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ABSTRACT

Azithromycin is used to treat invasive salmonellosis, despite conflicting effective
concentrations in vitro and in vivo. Resistance of Salmonella enterica to azithromycin is
increasing. We demonstrate that nanomotion technology can be used for rapid phenotypic
testing of Salmonella’s susceptibility to azithromycin. Nanomotion changes under various
culture conditions correlated with susceptibility measured by MIC determination, CFU
counting, and fluorescent reporter-based estimates of intrabacterial azithromycin
accumulation.

MAIN

Invasive salmonellosis caused by Salmonella enterica subspecies is a major threat to human
health affecting >20 million people yearly (1, 2). Antimicrobial resistance to traditional drugs,
such as beta-lactams and fluoroquinolones, has emerged in all invasive S. enterica serovars
(1). The macrolide azithromycin (AZIl) has been effectively used to treat Salmonella infections
resistant to other drug classes (3-5). AZI remains effective in vivo, despite recommended
doses achieving peak serum concentrations in the range of 0.4 ug/ml (6): 20-fold lower than
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the MICs for most clinical strains (8 ug/ml) (7). Resistance to AZI is increasing (8, 9),
underlining the need for rapid susceptibility testing. Nanomotion technology can be used as
a rapid phenotypic antimicrobial susceptibility test (AST) (10—-14). The technology is based on
measuring oscillations caused by metabolically active organisms attached to a
nanomechanical sensor, a cantilever (11, 15). The classification into resistant/susceptible
categories is based on machine learning algorithms for specific strain-drug combinations.
The susceptibility phenotype can already be detected two hours after blood culture
positivity (14). The technology has been successfully applied in various bacterial species, and
two clinical studies have been concluded (NANO-RAST (16), NCT05002413) and PHENOTECH-
1(14), NCT05613322).

Prior to this study, nanomotion had not been used to determine susceptibility to AZI or any
other macrolide. We recorded nanomotion of S. enterica under various experimental
conditions affecting its susceptibility to AZI. We used neutral and acidic media, and two
different incubation temperatures. In the early stages of development, nanomotion was
measured at ambient room temperature (RT). The current setup uses 37°C for all ASTs to
mimic physiological conditions in humans and to decrease the time to results (14).

Based on MIC values, Salmonella is up to 4 times more sensitive to AZI at RT compared to
37°C in different growth media (Fig. S1A; Table S1). This effect cannot be fully explained by
the differences in growth rates (Fig. S1B). Nanomotion was recorded for AZl-susceptible S.
enterica serovar Typhimurium SL1344 (17-19) (wild-type; wt) during AZl treatment and
subsequent recovery in fresh drug-free medium at both RT and 37°C (Fig. 1 & S2). Before
the addition of the antibiotic, nanomotion variance over time increased, indicating the
presence and physiological activity of live bacteria on the cantilever. In the untreated
sample, the signal continued to increase during the measurement (Fig. 1A). When AZI was
added at concentrations exceeding the MIC, the nanomotion signal slope decreased. After
removal of AZI nanomotion started to increase again in fresh drug-free medium at 37°C,
indicating recovery (Fig. 1C; S2). However, no recovery was observed when the experiments
were conducted at RT (Fig. 1B; S2), except after treatment with 16 ug/ml AZI (Fig. S2). In all
cases, bacteria remained on the cantilever at the end of the experiment (Fig. S3).

We hypothesized that the bacteria might have been killed or their recovery delayed. Delay in
post-treatment recovery after an antibiotic is removed from the extracellular environment is
known as the postantibiotic effect (PAE), and it impacts antibiotic dosing (20, 21). Colony
counts after treatment indicated that AZI killed less than one log of S. enterica when plates
were incubated at 37°C during recovery. However, during RT recovery, the same
concentrations of AZI killed at least one log more irrespective of the treatment temperature
(Fig. 1D). The enhanced post-treatment killing by AZl at a lower temperature may reflect
slower dissociation of the drug from the ribosome, which is known to increase the
bactericidal activity of macrolides (22).

The slope of the nanomotion variance during drug exposure is a proxy for estimating drug
susceptibility (14). To test whether detection of AZI resistance in Salmonella is feasible with
nanomotion, we determined the slope of the variance at different AZI concentrations for wt
SL1344 and a resistant mutant acrB R717Q, which harbors a clinically relevant mutation that
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84  increases AZI efflux in the acrAB-TolC efflux pump and has an MIC of 32 pug/ml (8, 23-25).
85 We also determined the slope of the variance for wt strain at acidic pH, a condition
86 encountered by intracellular Salmonella in acidic vacuoles (26) which increases AZl’'s MIC
87 above 1024 pg/ml (Table S1) (18). We used the rolling regression method for slope
88  estimation, which demonstrated better reliability and robustness compared to the methods
89 employed in previous studies (Supplementary materials and methods, Figure S4).

90 Remarkable differences in nanomotion arise between the strains at AZI concentrations near
91  the MIC value of the wt at neutral pH. The drug slope values of the resistant mutant begin
92  decreasing at higher AZl concentrations than the wt (Fig. 2A). A comparable difference is
93 seen in the wt between neutral and acidic pH (Fig. 2B), indicating that nanomotion can be
94  used to detect AZI susceptibility.

95  Drug slopes started to decline at AZI concentrations several-fold below the MIC, indicating

96 an effect on the bacteria (Fig 2). To verify these sub-MIC effects of AZI, we used a fluorescent

97 reporter in which the translational attenuation-based regulatory leader region (ermCL) is

98 fused to GFP (Fig. 3A) instead of the native ermC methyltransferase that confers macrolide

99 resistance (27, 28). Macrolides stall the ribosome during ErmCL translation, which opens the
100 mRNA secondary structure allowing translation initiation of the downstream gene (28). AZI
101  induced GFP expression in bacteria containing the reporter plasmid in a concentration-
102  dependent manner (Fig. 3B) at these same sub-MIC concentrations where drug slopes began
103  to decline. Maximum reporter induction was observed at or slightly above the MIC at pH
104 7.4, however little to no induction was seen at concentrations <1 pg/ml (Fig.-s 3B, S5-S6),
105  which is in good agreement with the nanomotion data (Fig. 2). In accordance with the lower
106  MIC at RT, the signal peaked at 4X lower concentrations at RT than it did at 37°C (Fig. 3B, S6).
107 However, the induction levels remained significantly lower at RT, reflecting slower
108  translation processes. At pH 5.5, GFP induction began at significantly higher concentrations
109 compared to pH 7.4 (Fig.-s 3B, S5-56), supporting the notion that the pH-dependence of AZI
110  sensitivity is due to differences in antibiotic accumulation within the cell. AZI did not induce
111  GFP at RT at pH 5.5 (Fig. 3B, S6).

112 In summary, we show that nanomotion technology can be used for rapid detection of AZI
113 susceptibility. MIC values obtained using the standard dilution method, CFU counting results,
114 and ermCL-dependent GFP induction by AZl were all consistent with the physiological
115  responses recorded by nanomotion. Additionally, we found that nanomotion is effective for
116  detecting PAE and assessing bactericidal activity. Our study highlights the importance of
117  assay conditions, which significantly affected AZI efficacy and readout of the test.
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Figure 1. Variance over time of the nanomotion signal measurements of wt Salmonella
without AZI (A) or with 128 pg/ml AZI for 2 hours and subsequent recovery in fresh medium
at room temperature (RT) (B) or at 37°C (C). Green indicates bacterial nanomotion variance
signal before adding the drug, orange is during drug treatment and pink is the recovery in
fresh medium after removing the drug. Means + SEM (N > 3 biological replicates) shown for
nanomotion data. D. Recovery of wt Salmonella colonies on LB-agar after 2h of treatment
with AZ| at indicated temperature at pH 7.4. Grey dotted line indicates the initial inoculum.
Means £ SD (N > 3 biological replicates).
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228  Figure 2. The drug-phase slope of nanomotion variance reflects the response to AZl in
229  Salmonella and can be used to estimate susceptibility to the drug. A. The slope of the
230 variance during the drug phase of the AZl-resistant acrB R717Q mutant and susceptible wild-
231  type (wt) strain SL1344 at neutral pH. B. Drug slope of the wt strain at two different pH
232 values. RT data; means + SEM (N2>3); transparent data points shown, where N <3. *Indicates
233 p-value <0.05 of the difference between the groups at the indicated concentration.
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235  Figure 3. ErmCL-based reporter system was used to estimate AZl’'s intracellular
236  concentrations and effects on translation. A. Schematic representation of the reporter
237  system. B. GFP induction of wt Salmonella after 2 h treatment with AZI. Flow cytometry data.
238  Means + SD (N=3).
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Figure 2. The drug-phase slope of nanomotion variance reflects the response to AZl in Salmonella
and can be used to estimate susceptibility to the drug. A. The slope of the variance during the drug
phase of the AZl-resistant acrB R717Q mutant and susceptible wild-type (wt) strain SL1344 at
neutral pH. B. Drug slope of the wt strain at two different pH values. RT data; means = SEM (N=3);
transparent data points shown, where N <3. *Indicates p-value <0.05 of the difference between

the groups at the indicated concentration.
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Figure 3. ErmCL-based reporter system was used to estimate AZI’s intracellular concentrations
and effects on translation. A. Schematic representation of the reporter system. B. GFP induction
of wt Salmonella after 2 h treatment with AZI. Flow cytometry data. Means + SD (N=3).
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