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Abstract 15 

Segmentation and detection of biological objects in fluorescence microscopy is of paramount 16 

importance in cell imaging. Deep learning approaches have recently shown promise to advance, 17 

automatize and accelerate analysis. However, most of the interest has been given to the segmentation 18 

of static objects of 2D/3D images whereas the segmentation of dynamic processes obtained from time-19 

lapse acquisitions has been less explored. Here we adapted DeepFinder, a U-net originally designed 20 

for 3D noisy cryo-electron tomography (cryo-ET) data, for the detection of rare dynamic exocytosis 21 

events (termed ExoDeepFinder) observed in temporal series of 2D Total Internal Reflection Fluorescent 22 

Microscopy (TIRFM) images. ExoDeepFinder achieved good absolute performances with a relatively 23 

small training dataset of 60 cells/~12000 events. We rigorously compared deep learning performances 24 

with unsupervised conventional methods from the literature. ExoDeepFinder outcompeted the tested 25 

methods, but also exhibited a greater plasticity to the experimental conditions when tested under drug 26 

treatments and after changes in cell line or imaged reporter. This robustness to unseen experimental 27 

conditions did not require re-training demonstrating generalization capability of ExoDeepFinder. 28 

ExoDeepFinder, as well as the annotated training datasets, were made transparent and available 29 

through an open-source software as well as a Napari plugin and can directly be applied to custom user 30 

data. The apparent plasticity and performances of ExoDeepFinder to detect dynamic events open new 31 

opportunities for future deep-learning guided analysis of dynamic processes in live-cell imaging. 32 
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Main 38 

Technological improvements in imaging accelerate the amount of acquired data. This situation 39 
requires new methods to automatically extract the tremendous quantity of information present in 40 
them. It is clearly established that Deep-Learning-based image segmentation methods, and especially 41 
U-net1, surpass conventional techniques and exhibit a remarkable generalisation capacity1,2. However, 42 
most of the studies are restricted to the segmentation of static biological objects. Deep-Learning-43 
methods are rarely applied to dynamic processes3 while several model-based methods have been 44 
developed in the past decades4–7. Here we focus on the supervised Deep-Learning-assisted detection 45 
of rare dynamic exocytosis events (< 1 event per frame in average) in videos. Exocytosis is the fusion 46 
of an intracellular vesicle with the plasma membrane to release its content. Many conventional 47 
methods of exocytosis detection have been already published8–23 including a deep-learning strategy24. 48 
These methods detect exocytosis events visualized by an exocytic reporter protein tagged with a pH-49 
sensitive fluorophore25 imaged in Total Internal Reflection Fluorescence Microscopy (TIRFM). In 50 
general, a sudden peak of fluorescence intensity (termed “puff”) followed by an exponential decay of 51 
the signal (F1A) is detected. Unfortunately, these methods are often poorly evaluated on benchmark 52 
datasets and are not publically available.  53 
Here we present an adaptation of DeepFinder26 (see Methods), a U-net deep-learning method, for the 54 

detection of exocytosis events in large 2D+Time volumes. DeepFinder was originally developed for the 55 

identification of macromolecules in 3D noisy cellular cryo-tomograms (cryo-ET) and is considered as a 56 

top-rank method, confirmed in several SHREC challenges27. To train ”ExoDeepFinder” we took 57 

advantage of our recently published large dataset28 monitoring lysosomal exocytosis events via 58 

imaging of VAMP7-pHluorin by TIRFM. The coordinates of all exocytosis events were manually 59 

annotated by a single expert based on the characteristic “puff” signature (F1A-B and movie S1).  60 

Because DeepFinder performances for cryo-ET segmentation substantially increased thanks to a multi-61 

class strategy, we applied a similar approach here: We combined manual annotations of exocytosis 62 

events with automatic algorithm-generated annotations of docked vesicles at the plasma membrane29 63 

that form bright foci without fusion with the plasma membrane (see Methods) (Fig 1C).  64 

Furthermore, we evaluated detection performance as a function of  the “Signal-to-Background Ratio” 65 

(SBR). We defined the SBR as a ratio between the local fluorescence intensity F after vesicle fusion with 66 

the plasma membrane and the fluorescence intensity F0 before this peak, i.e. 𝑆𝐵𝑅 = 𝐹/𝐹0. We 67 

constituted a dataset of 120 TIRFM movies (for a total of 20 567 exocytosis events) of 1001 frames 68 

(about 6 minutes) that we divided into three groups based on their average SBR (F1D). Then we split 69 

randomly each SBR group into two sub-groups, one dedicated to training of the network and the other 70 

one to its evaluation (F1D). We made our dataset entirely available (see supplementary). 71 

We trained ExoDeepFinder on the three sub-datasets (low, medium, and high SBR values), on the 72 

combination of these three datasets (Subsets A to D) (Table S1) and on the full training dataset (i.e. 60 73 

movies). ExoDeepFinder performances for each training set were evaluated in terms of F1-score, Recall 74 

and Precision over the whole inference dataset (i.e. 60 movies). As commonly observed for neural 75 

network approaches, the best performances were achieved with the training over the full training 76 

dataset with 67.64% for F1, 70.07% for Recall and 68.75% for Precision (Table 1). Moreover, we 77 

compared these performances to the two unsupervised, conventional exocytosis detection methods 78 

that are publically available i) ExoJ22 and ii) ADAE GUI20,21. We compared the method performances 79 

over 60 movies dedicated to inference (F1D and movie S2). ExoDeepFinder performed better than 80 

ExoJ and ADAE GUI in terms of F1-score and Precision. For Recall, ExoDeepFinder was statistically 81 

indistinguishable from ADAE GUI, but better than ExoJ (F1E). Note that despite numerous efforts to 82 

run the analysis on different computers overnight and with sub-parts of the movies, ExoJ failed to 83 

produce any results for a high percentage (30-40%) of the data (S1E) (see Methods). We noticed that 84 
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ExoDeepFinder performances were robust over different frame rates (S2B) and correlated with the 85 

F/F0 SBR (S2B).  86 

Next, we assessed ExoDeepFinder’s efficiency on cells treated with different drugs that interfere with 87 

secretion without retraining. We analyzed cells before and after treatment with Bafilomycin A1, a drug 88 

impairing lysosomal pH homeostasis that leads to decreased exocytosis rate and additionally changes 89 

cell morphology by creating stable and bright foci at the plasma membrane. ExoDeepFinder 90 

performances decreased significantly after the drug treatment when compared to same cells before 91 

treatment (F2A). However, ExoDeepFinder was still able to estimate correctly exocytosis rate and 92 

produced a correct estimation of drug effect size (F2B) even though it was exclusively trained on 93 

constitutive exocytosis events. Indeed Cohen’s d predicted by ExoDeepFinder was -1.57 while ground 94 

truth was d=-1.67. Similarly, ExoJ and ADAE GUI performances decreased (S3A and C), but contrarily 95 

to ExoDeepFinder, ADAE GUI and ExoJ made wrong estimations of exocytosis rates, especially after 96 

treatment (S3B and D). Both predicted an effect in the wrong direction (d=0.10 for ExoJ and d=0.37 for 97 

ADAE GUI). 98 

Additionally, we analyzed cells treated with histamine that stimulates lysosomal exocytosis28,30. 99 

Contrarily to Bafilomcyine A1, cell morphology and the aspect of individual secretory events was 100 

preserved. In these conditions, we observed that ExoDeepFinder performances were not impaired 101 

(F2C) and estimated precisely exocytosis rate as well as effect size (predicted d=0.87 while ground 102 

truth d=0.88) (F2D). ExoJ and ADAE GUI performances were not impacted by histamine treatment 103 

either (S3E and G). However, due to their inherent lower performances, estimated exocytosis 104 

frequency and effect size were less accurate (d=0.37 for ExoJ and d=0.98 for ADAE GUI) (S3F and H). 105 

We next detected VAMP7+ exocytosis events in another cell type (HeLa) still without re-training of 106 

ExoDeepFinder. The ExoDeepFinder performances were similar good as in RPE1 cells (F2E), and the 107 

estimated exocytosis rate was statistically indistinguishable from ground truth (F2F). Surprisingly, ExoJ 108 

performances decreased a lot (S4A): the estimated exocytosis rate decreased significantly compared 109 

to ground truth (S4B). This is surprising, because part of the ExoJ validation was performed on the 110 

VAMP7-pHluorin probe in HeLa cells22. ADAE GUI Precision decreased slightly (S4C), and the predicted 111 

exocytosis rate was significantly over-estimated (S4D). 112 

Finally, we evaluated the detection of another cargo, CD63, a transmembrane protein of the 113 

tetraspanin family that is used as a marker of the secretion of multi-vesicular bodies. Exocytosis events 114 

in RPE1 cells were monitored with a CD63-pHluorin probe30. We found that ExoDeepFinder 115 

performances were roughly preserved (F2G), and exocytosis rate was statistically indistinguishable to 116 

ground truth (F2H). ExoJ F1-score and Recall substantially increased for this dataset but the Precision 117 

value decreased (S4E). Note that although CD63-pHluorin was used to validate ExoJ22, the exocytosis 118 

rate predicted by ExoJ was underestimated, even if not significantly (S4F) due to the low number of 119 

movies that were analyzable with ExoJ. Contrary, ADAE GUI F1-score and Precision decreased 120 

substantially (S4G), and the predicted rate was significantly over-estimated compared to ground truth 121 

(S4H). 122 

In conclusion, we developed ExoDeepFinder using the U-net DeepFinder architecture, originally 123 
designed for macromolecule detection in 3D cryo-electron cell tomograms. We demonstrated that 124 
ExoDeepFinder, trained on 60 TIRF movies and hybrid annotations, outperformed unsupervised 125 
conventional methods of exocytosis detection (F1E) and was more robust (F2). Moreover, 126 
ExoDeepFinder achieved good performances even with smaller training datasets (Table S1). A multi-127 
class training of ExoDeepFinder increased its performance26 (F1C), but may require additional work for 128 
the user such as the segmentation of counter-examples events. A particular advantage of 129 
ExoDeepFinder is its speed to analyze large 2D+time volume data: It takes about 30 seconds to process 130 
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a video of 300 x 300 x 1000 voxels with no parameter adjustments, contrary to 10 to 20 minutes 131 
required with the two conventional image analysis algorithms used in our benchmark analysis that 132 
additionally required manual parameter calibration. The training required 8 to 18 hours of computing 133 
(once for all), depending on the desired number of epochs and the GPU performance. Importantly, we 134 
endeavored to produce an user-friendly software version of ExoDeepFinder publically avalable (see 135 
data and software availability). Moreover, our software allowed user to re-train the network on its 136 
own data. We showed that ExoDeepFinder is capable of imitating expert annotations on experimental 137 
videos. ExoDeepFinder was demonstrated to robustly perform on TIRF videos with variable 138 
experimental conditions (various cargo, cell lines, microscopes, cameras, fluorophores, SBRs, etc.) It is 139 
able to reliably detect exocytosis events on signals from previously unseen proteins. It can be re-140 
trained from an external dataset or fine-tuned to adapt to other target cell types or proteins. We 141 
provide an open-source implementation of the ExoDeepFinder software, the manual annotated 142 
dataset for training, and the trained model for inference and fine-tuning. ExoDeepFinder performances 143 
also open the possibility to develop similar Deep-Learning approaches dedicated to the analysis of 144 
other dynamic processes such as endocytosis or the detection of blinking spots in the context of super-145 
resolution microscopy. 146 

 147 
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 168 

Figure 1. A. Schematic representation of the exocytosis of a VAMP7-pHluorin-positive vesicle: the low 169 

pH of the acidic lumen quenches the fluorescence of pHluorin. During exocytosis, protons are released 170 

and pHluorin starts to emit light. An exocytosis event is followed by the 2D diffusion of VAMP7-171 
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pHluorin at the plasma membrane. B. TIRFM image of VAMP7-pHluorin in a transfected RPE1 cell. The 172 

inset represents the field in the white square showing one exocytosis event at different time points, 173 

t=0 represents the peak of the exocytosis event. A kymograph is plotted along the dashed white line 174 

and arrowheads indicate several observed exocytosis events. C. Workflow of the data preparation for 175 

ExoDeepFinder training. On the one hand, manual annotation gives the coordinates of ‘ground truth’ 176 

exocytosis events, on the other hand, spots corresponding to docked vesicle are detected thanks to 177 

the ATLAS algorithm. Both annotations are merged to produce a multiclass segmentation map. The 178 

resulting spatial coordinates are converted into a 3D mask. The luminescence of an exocytosis event is 179 

isotropic in the (x,y) plane and has an exponential decay in t. Therefore, we model an exocytosis event 180 

as a tube with an exponentially decaying radius starting at R=4 pixels and ending at R=1 pixel, the 181 

length of the tube being 3 frames in the temporal dimension as illustrated in the insight. Hence, our 182 

segmentation map is composed of 3 classes: background (class 0), bona fide exocytosis event (class 1) 183 

and docked vesicles/constant spot (class 2). D. Organization of the dataset. The dataset is composed 184 

of 120 TIRFM movies of 1001 frames. Each movie has a manual annotation of exocytosis event 185 

coordinates constituting the ground truth. The dataset is split into 3 equal subgroups according to the 186 

average SBR (=F/F0) of each movie. Then, each SBR group is randomly split into two equal sub-groups, 187 

one dedicated to ExoDeepFinder training and the other one to inference i.e. ExoDeepFinder 188 

evaluation. E. Comparison of ExoDeepFinder performances with ExoJ and ADAE GUI on the same 189 

inference dataset of 60 movies. Significance has been evaluated with a Kruskal-Wallis test (p<0.001) 190 

and pairwise comparison with a Dunn’s post-hoc test with a multiple comparison Holm correction, 191 

***p<0.001 (other comparison are not significant i.e. p>0.05). ExoJ has less number of movies analyzed 192 

(hence less total number of events) because the analysis cannot be performed for 30-40% of the data 193 

(see method). ExoDeepFinder was trained on the total 60 movies of the training dataset (model all). 194 
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 211 

Figure 2. A. ExoDeepFinder performances before and after Bafilomycin A1 (100 nM, 60 min) treatment. 212 

Note that one point is unpaired that represents a cell with no predicted events after treatment (hence, 213 
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F1-score, Precision and Recall cannot be defined). B. Exocytosis rate before and after Bafilomycin A1 214 

(100 nM, 60 min) treatment measured by manual detection (ground truth) and compared to 215 

ExoDeepFinder detection. In A-B, n=16 cells from three independent experiments with a total 3008 216 

and 401 exocytosis events before and after drug addition, respectively, are shown. C. ExoDeepFinder 217 

performances before and after histamine (100µM, cells immediately imaged) treatment. D. Exocytosis 218 

rate before and after histamine (10 µM, cells immediately imaged) treatment measured by manual 219 

detection (ground truth) and compared to ExoDeepFinder detection.  In C-D, n = 17 cells from three 220 

independent experiments with a total 2292 and 3201 exocytosis events before and after drug addition 221 

respectively, are shown. E. ExoDeepFinder performances in VAMP7-pHluorin transfected HeLa cells. F. 222 

Comparison of the exocytosis rate measured by manual detection (ground truth) and compared to 223 

ExoDeepFinder detection. In E and F, 14 cells analyzed from a single experiment with a total of 1045 224 

exocytosis events, are shown. G. ExoDeepFinder performances in CD63-pHluorin transfected RPE1 225 

cells. H. Comparison of the exocytosis rate measured by manual detection (ground truth) and 226 

compared to ExoDeepFinder detection. In G and H, 10 cells analyzed from a single experiment with a 227 

total of 972 exocytosis events, are shown. In A-D, F and H significance has been evaluated with paired 228 

Wilcoxon test, ns p>0.05 and ***p<0.001. In B and D, effect sizes are measured with the Cohen’s d for 229 

paired samples. In A-H, ExoDeepFinder was trained on the total 60 movies of the training dataset 230 

(model all).  231 
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Tables 251 

 252 

 F1-score (%) Recall (%) Precision (%) 

All 67.64 ± 15.91 70.07 ± 19.81 68.75 ± 16.57 
Subset A 54.77 ± 20.50 52.30 ± 23.02 64.65 ± 22.13 
Subset B 61.68 ± 20.06 62.75 ± 23.65 65.94 ± 20.35 
Subset C 63.62 ± 19.82 63.95 ± 23.68 69.60 ± 20.30 
Subset D 62.67 ± 19.39 62.51 ± 23.58 69.67 ± 20.23 
Subset E 64.51 ± 19.93 62.95 ± 22.96 70.96 ± 19.51 
Low SBR 62.19 ± 18.83 69.91 ± 21.23 61.54 ± 22.20 
Medium SBR 58.26 ± 20.22 70.05 ± 23.07 58.31 ± 24.74 
High SBR 60.37 ± 21.18 58.26 ± 23.16 68.67 ± 22.70 

 253 
Table 1. Performances of ExoDeepFinder for the different training datasets defined in Table S1. Values 254 
are mean ± SD.  255 
 256 
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