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Abstract 1 

Disruption of the balance between excitatory and inhibitory neurotransmission (E-I 2 
balance) underlies theories of many neurodevelopmental disorders, however, its study 3 
is typically restricted to adults, animal models and the lab-bench. Neurophysiological 4 
oscillations in the gamma frequency band relate closely to E-I balance, and a new 5 
technology – OPM-MEG – offers the possibility to measure such signals across the 6 
lifespan. We used OPM-MEG to measure gamma oscillations induced by visual 7 
stimulation in >100 participants, aged 2-34 years. We demonstrate a significantly 8 
changing spectrum with age, with low amplitude broadband gamma oscillations in 9 
children and high amplitude band limited oscillations dominating in adults. We used a 10 
canonical cortical microcircuit to model these gamma signals, revealing significant age-11 
related shifts in E-I balance in superficial pyramidal neurons in visual cortex. Our 12 
findings detail the first MEG metrics of gamma oscillations and their underlying 13 
generators from toddlerhood, providing a benchmark against which future studies can 14 
contextualise. 15 
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Introduction 33 

The maintenance of a balance between excitatory and inhibitory neurotransmission (E-I 34 
balance) is essential for healthy brain function and its disruption underlies a range of 35 
psychiatric conditions, notably autistic spectrum disorder (ASD) (Nelson and Valakh, 36 
2015; Rubenstein and Merzenich, 2003; Sohal and Rubenstein, 2019). High frequency 37 
neurophysiological oscillations in the gamma range (>30 Hz) play a key role in 38 
information processing (Fernandez-Ruiz et al., 2023) and arise due to interactions 39 
between neuronal excitation and inhibition (Bartos et al., 2007; Vinck et al., 2013). Thus, 40 
measurement of gamma oscillations can provide a powerful metric of E-I balance (Gray 41 
et al., 1989; Gray and Singer, 1989; Whittington et al., 1995).  Despite this importance, 42 
our understanding of gamma oscillations, their developmental trajectory in early childhood 43 
and perturbation by disorders remains poorly characterised and this is largely due to 44 
instrumental limitations. Here, we use a new neurophysiological imaging platform to 45 
measure gamma oscillations in individuals from early childhood to adulthood and use a 46 
model of neural circuitry to investigate their underlying neural generators. 47 

Gamma oscillations can be measured non-invasively using either electro- or 48 
magnetoencephalography (EEG or MEG), with MEG providing more robust data. 49 
However, both techniques have limitations, particularly for children. In EEG, the gamma 50 
signal (which manifests as an electrical potential difference across the scalp surface) is 51 
diminished in amplitude and distorted spatially by the skull (Baillet, 2017). EEG gamma 52 
signals are also obfuscated by interference generated by non-neural sources such as 53 
muscles (Boto et al., 2019; Muthukumaraswamy, 2013) making it difficult to measure 54 
gamma reliably, particularly if subjects move (which is common in children). MEG, which 55 
measures magnetic fields generated by neural currents, is less affected by non-neural 56 
artefacts and has better spatial specificity than EEG (because magnetic fields are less 57 
distorted by the skull than electrical potentials). This means that gamma oscillations have 58 
a higher signal-to-noise ratio (SNR) and their origin can be better localised when using 59 
MEG rather than EEG (Muthukumaraswamy and Singh, 2013). Multiple studies argue 60 
that MEG is the measurement of choice for gamma oscillations (Gaetz et al., 2011; Hall 61 
et al., 2005; Muthukumaraswamy et al., 2010, 2009; Orekhova et al., 2015; Takesaki et 62 
al., 2016; Tan et al., 2016). However, MEG systems classically rely on cryogenically 63 
cooled sensors that must be fixed in position in a one-size-fits-all helmet. Such systems 64 
cannot cope with changing head size through childhood or large subject motion relative 65 
to the (static) sensors. Consequently, most extant MEG studies of gamma oscillations are 66 
limited to adults. 67 

As ASD has a typical diagnostic age of 3 years and above, if we are to understand its 68 
neural substrates, E-I imbalance (and gamma oscillations) must be measured reliably in 69 
children from <3 years of age and upwards. To this end, we measured the developmental 70 
trajectory of gamma oscillations using a new technology – optically pumped 71 
magnetometers (OPMs) (for a review see Schofield et al., 2022). OPMs uniquely allow 72 
MEG signals to be recorded using wearable helmets (Boto et al., 2018,; Hill et al., 2020), 73 
which adapt to different head sizes and enable movement during scanning. This provides 74 
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an ideal environment to gather high fidelity data in children, and studies have already 75 
shown that OPM-MEG can be used to measure neurophysiological signals in the early 76 
years of life (Corvilain et al., 2023; Hill et al., 2019) and that neurodevelopmental changes 77 
in neurophysiology can be assessed (Rier et al., 2024). This platform therefore offers the 78 
best chance for measurement of gamma oscillations and subsequent modelling of neural 79 
circuits, to understand how E-I balance changes with age.  80 

We characterised the neurodevelopmental trajectory of gamma oscillations from age two 81 
years to adulthood. We used a newly developed child-friendly OPM-MEG system to 82 
collect data during a visual task that is known to elicit gamma oscillations in primary visual 83 
cortex (Orekhova et al., 2018). These visual gamma effects have been associated with 84 
feature integration (Eckhorn et al., 1988; Gray et al., 1989), object representation (Tallon-85 
Baudry and Bertrand, 1999), and selective attention (Fell et al., 2003). Existing studies 86 
suggest these oscillations are altered in childhood (Gaetz et al., 2011; Orekhova et al., 87 
2018) (albeit in older children), in ASD (Orekhova et al., 2023), and twin studies suggest 88 
they are highly heritable, having a strong genetic component (Pelt et al., 2012). The 89 
cellular generators of visual gamma oscillations have been described (Spaak et al., 2012; 90 
Xing et al., 2012) by modelling the interaction between superficial pyramidal cells and 91 
inhibitory interneurons within V1. Similarly, we use a dynamic causal model (DCM) – 92 
based on a canonical cellular microcircuit (Shaw et al., 2017) – to investigate the 93 
contributions of inhibitory and excitatory neurotransmission to the gamma signal. We 94 
hypothesised that OPM measurement of gamma oscillations alongside DCM would 95 
demonstrate an E-I balance change as the human brain matures. 96 

 97 

Results 98 

OPM-MEG data were collected using either a 192-channel system (located at the Sir 99 
Peter Mansfield Imaging Centre, University of Nottingham, UK (UoN)) or an 80-channel 100 
system (located at SickKids Hospital, Toronto, Canada (SK)). The two systems had a 101 
similar design (Figure 1a; Cerca Magnetics Ltd. Nottingham, UK) and channels were 102 
located to ensure good coverage of the visual cortices. (See also supplementary 103 
information (SI) Table S1; Equivalence between systems is shown in Figure S1.) 104 

102 typically developing participants (aged 2 – 34 years; 44 male; see SI Table S2) took 105 
part in the study, which was approved by ethics review boards at both sites. Participants 106 
viewed visual stimuli comprising inward drifting circular gratings (moving at 1.2°𝑠ିଵ) 107 
(Figure 1b). A single experimental trial started with a white fixation cross located centrally 108 
on a black screen for 1.25 ± 0.2 s. This was followed by 1 s of stimulation. 60 trials were 109 
recorded per subject, and trials were interspersed with pictures of faces (data not shown). 110 

 111 
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 112 

Figure 1. Methods. a) An image of a child in the OPM-MEG system, b) the concentric circles visual 113 
stimulus and paradigm timing, which was presented for 60 trials. 114 

Following data pre-processing, one child participant was removed due to failure to acquire 115 
a complete 3D head digitisation (used for coregistration of the sensor locations to brain 116 
anatomy – see methods). We removed 13±9 (mean ± standard deviation) trials in 117 
children and 7±4 trials in adults due to excessive interference. Trials were then matched 118 
across age groups by randomly selecting and removing additional trials in adults and 119 
older children, this resulted in each age group having an average of 43 trials. On average 120 
we had 159±11 (mean ± standard deviation) channels of data at UoN, and 78±3 121 
channels at SK. All data were processed using spatial filtering to derive images showing 122 
the spatial signature of task induced change in neural oscillations, and time-frequency 123 
representations of neurophysiological activity at locations of interest in visual cortex.  124 

Gamma oscillations change with age: Figures 2a-f, show the spatial and spectro-125 
temporal signatures of gamma activity for all participants. Data were separated into six 126 
age groups and, for all groups, an image showing the spatial distribution of gamma 127 
modulation is shown (as a red overlay on the standard brain, averaged across subjects). 128 
Time-frequency-spectra (TFS) extracted from the location of peak gamma modulation are 129 
also shown. In the TFS, yellow indicates a task-induced increase in oscillatory amplitude 130 
relative to baseline, whereas blue indicates a decrease (baseline was measured in the     131 
-0.8 – -0.1 s window prior to stimulation onset).   132 

We saw no significant difference in the location of the visual gamma response with age 133 
(see Figure 2g) in any axis. We did however see a changing spectro-temporal picture with 134 
age. In younger subjects we saw a task induced broadband gamma increase. As children 135 
age, the broadband response remains, and we also observed bimodal gamma activity, 136 
most prominent at around 35 Hz and 70 Hz. This further evolved to a broad band 137 
response with additional high amplitude narrow band activity at around 60 Hz in adults. 138 
This is consistent with previous literature (Bharmauria et al., 2016; Murty et al., 2018; Ray 139 
and Maunsell, 2011). 140 
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 141 
Figure 2. Age-group-specific time-frequency spectrograms show neurodevelopment of gamma 142 
oscillations. Participant averaged pseudo-T statical images of gamma modulation are shown in red (4mm 143 
resolution) overlaid on the standard brain. The time frequency spectrograms show group averaged 144 
oscillatory dynamics from the location of largest gamma modulation in visual cortex. a) 2–4-year-olds 145 
(n=23), b) 5–8-year-olds (n=15), c) 9–13-year-olds (n=12), d) 21–24-year-olds (n=19), e) 25–28-year-olds 146 
(n=18) and f) 29–34-year-olds (n=14) (ages are inclusive). Note the evolution of spectral signature with age. 147 
g) Ellipsoids describing the mean and standard deviation of the coordinates of the largest gamma 148 
modulation for all age groups. We saw no significant difference in the location of the visual gamma response 149 
with age in any axis (p=0.36, p=0.92 and p=0.52 for x,y and z axes, measured using Pearson correlation 150 
to test for a systematic shift in spatial localisation due to age). 151 
  152 
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 153 
Figure 3. Gamma amplitude changes with age. The stimulus induced relative change in oscillatory 154 
amplitude from baseline is plotted against frequency for the 6 age groups (a). The relative change was 155 
measured in the 0.3 – 1 s window post-stimulus compared to the -0.8 s to -0.1 s baseline period. Lines 156 
show the group mean with shading representing standard error. The inset scatter plots (b, c and d) show 157 
relative change for all individuals in the study plotted against age (colour indicating age group), with straight 158 
lines fitted to the data. Specifically, we show data in the frequency ranges 11-15 Hz (b) (𝑅 = −0.16, 𝑝 =159 
0.1129); 29-33 Hz (c) (𝑅=-0.1, p = 0.3090) and 51-55 Hz (d) (𝑅 = 0.57, 𝑝 = 6.6 × 10ିଵ଴). The star (*) 160 
indicates uncorrected significance (p < 0.05) and (**) indicates significance following Bonferroni correction 161 
with a threshold of p < 0.0011 to account for 44 comparisons across different frequency bands. 162 
 163 
Figure 3 formalises the data in Figure 2 by demonstrating statistical significance of the 164 
observed spectral changes. The central graph shows stimulus induced relative change in 165 
oscillatory amplitude, for the 6 age groups, plotted against frequency. This was calculated 166 
by contrasting the 0.3 – 1 s window (during stimulation) to the -0.8 – -0.1 s (rest) window 167 
(Campbell et al., 2014). The inset plots show relative change in oscillatory amplitude, for 168 
individual participants, for frequency bands 11-15 Hz, 29-33 Hz and 51-55 Hz. Here, each 169 
data point represents a single individual in the study and data are plotted against age. 170 
Pearson correlation showed a significant (R = 0.57, 𝑝 = 6.6 × 10ିଵ଴) increase in spectral 171 
amplitude with age in the 51-55 Hz (gamma) range. There was no significant effect, 172 
however, at 11-15 Hz (alpha frequency range) or 29-33 Hz (low gamma) (R = −0.16, 𝑝 =173 
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0.1129 and R = −0.1, p = 0.3090, respectively). This is consistent with a stimulus induced 174 
broadband gamma increase at all ages, and emergent narrowband effects in adults.  175 

DCM suggests E-I balance drives spectral changes:  176 

 177 

Figure 4. DCM suggests E-I balance underlies age related spectral differences. a) The canonical 178 
microcircuit model describes the relative contribution of cells within the cellular column. The model takes 179 
spectral input from data in visual cortex and fits a set of parameters (G1 – G12) which describe the relative 180 
contribution of the different neuronal assemblies to the measured signal. Excitatory signals are indicated 181 
by blue and inhibitory in orange. b) Average (across all subjects) absolute difference spectrum between 182 
active and control windows, with canonical frequency bands highlighted (alpha in blue, beta in green and 183 
gamma in red). c) Correlation of the model derived ‘G parameters’ with age. Significant age-relations were 184 
observed in G5 and the ratio of parameters G11 and G12. d) Scatter plots for G5 (excitatory); the E-I ratio 185 
of G11 and G12, and G11 (inhibitory) and G12 (excitatory) individually. The star (*) indicates uncorrected 186 
significance (p < 0.05) and (**) indicates significance following Bonferroni correction with a threshold of       187 
p < 0.0056 to account for 9 comparisons across parameters. 188 
 189 
A local spectral DCM, optimised for V1 (Shaw et al. 2017), was used to determine how 190 
inhibitory and excitatory activity drives the observed changes in gamma oscillations 191 
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between children and adults. Briefly, the individual subject difference spectra (between 192 
task and rest) were extracted. The absolute values were derived and fitted to a model 193 
which optimises a set of parameters describing how contributions from different cellular 194 
assemblies, in different cortical layers, contribute to the observable signal. This model, 195 
which is summarised by Figure 4a, has been verified in recent literature using adult MEG 196 
recordings and pharmacological intervention (Shaw et al., 2020, 2017). Figure 4b shows 197 
the average (absolute) difference spectrum (between stimulation and rest) for all 198 
participants, highlighting the gamma change. Similar spectra (for individuals) were used 199 
to fit the DCM. A linear regression model, covarying for sex (Fung et al., 2021), was used 200 
to investigate the relationship between age and the model parameters. We also 201 
investigated the ratio between parameters in the superficial layer (G11/G12) to probe the 202 
hypothesized E-I balance specifically related to visual gamma (Shaw et al., 2017). Figure 203 
4c shows the results, with significant age relations in parameters G5 (describing the 204 
excitatory output from spiny stellate cells to inhibitory interneurons) and the ratio between 205 
G11 and G12 (which represent the inhibitory and excitatory connections between 206 
superficial pyramidal neurons and inhibitory inter-neurons) following correction for 207 
multiple comparisons. Figure 4d shows scatter plots of model parameters (G5, G11/G12, 208 
and G11 and G12 individually) with age; notice that inhibition tends to increase, and 209 
excitation decrease. 210 

Alpha suppression shifts in frequency with age:  211 

Finally, for completeness, we assessed how age affects stimulus induced change of alpha 212 
oscillations. Figure 5a shows the spatial signature of alpha suppression (in blue, overlaid 213 
on the standard brain) alongside the TFS data from the locations of largest task induced 214 
alpha modulation, across the age groups. Note that these regions differ from those of 215 
maximum gamma change, and consequently the gamma change is less prominent. Note 216 
that alpha modulation is clear in all groups.  217 

In Figure 5B, the spectrum shows relative change in oscillatory amplitude from baseline 218 
as a function of frequency (including a zoomed in area over the alpha band). The inset 219 
scatter plots show relative change, for individual participants, for the frequency bands 5-220 
9 Hz, 9-13 Hz and 11-15 Hz. We found no change in alpha modulation for the 9-13 Hz 221 
canonical alpha band. However, we saw increased (more negative) 5-9 Hz modulation in 222 
younger participants (though this was non-significant following correction for multiple 223 
comparisons) and increased 11-15 Hz modulation for older participants. This is in broad 224 
agreement with the widespread finding that the alpha rhythm’s peak frequency tends to 225 
increase with age (Miskovic et al., 2015). 226 
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 227 

Figure 5. Alpha suppression remains across ages. a) Pseudo-T statistical maps and time-frequency 228 
spectrograms from the locations of peak of alpha suppression. Data are divided by age group. b) Relative 229 
change in oscillatory amplitude as a function of frequency. The inset scatter plots show how stimulus 230 
induced amplitude change differs for individuals in the c) 5-9 Hz range (𝑅 = 0.25, 𝑝 = 0.0122), d) 9-13 Hz 231 
range (𝑅 = −0.1, 𝑝 = 0.3170 and e) 11-15 Hz range (𝑅 = −0.34 𝑝 = 4.7 × 10ିସ) bands (colour indicating 232 
age group). Adults show a significantly larger alpha suppression in the 11-15 Hz range. This is consistent 233 
with alpha modulation being lower frequency in younger participants. The star (*) indicates uncorrected 234 
significance (p < 0.05) and (**) indicates significance following Bonferroni correction with a threshold of       235 
p < 0.0011 to account for comparison across 44 frequency bands. 236 
  237 
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Discussion 238 

E-I balance (or imbalance) underpins healthy and atypical brain function and its 239 
characterisation could provide useful insights into neurodevelopmental disorders (Sohal 240 
and Rubenstein, 2019). While in-vitro and animal studies form the basis of such models, 241 
the ability to non-invasively characterise E-I balance using imaging offers a means to 242 
bridge the gap between experimental animal and in-vivo human physiology. Gamma 243 
oscillations provide a window on E-I balance, yet the formation and developmental 244 
trajectory of gamma oscillations in humans, through the early years of life, remains poorly 245 
understood. This study is the first to capitalize on the potential of OPM-MEG for the 246 
investigation of gamma oscillations from toddlerhood to adulthood, and the first to apply 247 
a DCM to OPM data to explore the neurochemical underpinnings of gamma signals.  248 

Using a well-established visual paradigm, we showed that age has a significant impact 249 
on the spectro-temporal neurophysiological response from visual cortex. In the 250 
broadband gamma frequency range (30-80 Hz), low-amplitude oscillations are present, 251 
even in early life and appear to remain to adulthood. However, in later childhood we see 252 
a multi-spectral response, followed by higher-amplitude band limited oscillations (at ~60 253 
Hz) which emerge in adulthood. This latter finding (in adults) is in strong agreement with 254 
previous studies (Hoogenboom et al., 2006; Muthukumaraswamy et al., 2010). Statistical 255 
analyses showed a significant increase in oscillatory amplitude with age in the 51 – 55 Hz 256 
window. Despite these significant spectral changes, we saw no measurable shift in the 257 
spatial origin of gamma oscillations with age, with the maximum signal consistently 258 
localised to primary visual cortex. Our results also highlight that visual gamma, even in 259 
adults, has high inter-individual differences and this agrees with other studies employing 260 
similar paradigms (e.g. (Muthukumaraswamy et al., 2010)). We examined suppression of 261 
alpha amplitude during visual stimulation, which was relatively stable across age groups. 262 
In the 9 – 13 Hz band, alpha suppression showed no significant relationship with age; this 263 
provides a key validation of data quality across our dataset (i.e. if data were of poorer 264 
quality in younger participants, we would likely see a drop in alpha suppression in those 265 
individuals, which is not the case). We did however see a trend towards increased 5-9 Hz 266 
modulation in younger participants, and significantly increased 11-15 Hz modulation in 267 
adults. This is in good agreement with other studies (Miskovic et al., 2015) which show a 268 
shift in alpha peak frequency with age (albeit typically in resting state data), with younger 269 
subjects tending to have a lower alpha frequency. This provides further verification of our 270 
data quality. 271 

Our DCM shows how age-related changes in gamma oscillations are driven by a neural 272 
circuit that matures with age. Results suggest that several parameters demonstrate an 273 
age dependency. Specifically, excitatory signals from spiny stellate cells to inhibitory 274 
interneurons (parameter G5), and the relative inhibitory vs. excitatory signalling from 275 
superficial pyramidal neurons to inhibitory interneurons (the ratio of parameters G11 and 276 
G12) both significantly increased in adults compared to children. Previous work has 277 
demonstrated that G5 relates to beta and gamma amplitudes (Shaw et al. 2017) and so 278 
this is in strong agreement with our spectral results, where we showed increased gamma 279 
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amplitude in older participants. An increase in the ratio between G11 and G12 supports 280 
our initial hypothesis that maturation would see a change in E-I balance (Larsen et al., 281 
2022), such that inhibition in the superficial layer of the visual cortex increases, while 282 
excitation decreases, as children grow up. This is likely due to an increase in gamma 283 
aminobutyric acid (GABA) (Jansen et al., 2010) and a relative decrease in glutamate 284 
(Hädel et al., 2013). We are the first to implicate these age-related changes via 285 
assessment of visual gamma oscillations. 286 

This study provides an important foundational step in the measurement of E-I balance via 287 
gamma oscillations in neurodevelopment. However, there are limitations which should be 288 
addressed. Firstly, OPM-MEG systems remain new technology; OPMs have a higher 289 
noise floor than conventional MEG sensors, and the number of measurement channels 290 
is lower (again compared to conventional MEG instrumentation). However, we did use 291 
helmets which are lightweight, allow subject movement, and come in multiple sizes 292 
enabling adaptation for age. This alleviates confounds of SNR change with age and 293 
movement – which (anecdotally) was large in children. We believe this study would not 294 
have been possible using either conventional MEG (due to confounds of head size and 295 
movement) or EEG (due to gamma oscillations being obfuscated by muscle artifacts). 296 
Importantly, OPM systems are still under development, and it is highly likely that sensor 297 
density (Hill et al., 2024) and noise floor will improve with time, meaning OPM-MEG will 298 
likely become the technique of choice for high-fidelity characterisation of brain function in 299 
neurodevelopment in the future. Secondly, to increase participant numbers, data were 300 
collected from two sites, potentially introducing a confounding effect of scanner 301 
configuration. To mitigate this, we matched recording conditions as far as possible, and a 302 
cross-site comparison within our adult groups (Figure S1) showed no significant 303 
differences between sites. Further, at both sites we studied children and adults, meaning 304 
any measurable age-related differences are unlikely to be driven by site. We, therefore, 305 
think it unlikely that our results could be affected by the cross-site nature of recordings; 306 
indeed, the fact that we were able to demonstrate cross-site reliability is extremely 307 
positive to accelerate the (already rapid) uptake of OPMs and to support the collection of 308 
new large, across-site datasets. A final limitation is that we have a non-uniform range of 309 
participant age; whilst this was enough to demonstrate significant age-related changes, 310 
the addition of adolescents and older adults to this study would likely enable elucidation 311 
non-linear trajectories. Future work should aim to fill these gaps. 312 

An imbalance in excitatory and inhibitory neurotransmission underlies current theories for 313 
the pathophysiological underpinnings of neurodevelopmental and psychiatric disorders. 314 
However, the study of these signals has been limited by technology, restricting most 315 
studies to adults, animal models and the lab benchtop. OPM-MEG lifts these constraints, 316 
allowing us to measure signals relating to E-I balance directly, and from early life. We 317 
have demonstrated this important milestone and our results – which show significant 318 
changes in gamma oscillations and E-I balance with age - offer insight into early cortical 319 
maturation and provide a typically developing standard, from which clinical applications 320 
can be explored. 321 
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Online Methods 322 

Data Acquisition 323 

The UoN OPM array comprised 64 triaxial OPMs (3rd generation QZFM; QuSpin, 324 
Colorado, USA) enabling up to 192 channels of magnetic field measurement. The SK 325 
system comprised 40 dual-axis OPMs (3rd generation QZFM; QuSpin), enabling up to 80 326 
channels of magnetic field measurement.  327 

In both systems, sensors were combined to form an array and integrated with other 328 
hardware (e.g. for magnetic field control) and software (e.g. for stimulus delivery and data 329 
acquisition) to form two complete MEG systems (Cerca Magnetics Ltd, Nottingham UK). 330 
Specifically, sensors were mounted in rigid 3D-printed helmets (five sizes were available). 331 
Participants wore a thin aerogel cap or had insulating padding under the helmet for 332 
thermal insulation. Participants were seated in a patient support at the centre of a 333 
magnetically shielded room (MSR). The UoN system was housed in an OPM-optimised 334 
MSR which comprises 4 layers of mu-metal, one layer of copper, and is equipped with 335 
degaussing coils. The SK system was housed in a repurposed MSR from a cryogenic-336 
MEG system which comprised two layers of mu-metal and one layer of aluminium 337 
(Vacuumschmelze, Hanau, Germany). In both systems, bi-planar coils (Cerca Magnetics 338 
Limited) surrounded the participants to provide active magnetic field control (Holmes et 339 
al., 2018). In the UoN instrument, coil currents were applied to cancel out the residual 340 
(temporally static) magnetic field (Rea et al., 2022; Rhodes et al., 2023; Rier et al., 2024). 341 
At SK (where time-varying field shifts were larger) a reference array provided dynamic 342 
measurement of the environmental magnetic field and feedback to the bi-planar coils 343 
enabled real-time compensation of both static and dynamic magnetic field changes 344 
(Holmes et al., 2019). Equivalent data from these two systems have been demonstrated 345 
previously (Hill et al., 2022). In both systems, participants were free to move throughout 346 
data acquisition (but were not encouraged to do so). Data were collected at a sampling 347 
rate of 1200 Hz, from all sensors, using a National Instruments (NI, Texas, US) data 348 
acquisition system interfaced with LabView (NI).  349 

For coregistration of sensor geometry to brain anatomy, two 3D digitisations of the 350 
participant’s head (with and without the OPM helmet) were acquired using a structured 351 
light camera (Einscan H, SHINING 3D, Hangzhou, China). These digitisations, coupled 352 
with accurate knowledge of the helmet structure from its computer aided design (CAD) 353 
allowed knowledge of the sensor locations/orientation relative to the head. They also 354 
enabled generation of a ‘pseudo-MRI’ which provided an approximation of the underlying 355 
brain anatomy (for more details see (Rier et al., 2024)). Briefly, age-matched template 356 
MRIs (Richards et al., 2016) were warped to the individual participant’s 3D head 357 
digitisation using FSL FLIRT (Jenkinson et al., 2002). For some of the youngest 358 
participants, head digitisation failed and so the age-matched templates were used as the 359 
pseudo-MRI without warping. 360 

 361 
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Participants and Paradigm: 362 

The study was approved by the local research ethics board committee at both sites. All 363 
adult participants provided written informed consent. A legal guardian for all participants 364 
under 18 years provided the written informed consent and the child gave verbal assent. 365 
27 children and 26 adults took part in the study at UoN; 24 children and 26 adults were 366 
scanned at SK. Children were always accompanied by a parent and at least one 367 
experimenter inside the MSR. Adult data were sex- and age-matched across the two sites 368 
to enable a cross-site comparison.  369 

Visual stimulation comprised an inwardly moving drifting circular grating. The grating was 370 
displayed centrally and subtended a visual angle of 7.6°. A single trial comprised           371 
1000 ms of stimulation followed by a jittered rest period of 1250 ± 200 ms. 60 trials in total 372 
were shown and these ‘circles’ trials were interspersed with images of faces (data not 373 
included). Precise timing of the onset and offset of stimulation was sent from the stimulus 374 
PC to the OPM-MEG system via a parallel port. 375 

Data Analysis: 376 

Data processing was identical at both sites. Bad channels (those that either had high 377 
noise or zero signal) were identified by manual inspection of the channel power spectra 378 
and removed. Data were notch filtered at the powerline frequency (50 Hz for UoN and 60 379 
Hz for SK) and 2 harmonics. A 1 – 150 Hz band pass filter was applied, following which, 380 
data were epoched to 3 s trials encompassing 1 s prior to the onset of the “circle” and      381 
2 s after. Bad trials were identified as those with trial variance greater than 3 standard 382 
deviations from the mean and were removed. Visual inspection was carried out and any 383 
further trials with noticeable artefacts were removed. ICA was used to remove eye blink 384 
and cardiac artefacts (implemented in FieldTrip (Oostenveld et al., 2011)) and 385 
homogeneous field correction (HFC) was applied to reduce interference that manifests 386 
as a spatially homogeneous field (Tierney et al., 2021). 387 

We used an LCMV beamformer to project magnetic fields recorded at the sensors into 388 
estimates of current dipole strength in the brain (Van Veen et al., 1997). The forward 389 
model was constructed using a single-shell model (Nolte, 2003), fitted to the pseudo-MRI 390 
and implemented in FieldTrip (Oostenveld et al., 2011). Voxels were placed on an 391 
isotropic 4-mm grid covering the whole brain, and an additional 1-mm isotropic grid 392 
covering the visual cortex (identified by dilating a mask of the left and right cuneus from 393 
the AAL atlas (Hillebrand et al., 2016; Tzourio-Mazoyer et al., 2002) with a 5 mm spherical 394 
structuring element). Covariance matrices were generated using 1-150 Hz broadband 395 
data spanning all circles trials (excluding bad trials), regularized using the Tikhonov 396 
method with a regularization parameter of 5% of the maximum eigenvalue of the 397 
unregularized matrix (Brookes et al., 2008). This matrix was used to compute the 398 
beamformer weighting parameters used for all subsequent calculations. 399 

Pseudo-T statistical images were constructed by contrasting either alpha or gamma 400 
power during stimulation and rest. Specifically, we derived four additional covariance 401 
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matrices (𝑪ைே_௔௟௣௛௔, 𝑪ைிி_௔௟௣௛௔, 𝑪ைே_௚௔௠௠௔ and 𝑪ைிி_௚௔௠௠௔ ). For the gamma matrices, 402 
we used 30 – 80 Hz filtered data and for alpha band we used 6 – 14 Hz filtered data. The 403 
ON window was 0.3 – 1 s and the OFF window was -0.8 – -0.1 s (timings relative to the 404 
onset of the circle. 405 

TFSs showing neurophysiological activity at the locations of maximum gamma/alpha 406 
modulation (identified using the 1-mm resolution images) were derived. TFS data in the 407 
1 – 100 Hz frequency range were generated by first sequentially filtering broadband 408 
beamformer projected data into 45 overlapping frequency bands (2 Hz separation, 4 Hz 409 
bandwidth). For each band, the Hilbert transform was computed to give the analytic 410 
signal; the absolute value was computed to derive a measure of instantaneous oscillatory 411 
amplitude, and these ‘Hilbert envelopes’ were averaged across trials and concatenated 412 
in the frequency dimension. For each band, a mean baseline amplitude was taken (in the 413 
-0.8 s to -0.1 s) window and subtracted. Data were then normalised by the baseline values 414 
to give a measure of relative change in amplitude. These data were collapsed in time to 415 
give spectral relative change (i.e. Figures 3 and 5). In all cases, we investigated the 416 
statistical relations between age and amplitude modulation using Pearson correlation. 417 

DCM: Neurophysiologically informed modelling was performed using dynamic causal 418 
modelling (DCM) for steady-state responses implemented in SPM8 (Moran et al., 2009; 419 
Shaw et al., 2017). The canonical microcircuit structure (CMC, shown in Figure 4a) 420 
describes a simplified model that strikes a balance between biological reality and 421 
complexity that can be modelled. The model estimates membrane potentials and 422 
postsynaptic currents of cell populations through differential equations. We differ here 423 
from the analysis described in Shaw et al. 2017 by using relative spectra rather than pre-424 
whitening by removal of the 1/f profile, as this proved advantageous for OPM data, where 425 
absolute spectra are more prone to noise (see also Discussion). Relative spectra from 426 
the beamformer estimated time series at the peak gamma modulation were calculated by 427 
taking the power spectral density (PSD) of data during the stimulus (0.3 – 1 s) minus the 428 
PSD of data during the rest (-0.8 to -0.1 s) windows. Spectra are normalised such that 429 
the area under the global average equals 1, but relative peak height is preserved. Model 430 
priors are determined from the global average and parameters that have little or no effect 431 
(G1, G3, G10 and G13) are held constant as in prior work (Shaw et al., 2017). Finally, we 432 
separately model the alpha peak frequency using a single Gaussian (constrained to 8 to 433 
13 Hz) and remove this, as the model is capable of generating clear beta and gamma 434 
peaks but alpha is thought to be generated over more extensive circuity (Bastos et al., 435 
2014). These processes allow the DCM to estimate the G parameters that result in the 436 
measured beta and gamma responses. 437 

  438 
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Data and code availability 439 

Data from UoN will be made available on Zenodo. Data from SickKids will be available 440 
through Ontario Brain Institute. OPM analysis code will be made available on GitHub 441 
(https://github.com/nsrhodes/gamma_opm_2024). Dynamic causal modelling was 442 
performed using a variant of DCM-SSR in SPM8 and code will be made available upon 443 
request. 444 
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