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Abstract  

Multi-locus signatures of blood-based DNA methylation are well-established biomarkers for 

lifestyle and health outcomes. Here, we focus on two CpGs that are strongly associated with 

age and smoking behaviour. Imputing these loci via epigenome-wide CpGs results in 

stronger associations with outcomes in external datasets compared to directly measured 

CpGs. If extended epigenome-wide, CpG imputation could augment historic arrays and 

recently-released, inexpensive but lower-content arrays, thereby yielding better-powered 

association studies. 

 

Main  

Over the past decade, Illumina array technology has led the profiling of DNA methylation 

(DNAm) in large cohort studies1,2. This began with the measurement of ~27,000 CpG loci 

(27K array), followed by ~450,000 (450K array) and most recently 800,000+ CpG sites 

(EPICv1 and EPICv2). The vast majority of content on the smaller 27K and 450K arrays are 

also contained on the EPIC arrays3,4. By leveraging the widespread correlations across the 

methylome5,6, it may be possible to derive an imputation framework to augment existing 

datasets with missingness or those that were generated using historic arrays.  

 

The requirement for such a tool is further emphasised by the recent development and launch 

of the Illumina Methylation Screening Array (MSA)7. The MSA is the most affordable DNAm 

array to date and was designed specifically for application in large biobank studies. The 

MSA array assesses DNAm at 269,094 sites of which 145,318 are present on the EPICv2 

array8. The MSA therefore contains new content with enrichment for sites linked to 

regulatory and cell-specific chromatin states8. Clearly, this will create major challenges when 

trying to replicate findings or meta-analyse data across array technologies. However, if one 

can identify ways to impute content, this will not only benefit cohorts with existing data, but 

will also afford an opportunity to assess DNAm at greater scale, via a less expensive 

method, prior to boosting content through imputation. Finally, given that imputation considers 

CpG information from multiple loci, this averaging process may lead to fewer spurious 

outliers at well-imputed sites, resulting in better-powered association studies and improved 

multi-CpG biomarkers, such as epigenetic clocks9.      

 

Building an accurate DNAm imputation server is therefore of immense value to the research 

community. However, developing this tool is non-trivial both in terms of scale (~1 million 

unique CpG sites to consider) and determining imputation quality for traits that are both 

dynamic and influenced by multiple factors.  
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To highlight the potential of the work, we present pilot findings for two CpG loci that are 

established blood-based correlates of chronological age (cg16867657, ELOVL2)10,11 and 

smoking behaviour (cg05575921, AHRR)12,13. 

 

Similar to polygenic risk scores, methylation-based predictors can be derived as linear, 

weighted additive combinations of CpGs. Hereafter, we refer to these as Epigenetic Scores 

(EpiScores). EpiScores for the two CpGs were derived using data from 18,869 volunteers 

from the Generation Scotland cohort. DNAm was profiled from blood samples collected 

between 2006 and 2011, when individuals were aged between 17 and 99 years (11,098, 

58.8% female, Supplementary Figure 1). The EPICv1 array was used to measure DNAm – 

full details of the processing and quality control are presented elsewhere14 and briefly 

summarised in Online Methods. There were methylation estimates available for 752,722 

CpGs after quality control. These were subset to loci present on the 450k array to maximise 

backwards compatibility, and further filtered to the target locus (cg16867657 or cg05575921) 

and the 200,000 most variable probes (after excluding the target CpG) for computational 

efficiency and to remove invariant CpG sites. In a final quality control step, each CpG M-

value was pre-adjusted for sex, analysis batch and the first 10 genetic principal 

components15 via linear regression in R with the resulting residuals taken forward for the 

main analysis.  

 

Elastic net penalised linear regression was used to derive EpiScores using the biglasso 

package (version 1.3.7)16 in R (version 4.0.3). The target CpG (cg16867657) was specified 

as the outcome variable with the 200,000 most variable CpGs as the predictors. This was 

then repeated with cg05575921 as the outcome. 20-fold cross-validation was applied to 

obtain the optimal lambda (shrinkage parameter) that minimised the mean error. The 

subsequent models resulted in 65 non-zero coefficients for both cg16867657 and 

cg05575921. These coefficients are presented in Supplementary Table 1.   

 

The predictors were then tested in external datasets. The age-related CpG EpiScore was 

tested in the publicly available dataset used by Hannum et al.17 to derive one of the first 

epigenetic clocks (GSE40279, 450K array). After downloading the data (n=656 individuals 

aged 19 to 101 years), the model weights were applied (65/65 CpGs present) and the 

EpiScore was derived. The measured CpG and CpG EpiScore were highly correlated with 

each other (Pearson r = 0.90, P = 8.1x10-238). Figure 1 shows that the imputed CpG 

EpiScore yielded a stronger, more significant correlation with chronological age than the 

measured CpG: Pearson rEpiScore = 0.88 (P = 8.4x10-214) versus rcg16867657 = 0.83 (P = 7.4x10-

167). A second publicly available dataset (GSE24633718, EPICv2, 59/65 CpGs available), 
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which contained 500 individuals from the Mass General Brigham (MGB) Biobank was also 

considered. This cohort was evenly divided by sex and representing ages 18-99 years and a 

broad range of ethnicities. The dataset was subset to 437 individuals with no missing data 

for age or the 59 CpGs. Here, the CpG – EpiScore correlation was 0.96 (P = 2.0x10-239) with 

age correlations of rEpiScore = 0.94 (P = 3.7x10-204) and rcg16867657 = 0.93 (P = 1.6x10-185). When 

the cohort was stratified into age decades, the EpiScore – CpG correlation decreased (rrange 

= 0.64-0.81) but remained larger than the within-strata associations between either variable 

and age (Supplementary Table 2).  

 

The smoking-related CpG EpiScore was tested in 895 individuals from the Lothian Birth 

Cohort 193619. All individuals were born in 1936 and had a mean age of 70 years (SD = 0.8) 

with 442 (49.4%) females when blood samples were obtained. DNAm was profiled from 

these samples using the Illumina 450K array20. Details of quality control are presented in the 

Online Methods. Smoking pack years information was obtained by self-report 

questionnaires and calculated as years smoked (age stopped minus age started smoking) 

multiplied by the number of 20-cigarette packs smoked per day. This information was 

available for 881 of the 895 participants and underwent a log(pack years + 1) transformation 

to reduce skew. 64/65 CpGs were available in LBC1936 for the projection of the EpiScore.  

        

The Pearson correlation between the measured cg05575921 and its EpiScore was r = 0.87 

(P = 4.8x10-275) in the whole population and r = 0.61 in the sub-group of n = 410 never-

smokers. This is plotted in Figure 1 alongside boxplots of the measured CpG and EpiScore 

against self-reported smoking status. The measured CpG and its EpiScore associations with 

smoking pack years were r = -0.62 (P = 8.8x10-94) and r = -0.60 (P = 2.4x10-87), respectively. 

The EpiScore also showed a better classification of current versus never smokers (assessed 

by self-report, n = 109 and 410, respectively) in the same population: area under the 

receiver operating characteristic curve of 0.971 versus 0.954. A sensitivity analysis training 

the EpiScores using DNAm beta-values in place of M-values made minimal differences to 

the results (Supplementary Table 3).  

 

Together, these findings show that imputation of CpG methylation from other CpG sites 

leads to stronger and more statistically significant associations with two important outcomes 

for health research: age and smoking. While the imputation success at the selected sites is 

part-driven by their well-established associations with age and smoking, these findings 

militate for further work to assess how well the approach generalises across all CpGs 

present on Illumina arrays. In addition, family-structure/relatedness was not accounted for 

within the Generation Scotland training cohort, which may have led to information leakage 
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across folds and overfitting. However, we tested the resulting EpiScores in external datasets 

where the DNAm was also processed and normalised independently. Further tests need to 

be carried out to ensure that the resulting signatures translate across diverse populations. 

Here, the LBC test cohort contained individuals of Scottish ancestry while the Hannum 

dataset contained a mixture of European and Hispanic ancestry individuals (n = 426 and 

230, respectively) and GSE246337 contained a mix of European-, African-, Asian-, and 

Hispanic-ancestry individuals. Subsetting to CpGs that are commonly found on the 450K, 

EPIC and MSA arrays prior to training EpiScores would maximise the gains for all cohorts. 

Further subsetting this list to loci that have similar patterns (e.g., mean and SD by age and 

sex) across populations, as well as exploring the properties of well-imputed sites (e.g., by 

genomic location or SNP-based heritability) will further inform the generalisability of the 

findings. Future studies should also focus on incorporating genotypic contributions to CpG 

variability21 or more flexible imputation approaches that can capture non-linear patterns.  

 

To further highlight the utility of our approach, we applied a similar methodology to predict 

GDF15 protein levels from other plasma proteins in UK Biobank (Online Methods). The 

imputed variable correlated 0.87 with measured GDF15 in the test set and showed a larger 

and more statistically significant association (per SD) with incident dementia (ncases = 590, 

ncontrols = 17,952): Hazard Ratio (HR)GDF15 = 1.37, 95% CI [1.26, 1.48], P = 3.1x10-15 and 

HRGDF15_ProteinScore = 1.42 [1.31, 1.54], P = 2.5x10-17.   

 

In conclusion, the imputation of array-based CpG methylation and plasma proteins is 

feasible and can lead to larger and more statistically significant effect sizes in association 

studies for complex traits.  
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Availability of data and material 

According to the terms of consent for Generation Scotland participants, access to data must 

be reviewed by the Generation Scotland Access Committee. Applications should be made to 

access@generationscotland.org. 

 

Further information on accessing Lothian Birth Cohort data from the Lothian Birth Cohort 

Study, University of Edinburgh is available online, alongside a data request form and data 

dictionaries (https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration).  

 

Data from UK Biobank is available to approved researchers directly from UK Biobank 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). 
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Figure 1. Comparison of measured versus imputed CpGs for smoking (top row) and age 

(bottom rows) and their associations with smoking (Lothian Birth Cohort 1936, n = 895) and 

age (‘Hannum’ dataset, GSE40279, n= 656; GSE246337, n=500). Measured/imputed CpGs 

were scaled to mean 0, variance 1. Blue lines denote local regression lines (loess 

estimation) with 95% confidence intervals.  
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Online Methods 

Tabular overview of the DNA methylation collection and QC process for Generation Scotland and the Lothian Birth Cohort 1936. 

 Generation Scotland Lothian Birth Cohort 1936 
Tissue Blood Blood 

N 18,869 895 

Array EPICv1 450k 

Comments Processed in 4 sets (n=5,087, 4,450, 8,876, and 456)  Processed in 2 sets (n=861 and 34)  

Background 
correction 

Background and dye-bias correction were carried out using 
meffil1 (versions 1.1.0 and 1.1.2) and the "noob" method 

Raw intensity data were background-corrected 
and normalised using internal controls 

Probe removal (i) outliers from visual inspection of the log median intensity 
of the methylated versus unmethylated signal per array,  
(ii) beadcount < 3 in more than 5% of samples, 
(iii) ≥�5% of samples having a detection p-value > 0.05,  
(iv) annotated to X or Y chromosome,  
(v) overlapped with SNPs  
(vi) potentially cross-hybridizing 

(i) low (< 95%) detection rate with p-value < 0.01, 
(ii) inadequate hybridization, bisulfite conversion, 
nucleotide extension, or staining signal (manual 
inspection) 

Sample removal (i) sex mismatch,  
(ii) ≥�1% of CpGs with detection p-value > 0.05,  
(iii) if sample was not blood-based 

(i) low call rate (<450,000 CpGs at P<0.01),  
(ii) sex mismatch  
iii) samples exhibiting a poor match between 
genotype and SNP control probes 

Normalisation Dasen2 Danet2 

N CpGs post QC 752,722 450,276 
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GDF15 Analysis 

UK Biobank Overview 

UK Biobank is a prospective cohort study of around 500,000 individuals living across 

England, Wales and Scotland3. Participants were aged between 40 and 70 years at 

recruitment between 2006 and 2010. Demographic, lifestyle, and physiological data were 

collected via self-report and at a baseline clinic visit. Blood samples were obtained from the 

majority of volunteers, most of whom provided consent for linkage to their electronic primary 

and secondary care health records.    

 

Protein Measurement 

Proteomic data were generated for 53,014 participants using the Olink Explore panel, which 

assesses 2,923 proteins (data field 30900)4. Proteins with >20% missingness (n=12), 

participants missing >20% of the 2,923 proteins (n = 8,834), and participants missing 

measurements for GDF15 (n = 865) were excluded. 

 

Dementia Ascertainment 

Dementia was ascertained using the algorithmically-defined outcomes in UK Biobank (data 

field 42018). These combine data from self-report at baseline, hospital records, and death 

register records to increase the positive predictive value of dementia ascertainment5. 

 

Statistical Analyses 

The cohort with available protein data was split at random into equally-sized training and test 

sets (ntrain = 21,888, ntest = 21,889). Each set was then processed separately. First, missing 

values for all proteins apart from GDF15 were mean imputed. Second, proteins were scaled 

to have mean zero and unit variance.  

 

Elastic net penalised linear regression was used to derive a ProteinScore for GDF15 using 

the biglasso package (version 1.3.7)6 in R (version 4.0.3). GDF15 was specified as the 

outcome variable with the 2,911 remaining proteins listed as the predictors. An elastic net 

penalty (alpha = 0.5) was set and 20-fold cross-validation was applied to obtain the optimal 

lambda (shrinkage parameter) that minimised the mean error. The subsequent model 

resulted in 1,281 non-zero coefficients plus an intercept. These coefficients are presented in 

Supplementary Table 4 and were used to generate a ProteinScore for GDF15 in the test 

set.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2024. ; https://doi.org/10.1101/2024.09.05.611501doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611501
http://creativecommons.org/licenses/by/4.0/


A Pearson correlation was used to compare measured GDF15 with its ProteinScore in the 

test set. This was followed by Cox proportional hazards regression analyses, adjusting for 

age and sex (data fields 34, 52, 53 and 31) and either GDF15 or its ProteinScore as the 

predictor of interest. Right-censoring occurred when a person was diagnosed with dementia, 

died (data field 40000), was lost to follow-up (data field 191), or on the last day of data 

availability (31st December 2022), whichever came first. To exclude individuals too young to 

experience late-onset dementia, the sample was restricted to participants born before the 

year 1962. In the test set, this resulted in 590 individuals with an incident dementia diagnosis 

and 17,952 controls.  
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Supplementary Figure 1. Overview of the basic study demographics for Generation 

Scotland. The top panel shows the distribution of age by sex with males in turquoise and 

females in light red. The middle panel shows the distribution of smoking status and the lower 

panel shows a scatter plot with density contours for number of pack years of smoking by age 

for both current (light red) and former (turquoise) smokers.  
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