

1 **Global phylogenomic analysis of *Staphylococcus pseudintermedius*
2 reveals genomic and prophage diversity in multi-drug resistant
3 lineages**

4

5 **Authors:** Lucy F. Grist¹ (<https://orcid.org/0000-0002-7708-2169>), Alice Brown^{2,3}
6 (<https://orcid.org/0009-0003-0822-3786>), Noel Fitzpatrick⁴, Giuseppina Mariano⁵
7 (<https://orcid.org/0000-0003-1197-2123>), Roberto M. La Ragione^{1,5}
8 (<https://orcid.org/0000-0001-5861-613X>), Arnoud H. M. van Vliet¹
9 (<https://orcid.org/0000-0003-0203-1305>), Jai W. Mehat^{5,*} (<https://orcid.org/0000-0002-9563-6348>)

11

12 **Affiliations**

13 ¹ Department of Comparative Biomedical Sciences, School of Veterinary Medicine,
14 Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL,
15 UK

16 ² MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK

17 ³ Department of Life Sciences, Imperial College London, SW7 2AZ, UK

18 ⁴ Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Faculty
19 of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK

20 ⁵ Department of Microbial Sciences School of Biosciences, Faculty of Health and
21 Medical Sciences University of Surrey, Guildford GU2 7XH, UK

22

23 ***Correspondence: Jai Mehat (jw.mehat@surrey.ac.uk)**

24

25

26 **Abstract**

27 *Staphylococcus pseudintermedius* is the foremost cause of opportunistic canine skin
28 and mucosal infections worldwide. Multidrug resistant (MDR) and methicillin-resistant
29 *S. pseudintermedius* (MRSP) lineages have disseminated globally in the last decade
30 and present significant treatment challenges. However, little is known regarding the
31 factors that contribute to the success of MDR lineages. In this study, we compared the
32 genome sequence of 110 UK isolates of *S. pseudintermedius* to 2,166 genomes of *S.*
33 *pseudintermedius* populations from different continents. A novel core genome multi-
34 locus typing scheme was generated to allow large scale, rapid and detailed analysis
35 of *S. pseudintermedius* phylogenies, and was used to show that the *S.*
36 *pseudintermedius* population structure is broadly segregated into an MDR population
37 and a non-MDR population. MRSP lineages are predicted to either encode certain
38 resistance genes chromosomally, or on plasmids, and this is associated with their
39 MLST sequence type. Comparison of lineages most frequently implicated in disease,
40 ST-45 and ST-71, with the phylogenetically related ST-496 lineage that has a
41 comparatively low disease rate, revealed that ST-45 and ST-71 genomes encode
42 distinct combinations of phage-defence systems and concurrently encode a high
43 number of intact prophages. In contrast, ST-496 genomes encode a wider array of
44 phage defence systems and lack intact, complete prophages. Additionally, we show
45 that distinct prophages are widespread in *S. pseudintermedius* and appear to account
46 for the vast majority of genomic diversity. These findings indicate that MRSP lineages
47 have significant structural genomic differences, and that prophage integration, and
48 differential antiviral systems correlate with the emergence of successful genotypes.

49

50 **Impact Statement**

51 *Staphylococcus pseudintermedius* is a major cause of soft tissue infections in dogs
52 but may occasionally infect other companion animals and humans, most often
53 veterinary professionals in primary care. Methicillin-resistant *Staphylococcus*
54 *pseudintermedius* (MRSP) have emerged worldwide and are often linked to resistance
55 to multiple antimicrobials, resulting in a significant health burden. Here, we analysed
56 a large collection of *S. pseudintermedius* genome sequences, which has allowed a
57 detailed characterisation of the molecular epidemiology and diversity of the species
58 using a novel typing scheme.

59 Here we show that closely related MRSP lineages differ in whether specific antibiotic
60 resistance genes are encoded on potentially mobilisable plasmids, or more stably on
61 the chromosome, indicating differing evolutionary trajectories of MRSP lineages.
62 Comparison of the *S. pseudintermedius* types most frequently implicated in clinical
63 cases to those associated with commensal carriage, showed that known genes
64 thought to contribute to disease are universal, and therefore, not associated with the
65 high incidence rates of disease of particular lineages. We demonstrate that MRSP
66 sequence types linked to high disease rates lack specific phage-defence systems and
67 are associated with a high burden of prophages.

68

69 **Data statement.** All supporting data, code and protocols have been provided either
70 within the article, through supplementary data files, or via Figshare and Zenodo. Six
71 supplementary figures and one supplementary file are available with the online version
72 of this article.

73

74 **Data summary.** All genome sequencing data (sequencing reads and genome
75 assemblies) are available at the Sequence Read Archive (SRA) and Genomes
76 repositories at NCBI, in Bioproject number PRJNA1153484. The information for the
77 individual *S. pseudintermedius* genomes has been included in Supplementary File 1.
78 Genome assemblies used in this study are available from
79 <https://zenodo.org/records/13692319>, DOI [10.5281/zenodo.13692318](https://doi.org/10.5281/zenodo.13692318). The *S.*
80 *pseudintermedius* cgMLST scheme developed for this study has been made available
81 via Zenodo (<https://zenodo.org/records/13633136>, DOI: 10.5281/zenodo.13633135)
82 and Figshare (<https://doi.org/10.6084/m9.figshare.26911654.v1>, DOI:
83 10.6084/m9.figshare.26911654).

84

85 **Introduction**

86 *Staphylococcus pseudintermedius* is a common member of the skin and mucosal
87 microflora of dogs and other companion animals (1). However, it is also the foremost
88 cause of opportunistic canine infections worldwide, and is commonly implicated in
89 pyoderma (2), otitis externa (3), post-operative bone infections and surgical abscesses
90 (4, 5), as well as respiratory and urogenital tract infections (4, 6, 7). Consequences of
91 infection can range from mild tissue inflammation to severe necrosis (7). Humans may
92 play a role in transmission in reverse zoonotic transmission as 4.1% of dog owners
93 are estimated to be carriers of this organism (8-10). Treatment of bacterial infections
94 in companion animals often involves the same antimicrobial classes that are critical in
95 human medicine, including first- and third-generation cephalosporins and
96 fluoroquinolones (11). Given the close proximity and contact between humans and
97 companion animals, there is significant potential for the evolution and transmission of
98 antimicrobial resistance in either host.

99 Recent genomic studies have shown a high level of genetic diversity of *S.*
100 *pseudintermedius*, with more than 1,400 multi-locus sequence types reported (12-14).
101 However, these studies have mostly primarily focused on singular geographic regions,
102 leaving a picture of *S. pseudintermedius* lacking diversity. Moreover, epidemiological
103 studies tend to focus on methicillin-resistant *Staphylococcus pseudintermedius*
104 (MRSP) isolates of clinical relevance which are often multi-drug resistant (MDR).
105 Multidrug resistant (MDR) and methicillin-resistant *S. pseudintermedius* (MRSP)
106 lineages have disseminated widely in the last two decades and present significant
107 treatment challenges (2, 3, 15). However, this focus on MRSP isolates may distort
108 understanding of *S. pseudintermedius* species diversity and consequently
109 understanding of other factors driving evolution and emergence.

110 The most common sequence type implicated in *S. pseudintermedius* infections is ST-
111 71, followed by ST-45 and ST-68 (12, 13, 16-18). Analysis of *S. pseudintermedius*
112 populations in the USA have suggested that these MRSP genotypes arose through
113 multiple, independent gene acquisition events- including resistance genes, followed
114 by clonal expansion (12, 13) presumably facilitated by the use of many classes of
115 antibiotics in veterinary medicine. MRSP isolates have been reported to encode a
116 larger accessory genome than their MSSP counterparts (19), this suggests that gene
117 acquisition is a primary driver in the emergence of pathogenicity.

118 The prevalence of genes associated with antibiotic resistance, virulence, prophages,
119 and horizontal gene transfer has been reported to differ amongst the epidemic clones
120 (14), and epidemiological studies clearly indicate that resistance to antimicrobials is
121 not a pre-requisite for disease as evidenced by antibiotic-sensitive isolates implicated
122 in disease (17). Identifying the characteristics that dictate dominance of certain
123 genotypes in clinical cases, such as ST-71 and ST-45, over other disease-causing *S.*
124 *pseudintermedius* lineages is required to understand patterns of dissemination, and
125 improve surveillance.

126 In this study, we have aimed to identify the factors that contribute to the success of
127 genotypes associated with dissemination and clinical disease, beyond the acquisition
128 of resistance genes. To allow comparison and clustering of a large number of *S.*
129 *pseudintermedius* genomes, we have generated a core-genome MLST scheme. We
130 have used this scheme to characterise the diversity of the *S. pseudintermedius*
131 phylogeny, and identified that MDR/MRSP lineages differ in whether specific antibiotic
132 resistance genes are encoded on plasmids, or the chromosome. Furthermore, we
133 show that sequence types associated with multi-continent dissemination and high

134 rates of clinical disease encode a high density of prophages and encode a distinct
135 combination of phage-defence systems.

136

137 **Methods**

138 **Collection, culture and sequencing of *S. pseudintermedius* clinical isolates from**
139 **the UK**

140 We performed whole genome sequencing on 110 *S. pseudintermedius* isolates
141 collected from a single veterinary referral practice between 2015 and 2017. All isolates
142 were obtained from canine patients as part of routine clinical practice and confirmed
143 as *S. pseudintermedius* by Loop-Mediated Isothermal Amplification, and culture (5).
144 Individual isolates were cultured from cryovials stored at -80°C on to Columbia Blood
145 Agar (Oxoid, UK), aerobically at 37°C for 24 hours. DNA was extracted using the
146 GenElute™ Bacterial Genomic DNA Kit (Sigma, UK). Genome sequencing was
147 provided by MicrobesNG (<http://www.microbesng.com>). Genomic DNA libraries were
148 prepared using the Nextera XT Library Prep Kit (Illumina, San Diego, USA) following
149 the manufacturer's protocol with the following modifications: input DNA was increased
150 2-fold, and PCR elongation time was increased to 45s. DNA quantification and library
151 preparation were carried out on a Hamilton Microlab STAR automated liquid handling
152 system (Hamilton Bonaduz AG, Switzerland). Libraries were sequenced using Illumina
153 sequencers (HiSeq) using a 250bp paired end protocol. Sequence adapters were
154 trimmed using Trimmomatic (version 0.30) with a sliding cut-off of Q15, and assembled
155 using Shovill version 1.1.0 (<https://github.com/tseemann/shovill>) using the default
156 settings and the Spades assembler (20).

157

158 **Download of publicly available *S. pseudintermedius* genomes and associated
159 metadata**

160 Metadata for all available *S. pseudintermedius* genomes was downloaded from the
161 NCBI Pathogens Detection database (<https://www.ncbi.nlm.nih.gov/pathogens/>).
162 Corresponding assemblies were downloaded and quality assessed using QUAST
163 version 4.6.3 (21). Samples for which only sequence reads were available
164 (Supplementary File 1), were processed for assembly with Shovill/Spades as above.
165 Only genomes with N50>50 kb, L50<20, and a number of contigs <200 were included
166 in this study. Assemblies with an absence of information on isolation source were
167 excluded. The final dataset of 2,276 *S. pseudintermedius* genomes (Supplementary
168 File 1) was comprised of 110 UK genomes and 2,166 publicly available sequences
169 representing the wider geographical population. Each assembly was categorised as
170 disease, or non-disease, according to metadata. Samples derived from pyoderma,
171 wounds, abscesses, or internal organs were classed as “disease”, whereas samples
172 isolated from the skin of healthy hosts was classed as “non-disease”.

173 **Phylogenetic reconstruction, multi-locus sequence typing and core-genome
174 sequence typing**

175 The UK assemblies were typed according to the PubMLST scheme for
176 *Staphylococcus pseudintermedius* (<https://pubmlst.org/organisms/staphylococcus-pseudintermedius>) using mlst version 2.23.0 (<https://github.com/tseemann/mlst>).
177 Phylogenetic reconstruction of UK *S. pseudintermedius* genomes was performed
178 based on core-genome SNPs using ParSNP version 1.7.4 (22). Due to a high degree
179 of genotypic variation, a core-genome MLST scheme was developed using
180 chewBBACA version 2.8.5 (23) with default settings (<https://github.com/B->

182 UMMI/chewBBACA tutorial). A training file was generated using Prodigal version
183 2.6.3 (24). The scheme was generated using 74 complete genomes and is comprised
184 of 1,356 genes present in 99% of the genomes. cgMLST types were designated
185 relative to conventional MLST sequence types. Phylogenetic trees from the
186 chewBBACA allele calls were constructed using GrapeTree version 1.5.0 and the
187 RapidNJ algorithm (25). The *Staphylococcus pseudintermedius* cgMLST scheme is
188 available from (Zonodo-DOI: 10.5281/zenodo.13633135 and Figshare-DOI:
189 10.6084/m9.figshare.26911654).

190 **Detection of virulence and antimicrobial resistance genes, and prediction of
191 plasmid contigs**

192 The NCBI AMRFinderPlus tool version 3.10 (26) was used in combination with
193 Pointfinder (27) to identify antimicrobial resistance genes and resistance-associated
194 point mutations. AMRFinder information was used to assign each genome as either
195 MRSP (*mecA*-positive) and MSSP (*mecA*-negative). Abricate version 1.0.1
196 (<https://github.com/tseemann/abricate>) was used to search for known *S.*
197 *pseudintermedius* virulence genes (17, 27) and biocide resistance genes in all
198 genomes. Prediction of plasmid and chromosomal contigs was performed using
199 RFplasmid (28) using the provided *Staphylococcus* analysis file. Contigs with an 60%
200 or higher probability score were considered to have a plasmid origin.

201 **Pangenome-wide analysis for markers enriched in disease-associated
202 backgrounds**

203 All genome assemblies were annotated using Prokka version 1.14.6 (28). A pan-
204 genome was constructed using Roary version 3.13 (30) with a BLAST cut-off of 95%.
205 Gene markers overrepresented in genotypes associated with high clinical disease

206 (e.g. ST-71, ST-45, ST-258), and low clinical disease (e.g. ST-496), within a narrow
207 genetic background were identified using Scoary version 1.16 (31) with an initial
208 threshold of a Bonferroni-corrected p-value of 0.05. Genes determined as present in
209 >90% in the target genomes and in <10% of the non-target genomes were considered
210 significant. Select genomes associated a high density of putative phage genes were
211 screened using PHASTEST (32), confirming the presence of prophages. Putative
212 phage defence systems and genes were identified using PADLOC v2.0.0 PADLOC-
213 DB v2.0.0 using default settings.

214 **Results**

215 **Population structure of *Staphylococcus pseudintermedius* isolated in the UK**

216 Within a UK veterinary referral practice, *S. pseudintermedius* was implicated in
217 approximately 30% of all bacterial infections arising from surgical site infections (SSIs)
218 over a four-year period. A total of 110 isolates obtained and their genome sequence
219 was determined, and used to analyse their population structure. Within these 110
220 isolates, ST-71 was the dominant sequence type accounting for around 40% of the *S.*
221 *pseudintermedius* isolates in the collection. Forty-nine isolates derived from clinical *S.*
222 *pseudintermedius* infections in the UK were unable to be assigned a sequence type
223 according to the existing MLST scheme (34). These novel clonal complexes were
224 composed of highly diverse genotypes indicative of a highly varied population structure
225 of disease-causing isolates in the UK, beyond the dominant ST-71 lineage (Figure 1).

226 A total of 57.2% of our UK clinical isolates were classified as multi-drug resistant
227 (MDR) and 51% were determined to be MRSP. Beyond ST-71, the MDR/MRSP trait
228 was also found in disparate MLST types including ST-45, ST-277 and ST-301. To
229 more accurately characterise and interrogate the dataset, a core-genome MLST

230 scheme was generated and implemented which allowed discriminative typing of all
231 genomes. Phylogenetic analysis based on the cgMLST scheme correlated well with
232 the existing pubMLST scheme and phylogenetic typing based on core-genome SNPs
233 (Figure1), and as cgMLST allows for analysis of larger genome data sets, all
234 subsequent phylogenetic analyses were based on cgMLST.

235 **Pan-genome analysis of *Staphylococcus pseudintermedius***

236 An additional 2,166 *S. pseudintermedius* genomes acquired from the NCBI Pathogens
237 Detection database were acquired to supplement the UK *S. pseudintermedius* dataset
238 and construct a pan-genome more representative of *S. pseudintermedius* genomes
239 circulating world-wide (Supplementary File 1). Virulence gene and antimicrobial
240 resistance gene distribution within the 2,276 *S. pseudintermedius* genomes was
241 determined within the context of associated metadata for each genome. Genomes
242 were classified as multi-drug resistant if intact resistance genes to 3 or more different
243 classes of antibiotics were detected. The major MDR genotypes were determined and
244 correlation of MDR with disease and geographical site of isolation was evaluated.

245 Of 8,809 unique genes within the pan-genome, only 1,995 were classified as core
246 genes. Remarkably, of the 6,814 accessory genes identified, 6,099 were only present
247 0-15% of genomes. This suggests that the majority of accessory genes are lineage-
248 specific, or even unique to single isolates, and not shared amongst all genotypes
249 despite occupying the same niche. Consistent with this, the rate at which novel
250 accessory genes were detected remained constant as genomes were incorporated
251 into the pan-genome (Figure S1), indicating that *S. pseudintermedius* has an open
252 pan-genome characterised by high phylogenetic diversity and acquisition of novel

253 genes through horizontal transfer. This suggests that acquisition of novel genetic
254 material is widespread in the species and may profoundly impact population structure.

255 **Epidemiology, clinical disease association, and multi-drug resistance of**

256 ***Staphylococcus pseudintermedius* genotypes**

257 The 2,276 *S. pseudintermedius* genomes are comprised of a range of commensal and
258 disease-causing isolates. However, the dataset is heavily skewed towards genomes
259 derived from the USA; consequently, there are many genotypes that appear to be
260 geographically restricted, particularly within the MDR cluster, for example ST-155, ST-
261 64 and ST-551. In contrast, there are clonal complexes that are widely disseminated,
262 including ST-71, ST-45 and ST-258, and to a lesser extent ST-496, which are also
263 MDR lineages (Figure 2).

264 Almost one-third (32%) of the *S. pseudintermedius* genomes in the whole dataset are
265 associated with clinical disease (Table 1A). However, certain clonal complexes were
266 over-represented in this disease-associated group (Figure 3; Table 1B). More than
267 two-thirds (70%) of ST-71 genomes are associated with clinical disease. Conversely,
268 ST-496, which is phylogenetically closest to ST-71, consists of genomes that are
269 primarily derived from non-diseased hosts (86%), indicating that this clonal complex is
270 strongly associated with commensal carriage.

271 Of the genomes derived from clinical samples, 51% (424/729) are classified as MDR.
272 Of the non-clinical samples, 45% (n=699/1547) were classified as MDR. There
273 appears to be no combination of resistance genes that is more associated with either
274 disease or non-disease genomes. This shows that MDR-status is not a pathogenic
275 trait in itself, and is not a predictor of clinical disease.

276 The *S. pseudintermedius* phylogeny can be broadly segregated into an MDR
277 population and a non-MDR population. Each contig from the 2276 assemblies in this
278 collection was classified as either plasmidic or chromosomal based on the Rfplasmid
279 score; this revealed that the MDR population varies significantly in how resistance
280 genes are encoded (Figure 4). Beta-lactamase resistance is encoded across the
281 phylogeny, most often on the chromosome, but also on both the chromosome and a
282 plasmid, as in the case of a ST-496 sub-population. Aminoglycoside resistance is
283 associated with the MDR population and is encoded by plasmids or both a plasmid
284 and on the chromosome. Tetracycline resistance is chromosomally encoded across
285 the phylogeny except in ST-71 where it is encoded on a plasmid. ST-496 and ST-551
286 which encode tetracycline resistance on both the chromosome and on a plasmid. The
287 ST-496, ST-45, ST-316, and ST-68 clusters encoded macrolide resistance on
288 predicted plasmid contigs, whereas most other MDR lineages are predicted to encode
289 macrolide resistance on the chromosome. Similarly, trimethoprim resistance is
290 encoded chromosomally by MDR lineages with the exception of ST-68, which encodes
291 this resistance on predicted plasmid contigs.

292 Virulence gene content showed no association with disease genomes and was not
293 different between major lineages (Figure S2) suggesting all genotypes are capable of
294 causing opportunistic disease via intrinsic mechanisms encoded across the
295 phylogeny. Virulence gene density therefore cannot account for the dominance of ST-
296 71, ST-68, and ST-258 relative to other genotypes. In light of this, we sought to identify
297 genetic factors that contribute to the success of ST-71 and ST-45 beyond an
298 MDR/MRSP status.

299

300 **Prophages are major determinants of *S. pseudintermedius* diversity and reflect
301 the distribution of phage defence systems**

302 Genome-wide association studies were performed to identify genetic markers that are
303 enriched in phylogenomic clusters within the MDR phylogenetic cluster associated
304 with multiple country incidence and a high degree of clinical disease, such as the
305 genotypes ST-71, ST-45, and ST-496 (Figure 2). Concurrently, we used this approach
306 to identify markers associated with genotypes with a comparatively lower rate of
307 clinical disease. We determined the distribution of these markers across the
308 phylogeny, and assessed their impact on population structure. Many of the genes
309 over-represented in ST-71 and ST-45 were annotated as phage genes. We used
310 PHASTEST to characterize these putative prophages (Figure S4, S5, S6).

311 Large prophage sequences were primarily associated with ST-71, ST-45 and ST-258,
312 the lineages most frequently implicated in clinical disease (Figure 5). One of these
313 prophages, designated here as SPpB, is 28.1Kb in length and is chromosomally
314 integrated in ST-71, and in ST-45 adjacent to core genes involved in cell division
315 (*whiA*) and metabolism (Figure S4). There is a large (2Kb) intergenic space upstream
316 of the SPpB integrase and upstream of the start codon on the antisense strand, so it
317 is unlikely that SPpB integration at this site has influenced transcription of adjacent
318 genes.

319 An additional 43.7Kb complete prophage associated with certain MRSP backgrounds
320 was identified. This prophage, designated here as SPpC, appears to have integrated
321 in the genomes of *S. pseudintermedius* ST-71, but exhibits variation in ST-45 and ST-
322 68 and is significantly truncated in other genetic backgrounds (Figure 5). SPpC is
323 inserted adjacent to core genes, including the *suf* operon involved in oxidative stress

324 repair, and *corB*, involved in Mg²⁺ and Co²⁺ transport, as well as tRNA genes which
325 are common targets for mobile genetic elements in bacterial genomes (35).

326 In contrast to related clonal complexes such as ST-71 and ST-45, intact prophages
327 were not detected in ST-496. Seeking explanation for the lack of intact prophages in
328 this lineage, GWAS determined that ST-496 encodes two independent Type III-A
329 CRISPR-Cas systems absent from ST-71 and ST-45. Following this, we used
330 PADLOC to systematically detect known anti-phage systems across the phylogeny,
331 and found that the repertoire of phage-defence systems encoded differs markedly
332 between these closely related lineages. ST-71 and ST-45 encode fewer phage
333 defence systems than any other lineage (Supplementary File 1). Furthermore, the
334 combination of the antiviral genes they do possess are distinct relative to other MDR-
335 associated sequence types. ST-71 encodes the abortive infection system AbiS, two
336 restriction-modification (RM) systems (type I and IV), and SoFic, in addition to the
337 RosmerTA defence system encoded by all *S. pseudintermedius* (Figure 5). ST-496
338 lacks the Type IV RM system, but also encodes type-IIA and type-IIIa CRISPR-Cas
339 systems, AbiJ, DRT class II, and type IIIG RM system. ST-45, on the other hand
340 predominantly encode a cbass type IIs, and type II RM system, and Gabija, as well as
341 the occasional instance of either AbiD, or a type I RM system. The variation in the
342 number and type of phage defence systems encoded by these related lineages
343 reflects the presence and absence of SpST71A, SPpB, and SPpC, and is consistent
344 with a scenario wherein the combination of defence systems encoded by ST-496
345 confers stronger resistance to prophage insertion.

346

347

348 **Discussion**

349 In this study, we present a comprehensive population genomic analysis of *S.*
350 *pseudintermedius* using a novel core-genome multi-locus sequence typing scheme,
351 which has facilitated the classification of novel genotypes. The *S. pseudintermedius*
352 phylogeny is broadly segregated into an MDR/MRSP population and a non-
353 MDR/MRSP population, indicating that despite shared niche access to a variety of
354 mobile antimicrobial resistance genes, carriage of certain resistance genes appears
355 to be restricted to select lineages. Within the MDR/MRSP population, we have
356 identified MRSP lineages that exhibit differences in the means by which select
357 resistance genes are encoded, either chromosomally or on plasmids. This indicates a
358 degree of genomic variation within this population that is linked to genetic background.
359 Consistent with previous reports (14, 15, 17), our results indicate co-circulation of a
360 diverse range of lineages and an open pan-genome consistent with accumulation of
361 genetic material via horizontal gene transfer (HGT). One important mechanism of HGT
362 is prophage acquisition, wherein phage genomes integrate into the bacterial
363 chromosome. Our results suggest that prophage integration between otherwise
364 closely related MRSP lineages accounts for most of the dissimilarity, and the presence
365 of particular prophages in ST-71, ST-45 and ST-258 is correlated with higher disease
366 rates. Within this MDR population, the absence of intact prophages in ST-496, which
367 is associated with commensal carriage, is likely due to a unique array of phage-
368 defence systems which may have rendered ST-496 resistant to phage infection and
369 lysogenic carriage of SpST71A (14), SPpB, and SPpC. Considering prophages
370 represent the major genome divergences between these lineages, the differences in
371 the antiviral arsenal encoded by specific lineages appears to have had significant
372 impact on the evolution of MRSP.

373 Aside from contributing to genetic diversity, bacteriophages often impact
374 phenotypically on their host as observed in *Staphylococcus aureus* wherein
375 bacteriophages and other mobile genetic elements mediate the transfer of
376 pathogenicity islands, conferring new phenotypic traits that enable bacterial adaption
377 (36). For example, the Sa3int phages, which are the most prevalent of *S. aureus*
378 phages, carry the immune evasion cluster which encode immunomodulatory proteins
379 Sak, Scin, and CHIPS, which act in concert to enable within-host survival (37, 38).

380 Prophage carriage is also associated with bacterial virulence in many other species;
381 for example, scarlet fever is caused by specific strains of *Streptococcus pyogenes* that
382 encode a phage derived toxin; only *S. pyogenes* that are lysogenic for these phages
383 are able to cause scarlet fever (39). Similarly, in *Corynebacterium diphtheriae*, its main
384 virulence factor, the diphtheria toxin, is encoded on a prophage (40). *Escherichia coli*
385 O157:H7 and O104:H4 have acquired the Shiga-toxin encoding gene *stx2a*, through
386 lysogeny (41). Investigating the impact of prophage sequences identified in this study
387 on *S. pseudintermedius* pathobiology is an attractive future direction for *S.*
388 *pseudintermedius* studies.

389 The large prophages, SPpB and SPpC, which have integrated into ST-71, ST-45 and
390 ST-68 isolates, may contribute to the high disease-rate associated with these genetic
391 backgrounds, relative to ST-496 which does not encode these prophages. Whilst *S.*
392 *pseudintermedius* prophages themselves may harbour, and co-select for, genes that
393 contribute to the high rate of disease caused by ST-71 and ST-258, the site of phage
394 integration in the genome may also play a role. Integration of prophages into core-
395 gene regions has been shown to have an impact on expression levels of adjacent
396 genes as observed previously (42-45) and can consequently be expected to contribute
397 to physiological changes. This is exemplified by the SpST71A prophage unique to ST-

398 71 which is inserted into the *comG* gene and is suspected to disrupt natural genetic
399 competence of this lineage (14). The quiescent prophages identified in this study do
400 not appear to have interrupted any identifiable gene but are adjacent to core-genes
401 involved in cell division, oxidative stress repair, and metal transport. The integration
402 and expression of prophages is a complex series of interactions which involved
403 pirating host cell transcriptional machinery (46), which may impact downstream and
404 upstream genes.

405 Ultimately, it is clear that multiple phage integration events have affected genome
406 architecture in the different lineages, which can affect phenotypic variation. The
407 maintenance of multiple intact prophages in ST-71, 45 and 258 genomes comparative
408 to closely related sequence types suggests these may confer a functional advantage
409 to this lineage. Future work should aim to decipher the impact of these bacteriophages
410 on the *S. pseudintermedius* lineages that encode them, in the context of pathogenicity
411 and evolution.

412 We have observed remarkable differences between closely related genotypes in the
413 replicon type- chromosome or plasmids- of specific genes conferring resistance to
414 macrolides, trimethoprim, and tetracycline, highlighting differences in genomic
415 architecture. Plasmids encoding resistance determinants can be expected to be
416 favoured by bacterial cells over chromosomally-encoded resistance genes, if the costs
417 of maintenance and expression are lower. Plasmid mediated resistance genes have
418 a higher proclivity for intraspecies and interspecies transfer, which has been observed
419 in *Staphylococci* (47), than those encoded on chromosomes. Results presented here
420 indicate that the capability to encode a macrolide, trimethoprim, or tetracycline
421 resistance gene on either the chromosome, plasmid, or both, is linked to sequence
422 type and that these predicted plasmids are restricted to permissible genetic

423 backgrounds. The sequence types that encode resistance genes on plasmids are
424 likely to be responsible for lateral, interspecies transfer of antibiotic resistance genes.

425 Given these resistance genes are predicted to be plasmid-encoded, they may be
426 present at a higher copy-number than their chromosomal counterparts in other *S.*
427 *pseudintermedius* lineages, and thereby confer higher levels of resistance to
428 antibiotics used in treatment of canine pyoderma and surgical-site infections.
429 Distribution and genetic association of plasmid-encoded resistance genes is therefore
430 likely to impact on treatment efficacy.

431 This study has identified that mobile genetic elements such as prophages and
432 plasmids are the primary determinants of diversification within *S. pseudintermedius*,
433 and these indicate differing evolutionary trajectories of various lineages. Considering
434 the association of prophages with lineages most frequently implicated in disease, a
435 greater understanding of the impact of prophage genes and integration sites on
436 *Staphylococcus pseudintermedius* biology is required.

437

438 **Acknowledgements**

439 We gratefully acknowledge all of the veterinary practitioners who were involved in
440 collection of bacterial samples.

441

442 **Ethical Approval**

443 Collection of clinical samples was performed as part of routine clinical practice, and
444 identification and banking of bacterial isolates was approved by the University of
445 Surrey's animal ethics committee (NERA-2017-009-SVM)

446

447 **Conflict of Interest**

448 The authors declare that there are no conflicts of interest.

449

450 **Funding information**

451 This work received no specific grant from any funding agency, but was supported by
452 the University of Surrey and Fitzpatrick Referrals. The authors disclose that Professor
453 Noel Fitzpatrick is Director and Clinical Chair of Fitzpatrick Referrals.

454

455 **Author contributions.** LG, AvV, and JM designed the study. AB, LG, and JM carried
456 out DNA extraction. LG, GM, AvV, and JM carried out analyses and interpreted data.
457 JM drafted the manuscript. All authors critically reviewed and approved the final
458 version of the manuscript.

459 **References**

460 1 Bannoehr J, Guardabassi L. *Staphylococcus pseudintermedius* in the dog:
461 taxonomy, diagnostics, ecology, epidemiology and pathogenicity. *Vet Dermatol.*
462 2012;23(4):253-66, e51-2 DOI:10.1111/j.1365-3164.2012.01046.x.

463 2 Wang Y, Yang J, Logue CM, Liu K, Cao X, Zhang W, Shen J, Wu C.
464 Methicillin-resistant *Staphylococcus pseudintermedius* isolated from canine
465 pyoderma in North China. *J Appl Microbiol.* 2012;112(4):623-30
466 DOI:10.1111/j.1365-2672.2012.05233.x.

467 3 Dziva F, Wint C, Auguste T, Heeraman C, Dacon C, Yu P, Koma LM. First
468 identification of methicillin-resistant *Staphylococcus pseudintermedius* strains among
469 coagulase-positive staphylococci isolated from dogs with otitis externa in Trinidad,
470 West Indies. *Infect Ecol Epidemiol.* 2015;5:29170 DOI:10.3402/iee.v5.29170.

471 4 Diribe O, Thomas S, AbuOun M, Fitzpatrick N, La Ragione R. Genotypic
472 relatedness and characterization of *Staphylococcus pseudintermedius* associated
473 with post-operative surgical infections in dogs. *J Med Microbiol.* 2015;64(9):1074-81
474 DOI:10.1099/jmm.0.000110.

475 5 Diribe O, North S, Sawyer J, Roberts L, Fitzpatrick N, La Ragione R. Design
476 and application of a loop-mediated isothermal amplification assay for the rapid
477 detection of *Staphylococcus pseudintermedius*. *J Vet Diagn Invest.* 2014;26(1):42-8
478 DOI:10.1177/1040638713516758.

479 6 Rubin JE, Ball KR, Chirino-Trejo M. Antimicrobial susceptibility of
480 *Staphylococcus aureus* and *Staphylococcus pseudintermedius* isolated from various
481 animals. *Can Vet J.* 2011;52(2):153-7

482 7 Weese JS, Poma R, James F, Buenaviaje G, Foster R, Slavic D.
483 *Staphylococcus pseudintermedius* necrotizing fasciitis in a dog. *Can Vet J.*
484 2009;50(6):655-6

485 8 Hanselman BA, Kruth SA, Rousseau J, Weese JS. Coagulase positive
486 staphylococcal colonization of humans and their household pets. *Can Vet J.*
487 2009;50(9):954-8

488 9 Boost MV, So SY, Perreten V. Low rate of methicillin-resistant coagulase-
489 positive staphylococcal colonization of veterinary personnel in Hong Kong. *Zoonoses*
490 *Public Health.* 2011;58(1):36-40 DOI:10.1111/j.1863-2378.2009.01286.x.

491 10 Carroll KC, Burnham CD, Westblade LF. From canines to humans: Clinical
492 importance of *Staphylococcus pseudintermedius*. *PLoS Pathog.*
493 2021;17(12):e1009961 DOI:10.1371/journal.ppat.1009961.

494 11 Lhermie G, La Ragione RM, Weese JS, Olsen JE, Christensen JP,
495 Guardabassi L. Indications for the use of highest priority critically important
496 antimicrobials in the veterinary sector. *J Antimicrob Chemother.* 2020;75(7):1671-80
497 DOI:10.1093/jac/dkaa104.

498 12 McCarthy AJ, Harrison EM, Stanczak-Mrozek K, Leggett B, Waller A, Holmes
499 MA, Lloyd DH, Lindsay JA, Loeffler A. Genomic insights into the rapid emergence
500 and evolution of MDR in *Staphylococcus pseudintermedius*. J Antimicrob
501 Chemother. 2015;70(4):997-1007 DOI:10.1093/jac/dku496.

502 13 Smith JT, Amador S, McGonagle CJ, Needle D, Gibson R, Andam CP.
503 Population genomics of *Staphylococcus pseudintermedius* in companion animals in
504 the United States. Commun Biol. 2020;3(1):282 DOI:10.1038/s42003-020-1009-y.

505 14 Brooks MR, Padilla-Velez L, Khan TA, Qureshi AA, Pieper JB, Maddox CW,
506 Alam MT. Prophage-Mediated Disruption of Genetic Competence in *Staphylococcus*
507 *pseudintermedius*. mSystems. 2020;5(1) e00684-19 DOI:10.1128/mSystems.00684-
508 19.

509 15 Penna B, Silva MB, Botelho AMN, Ferreira FA, Ramundo MS, Silva-Carvalho
510 MC, Rabello RF, Vieira-da-Motta O, Figueiredo AMS. Detection of the international
511 lineage ST71 of methicillin-resistant *Staphylococcus pseudintermedius* in two cities
512 in Rio de Janeiro State. Braz J Microbiol. 2022;53(4):2335-41 DOI:10.1007/s42770-
513 022-00852-9.

514 16 Phumthanakorn N, Prapasarakul N. Investigating the ability of methicillin-
515 resistant *Staphylococcus pseudintermedius* isolates from different sources to adhere
516 to canine and human corneocytes. Can J Vet Res. 2019;83(3):231-4

517 17 Bergot M, Martins-Simoes P, Kilian H, Chatre P, Worthing KA, Norris JM,
518 Madec JY, Laurent F, Haenni M. Evolution of the Population Structure of
519 *Staphylococcus pseudintermedius* in France. Front Microbiol. 2018;9:3055
520 DOI:10.3389/fmicb.2018.03055.

521 18 Balachandran M, Bemis DA, Kania SA. Expression and function of protein A
522 in *Staphylococcus pseudintermedius*. Virulence. 2018;9(1):390-401
523 DOI:10.1080/21505594.2017.1403710.

524 19 Bruce SA, Smith JT, Mydosh JL, Ball J, Needle DB, Gibson R, Andam CP.
525 Accessory Genome Dynamics of Local and Global *Staphylococcus*
526 *pseudintermedius* Populations. Front Microbiol. 2022;13:798175
527 DOI:10.3389/fmicb.2022.798175.

528 20 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
529 VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler
530 G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its
531 applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77
532 DOI:10.1089/cmb.2012.0021.

533 21 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
534 for genome assemblies. Bioinformatics. 2013;29(8):1072-5
535 DOI:10.1093/bioinformatics/btt086.

536 22 Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid
537 core-genome alignment and visualization of thousands of intraspecific microbial
538 genomes. Genome Biol. 2014;15(11):524 DOI:10.1186/s13059-014-0524-x.

539 23 Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, Ramirez
540 M, Carrico JA. chewBBACA: A complete suite for gene-by-gene schema creation
541 and strain identification. *Microb Genom*. 2018;4(3) e000166
542 DOI:10.1099/mgen.0.000166.

543 24 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
544 prokaryotic gene recognition and translation initiation site identification. *BMC*
545 *Bioinformatics*. 2010;11:119 DOI:10.1186/1471-2105-11-119.

546 25 Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carrico
547 JA, Achtman M. GrapeTree: visualization of core genomic relationships among
548 100,000 bacterial pathogens. *Genome Res*. 2018;28(9):1395-404
549 DOI:10.1101/gr.232397.117.

550 26 Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft
551 DH, Hoffmann M, Pettengill JB, Prasad AB, Tillman GE, Tyson GH, Klimke W.
552 AMRFinderPlus and the Reference Gene Catalog facilitate examination of the
553 genomic links among antimicrobial resistance, stress response, and virulence. *Sci*
554 *Rep*. 2021;11(1):12728 DOI:10.1038/s41598-021-91456-0.

555 27 Zankari E, Allesoe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM.
556 PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance
557 associated with chromosomal point mutations in bacterial pathogens. *J Antimicrob*
558 *Chemother*. 2017;72(10):2764-8 DOI:10.1093/jac/dkx217.

559 28 van der Graaf-van Bloois L, Wagenaar JA, Zomer AL. RFPlasmid: predicting
560 plasmid sequences from short-read assembly data using machine learning. *Microb*
561 *Genom*. 2021;7(11) e000683 DOI:10.1099/mgen.0.000683.

562 29 Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*.
563 2014;30(14):2068-9 DOI:10.1093/bioinformatics/btu153.

564 30 Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M,
565 Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome
566 analysis. *Bioinformatics*. 2015;31(22):3691-3 DOI:10.1093/bioinformatics/btv421.

567 31 Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in
568 microbial pan-genome-wide association studies with Scoary. *Genome Biol*.
569 2016;17(1):238 DOI:10.1186/s13059-016-1108-8.

570 32 Wishart DS, Han S, Saha S, Oler E, Peters H, Grant JR, Stothard P, Gautam
571 V. PHASTEST: faster than PHASTER, better than PHAST. *Nucleic Acids Res*.
572 2023;51(W1):W443-W50 DOI:10.1093/nar/gkad382.

573 33 Payne LJ, Meaden S, Mestre MR, Palmer C, Toro N, Fineran PC, Jackson
574 SA. PADLOC: a web server for the identification of antiviral defence systems in
575 microbial genomes. *Nucleic Acids Res*. 2022;50(W1):W541-W50
576 DOI:10.1093/nar/gkac400.

577 34 Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome
578 variation at the population level. *BMC Bioinformatics*. 2010;11:595
579 DOI:10.1186/1471-2105-11-595.

580 35 Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS,
581 Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed
582 through precise mapping of integrative genetic elements. *Nucleic Acids Res.*
583 2020;48(8):4052-65 DOI:10.1093/nar/gkaa156.

584 36 Xia G, Wolz C. Phages of *Staphylococcus aureus* and their impact on host
585 evolution. *Infect Genet Evol.* 2014;21:593-601 DOI:10.1016/j.meegid.2013.04.022.

586 37 Wang Y, Zhao N, Jian Y, Liu Y, Zhao L, He L, Liu Q, Li M. The pro-
587 inflammatory effect of Staphylokinase contributes to community-associated
588 *Staphylococcus aureus* pneumonia. *Commun Biol.* 2022;5(1):618
589 DOI:10.1038/s42003-022-03571-x.

590 38 Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van
591 Wamel WJ. Early expression of SCIN and CHIPS drives instant immune evasion by
592 *Staphylococcus aureus*. *Cell Microbiol.* 2006;8(8):1282-93 DOI:10.1111/j.1462-
593 5822.2006.00709.x.

594 39 Goshorn SC, Schlievert PM. Bacteriophage association of streptococcal
595 pyrogenic exotoxin type C. *J Bacteriol.* 1989;171(6):3068-73
596 DOI:10.1128/jb.171.6.3068-3073.1989.

597 40 Arnold JW, Koudelka GB. The Trojan Horse of the microbiological arms race:
598 phage-encoded toxins as a defence against eukaryotic predators. *Environ Microbiol.*
599 2014;16(2):454-66 DOI:10.1111/1462-2920.12232.

600 41 Shaikh N, Tarr PI. *Escherichia coli* O157:H7 Shiga toxin-encoding
601 bacteriophages: integrations, excisions, truncations, and evolutionary implications. *J*
602 *Bacteriol.* 2003;185(12):3596-605 DOI:10.1128/JB.185.12.3596-3605.2003.

603 42 Carey JN, Mettert EL, Fishman-Engel DR, Roggiani M, Kiley PJ, Goulian M.
604 Phage integration alters the respiratory strategy of its host. *Elife.* 2019;8 e49081
605 DOI:10.7554/eLife.49081.

606 43 Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. *Infect*
607 *Immun.* 2002;70(8):3985-93 DOI:10.1128/IAI.70.8.3985-3993.2002.

608 44 Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio
609 CA, Sylva GL, Musser JM. Global differential gene expression in response to growth
610 temperature alteration in group A *Streptococcus*. *Proc Natl Acad Sci U S A.*
611 2001;98(18):10416-21 DOI:10.1073/pnas.191267598.

612 45 Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence
613 of bacterial pathogens. *Virulence.* 2013;4(5):354-65 DOI:10.4161/viru.24498.

614 46 Christie GE, Dokland T. Pirates of the Caudovirales. *Virology.*
615 2012;434(2):210-21 DOI:10.1016/j.virol.2012.10.028.

616 47 John J, George S, Nori SRC, Nelson-Sathi S. Phylogenomic Analysis Reveals
617 the Evolutionary Route of Resistant Genes in *Staphylococcus aureus*. *Genome Biol*
618 *Evol.* 2019;11(10):2917-26 DOI:10.1093/gbe/evz213.

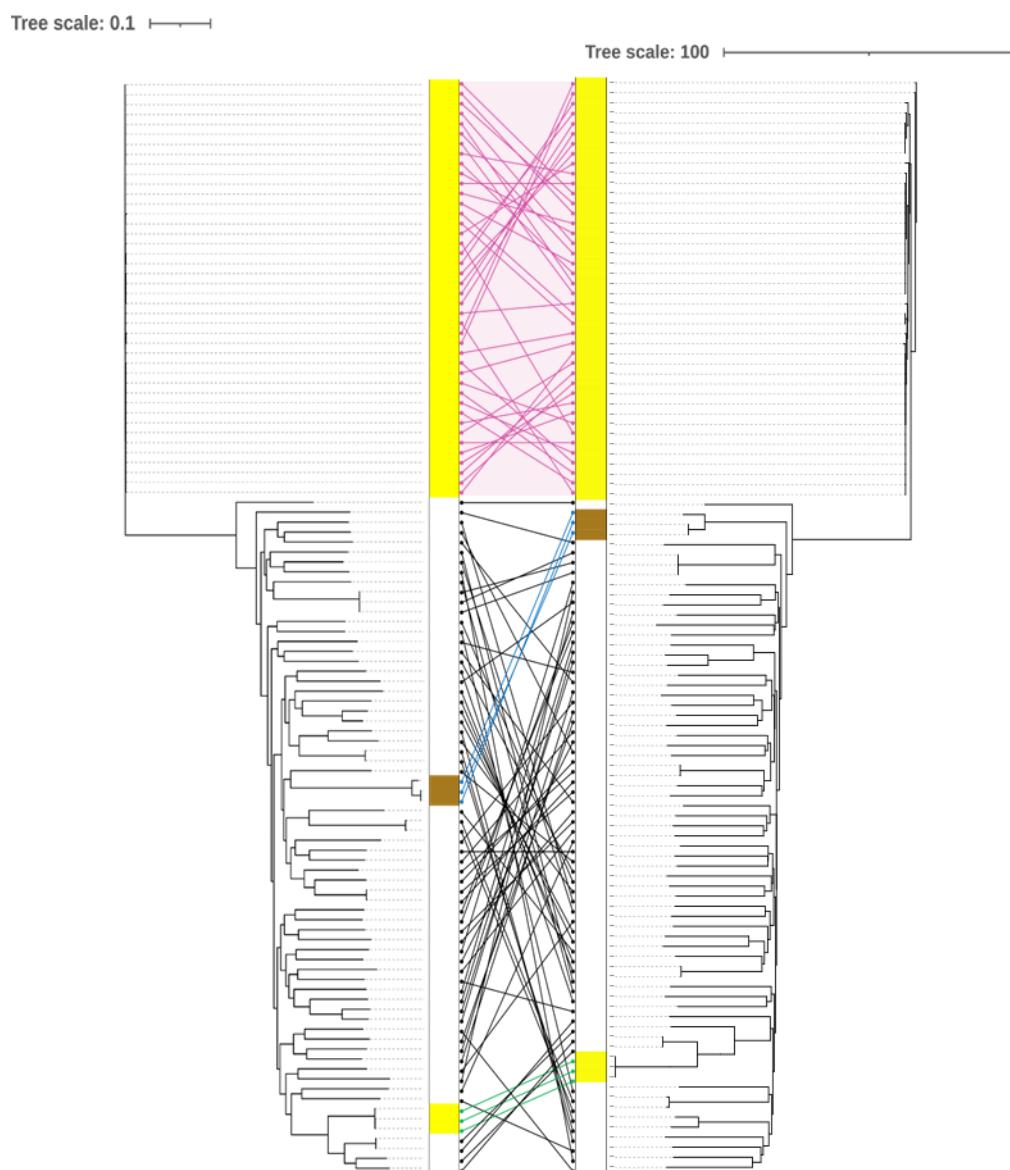
619 **Table 1:** The proportion of 2274 *S. pseudintermedius* genomes used in this study that
620 are classified as either MRSP or MSSP, and their association with commensal
621 carriage (non-disease) or clinical (disease) cases.

MRSP/MSSP	Non-disease	Disease	Total
MRSP	569	389	958 (42%)
MSSP	978	340	1318 (58%)
Total	1547 (68%)	729 (32%)	2276

622

623 **Table 2:** A breakdown of prevalent *S. pseudintermedius* sequence types and their
624 association with multi-drug(MDR) resistant status, and rates of clinical cases
625 (disease).

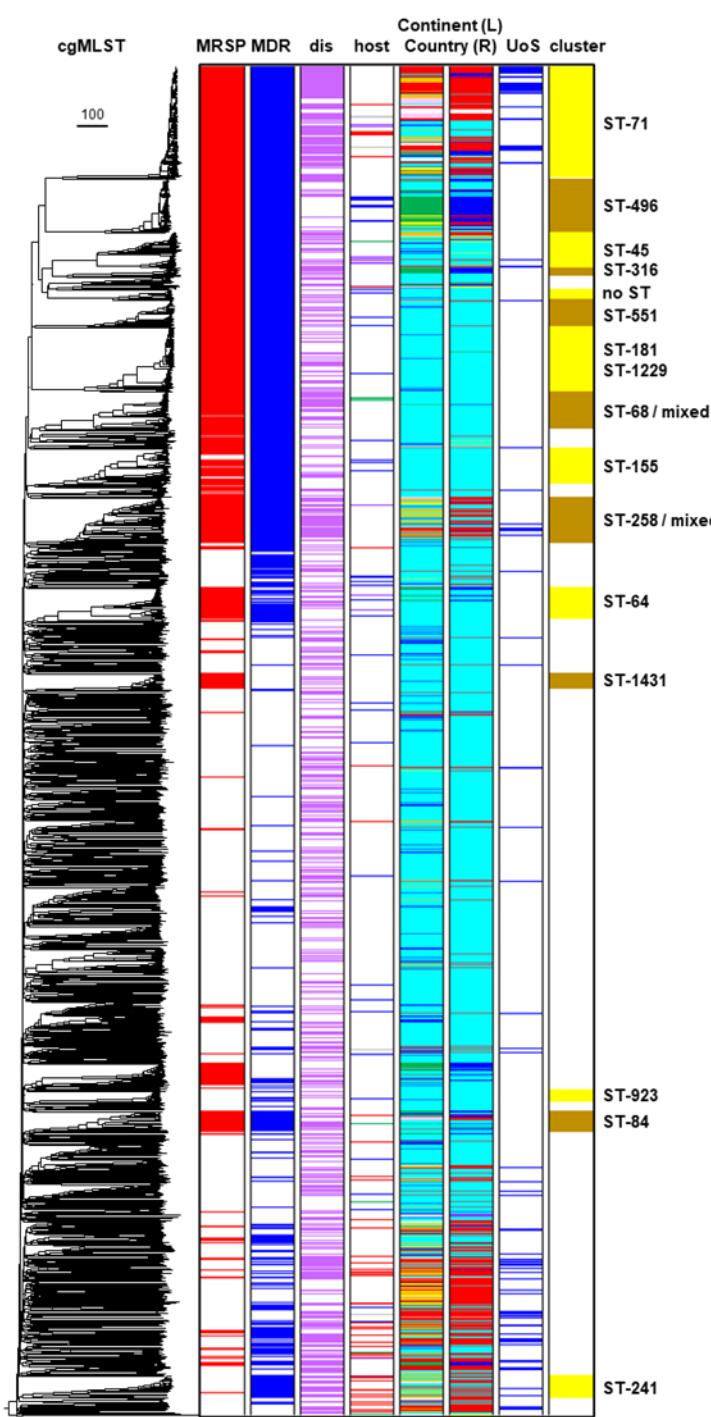
Sequence Type	MDR	Non-MDR	Non-disease	Disease	Total number of Genomes
ST-71	86	1	56	131	187
ST-496	90	0	77	13	90
ST-45	60	0	37	23	60
ST-68	21	0	5	16	21
ST-155	36	0	34	2	36
ST-258	23	0	9	14	23
ST-64	32	16	35	13	48
ST-1431	0	19	15	4	19
ST-749	0	21	17	4	21
ST-923	4	14	15	3	18
ST-241	22	0	11	11	22


626

627

628

629

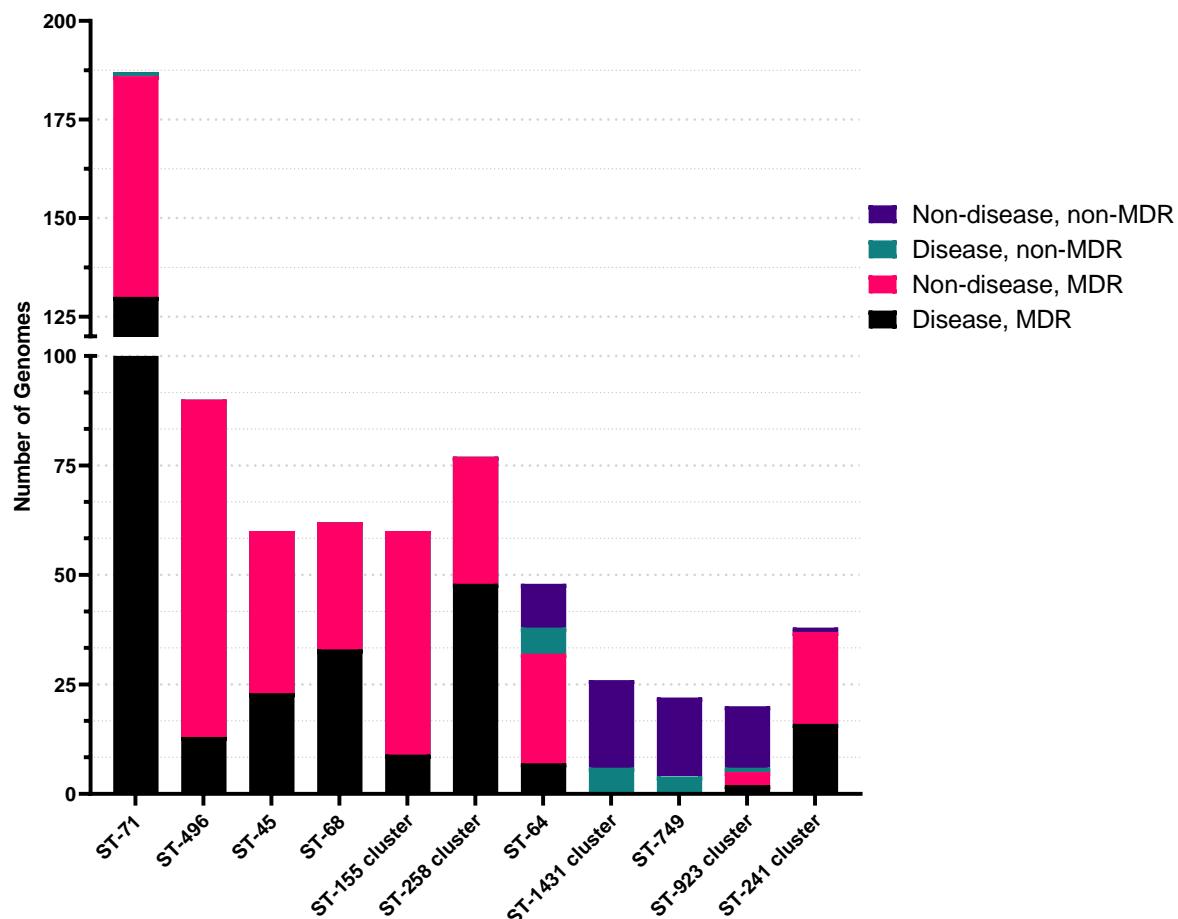

630

631

632 **Figure 1:** Tanglegram showing a comparison of phylogenetic reconstruction of 110 *S.*
633 *pseudintermedius* genomes collected in this study from clinical cases in the UK as part
634 of routine clinical practice. The tanglegram shows a comparison of core-genome SNPs
635 using ParSNP (left), and a reconstruction based on cgMLST using Grapetree (right).
636 Phylogenetic analysis based on the cgMLST scheme correlated well with the existing
637 pubMLST scheme, and clustering of major clonal complexes such as ST-71 (pink
638 shading and connecting lines), is largely conserved.

639

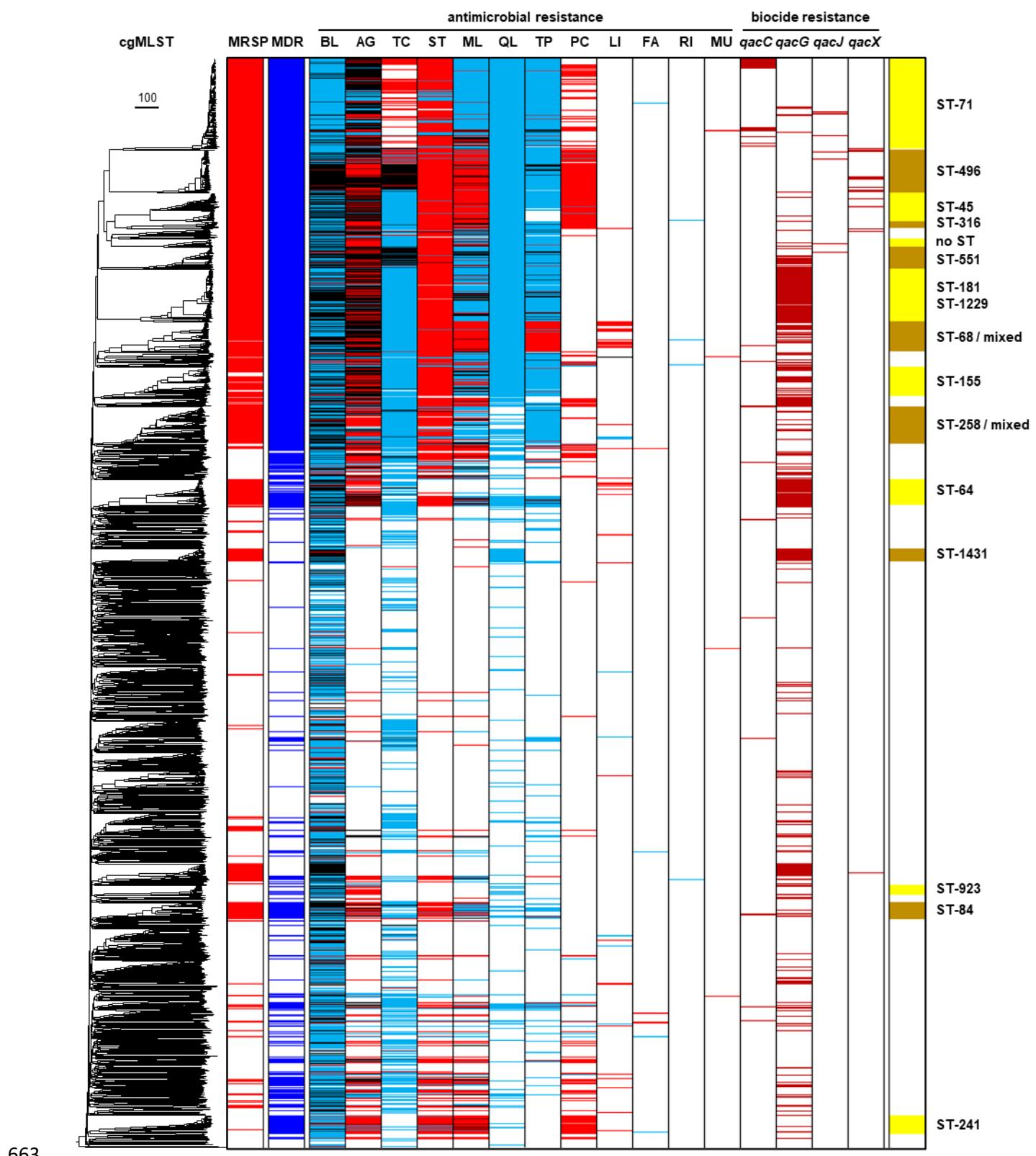
Host: white = dog, **human**, **cat**, other animal, environment, unknown
Continent: **North-America**, **Europe**, **Africa**, **Middle-East**, **Asia**, **South-America**, **Oceania**
Country: **USA**, **Canada**, **United Kingdom**, **France**, **Germany**, **Italy**, **Netherlands**,
Australia, New Zealand.


640

641 **Figure 2:** cgMLST phylogeny of 2276 *Staphylococcus pseudintermedius* assembled
642 genomes (Supplementary File 1) comprised of a range of commensal and disease-
643 causing isolates (purple shading, column labelled “dis”), predominantly originally

644 isolated from dogs (white shading, column labelled “host”. The dataset encompasses
645 genomes derived from multiple continents; North-America, Europe, Africa, Middle-
646 East, Asia, South-America, Oceania. Genomes sequenced as part of this study are
647 coloured blue in the UoS column, and publicly available genomes from sequence
648 repositories are white in this column. Genomes of isolates classed multi-drug resistant
649 on the basis of encoding genes conferring resistance against 3, or more, classes of
650 antibiotics are shaded blue in column labelled “MDR”. Genomes classes as MRSP are
651 coloured red in the “MRSP” column. The MDR/MRSP phylogenetic clusters are
652 predominantly composed of ST-71, ST-496, ST-45, ST-316, ST-551, ST-181, ST-
653 1229, ST-68, ST-155, and ST-258.

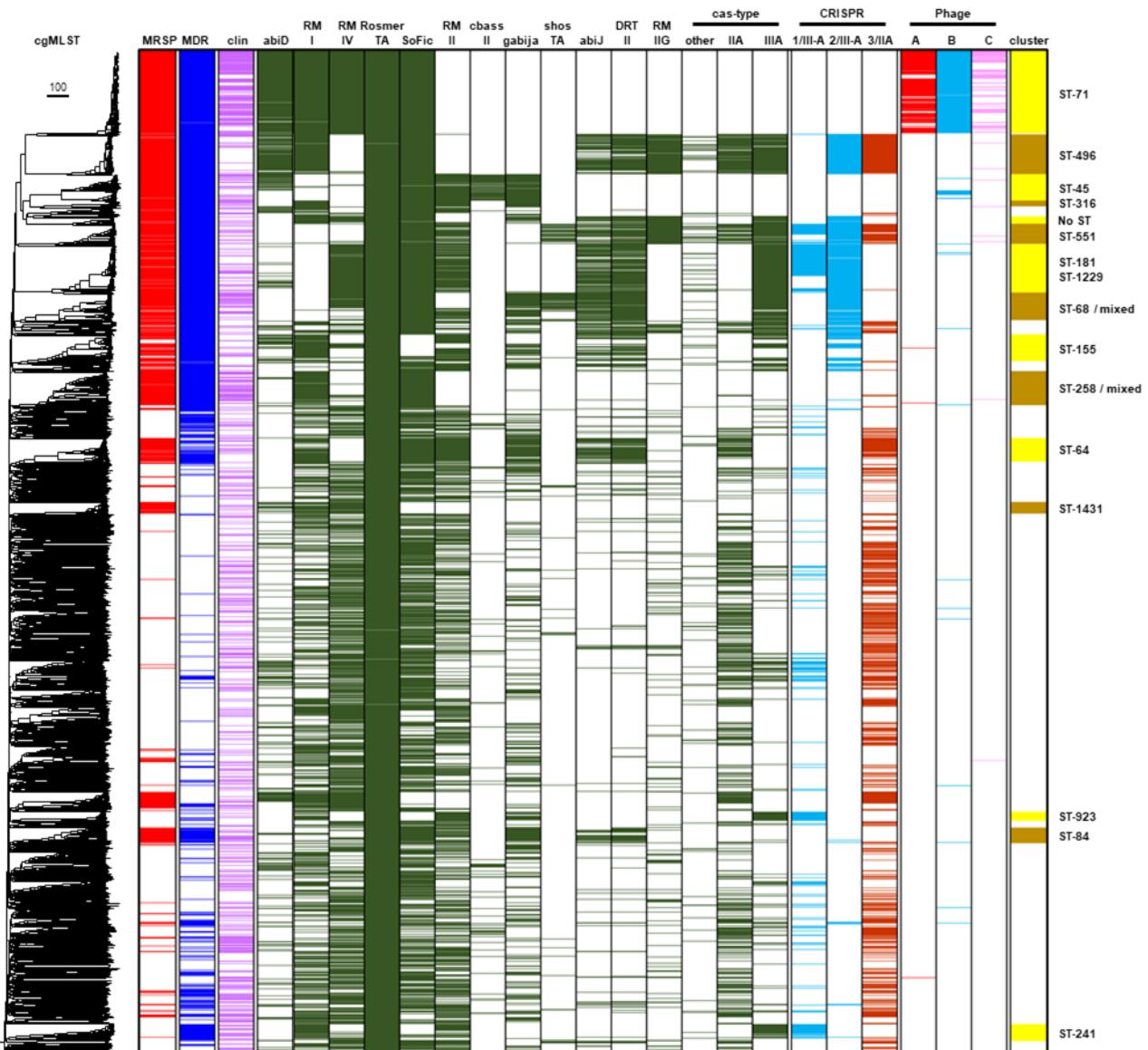
654


655

656

657 **Figure 3:** Stacked bar plot showing *S. pseudintermedius* sequence type association
658 with disease and multi-drug resistant status. ST-71 is an MDR lineage that is strongly
659 associated with disease. Conversely, ST-496 is a closely related MDR sequence type
660 that is associated with commensal carriage. ST-1431, ST-749, and ST923 are non
661 MDR lineages that are more commonly associated with commensal carriage.

662



663

664 **Figure 4:** The phylogenetic distribution of antimicrobial resistance (AG =
665 aminoglycoside, BL = beta-lactam, FA = fusidic acid, LI = lincosamide,
666 ML = macrolide, MU = mupirocin, PC = phenicol, QL = quinolone,

667 RI = rifampicin, ST = streptothricin, TC = tetracycline, TP= trimethoprim), and biocide
668 (*qacC*, *qacG*, *qacJ*, *qacX*) genes in *Staphylococcus pseudintermedius*. Each gene
669 was predicted to be encoded on either the chromosome (blue shading), plasmid (red
670 shading), or both (black shading). Sequence types differ in the manner by which
671 resistance genes are encoded; tetracycline resistance is chromosomally encoded
672 across the phylogeny except in ST-71 where it is encoded on a plasmid. Trimethoprim
673 resistance is encoded chromosomally by MDR lineages with the exception of ST-68.
674 The ST-496, ST-45, ST-316, and ST-68 clusters encoded macrolide resistance on
675 predicted plasmid contigs, whereas most other MDR lineages are predicted to encode
676 macrolide resistance on the chromosome. Full details of the phylogenetic distribution
677 of antimicrobial resistance and biocide genes are provided in Supplementary File 1.

678

680 **Figure 5:** The combination of phage defence systems encoded by *S.*
681 *pseudintermedius* reflects the density of prophages detected in the genomes. All 2276
682 genomes were screened for presence of specific prophages detected by PHASTEST,
683 and PADLOC was used to detect antiviral genes and systems (abiD = Abortive
684 infection system protein D, RM I = Type I restriction-modification system, RM IV =
685 Type IV restriction-modification system, RosmerTA = RosmerTA system encoded by
686 *rnrT* WP_231741552.1 and *rnrA* WP_058719324.1, SoFIC = SoFIC antiviral gene
687 WP_242883646.1, RM II = Type 2 restriction-modification system, cbass II = CBASS
688 operon composed of 4 genes, Gabija = Gabija phage defence system composed of

689 GajA and GajB, shoshTA = shoshTA toxin/antitoxin system, abiJ = Abortive infection
690 system protein J, DRT II = Type 2 Defence-associated Reverse Transcriptase, RM IIG
691 = Type 2G restriction-modification system, cas-type/CRISPR = CRISPR-Cas
692 systems). ST-71 encodes SpST71A, SPpB, and SPpC prophages (columns labelled
693 Phage A-red colouring, B-blue colouring, and C –pink colouring), which are largely
694 absent from other lineages. ST-71 also encodes a distinct combination of phage
695 defence genes (indicated by green colouring) relative to most other lineages. ST- 496
696 which has a dearth of prophage sequences, encodes a unique combination of antiviral
697 genes. Full details of the phylogenetic distribution of identified phage defence systems
698 and prophages are provided in Supplementary File 1.

699

700

701

702

703