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ABSTRACT  27 

Azithromycin is used to treat invasive salmonellosis, despite conflicting effective 28 

concentrations in vitro and in vivo. Resistance of Salmonella enterica to azithromycin is 29 

increasing. We demonstrate that nanomotion technology can be used for rapid phenotypic 30 

testing of Salmonella’s susceptibility to azithromycin. Nanomotion changes under various 31 

culture conditions correlated with susceptibility measured by MIC determination, CFU 32 

counting, and fluorescent reporter-based estimates of intrabacterial azithromycin 33 

accumulation.  34 

MAIN  35 

Invasive salmonellosis caused by Salmonella enterica subspecies is a major threat to human 36 

health affecting >20 million people yearly (1, 2). Antimicrobial resistance to traditional drugs, 37 

such as beta-lactams and fluoroquinolones, has emerged in all invasive S. enterica serovars 38 

(1). The macrolide azithromycin (AZI) has been effectively used to treat Salmonella infections 39 

resistant to other drug classes (3–5). AZI remains effective in vivo, despite recommended 40 

doses achieving peak serum concentrations in the range of 0.4 μg/ml (6): 20-fold lower than 41 
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the MICs for most clinical strains (8 μg/ml) (7). Resistance to AZI is increasing (8, 9), 42 

underlining the need for rapid susceptibility testing. Nanomotion technology can be used as 43 

a rapid phenotypic antimicrobial susceptibility test (AST) (10–14). The technology is based on 44 

measuring oscillations caused by metabolically active organisms attached to a 45 

nanomechanical sensor, a cantilever (11, 15). The classification into resistant/susceptible 46 

categories is based on machine learning algorithms for specific strain-drug combinations. 47 

The susceptibility phenotype can already be detected two hours after blood culture 48 

positivity (14). The technology has been successfully applied in various bacterial species, and 49 

two clinical studies have been concluded (NANO-RAST (16), NCT05002413) and PHENOTECH-50 

1 (14), NCT05613322). 51 

Prior to this study, nanomotion had not been used to determine susceptibility to AZI or any 52 

other macrolide. We recorded nanomotion of S. enterica under various experimental 53 

conditions affecting its susceptibility to AZI. We used neutral and acidic media, and two 54 

different incubation temperatures. In the early stages of development, nanomotion was 55 

measured at ambient room temperature (RT). The current setup uses 37°C for all ASTs to 56 

mimic physiological conditions in humans and to decrease the time to results (14).  57 

Based on MIC values, Salmonella is up to 4 times more sensitive to AZI at RT compared to 58 

37°C in different growth media (Fig. S1A; Table S1). This effect cannot be fully explained by 59 

the differences in growth rates (Fig. S1B). Nanomotion was recorded for AZI-susceptible S. 60 

enterica serovar Typhimurium SL1344 (17–19) (wild-type; wt) during AZI treatment and 61 

subsequent recovery in fresh drug-free medium at both RT and 37°C (Fig. 1 & S2).  Before 62 

the addition of the antibiotic, nanomotion variance over time increased, indicating the 63 

presence and physiological activity of live bacteria on the cantilever. In the untreated 64 

sample, the signal continued to increase during the measurement (Fig. 1A). When AZI was 65 

added at concentrations exceeding the MIC, the nanomotion signal slope decreased. After 66 

removal of AZI nanomotion started to increase again in fresh drug-free medium at 37°C, 67 

indicating recovery (Fig. 1C; S2). However, no recovery was observed when the experiments 68 

were conducted at RT (Fig. 1B; S2), except after treatment with 16 μg/ml AZI (Fig. S2). In all 69 

cases, bacteria remained on the cantilever at the end of the experiment (Fig. S3). 70 

We hypothesized that the bacteria might have been killed or their recovery delayed. Delay in 71 

post-treatment recovery after an antibiotic is removed from the extracellular environment is 72 

known as the postantibiotic effect (PAE), and it impacts antibiotic dosing (20, 21). Colony 73 

counts after treatment indicated that AZI killed less than one log of S. enterica when plates 74 

were incubated at 37°C during recovery. However, during RT recovery, the same 75 

concentrations of AZI killed at least one log more irrespective of the treatment temperature 76 

(Fig. 1D). The enhanced post-treatment killing by AZI at a lower temperature may reflect 77 

slower dissociation of the drug from the ribosome, which is known to increase the 78 

bactericidal activity of macrolides (22).  79 

The slope of the nanomotion variance during drug exposure is a proxy for estimating drug 80 

susceptibility (14). To test whether detection of AZI resistance in Salmonella is feasible with 81 

nanomotion, we determined the slope of the variance at different AZI concentrations for wt 82 

SL1344 and a resistant mutant acrB R717Q, which harbors a clinically relevant mutation that 83 
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increases AZI efflux in the acrAB-TolC efflux pump and has an MIC of 32 μg/ml (8, 23–25). 84 

We also determined the slope of the variance for wt strain at acidic pH, a condition 85 

encountered by intracellular Salmonella in acidic vacuoles (26) which increases AZI’s MIC 86 

above 1024 μg/ml (Table S1) (18). We used the rolling regression method for slope 87 

estimation, which demonstrated better reliability and robustness compared to the methods 88 

employed in previous studies (Supplementary materials and methods, Figure S4). 89 

Remarkable differences in nanomotion arise between the strains at AZI concentrations near 90 

the MIC value of the wt at neutral pH. The drug slope values of the resistant mutant begin 91 

decreasing at higher AZI concentrations than the wt (Fig. 2A). A comparable difference is 92 

seen in the wt between neutral and acidic pH (Fig. 2B), indicating that nanomotion can be 93 

used to detect AZI susceptibility.  94 

Drug slopes started to decline at AZI concentrations several-fold below the MIC, indicating 95 

an effect on the bacteria (Fig 2). To verify these sub-MIC effects of AZI, we used a fluorescent 96 

reporter in which the translational attenuation-based regulatory leader region (ermCL) is 97 

fused to GFP (Fig. 3A) instead of the native ermC methyltransferase that confers macrolide 98 

resistance (27, 28). Macrolides stall the ribosome during ErmCL translation, which opens the 99 

mRNA secondary structure allowing translation initiation of the downstream gene (28). AZI 100 

induced GFP expression in bacteria containing the reporter plasmid in a concentration-101 

dependent manner (Fig. 3B) at these same sub-MIC concentrations where drug slopes began 102 

to decline.  Maximum reporter induction was observed at or slightly above the MIC at pH 103 

7.4, however little to no induction was seen at concentrations ≤1 µg/ml (Fig.-s 3B, S5-S6), 104 

which is in good agreement with the nanomotion data (Fig. 2). In accordance with the lower 105 

MIC at RT, the signal peaked at 4X lower concentrations at RT than it did at 37°C (Fig. 3B, S6). 106 

However, the induction levels remained significantly lower at RT, reflecting slower 107 

translation processes. At pH 5.5, GFP induction began at significantly higher concentrations 108 

compared to pH 7.4 (Fig.-s 3B, S5-S6), supporting the notion that the pH-dependence of AZI 109 

sensitivity is due to differences in antibiotic accumulation within the cell. AZI did not induce 110 

GFP at RT at pH 5.5 (Fig. 3B, S6).  111 

In summary, we show that nanomotion technology can be used for rapid detection of AZI 112 

susceptibility. MIC values obtained using the standard dilution method, CFU counting results, 113 

and ermCL-dependent GFP induction by AZI were all consistent with the physiological 114 

responses recorded by nanomotion. Additionally, we found that nanomotion is effective for 115 

detecting PAE and assessing bactericidal activity. Our study highlights the importance of 116 

assay conditions, which significantly affected AZI efficacy and readout of the test.  117 
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 218 

Figure 1. Variance over time of the nanomotion signal measurements of wt Salmonella 219 

without AZI (A) or with 128 µg/ml AZI for 2 hours and subsequent recovery in fresh medium 220 

at room temperature (RT) (B) or at 37°C (C). Green indicates bacterial nanomotion variance 221 

signal before adding the drug, orange is during drug treatment and pink is the recovery in 222 

fresh medium after removing the drug. Means ± SEM (N ≥ 3 biological replicates) shown for 223 

nanomotion data. D. Recovery of wt Salmonella colonies on LB-agar after 2h of treatment 224 

with AZI at indicated temperature at pH 7.4. Grey dotted line indicates the initial inoculum. 225 

Means ± SD (N ≥ 3 biological replicates). 226 
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6 

Figure 2. The drug-phase slope of nanomotion variance reflects the response to AZI in 228 

Salmonella and can be used to estimate susceptibility to the drug. A. The slope of the 229 

variance during the drug phase of the AZI-resistant acrB R717Q mutant and susceptible wild-230 

type (wt) strain SL1344 at neutral pH. B. Drug slope of the wt strain at two different pH 231 

values. RT data; means ± SEM (N≥3); transparent data points shown, where N <3. *Indicates 232 

p-value <0.05 of the difference between the groups at the indicated concentration. 233 
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 234 

Figure 3. ErmCL-based reporter system was used to estimate AZI’s intracellular 235 

concentrations and effects on translation. A. Schematic representation of the reporter 236 

system. B. GFP induction of wt Salmonella after 2 h treatment with AZI. Flow cytometry data. 237 

Means ± SD (N=3). 238 
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Figure 1. Variance over time of the nanomotion signal measurements of wt Salmonella without AZI 

(A) or with 128 µg/ml AZI for 2 hours and subsequent recovery in fresh medium at room 

temperature (RT) (B) or at 37°C (C). Green indicates bacterial nanomotion variance signal before 

adding the drug, orange is during drug treatment and pink is the recovery in fresh medium after 

removing the drug. Means ± SEM (N ≥ 3 biological replicates) shown for nanomotion data. D. 
Recovery of wt Salmonella colonies on LB-agar after 2h of treatment with AZI at indicated 

temperature at pH 7.4. Grey dotted line indicates the initial inoculum. Means ± SD (N ≥ 3 biological 
replicates). 
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Figure 2. The drug-phase slope of nanomotion variance reflects the response to AZI in Salmonella 

and can be used to estimate susceptibility to the drug. A. The slope of the variance during the drug 

phase of the AZI-resistant acrB R717Q mutant and susceptible wild-type (wt) strain SL1344 at 

neutral pH. B. Drug slope of the wt strain at two different pH values. RT data; means ± SEM (N≥3); 
transparent data points shown, where N <3. *Indicates p-value <0.05 of the difference between 

the groups at the indicated concentration. 
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Figure 3. ErmCL-based reporter system was used to estimate AZI’s intracellular concentrations 
and effects on translation. A. Schematic representation of the reporter system. B. GFP induction 

of wt Salmonella after 2 h treatment with AZI. Flow cytometry data. Means ± SD (N=3). 
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