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Abstract

Multi-locus signatures of blood-based DNA methylation are well-established biomarkers for
lifestyle and health outcomes. Here, we focus on two CpGs that are strongly associated with
age and smoking behaviour. Imputing these loci via epigenome-wide CpGs results in
stronger associations with outcomes in external datasets compared to directly measured
CpGs. If extended epigenome-wide, CpG imputation could augment historic arrays and
recently-released, inexpensive but lower-content arrays, thereby yielding better-powered

association studies.

Main

Over the past decade, lllumina array technology has led the profiling of DNA methylation
(DNAm) in large cohort studies'?. This began with the measurement of ~27,000 CpG loci
(27K array), followed by ~450,000 (450K array) and most recently 800,000+ CpG sites
(EPICv1 and EPICv2). The vast majority of content on the smaller 27K and 450K arrays are
also contained on the EPIC arrays®*. By leveraging the widespread correlations across the
methylome®®, it may be possible to derive an imputation framework to augment existing

datasets with missingness or those that were generated using historic arrays.

The requirement for such a tool is further emphasised by the recent development and launch
of the lllumina Methylation Screening Array (MSA)’. The MSA is the most affordable DNAm
array to date and was designed specifically for application in large biobank studies. The
MSA array assesses DNAm at 269,094 sites of which 145,318 are present on the EPICv2
array’. The MSA therefore contains new content with enrichment for sites linked to
regulatory and cell-specific chromatin states®. Clearly, this will create major challenges when
trying to replicate findings or meta-analyse data across array technologies. However, if one
can identify ways to impute content, this will not only benefit cohorts with existing data, but
will also afford an opportunity to assess DNAmM at greater scale, via a less expensive
method, prior to boosting content through imputation. Finally, given that imputation considers
CpG information from multiple loci, this averaging process may lead to fewer spurious
outliers at well-imputed sites, resulting in better-powered association studies and improved

multi-CpG biomarkers, such as epigenetic clocks’.

Building an accurate DNAm imputation server is therefore of immense value to the research
community. However, developing this tool is non-trivial both in terms of scale (~1 million
unique CpG sites to consider) and determining imputation quality for traits that are both

dynamic and influenced by multiple factors.
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To highlight the potential of the work, we present pilot findings for two CpG loci that are
established blood-based correlates of chronological age (cg16867657, ELOVL2)! and
smoking behaviour (cg05575921, AHRR)***2,

Similar to polygenic risk scores, methylation-based predictors can be derived as linear,
weighted additive combinations of CpGs. Hereafter, we refer to these as Epigenetic Scores
(EpiScores). EpiScores for the two CpGs were derived using data from 18,869 volunteers
from the Generation Scotland cohort. DNAmM was profiled from blood samples collected
between 2006 and 2011, when individuals were aged between 17 and 99 years (11,098,
58.8% female, Supplementary Figure 1). The EPICv1 array was used to measure DNAmM —
full details of the processing and quality control are presented elsewhere'* and briefly
summarised in Online Methods. There were methylation estimates available for 752,722
CpGs after quality control. These were subset to loci present on the 450k array to maximise
backwards compatibility, and further filtered to the target locus (cg16867657 or cg05575921)
and the 200,000 most variable probes (after excluding the target CpG) for computational
efficiency and to remove invariant CpG sites. In a final quality control step, each CpG M-
value was pre-adjusted for sex, analysis batch and the first 10 genetic principal
components™ via linear regression in R with the resulting residuals taken forward for the

main analysis.

Elastic net penalised linear regression was used to derive EpiScores using the biglasso
package (version 1.3.7)'® in R (version 4.0.3). The target CpG (cg16867657) was specified
as the outcome variable with the 200,000 most variable CpGs as the predictors. This was
then repeated with cg05575921 as the outcome. 20-fold cross-validation was applied to
obtain the optimal lambda (shrinkage parameter) that minimised the mean error. The
subsequent models resulted in 65 non-zero coefficients for both ¢gl6867657 and

€g05575921. These coefficients are presented in Supplementary Table 1.

The predictors were then tested in external datasets. The age-related CpG EpiScore was

1.1 to derive one of the first

tested in the publicly available dataset used by Hannum et a
epigenetic clocks (GSE40279, 450K array). After downloading the data (n=656 individuals
aged 19 to 101 years), the model weights were applied (65/65 CpGs present) and the
EpiScore was derived. The measured CpG and CpG EpiScore were highly correlated with
each other (Pearson r = 0.90, P = 8.1x10?%). Figure 1 shows that the imputed CpG
EpiScore yielded a stronger, more significant correlation with chronological age than the
measured CpG: Pearson repiscore = 0.88 (P = 8.4x10%') versus regiegeres7 = 0.83 (P = 7.4x10°

157y, A second publicly available dataset (GSE246337'%, EPICv2, 59/65 CpGs available),
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which contained 500 individuals from the Mass General Brigham (MGB) Biobank was also
considered. This cohort was evenly divided by sex and representing ages 18-99 years and a
broad range of ethnicities. The dataset was subset to 437 individuals with no missing data
for age or the 59 CpGs. Here, the CpG — EpiScore correlation was 0.96 (P = 2.0x10%*°) with
age correlations of repiscore = 0.94 (P = 3.7x107%) and regasgs7657 = 0.93 (P = 1.6x107'%). When
the cohort was stratified into age decades, the EpiScore — CpG correlation decreased (Irange
= 0.64-0.81) but remained larger than the within-strata associations between either variable

and age (Supplementary Table 2).

The smoking-related CpG EpiScore was tested in 895 individuals from the Lothian Birth
Cohort 1936°. All individuals were born in 1936 and had a mean age of 70 years (SD = 0.8)
with 442 (49.4%) females when blood samples were obtained. DNAm was profiled from
these samples using the lllumina 450K array?’. Details of quality control are presented in the
Online Methods. Smoking pack years information was obtained by self-report
guestionnaires and calculated as years smoked (age stopped minus age started smoking)
multiplied by the number of 20-cigarette packs smoked per day. This information was
available for 881 of the 895 participants and underwent a log(pack years + 1) transformation

to reduce skew. 64/65 CpGs were available in LBC1936 for the projection of the EpiScore.

The Pearson correlation between the measured ¢g05575921 and its EpiScore was r = 0.87
(P = 4.8x10") in the whole population and r = 0.61 in the sub-group of n = 410 never-
smokers. This is plotted in Figure 1 alongside boxplots of the measured CpG and EpiScore
against self-reported smoking status. The measured CpG and its EpiScore associations with
smoking pack years were r = -0.62 (P = 8.8x10°*) and r = -0.60 (P = 2.4x10®"), respectively.
The EpiScore also showed a better classification of current versus never smokers (assessed
by self-report, n = 109 and 410, respectively) in the same population: area under the
receiver operating characteristic curve of 0.971 versus 0.954. A sensitivity analysis training
the EpiScores using DNAm beta-values in place of M-values made minimal differences to
the results (Supplementary Table 3).

Together, these findings show that imputation of CpG methylation from other CpG sites
leads to stronger and more statistically significant associations with two important outcomes
for health research: age and smoking. While the imputation success at the selected sites is
part-driven by their well-established associations with age and smoking, these findings
militate for further work to assess how well the approach generalises across all CpGs
present on lllumina arrays. In addition, family-structure/relatedness was not accounted for

within the Generation Scotland training cohort, which may have led to information leakage
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across folds and overfitting. However, we tested the resulting EpiScores in external datasets
where the DNAmM was also processed and normalised independently. Further tests need to
be carried out to ensure that the resulting signatures translate across diverse populations.
Here, the LBC test cohort contained individuals of Scottish ancestry while the Hannum
dataset contained a mixture of European and Hispanic ancestry individuals (h = 426 and
230, respectively) and GSE246337 contained a mix of European-, African-, Asian-, and
Hispanic-ancestry individuals. Subsetting to CpGs that are commonly found on the 450K,
EPIC and MSA arrays prior to training EpiScores would maximise the gains for all cohorts.
Further subsetting this list to loci that have similar patterns (e.g., mean and SD by age and
sex) across populations, as well as exploring the properties of well-imputed sites (e.g., by
genomic location or SNP-based heritability) will further inform the generalisability of the
findings. Future studies should also focus on incorporating genotypic contributions to CpG

variability”* or more flexible imputation approaches that can capture non-linear patterns.

To further highlight the utility of our approach, we applied a similar methodology to predict
GDF15 protein levels from other plasma proteins in UK Biobank (Online Methods). The
imputed variable correlated 0.87 with measured GDF15 in the test set and showed a larger
and more statistically significant association (per SD) with incident dementia (Ncases = 590,
Neontrots = 17,952): Hazard Ratio (HR)epris = 1.37, 95% CI [1.26, 1.48], P = 3.1x10™" and
HRGoF15_proteinscore = 1.42 [1.31, 1.54], P = 2.5x10°™".

In conclusion, the imputation of array-based CpG methylation and plasma proteins is
feasible and can lead to larger and more statistically significant effect sizes in association

studies for complex traits.
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Availability of data and material
According to the terms of consent for Generation Scotland participants, access to data must
be reviewed by the Generation Scotland Access Committee. Applications should be made to

access@generationscotland.org.

Further information on accessing Lothian Birth Cohort data from the Lothian Birth Cohort
Study, University of Edinburgh is available online, alongside a data request form and data

dictionaries (https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration).

Data from UK Biobank is available to approved researchers directly from UK Biobank

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access).
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Figure 1. Comparison of measured versus imputed CpGs for smoking (top row) and age
(bottom rows) and their associations with smoking (Lothian Birth Cohort 1936, n = 895) and
age (‘Hannum’ dataset, GSE40279, n= 656; GSE246337, n=500). Measured/imputed CpGs
were scaled to mean 0, variance 1. Blue lines denote local regression lines (loess

estimation) with 95% confidence intervals.
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Online Methods

Tabular overview of the DNA methylation collection and QC process for Generation Scotland and the Lothian Birth Cohort 1936.

Tissue

N

Array
Comments

Background

correction

Probe removal

Sample removal

Normalisation
N CpGs post QC

Blood
18,869
EPICv1

Processed in 4 sets (n=5,087, 4,450, 8,876, and 456)

Background and dye-bias correction were carried out using
meffil' (versions 1.1.0 and 1.1.2) and the "noob" method

(i) outliers from visual inspection of the log median intensity
of the methylated versus unmethylated signal per array,

(ii) beadcount < 3 in more than 5% of samples,

(i) =775% of samples having a detection p-value > 0.05,

(iv) annotated to X or Y chromosome,
(v) overlapped with SNPs
(vi) potentially cross-hybridizing

(i) sex mismatch,
(ii) 201% of CpGs with detection p-value > 0.05,
(iii) if sample was not blood-based

Dasen?
752,722

Blood

895

450k

Processed in 2 sets (n=861 and 34)

Raw intensity data were background-corrected
and normalised using internal controls

(i) low (< 95%) detection rate with p-value < 0.01,
(i) inadequate hybridization, bisulfite conversion,
nucleotide extension, or staining signal (manual
inspection)

(i) low call rate (<450,000 CpGs at P<0.01),
(i) sex mismatch

iii) samples exhibiting a poor match between
genotype and SNP control probes

Danet?
450,276
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GDF15 Analysis

UK Biobank Overview

UK Biobank is a prospective cohort study of around 500,000 individuals living across
England, Wales and Scotland®. Participants were aged between 40 and 70 years at
recruitment between 2006 and 2010. Demographic, lifestyle, and physiological data were
collected via self-report and at a baseline clinic visit. Blood samples were obtained from the
majority of volunteers, most of whom provided consent for linkage to their electronic primary

and secondary care health records.

Protein Measurement

Proteomic data were generated for 53,014 participants using the Olink Explore panel, which
assesses 2,923 proteins (data field 30900)*. Proteins with >20% missingness (n=12),
participants missing >20% of the 2,923 proteins (n = 8,834), and participants missing
measurements for GDF15 (n = 865) were excluded.

Dementia Ascertainment
Dementia was ascertained using the algorithmically-defined outcomes in UK Biobank (data
field 42018). These combine data from self-report at baseline, hospital records, and death

register records to increase the positive predictive value of dementia ascertainment®.

Statistical Analyses

The cohort with available protein data was split at random into equally-sized training and test
sets (Nyain = 21,888, nwest = 21,889). Each set was then processed separately. First, missing
values for all proteins apart from GDF15 were mean imputed. Second, proteins were scaled

to have mean zero and unit variance.

Elastic net penalised linear regression was used to derive a ProteinScore for GDF15 using
the biglasso package (version 1.3.7)° in R (version 4.0.3). GDF15 was specified as the
outcome variable with the 2,911 remaining proteins listed as the predictors. An elastic net
penalty (alpha = 0.5) was set and 20-fold cross-validation was applied to obtain the optimal
lambda (shrinkage parameter) that minimised the mean error. The subsequent model
resulted in 1,281 non-zero coefficients plus an intercept. These coefficients are presented in
Supplementary Table 4 and were used to generate a ProteinScore for GDF15 in the test

set.
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A Pearson correlation was used to compare measured GDF15 with its ProteinScore in the
test set. This was followed by Cox proportional hazards regression analyses, adjusting for
age and sex (data fields 34, 52, 53 and 31) and either GDF15 or its ProteinScore as the
predictor of interest. Right-censoring occurred when a person was diagnosed with dementia,
died (data field 40000), was lost to follow-up (data field 191), or on the last day of data
availability (31% December 2022), whichever came first. To exclude individuals too young to
experience late-onset dementia, the sample was restricted to participants born before the
year 1962. In the test set, this resulted in 590 individuals with an incident dementia diagnosis
and 17,952 controls.
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Supplementary Figure 1. Overview of the basic study demographics for Generation
Scotland. The top panel shows the distribution of age by sex with males in turquoise and
females in light red. The middle panel shows the distribution of smoking status and the lower
panel shows a scatter plot with density contours for number of pack years of smoking by age

for both current (light red) and former (turquoise) smokers.
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