
Improved classification of alcohol intake groups in the Intermittent-Access
Two-Bottle choice rat model using a latent class linear mixed model

Diego Angeles-Valdez1,2*, Alejandra López-Castro1, Jalil Rasgado-Toledo1, Lizbeth
Naranjo-Albarrán3, Eduardo A. Garza-Villarreal1*

Affiliations:

1 Institute of Neurobiology, Universidad Nacional Autónoma de México, campus Juriquilla,
Querétaro, Mexico.

2 Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems,
University Medical Center Groningen, University of Groningen, the Netherlands.

3 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de
México, 04510, Ciudad de México, Mexico.

* Corresponding authors:

Diego Angeles-Valdez, M. Sc.
PhD student,
Instituto de Neurobiología, Translational Neuropsychiatry and Neurotoxicology Lab,
Universidad Nacional Autónoma de México (UNAM) campus Juriquilla,
University Medical Center Groningen, Cognitive Neuroscience Center,
Biomedical Sciences of Cells and Systems (BCSS),
Hanzeplein 1, 9713 GZ Groningen
Phone: +31 6 3988 7129
Email: d.angeles.valdez@umcg.nl

Eduardo A. Garza-Villarreal, MD, PhD
Assistant Professor,
Instituto de Neurobiología, Translational Neuropsychiatry and Neurotoxicology Lab,
Universidad Nacional Autónoma de México (UNAM) campus Juriquilla,
Boulevard Juriquilla 3001,
Santiago de Querétaro, Querétaro, México
C.P. 76230
Phone: (442) 238-1038
Email: egarza@comunidad.unam.mx

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.06.611716doi: bioRxiv preprint 

https://www.google.com/maps/place//data=!4m2!3m1!1s0x47c9d2a7fb1c1f69:0x2523056892f420b5?sa=X&ved=1t:8290&ictx=111
mailto:d.angeles.valdez@umcg.nl
mailto:egarza@comunidad.unam.mx
https://doi.org/10.1101/2024.09.06.611716
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Alcohol use disorder (AUD) is a major public health problem in which preclinical models
allow the study of AUD development, comorbidities and possible new treatments. The
intermittent access two-bottle choice (IA2BC) model is a validated preclinical model for
studying alcohol intake patterns similar to those present in AUD in human clinical studies.
Typically, the mean/median of overall alcohol intake or the last drinking sessions is used as
a threshold to divide groups of animals into high or low alcohol consumers. However, it would
be more statistically valuable to stratify the groups using the full consumption data from all
drinking sessions. In this study, we aimed to evaluate the effectiveness of using the time
series data of all drinking sessions to stratify the population into high or low alcohol
consumption groups, using a latent class linear mixed model (LCLMM). We compared
LCLMM to traditional classification methods: percentiles, k-means clustering, and
hierarchical clustering, and used simulations to compare accuracy between methods. Our
results demonstrated that LCLMM outperforms other approaches, achieving superior
accuracy (0.94) in identifying consumption patterns. By considering the entire trajectory of
alcohol intake, LCLMM provides a more robust and nuanced characterization of high and low
alcohol consumers. We advocate for the adoption of longitudinal statistical models in
substance use disorder research, both in human studies and preclinical investigations, as
they hold promise for enhancing population stratification and refining treatment strategies.

Word count: 230 words

Keywords:
Alcohol Use Disorder, IA2BC, classification methods, latent class linear mixed models,
longitudinal data analysis.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.06.611716doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611716
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Preclinical models that aim to replicate human alcohol use disorder (AUD), such as the

intermittent access 2-bottle choice model (IA2BC), have been developed to study alcohol

consumption patterns , brain changes, and testing novel treatments, among other purposes
1. In the IA2BC model, rats are given the choice to drink from 2 bottles inside their cage

—one with water and another with alcohol— 3 days a week. Researchers measure alcohol

(ethanol from here on) intake, creating a time series dataset 2,3. These rats are typically

classified as high or low ethanol consumers, allowing comparison with human AUD

classification. The classification in this model often relies on using the mean or median

consumption as a threshold to divide the sample3. Alternatively, more advanced methods

such as K-means 4, hierarchical clustering 5,6, and percentile of the distribution 7. However,

these classification methods consider only the mean consumption over multiple drinking

sessions, which can be highly variable and does not make use of the great amount of data in

the time series 3.

In this study, we propose a more effective method: analyzing the entire ethanol intake

time series to classify the rats into subclasses. This approach takes into consideration

individual patterns of consumption and we believe is more robust to consumption variability.

Specifically, we propose the use of latent class linear mixed model (LCLMM), a model

commonly applied in longitudinal medical data to classify patients based on time series and

trajectories. Unlike traditional methods that focus on individual data points, the LCLMM

considers trajectories, allowing for a more comprehensive understanding of the consumption

patterns. Our specific research goals were: 1) to compare the performance of traditional

classification methods versus the latent class linear mixed model in real and simulated data,

and 2) to examine the efficiency of these methods in terms of five well-known metrics: AIC,

BIC, RMSE, ICC and R-squared.

1. Method

2.1 Animals and housing

Forty eight, adolescent (PND 21, n= 48, female = 24) Wistar rats (Rattus norvegicus albinus)

with an average weight of 223g, were individually housed in standard cages in an humidity

and temperature-controlled same-sex room (23°C) under a 12-h dark/12-h light inverse cycle

(7:00 and 19:00 hrs), rats had ad libitum access to food diet rat chow and water. All rats were

divided into 3 batches, approximately 16 rats per batch. Experiments were carried out in

strict accordance with the “Norma Oficial Mexicana” (NOM-062-ZOO-1999) and the

International Guiding Principles For Biomedical Research Involving Animals. The animal
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research protocols were approved by the Ethics Committee of the Instituto de Neurobiología

at Universidad Nacional Autónoma de México project number No. 119-A. This study adhered

to the ARRIVE 2.0 guidelines to reporting of animal research 8

2.2 Real data (Ethanol model)

The Intermittent-Access Two-Bottle Choice (IA2BC) drinking procedure was used based on

previous studies to initiate and maintain ethanol intake 3,9,10. All animals were randomly

assigned at P45 into two groups, the experimental group (n = 36, female = 18) and a control

group (n = 12, female = 6), which was not used for this work. All animals in the experimental

condition had access to two bottles; the first bottle with 100 ml of 20% Ethanol (96%, v/v)

diluted with osmotically purified water, and the second bottle with purified water for three

days a week (Monday, Wednesday and Friday). For the rest of the week they received 100

ml of purified water in both bottles (Tuesday, Thursday and Saturday-Sunday). The

experimental group received only water in the two bottles. The position (left or right) of the

ethanol bottle was counterbalanced at each drinking session to control side preference.

Every day the bottles were weighted before and after removal. The rats were also weighed

daily. We calculated how much ethanol the rats consumed as a function of their weight at 24

hours, expressed in units g/kg/24h. This protocol had a duration of 20 ethanol sessions

corresponding to 45 days. The experimental design is shown in Figure 1.

Figure 1. Experimental design: P21, rats were received, P35,Two-bottle habituation
procedures, and P45, initiation of IA2BC model. Created with BioRender.

2. Statistical analysis

We performed four statistical classification methods to classify two classes of consumers

based on the ethanol main intake (g/kg/24h) per session: high and low. The four methods
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were: (i) percentiles, (ii) k-means clustering (k-means), (iii) hierarchical clustering, (iv) and

latent class linear mixed models (LCLMM). The standardization of Main intake was

performed by subtracting the mean of each variable from each data point, and dividing by its

standard deviation, in order to compare the methods.

3.1 Classification methods

Percentiles

The percentile is the value below which a given percentage of data falls in their frequency

distribution. We obtained the mean of ethanol intake for each rat during 20 sessions of

ethanol intake, similar to Jadhav, et al., (2017) 7. High consumers were the Wistar rats that

had a value above the 70 percentile, while low consumers were those below this 70

percentile.

K-means clustering

K-means is an unsupervised method that consists of partitioning a set of n groups into k ≥2

clusters (cluster centers)11, in which each group belongs to the nearest cluster (with the

nearest mean). We obtained the mean of ethanol intake for each rat during the last 20

sessions, and then we used a k-means cluster analysis with 2 cluster centers (k=2).

Hierarchical clustering

Hierarchical clustering is an unsupervised method to build a hierarchy of clusters 12,13. There

are two general strategies: agglomerative and divisive. The merges and splits of the clusters

are determined by computing similarities criteria, and usually the results are presented in a

dendrogram. For the classification of the hierarchical analysis, we also obtained the mean of

ethanol intake for each rat during the last 20 sessions, we used a Ward minimum variance

method to minimize the euclidean distance between subject's intakes with a k = 2.

Latent class linear mixed model

Latent class linear mixed model (LCLMM)14 is a statistical method that combines the features

of the linear mixed model (linear fixed and random effects model, used for repeated

measures data) with the inclusion of latent classes. In contrast with the traditional

classification methods based on only one observation, the LCLMM considers all the repeated

measures in the longitudinal structure, does not summarize the data in an average, and

instead uses all the observations to trace the evolution of the trajectory of ethanol intake. In

addition, LCLMM works with covariates, which means that in the process of identifying the

latent classes, the characteristics of each subject are considered through explanatory

variables. The LCLMM assumes that the population under study is heterogeneous,
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composed of G≥2 latent classes of subjects characterized by G≥2 mean profiles of

trajectories. The latent classes are unknown a priori, so the LCLMM partitions the population

into subpopulations or latent classes, and then it is used to identify families of trajectories in

longitudinal data. ethanol intake trajectories were modeled with LCLMM using lcmm

package14

3.2 Models comparison

To determine the best performance of each classification method, we modelated the ethanol

intake by each classification method using a linear mixed model with lmer package 15 (Eq. 1),

and compared the performance metrics (AIC, BIC, RMSE, R-squared, and intraclass

correlation coefficient (ICC) )16.

Eq. 1:

𝑀𝑎𝑖𝑛 𝑖𝑛𝑡𝑎𝑘𝑒 =  β0 + β1 (𝐴𝑔𝑒) + β2 (𝐶𝑙𝑎𝑠𝑠) + β3 (𝑊𝑒𝑖𝑔ℎ𝑡 ) + β4 (𝑆𝑒𝑥 ) + β5 (𝑟𝑎𝑡 𝐼𝐷: 1... 𝑛 ) +  ϵ𝑗 

3.3 Simulated data.

We performed a simulation generating 300 datasets (n = 18, sample = 100; n = 36, sample =

36; n = 54, sample = 100) with characteristics similar to the Real data along 20 sessions, and

considering that there are two classes according to the kind of consumption: high and low.

To simulate each dataset, a LCLMM structure was used. Specifically, ethanol intake

(response variable y) over time (t) has a relationship with two covariates, the sex (variable

x1) and the weight (variable x2); each subject is independent of others, so the individuals

have different consumptions (random effects for intercept and slope of time). In addition,

consumption over time presents two classes of consumers (two latent classes), which are

described through two different curves over time (polynomial of order 2 in time), describing

respectively the high and low levels of ethanol intake.

To generate the 100 datasets, the parameters are fixed, i.e. we use the same values

for the parameters to simulate the data, but the covariates simulated on each occasion are

different, and therefore the response variables are different.

The four statistical methods were performed on each simulated dataset, in order to

classify the subjects according to their ethanol intake. Notice that, as we have simulated the

data, we know the true classes the subjects belong to. Comparisons of each method were

performed using the classification criteria of accuracy, sensitivity, specificity and area under

the ROC curve (AUC-ROC).
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3. Results
4.1 Real data ethanol intake

After the twenty sessions of the Intermittent-Access Two-Bottle Choice at 20% ethanol

concentration, Wistar rats consumed an average of 1.66 ± 149 g/kg/24 hrs throughout the

entire protocol.Their final weight was 0.270 ± 0.080 grams. Notably, we observed statistically

significant differences in main ethanol intake (g/kg/24hrs) between sexes (F(716) = 50.08, βmale

=0.760, p < 0.01). Additionally, there was a statistically significant association with weight

(kg) (F(718) = 625.1, βmale =0.113, p < 0.01). Ethanol intake (Figure 2A) and weight (Figure 2B)

were different along the sessions between females and males. Additionally, Table 1 shows

descriptive summaries of the ethanol model by each classification method.

Table 1. EtOH groups classification
Ethanol Exposure

Percentil K - means Hicherical Clustering LCLMM

High
intake
n=11

Low
intake
n= 25

Statistic High
intake
n=8

Low
intake
n=28

Statistic High
intake
n=16

Low
intake
n=20

Statistic High
intake
n=8

Low
intake
n=28

Statistic

Sex

Male 9
(81.80%)

9
(36%)

χ²(1) =
126.46
p <0.01**

7
(87.50%)

11
(39.28%)

χ²(1) =
113.79
p <0.01**

12
(75%)

6
(30%)

χ²(1) =
142.21

p =0.01**

5
(38.88%)

13
(46.43%)

χ²(1) =
12.22,

p =0.0004
female 2

(18.20%)
16

(64%)
1 (12.5%) 17

(60.72%)
4 (25%) 14

(70%)
3 (62.5%) 15

(53.57%)

Weight Kg

Male 0.43 ±
0.07

0.31 ±
0.06

t(353.14)
= 4.20, p

<0.01**

0.34 ±
0.07

0.31 ±
0.07

t( 285.27)
= 3.36,
p <0.01**

0.33 ±
0.07

0.30 ±
0.06

t(274.11)
= 3.69,
p <0.01**

0.34 ±
0.07

0.22 ±
0.03

t(172.5)
=2.51,

p
=0.012*

female 0.24 ±
0.03

0.21 ±
0.04

t(58.32) =
5.86, p
<0.01**

0.23 ±
0.03

0.21 ±
0.04

t(23.05) =
2.96,

p= 0.006*

0.23±
0.04

0.20 ±
0.04

t(159.18)
= 5.55, p

<0.01**

0.32 ±
0.07

0.21 ±
0.03

t(101.66)
= 2.17,
p =0.03*

Main intake g/kg/24 hrs

Male 2.80 ±
1.94

1.29 ±
1.11

t(284.46)
= 9.06, p

<0.01**

3.03 ±
1.78

1.42 ±
1.41

t(248.3 =
9.04,

p <0.01**

2.55 ±
1.85

1.03 ±
0.88

t(356.7 =
10.54,

p <0.01**

1.73 ±
1.29

1.19±
0.95

t(154.16 =
4.77,

p <0.01**

female 2.05 ±
1.41

1.19 ±
0.94

t(43.49) =
3.77, p
<0.01**

2.17 ±
1.65

1.23 ±
0.96

t(19.77) =
2.52,

p= 0.02*

1.93 ±
1.17

1.10 ±
0.91

t(108.56)
= 5.88,
p= 0.01**

2.79 ±
1.92

1.76 ±
1.59

t(72.55) =
3.03,

p= 0.003*

Continuous variables are reported as mean ± SD, and nominal as number (percentage from group): two-sample
t-test and χ² was performed for each variable. Statistical significance is denoted by: p < 0.001 '**', p < 0.01 '*'. t = t
value, p = p value.
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Figure 2. Ethanol intake and weight trajectories

Overview of (A) ethanol intake, (B) and the weight of all rats over IA2BC model by sex. The values
are expressed as mean EtOH Main intake (g/kg/24h), and weight (Kg) ± SEM at each drinking
session.

4.2 Model performance evaluation

All classification models generate a classification of high- and low ethanol intake (Figure 3).

Here, we used AIC, BIC, R2
conditional, ICC and RMSE metrics to evaluate the performance of

the classification models. Although the k-means model was the best model according to the

AIC and BIC criteria, all models obtained similar results. The LCLMM model was the best

performer in R2
conditional, ICC and RMSE. Notice that the percentile, k-means, and hierarchical

clustering methods seek to classify according to distance or similarity criteria, decreasing the

variance within the classified groups members, but at the same time increasing the variance

between groups, which could also affect the criteria values. On the contrary, the LCLMM

method considers the entire longitudinal trajectory of the subjects, and seeks to classify

according to the average trajectory over time. Taken together, these results suggest that the

latent class model could be the most appropriate option between the classification models

assessed to classify subgroups based on ethanol consumption. See performance

classification models (Figure 4 and Table 2).
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Figure 3. Ethanol intake trajectories by classification method

Ethanol intake of high and low subgroups obtained by A) percentile, B) k-means, C) Hicherical
clustering, D) latent class linear mixed model. The red line corresponds to the estimated mean from
the rats with classification of high ethanol, while the blue line corresponds to the ones with
classification of low ethanol consumers. The gray shades represent their 95% confidence interval.
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Table 2. Real data classification performance

Classification
Model

AIC BIC R2
conditional ICC RMSE

Percentile 2502.802 2534.749 0.3237047 0.10372982 1.335764

k-means 2500.356 2532.303 0.3235848 0.09499721 1.336407

Hicherical
Clustering

2505.232 2537.179 0.3234651 0.11280510 1.335172

LCLMM 2520.855 2552.802 0.3259408 0.18323064 1.331842

Figure 3. Models comparison

Performance of the classification models: Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Conditional R-squared (R2

conditional), Intra-class Correlation Coefficient (ICC), Root
Mean Squared Error (RMSE).

4.3 Simulated data
Table 4 shows the summary of the means and standard deviation of the classification criteria

for the 100 datasets. Notice that under the LCLMM, the criteria values are higher in

comparison to the criteria of the other three methods and are consistent with smaller and

larger sample sizes. Therefore, on average the LCLMM generates better classifications

compared accuracy sensitivity and specificity to the other three methods, because for

LCLMM the criteria results are greater than the other methods.
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Table 4. Average (standard deviation) of the criteria for classification for 100 datasets.

Method Accuracy Sensitivity Specificity AUC ROC

Sample size n= 18

Percentiles 0.7744 (0.0860) 0.8373 (0.0830) 0.6898 (0.1726) 0.7636 (0.1077)

K-means
clustering

0.7733 (0.1165) 0.8850 (0.1485) 0.5879 (0.2403) 0.7448 (0.1077)

Hierarchical
clustering

0.7738 (0.1057) 0.8917 (0.1472) 0.5638 (0.2582) 0.7277 (0.1187)

LCLMM 0.8777 (0.1342) 0.8998 (0.1496) 0.8110 (0.2858) 0.8554 (0.1692)

Sample size n= 36

Percentiles 0.7961 (0.0650) 0.8676 (0.0594) 0.6667 (0.1155) 0.7671 (0.0760)

K-means
clustering

0.8027 (0.0700) 0.9183 (0.0938) 0.5827 (0.1642) 0.7505 (0.0771)

Hierarchical
clustering

0.8000 (0.0745) 0.9105 (0.1151) 0.5794 (0.1956) 0.7449 (0.0808)

LCLMM 0.9147 (0.1056) 0.9374 (0.1024) 0.8685 (0.1920) 0.9030 (0.1170)

Sample size n=54

Percentiles 0.7959 (0.0572) 0.8785 (0.0538) 0.6430 (0.0905) 0.7608 (0.0639)

K-means
clustering

0.8016 (0.0588) 0.9304 (0.0777) 0.5557 (0.1504) 0.7430 (0.0639)

Hierarchical
clustering

0.7829 (0.0657) 0.9133 (0.1176) 0.5417 (0.2064) 0.7275 (0.0720)

LCLMM 0.9479 (0.0473) 0.9639 (0.0486) 0.9125 (0.1041) 0.9382 (0.0597)

4. Discussion

The present study aimed to compare time series classification with traditional mean-based

classification of ethanol intake in the intermittent access two-bottle choice model. Our

findings suggest that using a statistical model that incorporates the full time series data of

ethanol intake leads to better classification of animals when using a dichotomous

classification.

Despite the availability of various classification methods, few studies have taken a

more data driven longitudinal approach, often relying on arbitrary or simple selection of

thresholds. This practice can introduce bias into the classification process 3,17. Specifically,
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selecting high ethanol consumers without considering individual differences may result in

significant discrepancies in result interpretation and our understanding of ethanol-related

behaviors 18.

In preclinical studies of AUD, the classification of rats as high -consuming based on

different methods can introduce variability in study outcomes and potential biases. For

instance, rats that do not reach a set consumption level might be excluded from further

analysis. Unfortunately, information about the criteria used to exclude rats from studies is

not commonly provided, leading to inconsistencies between research efforts and reduced

reproducibility of findings.

Our study reveals that ethanol intake trajectories strongly correlate with sex and

weight variables, as described previously 19–21. Therefore, it is crucial to consider these

covariables when determining ethanol intake classification (High or Low). Notably, in our

study approximately 33% of the total rat sample exhibited a high consumption pattern,

aligning with prevalence rates observed in human studies 18,22,23. Additionally, around

sessions 7-9 of the IA2BC model (PND 65), a trend in ethanol main intake trajectories

begins to show 9. This observation suggests that not all individuals with consumption habits

will necessarily develop alcohol abuse, mirroring patterns seen in human populations 24–26.

Consequently, our results underscore the necessity of employing longitudinal statistical

methods to classify individuals in this kind of studies.

The small difference between the performance of LCLMM and K-means on the AIC

and BIC criteria (see Table 2) can be explained by the fact that AIC and BIC are based on

the likelihood function. Figure 3 showed a lower variance for models A and B, followed by C,

(gray shades) compared to LCLMM, where there is more variance, this variance affects the

likelihood and can increase the AIC and BIC. The nature of measuring ethanol intake in rats

produces a higher variance because not all rats consume the same amount of alcohol.

Therefore, in order to find the best method to classify between high and low consumption

patterns, the LCLMM offers several advantages over traditional models. Firstly, it was

specifically designed to handle longitudinal experimental designs, incorporating all

observations measured over time. Secondly, it leverages the characteristics of individual

subjects through explanatory variables. Thirdly, it accounts for intra-subject variability by

incorporating random effects. Finally, it utilizes covariates to control for batch effects and

other potential confounding variables​​. Therefore, we emphasize the use of longitudinal

statistical models such as LCLMM to classify between high and low consumers in the IA2BC

model 27,28.
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5. Limitations
An important element to consider in using longitudinal models is the use of random seeds to

ensure that the data is divided the same way every time the code is run. These seeds play a

crucial role in maintaining the reproducibility of findings and the replicability of results. Our

study represents one of the first explorations into various classification techniques,

encompassing both traditional techniques and the incorporation of longitudinal models.

However, our research focuses on the LCLMM model, testing different longitudinal modeling

could help to select a better choice for ethanol intake pattern classification. Another limitation

pertains to our use of the Wistar strain exclusively.It’s well-established that not all strains

exhibit the same ethanol consumption levels9. While the statistical methods employed may

have broader applicability across different strains and species due to the nature of the

analysis, future studies utilizing longitudinal classification methods can provide deeper

insights into these patterns. Lastly, the act of classifying animals into 2 groups may be,

somewhat, artificial. These limitations should be considered when interpreting the validity

and robustness of the conclusions drawn from our study.

6. Conclusion
The appropriate classification of groups according to ethanol intake patterns, particularly in

experimental models of AUD, is crucial. Longitudinal modeling methods, such as the

LCLMM, offer significant advantages in accurately classifying these patterns. These methods

can provide a better understanding of the phenotypes associated with AUD and improve the

exploration of underlying mechanisms and potential treatments​​.

Data and code availability
The summarized data and all the code implemented in this work is available in a public

repository at https://github.com/DiegoAngls/IA2BC_LCLMM/tree/main/code . A graphic user

interface to run the LCLMM analysis can be used by running the ShinyApp file

https://github.com/DiegoAngls/IA2BC_LCLMM.
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