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Abstract 

Spatially resolved transcriptomics (SRT) is poised to advance our understanding of cellular 

organization within complex tissues under various physiological and pathological conditions at 

unprecedented resolution. Despite the development of numerous computational tools that facilitate 

the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), 

these methods typically operate in an unsupervised manner, without leveraging sample 

characteristics like physiological/pathological states. Here we present PASSAGE (Phenotype 

Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep 

learning framework for characterizing phenotype-associated signatures across multiple 

heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic 

benchmarks, we have demonstrated PASSAGE’s unique capability in identifying sophisticated 

signatures in multiple real-world datasets. The full package of PASSAGE is available at 

https://github.com/gao-lab/PASSAGE. 
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Introduction 

Spatially resolved transcriptomic (SRT) technologies allow for the profiling of genes expression 

within their native spatial contexts across a wide range of tissue types[1–8]. Existing computational 

methods for analyzing spatial transcriptomics data have primarily focused on the unsupervised 

exploration of spatial patterns, such as identifying spatially variable genes, defining spatial 

domains[9–12], and aligning multiple SRT slices[11,13–15]. Meanwhile, benefitting from technical 

advances and broader application, SRT data are now being generated at increasing volumes across 

diverse conditions, including both physiological and pathological tissues[7,16], enabling a unique 

opportunity to systematically identifying signatures associated with specific phenotypic 

characteristics.  

 

Here, we introduce PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based 

Embedding), a novel supervised representation learning model designed for large cohorts of 

phenotypically labeled spatial transcriptomics slices. Combining graph attention auto-encoder 

(GATE)-based cell/spot-level spatial encoding with slice-level information aggregation through a 

dedicated attention pooling strategy, PASSAGE achieves accurate classification and clustering of 

heterogeneous slices, and effectively pinpoints phenotype-associated signatures across multiple 

slices. PASSAGE is publicly accessible at https://github.com/gao-lab/PASSAGE. 
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Results 

To effectively utilize spatial information, PASSAGE begins by modeling each slice as a spatial 

neighbor graph, and employs a graph attention auto-encoder (GATE) to learn spatially aware 

spot/cell embeddings within each slice. These embeddings capture information not only from the 

expression profile of individual cells/spots, but also from their spatial neighborhood within a tissue 

context. PASSAGE then introduces a dedicated attention pooling layer that aggregates the 

embeddings of all cells/spots within each slice into a single slice-level embedding (Methods), which 

functions as a learnable dynamic averaging process capable of focusing on specific spatial regions. 

The attention pooling part could be further trained using triplet-based contrastive learning, 

supervised by phenotypic annotation of the slices, to “guide” effective attention to regions most 

relevant to phenotypic differences (Figure 1). 

 

Systematic benchmarking shows outstanding performance of 

PASSAGE 

To conduct benchmarks with definitive ground truth, we generated two synthetic spatial datasets with 

varying levels of complexity. The first dataset (synthetic data 1) comprised slices of two phenotypic 

classes, used as the supervision label for the compared algorithms. Each class contains two simulated 

cell types. The two classes were distinguished by whether these two cell types are spatially separated 

(class 1) or infiltrated each other (class 2) (Figure 2A). The cell types exhibit mild discernability in 

their expression profiles, mirroring the characteristics of current in situ spatial transcriptomics 

technologies, where the transcriptomic differences captured between cell types are less pronounced 

than those in conventional single-cell data due to limited spatial resolution or segmentation 

inaccuracies (Figure S1). 

 

To the best of our knowledge, PASSAGE is the first method specifically designed based on 
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supervised classification of spatial transcriptomics slices, so there are no directly comparable 

methods for benchmarking. Thus, we evaluated PASSAGE against two categories of relevant 

methods. The first category includes general-purpose classification algorithms, including decision 

trees, k-nearest neighbors (k-NN), support vector machines (SVM), logistic regression, random 

forests and graph attention networks (GAT).[10,11,13] The second category consists of unsupervised 

representation learning algorithms tailored for spatial transcriptomics data, including STAGATE and 

SLAT (Methods). 

 

PASSAGE achieved substantially higher classification accuracy compared to the other methods 

(Figure 2B, S2). Even though the two classes of synthetic slices were intermingled in their original 

UMAP embedding space obtained by averaging all spots in each slice (Figure 2C), slice-level 

PASSAGE embeddings clustered neatly into two well-separated categories that closely match the 

true class labels (Figure 2C), as also reflected by a significant increase in ARI (Adjusted Rand Index) 

and NMI (Normalized Mutual Information) (Figure 2D). These results indicate that PASSAGE 

effectively distinguishes spatial slices belonging to different phenotypic groups within its embedding 

space. Of note, PASSAGE is designed to learn slice-wise embeddings (rather than spot/cell-wise 

ones of SLAT and STAGATE) for an accurate global representation, which may further contribute to 

its superior classification performance to SLAT and STAGATE[11,13]. 

 

Synthetic data 2 presented a more complex scenario involving three classes of slices: class 1 

emulates healthy tissue containing two cell types, class 2 includes an extra spatially separate “tumor” 

cell type, and class 3 represents tumor tissue with infiltration. When compared with other methods, 

PASSAGE also achieved the highest classification accuracy (Figure S3), with neat clustering of 

slice-level PASSAGE embeddings (Figure S4, S5), again demonstrating the effectiveness of 

PASSAGE in distinguishing highly heterogeneous spatial transcriptomic slices. 

 

Importantly, the attention pooling layer in PASSAGE facilitates the straightforward identification of 

specific spatial regions within individual slices that contribute the most to phenotypic classification. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.09.06.611564doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611564
http://creativecommons.org/licenses/by-nc-nd/4.0/


As visualized by scaled attention scores in the attention pooling layer (Methods), PASSAGE 

precisely highlights spatial signatures designed into the simulation, in this case, cell type 2 which 

exhibits differential abundance and spatial distribution across phenotypic classes (Figure 2E, S6). 

 

PASSAGE effectively calls cancer-associated signatures within multiple 

heterogeneous datasets 

To further demonstrate the performance of PASSAGE in real-world data, we compiled a large breast 

tumor dataset comprising 103 slices from 42 patients (Table S1) sourced from two experimental 

platforms: Spatial Transcriptomics (ST) and 10x Visium[7,17–20]. This dataset includes three 

phenotypic classes: 10 slices of normal breast tissue, 36 slices of conventional breast cancer tissue 

(positive for at least one of ER, HER2, PR), and 57 slices of triple-negative breast cancer tissue 

(Figure 3A, Methods). To ensure the generalizability of our model, we intentionally partitioned the 

training and testing sets by selecting slices from different experimental platforms and patients 

(Methods). 

 

PASSAGE consistently outperforms baseline methods in classifying the three phenotypic classes, 

achieving the highest accuracy (Figure S7). Notably, as previously mentioned, we specifically chose 

a test set consisting of breast tissue spatial slices from an experimental batch that had never been 

included in the training data. Due to batch effects, the three normal breast tissue slices from this 

batch are spatially closer to the triple-negative breast cancer slices from the same batch and relatively 

more distant from normal breast tissue slices collected from another experimental batch (Figure S8). 

However, PASSAGE effectively captured phenotype-associated representations during training, 

thereby accurately classifying the three normal breast tissue slices in the test set. Accordingly, 

PASSAGE also maintained accurate clustering performance (Figure 3B, S9), even when dealing 

with slices from different platforms, patients, and experimental batches that were never part of the 

training process, underscoring PASSAGE's generalization capability and robustness in handling 

diverse and unseen data. 
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We then focused on the ability of PASSAGE to discover phenotype-related spatial signals on real 

data. In the breast tumor datasets, PASSAGE effectively identifies malignancy-associated spatial 

signatures despite their heterogeneous origins via its attention scores. For example, in patient-7 with 

conventional breast cancer (ER-positive, HER-2 positive), all invasive cancer tissue regions 

annotated manually by pathologists were accurately identified by PASSAGE, highlighting the strong 

correlation with the phenotype (Figure 2E, S10). Additionally, in patient-38 (triple-negative breast 

cancer), PASSAGE also successfully identified the dispersed tumor core regions in the slices (Figure 

3C). Notably, in patient-31, also with triple-negative breast cancer, PASSAGE detected the 

disease-associated signatures, i.e., the tumor cells and a crucial tertiary lymphoid structure (TLS), 

although the Germinal Center (GC) of this TLS structure is not fully revealed in the HE-stained 

slices (Figure S11, S12). Furthermore, PASSGAE identified several lymphocyte-enriched foci on the 

right side of this spatial slice, pointing out a potential precursor area of incomplete TLS 

development. 

 

To demonstrate the generality of PASSAGE, we further built a Squamous Cell Carcinoma (SCC) 

dataset, including 12 Oral Squamous Cell Carcinoma (OSCC) slices and 12 Cutaneous Squamous 

Cell Carcinoma (CSCC) slices[21,22]. We focused on malignancy-associated spatial signatures 

detected by PASSAGE in this dataset. Figure 4A illustrates the signature of CSCC patient-53 

defined by PASSAGE. Compared to the manually annotated slices in the original study, PASSAGE 

accurately identified the entire tumor-associated regions.  

 

As for OSCC slices, compared to the p-CNV score inferred by Numbat and the deconvolution results 

from the original study, the phenotype-associated spatial signatures identified by PASSAGE in 

patient-43 from different patients significantly enriched in tumor-related regions (Figure 4B) [22,23]. 

The rationality and biological interpretability of the phenotype-associated spatial signatures we 

identified can also be validated through the expression profiles of OSCC-specific marker genes 

(Figure S13). 
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These results indicate PASSAGE’s effectiveness in identifying biologically meaningful 

phenotype-associated spatial signatures, thereby facilitating researchers in discovering and deeply 

exploring the molecular features of pathological spatial slices with phenotype labels. 
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Discussion 

PASSAGE is designed as a global signature identification algorithm tuned for large-scale 

heterogeneous spatial slices. One essential challenge for PASSAGE is to learn a slice-wise 

representation for numerous within-slice spots, with biologically meaningful phenotype distinctions 

well preserved. Here, we introduced a dedicated attention pooling component for PASSAGE, to learn 

the contribution of individual cells/spots to the slice-level representation dynamically. A key 

advantage of the attention pooling component lies in its inherent capacity for adaptive information 

aggregation, which further enhances the interpretability of PASSAGE-identified signatures within 

the context of phenotype association. 

 

Of note, the supervised nature of PASSAGE would effectively “encourage” the most parsimonious 

signature(s) for discriminating slices with distinct phenotypic groups. We noticed that, in real-world 

cases, such signatures could even be reduced to rather non-spatial ones, like the cell composition 

difference (e.g., the phenotype-associated signatures displayed in the benchmarking of synthetic data 

2 are highly correlated with simulated cell type 2) as long as they can distinguish slices within 

different phenotypic groups effectively. 

 

The rapid accumulation of spatial omics data enables a systematic reference atlas for comparative 

studies across developmental stages[24], demographic populations[25], as well as experimental 

perturbations[26], analogous to what has been done for scRNA-seq[27]. We believe the PASSAGE, as 

an effective algorithm for calling phenotype-associated signatures globally, would be a valuable plus 

to the toolkits of both computational and experimental biologists. The whole package of PASSAGE, 

along with tutorials and demo cases, is available online at https://github.com/gao-lab/PASSAGE for 

the community. 
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Methods 

Data preprocessing and spatial graph construction 

We define a set of spatial slices as � � ������� � 1, 2, 
 , �� where � is the number of all training 

slices. Each slice is denoted as ���� � 
���
��� , �������� � 1,2, 
 , �����, ���� is the number of spots 

in slice �. ��
��� � ���  and ����� � �� are the raw omics features (e.g., gene expression) and spatial 

coordinates of spot �, respectively. 

 

For each spatial slice, we first removed low-quality spots with detected genes lower than 200. Then, 

raw expression values were normalized and log-transformed via scanpy (v1.9.6). Feature unification 

across slices is conducted in “outer” mode, which retains the union of detected genes across all 

spatial slices. Ultimately, spatial k-NN graphs for each slice are generated by torch-cluster (v1.6.3) 

and used as the input of PASSAGE, denoted as � � ������� � 1, 2, 
 , ��. 

 

Graph attention auto-encoder (GATE) module for learning spot-level 

embeddings 

We adopt the GATE architecture in STAGATE as a spot-level embedding model, which in turn 

facilitates subsequent learning of slice-level embeddings. To reinforce the intrinsic information of 

each spot captured by the model, we introduced self-loops in the input spatial graph. For numerical 

stability, the output from the graph-encoder layer is normalized before being passed to the 

graph-decoder layer. The GATE module is trained by minimizing the mean squared error (MSE) 

reconstruction loss of the spot-level omics features. We denote the obtained spot-level embeddings as 


������� � 1,2, 
 , �����. These GATE spot-level embeddings are trained and fixed before 

proceeding to train the slice-level embeddings (next section). 
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Attention pooling for learning slice-level embeddings 

To generate embeddings for entire slices, we propose the following attention pooling layer. The 

attention pooling layer boils down to a weighted sum of spot-level embeddings, where the weights 

are dynamically determined by an attention mechanism between all spots and an attention head[28]. 

To begin with, the spot-level embeddings ����� are first passed through a multi-level perceptron 

(MLP) to obtain ������The attention head ���� is computed by averaging the resulting embeddings 

across all spots in the slice, after applying a learnable linear transformation �: 

������ � MLP!�����" 

���� � 1
���� # � $

����

��	

������ 

On top of that, we compute the attention weights based on the inner product %$& between each spot 

and the attention head above: 

'�
��� � (�%����, ������&� 

where ( is the sigmoid function. The attention score will be scaled to )0,1+ interval to obtain the 

‘scaled attention score’, which used for spatial signature visualization. Eventually, the slice-level 

embedding ,��� is calculated using the above attention weights: 

,��� � ∑ '�
��� $ ����������

��	

.∑ '�
��� $ ����������

��	 .
�

 

 

Model optimization 

Denote the categorical labels of slices as / � �/����� � 1, 2, 
 , ��. We randomly sampled triplet set 

0 � �1,��� , ,�
� , ,���2�/��� � /�
� 3 /��� , �, 4, � � 1, 2, 
 , �� for training, where ,��� , ,�
� forms a 
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positive pair and ,���, ,��� forms a negative pair. The size of triplet dataset |0| can be specified as 

a hyperparameter. Hence, the loss of multi-class contrastive learning is: 

6��
 � 1
|0| # 78��� 9 8�
�7

�
9 78��� 9 8���7

�
�����,����,�������

 

 

Breast cancer and SCC dataset 

For breast cancer dataset benchmarking, We collected 93 breast cancer slices and 10 corresponding 

healthy breast tissue slices from 4 studies[17–20]. We removed one of the spatial slices from patient-37 

(denoted as ‘M10’ by Coutant et al.[20]), which was annotated as a TNBC sample with manual 

annotations from pathologists, due to the uncertainty regarding whether cells on the right hand side 

are genuine tumor cells or simply artifacts of tissue folding. For SCC dataset benchmarking, we 

collected 12 CSCC slices and 12 OSCC slices from 2 studies[21,29]. The data preprocessing process is 

consistent in all spatial slices as mentioned before. 

 

Synthetic datasets 

Synthetic data 1 consisted of two classes of simulated spatial slices, each containing 160 slices. Each 

slice contained 2 cell types with different spatial distributions (Figure 2A). Spots of each cell type 

were generated according to an 8-dimensional multivariate normal distribution with mean 

:� ; Normal!3 $ C�, D�", (� � 1,2) and variance 
	

�
D�. To increase the difficulty of classification, the 

proportions of the two cell types within each slice are the same. 

 

Synthetic data 2 consisted of three classes of simulated spatial slices, each containing 25, 30, and 25 

slices. Each slice contained 3 cell types with different spatial distributions (Figure 2A). Spots of 

each cell type were generated according to an 8-dimensional multivariate normal distribution with 

mean :� ; Normal!3 $ C� , D�", (� � 1,2,3) and variance 
	

�
D�. 
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Benchmarking procedures 

For both simulation and real-world datasets, we systematically quantified the performance against 

following baseline models: decision tree, k-NN, SVM, logistic regression, random forest, GAT 

classifier, STAGATE and SLAT, which were implemented using Python packages “sklearn” (v1.3.2), 

“torch_geometric” (v2.4.0), “STAGATE_pyG” and “scSLAT” (v0.2.1)[11,13,30–32]. All non-deep 

learning classification algorithms, we first averaged the omics features across all spots in each slice 

to obtain slice-level inputs, and the algorithms were run with their default settings. For STAGATE 

and SLAT, their learned unsupervised embeddings were first averaged across all spots in each slice, 

and then fed to a slice-level k-NN classifier. The GAT classifier constituted two graph convolutional 

layers followed by global average pooling across all spots in each slice and a fully connected layer 

for classification. The first and second GAT layers used single-head attention and the size of hidden 

layers were 64 and 16, respectively. For all runs of the PASSAGE model, we used the default 

hyperparameters (GATE hidden layer-1 size: 128, GATE hidden layer-2 size: 16, attention pooling 

layer size: 8 in simulation and 16 in real-world dataset, learning rate: 0.001, dropout probability: 0.3, 

AdamW weight decay: 5e-4, gradient norm clipping: 3). Both GAT and PASSAGE were trained for 

10 epochs. All benchmarking methods were run with 10 different random seeds. All benchmarking 

tasks were accomplished on a server with Intel Xeon Platinum 8352V CPU and one NVIDIA RTX 

4090 GPU. 

 

Data Availability 

All real-world spatial transcriptomic datasets were downloaded from public databases, with 

accession numbers provided in Table S1[17–22]. 
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Code Availability 

The source code of PASSAGE is publicly available at https://github.com/gao-lab/PASSAGE. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figures 

Figure 1 Overview of PASSAGE. 

The workflow of PASSAGE comprises three main steps: data preparation, model training, and 

downstream tasks. In data preparation, PASSAGE constructs a spatial neighbor graph for each spatial

slice. Then, the GATE framework is employed to learn spot-level embeddings. Finally, guided by 

phenotype-supervised contrastive learning, the spot-level embeddings are dynamically aggregated 

using a learnable attention pooling layer to obtain slice-level embeddings that best distinguishes 

phenotypic labels. The trained model can subsequently be utilized for slice classification, clustering, 

and identification of phenotype-associated spatial signatures. 
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Figure 2 Systematic simulation study. 

A) Cell type spatial patterns in synthetic data 1 (left) and 2 (right). B) Comparison of classification 

metrics for PASSAGE and other baseline models in synthetic data 1. C) UMAP visualization of slice 

embeddings obtained by simply averaging all spots (left) or using PASSAGE (right). D) Clustering 

metrics for averaging-based embeddings (top) and PASSAGE embeddings (bottom) in synthetic data 

1. E) Examples of class-2 associated spatial signatures identified by PASSAGE in synthetic data 2. 

The error bars indicate mean ± s.d. 
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Figure 3 Evaluation of PASSAGE in the breast cancer dataset. 

A) Number of slices for each category in the breast cancer dataset. B) UMAP visualization of breast 

tissue slices obtained by simply averaging all spots (top) or using PASSAGE (bottom). C) 

Phenotype-associated spatial signatures identified by PASSAGE compared to manually annotated 

tissue regions for patient 7, 31 and 38. 
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Figure 4 Phenotype-associated spatial signatures identified by PASSAGE in the SCC dataset. 

A) Phenotype-associated spatial signature identified by PASSAGE (right) compared to manually 

annotated tumor-associated clusters (left, from Figure S3 of Ji et.al.[21]) for patient 53 in the CSCC 

dataset. B) Numbat p-CNV score and deconvolution-based tumor-associated patterns from the 

original study (left, from Figure 1 of Arora et al.[29]) and PASSAGE-learned phenotype-associated 

spatial signatures for patients 43 in the OSCC dataset. 
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