

1 **Small mammals in biodiversity hotspot harbor viruses of epidemic**
2 **potential**

3 Yun Feng^{1,2,†}, Guopeng Kuang^{2,†}, Yuanfei Pan³, Jing Wang^{4,5,6}, Weihong Yang², Wei-chen
4 Wu^{4,5,6}, Hong Pan², Juan Wang,² Xi Han², Lifen Yang², Gen-yang Xin^{4,5,6}, Yong-tao
5 Shan^{4,5,6}, Qin-yu Gou^{4,5,6}, Xue Liu^{4,5,6}, Deyin Guo⁷, Guodong Liang⁸, Edward C.
6 Holmes^{9,10*}, Zihou Gao^{2*}, and Mang Shi^{4,5,6,11*}

7

8 ¹State Key Laboratory of Remote Sensing Science, Center for Global Change and Public
9 Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China.

10 ²Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute
11 of Endemic Disease Control and Prevention, Dali, China.

12 ³Ministry of Education Key Laboratory of Biodiversity Science and Ecological
13 Engineering, School of Life Sciences, Fudan University, Shanghai, China.

14 ⁴National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases,
15 Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.

16 ⁵State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun
17 Yat-sen University, Shenzhen, China.

18 ⁶Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of
19 Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen,
20 China.

21 ⁷State Key Laboratory of Respiratory Disease, National Clinical Research Center for
22 Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated

23 Hospital of Guangzhou Medical University, Guangzhou, China.

24 ⁸Department of Arbovirus, National Key Laboratory of Intelligent Tracking and
25 Forecasting for Infectious Diseases, National Institute for Viral Disease Control and
26 Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

27 ⁹School of Medical Sciences, The University of Sydney, Sydney, New South Wales,
28 Australia.

29 ¹⁰Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China.

30 ¹¹Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.

31

32 [†]These authors contributed equally: Yun Feng, Guopeng Kuang

33 ^{*}Correspondence: Mang Shi (shim23@mail.sysu.edu.cn); Zihou Gao (yngzh@126.com);
34 and Edward C. Holmes (edward.holmes@sydney.edu.au)

35 **ABSTRACT**

36 Metagenomic sequencing has transformed our understanding of viral diversity in wildlife
37 and its threat to human health. Despite this progress, many studies have lacked systematic
38 and ecologically informed sampling, which has left numerous potentially emergent viruses
39 undiscovered, and the drivers of their ecology and evolution poorly understood. We
40 conducted an extensive analysis of viruses in the lung, spleen, and gut of 1,688 animals
41 from 38 mammalian species across 428 sites in Yunnan, China—a hotspot for zoonotic
42 diseases. We identified 162 mammalian viral species, including 102 novel species and 24
43 posing potential risks to humans due to their relationships with known pathogens
44 associated with serious diseases and their ability to cross major host species barriers. Our
45 findings offer an in-depth view of virus organotropism, cross-species transmission, host
46 sharing patterns, and the ecological factors influencing viral evolution, all of which are
47 critical for anticipating and mitigating future zoonotic outbreaks.

48

49 **Keywords**

50 wildlife virome, metatranscriptomics, zoonotic diseases, virus evolution, virus ecology

51

52 **INTRODUCTION**

53 Most pandemics, including that of coronavirus disease 2019 (COVID-19), are zoonotic in
54 origin, initiated by the transmission of a microorganism from animals to humans [1-4].
55 Factors such as unchecked wildlife exploitation, climate change, and alterations in land use
56 amplify human exposure to novel pathogens, increasing the risk of zoonotic disease
57 emergence [2,3,5-7]. Although predicting exactly which virus may emerge next may not be
58 possible [8-9], many viruses associated with human diseases had previously been identified
59 in animal hosts [10-13]. As a consequence, the thorough surveillance of the viromes of
60 animals that are closely linked to human populations is an important means to anticipate,
61 mitigate, and prevent future zoonotic outbreaks [2,9,14-17].

62 Advances in metagenomic sequencing, particularly total RNA sequencing (i.e.,
63 metatranscriptomics) have deepened our understanding of viral characteristics in animal
64 populations [18-26]. Recent research focusing on mammals closely associated with humans,
65 especially the diverse mammalian order Rodentia and the sympatric small mammals of the
66 orders Eulipotyphla (such as shrews) and Scandentia (i.e. tree shrews), has provided
67 insights into potential zoonotic risks [23-26]. These animals inhabit varied terrestrial
68 habitats with significant ecological overlap with humans [27] are the sources of major
69 zoonotic pathogens such as the Lassa, Lymphocytic choriomeningitis, and Hantaan viruses,
70 and play important roles in the natural cycles of vector-borne viruses like Crimean-Congo
71 hemorrhagic fever and Tick-borne encephalitis viruses [28-30]. In addition, more structured
72 metatranscriptomic surveys have enhanced our understanding of virome ecology and
73 evolution, revealing both known viruses in new hosts and novel viral species that pose a
74 threat to human populations [26, 31-34]. However, resource and logistical constraints often
75 limit the scope of mammalian surveillance geographically, temporally, and numerically.

76 resulting in a fragmented understanding of potentially emerging viruses and their
77 ecological context.

78 Large-scale metagenomic studies often document virome compositions in host species
79 at specific times and locations. This is particularly true of studies of small mammals such
80 as rodents and shrews. In contrast, recent virome analyses of bats and mosquitoes that
81 incorporated a broader ecological context not only identified high-profile pathogens, but
82 also provided important insights into the extent and pattern of cross-species virus
83 transmission as well as the determinants of virus biogeography [24,35], in turn providing a
84 clearer picture of the drivers of disease emergence.

85 Situated in a 394,000 km² area and home to over half of China's plant and vertebrate
86 species, Yunnan province is a hotspot of global biodiversity [36]. Within this varied
87 geographical landscape, we established extensive sampling sites across diverse
88 environments to reveal the viromes of small mammals, including rodents, shrews and tree
89 shrews, in doing so identifying viruses of potential zoonotic risk. Our data also addresses
90 how both host and environmental factors impact virus richness, cross-species transmission,
91 and genomic diversity.

92

93 **RESULTS**

94

95 **1. Sampling of Small Mammals in Yunnan**

96 From 2021 to 2023, we conducted systematic animal sampling across Yunnanp
97 province, China, capturing 1,688 mammals from 428 locations across all 16 prefectures and
98 96 counties (Fig. 1a and 1b, Table S1). The elevations of these locations ranged from 144 to
99 3,471 meters, and our sampling covered seven of the nine Köppen climate types in the
100 province, excluding only two high-altitude types in the northwest (Fig. 1a and 1c, Fig. S1).

101 Each captured animal was analyzed using the mitochondrial cox1 gene, with confirmed the
102 presence of 38 mammalian species spread across 20 genera and 8 families (Fig. 1b). A
103 rarefaction analysis indicated that the sampling strategy successfully captured a
104 representative cross-section of the mammalian species diversity within the province (Fig.
105 1d). Rodents, predominantly from the genus *Rattus*, were the most frequently captured,
106 with 1,540 individuals found at 419 sites. In contrast, shrews and tree shrews were
107 relatively rare, with just 148 individuals from both groups captured across 49 sites. Notably,
108 *Rattus* were widespread throughout the region, except in the warmest Cfa climate zone,
109 where no samples were collected (Fig. 1c). Altitudinal analysis revealed species-specific
110 distribution patterns, with *Apodemus chevrieri* found at higher elevations and *Rattus*
111 *tanezumi* at lower elevations (Fig. S1).

112 We strategically pooled 7-8 individuals from the same species and location into 207
113 sample groups for metatranscriptomic sequencing, guided by mitochondrial sequence data
114 (Table S2). For species with fewer than 7 individuals from a specific region, samples were
115 merged across broader areas, creating an additional 18 groups (Table S2; see Materials and
116 Methods for details). Consequently, a total of 225 sample groups were organized.
117 Metatranscriptomic libraries were prepared from organ tissues (gut, lung, and spleen) for
118 each group. A total of 646 libraries produced 21.99 billion clean non-rRNA reads,
119 averaging 34.04 million reads per library (Table S2).

120

121 **2. Composition and diversity of mammalian virome**

122 Our analysis revealed an extensive diversity of viruses across host species. We focused
123 on viruses associated with mammalian infections; specifically, those phylogenetically
124 related to known (i) vertebrate-specific viruses and (ii) to vector-borne viruses that are
125 associated both mammals and arthropods (Fig. 2 and S2). Accordingly, our study classified

126 5,350 viral contigs into 162 mammalian virus species across 23 families, including 116
127 RNA virus species from 16 families, 41 DNA virus species from 7 families, and 5 reverse
128 transcribing virus species from the *Retroviridae* and *Hepadnaviridae* (Fig. 2b). Notably,
129 103 species from 19 families were newly identified species according to the ICTV species
130 demarcation criteria (Table S3). Of the 646 libraries analyzed, 414 contained mammalian
131 viruses, with viral RNA constituting between 1.08×10^{-6} % and 15.43% of the total
132 clean non-rRNA reads per library. Among these, the median number of mammalian viruses
133 detected in each library was three, with an interquartile range of four, and a maximum of 16
134 viral species (Fig. 2a). In total, 204 of 225 sampled groups were discovered at least one
135 mammalian virus.

136 The diversity and prevalence of viral families varied significantly. *Picornaviridae* was
137 the most diverse, with 37 species identified, followed by the *Sedoreoviridae* and
138 *Anelloviridae*, each with 19 species. In contrast, the *Bornaviridae* and *Phenuiviridae* were
139 each represented by only one identified species (Fig. 2b). Commonly detected families
140 included the *Picornaviridae*, *Sedoreoviridae*, *Flaviviridae*, and *Parvoviridae*, found in at
141 least 10 sample groups each, whereas families such as the *Bornaviridae*, *Hepadnaviridae*,
142 and *Orthoherpesviridae* appeared more sporadically (Fig. 2c).

143

144 3. Identification of viruses of emergence risk

145 Among the 162 mammalian viral species identified here, 24 were designated as
146 'viruses of emergence risk' (VOER) based on their close phylogenetic relationships to
147 known human pathogens (Table S4) and/or their increased risk of cross-species
148 transmission (Fig. 1a). Indeed, 20 of these VOERs were closely related to known human
149 pathogens (Fig. 3b, Table S4), highlighting their epidemic potential.

150 In the context of viral groups often associated with hemorrhagic fever or encephalitis,

151 seven species of arenavirus and hantavirus were identified, including three that are newly
152 discovered. Notably, *Yunnan shrew orthobornavirus 1*, exhibited high genetic similarity to
153 classic *Borna disease virus 1* (87.6% amino acid identity the large protein) and 2 (88.5%
154 identity), and was also related to *Variegated squirrel bornavirus 1* (74.8%) identity, known
155 to cause fatal human encephalitis [37] (Fig. 3b, Table S4).

156 In addition, we identified several new arthropod-borne viruses (i.e., arboviruses): one
157 phlebovirus (*Yunnan rodent phlebovirus 1*) and two orthonairoviruses (*Yunnan shrew*
158 *orthonairovirus 1* and *2*) that were closely related to *Rift Valley fever virus* and
159 *Crimean-Congo hemorrhagic fever virus*, respectively, both of which can lead to lethal
160 hemorrhagic fever, such that the newly discovered virus may also pose a threat to humans
161 (Fig. 3b, Table S4). Moreover, 15 species of orbivirus, again likely arboviruses, were
162 discovered.

163 In the case of potential respiratory infections, we identified *Yunnan shrew morbillivirus*
164 *1* that exhibited 66.3% sequence identity to *Measles morbillivirus*. Additionally, *rotavirus A*
165 and *B*, *Yunnan rodent norovirus 1* and *Aichivirus A* were flagged as potential disease agents
166 related to these enteric human viruses (Fig. 3b).

167 Several viruses were classified as VOER due to their capacity for transmission among
168 genetically distant mammalian species, demonstrating that they may represent host
169 generalists (Fig. 3a). For instance, Lucheng Rn rat coronavirus and coronavirus
170 ArcCoV-JC34 were identified in more than two different mammalian families, while
171 Yunnan shrew betaretrovirus 1 and Yunnan shrew orbivirus 2 were present in different
172 mammalian orders.

173 Interestingly, we also discovered viruses that occupy unique phylogenetic positions in
174 the mammalian-associated virus lineages. For example, seven novel virus species carried
175 by shrews fell as basal lineages to the genus *Orbivirus*, order *Reovirales*; *Yunnan shrew*

176 *mammarenavirus 1* was phylogenetically positioned between newly identified *BaTang*
177 *virus* and the classic Old World and New World mammarenaviruses; and *Yunnan shrew*
178 *morbillivirus 1* was basal to the entire genus *Morbillivirus* (Fig. 3b). Interestingly, these
179 viruses were predominantly found in shrews from the genera *Anourosorex*, *Crocidura*, and
180 *Suncus*, suggesting that these taxa harbor diverse viromes.

181

182 **4. Organotropism of mammalian viruses**

183 Of the 225 groups sampled, 201 had complete set of all three organs (gut, lung, and
184 spleen), leading to 603 libraries that were used for organotropism analysis. Significant
185 differences in virome composition and abundance were observed across these organs
186 (adonis test, $R^2 = 0.28$, $p < 0.01$; Fig. 4a and S3). Additionally, an analysis of virus
187 detection frequencies across different organs revealed significant variation in viral
188 distribution (Chi-squared test, $X^2 = 667.88$, $p < 0.05$). Based on relative abundance, distinct
189 organotropisms were noted for many viral families: *Hantaviridae* and *Nairoviridae* were
190 primarily found in lungs, *Phenuiviridae*, *Arteriviridae* and *Circoviridae* in spleen, and
191 *Picornaviridae*, *Caliciviridae*, and *Coronaviridae* in the gut (Fig. 4b). Conversely, families
192 such as the *Retroviridae*, *Arenaviridae*, *Hepeviridae*, *Parvoviridae* and *Sedoreoviridae*
193 appeared in all three organs, suggesting systemic infections (Fig. 4b). Similar patterns of
194 organ-specific and systemic infections were also noted at the viral species level (Fig. 4c, 4d
195 and S3). Interestingly, some virus species, such as *Protoparvovirus rodent 1*, *Yunnan shrew*
196 *betaretrovirus 1*, and *Yunnan shrew hepatovirus 1*, despite showing systemic infection,
197 exhibited uneven viral abundances across different organs, indicating distinct organ
198 preferences (Fig. 4d).

199

200 **5. Virome composition and transmission dynamics**

201 To analyze virus composition and transmission among different mammalian hosts, we
202 focused on groups with complete data for three specific organs and excluded those with
203 fewer than seven individuals or fewer than three sampled groups per genus. Consequently,
204 from the orders Eulipotyphla (23 individuals, 3 groups), Scandentia (91 individuals, 12
205 groups), and Rodentia (1255 individuals, 159 groups), we identified 6, 29, and 106 viruses,
206 respectively (Fig. S4). Virus richness and distribution varied significantly (Fig. 5a):
207 Rodentia (i.e. rodents) primarily hosted members of the *Picornaviridae*; Eulipotyphla (i.e.,
208 shrews) mainly harbored *Sedoreoviridae*; and Scandentia (i.e. tree shrews) commonly
209 exhibited *Flaviviridae*.

210 A t-distributed stochastic neighbor embedding (t-SNE) analysis visualized distinct
211 virome compositions across host taxa (Fig. 5b and S4). PERMANOVA tests on viral genera
212 with at least five sampled groups confirmed significant differences in virome compositions
213 among mammalian genera ($R^2 = 0.09$, $p < 0.001$) and species within the same genus ($p <$
214 0.001), although the latter showed a lower variance ($R^2 = 0.07$), indicating less pronounced
215 differences at the intra-genus level.

216 We also identified several instances of virus sharing among different host taxa,
217 indicative of potential cross-species transmission. A total of 44 viral species were detected
218 in at least two host species, with 18 viruses found across different genera, 10 across
219 different families, and 5 across different orders (Fig. 5c). Scandentia and Rodentia shared
220 one viral species, while Eulipotyphla and Rodentia shared five (Fig. 5d). No viruses were
221 shared across all three orders. Notably, all 10 viruses shared across mammal families,
222 including five shared between orders, were identified as VOER (Fig. 5e).

223

224 **6. Determinants of viral richness, composition and intra-specific genomic diversity**

225 A total of 94 sample groups with suitable sample size and range were selected for
226 ecological comparisons to explore the environmental and host factors influencing viral
227 species richness, composition, and genomic sequence diversity. Generalized linear models
228 (GLMs) were utilized for these analyses. We selected the best model structures ($\Delta AIC < 2$)
229 by evaluating all combinations of variables based on the Akaike Information Criterion
230 (AIC) (Fig. S5). This analysis identified that the key determinants varied among different
231 metrics of viral diversity (Fig. 6a).

232 Variations in viral richness were influenced by host species (11.4%), climate (11.0%),
233 and land-use variables (11.3%), with 66.3% of the total deviance remaining unexplained
234 (Fig. 6a). Indeed, the distribution of viral richness across mammal species was uneven
235 (Kruskal-Wallis H test, $p < 0.05$; Fig. 6b). Individual climatic variables, such as annual
236 mean vapor pressure, and land-use variables like vegetation density (normalized difference
237 vegetation index, NDVI), positively influenced viral richness (Fig. 6c). Furthermore,
238 separate analyses for the two most abundant rodent species – *Rattus tanezumi* ($n = 41$) and
239 *Rattus norvegicus* ($n = 20$) – revealed that climatic conditions CPC1 (see Methods for
240 details) and NDVI were the primary determinants, explaining 48.5% of the total variance in
241 viral richness for *Rattus tanezumi*. In contrast, for *Rattus norvegicus*, viral richness was
242 chiefly linked to human population density, accounting for 33.9% of the total variance (Fig.
243 S5).

244 In contrast, viral composition, measured as shared viral species between pairs of
245 sampled groups, were most significantly influenced by host phylogenetic distance, which
246 explained 22.3% of the deviance (Fig. 6a). After adjusting for other covariates such as
247 climate differences, land-use variables, and spatial distance, the number of shared viral
248 species notably decreased as phylogenetic distance between host groups increased (Fig. 6d).
249 Conversely, the number of shared viral species was slightly negatively affected by

250 differences in climatic variables (annual mean climatic water deficit), land-use
251 characteristics (cropland presence), and mammal richness (Fig. S5).

252 Finally, viral intra-specific genetic diversity (genome similarity) was primarily
253 influenced by climate (17.8%) and spatial distance (16.6%), with the latter being a
254 significant contributor unlike in the analysis of viral richness and composition. Indeed,
255 viral genome similarity significantly decreased with increasing spatial distance,
256 encompassing both horizontal geographical and vertical altitudinal dimensions (Fig. 6e and
257 S5). In contrast, the association with host phylogenetic distance was relatively weak.

258

259 **DISCUSSION**

260 Our study identified a number of viruses in rodents, shrews and tree shrews that may also
261 have the capacity to emerge in humans, including both newly identified and previously
262 known viruses associated with such syndromes as hemorrhagic fever, fever and
263 encephalitis. This highlights the high risk of disease emergence at human-animal interfaces
264 in Yunnan province, where we found a greater variety of such zoonotic viruses than
265 previously reported [26,31-34]. The well-established correlation between viral diversity
266 and zoonotic risk with reservoir richness, population size, and density [21,38-39] supports
267 these findings. Indeed, the viral diversity observed here can in large part be attributed to
268 Yunnan's diverse geographical landscapes and its rich biodiversity. This region is globally
269 recognized for its dense distribution of significant wildlife taxa and is a critical terrestrial
270 biodiversity area [36]. Additionally, our study benefits from the first broad and systematic
271 sampling effort in this region, which covered a wide diversity of hosts and densely sampled
272 areas. This comprehensive approach has deepened our understanding of which wildlife

273 species and viruses pose significant risks to humans and clarified the contexts in which
274 these viruses are likely to emerge.

275 Our discovery of many potentially zoonotic viruses can also be attributed to our
276 extensive and separate examination of three organs (namely lung, gut, and spleen), each
277 representing critical systems—respiratory, digestive, and circulatory—that are potential
278 routes for infection through animal aerosols, excretions, and arthropod bites. This
279 multi-organ approach has broadened our understanding of the range of pathogens posing
280 threats to human health, overcoming the limitations of previous studies that targeted only
281 specific tissues or swabs and likely overlooked significant portions of the virome [32-33].
282 Indeed, our data indicate that each organ might harbor unique viral pathogens. For instance,
283 vector-borne pathogens were primarily found in the spleen. Interestingly, we detected a
284 circovirus that was significantly enriched in the blood, differing from its typical
285 manifestation in other mammals [40-41]. Additionally, our research identified viruses with
286 multi-organ distributions, indicative of systemic infections, including several divergent
287 members of the genus *Orbivirus*. The detection of these systemic infections highlights the
288 critical role of rodents and shrews as likely principal hosts for these viruses, emphasizing
289 their significance in the transmission of diseases.

290 Our study uncovered a large and intricate network of virus-host transmission among
291 small mammals in Yunnan, shedding light on potential zoonotic threats. On one hand, we
292 found that cross-species virus transmission occurs frequently, with 44 (27.16%) virus
293 species carried by at least two host species. Conversely, our results also revealed strong
294 host restrictions on cross-species transmission, suggesting that the greater the genetic
295 distance between hosts, the less likely virus transmission will occur. This pattern was
296 underscored by host genetic distance being the single dominant factor influencing viral
297 composition, consistent with previous studies on other organisms [14,24,35,42-43]. This

298 explains why despite the frequent occurrence of cross-species transmission, spillover to
299 humans resulting in zoonotic diseases is typically rare [17,21,44]. Despite this, some
300 viruses demonstrate a notable capacity to infect genetically distant hosts: we identified 10
301 viral species present in at least three host species from different mammalian families, and
302 four viral species across different mammalian orders. These viruses, which we denote as
303 VOER, merit particular attention due to their broad host range [14,23]. For instance,
304 viruses capable of overcoming major host barriers, such as SARS-CoV-2 – which uses the
305 conserved ACE2 receptor to infect a wide range of mammalian species other than humans
306 – highlight the great potential for zoonotic transmission [4,45-46]. Thus, the identification
307 and close monitoring of such viruses are crucial for preventing zoonotic events.

308 Our extensive sampling across wide environmental gradients provided a robust data set
309 to investigate the ecological factors influencing viral diversity among mammalian wildlife.
310 We found that viral richness, composition, and intra-specific genetic diversity were driven
311 by a combination of host species, climatic conditions, and land-use variables. Specifically,
312 viral richness was significantly influenced by host species diversity, annual mean vapor
313 pressure, and vegetation density, accounting for a considerable portion of the observed
314 variance. While it is known that viral diversity may be affected by host, climate, and
315 land-use factors, such effects have seldom been quantitatively assessed. Our results
316 provided a quantitative test of these effects, aligning with previous studies that highlight the
317 role of environmental and ecological variables in shaping viral diversity. For instance, a
318 previous study demonstrated that host taxonomy and land-use types (mountainous versus
319 agricultural) were critical determinants of viral richness in bats, rodents, and shrews [26].
320 However, in contrast to that study, we observed a greater frequency of viruses in rodents
321 than shrews. Although our sampling was strongly biased toward rodents, diversity-hotspot
322 hosts may vary spatially.

323 Our findings distinguish between inter-specific diversity (measured by the number of
324 virus species shared among samples) and intra-specific diversity (measured by viral
325 genomic sequence similarity among samples), showing they are influenced by different
326 factors. Inter-specific viral sharing is primarily driven by the phylogenetic distance between
327 hosts, which significantly affects virus species sharing, while climate and spatial distance
328 have less or negligible influence. However, this analysis treats each virus species as a
329 whole without considering sequence variation within species. When we examine diversity
330 at a finer evolutionary scale, focusing on genomic similarities within each viral species,
331 both differences in climate and spatial distances—especially along vertical elevational
332 gradients—emerge as the dominant factors. This suggests that climatic and spatial factors
333 do impact virus diversity, but this influence is more pronounced on recent evolutionary
334 scales. Despite this, overcoming spatial barriers is generally easier for viruses than
335 overcoming host species barriers, with the latter clearly a major determinant of virus
336 evolution [47-48].

337

338 **Limitations of the study**

339 There were several limitations to our study. While the reliance on pooled samples for
340 metatranscriptomic sequencing is practical for broad surveys, this approach might obscure
341 intra-species viral diversity and the detection of low-abundance viruses. Additionally, there
342 is potential bias introduced by the uneven sampling across different climate zones and
343 elevations. Although we attempted to capture a representative cross-section of mammalian
344 species, certain areas, particularly the warmest and highest-altitude zones, were
345 underrepresented. Another limitation is the focus on a specific geographic region, which
346 may limit the generalizability of our findings to other areas with different ecological and
347 climatic conditions. Despite these limitations, we were able to integrate ecological, climatic,

348 and host-related factors to elucidate the factors that shape viral diversity. This highlights the
349 need for more extensive and geographically diverse studies to fully capture the global
350 patterns of viral evolution and transmission.

351

352 MATERIALS AND METHODS

353 1. Study design and sample collection

354 This study characterized the viromes of a broad spectrum of small mammalian species
355 to investigate the diversity of viruses they harbor and the ecological factors that shape
356 virome composition. To ensure a representative sample across diverse ecological settings,
357 428 sampling sites (villages) across 96 counties in all 16 prefectures of Yunnan province,
358 China, were systematically surveyed from 2021 to 2023. The number of sites varied from 1
359 to 22 per county, and from 4 to 108 per prefecture. These sites included both urban and
360 rural areas, covered 7 of the 9 Köppen climate types
361 (<https://www.britannica.com/science/Koppen-climate-classification>), and spanned altitudes
362 from 144 to 3471 meters (Fig. 1a and Fig. S1, Supplementary Table 1 and 2). In total, 1540
363 rodents, 125 shrews, and 23 tree shrews were captured (Supplementary Table 3).
364 Rarefaction analysis confirmed that the captured small mammals adequately represented
365 true species diversity (Fig. 1d).

366 Rodents, shrews and tree shrews were captured using snap-traps or cage-traps.
367 Following capture, geographic coordinates and altitudes were recorded. Animals were then
368 euthanized and dissected. Gut (including feces), spleen, and lung tissues were harvested
369 and immediately preserved in dry ice or liquid nitrogen, and subsequently stored at -80°C.
370 All protocols for sample collection and processing were reviewed and approved by the
371 Ethics Committee of the Yunnan Institute of Endemic Diseases Control and Prevention and
372 Sun Yat-sen University (SYSU-IACUC-MED-2021-B0123).

373 Mammalian species were initially identified by experienced field biologists based on
374 morphological characteristics. This preliminary identification was confirmed by sequencing
375 and analyzing cytochrome c oxidase (COI) gene for each specimen [49]. For each library,
376 mammalian species confirmation was achieved using *de novo* assembled contigs of COI
377 genes. The final clean cox1 contigs were submitted to the BOLD online system [50] for
378 species identification. A phylogenetic tree incorporating all full-length COI sequences was
379 estimated using PHYML 3.0 [51], employing the GTR+Γ nucleotide substitution model
380 and the Subtree Pruning and Regrafting (SPR) branch-swapping algorithm.

381

382 **2. Sample groups**

383 Before RNA extraction, individual animals were first organized into sample groups.
384 Typically, each group comprised 7-8 animals of the same species and location. In cases
385 where fewer than 7 animals were available from the same conditions, animals sampled
386 from wider geographic areas (first from the same prefecture, then from the entire province)
387 were combined into groups. Of these, 207 groups comprised 7-8 animals, while 18 groups
388 included fewer than 7 animals. In total, this approach resulted in 225 sample groups for the
389 study ([Supplementary Table 2](#)).

390

391 **3. RNA extraction, library construction and sequencing**

392 Tissue samples from each organ (gut, lung, and spleen) and each animal were
393 individually homogenized in 600 µl of MEM solution (GIBCO). The homogenates were
394 then pooled by organ type in equal volumes to create 200 µl pools for each sample group.
395 As a result, each sample group had three distinct pools corresponding to the gut, lung, and
396 spleen. Total RNA was extracted and purified from each pool using the RNeasy Plus
397 Universal Mini Kit (Qiagen, Germany). RNA libraries were then constructed using the

398 Zymo-Seq RiboFree™ Total RNA Library Kit (No. R3003), according to the
399 manufacturer's instructions. These libraries were sequenced using paired-end (150 bp reads)
400 on the Illumina NovaSeq 6000 sequencing platform.

401

402 **4. Identification and confirmation of mammalian viruses**

403 For the raw sequencing reads from each library, adapters were removed and initial
404 quality control was conducted using the pipeline implemented in the bbduk.sh program
405 (<https://sourceforge.net/projects/bbmap/>). The parameters for adapter removal included
406 ktrim=r, k=23, mink=11, hdist=1, tpe, tbo. Quality control settings were maq=10, qtrim=r,
407 trimq=10, ftl=5, minlen=90. Reads with extensive non-complex regions were excluded
408 (parameters: entropy=0.5, entropywindow=50, entropyk=5). Duplicate reads were filtered
409 out using cd-hit-dup under default settings [52]. rRNA reads were then removed by
410 mapping the processed reads against the SILVA rRNA database (Release 138.1) using
411 Bowtie2 (version 2.3.5.1) in the '--local' mode [53]. The remaining high-quality, non-rRNA
412 reads underwent *de novo* assembly with MEGAHIT (version 1.2.8) using default
413 parameters [54]. The assembled contigs were then analyzed using DIAMOND BLASTx
414 against the NCBI non-redundant protein database [55] with an e-value threshold of 1×10^{-5} .
415 Taxonomic classifications were assigned by correlating the top BLAST hit accession
416 numbers to NCBI taxids, extracting those identified under the kingdom 'Viruses' for
417 subsequent analyses.

418 Viral contigs shorter than 600 bp were excluded to ensure quality, and the remaining
419 overlapping unassembled contigs were merged to form extended viral sequences using the
420 SeqMan program implemented in the Lasergene software package (version 7.1, DNAsstar)
421 [56]. To verify genome integrity for viral families such as the *Retroviridae*, *Hepadnaviridae*,
422 and *Bornaviridae* that may integrate into mammalian host genomes, open reading frames

423 (ORFs) were identified using ORFfinder (<https://www.ncbi.nlm.nih.gov/orffinder/>) and
424 sequences were classified via the online BLASTp program
425 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). The abundance of these viral contigs was
426 estimated by mapping reads back to the assembled genome with Bowtie2 (version 2.5.2)
427 using '--end-to-end' and '--very-fast' settings. Alignments were sorted and indexed with
428 SAMtools (version 1.18) and visualized with Geneious Prime (version 2020.2.4) [57-58].
429 To further verify these findings and eliminate false positives, contigs were cross-referenced
430 against the non-redundant nucleotide database using online BLASTn to exclude sequences
431 related to the host genome, endogenous viral elements, and artificial vectors.

432 Each viral contig was classified at the species level based on the species demarcation
433 criteria established by the ICTV for the viral genus in question [59]. For genera lacking
434 explicit species demarcation criteria, a 90% amino acid identity threshold for the RdRP or
435 replicase protein was applied (Supplementary Table 3). The classification of viral contigs
436 was further validated through comparisons of amino acid sequences from conserved genes,
437 which included the RdRp for RNA viruses, pol for the *Retroviridae*, the major capsid
438 protein for the *Orthoherpesviridae*, LTag for the *Polyomaviridae*, ORF1 protein for the
439 *Anelloviridae*, NS1 for the *Parvoviridae*, and DNA polymerase for other DNA viruses.
440 Alignment of draft virus sequences and corresponding reference sequences from GenBank
441 were performed using MAFFT (version 7.48) [60], with ambiguously aligned regions
442 removed using TrimAI⁶¹. Phylogenetic trees were estimated using the maximum likelihood
443 (ML) method implemented in PHYML 3.0 [51], employing the LG model of amino acid
444 substitution and SPR branch-swapping. Only viral contigs that phylogenetically clustered
445 with recognized mammalian-infecting viruses were considered mammalian viruses and
446 retained for further analysis.

447

448 **5. Viral RNA quantification**

449 To quantify the amount of viral RNA present in our samples, we constructed reference
450 sequences for all sequence variants of each viral species. Viral abundance was measured in
451 each library by counting the number of viral reads per million of the non-rRNA reads
452 (RPM). Reads were mapped to these reference genomes using Bowtie2 with '--end-to-end'
453 and '--very-fast' settings, ensuring accurate alignment and quantification. To mitigate
454 potential false positives from index-hopping, viral reads were only considered valid if they
455 accounted for more than 0.1% of the highest read count within the same sequencing lane.
456 Additionally, data characterized by low abundance (RPM < 1) or insufficient genome
457 coverage (< 300 bp) were excluded. This threshold has been demonstrated in previous
458 studies to significantly reduce the number of false positives [24,35].

459

460 **6. Identification of viruses of emergence risk**

461 We used the term 'virus of emergence risk' (VOER) to designate viruses that likely pose
462 a greater threat of emerging in human populations (i.e., zoonotic virus), thereby
463 distinguishing them from other, likely less impactful viruses. The identification of a virus
464 as a VOER is based on three criteria: (i) phylogenetic clustering with established human
465 pathogens or vector-borne virus groups, such as *Mammarenavirus*, *Norovirus*,
466 *Orthornairovirus*, and *Morbillivirus*; (ii) that they had more than 80% amino acid identity
467 in conserved genes (RdRp or DNA pol) to known pathogenic viruses of humans; and (iii)
468 evidence of frequent co-species transmission, demonstrated by the presence of the virus in
469 question in at least three host species from different mammalian families.

470

471 **7. Virus distribution among organs within mammalian host species**

472 We also quantified the total abundance (RPM) and detection frequency of each virus
473 across three organs (gut, lung, and spleen) to evaluate their possible tissue preferences. For
474 robustness, only sample groups where all three organ types had been sampled and
475 sequenced were included (Supplementary Table 2). To enhance the robustness of our data,
476 we excluded viruses detected in fewer than three libraries. The distribution data for each
477 virus species across the organs were analyzed and visualized using the pheatmap package
478 in R (version 4.1.1) [62]. To investigate potential cross-species virus transmission events,
479 we utilized network visualization in R (version 4.1.1) using the igraph package [63].

480

481 **8. Collection of data for ecological comparisons**

482 To explore the impact of biodiversity and environmental factors on the diversity and
483 composition of mammal-associated viromes, we gathered climate and land-use data for
484 each sample site from public resources. Climate data were sourced from the TerraClimate
485 data set [64], covering monthly climate variables—including six primary and eight
486 derivative metrics—from 2021 to 2023. To reduce redundancy due to collinearity among
487 climate variables, we conducted a principal component analysis. The first three principal
488 components—CPC1, CPC2, and CPC3—accounted for 55.3%, 26.7%, and 6.3% of the
489 total variance, respectively, cumulatively representing 88.3%. These components were
490 subsequently utilized in all further statistical analyses to assess influences of climates on
491 viral diversity and composition. Land-use data, obtained from the HYDE 3.2 database with
492 a spatial resolution of 5 arcmin, were analyzed using the same method outlined previously
493 [65]. The first two PCs, LPC1 and LPC2, explained 63.1% and 28.5% of the variance,
494 respectively, totaling 91.6%. These components were then used to represent land-use
495 patterns. Human population density data for 2022 were also sourced from the HYDE 3.2
496 database. Mammal richness data for each sampling site, aligned with the sampling year,

497 were acquired from the International Union for Conservation of Nature mammal richness
498 database. Monthly NDVI data from NASA's MODIS MOD13A3 product for the years
499 2021 to 2023 were downloaded and averaged annually to calculate annual average NDVI
500 values.

501

502 **9. Statistic methods**

503 All statistical analyses were conducted using R version 4.1.1 [62].

504

505 **9.1 Group selection**

506 To minimize the confounding effects of uneven pooling sizes, we selected a subset of
507 sample groups for our statistical analysis, focused on identifying the ecological drivers of
508 viral diversity and cross-species transmission. We included sample groups from
509 mammalian species with at least three replications (i.e., > 3 sample groups). We also
510 restricted our analysis to groups containing lung, spleen, and gut, data as organ diversity
511 can influence virus detection and composition. To account for environmental variability
512 within the same group, we ensured that the standard deviation for principal component
513 scores of climate (CPC1, CPC2) and land-use (LPC1, LPC2) variables remained below 1.2.
514 We also verified that the median, mean, and variance of distances among sampling sites
515 within a group did not exceed 50 km. This selection process resulted in 94 groups that
516 satisfied these conditions (Supplementary Table 2), and all subsequent ecological analyses
517 were performed based on this refined data set.

518

519 **9.2 Assessing viral richness and identifying key determinants**

520 Consistent with previous studies [24,35], we used generalized linear models (GLMs)
521 with negative binomial regression, as implemented in the MASS package [66] in R, to

522 analyze the impact of host species, climate, and land-use on viral richness. The analysis
523 incorporated data on host species, climatic variables (CPC1, CPC2, CPC3), and land use
524 metrics (LPC1, LPC2, NDVI, log-transformed population density, mammal richness), in
525 addition to average altitude and site count. For groups derived from multiple sampling sites,
526 numerical values such as CPC1, LCP1, NDVI, log-transformed population density were
527 averaged. Using the MuMIn package [67] in R, we systematically explored all possible
528 variable combinations, selecting the most informative model based on the Akaike
529 Information Criterion (AIC). This approach enabled a detailed assessment of each
530 variable's specific contribution, providing a nuanced understanding of their individual and
531 combined effects on viral richness across mammalian hosts.

532

533 **9.3 Comparisons of virus transmission and identifying key determinants**

534 Virome compositions across mammalian genera were visualized using t-SNE and
535 differences were assessed through permutational multivariate analysis of variance
536 (PERMANOVA), utilizing Jaccard distance calculated with the vegan package [68] in R.
537 Viral genomic diversity within species was evaluated by aligning all sequence variants for
538 each species using ClustalW and pairwise sequence identities were computed with the msa
539 package [69] in R. We also explored the impact of host phylogenetic distance, climatic and
540 land use variations, and spatial distance on the virus sharing patterns and viral genomic
541 diversity using generalized linear models (GLM). The specific influences of each variable
542 were quantified employing a systematic approach similar to the previously described model
543 selection and assessment methodology.

544

545 **Acknowledgements**

546 This work was supported by the National Natural Science Foundation of China
547 (82341118, 32270160), Natural Science Foundation of Guangdong Province of China
548 (2022A1515011854), Shenzhen Science and Technology Program
549 (JCYJ20210324124414040 and KQTD20200820145822023), Major Project of Guangzhou
550 National Laboratory (GZNL2023A01001), Guangdong Province “Pearl River Talent Plan”
551 Innovation, Entrepreneurship Team Project (2019ZT08Y464), and the Fund of Shenzhen
552 Key Laboratory (ZDSYS20220606100803007). Y. F. was supported by Yunnan
553 Revitalization Talent Support Program Top Physician Project (XDYC-MY-2022-0074).
554 Z.-H.G. was supported by National Natural Science Foundation of China (32360248 and
555 81660554) and by Support Plan for Talents in Yunnan (YNWR-MY-2018-035). E.C.H. was
556 supported by an NHMRC (Australia) Investigator Award (GNT2017197) and by
557 AIR@InnoHK administered by the Innovation and Technology Commission, Hong Kong
558 Special Administrative Region, China.

559 We wish to thank the local Centers for Disease Control and Prevention in all 129
560 counties from 16 prefectures of Yunnan Province, for their assistance in specimen
561 collection.

562

563 **Author Contributions**

564 Conceptualization, Y.F., G.-D.L., E.C.H., Z.-H.G., and M.S.; Methodology, Y.F., G.-P.K.,
565 Y.-F.P., and M.S.; Investigation, Y.F., G.-P.K., Y.-F.P., J.W., W.-H.Y., W.-C.W., G.-D.L., and
566 M.S.; Writing – Original Draft, G.-P.K., Y.-F.P., E.C.H., and M.S.; Writing – Review and
567 Editing, All authors; Funding Acquisition, Y.F., Z.-H.G., and M.S.; Resources (sampling),
568 Y.F., G.-P.K., W.-H.Y., H.P., J.W., X.H., L.-F.Y., and Z.-H.G.; Resources (Computational),
569 G.-P.K., Y.-F.P., G.-Y.X., Y.-T.S., Q.-Y.G, X.L., and M.S.; Supervision, Y.F., D.-Y.G.,
570 G.-D.L., Z.-H.G., and M.S..

571

572 **Competing interests**

573 The authors declare no competing interests.

574

575 **Figure legends**

576 **Figure 1. Distribution and diversity of small mammals in the study.** **(a)** Map illustrating
577 the sampling sites across Yunnan province, China, color-coded by digital elevation in
578 ArcMap 10.8.1 (The basemap shapefile was sourced from the publicly accessible GADM
579 dataset and ESDS). Pie charts at each site depict the mammalian family composition. **(b)**
580 Phylogenetic tree based on the cox1 gene of mammals analyzed in this study. Circle sizes
581 reflect number of sample groups and colors represent mammalian orders. **(c)** Composition
582 of mammalian genera across different Köppen climate types, with segments color-coded to
583 reflect the relative abundance of each genus. **(d)** Rarefaction curve demonstrating the
584 relationship between the number of samples collected and the mammalian species
585 identified.

586

587 **Figure 2. Overview of the diversity and prevalence of mammalian viruses in this study.**

588 **(a)** Total read depth, viral read abundance, and species richness of viruses from each library,
589 segmented by organ type: gut, lung, and spleen. **(b)** Pie chart showing the distribution of
590 mammalian virus species identified within each virus family. **(c)** Heatmap of the
591 distribution and relative abundance of mammalian viruses, quantifying viral abundance in
592 each sample group by mapped reads per million non-rRNA reads (RPM). Host species and
593 orders are labeled at the top, color-coded to match their respective categories. Viral species
594 from 23 families are displayed, with each family distinctly colored; names are provided for
595 only those viruses identified in more than 10 groups to emphasize the most prevalent

596 species.

597

598 **Figure 3. Phylogenetic relationships and epidemiological characteristics of viruses of**
599 **emergence risk (VOER).** (a) Mammalian host distribution, extent of virus sharing among
600 hosts, and prevalence of viruses. The heatmap illustrates the abundance of each virus
601 within different host species, the middle bar chart depicts how viruses are shared among
602 host taxa, while the right bar chart shows the prevalence of each viral species. (b)
603 Phylogenetic relationships and geographical distribution of VOERs. Phylogenetic trees for
604 each established human-infecting virus genus were estimated using a maximum likelihood
605 method, based on conserved viral proteins (RdRP for RNA virus and Reverse transcriptase
606 for the *Retroviridae*). Trees were midpoint rooted, with branch lengths representing the
607 number of amino acid substitutions per site. Dots on the trees, colored according to host
608 genera as indicated in the legend, represent viral species identified in this study. Previously
609 identified human pathogens in each genus are marked with red pentagrams. The
610 accompanying maps, with colors matching the strain names in the trees, illustrate the
611 geographic distribution patterns of these viruses.

612

613 **Figure 4. Organ distribution patterns of mammalian viruses.** (a) Principal component
614 analysis (PCA) based on the median viral abundance (RPM) of each viral species (colored
615 by family), highlighting virome composition across the gut, spleen, and lung. (b) Relative
616 total viral abundance (RPM) for various viral families in gut (orange), lung (turquoise), and
617 spleen (golden yellow). (c) Comparison of the abundance of viruses detected in at least
618 three libraries for three organ types, with colors keys shown to the legend. (d) Heatmap

619 illustrating organotropism of viruses, determined by a chi-squared test analyzing
620 distribution frequencies of virus species across gut, lung, and spleen.

621

622 **Figure 5. Viral composition and transmission among mammalian hosts.** **(a)** Number of
623 viruses per sample group and their distribution across mammalian taxa. **(b)** t-SNE
624 ordination illustrating the distinct virome compositions of mammalian genera, with each
625 point representing a group colored according to the host genus as indicated in the legend. **(c)**
626 Number of viruses shared across species, genera, families, and orders, highlighting
627 extensive virological sharing among different mammalian hosts. **(d)** Venn diagram
628 depicting specific viruses shared among the mammalian orders of Scandentia (red-orange),
629 Eulipotyphla (teal), and Rodentia (dark blue). **(e)** Virus sharing network: nodes represent
630 hosts or virus species, colored by host genera and virus types. Line thickness between
631 nodes indicates the relative abundance of viruses, with the network divided into three
632 subnets based on host order. External nodes emphasize viruses with potential for
633 cross-order transmission.

634

635 **Figure 6. Key determinants of viral species richness, composition, and intra-specific**
636 **genomic diversity.** **(a)** Analysis of the relative contribution of host species, climate, and
637 land-use characteristics to viral richness in each sampled group, quantified by the explained
638 deviance in the best model structures ($\Delta\text{AIC} < 2$) using generalized linear models (GLMs).
639 **(b)** Model estimates showing the impact of mammalian species on viral richness per
640 sampled group, presented with estimated values and $\pm 95\%$ confidence intervals (CI). **(c)**
641 Relationship between annual mean vapor pressure (a climate variable) and annual mean
642 NDVI (a land-use variable) with viral richness in each sample group. **(d)** Relationship
643 between the number of shared viral species and host phylogenetic distance (patristic

644 distance based on the cox1 phylogeny) among pairs of sample groups. **(e)** Impact of spatial
645 distance (horizontal geographical distance and vertical altitudinal distances) on
646 intra-specific viral genome similarity.

647

648 **Supplementary information**

649 **Figure S1. Climatic zones and mammalian species composition in this study.** **(a)**
650 Climatic zones within sampling area, classified according to the Köppen climate
651 classification system, with black points indicating sampling sites. **(b)** Composition of
652 mammalian species in samples collected across various prefectures. **(c)** Boxplot depicting
653 the altitude distribution (meters) of specific rodent species, including only those five
654 species collected from more than 20 different sites.

655 **Figure S2. Phylogenetic diversity of mammalian viruses from 23 families identified in**
656 **this study.** Phylogenetic trees were estimated using a maximum likelihood method based
657 on conserved protein sequences: RdRp for RNA viruses, reverse-transcriptase for the
658 *Retroviridae*, the major capsid protein for the *Orthoherpesviridae*, LTag for
659 *Polyomaviridae*, ORF1 protein for the *Anelloviridae*, NS1 for the *Parvoviridae*, and DNA
660 polymerase for other DNA viruses. Each tree is midpoint rooted with branch lengths scaled
661 according to the number of substitutions per site. Viral species identified in this study are
662 represented by dots, color-coded according to host genera, as detailed in the figure.

663

664 **Figure S3. Distribution of virus abundance across different organs.** Heatmap displays
665 the abundance of each viral species across three organs (spleen, lung, and gut) in

666 mammalian hosts examined in this study. The arrangement of libraries and viruses is
667 organized by Canonical Correspondence Analysis (CCA).

668

669 **Figure S4. Viral richness and composition across host taxa.** (a) Viral species identified
670 within each genus of the orders Eulipotyphla, Rodentia, and Scandentia, including
671 respective sample sizes. (b) t-SNE analysis showcasing the clustering of viral compositions
672 among three rodent species within the genus *Rattus*: *Rattus tanezumi* (n = 67), *Rattus*
673 *norvegicus* (n = 44), and *Rattus andamanensis* (n = 13). Statistical significance was
674 assessed using PERMANOVA tests (two-sided) based on Jaccard distance with 1999
675 permutations.

676

677 **Figure S5. Environmental and host factors affecting viral species richness,**
678 **composition, and intra-specific genomic diversity.** (a) Relative effects of mammal
679 species, climate, and land-use characteristics on viral richness, composition, and
680 intra-specific genomic diversity. These effects are quantified by explained deviance in
681 generalized linear models. The top 10 models selected by AIC are displayed, with the red
682 dashed line indicating models significantly supported ($\Delta\text{AIC} < 2$). (b) The impact of
683 differences in annual mean climatic water deficit, cropland presence, and mammal richness
684 on viral sharing between pairs of sample groups. (c) The impact of differences in annual
685 mean climatic water deficit on intra-specific viral genome similarity. (d) Relative effects of
686 environmental characteristics on viral richness within groups of *Rattus tanezumi* and *Rattus*
687 *norvegicus*.

688

689 **Supplementary Table 1.** Information on sampling sites and sample size of each mammal
690 species.

691 **Supplementary Table 2.** Information of sample group and library in the current study.

692 **Supplementary Table 3.** Mammalian viruses identified in this study.

693 **Supplementary Table 4.** Viruses of emergence risk (VOERs) identified in this study.

694

695 **REFERENCE**

- 696 1. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., &
697 Daszak, P. (2008). Global trends in emerging infectious diseases. *Nature*, 451(7181),
698 990–993. <https://doi.org/10.1038/nature06536>
- 699 2. Morse, S. S., Mazet, J. A., Woolhouse, M., Parrish, C. R., Carroll, D., Karesh, W. B.,
700 Zambrana-Torrelío, C., Lipkin, W. I., & Daszak, P. (2012). Prediction and prevention of
701 the next pandemic zoonosis. *Lancet (London, England)*, 380(9857), 1956–1965.
702 [https://doi.org/10.1016/S0140-6736\(12\)61684-5](https://doi.org/10.1016/S0140-6736(12)61684-5)
- 703 3. Watsa, M., & Wildlife Disease Surveillance Focus Group (2020). Rigorous wildlife
704 disease surveillance. *Science (New York, N.Y.)*, 369(6500), 145–147.
705 <https://doi.org/10.1126/science.abc0017>
- 706 4. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E,
707 Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M,
708 Bouwmeester-Vincken N, Harders F, Hakze-van der Honing R, Wegdam-Blans MCA,
709 Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LAM, Stegeman
710 A, van der Poel WHM, Koopmans MPG. Transmission of SARS-CoV-2 on mink farms
711 between humans and mink and back to humans. *Science*. 2021 Jan
712 8;371(6525):172-177. <https://doi.org/10.1126/science.abe5901>
- 713 5. Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. *Cold*
714 *Spring Harbor perspectives in medicine*, 1(1), a006841.
715 <https://doi.org/10.1101/cshperspect.a006841>
- 716 6. Jacob, S. T., Crozier, I., Fischer, W. A., 2nd, Hewlett, A., Kraft, C. S., Vega, M. A., Soka,
717 M. J., Wahl, V., Griffiths, A., Bollinger, L., & Kuhn, J. H. (2020). Ebola virus disease.
718 *Nature reviews. Disease primers*, 6(1), 13. <https://doi.org/10.1038/s41572-020-0147-3>

719 7. Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A.,
720 Olival, K. J., Ross, N., & Bansal, S. (2022). Climate change increases cross-species
721 viral transmission risk. *Nature*, 607(7919), 555–562.
722 <https://doi.org/10.1038/s41586-022-04788-w>

723 8. Murphy F. A. (1998). Emerging zoonoses. *Emerging infectious diseases*, 4(3), 429–435.
724 <https://doi.org/10.3201/eid0403.980324>

725 9. Geoghegan, J. L., & Holmes, E. C. (2017). Predicting virus emergence amid
726 evolutionary noise. *Open biology*, 7(10), 170189. <https://doi.org/10.1098/rsob.170189>

727 10. Li, C. X., Shi, M., Tian, J. H., Lin, X. D., Kang, Y. J., Chen, L. J., Qin, X. C., Xu, J.,
728 Holmes, E. C., & Zhang, Y. Z. (2015). Unprecedented genomic diversity of RNA
729 viruses in arthropods reveals the ancestry of negative-sense RNA viruses. *eLife*, 4,
730 e05378. <https://doi.org/10.7554/eLife.05378>

731 11. Li, K., Lin, X. D., Wang, W., Shi, M., Guo, W. P., Zhang, X. H., Xing, J. G., He, J. R.,
732 Wang, K., Li, M. H., Cao, J. H., Jiang, M. L., Holmes, E. C., & Zhang, Y. Z. (2015).
733 Isolation and characterization of a novel arenavirus harbored by Rodents and Shrews in
734 Zhejiang province, China. *Virology*, 476, 37–42.
735 <https://doi.org/10.1016/j.virol.2014.11.026>

736 12. Blasdell, K. R., Duong, V., Eloit, M., Chretien, F., Ly, S., Hul, V., Deubel, V., Morand,
737 S., & Buchy, P. (2016). Evidence of human infection by a new mammarenavirus
738 endemic to Southeastern Asia. *eLife*, 5, e13135. <https://doi.org/10.7554/eLife.13135>

739 13. Liu, X., Zhang, X., Wang, Z., Dong, Z., Xie, S., Jiang, M., Song, R., Ma, J., Chen, S.,
740 Chen, K., Zhang, H., Si, X., Li, C., Jin, N., Wang, Y., & Liu, Q. (2020). A Tentative
741 Tamdy Orthonairovirus Related to Febrile Illness in Northwestern China. *Clinical
742 infectious diseases: an official publication of the Infectious Diseases Society of
743 America*, 70(10), 2155–2160. <https://doi.org/10.1093/cid/ciz602>

744 14. Olival, K. J., Hosseini, P. R., Zambrana-Torrelío, C., Ross, N., Bogich, T. L., & Daszak, P. (2017). Host and viral traits predict zoonotic spillover from mammals. *Nature*, 546(7660), 646–650. <https://doi.org/10.1038/nature22975>

745 15. Albery, G. F., Eskew, E. A., Ross, N., & Olival, K. J. (2020). Predicting the global
746 mammalian viral sharing network using phylogeography. *Nature communications*,
747 11(1), 2260. <https://doi.org/10.1038/s41467-020-16153-4>

748 16. Mollentze, N., Babayan, S. A., & Streicker, D. G. (2021). Identifying and prioritizing
749 potential human-infecting viruses from their genome sequences. *PLoS biology*, 19(9),
750 e3001390. <https://doi.org/10.1371/journal.pbio.3001390>

751 17. Tan, C. C. S., van Dorp, L., & Balloux, F. (2024). The evolutionary drivers and
752 correlates of viral host jumps. *Nature ecology & evolution*, 8(5), 960–971.
753 <https://doi.org/10.1038/s41559-024-02353-4>

754 18. Shi, M., Lin, X. D., Tian, J. H., Chen, L. J., Chen, X., Li, C. X., Qin, X. C., Li, J., Cao,
755 J. P., Eden, J. S., Buchmann, J., Wang, W., Xu, J., Holmes, E. C., & Zhang, Y. Z. (2016).
756 Redefining the invertebrate RNA virosphere. *Nature*, 540(7634), 539–543.
757 <https://doi.org/10.1038/nature20167>

758 19. Zhang, Y. Z., Shi, M., & Holmes, E. C. (2018). Using Metagenomics to Characterize an
759 Expanding Virosphere. *Cell*, 172(6), 1168–1172.
760 <https://doi.org/10.1016/j.cell.2018.02.043>

761 20. Shi, M., Lin, X. D., Chen, X., Tian, J. H., Chen, L. J., Li, K., Wang, W., Eden, J. S.,
762 Shen, J. J., Liu, L., Holmes, E. C., & Zhang, Y. Z. (2018). The evolutionary history of
763 vertebrate RNA viruses. *Nature*, 556(7700), 197–202.
764 <https://doi.org/10.1038/s41586-018-0012-7>

767 21. Harvey, E., & Holmes, E. C. (2022). Diversity and evolution of the animal
768 virome. *Nature reviews Microbiology*, 20(6), 321–334.
769 <https://doi.org/10.1038/s41579-021-00665-x>

770 22. Xu, Z., Feng, Y., Chen, X., Shi, M., Fu, S., Yang, W., Liu, W. J., Gao, G. F., & Liang, G.
771 (2022). Virome of Bat-Infesting Arthropods: Highly Divergent Viruses in Different
772 Vectors. *Journal of virology*, 96(4), e0146421. <https://doi.org/10.1128/JVI.01464-21>

773 23. He WT, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, Lu M,
774 Suchard MA, Ji X, Gong W, He B, Li J, Lemey P, Guo D, Tu C, Holmes EC, Shi M, Su
775 S. Virome characterization of game animals in China reveals a spectrum of emerging
776 pathogens. *Cell*. 2022 Mar 31;185(7):1117-1129.e8.
777 <https://doi.org/10.1016/j.cell.2022.02.014>

778 24. Wang J, Pan YF, Yang LF, Yang WH, Lv K, Luo CM, Wang J, Kuang GP, Wu WC, Gou
779 QY, Xin GY, Li B, Luo HL, Chen S, Shu YL, Guo D, Gao ZH, Liang G, Li J, Chen YQ,
780 Holmes EC, Feng Y, Shi M. Individual bat virome analysis reveals co-infection and
781 spillover among bats and virus zoonotic potential. *Nat Commun.* 2023 Jul
782 10;14(1):4079. <https://doi.org/10.1038/s41467-023-39835-1>

783 25. Lu, M., He, W. T., Pettersson, J. H., Baele, G., Shi, M., Holmes, E. C., He, N., & Su, S.
784 (2023). Zoonotic risk assessment among farmed mammals. *Cell*, 186(9), 2040–2040.e1.
785 <https://doi.org/10.1016/j.cell.2023.04.002>

786 26. Chen, Y. M., Hu, S. J., Lin, X. D., Tian, J. H., Lv, J. X., Wang, M. R., Luo, X. Q., Pei, Y.
787 Y., Hu, R. X., Song, Z. G., Holmes, E. C., & Zhang, Y. Z. (2023). Host traits shape
788 virome composition and virus transmission in wild small mammals. *Cell*, 186(21),
789 4662–4675.e12. <https://doi.org/10.1016/j.cell.2023.08.029>

790 27. Sergio Solari, Robert J. Baker, Mammal Species of the World: A Taxonomic and
791 Geographic Reference by D. E. Wilson; D. M. Reeder, *Journal of Mammalogy*, Volume
792 88, Issue 3, June 2007, Pages 824–830, <https://doi.org/10.1644/06-MAMM-R-422.1>

793 28. Meerburg, B. G., Singleton, G. R., & Kijlstra, A. (2009). Rodent-borne diseases and
794 their risks for public health. *Critical reviews in microbiology*, 35(3), 221–270.
795 <https://doi.org/10.1080/10408410902989837>

796 29. Han, B. A., Schmidt, J. P., Bowden, S. E., & Drake, J. M. (2015). Rodent reservoirs of
797 future zoonotic diseases. *Proceedings of the National Academy of Sciences of the
798 United States of America*, 112(22), 7039–7044.
799 <https://doi.org/10.1073/pnas.1501598112>

800 30. Charrel, R. N., & de Lamballerie, X. (2010). Zoonotic aspects of arenavirus infections.
801 Veterinary microbiology, 140(3-4), 213–220.
802 <https://doi.org/10.1016/j.vetmic.2009.08.027>

803 31. Tan, Z., Yu, H., Xu, L., Zhao, Z., Zhang, P., Qu, Y., He, B., & Tu, C. (2019). Virome
804 profiling of rodents in Xinjiang Uygur Autonomous Region, China: Isolation and
805 characterization of a new strain of Wenzhou virus. *Virology*, 529, 122–134.
806 <https://doi.org/10.1016/j.virol.2019.01.010>

807 32. Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, Zhu Y, Li Y,
808 Zheng D, Zhang C, Su H, Zheng Y, Zhou H, Zhu G, Li H, Chmura A, Yang F, Daszak P,
809 Wang J, Liu Q, Jin Q. Comparative analysis of rodent and small mammal viromes to
810 better understand the wildlife origin of emerging infectious diseases. *Microbiome*. 2018
811 Oct 3;6(1):178. <https://doi.org/10.1186/s40168-018-0554-9>

812 33. Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou
813 S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang
814 J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the

815 RNA viromes in rodent lungs provides new insight into the origin and evolutionary
816 patterns of rodent-borne pathogens in Mainland Southeast Asia. *Microbiome*. 2021 Jan
817 21;9(1):18. <https://doi.org/10.1186/s40168-020-00965-z>

818 34. Kane, Y., Tendu, A., Li, R., Chen, Y., Mastriani, E., Lan, J., Catherine Hughes, A.,
819 Berthet, N., & Wong, G. (2024). Viral diversity in wild and urban rodents of Yunnan
820 Province, China. *Emerging microbes & infections*, 13(1), 2290842.
821 <https://doi.org/10.1080/22221751.2023.2290842>

822 35. Pan YF, Zhao H, Gou QY, Shi PB, Tian JH, Feng Y, Li K, Yang WH, Wu D, Tang G,
823 Zhang B, Ren Z, Peng S, Luo GY, Le SJ, Xin GY, Wang J, Hou X, Peng MW, Kong JB,
824 Chen XX, Yang CH, Mei SQ, Liao YQ, Cheng JX, Wang J, Chaolemen, Wu YH, Wang
825 JB, An T, Huang X, Eden JS, Li J, Guo D, Liang G, Jin X, Holmes EC, Li B, Wang D,
826 Li J, Wu WC, Shi M. Metagenomic analysis of individual mosquito viromes reveals the
827 geographical patterns and drivers of viral diversity. *Nat Ecol Evol*. 2024
828 May;8(5):947-959. <https://doi.org/10.1038/s41559-024-02365-0>

829 36. Pu, Ys., Zhang, Zy. & Pu, Ln. Strategic studies on the biodiversity sustainability in
830 Yunnan Province, Southwest China. *For. Stud. China* 9, 225–237 (2007).
831 <https://doi.org/10.1007/s11632-007-0037-8>

832 37. Hoffmann B, Tappe D, Höper D, Herden C, Boldt A, Mawrin C, Niedersträßer O,
833 Müller T, Jenckel M, van der Grinten E, Lutter C, Abendroth B, Teifke JP, Cadar D,
834 Schmidt-Chanasit J, Ulrich RG, Beer M. A Variegated Squirrel Bornavirus Associated
835 with Fatal Human Encephalitis. *N Engl J Med*. 2015 Jul 9;373(2):154-62.
836 <https://doi.org/10.1056/NEJMoa1415627>

837 38. Mollentze, N., & Streicker, D. G. (2020). Viral zoonotic risk is homogenous among
838 taxonomic orders of mammalian and avian reservoir hosts. *Proceedings of the National
839 Academy of Sciences of the United States of America*, 117(17), 9423–9430.

840 <https://doi.org/10.1073/pnas.1919176117>

841 39. Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K., & Munster, V. J. (2020).
842 Bat-borne virus diversity, spillover and emergence. *Nature reviews. Microbiology*,
843 18(8), 461–471. <https://doi.org/10.1038/s41579-020-0394-z>

844 40. Meng X. J. (2013). Porcine circovirus type 2 (PCV2): pathogenesis and interaction with
845 the immune system. *Annual review of animal biosciences*, 1, 43–64.
846 <https://doi.org/10.1146/annurev-animal-031412-103720>

847 41. Lei, X., Wang, A., Zhu, S., & Wu, S. (2024). From obscurity to urgency: a
848 comprehensive analysis of the rising threat of duck circovirus. *Veterinary research*,
849 55(1), 12. <https://doi.org/10.1186/s13567-024-01265-2>

850 42. Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J., & Jiggins, F. M. (2011).
851 Host phylogeny determines viral persistence and replication in novel hosts. *PLoS
852 pathogens*, 7(9), e1002260. <https://doi.org/10.1371/journal.ppat.1002260>

853 43. Stephens, P. R., Altizer, S., Ezenwa, V. O., Gittleman, J. L., Moan, E., Han, B., Huang,
854 S., & Pappalardo, P. (2019). Parasite sharing in wild ungulates and their predators:
855 Effects of phylogeny, range overlap, and trophic links. *The Journal of animal ecology*,
856 88(7), 1017–1028. <https://doi.org/10.1111/1365-2656.12987>

857 44. Geoghegan, J. L., Duchêne, S., & Holmes, E. C. (2017). Comparative analysis
858 estimates the relative frequencies of co-divergence and cross-species transmission
859 within viral families. *PLoS pathogens*, 13(2), e1006215.
860 <https://doi.org/10.1371/journal.ppat.1006215>

861 45. van Aart AE, Velkers FC, Fischer EAJ, Broens EM, Egberink H, Zhao S, Engelsma M,
862 Hakze-van der Honing RW, Harders F, de Rooij MMT, Radstake C, Meijer PA, Oude
863 Munnink BB, de Rond J, Sikkema RS, van der Spek AN, Spierenburg M, Wolters WJ,
864 Molenaar RJ, Koopmans MPG, van der Poel WHM, Stegeman A, Smit LAM.

865 SARS-CoV-2 infection in cats and dogs in infected mink farms. *Transbound Emerg Dis.*
866 2022 Sep;69(5):3001-3007. <https://doi.org/10.1111/tbed.14173>

867 46. Chandler, J. C., Bevins, S. N., Ellis, J. W., Linder, T. J., Tell, R. M., Jenkins-Moore, M.,
868 Root, J. J., Lenoch, J. B., Robbe-Austerman, S., DeLiberto, T. J., Gidlewski, T., Kim
869 Torchetti, M., & Shriner, S. A. (2021). SARS-CoV-2 exposure in wild white-tailed deer
870 (*Odocoileus virginianus*). *Proceedings of the National Academy of Sciences of the*
871 *United States of America*, 118(47), e2114828118.
872 <https://doi.org/10.1073/pnas.2114828118>

873 47. Lynch, M., & Conery, J. S. (2003). The origins of genome complexity. *Science* (New
874 York, N.Y.), 302(5649), 1401–1404. <https://doi.org/10.1126/science.1089370>

875 48. Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J., & Jiggins, F. M. (2014).
876 The evolution and genetics of virus host shifts. *PLoS pathogens*, 10(11), e1004395.
877 <https://doi.org/10.1371/journal.ppat.1004395>

878 49. Ivanova, N. V., Deward, J. R., & Hebert, P. D. N.. (2010). An inexpensive,
879 automation-friendly protocol for recovering high-quality dna. *Mol.ecol.notes*, 6(4),
880 998-1002.DOI:10.1111/j.1471-8286.2006.01428.x.

881 50. Ratnasingham, S., & Hebert, P. D. (2007). bold: The Barcode of Life Data System
882 (<http://www.barcodinglife.org>). *Molecular ecology notes*, 7(3), 355–364.
883 <https://doi.org/10.1111/j.1471-8286.2007.01678.x>

884 51. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O.
885 (2010). New algorithms and methods to estimate maximum-likelihood phylogenies:
886 assessing the performance of PhyML 3.0. *Systematic biology*, 59(3), 307–321.
887 <https://doi.org/10.1093/sysbio/syq010>

888 52. Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering
889 the next-generation sequencing data. *Bioinformatics* (Oxford, England), 28(23),

890 3150–3152. <https://doi.org/10.1093/bioinformatics/bts565>

891 53. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
892 *Nature methods*, 9(4), 357–359. <https://doi.org/10.1038/nmeth.1923>

893 54. Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an
894 ultra-fast single-node solution for large and complex metagenomics assembly via
895 succinct de Bruijn graph. *Bioinformatics* (Oxford, England), 31(10), 1674–1676.
896 <https://doi.org/10.1093/bioinformatics/btv033>

897 55. Buchfink, B., Reuter, K., & Drost, H. G. (2021). Sensitive protein alignments at
898 tree-of-life scale using DIAMOND. *Nature methods*, 18(4), 366–368.
899 <https://doi.org/10.1038/s41592-021-01101-x>

900 56. Clewley J. P. (1995). Macintosh sequence analysis software. DNAStar's LaserGene.
901 *Molecular biotechnology*, 3(3), 221–224. <https://doi.org/10.1007/BF02789332>

902 57. Li H. (2011). A statistical framework for SNP calling, mutation discovery, association
903 mapping and population genetical parameter estimation from sequencing data.
904 *Bioinformatics* (Oxford, England), 27(21), 2987–2993.
905 <https://doi.org/10.1093/bioinformatics/btr509>

906 58. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton,
907 S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., &
908 Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software
909 platform for the organization and analysis of sequence data. *Bioinformatics* (Oxford,
910 England), 28(12), 1647–1649. <https://doi.org/10.1093/bioinformatics/bts199>

911 59. ICTV (2024). The ICTV report on virus classification and taxon nomenclature.
912 <https://ictv.global/report>.

913 60. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software
914 version 7: improvements in performance and usability. *Molecular biology and evolution*,

915 30(4), 772–780. <https://doi.org/10.1093/molbev/mst010>

916 61. Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for
917 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
918 (Oxford, England), 25(15), 1972–1973. <https://doi.org/10.1093/bioinformatics/btp348>

919 62. R: A Language and Environment for Statistical Computing (R Project, 2022).

920 63. Csárdi G, Nepusz T, Traag V, Horvát S, Zanini F, Noom D, Müller K (2024). igraph:
921 Network Analysis and Visualization in R. doi:10.5281/zenodo.7682609, R package
922 version 2.0.3, <https://CRAN.R-project.org/package=igraph>.

923 64. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018).
924 TerraClimate, a high-resolution global dataset of monthly climate and climatic water
925 balance from 1958–2015. *Scientific data*, 5, 170191.
926 <https://doi.org/10.1038/sdata.2017.191>

927 65. Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use
928 estimates for the Holocene – HYDE 3.2, *Earth Syst. Sci. Data*, 9, 927–953,
929 <https://doi.org/10.5194/essd-9-927-2017>

930 66. Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition.
931 Springer, New York. ISBN 0-387-95457-0, <https://www.stats.ox.ac.uk/pub/MASS4/>.

932 67. Bartoń, K. (2024). MuMIn: Multi-Model Inference. R package version 1.48.4.
933 Available from <https://CRAN.R-project.org/package=MuMIn>

934 68. Oksanen, J., Simpson, G., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R.,
935 O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M.,
936 Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M.,
937 Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G.,
938 Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E., Smith, T., Stier,
939 A., Ter Braak, C.J.F., Weedon, J. (2024). vegan: Community Ecology Package. R

940 package version 2.6-7. Available from <https://github.com/vegandeve/vegan>

941 69. Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., & Hochreiter, S. (2015). msa: an R

942 package for multiple sequence alignment. *Bioinformatics*, 31(24), 3997-3999. DOI:

943 10.1093/bioinformatics/btv494.

Figure 1

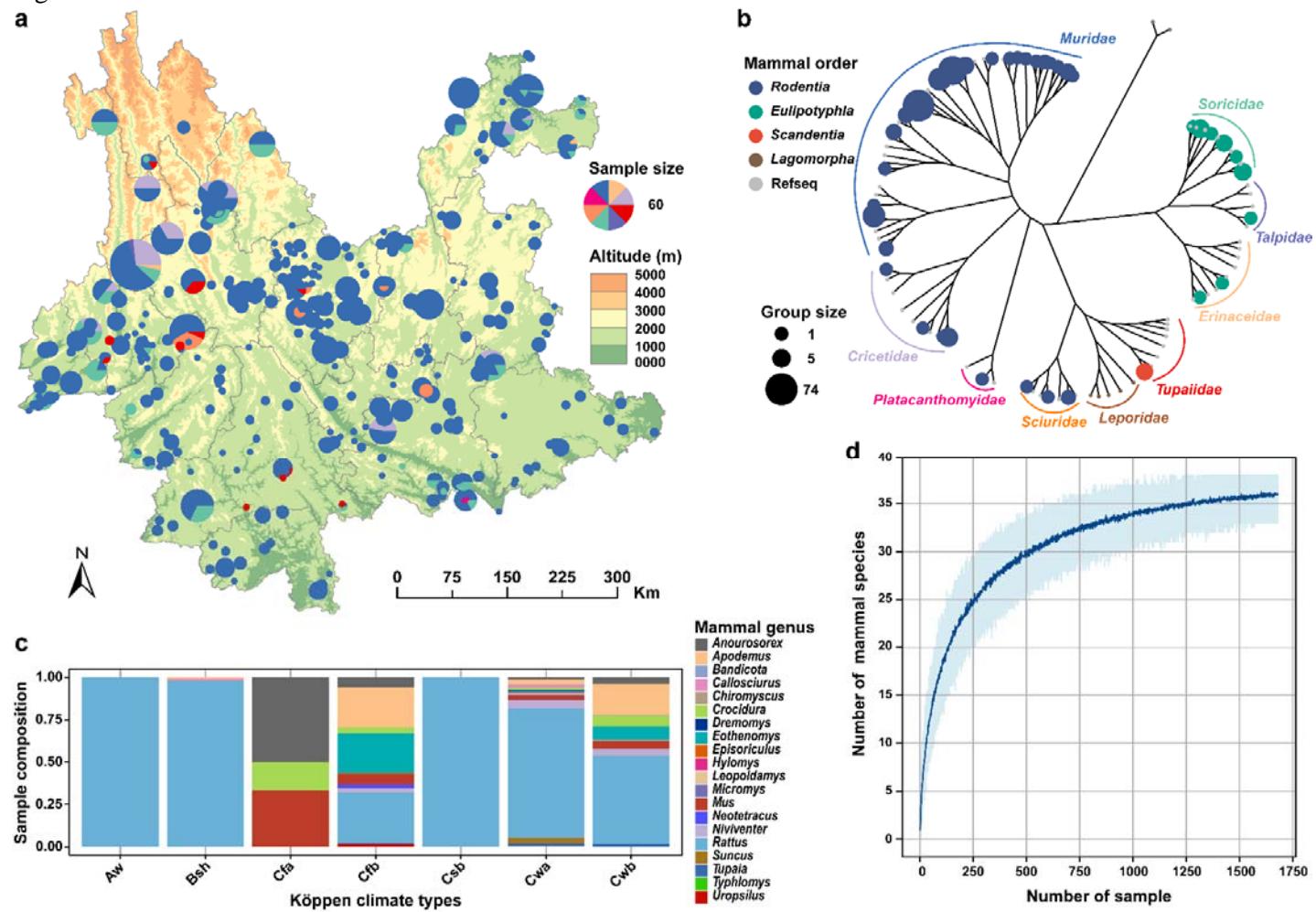


Figure 2

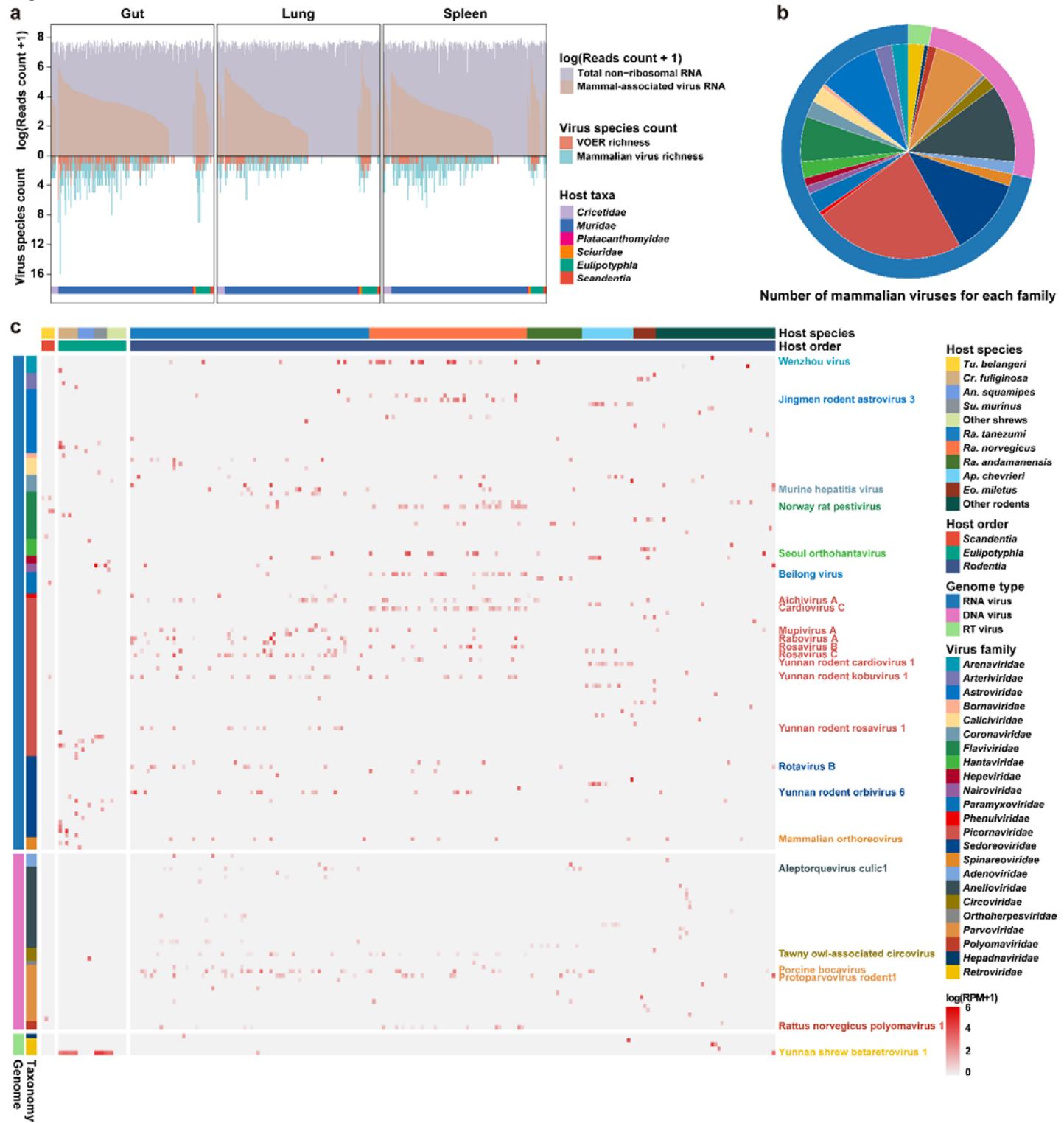


Figure 3

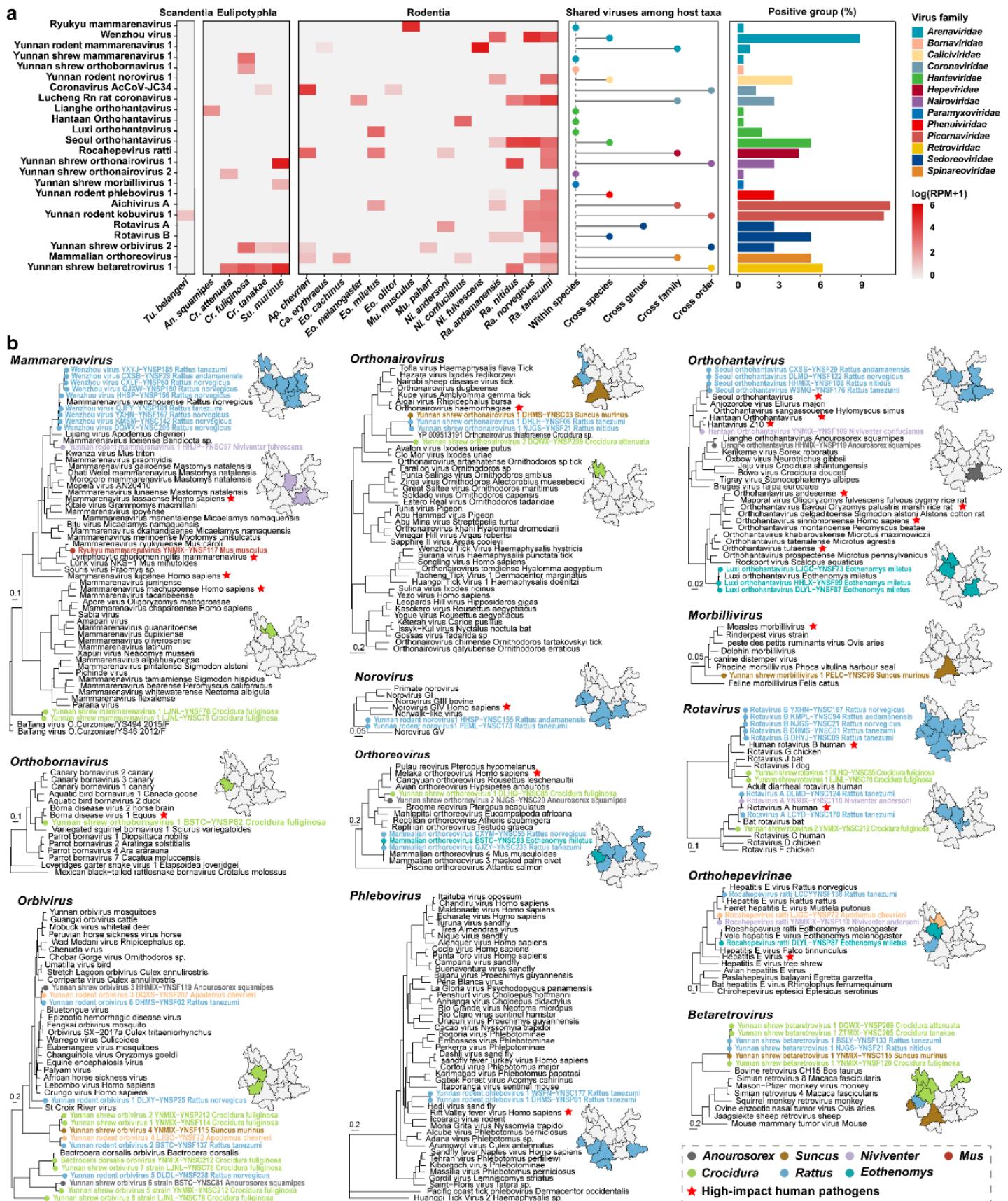


Figure 4

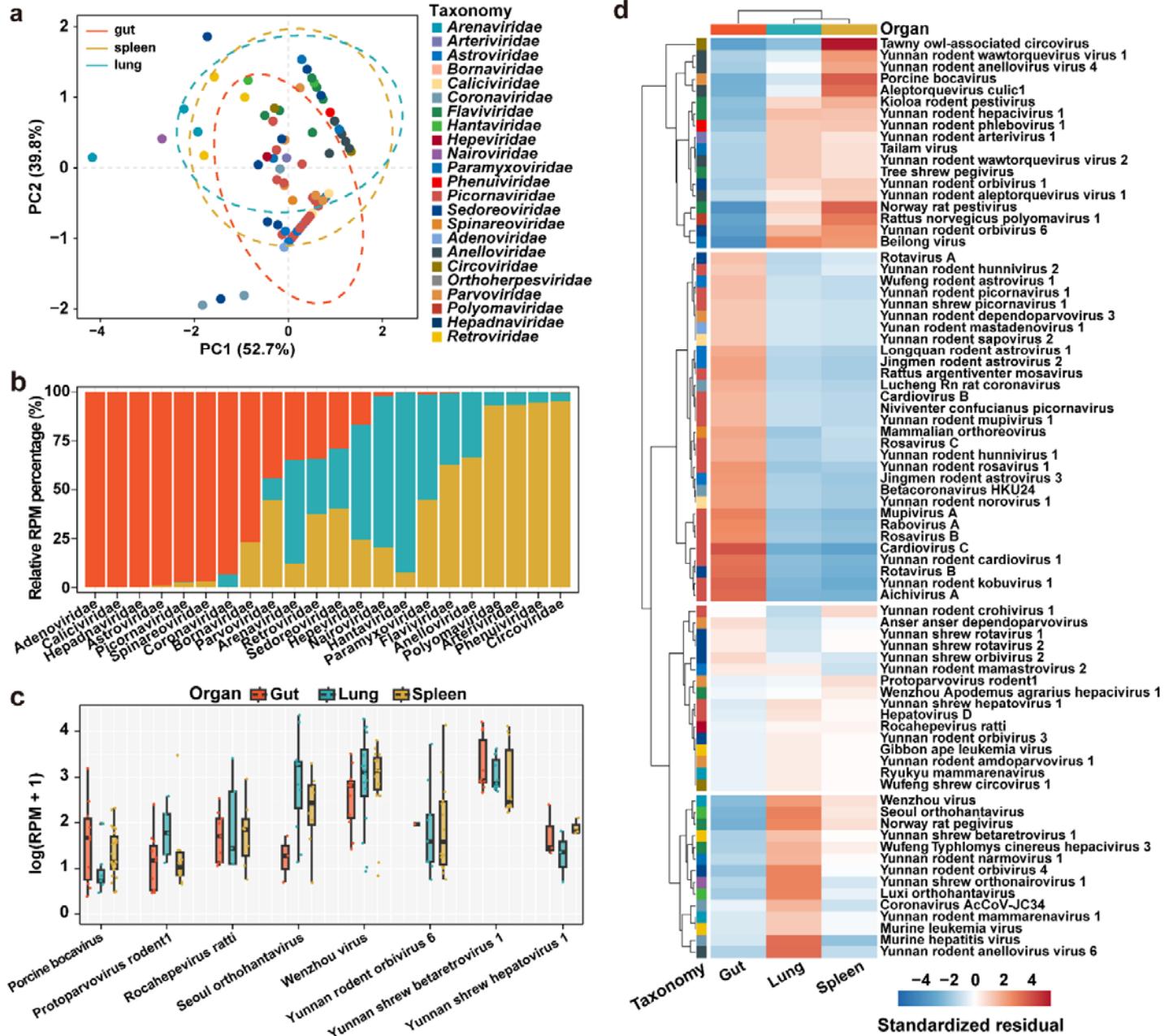


Figure 5

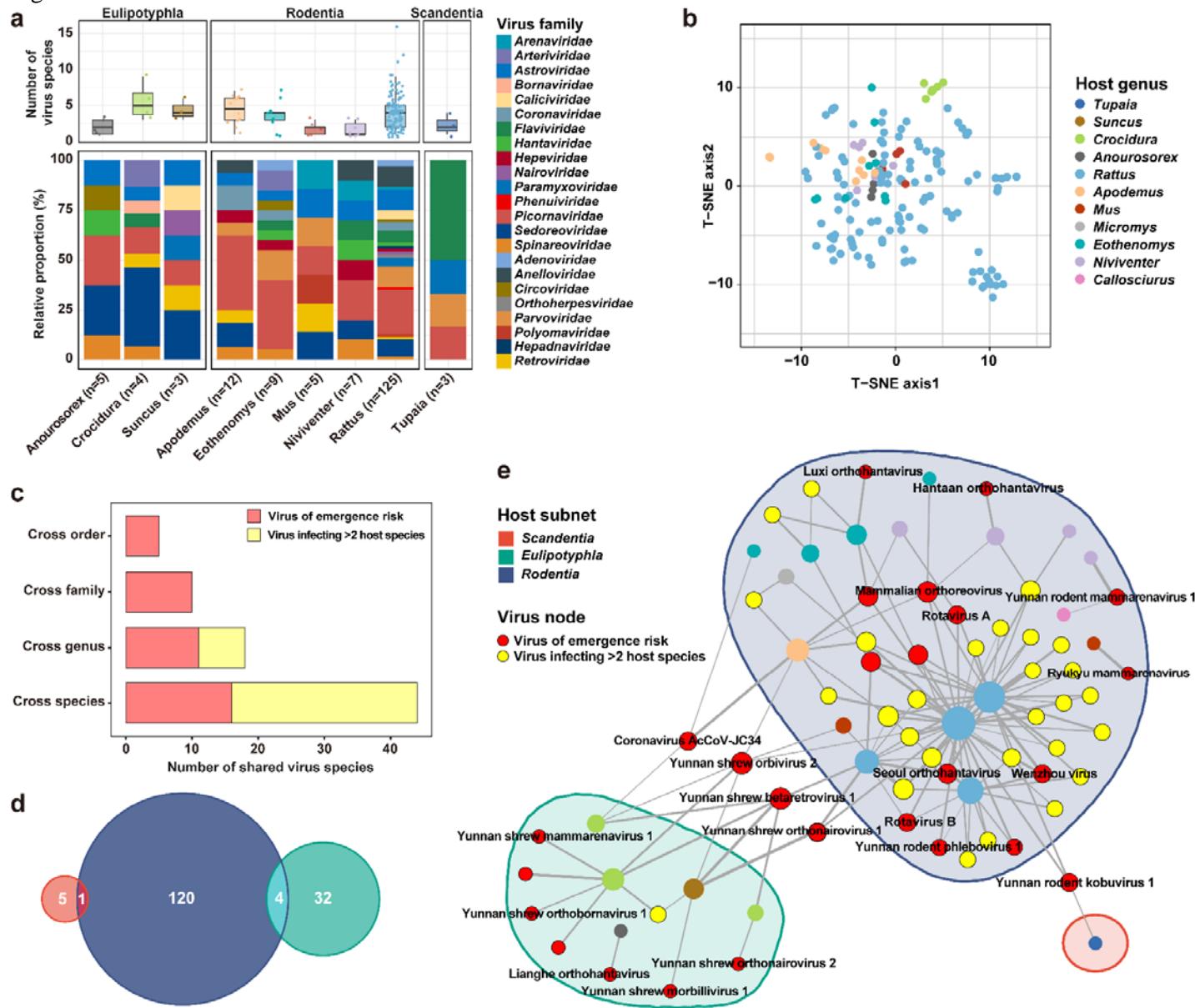


Figure 6

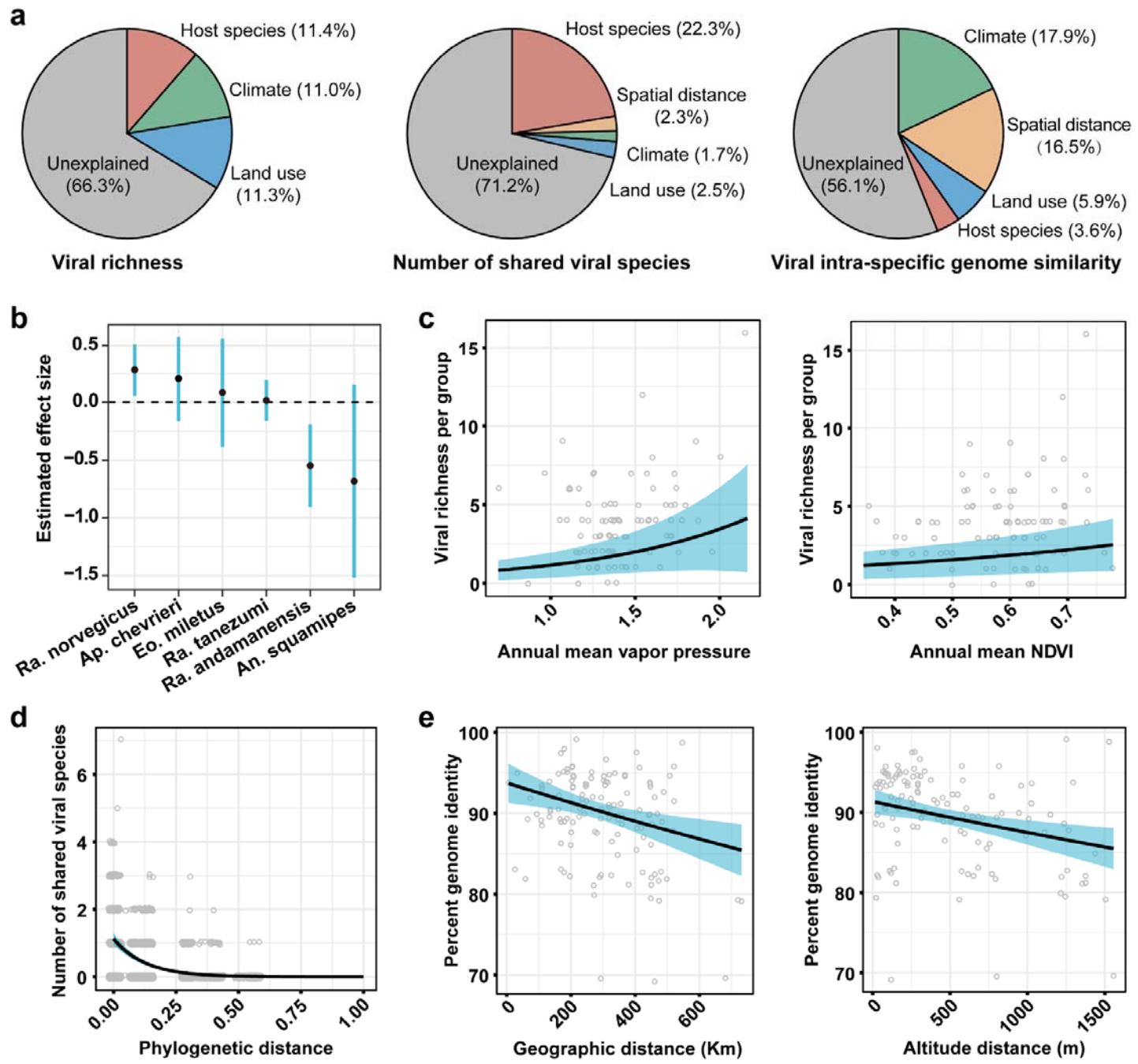


Figure S1

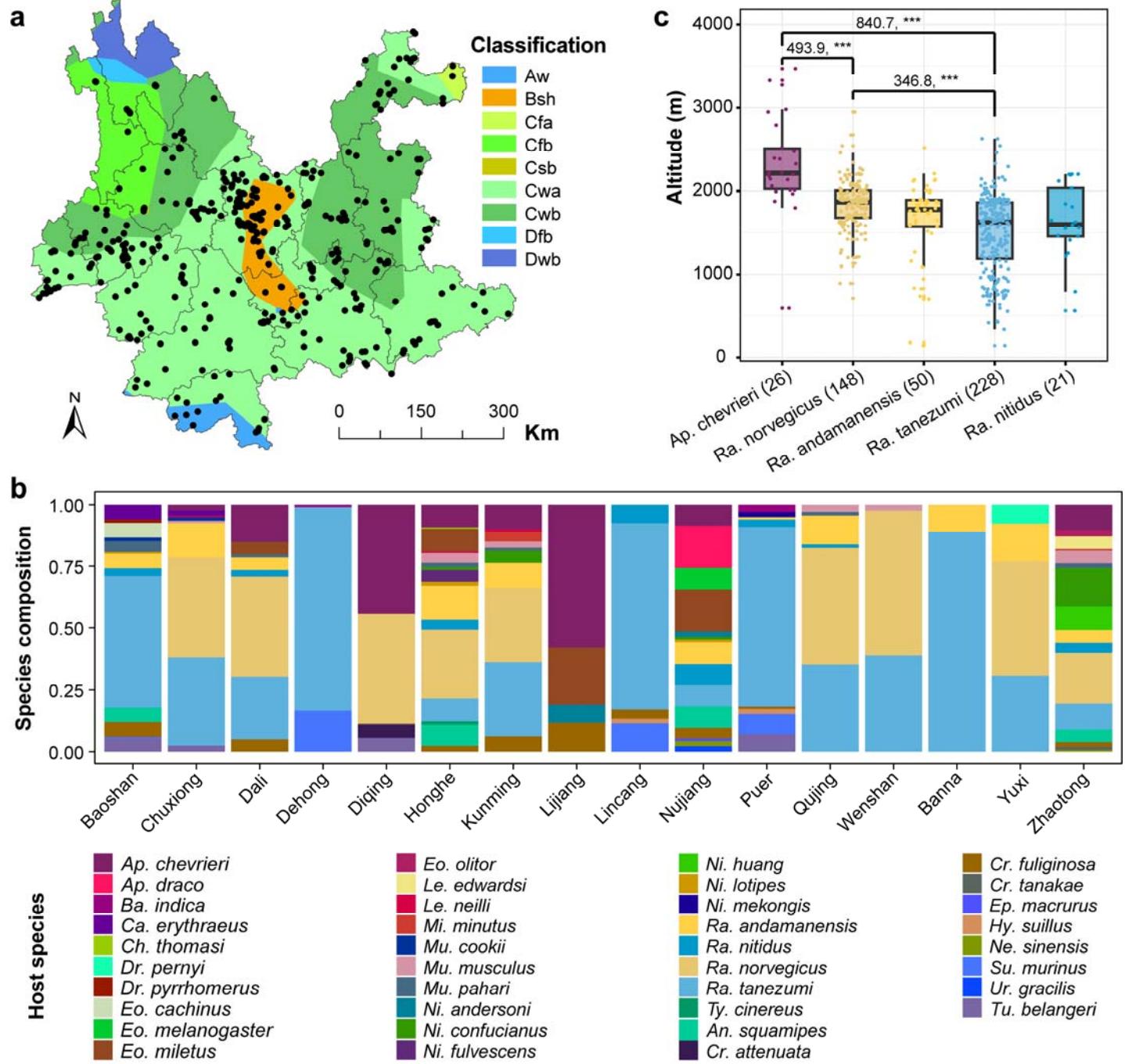


Figure S2

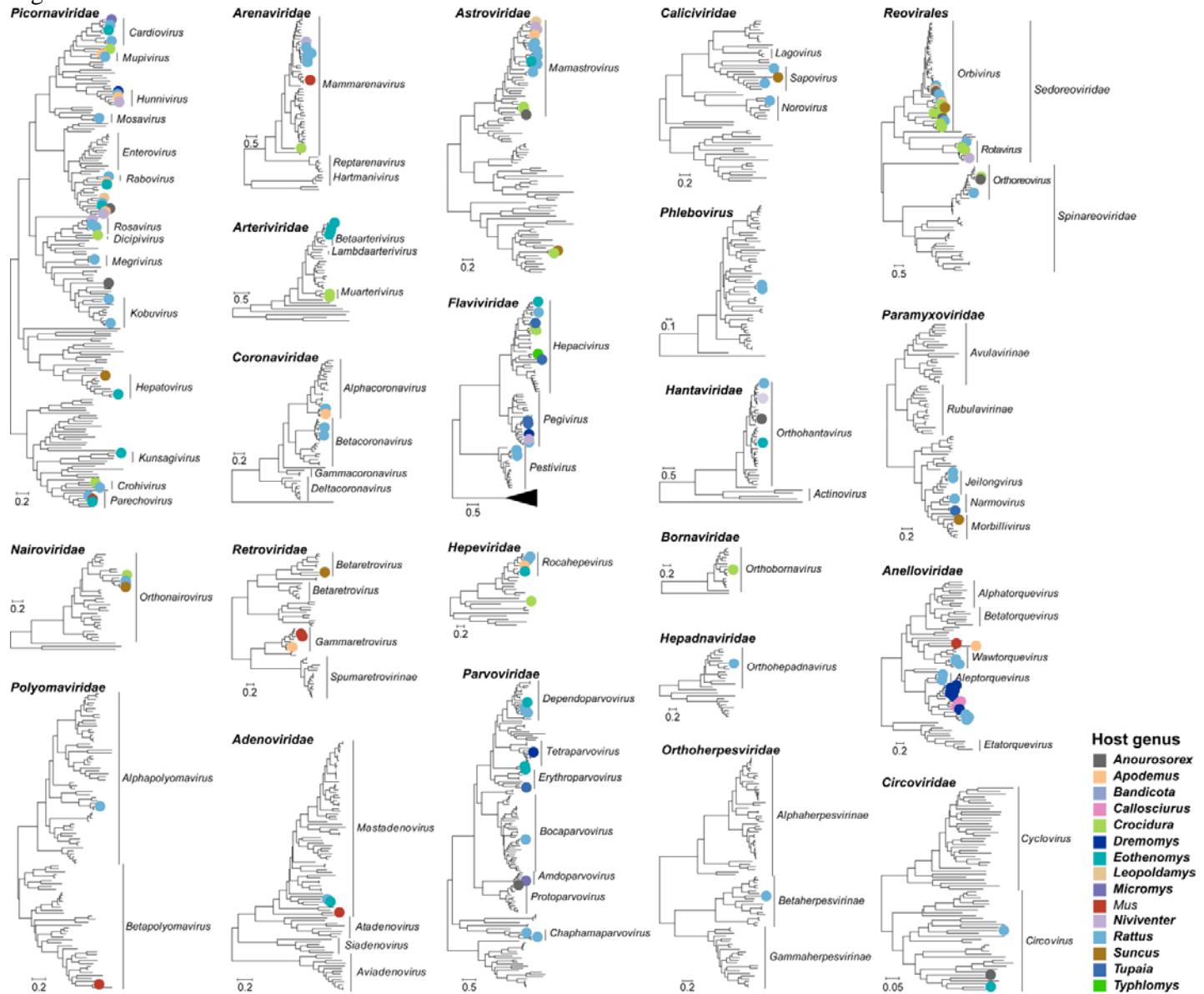


Figure S3



Figure S4

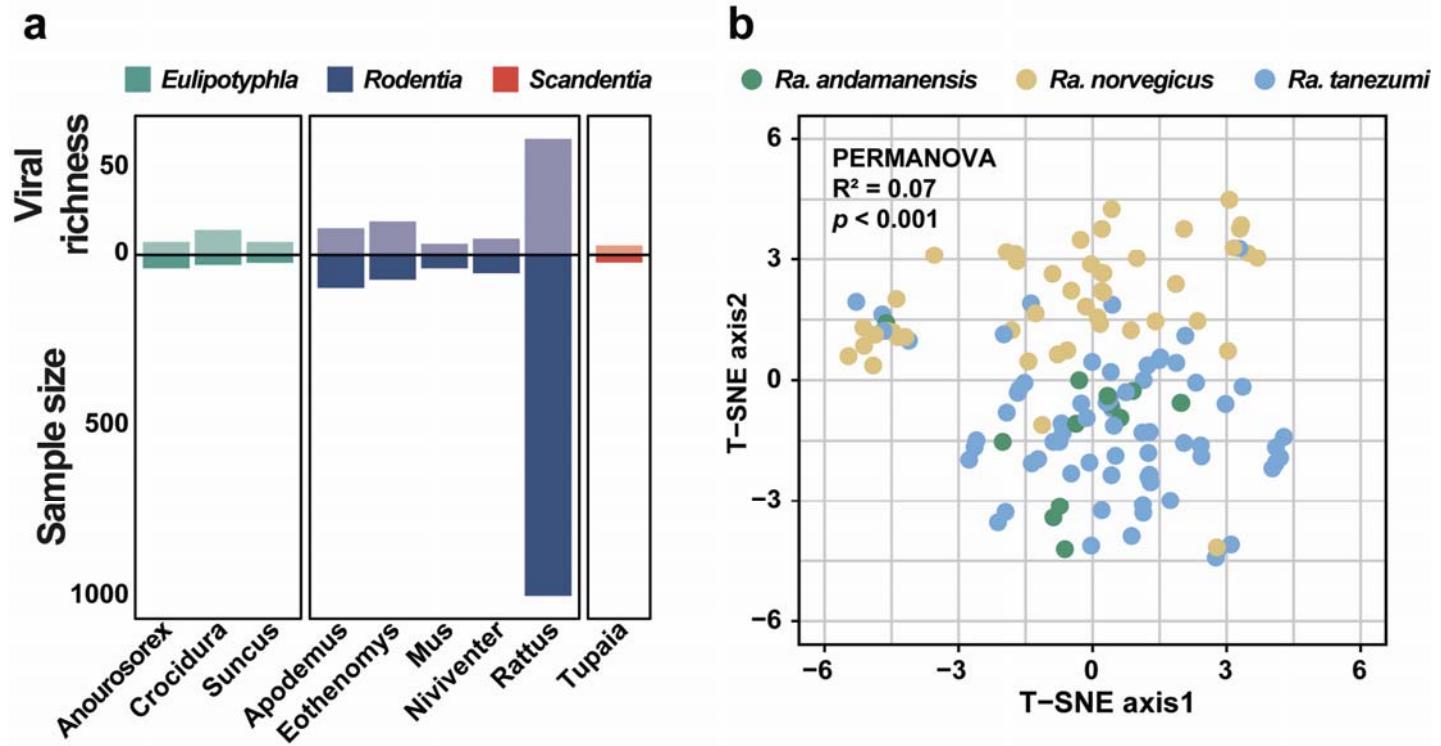
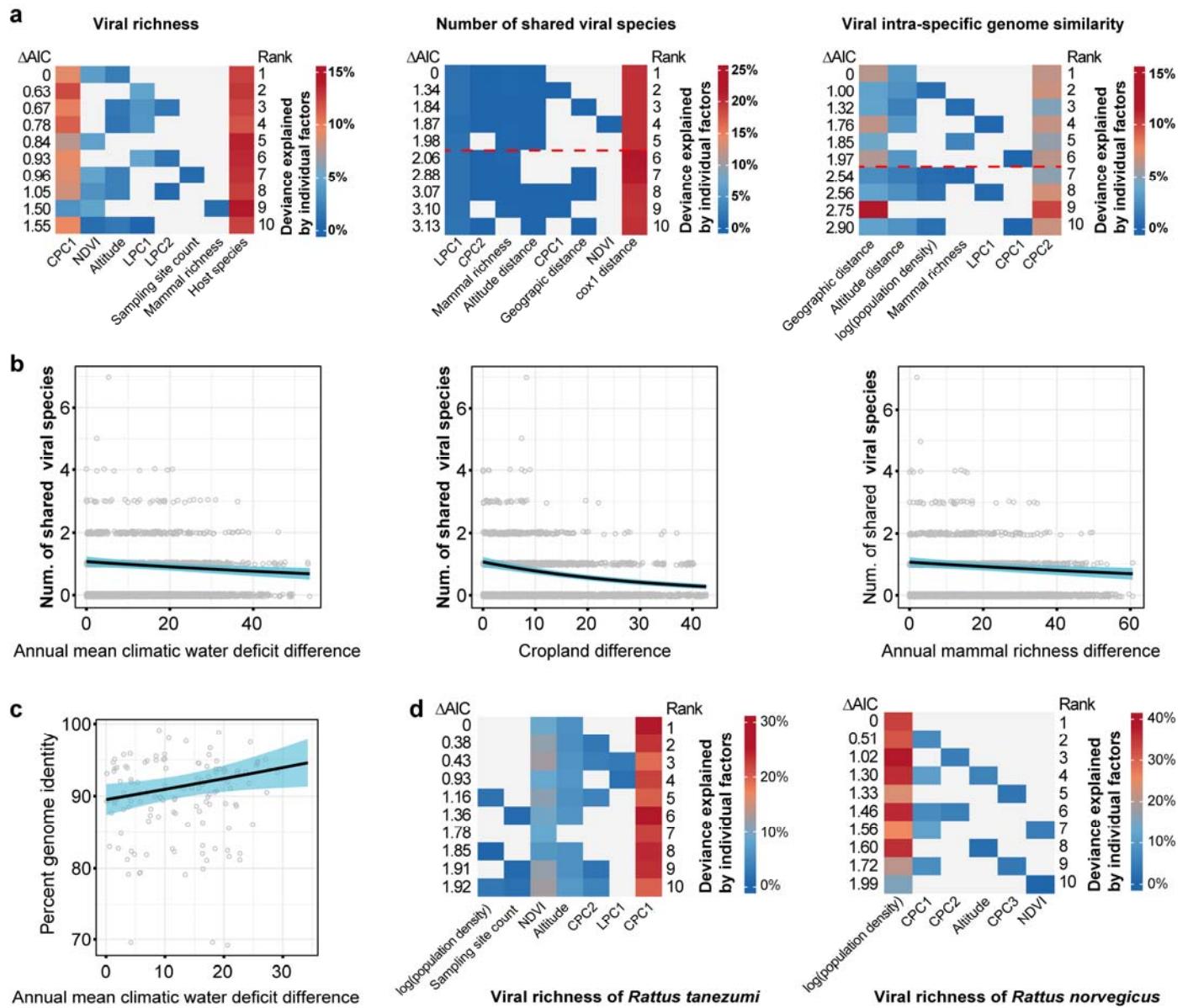



Figure S5

