dams was maintained at postnatal day 4 and 7 (**Figure 1J-K**).
129 Overall, this model demonstrates multiple features of UTI-associated pregnancy complications
130 in humans, including sporadic preterm birth and in utero growth restriction, in the absence of
131 maternal systemic infection.

132 **Bladder inflammation during UTI is altered in pregnancy**

133 There are several proposed reasons for increased risk for UTI in pregnancy, including
134 anatomical and hormonal drivers of susceptibility(26). Pregnancy-associated systemic
135 immunological changes are well-documented(7); however, the impact of pregnancy on bladder
136 mucosal immunity remains unexplored. Using this murine model of maternal UTI, we examined
137 the impact of pregnancy on the acute bacterial burdens and immune response to infection. Non-
138 pregnant and pregnant mice (E13.5) were transurethrally infected with UTI89 and urinary and
139 reproductive tract tissues were collected four hours post-infection. Bacterial burdens were
140 similar in bladder and kidneys, and there were no differences in dissemination to the
141 reproductive tract between pregnant and non-pregnant mice (**Figure 2A**). Additionally, we
142 observed UPEC dissemination to the ileal lymph node, a shared draining lymph node between
143 the urinary bladder and uterus(27), in a subset of pregnant dams that was not detected in non-

144 pregnant mice (**Figure 2B**)(26). Bulk RNA sequencing and Reactome pathway analyses
145 revealed 52 differentially regulated pathways, including an increase in MHC class II antigen
146 presentation pathways in pregnant infected bladders compared to non-pregnant infected
147 bladders, but a decrease in antigen cross presentation, antigen sensing (TLR4 and TLR9
148 cascades, C type lectin receptors), downstream TCR signaling, and signaling by interleukins
149 (**Figure 2C, Supplemental Table 1**). Interestingly, we observed differential expression of
150 several adhesins (*Ceacam14*, *Ceacam3*, *Gm5155*, and *Psg18*), known to be expressed in the
151 placenta(28–30), but with unknown function in the bladder (**Figure 2D**). To determine if
152 transcriptional differences translated to altered immune cell populations, we performed flow
153 cytometry on whole bladders (determined according to gating scheme in **Figure S2**). In line with
154 transcriptional profiling, we observed increased CD45+ proportions in nonpregnant bladders
155 (**Figure S2**), marked by a significant decrease in dendritic cells (DC) in pregnant bladders
156 during infection (**Figure 2E**). While IL-2 and IL-3 were elevated in the pregnant bladder,
157 circulating RANTES was decreased in pregnant mice, supporting altered T cell transcriptional
158 behavior (**Figure 2F-H**). Twenty other cytokines were measured with no significant differences
159 (**Figure S3**). Together, these results indicate a general reduction in antigen sensing in the
160 pregnant bladder during UTI.

161 **Preterm dams experience increased acute inflammation in the bladder**

162 Given the bimodal outcomes of either preterm birth or sustained pregnancy following bacterial
163 inoculation, we interrogated whether infection dynamics or immune factors distinguished these
164 groups. At four hours post-infection, urinary tract bacterial burdens were not different between
165 dams exhibiting signs of preterm birth and those that were not (**Figure 3A**). Both infected
166 groups demonstrated transcriptional upregulation of placenta-associated adhesins (*Ceacam3*,
167 *Ceacam11*, *Gm5155*, *Psg18*) in bladders compared to mock pregnant controls as measured by
168 bulk RNA sequencing, suggesting pregnancy-specific factors modify the immune response to

169 infection at distal sites such as the bladder (**Figure 3B**). Transcriptional elevation of genes
170 related to antigen sensing and neutrophil recruitment (*Clec4e*, *Cxcl2*, *Cxcr2*, *Il1b*, *Il36g*),
171 interferon signaling (*Ifit1*, *Isg15*, *Oas3*, *Oas1*), and alarmins (*S100a8*, *Saa3*) occurred in
172 preterm dams compared to control dams, suggesting aberrant inflammation in the preterm
173 bladder (**Figure 3B**). In line with this, there was significantly greater neutrophil and T cell
174 infiltration in the bladder of preterm dams compared to mock and non-laboring groups (**Figure**
175 **3C**). Bladder neutrophils could be visualized in the uroepithelium and submucosa in both
176 preterm and non-laboring dams (**Figure 3D**) but did not result in significant differences in
177 histopathological scoring, likely due to the short timeframe following inoculation (**Figure 3E**).
178 Multiplex cytokine analysis showed decreased IFN- γ and IL-3 in the bladders of preterm dams
179 compared to non-laboring dams (**Figure 3F-H**) suggesting altered T cell activation. Consistent
180 with our transcriptional results, S100a9 protein was not differentially detected between preterm
181 and nonlaboring bladders but was significantly elevated compared to mock when infected
182 groups were combined (**Figure 3I**). Together, these results suggest excessive inflammatory
183 responses in the bladders of dams exhibiting preterm labor that are either absent or held in
184 check in the subset of dams not undergoing preterm labor.

185 **Maternal bladder infection induces uteroplacental inflammation**

186 Maternal UTI is associated with various adverse pregnancy and neonatal outcomes, including
187 preterm birth, preeclampsia, fetal growth restriction, and neonatal sepsis, often with the same
188 organism isolated from maternal urine(23, 31–34), indicating localized bladder infection has
189 distal impacts on the maternofetal interface. To characterize bacterial dissemination and
190 reproductive immune responses, we collected maternal vaginal and decidual samples as well as
191 placentae at four hours post-infection. UPEC was detected in the vaginal tract in most dams, but
192 only ascended to the decidua in a third of mice (13/35) with no differences in burdens between
193 preterm and non-laboring dams (**Figure 4A**). Bacterial dissemination to the placentae was quite

194 rare at this timepoint with UPEC detected in only 11% (20/182) and no differences between
195 groups (**Figure 4B**). At four days post-infection, placental dissemination was more common
196 rising to a rate of 39% (13/33) (**Figure 4C**). No overt histopathology was observed in placentae
197 from either preterm or non-laboring dams at four hours post-infection (**Figure 4D**). Even so, bulk
198 RNA sequencing detected complement factor D (*Cfd*), a regulatory factor in the alternative
199 complement pathway that has been associated with pre-eclampsia(35), as significantly elevated
200 in preterm placentae (**Figure 4E**). Reactome pathway analyses revealed increased decidual
201 antigen recognition, increased placental interleukin signaling, depressed B cell signaling, and
202 disrupted hemostasis (platelet pathways and VEGF signaling) in preterm dams (**Figure 4F**).
203 Flow cytometry revealed a shift in placental immune cell populations in infected mice, where
204 non-laboring dams had greater placental neutrophil infiltration and preterm dams had increased
205 placental T cells (**Figures 4G**). Decidual NK cells were elevated in the preterm group (**Figure**
206 **S2**). Given the complex role T cells play at the maternal-fetal interface, we further characterized
207 T helper subtypes in the placenta using intracellular transcription factor staining (determined
208 according to gating scheme in **Figure S2**). Placentae from mock-infected dams showed greater
209 proportions of naïve T_{H0} cells, whereas placentae from preterm dams and non-laboring dams
210 showed increased T_{H17} polarization and FoxP3+RORyt+ T cell intermediates respectively
211 (**Figure 4H**). Interestingly, there was increased G-CSF and MCP-1 in the preterm deciduae and
212 placentae, suggesting initiation of recruitment of additional immune cells, such as monocytes,
213 macrophages, and neutrophils (**Figure 4I-L**).

214 **Male sex is associated with increased placental inflammation and risk of preterm birth**

215 Male fetal sex has been associated with increased risk of adverse perinatal and neonatal
216 outcomes(1, 36), including increased risk of preterm birth. Preterm dams had a higher
217 proportion of males compared to non-laboring dams as determined by PCR (**Figure 5A**),
218 suggesting male fetuses may contribute to preterm birth risk in this litter-bearing model. The

219 relationship between fetal sex and adverse outcomes, however, was complex. No sex
220 differences in placental UPEC invasion or fetal growth restriction *in utero* were detected (**Figure**
221 **5B-C**), although males were less likely to experience stunted postnatal weight gain (**Figure 5D**).
222 Flow cytometry also showed elevated T cells in the preterm male placentae (**Figure 5E**),
223 although increased T_{H17} cells were detected in both male and female preterm placentae (**Figure**
224 **5F**). Elevated T_{reg} s and FoxP3+RORyt+ T cell intermediates were more notable in female
225 fetuses from nonlaboring dams(**Figure 5F**). Heightened inflammatory cytokines were seen in
226 male fetuses, including increased placental G-CSF, MIP-1 α , and MCP-1 in preterm males
227 (**Figure 5G**). These findings suggest that fetal sex determines the extent of placental responses
228 to maternal infection and contributes to infection outcome.

229 **Elevated systemic IL-10 protects from preterm birth**

230 Next, we examined if the maternal systemic immune response differed between preterm and
231 non-laboring dams via cytokine multiplex array. A significant increase in circulating IL-10 was the
232 only differentially detected cytokine in the non-laboring group, suggesting a protective regulatory
233 response that maintained pregnancy in those dams, though no changes in splenic immune cells
234 were observed (**Figure 6A**, **Figure S2**, **Figure S3**). To test the causative role of maternal
235 systemic IL-10, we treated dams with recombinant IL-10 via intraperitoneal injection immediately
236 after infection (**Figure 6B**). While 41% of untreated dams were preterm (7/17), only 11% (1/9)
237 were preterm in the IL-10 group (**Figure 6C**). Although incidence of preterm birth was reduced,
238 IL-10 treatment also corresponded with intrauterine growth restriction in both infected and mock-
239 infected groups (**Figure 6D**). Additionally, even though IL-10 exerts immunosuppressive effects,
240 we observed no difference in maternal urinary or reproductive tract bacterial burdens or
241 placental invasion (**Figure 6E-F**). In non-pregnant females, there was a slight, but significant,
242 reduction in kidney bacterial burdens (**Figure 6E**). These data suggest that immunoregulation

243 during infection contributes to pregnancy maintenance, but other aspects of fetal health may be
244 impacted.

245 **Urinary cytokines differ between UTI and ASB and throughout gestation in humans**

246 To evaluate maternal immune responses to UTI and ASB in pregnancy, we performed a cross-
247 sectional cohort study to evaluate urinary cytokines in pregnant and non-pregnant individuals.

248 Our cohort consisted of 59 urine samples from singleton pregnancies (22 control, 18 ASB, 19
249 UTI) and 6 urine samples from non-pregnant, reproductive age females (8 control, 6 UTI)

250 (**Supplemental Table 2**). Samples were collected throughout pregnancy, ranging from 5.0 to
251 39.7 weeks in gestation. Birth outcomes, including gestational age at birth, fetal sex, and fetal
252 weight at birth are known for 81% of the cohort (48/59). Preterm birth was high in this cohort at
253 38% (18/47) of live births (**Supplemental Table 3**). Using a multiplex cytokine array, we
254 detected elevated IL-8 and GRO α in pregnant UTI patients compared to control and ASB
255 patients (**Figure 7A**). No cytokines were significantly upregulated in ASB samples compared to
256 controls, suggesting limited urinary inflammation in ASB patients (**Figure 7A**). Multiple urine
257 cytokine levels correlated with gestational age. A total of 16 cytokines were significantly
258 correlated with gestational age in culture positive urine samples (ASB and UTI) at sample
259 collection by linear regression (**Figure S4**), only 5 of which were correlated with gestational age
260 in negative culture samples (**Figure S5**). Specifically, four cytokines (IL-9, IL-22, IL-17F, and
261 GM-CSF) are associated with T_{H17} differentiation and activation (**Figure 7B-E**). When stratifying
262 culture negative samples by fetal sex, higher IL-1 α and IL-8 were detected in urine from
263 pregnancies with female fetuses, while IL-5 was higher in urine from pregnancies with male
264 fetuses (**Figure 7F-H**).

265 **Urinary cytokines correlate with preterm birth with and without stratifying by urine**
266 **culture status**

267 We performed Spearman correlation analyses of the 34 detected urinary cytokines with
268 gestational age at birth, gestational age a sample collection, and birth weight. As expected,
269 gestational age at birth and fetal weight were positively correlated in all groups (**Figure 8A**). In
270 negative urine culture samples, ten cytokines (RANTES, IL-1 β , IL-18, M-CSF, IL-15, L-17F,
271 IFN α , TNF, FLT-3L, and EGF) were significantly inversely correlated with gestational age at
272 delivery, while IL-18 and IL-15 were correlated with gestational age at sample collection (**Figure**
273 **8A**). MCP-1, RANTES, IL-1 β , S100A9, IL-15, and IL-10 were all inversely correlated with birth
274 weight in the negative culture group (**Figure 8A**). These data suggest elevated cytokines in the
275 urine in the absence of bacteriuria is associated with poorer pregnancy outcomes. Using these
276 data, we developed a four-cytokine model to predict preterm birth in the absence or presence of
277 bacteriuria, or with all samples combined. IL-1 β and EGF were significantly higher in the culture
278 negative preterm group (**Figure 8B-C**). While TNF and IL-17F were not significantly increased,
279 adding them to the multiple linear regression model increased the sensitivity and specificity of
280 the model with an AUC of 0.9 (**Figure 8D-F**). In the positive urine culture group, FLT-3L and
281 PDGF-AA were significantly correlated with gestational age at delivery (**Figure 8A**). When
282 combined with EGF and RANTES, we generated a linear regression model that predicted
283 preterm birth risk with an AUC of 0.9063 (**Figure 8G-K**). When we analyzed the combined
284 cohort, S100a9 and IL-10 remained significantly inversely correlated with birth weight (**Figure**
285 **8A**). When we grouped samples as above or below the median sample value, samples with
286 above median IL-10 resulted in significantly lower birth weights (**Figure 8L**). While no cytokines
287 were significantly different between term and preterm cases in the combined group,
288 incorporating IL-10, IL-1RA, IL-15, and IL-1 β into a multiple linear regression model yielded an
289 AUC of 0.8235 and significantly predicted preterm birth (**Figure 8M-Q**). Together, these data
290 reveal a potential prognostic value of urine cytokine levels and birth outcomes in a human
291 cohort.

292 **DISCUSSION**

293 Clinical data have solidified the significance of UTI in pregnancy, establishing increased
294 prevalence and multifactorial peri- and postnatal consequences. Despite striking correlations,
295 mechanistic data investigating immunological and bacterial drivers of UTI-associated adverse
296 pregnancy outcomes is limited. Here, we describe a murine model of maternal UTI which
297 recapitulates clinical manifestations of maternal UTI observed in patients including preterm birth
298 and intrauterine growth restriction. Preterm birth does not require bacterial dissemination to the
299 reproductive tract in this model, suggesting maternal immune response initiates adverse
300 outcomes. Multiple bacterial strains and species initiated preterm birth, albeit with different
301 kinetics; thus, bacterial drivers of disease severity cannot be discounted. A retrospective cohort
302 study showed variable preterm birth incidence depending on uropathogen; further, they found
303 disease severity was associated with increased preterm birth incidence(3). Bacterial virulence
304 factors, such as alpha hemolysin, cytotoxic necrotizing factor 1, and aerobactin, are associated
305 with increased disease severity in UPEC UTI(37). Untangling the complex interplay between
306 bacterial virulence factors, bladder inflammation, and adverse reproductive outcomes related to
307 UTI is essential to design of therapeutic intervention.

308 Systemic immunomodulation during pregnancy has been well-described, but the impact of
309 pregnancy on bladder immunity is underexplored. Our model demonstrates altered mucosal
310 immunity in the pregnant bladder, driven by dendritic cell populations and T lymphocyte
311 signaling, consistent with prior literature showing suppressed serum and urinary IL-6 in pregnant
312 pyelonephritis patients compared to non-pregnant patients(38). However, a limitation of this
313 model is that only one time point of gestational age at infection was evaluated. While UTI in the
314 third trimester is more strongly linked to preterm birth and neonatal sepsis, multiple clinical
315 studies have shown UTI and ASB are most common in the first trimester(3, 39, 40). Consistent
316 with these findings, our cross-sectional cohort study identified a bacteriuria-specific positive

317 correlation with multiple cytokines and gestational age, including those associated with T_{H17}
318 function. Whether these urinary tract responses are suppressed in first trimester, or augmented
319 in late gestation, remains unknown; however, we speculate several pregnancy-specific factors
320 may contribute. Hormones, including human chorionic gonadotropin (hCG), estrogen, and
321 progesterone, are detected in the urine(41, 42). Interestingly, hCG peaks in the first trimester
322 and has been shown to induce T_{reg} s and restrict T_{H17} cells(43). On the other hand, estrogen,
323 which increases throughout gestation, may have a protective, immune enhancing role in the
324 bladder by reducing UPEC, upregulating TNF, and downregulating IL-10(44, 45). To our
325 knowledge, our study is the first to describe transcription of pregnancy specific glycoproteins
326 (PSGs) in the bladder. Research on PSGs is limited; the placental-derived molecules have been
327 detected in maternal circulation and may contribute to pregnancy maintenance including
328 induction of IL-10(30, 46–48). It remains to be seen if alterations in mucosal immunity during
329 pregnancy are attributed to systemic or local effects. Further, the impact of the gravid urinary
330 environment on bacterial behavior remains uncharacterized.

331 In our model, increased inflammation was detected at the maternal-fetal interface despite limited
332 bacterial dissemination to the uteroplacental space consistent with prior work(13) albeit with
333 distinct differences. Bolton et al. observed increased polymorphonuclear cells (likely
334 predominantly neutrophils) and macrophages in the uteroplacental space four days post-
335 infection(13) whereas we observed increased neutrophils and T cells at four hours post-
336 infection. Serum cytokines were elevated at four days post-infection and at term delivery in the
337 Bolton model, while limited differences in circulating cytokines were observed in our model.
338 These distinctions could both be attributed to differences in infection windows. Even so, they
339 observed increases in serum IL-4, IL-17, IFN- γ , and IL-6, consistent with increased placental T_{H2}
340 and T_{H17} populations in our model. An important outstanding question is the means by which
341 bladder inflammation induces uteroplacental inflammation. Several studies have found

342 correlations between systemic inflammation and distal site inflammation during UTI(13, 14);
343 however, systemic cytokines and splenic immune populations were unchanged four hours post-
344 infection in preterm and non-laboring dams compared to controls. Alternatively, bacterial
345 dissemination from the urinary tract to the reproductive tract could induce inflammation;
346 however, bacterial dissemination to the placenta was rare in our model and not detected by
347 Bolton et al. Another possible mechanism of bladder-uteroplacental signaling is through
348 lymphatic immune activation. The ileal lymph nodes drain the pelvic floor, including the bladder,
349 uterus, and vaginal tract(27). We detected UPEC in the ileal lymph nodes in half of infected
350 dams within four hours indicating immune cell trafficking from infected tissues. While during
351 healthy pregnancy, fetal antigens are presented within lymph nodes to induce regulatory T
352 cells(9), the impact of bacterial lymph node dissemination on maternofetal tolerance remains to
353 be determined. The rapid onset of preterm labor in our model suggests that T cells in the
354 placenta are likely polarized memory T cells rather than naïve T cells, which were reduced in
355 placentae of infected dams. Effector memory and central memory T cells accumulate in the
356 decidua during healthy pregnancy(49). Greater proportions of central memory cells in circulation
357 have been described in pre-eclampsia and recurrent pregnancy loss, but their role in preterm
358 birth is unknown(49). A caveat of this study is the use of a syngeneic pregnancy model which
359 limits the capacity to evaluate maternal tolerance of foreign antigens. Despite this, T cell-
360 mediated disruptions to pregnancy maintenance were still observed and the bimodal phenotype
361 enabled us to interrogate differential immune responses that a more pronounced model may
362 limit.

363 Male fetal sex is consistently linked to worse perinatal outcomes, including increased risk of
364 preterm birth, pre-eclampsia, and gestational diabetes(1, 36). Male neonates also exhibit lower
365 one-minute Apgar scores and increased odds of severe morbidity when preterm(19, 20). While
366 most human pregnancies are singletons, mice gestate litters, which limits our ability to

367 interrogate the impact of fetal sex on pregnancy outcomes. As a surrogate, we evaluated the
368 proportion of males in each litter and found a greater proportion of males in preterm litters. The
369 relationship between fetal sex and adverse outcomes is poorly defined but may be attributed in
370 part to sex-specific maternal immunological adaptations. Female fetal sex has been associated
371 with increased peripheral cytokines at baseline and in response to LPS(50, 51). In culture
372 negative urine, we observed increased IL-1 α and IL-8 in pregnancies with female fetuses, while
373 IL-5 was increased in pregnancies with male fetuses. To our knowledge, this is the first study to
374 characterize the impact of fetal sex on maternal urine cytokines. Some studies have linked sex-
375 dependent factors with maternal bacteriuria, demonstrating placental TNF, IL-1 β , and IL-10 in
376 females negatively correlated with maternal bacteriuria(52, 53). It is unclear, though, if the
377 relationship between fetoplacental inflammation and maternal bacteriuria is causative or
378 correlative. The local uteroplacental immune microenvironment is also sexually dimorphic. Male
379 placentae are marked by increased T_{reg} expansion(54). We did not see sex differences in
380 placental T_{regs} in our model, potentially due to the syngeneic pregnancy. Interestingly, we found
381 macrophage-associated cytokines were higher in preterm male placentae than preterm female
382 in line with a prior study demonstrating male-specific elevated placental cytokines upon
383 maternal immune activation with poly I:C(55). Sexually dimorphic behavior in placental
384 macrophages (Hofbauer cells) has been recently described(17, 56). We observed no
385 differences in placental macrophages quantities based on fetal sex in this study; however, we
386 employed a limited characterization of macrophage phenotype. Sex-based differences may
387 emerge with further discrimination between maternal and fetal macrophages or proinflammatory
388 and anti-inflammatory macrophages.

389 The role of IL-10 in pregnancy is complex. IL-10 is a critical protective factor against LPS-
390 induced pregnancy loss and preterm birth(57–59). In humans, serum IL-10 concentrations
391 below the limit of detection are predictive of preterm birth risk(60, 61), reinforcing our finding that

392 IL-10 plays a role in pregnancy maintenance during maternal UTI. While IL-10 promotes
393 pregnancy maintenance, it may also augment infection susceptibility during pregnancy in some
394 cases(62), but this was not observed in our model. Intrauterine growth restriction (IUGR) was
395 exacerbated by exogenous IL-10 in both infected and mock-infected dams; however, this could
396 be attributed to the high dose (~30X the median detected concentration in infected mice) as a
397 lower IL-10 dose (2.5 μ g vs 5 μ g) rescued LPS-induced growth restriction(59). Although other
398 factors may contribute to IUGR, several additional observations support the link between IL-10
399 and IUGR: maternal urinary IL-10 inversely correlated with birth weight in our human cohort,
400 and Bolton et al. reported concurrent increased circulating IL-10 and IUGR in their experimental
401 UTI model(13). IL-10 is produced by both innate and adaptive immune cells, including
402 monocytes, macrophages, dendritic cells, and B and T lymphocytes(63). T_{regs} and T_{H2} cells in
403 the placenta are potential sources of IL-10, though IL-10 was not elevated in the decidua or
404 placenta in our model. Further, there were no changes in helper T cell phenotypes in the
405 maternal spleen. Regulatory B cells have been identified as important regulators of T cell
406 polarization, particularly for their production of IL-10 and protection from inflammation-induced
407 fetal demise(58). While we detected no changes in B cell populations in the placentae or spleen,
408 B cell activation and signaling pathways were transcriptionally downregulated in the placentae
409 of preterm dams.

410 Preterm birth is a multifarious condition with numerous etiologies, making it hard to predict and
411 prevent(2). Cervical length is a reliable predictor of preterm birth risk in patients with cervical
412 insufficiency but has limited efficacy in predicting spontaneous preterm birth(2, 64). Recent
413 efforts have sought to identify biomarkers in maternal or fetal tissues(65). Elevated inflammatory
414 markers, such as IL-1 β , neutrophil elastase, and IL-8, in amniotic fluid are potential biomarkers
415 for preterm birth(66–68); however, the invasive nature of amniocentesis drives increased risk of
416 pregnancy loss and is typically not performed without prior indication(69). Cervicovaginal fluid

417 provides a promising non-invasive alternative, and multiple studies report increased
418 cervicovaginal IL-1 β in spontaneous preterm birth samples(70, 71). Likewise, we found IL-1 β
419 was elevated culture negative urine from pregnancies that resulted in preterm birth. These
420 findings underscore the therapeutic potential of IL-1 pathway blockade(72–75). Other studies
421 have associated urinary oxidative stress markers, eicosanoids, and phthalates with preterm
422 birth risk(76–78), but inflammatory markers are less characterized, although clinical studies are
423 ongoing(79). Here, we propose three novel models employing urinary cytokines with high
424 predictive value of preterm birth risk in culture negative, culture positive, and culture agnostic
425 samples. The three-model system enables evaluation of preterm birth risk in a general
426 population, but also facilitates specialized evaluation of culture positive samples when infection
427 may confound basal urinary inflammation. Irrespective of culture status or gestational age,
428 levels of IL-1RA, IL-10, IL-15, and IL-1 β predicted preterm birth. As discussed above, IL-10 and
429 IL-1 pathways have been implicated in preterm birth. IL-15 is an abundant uteroplacental
430 cytokine that is increased in the amniotic fluid of preterm birth cases(80) and both augmented
431 and deficient IL-15 levels are associated with poor pregnancy outcomes in vivo(81). Maternal
432 factors can contribute to preterm birth risk, including factors such as race, body mass index, and
433 maternal age(2, 82). Given the size of our cohort, we are unable to evaluate the contribution of
434 maternal factors in our model. Preterm birth risk has been shown to be related to gestational
435 age at UTI onset(3). Our cohort represents samples collected all throughout gestation but is
436 underpowered to make trimester-specific predictions. An expanded study may illuminate more
437 pronounced markers when gestational age at sample collection is considered.

438 In summary, our murine model of UTI-associated preterm birth provides a powerful tool to
439 further investigate the molecular constituents of localized extrauterine infection that dictate
440 perinatal and neonatal outcomes. We complemented in vivo findings with a human cohort,
441 culminating in a novel, non-invasive model to predict preterm birth risk via urine cytokine

442 analyses. Taken together, this preclinical model combined with easily accessible patient
443 samples provides a unique platform to identify diagnostic and therapeutic opportunities in
444 maternal-fetal health.

445 **MATERIALS AND METHODS**

446 **Bacterial strains and culture conditions**

447 *E. coli* strains UTI89(21), SL2 (UPEC isolate from a human pregnant ASB urine sample
448 collected as a part of this study), and SL323 (UPEC isolate from a human pregnant UTI urine
449 sample collected as a part of this study) were grown to stationary phase at 37°C with aeration in
450 Luria broth (LB, Hardy Diagnostics) for at least 16 hours. *Streptococcus agalactiae* strain COH1
451 (ATCC, BAA-1176) was grown to stationary phase at 37°C in Todd-Hewitt broth (Hardy
452 Diagnostics) for at least 16 hours. Bacterial cultures were centrifuged (3,220 × g for 5 minutes),
453 washed with sterile PBS, then resuspended in the same volume of sterile PBS. For some
454 experiments, overnight cultures were washed and resuspended in sterile PBS, then exposed to
455 UV radiation for 1 hour. UV-inactivation was confirmed by plating on LB agar.

456 **Mice handling and breeding**

457 Wild type female and male 129/sv mice aged 6 to 12 weeks were housed at BCM(83). Male
458 mice were used exclusively for mating, while female mice were used for all in vivo experiments.
459 Treatment and control groups were assigned randomly and housed 4 mice per cage. Mice ate
460 and drank ad libitum and had a 12-hour light cycle. Timed mating was performed by co-housing
461 one male with three females overnight. Soiled male bedding was added to female cages two
462 days prior to mating to synchronously induce estrus and promote successful mating. Embryonic
463 day 0.5 (E0.5) was considered as noon the day after mating. Mated females were weighed on
464 embryonic days 0.5 and 10.5. Mice that gained at least 2 grams by E10.5 were considered likely

465 pregnant. All animal protocols and procedures were approved by the BCM Institutional Animal
466 Care and Use Committee under protocol AN-8233.

467 **In vivo model of urinary tract infection-associated preterm birth**

468 An established mouse model of UTI was previously described(84, 85). On day 13.5 of gestation
469 or 13.5 days post-coitus in non-pregnants (failed mating), mice were anesthetized via inhaled
470 isoflurane, and approximately 5×10^7 colony forming units (CFU) bacteria resuspended in sterile
471 PBS were instilled transurethrally in 50 μ L volume into the bladders. Mock-infected mice were
472 treated likewise with 50 μ L of sterile PBS. Mice were then monitored daily for vaginal bleeding, a
473 sign of imminent labor. If vaginal bleeding was detected, mice were euthanized. If no vaginal
474 bleeding was detected, mice were euthanized at 17.5 days of gestation. Upon euthanasia,
475 whole blood was collected via cardiac puncture and plated on LB to assess bacteremia, then
476 allowed to coagulate at room temperature for at least 30 minutes. After coagulation, clots were
477 pelleted via centrifugation at 10,000 \times g for 10 minutes and serum was removed and stored for
478 later analysis. Bladder, kidneys, vaginal tract, and ileal lymph nodes were removed and
479 homogenized in tubes containing sterile PBS and 1.0-mm-diameter zirconia/silica beads
480 (Biospec Products; catalog number 11079110z) using a MagNA Lyser instrument (Roche
481 Diagnostics). The uterine decidua was grossly dissected away from excess uterine tissue, and
482 deciduae and placenta were homogenized as described above. Fetal gross morphology was
483 assessed by two independent evaluators and categorized as healthy, reabsorbed, or fetal
484 necrosis/demise. Fetal weight was recorded. Serial dilutions of bladder, kidney, placenta, and
485 lymph nodes were plated on LB and bacteria was enumerated the next day. Serial dilutions of
486 vaginal tract and decidua were plated on ChromAgar Orientation (ChromAgar, RT412), and
487 purple, undulate colonies (indicating uropathogenic *E. coli*) were enumerated the next day.
488 To determine pup outcomes, dams were monitored twice daily for signs of preterm labor until
489 E17.5. Beginning on E18.5, dams were housed singly, and cages were checked twice daily for

490 evidence of pups. Gestational age at the time of delivery was recorded and was considered
491 postnatal day 0. Twice daily, pups were monitored and the number of live and deceased pups
492 were recorded until postnatal day 7. On postnatal days 4 and 7, pup weight was recorded. On
493 postnatal day 7, pup intestines and liver were collected, homogenized, and plated on
494 ChromAgar Orientation to quantify *E. coli* CFU. Dams were also euthanized on postnatal day 7,
495 and maternal bladder, kidneys, vagina, and uterus were collected, homogenized, and plated as
496 described above to quantify *E. coli* CFU.

497 **Immune cell profiling of maternal bladder, decidua, and spleen and fetal placenta**

498 Maternal bladder and placenta were transected so that one-third tissue was homogenized as
499 above for quantifying CFU, and two-thirds was processed for flow cytometric analysis. Maternal
500 decidua from the two most proximal placenta were processed for flow cytometry, while the
501 remaining decidua were homogenized. Bladder, decidua, and placenta were placed in RPMI
502 and finely minced with scissors until the tissue could pass through a P1000 pipette tip.
503 Collagenase (1 mg/mL, Sigma C5138-1G) and DNase (50 U/mL, Thermo Fisher J62229.MC)
504 were added, then the samples were incubated at 37°C with shaking at 250 RPM for 30 minutes.
505 400 µL was then filtered through a 40 µm filter into 800 µL RPMI with 10% heat-inactivated FBS
506 and stored on ice. The remaining tissue then went through a second digestion with fresh RPMI,
507 collagenase, and DNase. From the second digestion, 400 µL was then filtered as above.
508 Samples were then centrifuged at 500 × g for 10 minutes. Bladder tissue was resuspended in
509 200 µL, all of which was analyzed. Deciduae and placentae were resuspended in 500 µL, 50 µL
510 of which was analyzed for each panel. Spleens were mechanically dissociated and filtered
511 through a 40 µm filter into 2 mL RPMI, then centrifuged at 500 × g for 10 minutes. Spleens were
512 then resuspended in 1 mL Red Cell Lysis Buffer (Biosearch Technologies MRC0912H-1) and
513 incubated at room temperature for 10 minutes. After lysis, 9 mL sterile PBS was added and
514 spleens were centrifuged. Pelleted spleens were resuspended in 5 mL sterile PBS, 50 µL of

515 which was analyzed for each panel. Samples were then stained with 50 μ L Zombie Aqua
516 (1:1000 dilution) for 15 minutes at room temperature in the dark. Samples were then washed
517 with PBS and pelleted via centrifugation. Samples were then resuspended in 50 μ L Fc block
518 (1:200 dilution) and incubated at 4°C in the dark for 15 minutes, followed by a PBS wash and
519 centrifugation. Antibody cocktail panel 1 included: anti-CD45 (BV605, clone 30-F11, BD
520 563053), anti-CD11b (APC-Cy7 Clone M1/70 BD 561039), anti-CD11c (BV786, clone HL3 BD
521 563735), anti-Ly6G (AF700, clone 1A8, BD 561236), anti-NK1.1 (BUV737, clone PK136, BD
522 741715), anti-CD19 (BB515, clone 1D3, BD 564509), anti-CD3 (BV480, clone 145-2C11, BD
523 746368), anti-CD8 (PE-Cy7, clone QA17A07, Biolegend 155018), anti-CD4 (PE-CF594, clone
524 RM4-5, BD 562314), anti-CD25 (APC, clone PC61, BD 557192), anti-FC ϵ R1 α (PE, clone MAR-
525 1, BD 566995), and anti-CD64 (BV421, clone X54-5/7.1, Biolegend 139309). Antibody cocktail
526 panel 2 included: anti-CD45 (BV605, clone 30-F11, BD 563053), anti-CD3 (BV480, clone 145-
527 2C11, BD 746368), anti-CD8 (PE-Cy7, clone QA17A07, Biolegend 155018), anti-CD4 (PE-
528 CF594, clone RM4-5, BD 562314). Intracellular panel included: anti-Tbet (BV711 clone 04-46
529 BD 563320), anti-GATA3 (AF647 clone I50-823, BD 560068), anti-FOXP3 (BV421 clone 3G3,
530 BD 567458), anti-ROR γ T (BB515 clone Q31-378, BD 567175). Samples were then
531 resuspended in 100 μ L antibody cocktail Panel 1 or Panel 2 and incubated at 4°C overnight for
532 at least 16 hours. The following morning, samples stained with Panel 1 were washed with sterile
533 PBS and resuspended in 200 μ L FACS buffer (1% BSA, 0.5% EDTA, 0.05% sodium azide in
534 PBS). Samples stained with Panel 2 were resuspended in 100 μ L fixation buffer (Thermo Fisher
535 GAS003) for 15 minutes at room temperature. Samples were then washed with PBS,
536 centrifuged, and resuspended in the intracellular panel. After incubating for 30 minutes at room
537 temperature in the dark, samples were washed, centrifuged, and resuspended in 200 μ L FACS
538 buffer for analysis. Data was acquired using a CytekBio Aurora and post-acquisition analyses
539 were done using FlowJo software version 10.10.0. Gating strategy is shown in **Fig. S2**. Immune
540 cell subsets were delineated from the CD45+ Zombie Aqua- population and defined as: dendritic

541 cells (CD11c+CD11b-), neutrophils (CD11c-CD11b+Ly6G+), natural killer cells (CD11c-
542 CD11b+Ly6G-CD64-NK1.1+), macrophages (CD11c-CD11b+Ly6G-CD64+NK1.1-), mast cells
543 (CD11c-CD11b+Ly6G-CD64-NK1.1-Fc ϵ R1 α), B cells (CD11c-CD11b-CD19+CD3-), T cells
544 (CD11c-CD11b-CD19-CD3+), CD4+ T cells (CD11c-CD11b-CD19-CD3+CD4+CD8-), CD8
545 positive T cells (CD11c-CD11b-CD19-CD3+CD4-CD8+), NKT cells (CD11c-CD11b-CD19-
546 CD3+CD4-CD8-NK1.1+), FOXP3+ CD4+ T cells (CD3+CD4+CD8-FOXP3+), ROR γ T+ CD4+ T
547 cells (CD3+CD4+CD8-ROR γ T+), T_{H1} T cells (CD3+CD4+CD8-ROR γ T-FOXP3-TBET+GATA3-),
548 T_{H2} T cells (CD3+CD4+CD8-ROR γ T-FOXP3-TBET-GATA3+), T_{H17} T cells (CD3+CD4+CD8-
549 ROR γ T+FOXP3-TBET-GATA3-), regulatory T cells (CD3+CD4+CD8-ROR γ T-FOXP3+TBET-
550 GATA3-), FOXP3+ROR γ T+ T Cells (CD3+CD4+CD8-ROR γ T+FOXP3+TBET-GATA3-), and T_{H0}
551 T cells (CD3+CD4+CD8-ROR γ T-FOXP3-TBET-GATA3-).

552 **Bulk RNA sequencing and analysis**

553 Four hours post infection, maternal bladder and decidua and fetal placenta were dissected and
554 placed in tubes containing 1.0mm zirconia/silica beads and 500 μ L RNA protect (Qiagen).
555 Tissues were homogenized using a MagNA Lyser instrument (Roche Diagnostics) for 60
556 seconds at 6,000 RPM. Homogenization was repeated for a total of three cycles. RNA
557 extractions were performed on 10 mg (bladder) or 20 mg (decidua, placenta) by RNeasy Plus
558 Mini Kit (Qiagen 74134). RNA sequencing was then performed by Novogene, where library
559 construction and sequencing were performed via Illumina NovaSeq platform. Read mapping
560 was performed using Hisat2 (v2.0.5) to reference genome GRCm39 and quantified using
561 featureCounts (v1.5.0-p3). Raw count normalization and differential gene expression analysis
562 was performed using R package DESeq2 (v1.42.0). R Studio (v2023.12.0-369) was used to
563 generate heatmaps, PCA plots, volcano plots, and pathway enrichment plots. The R packages
564 enhanced volcano and ashR LFC shrinkage were used for data visualization. fGSEA (v1.28.0)
565 was used for gene set enrichment analysis with 10,000 permutations, a minimum gene set of 15

566 and maximum of 500 genes, and the Reactome gene set collection from the Molecular
567 Signatures Database.

568 **Cytokine quantification in murine tissues**

569 Bladder, decidual, and placental homogenates as well as maternal serum were analyzed for
570 cytokine expression (IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-12(p70),
571 IL-13, IL-17A, Eotaxin, G-CSF, GM-CSF, IFN- γ , KC, MCP-1, MIP-1 α , MIP-1 β , RANTES, and
572 TNF) via a 23-plex assay (Bio-Rad, M60009RDP). Samples were thawed on ice, then
573 centrifuged at 10,000 \times g for 10 minutes. Serum samples were diluted 1:4 in PBS. Samples
574 were then processed according to manufacturer's recommendations and analyzed on a
575 Luminex Magpix with data analysis using Milliplex Analyst.

576 **Fetal sex determination**

577 Fetal sex was determined via PCR targeting Rbm31x/y (F: 5'-CAC CTT AAG AAC AAG CCA
578 ATA CA-3', R: 5'-GGC TTG TCC TGA AAA CAT TTG G-3') as described previously(86). 10 μ L of
579 placental lysate was boiled at 95°C for 10 minutes. 2 μ L boiled lysate was then combined with 1
580 μ L each of forward and reverse primers, 6 μ L molecular grade water, and 10 μ L 2X Platinum Hot
581 Start PCR mastermix and PCR amplification was performed using the following conditions: 94°C
582 for 2□min, followed by 30 cycles of 94°C for 20□s, 50°C for 20□s, 68°C for 30□s, and then
583 68°C for 5□min followed by a hold at 4°C. Amplification products were then run on a 1.3%
584 agarose gel containing SYBR Safe stain (VWR 470193-138) and imaged on a UV
585 transilluminator.

586 **Tissue fixation, staining, and histological scoring**

587 After euthanasia, bladders were inflated with 10% neutral buffered formalin (VWR) via
588 transurethral catheterization. Bladders were then tied off using embroidery thread, the catheter
589 was removed, and the bladder was dissected out and placed in a histology cassette. The first

590 placenta with intact decidua was dissected from each horn and placed in the histology cassette
591 with the bladder for each dam. The cassettes were then fixed overnight in 10% neutral buffered
592 formalin. After fixation, cassettes were transferred into 70% ethanol for storage until processing
593 and embedding in paraffin. 3mm sections were cut 1/3 of the way into each paraffin block.
594 Slides were stained with hematoxylin and eosin (H&E), assessed for inflammation (hemorrhage,
595 edema, epithelial disruption, luminal or submucosal immune cell infiltration, apoptosis), and
596 scored on a scale of 0 to 4 (no, mild, moderate, or severe inflammation) by a blinded veterinary
597 pathologist.

598 **Recombinant IL-10 treatment**

599 On E13.5, immediately after infection, dams were treated with 5 µg recombinant murine IL-10
600 (R&D Systems 417-ML-025/CF) resuspended in sterile PBS. IL-10 was administered as a 50 µL
601 intraperitoneal injection, and 50 µL sterile PBS was used for controls. Mice were then monitored
602 twice daily as described above, and euthanized when signs of preterm labor were detected or
603 on E17.5. Maternal bladder, kidneys, vagina, and decidua and fetal placenta were homogenized
604 and plated for CFU quantification as described above. Fetal weight was recorded.

605 **Cytokine quantification in human urine**

606 Human subjects research, exempt from informed consent, was approved under University of
607 South Alabama (USA) IRB, #2178590-1, and BCM IRB, protocol H-54361. Discarded urine
608 samples from pregnant patients and nonpatient controls were obtained from the USA Hospital
609 Clinical Microbiology Lab and stored at -20°C. Patient information, including birth outcomes,
610 were collected retrospectively via chart review. Specimens were thawed overnight at 4°C, then
611 centrifuged at 10,000 × g for 10 minutes. Samples were then diluted 1:2 in PBS and processed
612 according to manufacturer recommendations. Samples were analyzed on a Luminex Magpix
613 with data analysis using Milliplex Analyst. Samples were evaluated using the MILLIPLEX

614 Human Cytokine/Chemokine/Growth Factor Panel A Magnetic Bead Panel (Millipore HCYTA-
615 60K-PX48). Creatinine concentration was measured using the Creatinine Parameter
616 colorimetric assay (R&D Systems KGE005). Samples were also evaluated for S100A9
617 concentration by ELISA (R&D Systems DY5578). All cytokines, chemokines, and growth factors
618 were normalized to creatinine. sCD40L, Fractalkine, IFNg, IL-2, IL-7, IL-12 (p40), IL-17A, TNFb,
619 IL-3, IL-13, IL-17E/IL-25, FGF-2, PDGF-AB/BB, MIP-1a, and MIP-1b were excluded from later
620 analyses due to more than half of samples falling below the limit of detection. To develop
621 predictive models, multiple logistic regression was performed in GraphPad Prism using a binary
622 outcome of preterm birth (birth prior to 37 weeks gestation) or term birth (birth at 37 weeks or
623 later gestation). Fitness of model was evaluated by area under the ROC curve.

624 **Statistics**

625 All experiments were completed in at least duplicate unless otherwise indicated with results
626 combined prior to analyses. Experimental sample size (n) and exact tests used are indicated in
627 figure legends. Bacterial burdens and cytokine data were assessed by Mann-Whitney or
628 Kruskal-Wallis tests when comparing two or three groups, respectively. Two-Way ANOVA with
629 Benjamini, Krieger and Yekutieli false discovery rate correction for multiple comparisons
630 ($q < 0.05$) was employed for flow cytometric data and bacterial burdens for multiple tissues.
631 Survival was analyzed using the log-rank Mantel-Cox test. Differential gene expression was
632 determined using a generalized linear model where a Log₂-fold change > 1.5 and an adjusted p-
633 value < 0.05 were considered differentially expressed. Multivariable logistic regression analyses
634 were evaluated using the area under the ROC curve with a p-value < 0.05. Statistical analyses
635 were performed using GraphPad Prism v10.2.3.

636 **Acknowledgements**

637 We are grateful to the vivarium staff at BCM for animal husbandry, and Dr. Brian Simons for
638 histopathological assessment of murine tissues. Flow cytometry was performed by the BCM
639 Cytometry and Cell Sorting Core with funding from CPRIT award (CPRIT-RP180672) and NIH
640 awards (CA125123, RR024574) with assistance from Claude Chew, Padmini Narayanan, and
641 Joel Sederstrom. Multiplex cytokine analysis was performed by the BCM Antibody-based
642 Proteomics Core, supported in part by CPRIT Proteomics & Metabolomics Core Facility Support
643 Award (RP210227) and NCI Cancer Center Support Grant (P30CA125123). We thank Shixia
644 Huang, Michael Nguyen, Zhongcheng Shi, and Yuan Yao for their excellent technical assistant
645 in performing the Luminex experiments, data preliminary analyses and QC, and project
646 consultation. We are grateful to the patients who contributed samples to this work, and the
647 clinicians and scientists who contributed to sample collection and processing. SO, VME, MEM,
648 and JJZ were supported by NIH F31 awards (HD111236, AI167547, AI167538, DK136201)
649 respectively. Studies were supported by University of South Alabama College of Medicine start-
650 up funds to AES and Burroughs Wellcome Next Gen Pregnancy and NIH R01 (DK128053)
651 awards to KAP. The funders had no role in study design, data collection/interpretation, or the
652 decision to publish.

653 **Author contributions**

654 Research studies were designed by SO and KAP. SO, AL, VME, HB, JJZ, CS, MEM, ZH, RW,
655 RCF, AES, and KAP conducted experiments and acquired data. Data were analyzed by SO and
656 KAP. SO and KAP drafted the manuscript, and all authors contributed to manuscript review and
657 edits.

658

659

660

661

662 **REFERENCES**

663 1. H. Blencowe, S. Cousens, D. Chou, M. Oestergaard, L. Say, A. B. Moller, M. Kinney, J. Lawn,
664 Born Too Soon: The global epidemiology of 15 million preterm births. *Reprod Health* **10**, 2
665 (2013).

666 2. R. L. Goldenberg, J. F. Culhane, J. D. Iams, R. Romero, Epidemiology and causes of preterm
667 birth. *Lancet* **371**, 75–84 (2008).

668 3. R. J. Baer, N. Nidey, G. Bandoli, B. D. Chambers, C. D. Chambers, S. Feuer, D. Karasek, S.
669 P. Oltman, L. Rand, K. K. Ryckman, L. L. Jelliffe-Pawlowski, Risk of Early Birth among Women
670 with a Urinary Tract Infection: A Retrospective Cohort Study. *AJP Rep* **11**, E5–E14 (2021).

671 4. E. Mazor-Dray, A. Levy, F. Schlaeffer, E. Sheiner, Maternal urinary tract infection: is it
672 independently associated with adverse pregnancy outcome? *Journal of Maternal-Fetal &*
673 *Neonatal Medicine* **22**, 124–128 (2009).

674 5. N. Abou Heidar, J. Degheili, A. Yacoubian, R. Khaul, Management of urinary tract infection in
675 women: A practical approach for everyday practice. *Urol Ann* **11**, 339–346 (2019).

676 6. Y. Ansaldi, B. Martinez de Tejada Weber, Urinary tract infections in pregnancy. *Clin Microbiol*
677 *Infect* **29**, 1249–1253 (2023).

678 7. B. Abu-Raya, C. Michalski, M. Sadarangani, P. M. Lavoie, Maternal Immunological Adaptation
679 During Normal Pregnancy. *Front Immunol* **11** (2020), doi:10.3389/FIMMU.2020.575197.

680 8. N. Aghaeepour, E. A. Ganio, D. Mcilwain, A. S. Tsai, M. Tingle, S. Van Gassen, D. K.
681 Gaudilliere, Q. Baca, L. McNeil, R. Okada, M. S. Ghaemi, D. Furman, R. J. Wong, V. D. Winn,
682 M. L. Druzin, Y. Y. El-Sayed, C. Quaintance, R. Gibbs, G. L. Darmstadt, G. M. Shaw, D. K.
683 Stevenson, R. Tibshirani, G. P. Nolan, D. B. Lewis, M. S. Angst, B. Gaudilliere, An immune clock
684 of human pregnancy. *Sci Immunol* **2**, undefined-undefined (2017).

685 9. G. Mor, P. Aldo, A. B. Alvero, The unique immunological and microbial aspects of pregnancy.
686 *Nature Reviews Immunology* 2017 17:8 **17**, 469–482 (2017).

687 10. JR. JOHN E. DELZELL, M. L. LEFEVRE, Urinary Tract Infections During Pregnancy. *Am*
688 *Fam Physician* **61**, 713–720 (2000).

689 11. R. Cohen, G. Gutvitz, T. Wainstock, E. Sheiner, Maternal urinary tract infection during
690 pregnancy and long-term infectious morbidity of the offspring. *Early Hum Dev* **136**, 54–59
691 (2019).

692 12. A. K. Kaul, S. Khan, M. G. Martens, J. T. Crosson, V. R. Lupo, R. Kaul, Experimental
693 gestational pyelonephritis induces preterm births and low birth weights in C3H/HeJ mice. *Infect*
694 *Immun* **67**, 5958–5966 (1999).

695 13. M. Bolton, D. J. Horvath, B. Li, H. Cortado, D. Newsom, P. White, S. Partida-Sanchez, S. S.
696 Justice, Intrauterine growth restriction is a direct consequence of localized maternal

697 uropathogenic *Escherichia coli* cystitis. *PLoS One* **7** (2012),
698 doi:10.1371/JOURNAL.PONE.0033897.

699 14. S. Henry, S. M. Lewis, S. L. Cyril, M. K. Callaway, D. Chatterjee, A. V. Hanasoge
700 Somasundara, G. Jones, X. Y. He, G. Caligiuri, M. F. Ciccone, I. A. Diaz, A. A. Biswas, E.
701 Hernandez, T. Ha, J. E. Wilkinson, M. Egeblad, D. A. Tuveson, C. O. dos Santos, Host response
702 during unresolved urinary tract infection alters female mammary tissue homeostasis through
703 collagen deposition and TIMP1. *Nat Commun* **15** (2024), doi:10.1038/S41467-024-47462-7.

704 15. N. Gomez-Lopez, D. StLouis, M. A. Lehr, E. N. Sanchez-Rodriguez, M. Arenas-Hernandez,
705 Immune cells in term and preterm labor. *Cell Mol Immunol* **11**, 571–581 (2014).

706 16. M. J. Allard, A. Giraud, M. Segura, G. Sebire, Sex-specific maternofetal innate immune
707 responses triggered by group B Streptococci. *Sci Rep* **9** (2019), doi:10.1038/S41598-019-
708 45029-X.

709 17. Q. Na, A. Chudnovets, J. Liu, J. Y. Lee, J. Dong, N. Shin, N. Elsayed, J. Lei, I. Burd,
710 Placental Macrophages Demonstrate Sex-Specific Response to Intrauterine Inflammation and
711 May Serve as a Marker of Perinatal Neuroinflammation. *J Reprod Immunol* **147** (2021),
712 doi:10.1016/j.jri.2021.103360.

713 18. L. L. Shook, K. E. James, D. J. Roberts, C. E. Powe, R. H. Perlis, K. L. Thornburg, P. F.
714 O'Tierney-Ginn, A. G. Edlow, Sex-specific impact of maternal obesity on fetal placental
715 macrophages and cord blood triglycerides. *Placenta* **140**, 100–108 (2023).

716 19. A. N. Battarbee, A. V. Glover, C. J. Vladutiu, C. Gyamfi-Bannerman, S. Aliaga, T. A. Manuck,
717 K. A. Boggess, Sex-Specific Differences in Late Preterm Neonatal Outcomes. *Am J Perinatol*
718 **36**, 1223–1228 (2019).

719 20. S. Galjaard, L. Ameye, C. C. Lees, A. Pexsters, T. Bourne, D. Timmerman, R. Devlieger, Sex
720 differences in fetal growth and immediate birth outcomes in a low-risk Caucasian population.
721 *Biol Sex Differ* **10**, 48 (2019).

722 21. M. A. Mulvey, J. D. Schilling, S. J. Hultgren, Establishment of a persistent *Escherichia coli*
723 reservoir during the acute phase of a bladder infection. *Infect Immun* **69**, 4572–4579 (2001).

724 22. D. Yu, G. Banting, N. F. Neumann, A review of the taxonomy, genetics, and biology of the
725 genus *Escherichia* and the type species *Escherichia coli*. *Can J Microbiol* **67**, 553–571 (2021).

726 23. E. Sheiner, E. Mazor-Drey, A. Levy, Asymptomatic bacteriuria during pregnancy. *J Matern
727 Fetal Neonatal Med* **22**, 423–427 (2009).

728 24. V. Mercado-Evans, C. Chew, C. Serchejian, A. Saltzman, M. E. Mejia, J. J. Zulk, I. Cornax,
729 V. Nizet, K. A. Patras, Tamm-Horsfall protein augments neutrophil NETosis during urinary tract
730 infection. *bioRxiv* (2024), doi:10.1101/2024.02.01.578501.

731 25. V. D. Radu, R. C. Costache, P. Onofrei, L. Antohi, R. L. Bobeica, I. Linga, I. Tanase-
732 Vasilache, A. I. Ristescu, A. M. Murgu, I. L. Miftode, B. A. Stoica, Factors Associated with
733 Increased Risk of Urosepsis during Pregnancy and Treatment Outcomes, in a Urology Clinic.
734 *Medicina (Kaunas)* **59** (2023), doi:10.3390/MEDICINA59111972.

735 26. I. Abu Aleinein, E. Salem Sokhn, Knowledge and prevalence of urinary tract infection among
736 pregnant women in Lebanon. *Heliyon* **10** (2024), doi:10.1016/J.HELION.2024.E37277.

737 27. B. Lengelé, P. Scalliet, Anatomical bases for the radiological delineation of lymph node
738 areas. Part III: Pelvis and lower limbs. *Radiotherapy and Oncology* **92**, 22–33 (2009).

739 28. F. Wynne, M. Ball, A. S. McLellan, P. Dockery, W. Zimmermann, T. Moore, Mouse
740 pregnancy-specific glycoproteins: tissue-specific expression and evidence of association with
741 maternal vasculature. *Reproduction* **131**, 721–732 (2006).

742 29. J. Kawai, A. Shinagawa, K. Shibata, M. Yoshino, M. Itoh, Y. Ishii, T. Arakawa, A. Hara, Y.
743 Fukunishi, H. Konno, J. Adachi, S. Fukuda, K. Aizawa, M. Izawa, K. Nishi, H. Kiyosawa, S.
744 Kondo, I. Yamanaka, T. Saito, Y. Okazaki, T. Gojobori, H. Bono, T. Kasukawa, R. Saito, K.
745 Kadota, H. Matsuda, M. Ashburner, S. Batalov, T. Casavant, W. Fleischmann, T. Gaasterland, C.
746 Gissi, B. King, H. Kochiwa, P. Kuehl, S. Lewis, Y. Matsuo, I. Nikaido, G. Pesole, J.
747 Quackenbush, L. M. Schriml, F. Staubli, R. Suzuki, M. Tomita, L. Wagner, T. Washio, K. Sakai, T.
748 Okido, M. Furuno, H. Aono, R. Baldarelli, G. Barsh, J. Blake, D. Boffelli, N. Bojunga, P. Carninci,
749 M. F. De Bonaldo, M. J. Brownstein, C. Bult, C. Fletcher, M. Fujita, M. Garibaldi, S. Gustincich,
750 D. Hill, M. Hofmann, D. A. Hume, M. Kamiya, N. H. Lee, P. Lyons, L. Marchionni, J. Mashima, J.
751 Mazzarelli, P. Mombaerts, P. Nordone, B. Ring, M. Ringwald, I. Rodriguez, N. Sakamoto, H.
752 Sasaki, K. Sato, C. Schönbach, T. Seya, Y. Shibata, K. F. Storch, H. Suzuki, K. Toyo-Oka, K. H.
753 Wang, C. Weitz, C. Whittaker, L. Wilming, A. Wynshaw-Boris, K. Yoshida, Y. Hasegawa, H.
754 Kawaji, S. Kohtsuki, Y. Hayashizaki, Functional annotation of a full-length mouse cDNA
755 collection. *Nature* **409**, 685–689 (2001).

756 30. J. Wessells, D. Wessner, R. Parsells, K. White, D. Finkenzeller, W. Zimmermann, G.
757 Dveksler, Pregnancy specific glycoprotein 18 induces IL-10 expression in murine macrophages.
758 , doi:10.1002/1521-4141(200007)30:7.

759 31. R. Kessous, A. Y. Weintraub, R. Sergienko, T. Lazer, F. Press, A. Wiznitzer, E. Sheiner,
760 Bacteruria with group-B *streptococcus*: is it a risk factor for adverse pregnancy outcomes? *J
761 Matern Fetal Neonatal Med* **25**, 1983–1986 (2012).

762 32. W. A. Bayih, M. Y. Ayalew, E. S. Chan, B. B. Abate, S. A. Alemayehu, D. M. Belay, Y. A.
763 Aynalem, D. A. Sewyew, S. D. Kebede, A. Demis, G. Y. Yitbarek, M. A. Tassew, B. M. Birhan, A.
764 Y. Alemu, The burden of neonatal sepsis and its association with antenatal urinary tract infection
765 and intra-partum fever among admitted neonates in Ethiopia: A systematic review and meta-
766 analysis. *Heliyon* **7** (2021), doi:10.1016/J.HELION.2021.E06121.

767 33. M. J. Patrick, Influence of maternal renal infection on the foetus and infant. *Arch Dis Child*
768 **42**, 208–213 (1967).

769 34. M. A. Rafi, M. M. Z. Miah, M. A. Wadood, M. G. Hossain, Risk factors and etiology of
770 neonatal sepsis after hospital delivery: A case-control study in a tertiary care hospital of
771 Rajshahi, Bangladesh. *PLoS One* **15** (2020), doi:10.1371/JOURNAL.PONE.0242275.

772 35. M. Liu, X. Luo, Q. Xu, H. Yu, L. Gao, R. Zhou, T. Wang, Adipsin of the Alternative
773 Complement Pathway Is a Potential Predictor for Preeclampsia in Early Pregnancy. *Front
774 Immunol* **12** (2021), doi:10.3389/FIMMU.2021.702385.

775 36. Z. A. Broere-Brown, M. C. Adank, L. Benschop, M. Tielemans, T. Muka, R. Gonçalves, W. M.
776 Bramer, J. D. Schoufour, T. Voortman, E. A. P. Steegers, O. H. Franco, S. Schalekamp-
777 Timmermans, Fetal sex and maternal pregnancy outcomes: a systematic review and meta-
778 analysis. *Biol Sex Differ* **11** (2020), doi:10.1186/S13293-020-00299-3.

779 37. I. Ambite, D. Butler, M. L. Y. Wan, T. Rosenblad, T. H. Tran, S. M. Chao, C. Svanborg,
780 Molecular determinants of disease severity in urinary tract infection. *Nat Rev Urol* **18**, 468–486
781 (2021).

782 38. C. Petersson, S. Hedges, K. Stenqvist, T. Sandberg, H. Connell, C. Svanborg, Suppressed
783 antibody and interleukin-6 responses to acute pyelonephritis in pregnancy. *Kidney Int* **45**, 571–
784 577 (1994).

785 39. M. Azami, Z. Jaafari, M. Masoumi, M. Shohani, G. Badfar, L. Mahmudi, S. Abbasalizadeh,
786 The etiology and prevalence of urinary tract infection and asymptomatic bacteriuria in pregnant
787 women in Iran: a systematic review and Meta-analysis. *BMC Urol* **19** (2019),
788 doi:10.1186/S12894-019-0454-8.

789 40. L. D. Mera-Lojano, L. A. Mejía-Contreras, S. M. Cajas-Velásquez, S. J. Guarderas-Muñoz,
790 [Prevalence and risk factors of urinary tract infection in pregnant women]. *Rev Med Inst Mex*
791 *Seguro Soc* **61**, 590–596 (2023).

792 41. E. Zhang, Q. Zeng, Y. Xu, J. Lu, C. Li, K. Xiao, X. Li, J. Li, T. Li, C. Li, L. Zhang, A
793 smartphone-based immunochromatographic strip platform for on-site quantitative detection of
794 antigenic targets. *Lab Chip* **24** (2024), doi:10.1039/D4LC00484A.

795 42. X. Zhao, A. Xu, X. Lu, B. Chen, Y. Hua, Y. Ma, Association of phthalates exposure and sex
796 steroid hormones with late-onset preeclampsia: a case-control study. *BMC Pregnancy Childbirth*
797 **24** (2024), doi:10.1186/S12884-024-06793-5.

798 43. L. S. Lentz, A. J. Stutz, N. Meyer, K. Schubert, I. Karkossa, M. von Bergen, A. C.
799 Zenclussen, A. Schumacher, Human chorionic gonadotropin promotes murine Treg cells and
800 restricts pregnancy-harmful proinflammatory Th17 responses. *Front Immunol* **13** (2022),
801 doi:10.3389/FIMMU.2022.989247.

802 44. A. Sen, A. Kaul, R. Kaul, Estrogen receptors in human bladder cells regulate innate cytokine
803 responses to differentially modulate uropathogenic *E. coli* colonization. *Immunobiology* **226**
804 (2021), doi:10.1016/J.IMBIO.2020.152020.

805 45. S. I. Ramírez, E. A. Suniega, M. I. Laughrey, Endocrinology During Pregnancy. *Prim Care*
806 **51**, 535–547 (2024).

807 46. F. F. Martínez, C. P. Knubel, M. C. Sánchez, L. Cervi, C. C. Motrán, Pregnancy-specific
808 glycoprotein 1a activates dendritic cells to provide signals for Th17-, Th2-, and Treg-cell
809 polarization. *Eur J Immunol* **42**, 1573–1584 (2012).

810 47. S. K. Snyder, D. H. Wessner, J. L. Wessells, R. M. Waterhouse, L. M. Wahl, W.
811 Zimmermann, G. S. Dveksler, Pregnancy-specific glycoproteins function as immunomodulators
812 by inducing secretion of IL-10, IL-6 and TGF-beta1 by human monocytes. *Am J Reprod*
813 *Immunol* **45**, 205–216 (2001).

814 48. D. K. Shanley, P. A. Kiely, K. Golla, S. Allen, K. Martin, R. T. O'Riordan, M. Ball, J. D. Aplin,
815 B. B. Singer, N. Caplice, N. Moran, T. Moore, Pregnancy-specific glycoproteins bind integrin
816 α IIb β 3 and inhibit the platelet-fibrinogen interaction. *PLoS One* **8** (2013),
817 doi:10.1371/JOURNAL.PONE.0057491.

818 49. T. E. C. Kieffer, A. Laskewitz, S. A. Scherjon, M. M. Faas, J. R. Prins, Memory T Cells in
819 Pregnancy. *Front Immunol* **10** (2019), doi:10.3389/FIMMU.2019.00625.

820 50. A. M. Mitchell, M. Palettas, L. M. Christian, Fetal sex is associated with maternal stimulated
821 cytokine production, but not serum cytokine levels, in human pregnancy. *Brain Behav Immun*
822 **60**, 32–37 (2017).

823 51. A. H. Jarmund, G. F. Giskeødegård, M. Ryssdal, B. Steinkjer, L. M. T. Stokkeland, T. S.
824 Madssen, S. N. Stafne, S. Stridsklev, T. Moholdt, R. Heimstad, E. Vanky, A. C. Iversen, Cytokine
825 Patterns in Maternal Serum From First Trimester to Term and Beyond. *Front Immunol* **12** (2021),
826 doi:10.3389/FIMMU.2021.752660.

827 52. A. Olmos-Ortiz, A. Olivares-Huerta, J. García-Quiroz, E. Avila, A. Halhali, B. Quesada-
828 Reyna, F. Larrea, V. Zaga-Clavellina, L. Díaz, Cord Serum Calcitriol Inversely Correlates with
829 Maternal Blood Pressure in Urinary Tract Infection-Affected Pregnancies: Sex-Dependent
830 Immune Implications. *Nutrients* **13** (2021), doi:10.3390/NU13093114.

831 53. A. Olmos-Ortiz, A. Olivares-Huerta, J. García-Quiroz, T. Zariñán, R. Chavira, V. Zaga-
832 Clavellina, E. Avila, A. Halhali, M. Durand, F. Larrea, L. Díaz, Placentas associated with female
833 neonates from pregnancies complicated by urinary tract infections have higher cAMP content
834 and cytokines expression than males. *Am J Reprod Immunol* **86** (2021), doi:10.1111/AJI.13434.

835 54. K. J. Baines, R. C. West, Sex differences in innate and adaptive immunity impact fetal,
836 placental, and maternal health†. *Biol Reprod* **109**, 256–270 (2023).

837 55. H. C. Osman, R. Moreno, D. Rose, M. E. Rowland, A. V. Ciernia, P. Ashwood, Impact of
838 maternal immune activation and sex on placental and fetal brain cytokine and gene expression
839 profiles in a preclinical model of neurodevelopmental disorders. *J Neuroinflammation* **21** (2024),
840 doi:10.1186/S12974-024-03106-7.

841 56. P. Pantazi, M. Kaforou, Z. Tang, V. M. Abrahams, A. McArdle, S. Guller, B. Holder, Placental
842 macrophage responses to viral and bacterial ligands and the influence of fetal sex. *iScience* **25**,
843 105653 (2022).

844 57. S. A. Robertson, R. J. Skinner, A. S. Care, Essential role for IL-10 in resistance to
845 lipopolysaccharide-induced preterm labor in mice. *J Immunol* **177**, 4888–4896 (2006).

846 58. M. Busse, K. N. J. Campe, D. Nowak, A. Schumacher, S. Plenagl, S. Langwisch, G. Tiegs,
847 A. Reinhold, A. C. Zenclussen, IL-10 producing B cells rescue mouse fetuses from
848 inflammation-driven fetal death and are able to modulate T cell immune responses. *Sci Rep* **9**
849 (2019), doi:10.1038/S41598-019-45860-2.

850 59. S. A. Robertson, A. S. Care, R. J. Skinner, Interleukin 10 regulates inflammatory cytokine
851 synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in
852 mice. *Biol Reprod* **76**, 738–748 (2007).

853 60. J. C. Wommack, R. J. Ruiz, C. N. Marti, R. P. Stowe, C. E. L. Brown, C. Murphey,
854 Interleukin-10 predicts preterm birth in acculturated Hispanics. *Biol Res Nurs* **15**, 78–85 (2013).

855 61. R. J. Ruiz, N. Jallo, C. Murphey, C. N. Marti, E. Godbold, R. H. Pickler, Second trimester
856 maternal plasma levels of cytokines IL-1Ra, IL-6 and IL-10 and preterm birth. *J Perinatol* **32**,
857 483–490 (2012).

858 62. J. H. Rowe, J. M. Ertelt, M. N. Aguilera, M. A. Farrar, S. S. Way, Foxp3(+) regulatory T cell
859 expansion required for sustaining pregnancy compromises host defense against prenatal
860 bacterial pathogens. *Cell Host Microbe* **10**, 54–64 (2011).

861 63. M. T. Rasquinha, M. Sur, N. Lasrado, J. Reddy, IL-10 as a Th2 Cytokine: Differences
862 Between Mice and Humans. *J Immunol* **207**, 2205–2215 (2021).

863 64. M. Impis Oglou, I. Tsakiridis, A. Mamopoulos, I. Kalogiannidis, A. Athanasiadis, T. Dagklis,
864 Cervical length screening for predicting preterm birth: A comparative review of guidelines. *J Clin*
865 *Ultrasound* **51**, 472–478 (2023).

866 65. Z. A. Oskovi Kaplan, A. S. Ozgu-Erdinc, Prediction of Preterm Birth: Maternal
867 Characteristics, Ultrasound Markers, and Biomarkers: An Updated Overview. *J Pregnancy* **2018**
868 (2018), doi:10.1155/2018/8367571.

869 66. M. Nadeau-Vallée, D. Obari, C. Quiniou, W. D. Lubell, D. M. Olson, S. Girard, S. Chemtob, A
870 critical role of interleukin-1 in preterm labor. *Cytokine Growth Factor Rev* **28**, 37–51 (2016).

871 67. Y. Hatakeyama, H. Miura, A. Sato, Y. Onodera, N. Sato, D. Shimizu, Y. Kumazawa, H.
872 Sanada, H. Hirano, Y. Terada, Neutrophil elastase in amniotic fluid as a predictor of preterm
873 birth after emergent cervical cerclage. *Acta Obstet Gynecol Scand* **95**, 1136–1142 (2016).

874 68. F. Namba, S. Ina, H. Kitajima, H. Yoshio, K. Mimura, S. Saito, I. Yanagihara, Annexin A2 in
875 amniotic fluid: Correlation with histological chorioamnionitis, preterm premature rupture of
876 membranes, and subsequent preterm delivery. *Journal of Obstetrics and Gynaecology*
877 *Research* **38**, 137–144 (2012).

878 69. Z. Alfirevic, K. Navaratnam, F. Mujezinovic, Amniocentesis and chorionic villus sampling for
879 prenatal diagnosis. *Cochrane Database Syst Rev* **9** (2017),
880 doi:10.1002/14651858.CD003252.PUB2.

881 70. P. Pruski, G. D. S. Correia, H. V. Lewis, K. Capuccini, P. Inglese, D. Chan, R. G. Brown, L.
882 Kindinger, Y. S. Lee, A. Smith, J. Marchesi, J. A. K. McDonald, S. Cameron, K. Alexander-
883 Hardiman, A. L. David, S. J. Stock, J. E. Norman, V. Terzidou, T. G. Teoh, L. Sykes, P. R.
884 Bennett, Z. Takats, D. A. MacIntyre, Direct on-swab metabolic profiling of vaginal microbiome
885 host interactions during pregnancy and preterm birth. *Nat Commun* **12** (2021),
886 doi:10.1038/S41467-021-26215-W.

887 71. Z. Shaffer, R. Romero, A. L. Tarca, J. Galaz, M. Arenas-Hernandez, D. W. Gudicha, T.
888 Chaiworapongsa, E. Jung, M. Suksai, K. R. Theis, N. Gomez-Lopez, The vaginal
889 immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal
890 study. *Elife* **13** (2024), doi:10.7554/ELIFE.90943.

891 72. K. Leitner, M. Al Shamarly, M. McLane, M. V. Johnston, M. A. Elovitz, I. Burd, IL-1 receptor
892 blockade prevents fetal cortical brain injury but not preterm birth in a mouse model of

893 inflammation-induced preterm birth and perinatal brain injury. *Am J Reprod Immunol* **71**, 418–
894 426 (2014).

895 73. T. A. Ayash, S. Y. Vancolen, M. Segura, M. J. Allard, G. Sebire, Protective Effects of
896 Interleukin-1 Blockade on Group B *Streptococcus*-Induced Chorioamnionitis and Subsequent
897 Neurobehavioral Impairments of the Offspring. *Front Endocrinol (Lausanne)* **13** (2022),
898 doi:10.3389/FENDO.2022.833121.

899 74. Y. Takahashi, T. Takahashi, H. Usuda, S. Carter, E. L. Fee, L. Furfaro, S. Chemtob, D. M.
900 Olson, J. A. Keelan, S. Kallapur, M. W. Kemp, Pharmacological blockade of the interleukin-1
901 receptor suppressed *Escherichia coli* lipopolysaccharide-induced neuroinflammation in preterm
902 fetal sheep. *Am J Obstet Gynecol MFM* **5** (2023), doi:10.1016/J.AJOGMF.2023.101124.

903 75. T. Habelrih, D. É. Tremblay, E. Di Battista, X. Hou, A. Reuben, B. Ferri, S. E. Loiselle, F.
904 Côté, P. Abram, W. D. Lubell, K. B. Leimert, C. Quiniou, S. Girard, D. M. Olson, S. Chemtob,
905 Pharmacodynamic characterization of rytvela, a novel allosteric anti-inflammatory therapeutic, to
906 prevent preterm birth and improve fetal and neonatal outcomes. *Am J Obstet Gynecol* **228**,
907 467.e1-467.e16 (2023).

908 76. M. T. Aung, Y. Yu, K. K. Ferguson, D. E. Cantonwine, L. Zeng, T. F. McElrath, S. Pennathur,
909 B. Mukherjee, J. D. Meeker, Prediction and associations of preterm birth and its subtypes with
910 eicosanoid enzymatic pathways and inflammatory markers. *Sci Rep* **9** (2019),
911 doi:10.1038/S41598-019-53448-Z.

912 77. B. M. Welch, A. P. Keil, J. P. Buckley, A. M. Calafat, K. E. Christenbury, S. M. Engel, K. M.
913 O'Brien, E. M. Rosen, T. James-Todd, A. R. Zota, K. K. Ferguson, A. N. Alshawabkeh, J. F.
914 Cordero, J. D. Meeker, E. S. Barrett, N. R. Bush, R. H. N. Nguyen, S. Sathyaranayana, S. H.
915 Swan, D. E. Cantonwine, T. F. McElrath, J. Aalborg, D. Dabelea, A. P. Starling, R. Hauser, C.
916 Messerlian, Y. Zhang, A. Bradman, B. Eskenazi, K. G. Harley, N. Holland, M. S. Bloom, R. B.
917 Newman, A. G. Wenzel, J. M. Braun, B. P. Lanphear, K. Yolton, P. Factor-Litvak, J. B.
918 Herbstman, V. A. Rauh, E. Z. Drobis, A. E. Sparks, J. B. Redmon, C. Wang, A. M. Binder, K. B.
919 Michels, D. D. Baird, A. M. Z. Jukic, C. R. Weinberg, A. J. Wilcox, D. Q. Rich, B. Weinberger, V.
920 Padmanabhan, D. J. Watkins, I. Hertz-Pannier, R. J. Schmidt, Associations Between Prenatal
921 Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts.
922 *JAMA Pediatr* **176**, 895–905 (2022).

923 78. S. M. Eick, S. D. Geiger, A. Alshawabkeh, M. Aung, E. S. Barrett, N. Bush, K. N. Carroll, J. F.
924 Cordero, D. E. Goin, K. K. Ferguson, L. G. Kahn, D. Liang, J. D. Meeker, G. L. Milne, R. H. N.
925 Nguyen, A. M. Padula, S. Sathyaranayana, K. R. Taibl, S. L. Schantz, T. J. Woodruff, R. Morello-
926 Frosch, Urinary oxidative stress biomarkers are associated with preterm birth: an Environmental
927 Influences on Child Health Outcomes program study. *Am J Obstet Gynecol* **228**, 576.e1–
928 576.e22 (2023).

929 79. Biomarkers for preterm births using non-invasive samples | NYU Langone Health (available
930 at <https://clinicaltrials.med.nyu.edu/clinicaltrial/1236/biomarkers-preterm-births-using/>).

931 80. S. J. Fortunato, R. Menon, S. J. Lombardi, IL-15, a novel cytokine produced by human fetal
932 membranes, is elevated in preterm labor. *Am J Reprod Immunol* **39**, 16–23 (1998).

933 81. S. M. Gordon, Interleukin-15 in Outcomes of Pregnancy. *Int J Mol Sci* **22** (2021),
934 doi:10.3390/IJMS222011094.

935 82. I. Mitrogiannis, E. Evangelou, A. Efthymiou, T. Kanavos, E. Birbas, G. Makrydimas, S.
936 Papatheodorou, Risk factors for preterm birth: an umbrella review of meta-analyses of
937 observational studies. *BMC Medicine* 2023 21:1 **21**, 1–17 (2023).

938 83. J. M. Bates, H. M. Raffi, K. Prasad, R. Mascarenhas, Z. Laszik, N. Maeda, S. J. Hultgren,
939 S. Kumar, Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid
940 communication. *Kidney Int* **65**, 791–797 (2004).

941 84. J. J. Zulk, J. R. Clark, S. Ottinger, M. B. Ballard, M. E. Mejia, V. Mercado-Evans, E. R.
942 Heckmann, B. C. Sanchez, B. W. Trautner, A. W. Maresso, K. A. Patras, Phage Resistance
943 Accompanies Reduced Fitness of Uropathogenic *Escherichia coli* in the Urinary Environment.
944 *mSphere* **7** (2022), doi:10.1128/MSPHERE.00345-22/ASSET/074C0EF2-7EC1-44A2-8FBB-
945 1A3C646354FB/ASSETS/IMAGES/MEDIUM/MSPHERE.00345-22-F007.GIF.

946 85. K. A. Patras, A. Coady, P. Babu, S. R. Shing, A. D. Ha, E. Rooholfada, S. L. Brandt, M.
947 Geriak, R. L. Gallo, V. Nizet, Host Cathelicidin Exacerbates Group B *Streptococcus* Urinary
948 Tract Infection. *mSphere* **5** (2020), doi:10.1128/MSPHERE.00932-19.

949 86. S. J. Tunster, Genetic sex determination of mice by simplex PCR. *Biol Sex Differ* **8**, 6–9
950 (2017).

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970 **FIGURE LEGENDS**

971 **Figure 1. Murine maternal UTI mirrors clinical manifestations of UTI-associated adverse**

972 **outcomes in human pregnancy.**

973 Dams were transurethrally infected with UPEC on embryonic day (E)13.5, then monitored for
974 signs of preterm labor until E17.5 (**A**). Kaplan-Meyer curves depicting proportion of dams still
975 pregnant over four days post-infection (**B,C**). Bacteremia incidence in pregnant and non-
976 pregnant mice four hours and four days post infection (**D**). Adverse morphology proportions per
977 litter for mock and infected dams four hours and four days post-infection (**E**). Fetal weight at
978 E17.5 from mock or infected dams (**F**). Kaplan-Meyer curve depicting pup survival until post-
979 natal day 7 from mock and infected dams (**G**). Litter size in mock and infected dams (**H**). Pup
980 liver and intestinal bacterial burdens on postnatal day 7 from mock and infected dams (**I**).
981 Postnatal day 4 (**J**) and 7 (**K**) weights from pups born to mock or infected dams. Experiments
982 were performed at least twice with data combined. n=6-17 (B,C), n=6-23 (D), n=2-18 (E), n=10-
983 25 (F), n=28-30 (G), n=5-8 (H), n=20-25 (I), n=19-32 (J), n=18-32 (K). Box and whisker plots
984 show median, all points, and extend from 25th to 75th percentiles. Symbols are shaped by litter in
985 F, J, K. Data were analyzed by Mantel-Cox test (B-C,G), Fisher's exact test (D), Kruskal-Wallis
986 test (E), Mann-Whitney (F, H, J-K), or two-way ANOVA with Benjamini, Krieger and Yekutieli
987 correction for false discovery with a false discovery rate set at 5% (I). *p<0.05, **p<0.01,
988 ***p<0.001, ****p<0.0001 (B-C, E-F, J-K). *q<0.05 (I).

989

990 **Figure 2. Bladder immunity to UTI is altered during pregnancy.**

991 Bladder, kidney, uterine/decidual, vaginal, and ileal lymph node bacterial burdens four hours
992 post-infection in non-pregnant and pregnant mice (**A, B**). Reactome pathway enrichment (**C**)

993 and differential gene expression (**D**) in pregnant bladders compared to non-pregnant bladders.
994 Flow cytometry on pregnant and non-pregnant bladders four hours post-infection (**E**). Bladder
995 IL-2 (**F**) and IL-3 (**G**) and serum RANTES (**H**) in infected pregnant and non-pregnant mice.
996 Experiments were performed at least twice with data combined. n=15-33 (A), n=7-14 (B), n=4-
997 11 (C-D), n=8-12 (E), n=13-17 (F-H). Box and whisker plots show median, all points, and extend
998 from 25th to 75th percentiles. NES = normalized enrichment score. Data were analyzed by two-
999 way ANOVA with Benjamini, Krieger and Yekutieli correction for false discovery with a false
1000 discovery rate set at 5% (A,E), fGSEA with a gene set minimum of 15 and maximum of 500 and
1001 10,000 permutations using the Reactome collection from Molecular Signature Databases (C),
1002 generalized linear model, Log2 fold change >1 and Wald tests with FDR adjusted p
1003 value < 0.05 (D), or Mann-Whitney (F-H). *p<0.05 (F-H). *q<0.05 (A,E).

1004

1005 **Figure 3. Preterm bladders display increased inflammation.**

1006 Bladder and kidney bacterial burdens four hours post-infection (**A**). Venn diagram showing
1007 differentially expressed genes in preterm and non-laboring bladders compared to mock bladders
1008 (**B**). Flow cytometry on bladders of mock, non-laboring, and preterm dams four hours post-
1009 infection (**C**). Representative images (**D**) and histopathological scoring (**E**) of pregnant infected
1010 bladders. Black arrows indicate polymorphonuclear cell aggregates. Heatmap (**F**) and box and
1011 whisker plots (**G-H**) of select bladder cytokines in mock, non-laboring, and preterm dams.
1012 Experiments were performed at least twice with data combined. n=9-20 (A), n=3-6 (B), n=4-6
1013 (C), n=4 (E), n=7-14 (F-H). Box and whisker plots show median, all points, and extend from 25th
1014 to 75th percentiles. Data in A and B represent pregnant samples from Figure 2A and 2E,
1015 respectively, disaggregated by outcome. Data were analyzed by two-way ANOVA with
1016 Benjamini, Krieger and Yekutieli correction for false discovery with a false discovery rate set at
1017 5% (A,C), generalized linear model, Log2 fold change >1 and Wald tests with FDR adjusted p
1018 value < 0.05 (B), or Mann-Whitney (E,G-H). *p<0.05 (G-H). *q<0.05 (C).

1019

1020 **Figure 4. Uteroplacental immune activation is elevated in preterm dams.**

1021 Decidual and vaginal bacterial burdens four hours post-infection (**A**). Placental bacterial burdens
1022 on E13.5 in nonlaboring and preterm dams (**B**) or on E13.5 and E17.5 in non-laboring dams (**C**).
1023 Placental histopathological scoring (**D**). Differentially expressed genes (**E**) and Reactome
1024 pathways (**F**) in preterm placentae (**E-F**) or deciduae (**F**) compared to non-laboring dams. Broad
1025 immunophenotyping (**G**) or T helper lymphocyte phenotyping (**H**) by flow cytometry of mock,
1026 non-laboring, and preterm placentae 4 hours post-infection. Decidual (**I-J**) and placental (**K-L**)
1027 MCP-1 and G-CSF cytokine levels in non-laboring and preterm dams four hours post-infection.
1028 n=14-21 (A), n=74-108 (B), n=74-33 (C), n=5-6 (D), n=5-12 (E-F), n=9-13 (G), n=9-15 (H), n=7-
1029 14 (I-J), n=14-23 (K-L). Box and whisker plots show median, all points, and extend from 25th to
1030 75th percentiles. NES = normalized enrichment score. Data were analyzed by two-way ANOVA
1031 with Benjamini, Krieger and Yekutieli correction for false discovery with a false discovery rate set
1032 at 5% (A,G-H), Mann-Whitney (B-D, I-L), generalized linear model, Log2 fold change >1 and
1033 Wald tests with FDR adjusted p value < 0.05 (E), or fGSEA with a gene set minimum of 15
1034 and maximum of 500 and 10,000 permutations using the Reactome collection from Molecular
1035 Signature Databases (F). *p<0.05, **p<0.01, ****p<0.0001 (C, I-L). *q<0.05 (G-H).

1036

1037 **Figure 5. Fetal sex contributes to differential placental immunity and adverse outcomes.**

1038 Male proportion of each litter in non-laboring and preterm dams (**A**). Placental bacterial burdens
1039 in males and females four days post-infection (**B**). Fetal E17.5 (**C**) and pup postnatal day 7
1040 weight (**D**) from infected dams shown as a proportion of median fetal or pup weight of the same
1041 sex from mock-infected dams. Broad immunophenotyping (**E**) and T helper lymphocyte
1042 immunophenotyping (**F**) of placentae stratified by fetal sex and maternal outcomes. Placental
1043 cytokine quantification stratified by fetal sex and maternal outcome displayed as fold change
1044 over median placentae of the same sex from mock-infected dams (**G**). Experiments were

1045 performed at least twice with data combined. Data in C, D, E, and F represent data from Figure
1046 1F, Figure 1K, Figure 4G, Figure 4H, respectively, disaggregated by sex. n=9-10 (A), n=10-14
1047 (B), n=5 (C), n=8-9 (D), n=4-8 (E), n=5-6 (F), n=7-10 (G). Box and whisker plots show median,
1048 all points, and extend from 25th to 75th percentiles. Data were analyzed by Mann-Whitney (A-B),
1049 one sample T test against the theoretical value of 100% (C-D), or two-way ANOVA with
1050 Benjamini, Krieger and Yekutieli correction for false discovery with a false discovery rate set at
1051 5% (E-G). *p<0.05, ****p<0.0001 (A, D). *q<0.05 (E-G).

1052

1053 **Figure 6. IL-10 is lower in preterm birth and associated with fetal growth restriction.**

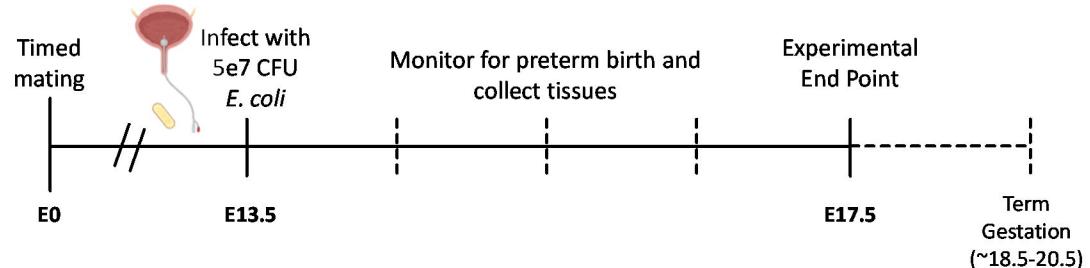
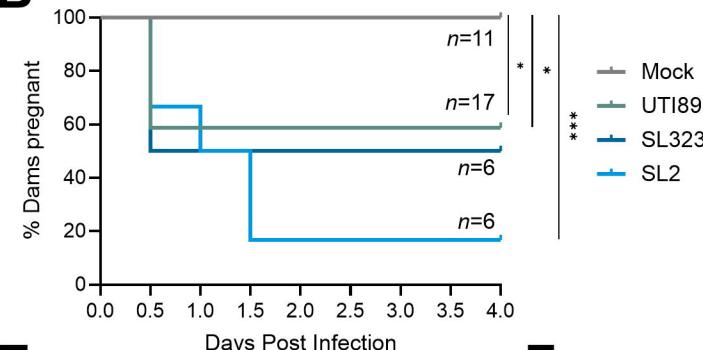
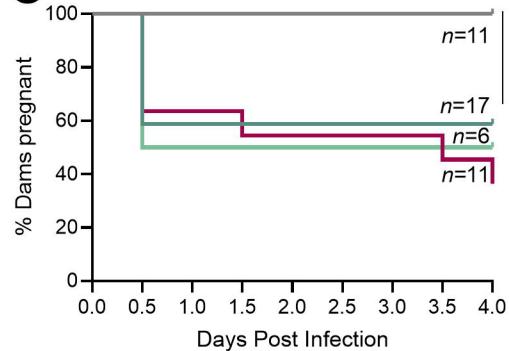
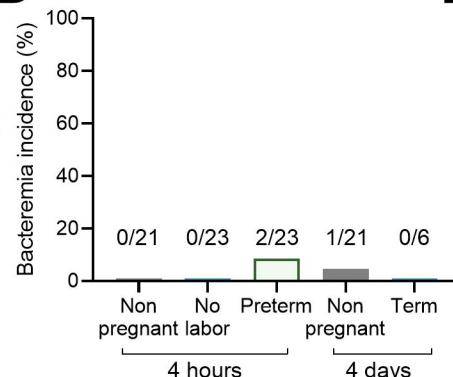
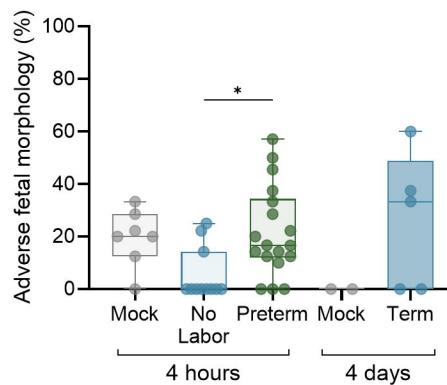
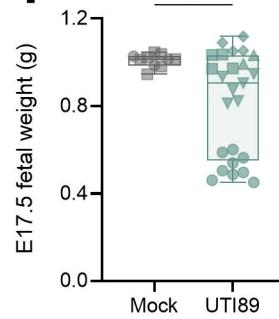
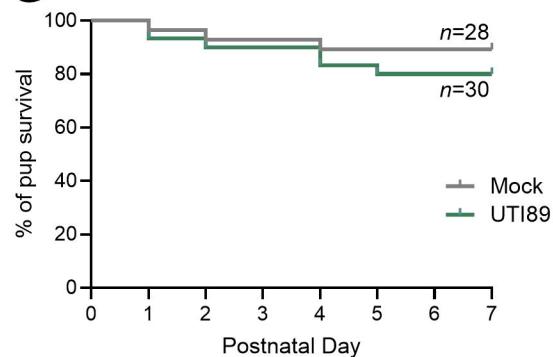
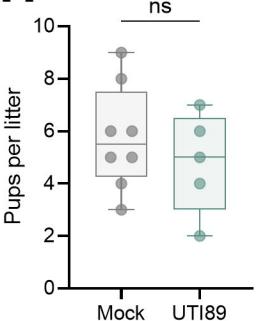
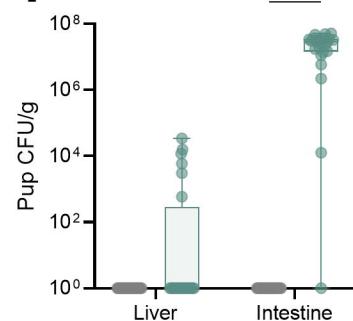
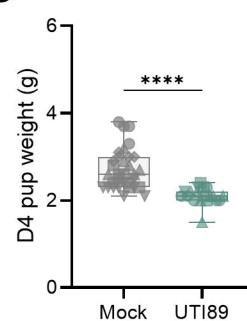
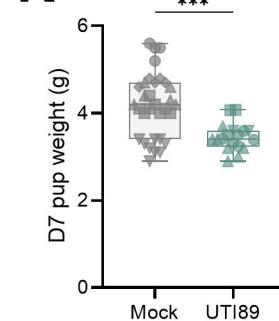
1054 IL-10 quantified in maternal serum (**A**). Immediately after infection, mice were treated with 5 μ g
1055 IL-10 in PBS by intraperitoneal injection (**B**). Kaplan-Meyer curve depicting rate of ongoing
1056 pregnancy in dams in days post-infection (**C**). E17.5 fetal weight (**D**). Uterine, vaginal, bladder,
1057 and kidney bacterial burdens in pregnant and non-pregnant mice with and without IL-10
1058 treatment (**E**). E17.5 placental bacterial burdens with and without IL-10 treatment (**F**).
1059 Experiments were performed at least twice with data combined. n=7-18 (A), n=9-17 (C), n=10-
1060 54 (D), n=5-9 (E), n=33-52 (F). Box and whisker plots show median, all points, and extend from
1061 25th to 75th percentiles. Data were analyzed by Mann-Whitney (A,F), Mantel-Cox test (C),
1062 Kruskal-Wallis test (D), or two-way ANOVA with Benjamini, Krieger and Yekutieli correction for
1063 false discovery with a false discovery rate set at 5% (E). *p<0.05, **p<0.01, ***p<0.001,
1064 ****p<0.0001 (A,D). *q<0.05 (E).

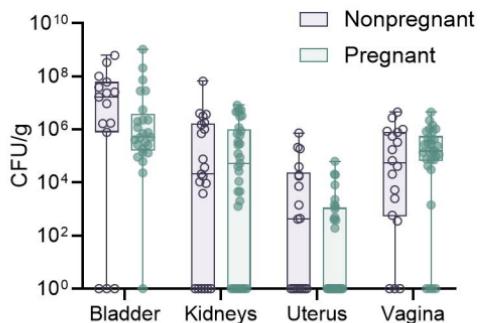
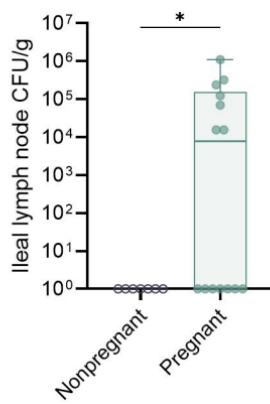
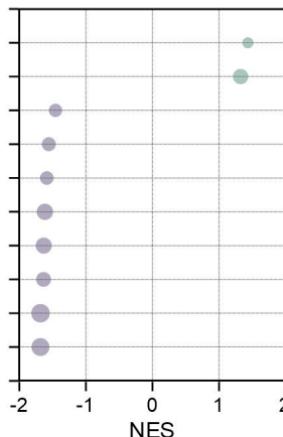
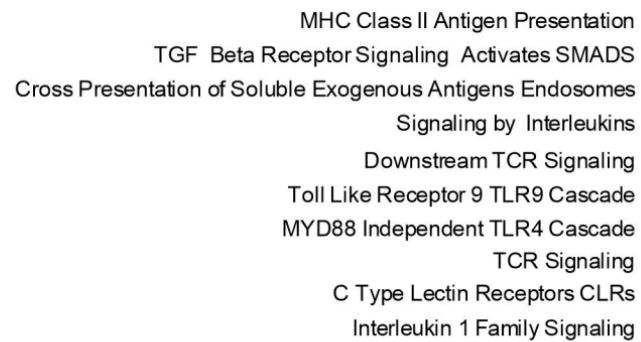
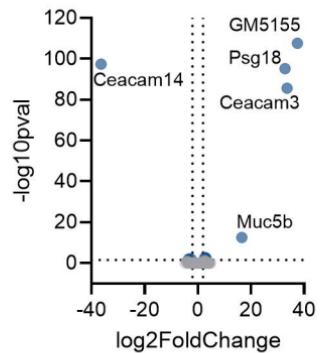
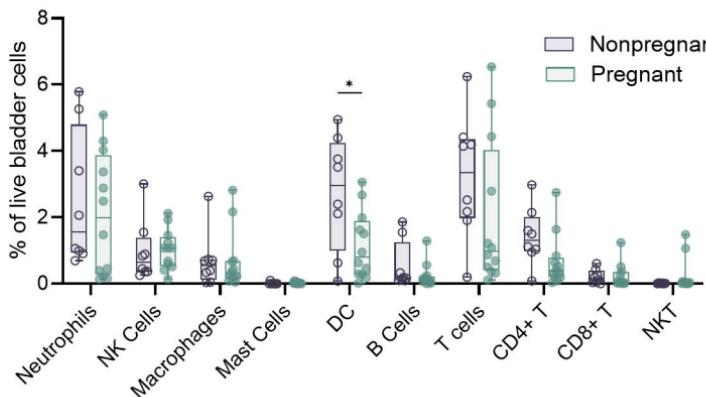
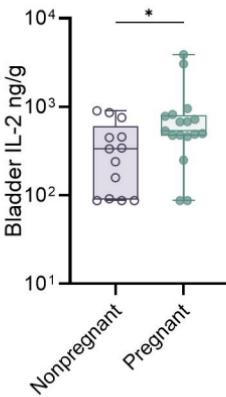
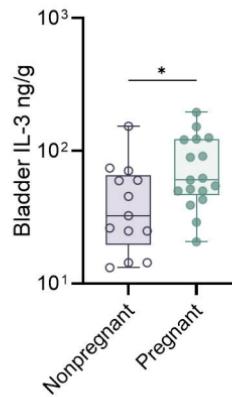
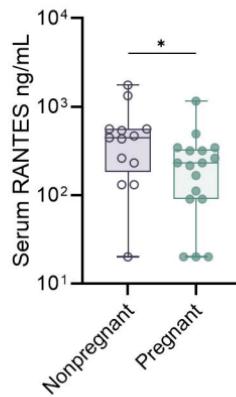
1065

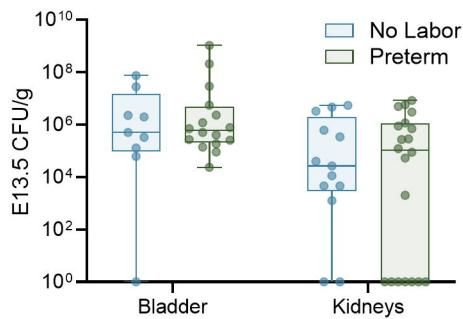
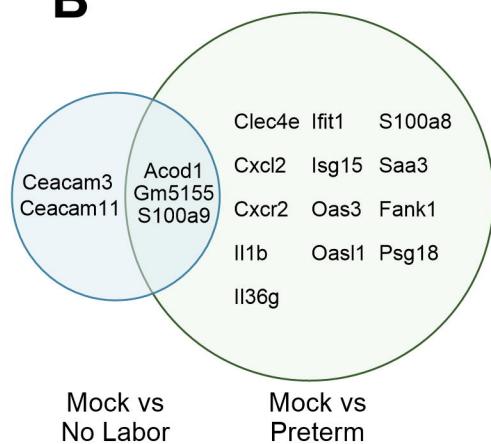
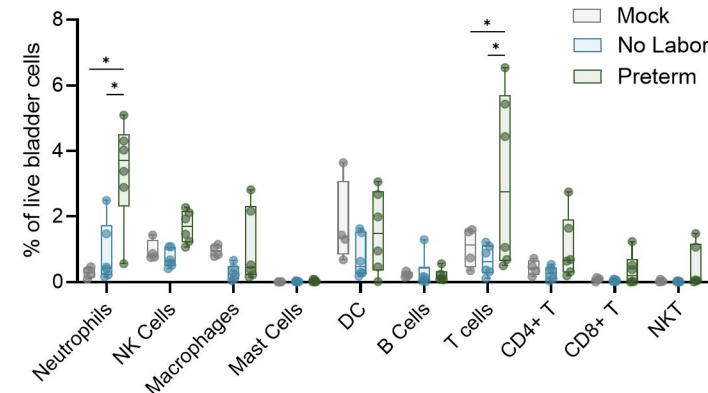
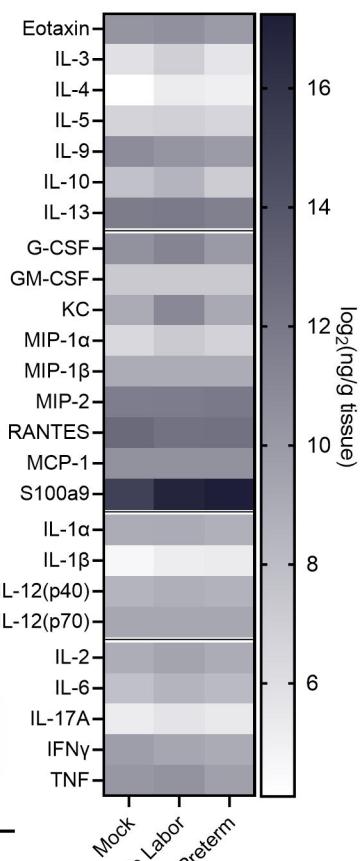
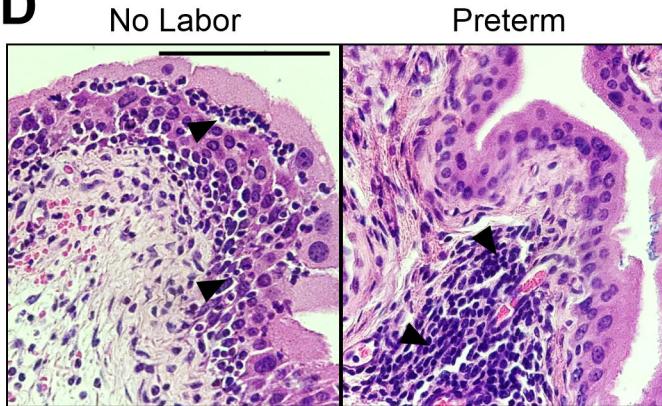
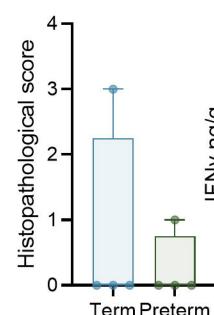
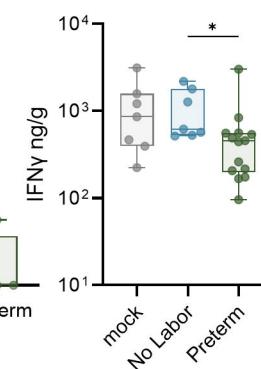
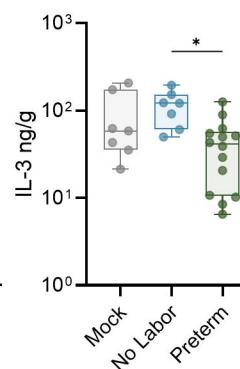
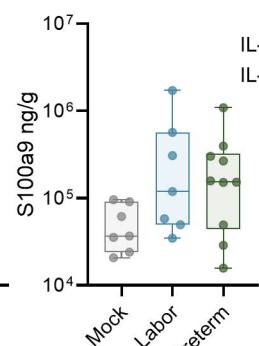
1066 **Figure 7. Gestational age and fetal sex correlate with urine cytokines.**

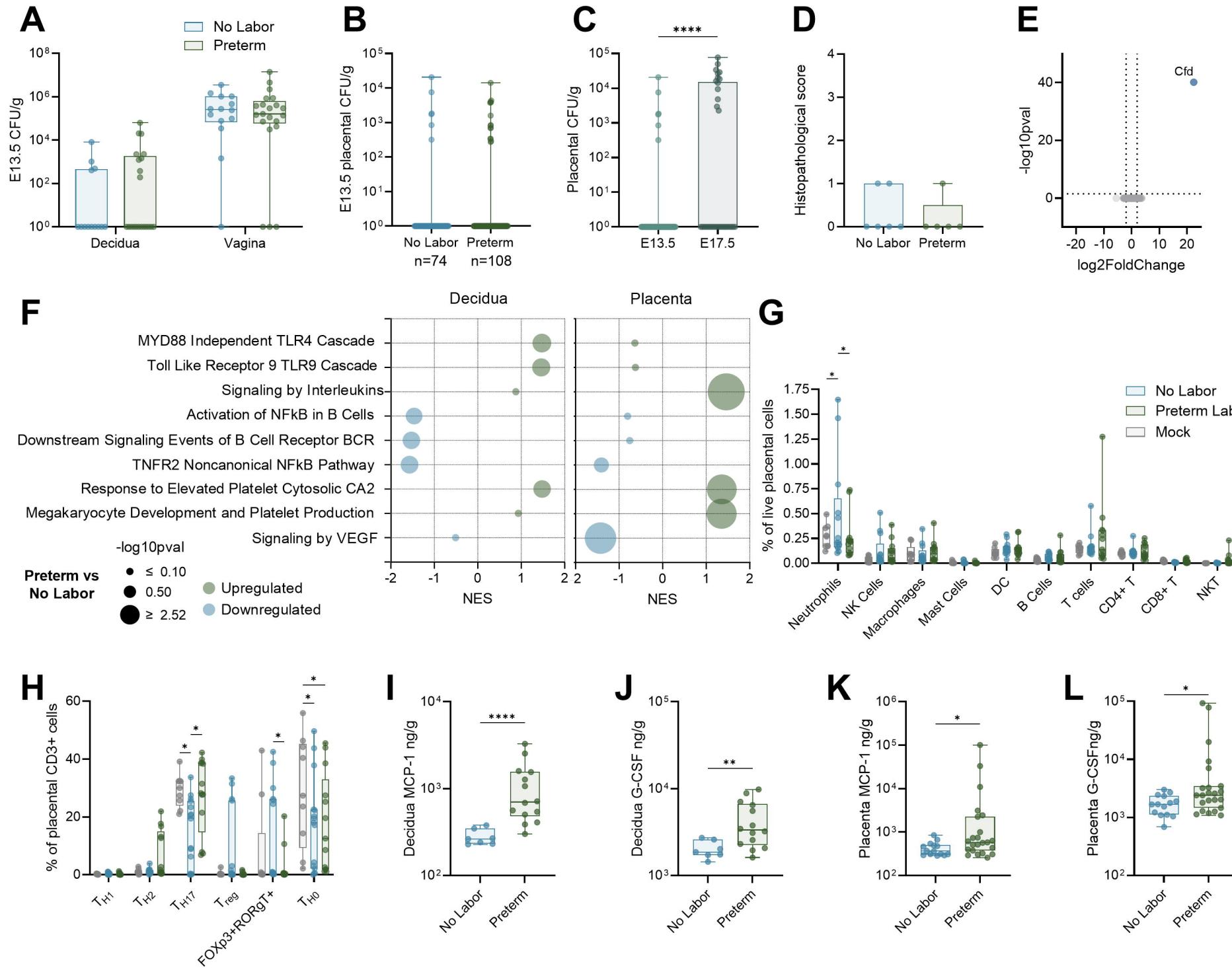
1067 Heat map comparing urinary cytokines from pregnant patients with asymptomatic bacteriuria
1068 (ASB), diagnosed urinary tract infection (UTI), or culture negative controls (**A**). Correlation of the
1069 log₂ transformation of urinary cytokines normalized to creatinine with gestational age at sample
1070 collection in patients with positive urine culture (**B-E**). Urinary cytokines normalized to creatinine

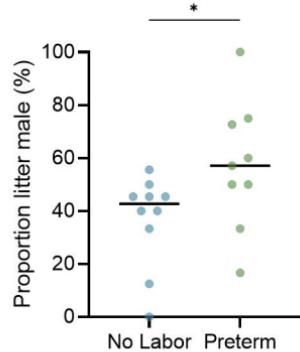
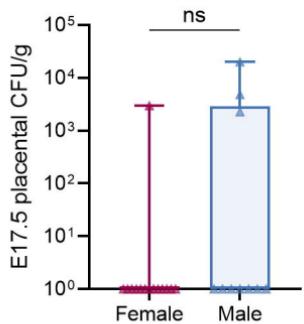
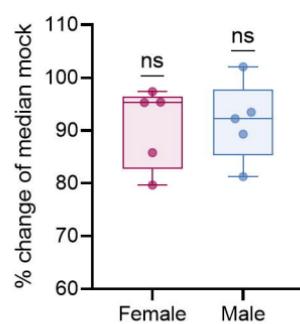
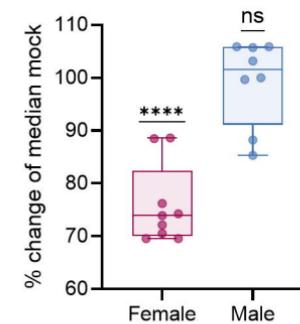
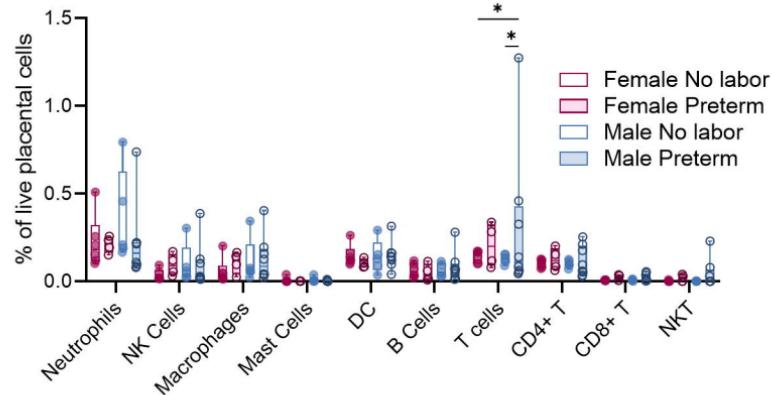
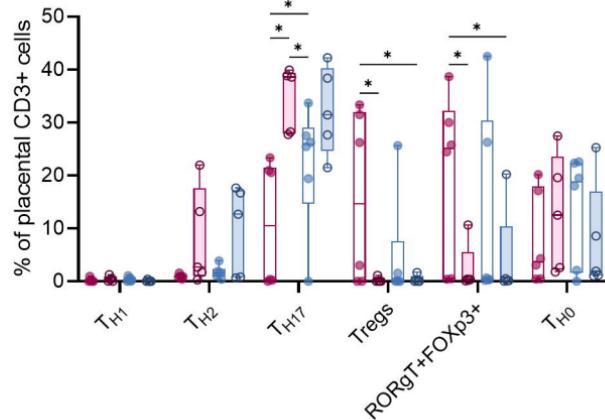
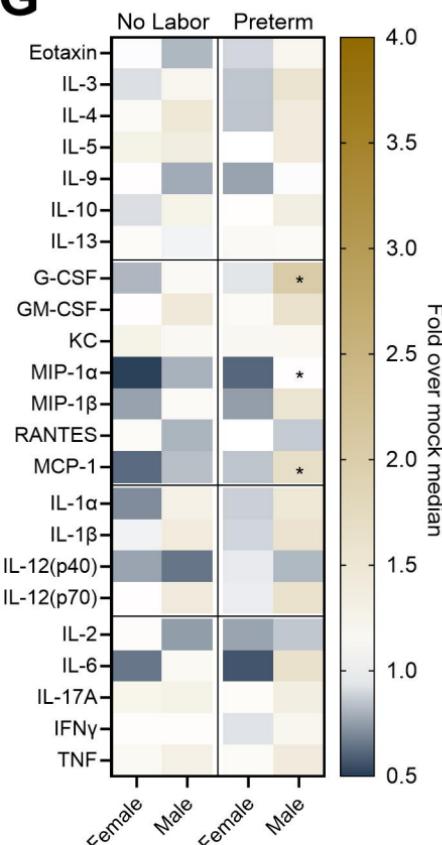
1071 stratified by fetal sex in bacterial culture negative samples (**F-H**). For all panels, samples that
1072 fell below the limit of detection were excluded. n=18-22 (A), n=35 (B), n=27 (C), n=37 (D), n=20
1073 (E), n=8-12 (F,G), n=8 (H). Box and whisker plots show median, all points, and extend from 25th
1074 to 75th percentiles. Data were analyzed by two-way ANOVA with Benjamini, Krieger and Yekutieli
1075 correction for false discovery with a false discovery rate set at 5% (A), simple linear regression
1076 (B-E), or Mann-Whitney (F-H). *p<0.05.

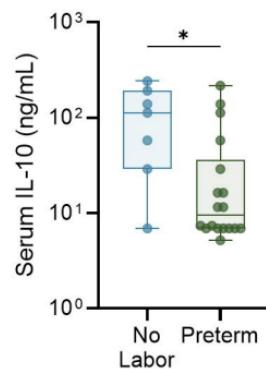
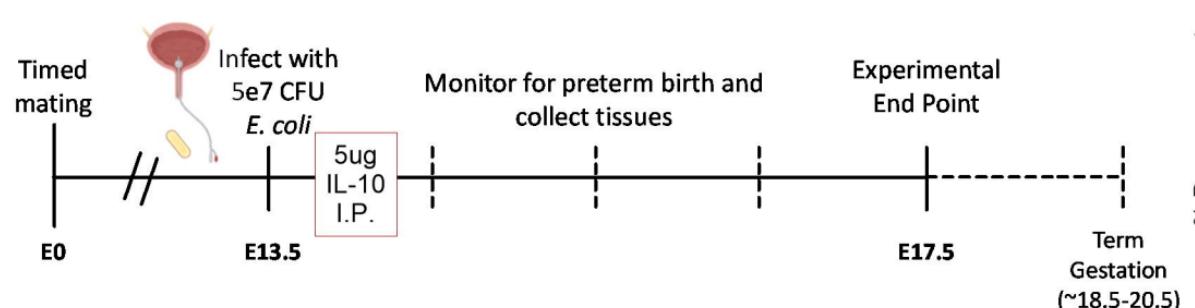
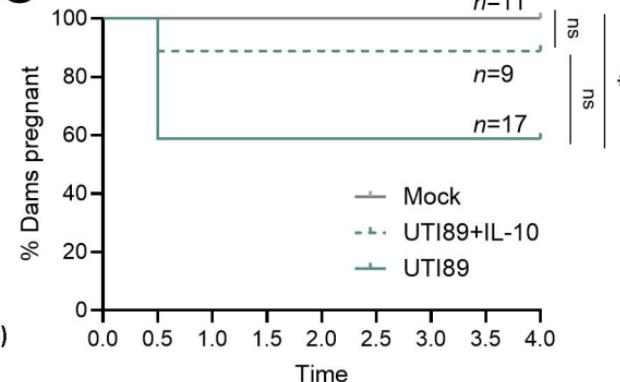
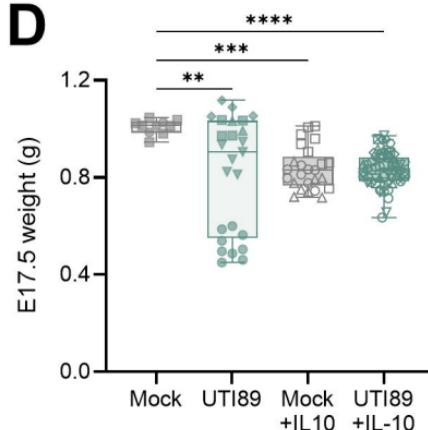
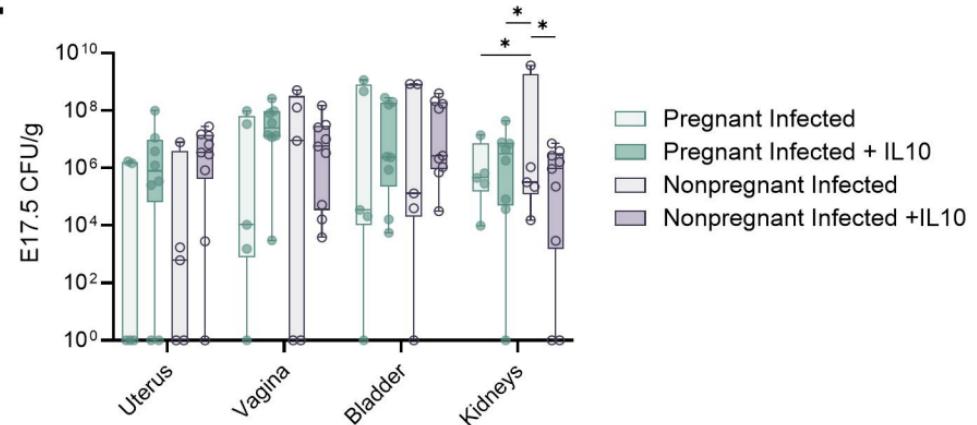
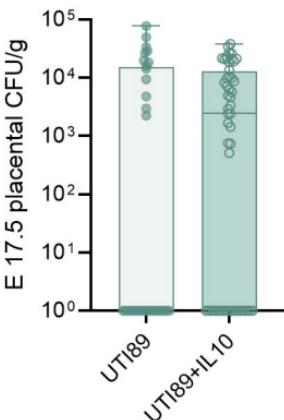











1077

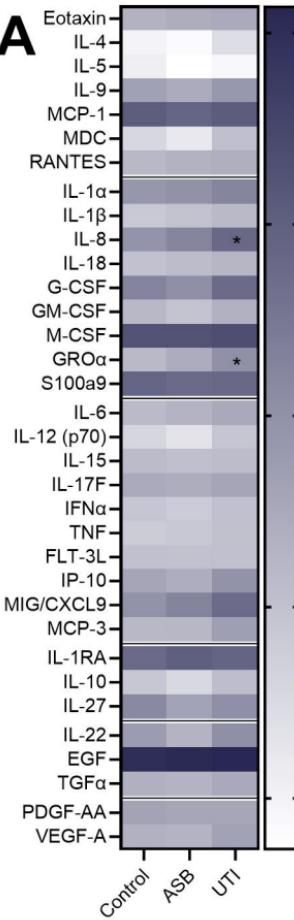
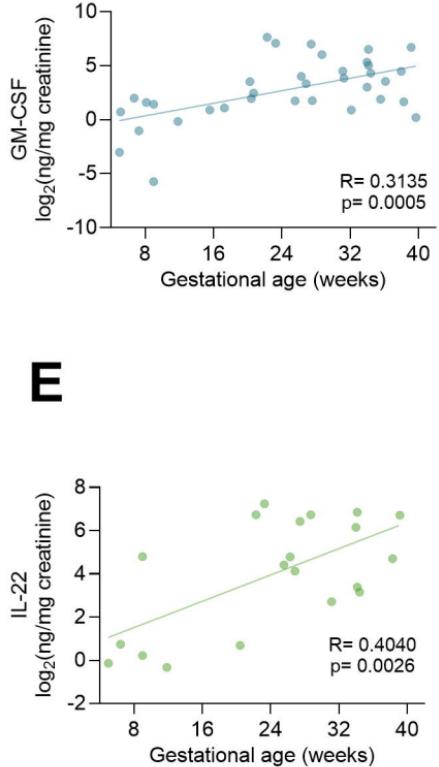
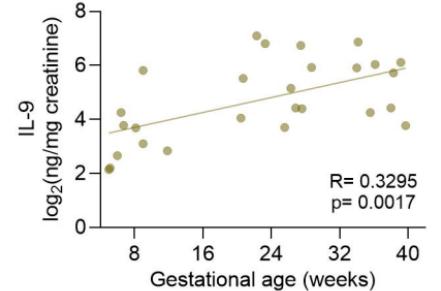
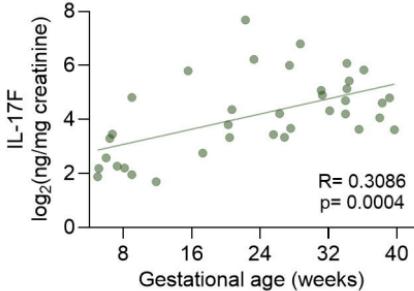
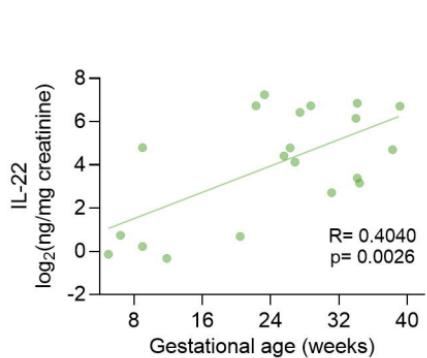
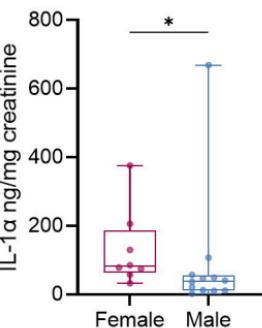
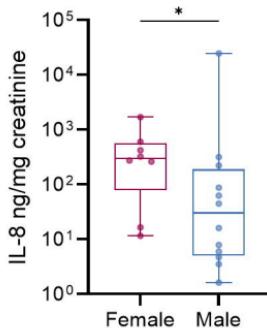
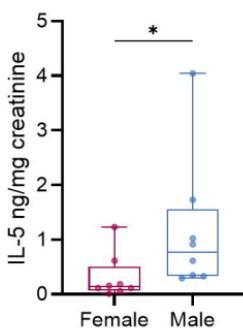









1078 **Figure 8. Urinary cytokines predict preterm birth risk.**

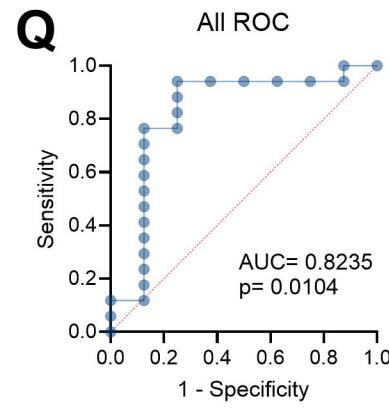
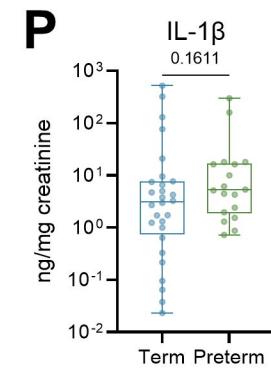
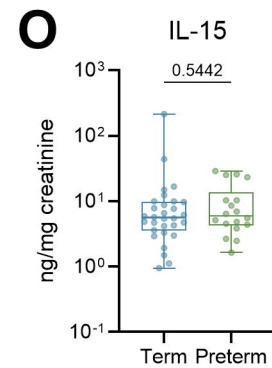
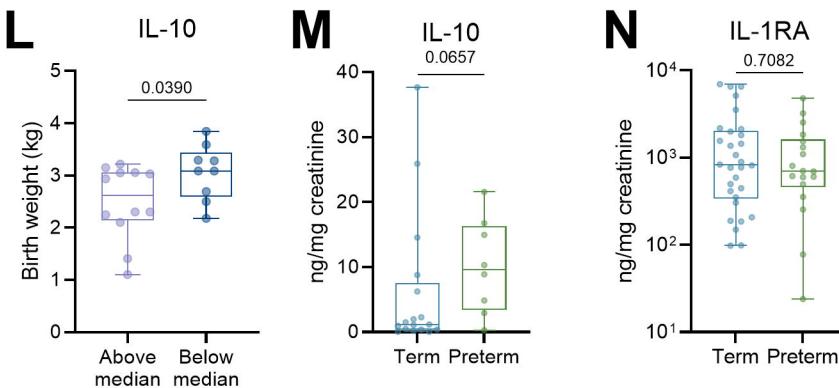
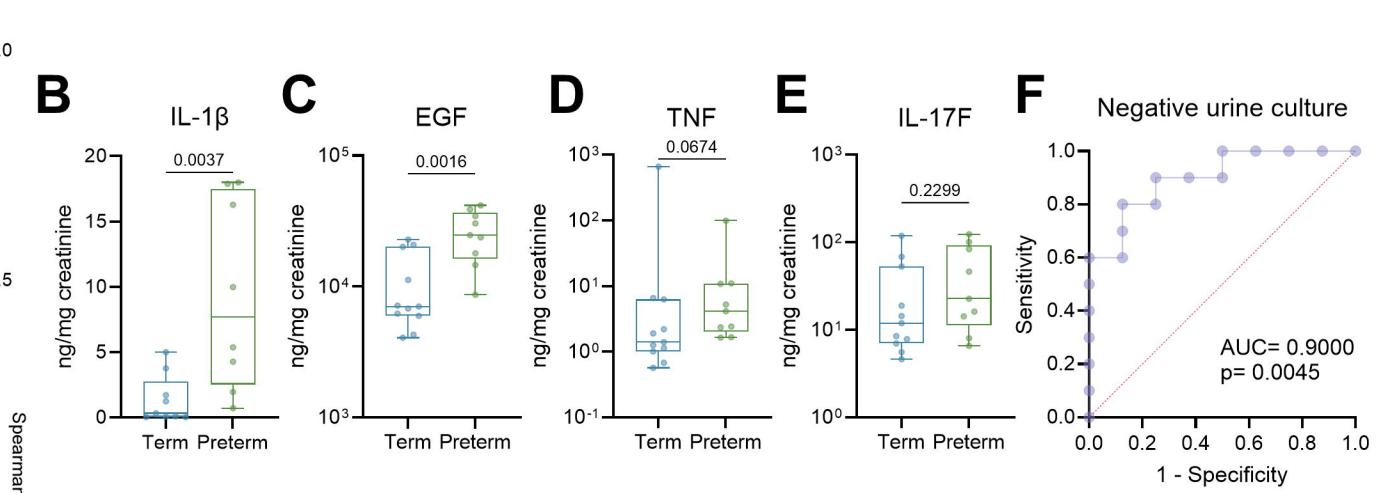
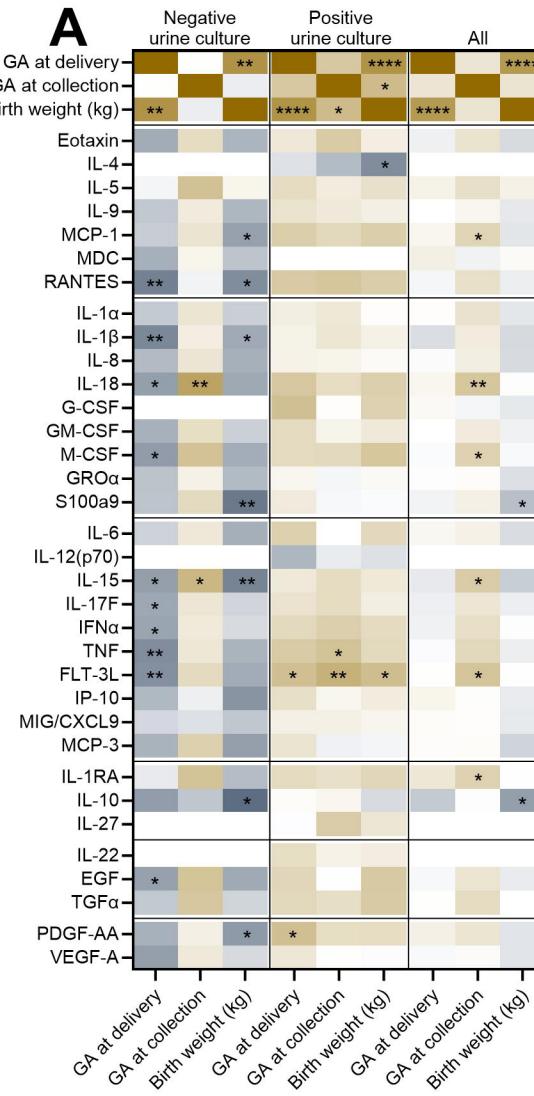









1079 Heatmap of Spearman correlations between log₂ transformation of 34 urinary cytokines
1080 normalized to creatinine and gestational age (GA) at sample collection, GA at birth, and birth
1081 weight (**A**). Urinary cytokine quantification stratified by birth outcome in culture negative
1082 samples (**B-E**). Receiver-operating characteristic (ROC) curve for a four-cytokine model to
1083 predict preterm birth risk in culture negative urine (**F**). Urinary cytokine quantification stratified by
1084 birth outcome in culture positive samples (**G-I**). ROC curve for a three-cytokine model to predict
1085 preterm birth risk in culture positive urine (**J**). Birth weight of neonates born to patients in this
1086 trial stratified as above or below the median cytokine concentration (**K,L**). Urinary cytokine
1087 quantification stratified by birth outcome in all samples regardless of culture (**M,N,O,P**). ROC
1088 curve for a four-cytokine model to predict preterm birth risk in all samples regardless of culture
1089 (**Q**). For all panels, samples that fell below the limit of detection were excluded. n=17-40 (A),
1090 n=7-8 (B), n=8-9 (C-E), n=17 (F), n=7-15 (G), n=6-14 (H), n=7-16 (I), n=23 (J), n=8-15 (K),
1091 n=16-24 (L,M,N), n=40 (O), n=8-12 (P), n=13-22 (Q). Box and whisker plots show median, all
1092 points, and extend from 25th to 75th percentiles. Data were analyzed by simple linear regression
1093 with spearman correlation (A), Mann-Whitney (B-E,G-I,K-O), or with multivariate logistic
1094 regression with test of significance for area under the ROC curve (F,J,Q).


1095







A**B****C****D****E****F****G****H****I****J****K**









A**B****C****D****E****F****G****H**







A**B****C****F****D****E****G****H****I**

A**B****C****D****E****F****G**

A**B****C****D****E****F**

A**B****C****D****E****F****G****H**

