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Abstract

Spatially resolved transcriptomics (SRT) is poised to advance our understanding of cellular
organization within complex tissues under various physiological and pathological conditions at
unprecedented resolution. Despite the development of numerous computational tools that facilitate
the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains),
these methods typically operate in an unsupervised manner, without leveraging sample
characteristics like physiological/pathological states. Here we present PASSAGE (Phenotype
Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep
learning framework for characterizing phenotype-associated signatures across multiple
heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic
benchmarks, we have demonstrated PASSAGE's unique capability in identifying sophisticated
signatures in multiple real-world datasets. The full package of PASSAGE is available at
https:.//github.com/gao-lalb/PASSA GE.
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| ntroduction

Spatially resolved transcriptomic (SRT) technologies allow for the profiling of genes expression
within their native spatial contexts across a wide range of tissue types™ . Existing computational
methods for analyzing spatial transcriptomics data have primarily focused on the unsupervised
exploration of spatial patterns, such as identifying spatially variable genes, defining spatial
domaing®*?, and aligning multiple SRT slices!****® Meanwhile, benefitting from technical
advances and broader application, SRT data are now being generated at increasing volumes across
diverse conditions, including both physiological and pathological tissues!”®, enabling a unique
opportunity to systematically identifying signatures associated with specific phenotypic

characteristics.

Here, we introduce PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based
Embedding), anovel supervised representation learning model designed for large cohorts of
phenotypically labeled spatial transcriptomics slices. Combining graph attention auto-encoder
(GATE)-based cell/spot-level spatial encoding with slice-level information aggregation through a
dedicated attention pooling strategy, PASSAGE achieves accurate classification and clustering of
heterogeneous slices, and effectively pinpoints phenotype-associated signatures across multiple

slices. PASSAGE is publicly accessible at https://github.com/gao-lab/PA SSAGE.
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Results

To effectively utilize spatial information, PASSAGE begins by modeling each slice as a spatial
neighbor graph, and employs a graph attention auto-encoder (GATE) to learn spatidly aware
spot/cell embeddings within each slice. These embeddings capture information not only from the
expression profile of individual cells/spots, but also from their spatial neighborhood within a tissue
context. PASSAGE then introduces a dedicated attention pooling layer that aggregates the
embeddings of all cells/spots within each slice into a single slice-level embedding (M ethods), which
functions as a learnable dynamic averaging process capable of focusing on specific spatial regions.
The attention pooling part could be further trained using triplet-based contrastive learning,
supervised by phenotypic annotation of the slices, to “guide” effective attention to regions most

relevant to phenotypic differences (Figure 1).

Systematic benchmarking shows outstanding performance of

PASSAGE

To conduct benchmarks with definitive ground truth, we generated two synthetic spatial datasets with
varying levels of complexity. The first dataset (Synthetic data 1) comprised slices of two phenotypic
classes, used as the supervision label for the compared algorithms. Each class contains two simulated
cell types. The two classes were distinguished by whether these two cell types are spatially separated
(class 1) or infiltrated each other (class 2) (Figure 2A). The cell types exhibit mild discernability in
their expression profiles, mirroring the characteristics of current in situ spatia transcriptomics
technologies, where the transcriptomic differences captured between cell types are less pronounced
than those in conventional single-cell data due to limited spatial resolution or segmentation

inaccuracies (Figure S1).

To the best of our knowledge, PASSAGE is the first method specifically designed based on
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supervised classification of spatia transcriptomics slices, so there are no directly comparable
methods for benchmarking. Thus, we evaluated PASSAGE against two categories of relevant
methods. The first category includes genera-purpose classification algorithms, including decision
trees, k-nearest neighbors (k-NN), support vector machines (SVM), logistic regression, random
forests and graph attention networks (GAT).[**™*¥ The second category consists of unsupervised
representation learning algorithms tailored for spatial transcriptomics data, including STAGATE and
SLAT (Methods).

PASSAGE achieved substantialy higher classification accuracy compared to the other methods
(Figure 2B, S2). Even though the two classes of synthetic slices were intermingled in their original
UMAP embedding space obtained by averaging all spots in each slice (Figure 2C), slice-level
PASSAGE embeddings clustered neatly into two well-separated categories that closely match the
true class labels (Figure 2C), as also reflected by a significant increase in ARI (Adjusted Rand Index)
and NMI (Normalized Mutual Information) (Figure 2D). These results indicate that PASSAGE
effectively distinguishes spatial slices belonging to different phenotypic groups within its embedding
space. Of note, PASSAGE is designed to learn slice-wise embeddings (rather than spot/cell-wise
ones of SLAT and STAGATE) for an accurate global representation, which may further contribute to

its superior classification performance to SLAT and STAGATE!*3,

Synthetic data 2 presented a more complex scenario involving three classes of slices: class 1
emulates healthy tissue containing two cell types, class 2 includes an extra spatially separate “tumor”
cell type, and class 3 represents tumor tissue with infiltration. When compared with other methods,
PASSAGE also achieved the highest classification accuracy (Figure S3), with neat clustering of
dlice-level PASSAGE embeddings (Figure $4, S5), again demonstrating the effectiveness of
PASSAGE in distinguishing highly heterogeneous spatial transcriptomic slices.

Importantly, the attention pooling layer in PASSAGE facilitates the straightforward identification of

specific spatia regions within individual slices that contribute the maost to phenotypic classification.
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As visualized by scaled attention scores in the attention pooling layer (Methods), PASSAGE
precisely highlights spatial signatures designed into the simulation, in this case, cell type 2 which

exhibits differential abundance and spatial distribution across phenotypic classes (Figure 2E, S6).

PASSAGE effectively calls cancer-associated signatures within multiple

heter ogeneous datasets

To further demonstrate the performance of PASSAGE in real-world data, we compiled a large breast
tumor dataset comprising 103 slices from 42 patients (Table S1) sourced from two experimental
platforms: Spatial Transcriptomics (ST) and 10x Visium!"*??. This dataset includes three
phenotypic classes: 10 slices of normal breast tissue, 36 slices of conventional breast cancer tissue
(positive for at least one of ER, HER2, PR), and 57 slices of triple-negative breast cancer tissue
(Figure 3A, Methods). To ensure the generalizability of our model, we intentionally partitioned the
training and testing sets by selecting slices from different experimenta platforms and patients

(Methods).

PASSAGE consistently outperforms baseline methods in classifying the three phenotypic classes,
achieving the highest accuracy (Figure S7). Notably, as previously mentioned, we specifically chose
a test set consisting of breast tissue spatia slices from an experimental batch that had never been
included in the training data. Due to batch effects, the three normal breast tissue slices from this
batch are spatially closer to the triple-negative breast cancer slices from the same batch and relatively
more distant from normal breast tissue slices collected from another experimental batch (Figure S8).
However, PASSAGE effectively captured phenotype-associated representations during training,
thereby accurately classifying the three normal breast tissue slices in the test set. Accordingly,
PASSAGE also maintained accurate clustering performance (Figure 3B, S9), even when dealing
with dlices from different platforms, patients, and experimental batches that were never part of the
training process, underscoring PASSAGE's generalization capability and robustness in handling

diverse and unseen data.
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We then focused on the ability of PASSAGE to discover phenotype-related spatial signals on real
data. In the breast tumor datasets, PASSAGE effectively identifies malignancy-associated spatial
signatures despite their heterogeneous origins via its attention scores. For example, in patient-7 with
conventional breast cancer (ER-positive, HER-2 positive), all invasive cancer tissue regions
annotated manually by pathologists were accurately identified by PASSAGE, highlighting the strong
correlation with the phenotype (Figure 2E, S10). Additionally, in patient-38 (triple-negative breast
cancer), PASSAGE also successfully identified the dispersed tumor core regionsin the slices (Figure
3C). Notably, in patient-31, also with triple-negative breast cancer, PASSAGE detected the
disease-associated signatures, i.e., the tumor cells and a crucial tertiary lymphoid structure (TLS),
although the Germinal Center (GC) of this TLS structure is not fully revealed in the HE-stained
slices (Figure S11, S12). Furthermore, PASSGAE identified several lymphocyte-enriched foci on the
right side of this gpatial slice, pointing out a potential precursor area of incomplete TLS

development.

To demonstrate the generality of PASSAGE, we further built a Squamous Cell Carcinoma (SCC)
dataset, including 12 Oral Squamous Cell Carcinoma (OSCC) slices and 12 Cutaneous Squamous
Cell Carcinoma (CSCC) slices®??. We focused on malignancy-associated spatial signatures
detected by PASSAGE in this dataset. Figure 4A illustrates the signature of CSCC patient-53
defined by PASSAGE. Compared to the manually annotated slices in the original study, PASSAGE

accurately identified the entire tumor-associated regions.

As for OSCC slices, compared to the p-CNV score inferred by Numbat and the deconvolution results
from the original study, the phenotype-associated spatial signatures identified by PASSAGE in
patient-43 from different patients significantly enriched in tumor-related regions (Figure 4B) (222,
The rationality and biological interpretability of the phenotype-associated spatial signatures we
identified can aso be validated through the expression profiles of OSCC-specific marker genes

(Figure S13).
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These results indicate PASSAGE's effectiveness in identifying biologically meaningful
phenotype-associated spatial signatures, thereby facilitating researchers in discovering and deeply
exploring the molecular features of pathological spatial slices with phenotype labels.
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Discussion

PASSAGE is designed as a global signature identification algorithm tuned for large-scale
heterogeneous spatial slices. One essential challenge for PASSAGE isto learn aslice-wise
representation for numerous within-slice spots, with biologically meaningful phenotype distinctions
well preserved. Here, we introduced a dedicated attention pooling component for PASSAGE, to learn
the contribution of individual cells/spots to the slice-level representation dynamically. A key
advantage of the attention pooling component liesin itsinherent capacity for adaptive information
aggregation, which further enhances the interpretability of PASSAGE-identified signatures within

the context of phenotype association.

Of note, the supervised nature of PASSAGE would effectively “encourage’ the most parsimonious
signature(s) for discriminating slices with distinct phenotypic groups. We noticed that, in real-world
cases, such signatures could even be reduced to rather non-spatial ones, like the cell composition
difference (e.g., the phenotype-associated signatures displayed in the benchmarking of synthetic data
2 are highly correlated with simulated cell type 2) as long as they can distinguish slices within

different phenotypic groups effectively.

The rapid accumulation of spatial omics data enables a systematic reference atlas for comparative

#l aswell as experimental

studies across developmental stagesi®?, demographic populations!
perturbations®®, analogous to what has been done for ScRNA-seqt?”. We believe the PASSAGE, as
an effective algorithm for calling phenotype-associated signatures globally, would be a valuable plus

to the toolkits of both computational and experimental biologists. The whole package of PASSAGE,

along with tutorials and demo cases, is available online at https://github.com/gao-lab/PA SSAGE for

the community.
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M ethods

Data preprocessing and spatial graph construction

We define aset of spatia slicesas § = {S®)|k = 1,2,---,N} where N isthe number of al training
slices. Each sliceis denoted as §® = {(gg"),cgk))h =12, -~-,N(")}, N isthe number of spots

inglice k. ggk) € R and c§k> € R? arethe raw omics features (e.g., gene expression) and spatial

coordinates of spot i, respectively.

For each spatial slice, we first removed low-quality spots with detected genes lower than 200. Then,
raw expression values were normalized and log-transformed via scanpy (v1.9.6). Feature unification
across slices is conducted in “outer” mode, which retains the union of detected genes across all

spatial slices. Ultimately, spatial k-NN graphs for each slice are generated by torch-cluster (v1.6.3)

and used as the input of PASSAGE, denoted as H = {h®|k = 1,2,-+,N}.

Graph attention auto-encoder (GATE) module for learning spot-level

embeddings

We adopt the GATE architecturein STAGATE as a spot-level embedding model, which in turn
facilitates subsequent learning of slice-level embeddings. To reinforce the intrinsic information of
each spot captured by the model, we introduced self-loops in the input spatial graph. For numerical
stability, the output from the graph-encoder layer is normalized before being passed to the
graph-decoder layer. The GATE module is trained by minimizing the mean squared error (M SE)

reconstruction loss of the spot-level omics features. We denote the obtained spot-level embeddings as
{zg") |i =12, -,N ("")}. These GATE spot-level embeddings are trained and fixed before

proceeding to train the slice-level embeddings (next section).
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Attention pooling for learning slice-level embeddings

To generate embeddings for entire dices, we propose the following attention pooling layer. The
attention pooling layer boils down to a weighted sum of spot-level embeddings, where the weights
are dynamically determined by an attention mechanism between all spots and an attention head!®®.

(k)

To begin with, the spot-level embeddings z;™ are first passed through a multi-level perceptron

(MLP) to obtain ZE"")The attention head u™® is computed by averaging the resulting embeddings

across all spotsin the slice, after applying alearnable linear transformation W:

~(k k
7" = MLP(z")

) N
k) — _— .58
u’ = N(k)z w z;
i=1

On top of that, we compute the attention weights based on the inner product (-) between each spot
and the attention head above:

“i(k) _ o.((u(k)’ 2?«,)))
where ¢ isthe sigmoid function. The attention score will be scaled to [0,1] interval to obtain the
‘scaled attention score’, which used for spatial signature visualization. Eventually, the slice-level
embedding v is calculated using the above attention weights:
2 el 7"

k) —
e

Model optimization

Denote the categorical labels of slicesas ¢ = {¢®|k = 1,2, -, N}. We randomly sampled triplet set

V = {(vD, v, p®)|cD = D % c® i jk=1,2,-,N} fortraining, where vV, v) formsa
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positive pair and v®, v forms anegative pair. The size of triplet dataset |V| can be specified as
a hyperparameter. Hence, the loss of multi-class contrastive learning is:
1 ® )] @) (k)
- [ o], — [ - v09],
(v Do) ey

LCOT). =

Breast cancer and SCC dataset

For breast cancer dataset benchmarking, We collected 93 breast cancer slices and 10 corresponding
healthy breast tissue slices from 4 studies*2%. We removed one of the spatial slices from patient-37
(denoted as ‘M10’ by Coutant et al.), which was annotated as a TNBC sample with manual
annotations from pathologists, due to the uncertainty regarding whether cells on the right hand side
are genuine tumor cells or smply artifacts of tissue folding. For SCC dataset benchmarking, we
collected 12 CSCC slices and 12 OSCC slices from 2 studiesi?*?®. The data preprocessing process is

consistent in all spatial slices as mentioned before.

Synthetic datasets

Synthetic data 1 consisted of two classes of simulated spatial slices, each containing 160 slices. Each
slice contained 2 cell types with different spatial distributions (Figure 2A). Spots of each cell type

were generated according to an 8-dimensional multivariate normal distribution with mean
u; ~ Normal(3 - 14, I5), (i = 1,2) and variance %18. To increase the difficulty of classification, the

proportions of the two cell types within each slice are the same.

Synthetic data 2 consisted of three classes of simulated spatial slices, each containing 25, 30, and 25
slices. Each slice contained 3 cell types with different spatial distributions (Figure 2A). Spots of

each cell type were generated according to an 8-dimensional multivariate normal distribution with

mean p; ~ Normal(3 - 14,I5), (i = 1,2,3) and variance %18.
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Benchmarking procedures

For both simulation and real-world datasets, we systematically quantified the performance against
following baseline models: decision tree, k-NN, SVM, logistic regression, random forest, GAT
classifier, STAGATE and SLAT, which were implemented using Python packages “ sklearn” (v1.3.2),
“torch_geometric” (v2.4.0), “STAGATE_pyG” and “scSLAT” (v0.2.1)"*3%22 A|| non-deep
learning classification algorithms, we first averaged the omics features across all spots in each slice
to obtain slice-level inputs, and the algorithms were run with their default settings. For STAGATE
and SLAT, their learned unsupervised embeddings were first averaged across al spotsin each slice,
and then fed to aslice-level k-NN classifier. The GAT classifier constituted two graph convolutional
layers followed by global average pooling across all spotsin each slice and a fully connected layer
for classification. The first and second GAT layers used single-head attention and the size of hidden
layers were 64 and 16, respectively. For all runs of the PASSAGE model, we used the default
hyperparameters (GATE hidden layer-1 size: 128, GATE hidden layer-2 size: 16, attention pooling
layer size: 8 in simulation and 16 in real-world dataset, learning rate: 0.001, dropout probability: 0.3,
AdamW weight decay: 5e-4, gradient norm clipping: 3). Both GAT and PASSAGE were trained for
10 epochs. All benchmarking methods were run with 10 different random seeds. All benchmarking
tasks were accomplished on a server with Intel Xeon Platinum 8352V CPU and one NVIDIA RTX
4090 GPU.

Data Availability

All real-world spatial transcriptomic datasets were downloaded from public databases, with

accession numbers provided in Table S1M22.
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CodeAvailability

The source code of PASSAGE is publicly available at https://github.com/gao-lab/PASSAGE.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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Figure 1 Overview of PASSAGE.

The workflow of PASSA GE comprises three main steps:. data preparation, model training, and
downstream tasks. In data preparation, PASSAGE constructs a spatial neighbor graph for each spatial
slice. Then, the GATE framework is employed to learn spot-level embeddings. Finally, guided by
phenotype-supervised contrastive learning, the spot-level embeddings are dynamically aggregated
using alearnable attention pooling layer to obtain slice-level embeddings that best distinguishes
phenotypic labels. The trained model can subsequently be utilized for slice classification, clustering,

and identification of phenotype-associated spatial signatures.
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Figure 2 Systematic simulation study.

A) Cell type spatial patternsin synthetic data 1 (left) and 2 (right). B) Comparison of classification
metrics for PASSAGE and other baseline models in synthetic data 1. C) UMAP visualization of slice
embeddings obtained by simply averaging al spots (Ieft) or using PASSAGE (right). D) Clustering
metrics for averaging-based embeddings (top) and PASSAGE embeddings (bottom) in synthetic data
1. E) Examples of class-2 associated spatial signatures identified by PASSAGE in synthetic data 2.

The error bars indicate mean + s.d.
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Figure 3 Evaluation of PASSAGE in the breast cancer dataset.

A) Number of slices for each category in the breast cancer dataset. B) UM AP visualization of breast
tissue slices obtained by simply averaging all spots (top) or using PASSAGE (bottom). C)
Phenotype-associated spatial signatures identified by PASSAGE compared to manually annotated

tissue regions for patient 7, 31 and 38.
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Figure 4 Phenotype-associated spatial signaturesidentified by PASSAGE in the SCC dataset.
A) Phenotype-associated spatial signature identified by PASSAGE (right) compared to manually
annotated tumor-associated clusters (left, from Figure S3 of Ji et.al.!*) for patient 53 in the CSCC
dataset. B) Numbat p-CNV score and deconvolution-based tumor-associated patterns from the
original study (left, from Figure 1 of Aroraet al.”*) and PASSAGE-learned phenotype-associated
spatial signatures for patients 43 in the OSCC dataset.
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